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A B S T R A C T

Climate change and deterioration require a continuous effort to reinforce flood defences and meet reliability
requirements. To efficiently upgrade flood defence systems, insight in costs and benefits of measures at a
system level is required throughout the process of planning and design. Due to the size of flood defence
systems the number of possible decisions is large, which hampers system optimization. We describe a greedy
search algorithm that can find (near-)optimal combinations of reinforcement measures for dike segments. The
algorithm has been validated by comparing results for 2800 different dike segments to an integer programming
implementation. The difference in objective value (Total Cost) is only 0.04% on average, which is small
compared to other uncertainties in assessment and design of dike segments. The algorithm is applied to a
reinforcement project for a dike segment of 41 independent sections, and compared to the common design
practice which uses reliability-based requirements on a section level. It is found that the resulting reinforced
dike segment is 42% cheaper to construct than the one obtained from the common approach, based on the
same input information. This illustrates the practical and societal value of the design approach using a greedy
search algorithm in this context.
1. Introduction

In many delta regions around the world, systems of flood defences
(e.g., dikes, dunes and hydraulic structures) have been constructed
to mitigate risks from flooding [1,2]. Due to increasing economic
activity [3], in combination with climate change consequences [4], reli-
ability of these flood defence systems has to be improved continuously,
often resulting in a backlog of improvement projects. In this paper we
focus on design of dike segments, which are series systems of dikes
(i.e., earthen flood defences) with a length of ≈ 20 km. However, the
methods are also applicable for other types of flood defences.

The subsoil in delta regions is typically very heterogeneous, which
means that the strength of dike segments is very non-homogeneous.
This means that the system reliability is determined by that of different
(partially) independent elements. This is illustrated for a dike segment
in Fig. 1: the reliability of such a dike segment depends on different sec-
tions (length ≈ 1 km) that are modelled as a cross section. Typically the
strength of different sections is uncorrelated, and the load is correlated.
Each section is susceptible to various failure modes, most notably inner
slope instability, piping erosion and overtopping. However, this is not
always to the same extent, and the cost for increasing reliability is not

∗ Corresponding author at: Delft University of Technology, Faculty of Civil Engineering and Geosciences, P.O. Box 5048, Delft 2600 GA, The Netherlands.

the same for each failure mode and can vary per section (for instance
due to lack of space due to neighbouring residential areas).

To ensure acceptable flood risk for the future, in the Netherlands
safety standards (i.e., reliability requirements) for dike segments have
been derived based on loss-of-life and Societal Cost Benefit Analy-
sis [5,6]. In order to meet these requirements many dike segments
have to be reinforced, and flood defence managers have to translate
segment reliability requirements to design alternatives for different
dike sections and vice versa. Generally this is done using a reliability-
based design approach where the segment requirements are translated
to section requirements in a uniform way along the segment. A section
is then modelled as a single representative cross section. However, it
is found that this approach is often conservative, as it does not take
into account the various causes for non-homogeneity of the segment,
most notably: current differences in reliability between sections, and
differences in costs for improving different failure modes at different
sections (e.g., differences due lack of space for expansion) [7]. Overall,
this approach leads to relatively high reinforcement costs.

Research on optimization of flood defence systems has generally
focused on two aspects: either determining optimal safety targets for
dike segments [e.g. 8–10], or optimal design alternatives for dike
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Fig. 1. Relation between a dike segment, section and representative cross section, failure modes considered for each cross section and (conceptually) resulting relations between
reliability index 𝛽 and time. The average length of a segment is approximately 20 km and the length of a section varies between 200 and 2000 m (average ≈ 1 km).
cross sections [e.g. 7,11]. van Dantzig [12] first elaborated the deriva-
tion of optimal flood defence system safety targets. Later this was
advanced in the approach used to derive the new safety standards
in the Netherlands [5,13]. As the Linear Programming approach that
was used could not deal with non-homogeneous segments it was im-
proved by Brekelmans et al. [14], and later extended to an integer
programming approach by Zwaneveld et al. [8], and a graph-based
approach [9,15]. Both can handle non-homogeneous segments and
more complex systems. Nevertheless, in order to prevent state space
explosion, typically one has to significantly simplify the optimization
problem, which is a major issue when analysing large dike segments.
Optimization of cross-sections using a target reliability typically con-
siders multiple failure modes as well as influence of deterioration such
that design alternatives can be optimized in time (e.g. [7,10] and [11]).
Nevertheless, optimization of improvement planning of dike segments
in connection to the optimization at a cross section level has not been
addressed explicitly.

Especially for long term planning of flood protection systems de-
cision makers also have to deal with significant uncertainty in future
economic value and climate change effects on extreme flood condi-
tions [e.g. 16]. To deal with this, various approaches have been used
to incorporate this uncertainty in strategic planning decisions. For
instance, real options analysis such as considered by Woodward et al.
[17] explicitly accounts for the flexibility of investment decisions, in
order to assure that investments are robust under a wide variety of
possible future conditions. Kwakkel et al. [18] and Woodward et al.
[19] use a model-driven approach using a Multi-objective evolutionary
algorithm (MOEA) that can find robust optimal solutions under a wide
variety of uncertainties. Such approaches can be valuable if decisions
are sensitive to large (future) uncertainties, or for cases with a high
degree of complexity [e.g. 20,21]. A common class of MOEA are genetic
algorithms such as the NSGA-II algorithm [22]. An advantage is that
these algorithms do not suffer as much from state space explosion as
e.g. integer programming, although they do not provide a guaranteed
optimal solution.

In other fields the issue of optimal planning of interventions in com-
plex systems has been addressed in the past for both single and multi-
objective problems. For instance [23] addressed planning of bridge
maintenance in a road network aimed at balancing cost and net-
work performance, by using an adapted version of the aforemen-
tioned NSGA-II algorithm. Barone and Frangopol [24] evaluated op-
timal maintenance planning for a bridge of several components using
different performance indicators, and encountered differences in both
computational time as well as performance for each performance in-
dicator. For instance, risk-based maintenance was more cost-effective
than reliability-based maintenance. Cavdaroglu et al. [25] determined
schedules for network restoration measures after an non-routine disrup-
tion of an interdependent network using a heuristic solution method.
2

The accuracy of the developed heuristic solution method was high
(in comparison with some commercial solution methods), and had a
much lower computational cost thus making it more accessible to de-
cision makers. Bagloee et al. [26] solved a very practical prioritization
question for road improvement projects using a combination of super-
vised learning and integer programming in order to optimally schedule
projects within a given budget. Also in the field of project scheduling
for offshore asset construction [27] and concrete bridges [28] amongst
others, there are several (heuristic) approaches that deal with solving
scheduling tasks with multiple objectives and uncertainty in present
and future conditions. In summary, there is ample work in other
fields that we can utilize for optimization of planning of dike segment
reinforcements.

In general, both for flood defences and other applications, once
problems become interdependent and the number of variables in-
creases, some type of heuristic is applied in order to reach a near-
optimal solution. In this paper we develop a greedy algorithm that
employs heuristics based on the engineering problem of improving
a dike segment consisting of many non-homogeneous sections. The
advantage of this approach is that the heuristics are relatively easy to
understand for dike managers, and that it can reach a (near-) optimal
solution quickly on commonly available hardware. This is an advantage
compared to existing solutions which are typically less transparent and
require a simplification of the problem, making them less useful for
application in design and planning of dike reinforcement projects.

In Section 2 we describe the principles of (improving) dike segment
reliability and how this can translate to heuristics for a greedy algo-
rithm. In Section 3 we describe a general optimization problem for
planning reinforcements of a dike segment, in Section 4 we compare
the results for the greedy algorithm with a Mixed Integer Programming
(MIP) implementation similar to [8]. In Section 5 we demonstrate the
applicability of the approach for the design and planning of an actual
dike system consisting of 41 dike sections.

2. Methods

2.1. Reliability of dike segments

In safety assessments of dike segments in the Netherlands the relia-
bility of a segment is compared to the reliability requirement, where a
segment has a relatively uniform load (e.g., all sections loaded by the
same river) and the consequences of flooding are relatively uniform
(i.e., the same area is flooded, independent of where in the segment a
failure occurs) [6].

Typically different failure modes are assessed for different indepen-
dent sections, based on a representative cross section. For river dikes
there are three dominant failure modes: overtopping, piping erosion

and inner slope instability [29]. Overtopping failure occurs when the
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hydraulic loads (water level and waves) exceed the dike crest and cause
erosion of the inner slope [30]. Piping erosion is the failure mode where
soil particles are eroded from a granular layer below the dike due to
ground water flow [31]. Inner slope instability occurs when the inner
slope of a dike fails due to saturation (and corresponding increased
weight and decreased shear resistance) as a result of a lasting high
water level [32]. The failure modes are schematically represented in
Fig. 1 (middle).

To obtain the segment reliability, the limit state functions of the
different mechanisms and different sections can be combined in order
to obtain the overall reliability for the dike segment. Methods such as
the Equivalent Planes method [33] can account for correlation between
sections and failure modes. For piping erosion and inner slope instabil-
ity the variability of the subsoil is typically dominant, and therefore
different sections have hardly any correlation. For overtopping along a
river the failure is mostly water level dominated, meaning that sections
are strongly correlated.

In practice often a simplified approach using upper and lower
bounds is used. The upper bound of the failure probability of a seg-
ment 𝑃f ,segment of 𝑁 (uncorrelated) sections at time 𝑡 is then given
by Vanmarcke [34]:

𝑃f ,segment (𝑡) =
𝑁
∏

𝑖
1 − 𝑃f ,i, (1)

whereas the lower bound, corresponding to a system with 𝑁 fully
correlated sections is given by:

𝑃f ,segment (𝑡) = max
𝑖∈𝑁

𝑃f ,i. (2)

It was shown by Vanmarcke [34] that even systems with equally
reliable components and relatively strong correlation (𝜌 ≈ 0.8) are quite
well approximated by Eq. (1), and even more so for components with
unequal reliability (such as a typical dike segment). In our case, we can
thus approximate the segment reliability for piping erosion and inner
slope instability using Eq. (1), and for overtopping using Eq. (2), after
which the overall segment failure probability for all 𝑀 mechanisms is
obtained from:

𝑃f ,segment (𝑡) ≈ 1 −
∏

𝑚∈𝑀
1 − 𝑃f ,m,segment (𝑡). (3)

Due to temporal changes in load and strength, reliability will change
over time (see Fig. 1). Deterioration of the strength can consist of,
amongst others settlement of the dike crest resulting in additional
overtopping, settlement of the inner toe resulting in larger hydraulic
head for piping erosion and decreased slope stability. Temporal changes
in loads are typically caused by climate change resulting in higher
water levels and higher waves [11]. This has a direct and relatively
large effect on overtopping reliability, but the influence on piping and
slope instability is smaller as there is damping of these effects in the
subsoil. In Section 4 we will further outline how these effects are
incorporated.

2.2. Improving reliability of dike segments

Aside from the fact that dike segments consist of many non-
homogeneous sections, dike asset owners in the Netherlands currently
have to deal with at least the following three considerations when
planning dike reinforcement projects:

• The dike segment has to meet a reliability requirement, but they
typically have time to achieve this.

• The strategy to achieve this has to be explainable to other stake-
holders.

• They can choose between many different types of reinforcement
methods, with different costs at each dike section.
3

Note that in practice also considerations of other functions and re-
gional developments are of importance, but in this study we focus on
achieving the required reliability in a cost-optimal manner.

Dikes provide utility in terms of reduction of economic damage and
loss-of-life due to flooding [35]. Based on analysis of costs and utility,
optimal target reliability requirements have been obtained that ensure
optimal risk levels [e.g. 6]. Ideally, any investment in dikes would
be evaluated to yield minimal total cost (flood risk + investment).
The practical approach in the Netherlands is to first define optimal
reliability requirements after which investments are aimed at meeting
these. As a major part of the optimization is based on optimal total cost,
these reliability requirements are typically very close to what would
follow from a total cost optimization.

In the Netherlands, the overall goal is to meet the reliability require-
ments in 2050 for the entire country. The main reason is that it is not
achievable to reinforce all dike segments to the required level before
that time with the available budget and capacity. Practically this means
that dike managers have to ensure two things:

• That they meet the target reliability in 2050.
• That they achieve this target in an efficient way within existing

(budget) constraints.

Thus, we can distinguish two phases in the optimization problem:
the period up to the year when the requirement has to be met (2050),
and the period after that. In the first period it is of importance that
investments are efficient in terms of total cost (investment and risk
costs). It has been found that as for example loss-of-life risk is typically
strongly correlated to economic damage, optimizing the total economic
cost is a good approximation for other risk indicators as well [36]. Thus,
we can use a total cost optimization to determine an optimal planning
of reinforcement measures for the first phase. In the second phase, after
2050, a total cost optimization is still a good approach, but additionally
it should be required that the reliability remains above the target level.

Secondly, aside from societally cost optimal, a planning of dike
reinforcements needs to be explainable and transparent, as many stake-
holders are involved. In the context of a dike reinforcement there
is for instance involvement by financing organizations, inhabitants,
nature preservation organizations, local farmers and local and regional
governments. This means that in practice a decision on a dike rein-
forcement is risk-informed, rather than risk-based, and as was argued
by Bohnenblust and Slovic [37] a technical analysis should aim to focus
discussion between stakeholders on key issues rather than providing a
clear cut solution. For our analysis this means that an approach that not
only gives an optimal planning but is also explainable to non-technical
stakeholders is to be preferred.

Lastly, there are many techniques available for dike reinforcement,
although typically dikes are reinforced by heightening the crest (to
prevent overtopping) and widening berms (to counter instability and
piping erosion issues) with additional soil material. However, also
structural measures such as diaphragm walls and sheetpiles [38], as
well as innovative measures such as Vertical Sandtight Geotextile [39]
are applied. These are specifically interesting for countering threats
from instability and piping erosion in densely populated areas. The
main reason is that they require less space, although some of these
structural measures are much more expensive than enlarging the dike
profile with additional soil.

These measures can be classified in two main dimensions, extent
and type, as is illustrated in Fig. 2. For the extent we distinguish be-
tween full measures that impact all relevant failure modes, and partial
measures aimed at improving reliability for only 1 failure mode. A re-
newal type measure alters the structural behaviour of the dike, whereas
a renovation measure maintains the general structural behaviour but
increases the dimensions. For instance, Fig. 2 (top left) shows a full
renewal using a diaphragm wall, which affects all mechanisms and
completely alters the structural behaviour. The bottom right figure
shows a crest heightening: the structural behaviour remains the same
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Fig. 2. Categorization of types of reinforcement measures. Red arrows indicate mecha-
isms as defined in Fig. 1 with a safety deficit, pink dotted arrows indicate if a measure
as resolved this deficit. For each type an illustrative reinforcement measure is shown
dashed black lines). From top left, clockwise: a full renewal using a diaphragm wall, a
artial renewal using a Vertical Sandtight Geotextile, a partial renovation through crest
eightening and a full renovation with combined berm widening and crest heightening.

nd only the failure probability of overtopping is reduced. In terms
f life-cycle performance each type of measure will have different
ehaviour in terms of degradation of performance, and for renewal
easures the impact of different uncertainties on the performance
ight shift. It is important to include these effects in planning decisions,

s this might affect the reliability over time significantly.

. Approach

.1. Definition of the problem

In this paper we consider a dike segment of 𝑁 sections for a period
of 𝑇 years. The current safety level of the segment is significantly
below the safety standard, and measures for dike reinforcement have
to be determined. A variety of measures for different dike sections
is available. The goal is to determine the optimal combination of
measures that ensures that the reliability requirement in year 𝑡req is
met, in a cost optimal way and considering different failure modes.
Table 1 presents the used notation. In this section we describe the
general problem, in the following subsections we describe the solution
methods that are used.

Our general objective may be written as follows:

min 𝑇𝐶 = 𝑇𝑅 + 𝑇𝐿𝐶𝐶 (4)

where 𝑇𝑅 is the total flood risk cost over the considered period 𝑇 and
𝐿𝐶𝐶 is the total life cycle cost of all measures. 𝑇𝑅 is defined as:

𝑅 =
∑

𝑡∈𝑇
𝑃f ,total(𝑡) ⋅𝐷(𝑡) (5)

with:

𝑃f ,total(𝑡) = 1 −
∏

𝑛∈𝑁

(

∑

𝑠h∈𝑆h

∑

𝑠g∈𝑆g

(

𝑃f ,pip ⋅ 𝑃f ,inst ⋅ 𝐶int (𝑛, 𝑠h, 𝑠g)
)

⋅
(

1 − (𝑃f ,over ⋅𝐷int (𝑡, 𝑛, 𝑠h))
)

) (6)
4

for 𝑡 ∈ 𝑇 ,
where 𝑃f ,pip = 1 − 𝑃f ,pip(𝑛, 𝑠g, 𝑡) and 𝑃f ,inst = 1 − 𝑃f ,inst (𝑛, 𝑠g, 𝑡).
𝑇𝐿𝐶𝐶 is defined as:

𝑇𝐿𝐶𝐶 =
∑

𝑛∈𝑁

∑

𝑠h∈𝑆h

∑

𝑠g∈𝑆g

𝐿𝐶𝐶(𝑛, 𝑠h, 𝑠g) ⋅ 𝐶int (𝑛, 𝑠h, 𝑠g). (7)

This is subject to the following constraints:
∑

𝑠g∈𝑆g

∑

𝑠h∈𝑆h

𝐶int (𝑛, 𝑠h, 𝑠g) = 1 for 𝑛 ∈ 𝑁 (8)

∑

𝑛∈𝑁

∑

𝑠h∈𝑆h

𝐷int (𝑡, 𝑛, 𝑠h) = 1 for 𝑡 ∈ 𝑇 (9)

∑

𝑠h∈𝑆h
𝑃f ,over (𝑛,𝑠h ,𝑡)>
𝑃f ,over (𝑛∗ ,𝑠h∗,𝑡)

𝐶int (𝑛, 𝑠h, 𝑠g) +

∑

𝑛h

∑

𝑠h∈𝑆h
𝑃f ,over (𝑛,𝑠h ,𝑡)≤
𝑃f ,over (𝑛∗ ,𝑠

∗
h ,𝑡)

𝐷int (𝑡, 𝑛, 𝑠h) ≤ 1 (10)

for 𝑡 ∈ 𝑇 , 𝑛 ∈ 𝑁, 𝑛∗ ∈ 𝑁, 𝑠∗h ∈ 𝑆h

𝑃f ,total(𝑡) < 𝑃req for 𝑡 ∈ 𝑇 , 𝑡req ≤ 𝑡 ≤ 𝑡horizon (11)

𝐶int (𝑛, 𝑠h, 𝑠g) ∈ 0, 1 for 𝑛 ∈ 𝑁, 𝑠h ∈ 𝑆h, 𝑠g ∈ 𝑆g (12)

𝐷int (𝑡, 𝑛, 𝑠h) ∈ 0, 1 for 𝑡 ∈ 𝑇 , 𝑛 ∈ 𝑁, 𝑠g ∈ 𝑆g (13)

Eq. (4) describes the objective of our approach, namely to minimize the
total cost consisting of flood risk and investment costs over the consid-
ered time period 𝑇 , which are both written more explicitly in Eqs. (5)
and (7). Eqs. (8) and (9) describe relatively simple constraints that
ensure that there is only 1 combination of 𝑠h and 𝑠g chosen per dike
section, and that for each time 𝑡 only 1 section 𝑛 is the weakest for
overtopping. Eq. (10) is a bit more complicated, but it ensures that if
there is an investment 𝑠h at a section 𝑛, it cannot be the weakest section
𝑛∗, 𝑠∗h at the same time, so investments in reducing 𝑃f ,over (𝑛, 𝑠h, 𝑡) are
always done at the section with the highest 𝑃f ,over (𝑛, 𝑠h, 𝑡). Eq. (11) is a
constraint that ensures that after some year 𝑡req the system reliability
requirement is satisfied. This is optionally limited by 𝑡horizon, which is
the horizon for which this is to be satisfied. Eqs. (12) and (13) ensure
that the variables 𝐶int (𝑛, 𝑠h, 𝑠g) and 𝐷int (𝑡, 𝑛, 𝑠h) are binary.

Before the optimization is started 𝑃f ,inst (𝑛, 𝑠g, 𝑡), 𝑃f ,over (𝑛, 𝑠h, 𝑡),
𝑃f ,pip(𝑛, 𝑠g, 𝑡), 𝐿𝐶𝐶(𝑛, 𝑠h, 𝑠g) and 𝐷(𝑡) are precalculated. These are input
for both approaches used to minimize the objective function. The
formulations for these precalculations will be discussed in Section 4.

3.2. Finding a solution

The problem as described above is implemented as a Mixed Integer
Programming (MIP) problem in CPLEX 12.9 [40] and solved using
branch-and-cut. An advantage of branch-and-cut is that it can be used
to exactly solve integer programmes with optimality guarantee [41].
However, with the number of investment options that is relevant for a
typical dike segment, this is only feasible for relatively small segments
up to about 13 dike sections with 16 GB available RAM, which is
much smaller than our real world problem. As an illustration, in the
case study in Section 5 we consider ≈ 10100 possible combinations of
reinforcement measures.

To overcome issues with computational speed and hardware we
develop a greedy search algorithm. Greedy algorithms are a class of
algorithms that use the locally optimal choice at each stage in order
to obtain or approach the global optimum [42]. This means that these
algorithms can handle much larger state spaces, which is useful in the
context of the large dike segments that we consider. An important
property of greedy algorithms is that it never reverses choices but
always continues with the next optimal choice until it finds a solution

or is stopped.
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Table 1
Descriptions of used symbols.

Symbol Description

𝑁 Set of all dike sections at which investments are possible
𝑛 A dike section index 𝑛 ∈ |𝑁|

𝑇 Set of all years in the analysed period T
𝑡 Considered point in time 𝑡 ∈ |𝑇 |
𝑡req Point in time 𝑡req ∈ |𝑇 | where the reliability requirement is to be met
𝑆h Set of investment options for overtopping
𝑠h Index of investment option for overtopping 𝑠h ∈ |𝑆h|

𝑆g Set of investment options for geotechnical failure modes
𝑠g Index of investment option for geotechnical failure 𝑠g ∈ |𝑆g|

𝑃f ,req Failure probability requirement for all dike sections 𝑁
𝑃f ,over (𝑛, 𝑠h , 𝑡) Overtopping failure probability of dike section 𝑛, given investment option 𝑠h, at time 𝑡
𝑃f ,pip(𝑛, 𝑠g , 𝑡) Piping failure probability of dike section 𝑛, given investment option 𝑠g, at time 𝑡
𝑃f ,inst (𝑛, 𝑠g , 𝑡) Instability failure probability of dike section 𝑛, given investment option 𝑠g, at time 𝑡
𝐿𝐶𝐶(𝑛, 𝑠h , 𝑠g) Total life-cycle cost (in e) for the combination of investment options 𝑠hand 𝑠gat dike section 𝑛
𝐷(𝑡) Discounted flood damage at year t in e
𝐶int (𝑛, 𝑠h , 𝑠g) Binary value that takes value 1 or 0 and indicates whether measure 𝑠hand 𝑠gat section 𝑛 have been taken (1) or not (0)
𝐷int (𝑡, 𝑛, 𝑠h) Binary value that indicates if section 𝑛 with measure 𝑠himplemented is the weakest section (1) for overtopping in year 𝑡 or not (0)
𝑇𝐶 Value of the objective function of all costs over the period |𝑇 |
𝑇𝑅 Total flood risk cost over the period |𝑇 |
𝑇𝐿𝐶𝐶 Total Life Cycle Cost over the period |𝑇 |
𝐵𝐶(𝑛, 𝑠h , 𝑠g , 𝐶int ) Benefit–cost ratio of investment 𝑠h, 𝑠g at section 𝑛 with initial situation 𝐶int at the beginning of a greedy search iteration
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In many problems greedy algorithms have been found to achieve
near-)optimal solutions, but in general it is hard to prove that a solu-
ion is optimal. In order to show that the heuristics yield (near-)optimal
olutions, we evaluate the performance of the greedy algorithm and
ompare it with a MIP implementation in CPLEX 12.9 [40] using
ranch-and-cut, for a large number of different dike segments. A po-
ential advantage of greedy algorithms is that the heuristic rules that
re used for determining the optimal steps are often easy to understand
nd can be adapted to the problem at hand. In our case we can use the
ormulations of segment reliability as well as the principle of total cost
ptimization as basis for the heuristics.

.3. A greedy algorithm for planning of flood defence improvements

In this section we introduce the greedy search algorithm. In the
mplementation of heuristics, we need to ensure two main points:
irstly, that the search method is in line with the objective of finding
inimal Total Cost, and secondly that the relation between element

nd system reliability is properly dealt with for all failure modes.
For the search method the work by Špačková and Straub [43] can be

sed, who demonstrated that for a case without budget limitation the
ptimal solution is found if −𝛿𝐶 < 𝛼 ⋅ 𝛿𝑅, with 𝛿𝑅 the risk reduction

and 𝛿𝐶 the cost increment. 𝛼 is an arbitrary factor indicating risk
verseness, so how much risk has to be reduced for a cost increment
𝐶. This criterion guarantees that Pareto optimal solutions are found
n all cases (although not all Pareto optimal solutions are found). For
ases such as ours where deterministic costs are assumed this is equal
o the benefit–cost ratio 𝐵𝐶 = 𝐸[(−𝛥𝑅)∕𝛥𝐶]. Špačková and Straub [43]

considered single investment strategies to achieve a certain protection
level. In our case we aim to determine the combination of measures
that is on (or very close) to the Pareto optimal solution for 𝛼 = 1
(we assume risk neutrality). If the utility of our investment is the risk
reduction, we would expect that for each subsequent measure that we
take, our marginal risk reduction will reduce in accordance with the
law of diminishing marginal returns. Thus if we find a path where
we continuously maximize the 𝐵𝐶 until 𝐸[(−𝛥𝑅)∕𝛥𝐶] = 1 we should
obtain at least a local optimal solution. Thus the main parameter used
for evaluating the steps in the greedy algorithm is the benefit–cost ratio,
which is defined as:

𝐵𝐶(𝑛∗, 𝑠∗h , 𝑠
∗
g , 𝐶int (𝑁,𝑆h, 𝑆g)) =

𝑇𝑅 − 𝑇𝑅∗
∑

𝑛∗∈𝑁
∑

𝑠∗h∈𝑆h

∑

𝑠∗g∈𝑆g
𝐿𝐶𝐶(𝑛∗, 𝑠∗h , 𝑠

∗
g)

(14)
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here 𝑇𝑅 denotes the Total Risk of flooding over a period 𝑇 for a set of
easures defined by 𝐶int (𝑛, 𝑠h, 𝑠g), and 𝑇𝑅∗ denotes the same for a case
here measures 𝑠∗h, 𝑠

∗
g have been taken at sections 𝑛∗. 𝐿𝐶𝐶(𝑛∗, 𝑠∗h , 𝑠

∗
g)

denotes the cost of these measures. If 𝐵𝐶(𝑛∗, 𝑠∗h , 𝑠
∗
g , 𝐶int (𝑁,𝑆h, 𝑆g)) < 1

or all combinations of 𝑛∗, 𝑠∗h , 𝑠
∗
g the optimum with minimal total cost

𝐶 has been reached, as the marginal total costs are smaller than
. This can be either a local or global optimum, depending on the
erformance of the search routine. In our case this search routine is
ased on the definitions of system reliability in Eqs. (1) and (2).

As was outlined in Section 2.1 the relation between element and
ystem reliability for overtopping and geotechnical failure modes (pip-
ng erosion and slope instability) differs. In order to prevent missteps in
eriving the local optimal solution in the greedy search algorithm, this
as to be dealt with properly in the implemented heuristics. Therefore
e need to implement different rules for deciding on investments to

mprove geotechnical reliability and investments to improve overtop-
ing reliability. The main steps of the algorithm are listed below and
isplayed in the flowchart in Fig. 3.

Input for the search algorithm are precalculated arrays of failure
probabilities and 𝐿𝐶𝐶(𝑛, 𝑠h, 𝑠g) for all measures 𝑛 ∈ 𝑁 , 𝑠h ∈ 𝑆h
and 𝑠g ∈ 𝑆g. Initial failure probabilities are given per dike section.
Step 0: at the beginning of each iteration the set of existing
measures 𝐶int (𝑛, 𝑠h, 𝑠g) is updated with all measures that have been
prioritized in previous iterations.
Step 1a: In the first part of the second step 𝐵𝐶(𝑛∗, 𝑠∗h , 𝑠

∗
g , 𝐶int (𝑁,

𝑆h, 𝑆g)) is computed for all individual measures, based on the
existing situation 𝐶int (𝑛, 𝑠h, 𝑠g). Due to the formulation of system
reliability for geotechnical failure modes (see Eq. (2)) this ap-
proach works well for determining optimal priority orders for
segments dominated by these failure modes. The reason is that
each dike section contributes to the overall risk, so improving any
individual dike section will have a direct influence on the total
risk.
Step 1b: While considering individual sections is adequate for

geotechnical measures, overtopping system reliability is governed
by the weakest section (see Eq. (1)). Therefore we introduce a
second heuristic where we compute the 𝐵𝐶-ratio for a bundle
of measures aimed at reducing 𝑃f ,over (𝑛, 𝑠h, 𝑡). By only consider-
ing individual dike sections as in Step 1a, situations can occur
where improving overtopping reliability at a single section has a
low 𝐵𝐶-ratio. Considering a bundle of different improvements at
different sections can have a much higher 𝐵𝐶-ratio as all weak

sections are improved simultaneously. This can result in a much
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Fig. 3. Outline of the steps taken in the greedy search algorithm.

larger marginal increase in system reliability, and thus a larger
𝐵𝐶-ratio. This step consists of the following substeps:

1. Sort the investment options based on 𝐿𝐶𝐶(𝑛, 𝑠h, 𝑠g).
2. Filter the options such that only options 𝑠h∈ 𝑆h combined

with the existing investment option 𝑠g at section 𝑛 are
considered.

3. Determine a priority order of measures, where each time
the weakest section is improved with the smallest invest-
ment step available from 𝑠h∈ 𝑆h.

4. Take the set of investment options with the highest
𝐵𝐶-ratio.

Step 2 is to find the optimal investment option based on the
𝐵𝐶-ratios obtained from steps 1a and 1b. If the 𝐵𝐶-ratio from step
1b is higher than the maximum 𝐵𝐶-ratio from step 1a, the bundle
of investments obtained from step 1b is implemented. Otherwise
the algorithm determines the next investment step based on a
greediness factor 𝑓c, where it holds that the investment step has
to have a 𝐵𝐶-ratio that is 𝑓c larger than the best measure at all
other dike sections. This is a factor to set the greediness of the
algorithm, with a larger factor implying larger steps, but also a
less cautious and more error-prone search routine. Additionally,
multiple runs with different settings for 𝑓c might yield different
solutions, meaning that the overall accuracy of the approach
increases as the best of those different solutions can be chosen.
Step 3: if the 𝐵𝐶-ratio of the best available investment option is
smaller than the stopping criterion (default setting: 𝐵𝐶-ratio <
6

0.1) the optimization is stopped. Note that in most cases a stop-
ping criterion 𝐵𝐶-ratio < 1 should yield the optimal solution, but
due to the properties of a greedy search in some cases a measure
with 𝐵𝐶-ratio < 1 is followed by one with a 𝐵𝐶-ratio > 1 (due to
the dependence of 𝐵𝐶-ratio on preceding measures). After reach-
ing the stopping criterion the optimal solution is obtained based
on the minimum total cost of all steps in the search path, or the
point where the solution meets the target reliability requirement
in the years for which this is required. Note that the latter could
also be used as a stopping criterion.
Output: the output of the greedy search is a sequence of arrays
𝐶int (𝑛, 𝑠h, 𝑠g) which describe the obtained optimal solution as well
as the priority order of investments leading to that solution. This
is an advantage compared to for instance a MIP solution, where
only the array 𝐶int (𝑛, 𝑠h, 𝑠g) for the optimum is obtained.

4. Performance of the greedy search algorithm

The aim of this section is to validate the greedy search algorithm
introduced in Section 3.3. We compare the obtained results with those
of a method guaranteed to find the global optimum (in this case
the Mixed Integer Programming implementation of the problem de-
scribed in Section 3.1). Section 4.1 presents a general discussion on
input data and the approach taken for verifying the algorithm perfor-
mance. Section 4.2 presents the results of the validation. More detailed
information on input data can be found in Appendix A.

4.1. Input data and approach

As test data we use data from 73 dike sections at the river Lek in the
Netherlands (including the sections from the case study in Section 5).
By randomly selecting subsets of dike sections we can generate many
different realistic segment configurations with different numbers of
sections. For each section we have information on current reliability,
the reliability after taking different measures, the cost of measures and
the damage in case of flooding. Note that for the validation of the
search routine we do not include Eq. (11) as a constraint, as this is
merely an optional additional stopping criterion.

We consider the reliability for overtopping, piping erosion and inner
slope instability failures. Reliability estimates were obtained by back
calculating implicated reliability indices using the semi-probabilistic as-
sessment rules in the applicable statutory safety assessment tools [32].
It has to be noted that the approach can as easily be used with any
failure model as long as it provides a probability of failure for a dike
section. Note that it holds that a reliability index 𝛽 ≈ −𝛷−1(𝑃f ).
To properly assess reliability over time we include relevant temporal
changes that impact different failure mechanisms. Higher outside water
levels reduce reliability for all failure modes; increases in wave run-
up due to higher wind speeds, as well as settlement of the crest
reduce overtopping reliability; and settlement of the hinterland results
in increased hydraulic heads which reduces piping erosion reliability.
Reliability in time (see right pane of Fig. 1) was derived for each of the
73 sections based on local data (see Appendix A for formulations).

In the validation we want to consider the influence that including
different types of measures has on the performance of the algorithm.
Therefore we consider different sets of available measures as shown
in Table 2. Set 1 is a set of all available options for investment years
2025 and 2045. In sets 2 through 5 different measures are excluded.
Set 6 only considers investments in 2025. The costs are obtained from
standard cost functions [44], except for soil based reinforcement. For
soil based reinforcement we consider starting costs, variable costs based
on the volume of added soil, and costs dependent on the number
of adjacent properties to be removed for each section, which has a
large impact on reinforcement costs. For all computations the economic
consequences of flooding are assumed to be 5 billion e, the annual
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Table 2
Different combinations of sets of measures considered. x indicates the measure is included. Set 6 considers all measures at t = 0, other sets also consider measures at t = 20.
Extent and type refer to the classification in Fig. 2.

Measure Set 1 Set 2 Set 3 Set 4 Set 5 Set 6 Extent Type Mechanisms impacted

Diaphragm Wall x x x 2025 Full Renewal All
Soil based reinforcement x x x x x 2025 Full/Partial Renovation All
Stability screen x x x 2025 Partial Renewal Inner slope instability
Vertical Sandtight Geotextile x x x 2025 Partial Renewal Piping erosion
Fig. 4. Example result of a system with 5 dike sections. Red line shows the path of the
greedy search, where the large dot denotes the optimal solution. Blue diamond indicates
the optimum found using branch-and-cut in CPLEX 12.9. The black pluses denote the
Pareto Frontier derived from several branch-and-cut computations with a budget limit.
Note that here the TR and TLCC are displayed as the conflicting objectives, whereas
in the optimization routine these are summed and considered as a single objective.

discount rate is assumed to be 3%. More detailed formulations for cost
and reliability computations can be found in Appendix A.

The combination of different system configurations and sets of
measures gives us a large variety of realistic cases for which we can
assess the performance of the greedy search algorithm by comparing
with a MIP implementation in CPLEX 12.9.

4.2. Validation of the greedy algorithm

A typical run of the greedy search algorithm yields a stepwise
prioritization of dike reinforcement measures that eventually ends at
or very close to the global optimal solution, which consists of the
minimum sum of 𝑇𝐿𝐶𝐶 and 𝑇𝑅. Fig. 4 shows results for a system
with 5 dike sections. We see that the greedy search (red) reaches the
global optimum, and follows the Pareto front 𝑇𝐿𝐶𝐶 and 𝑇𝑅 (black)
computed using the MIP implementation with variable budget limits
(i.e., where 𝑇𝐿𝐶𝐶 is constrained). This shows that, especially closer to
the optimal solution (blue diamond) the investment path of the greedy
search not only finds the optimal solution, but the intermediate steps
are also (near-)optimal for that budget.

Next we consider a large set of system configurations from our
dataset and combine these with different sets of measures as defined
in Table 2. We randomly sample configurations of 𝑁 sections. The
largest system size considered is 11 sections, which is smaller than
typically encountered in practice but the largest practically feasible
with the available 16 GB RAM. We consider regular cases (i.e. directly
sampled from our dataset) that are typically dominated by failures
due to inner slope instability and piping erosion. We also consider
system configurations that are dominated by overflow failures. Here
crest levels of sections were modified such that the initial overflow
reliability index ranges between 2.8 and 3.5, making it the dominant
failure mechanism.

Results are shown in Table 3, where 𝑓c of the greedy search is set
to 1.5. Overall we see that in about 93% of all cases the greedy search
7

finds the global optimum. If the outcome differs from the global optimal
solution, only in 1% of the cases the difference in TC is higher than
1%, and only in 5% of the cases the difference is larger than 0.18%.
On average the difference is 0.04% which is negligible compared
to the often large uncertainties in dike reinforcement projects. The
performance for regular cases and cases dominated by overflow failures
is very similar.

It is found that differences in Life Cycle Cost are larger. This is
explained by the fact that many cases with large differences in LCC,
are cases that are often very close to the global optimum. Overall
the differences are small: only 5% of the cases has a difference larger
than 0.71%. On average differences are only 0.29%. In most cases the
differences arise from cases with different investment cost but close
to optimal values for the objective of minimizing TC. Practically this
means that even though the solution is not exactly optimal, there are
many different combinations of investments that are close to optimal,
even though the investment costs are different. This has the practical
advantage that it allows policy makers to choose from various near
optimal solutions. Also it has to be noted that small choices in for
instance the schematization of different failure modes, or uncertainty
in for instance sea level rise rates have a potentially much larger effect
on TC [45].

Another observation from Table 3 is that the percentage of runs
where the global optimum is found decreases slightly for larger systems,
which is sensible from the perspective that there are many more
different investment paths that can be taken. However, when looking
at the investment costs, the deviation does not increase significantly,
which is confirmed by the results in Fig. 5. The left pane shows that for
both TC and LCC there is a clear decreasing trend of the average relative
error for larger values of TC and LCC. This is also represented in a
slightly different way in the scatter plots in the right panes. Thus we can
conclude that for larger dike segments consisting of many sections that
are relatively expensive to improve, the algorithm can be expected to
provide accurate results, even though the exact global optimal solution
might not be found.

As was explained in Section 3.3 the factor 𝑓c can be used to vary the
step size taken by the algorithm. The same cases have been evaluated
using 𝑓c equal to 1.0, 1.5 and 3 respectively. Table 4 shows the results
for TC for all cases with different settings. Aside from the individual
evaluations we also use a combination of the three settings where each
time the greedy solution with the lowest TC is used. It turns out that
the different settings all perform quite well, but 𝑓c = 1.5 results in the
highest accuracy, even to the extent that the performance metrics for
the combined case are the same as for 𝑓c = 1.5. It turns out that in
some cases 𝑓 = 1.0 or 𝑓 = 3.0 yield a better result than 𝑓 = 1.5, but
these have no bearing on the overall performance (typically because
the inaccuracy in these cases is already very small).

One of the advantages of the greedy search algorithm is that it does
not suffer as much from state space explosion as the MIP approach.
Typically for the cases considered we observe that the runtime doubles
for each two sections added. At the hardware that was used (16 GB
of RAM), the largest system that could be solved with MIP contained
15 dike sections (with the most extensive measure set). Furthermore
it should be noted that aside from the time required to solve the
MIP problem, the initialization of the problem (i.e., defining al the
constraints, especially Eq. (10)) also costs significantly more time using
MIP than with the greedy algorithm. Overall, initializing and solving a
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Table 3
Results for 2800 different system configurations with different measure sets and system sizes. Systems derived from the case study in Section 5 (’Regular cases’) are distinguished
from systems that are dominated by failures due to overflow. 𝛥 denotes the relative difference between the two methods. 𝛥∗ denotes a threshold value exceeded by only 5% of
all cases. For both Total Cost and LCC three indicators are used: the % of cases with a 𝛥 larger than 1%, the 𝛥∗ only exceeded by 5% of the cases and the average difference 𝛥.

Case properties Total cost LCC

Measure
set

No. of
sections

Total
runs

Runs where
global optimum
was found

𝛥 > 1% 𝛥∗ for
𝑃 (𝛥 > 𝛥∗) < 0.05

Average 𝛥 𝛥 > 1% 𝛥∗ for
𝑃 (𝛥 > 𝛥∗) < 0.05

Average 𝛥

Regular
cases

Set 1 mixed 400 91.0% 2.25% 0.37% 0.07% 6.0% 2.2% 0.37%
Set 2 mixed 400 93.3% 1.50% 0.17% 0.05% 6.0% 2.2% 0.35%
Set 3 mixed 400 92.0% 0.50% 0.15% 0.03% 3.8% 0.4% 0.22%
Set 4 mixed 400 93.0% 0.75% 0.16% 0.03% 5.5% 2.2% 0.60%
Set 5 mixed 400 96.5% 0% 0% 0.01% 2.5% 0% 0.06%
Set 6 mixed 400 93.3% 1.00% 0.37% 0.04% 3.0% 0.6% 0.23%
Size 5 5 600 97.8% 0.17% 0% 0.02% 1.7% 0% 0.21%
Size 7 7 600 95.8% 1.00% 0% 0.03% 3.3% 0% 0.22%
Size 9 9 600 91.0% 1.33% 0.26% 0.05% 6.3% 2.2% 0.46%
Size 11 11 600 88.0% 1.50% 0.37% 0.05% 6.5% 2.1% 0.33%
All mixed 2400 93.2% 1.00% 0.18% 0.04% 4.5% 0.7% 0.30%

Overflow
dominant cases

Set2 5 100 99.0% 0% 0% 0.01% 1.0% 0% 0.06%
Set2 7 100 98.0% 0% 0% 0.01% 1.0% 0% 0.05%
Set2 9 100 94.0% 2.00% 0.13% 0.07% 4.0% 0.40% 0.34%
Set2 11 100 86.0% 3.00% 0.39% 0.11% 11.0% 4.66% 0.49%
All mixed 400 94.3% 1.25% 0.19% 0.05% 4.3% 0.55% 0.24%

Total All mixed 2800 93.3% 1.04% 0.18% 0.04% 4.4% 0.71% 0.29%
Fig. 5. Left: Relative error for Total Cost and Life Cycle Cost compared to MIP optimum. Red and blue lines denote a moving average relative difference for all evaluated cases
based on a window for absolute TC or LCC of 40 Me. right: comparison of TC and LCC for MIP and Greedy computations. It can be observed that for the LCC values the scatter
is slightly larger, especially for small absolute values. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
system of 15 dike sections using MIP took approximately 600 s, whereas
the greedy search routine can find a solution in approximately 6 s.
With more extensive hardware the computable system size could be
extended, but not easily to the size of practical problems that often
consist of over 30 sections. As will be shown in the next section solving
such a system with the greedy search approach is easily achievable.

5. Case study application

This section presents an application of the greedy search algorithm
to the planning of a reinforcement project for a dike segment along the
Lek river in the Netherlands. The main aim of this section is to illustrate
the practical applicability of the developed approach, and show the
main advantages of using an optimization algorithm in the process of
planning and design compared to the commonly used design approach
based on cross-sectional target reliability.
8

5.1. Case description

We consider dike segment 16-4 along the Lek river in the Nether-
lands, located between the towns of Everdingen and Ameide. The
length of this segment is approximately 20 km, and it consists of 45
sections of which 41 are considered in the calculations. The three
main failure modes are overtopping, piping erosion and inner slope
instability, for which calculations have been made using the statutory
safety assessment tools [32,46]. If a flood occurs along this segment
the estimated damage is 23 billion e [47]. Since the introduction of
the new safety standards in 2017 the segment failure probability has
to be less than 1/10,000 per year (𝛽 ≈ 3.72). Due to the new standards
(amongst other reasons) many flood defence reinforcement projects are
initiated, and the improvement of dike segment 16–4 is one of them.
The goal is to meet the safety standards nationwide by 2050. In this
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Table 4
Comparison of results for three different settings of 𝑓c as well as the best combination of the three. Indicators are the same
as in Table 3.

Case type

Setting Normal Overflow dominant All cases

Runs where global
optimum was
found

f = 1.0 90.63% 92.50% 90.89%
f = 1.5 93.17% 94.25% 93.32%
f = 3.0 90.04% 92.75% 90.93%
combined 93.17% 94.25% 93.32%

Cases with 𝛥 > 1%

f = 1.0 2.75% 3.00% 2.79%
f = 1.5 1.00% 1.25% 1.04%
f = 3.0 3.13% 2.75% 2.79%
combined 1.00% 1.25% 1.04%

𝛥∗ for 𝑃 (𝛥 > 𝛥∗) < 0.05

f = 1.0 11.76% 7.40% 11.76%
f = 1.5 5.53% 3.62% 5.53%
f = 3.0 11.76% 7.40% 11.76%
combined 5.53% 3.62% 5.53%

Avg. difference

f = 1.0 0.10% 0.12% 0.10%
f = 1.5 0.04% 0.05% 0.04%
f = 3.0 0.11% 0.11% 0.10%
combined 0.04% 0.05% 0.04%

Total runs 2400 400 2800
w
t
o
c

Table 5
Values used for determining the cross-sectional target reliability.

Failure mode 𝑎m 𝑏m 𝜔m

Overflow 1 1 0.24
Inner slope stability 0.033 50 0.04
Piping erosion 0.9 300 0.24

study we aim to find an optimal strategy to achieve this for segment
16–4, such that the safety standard is met in 2050 and until at least
2075. This means that Eq. (11) is now also used, with 𝑃req = 1∕10,000,
𝑡req = 2050 and 𝑡horizon = 2075. We assume that the reinforcement can
start in 2025.

The commonly used design approach is a reliability-based design
approach using cross-sectional reliability requirements for each failure
mode. The main principle is that the total failure probability for the
segment is translated to requirements for cross sections that each
represent an independent dike section. If the requirements are met for
each cross section, the overall target is also met. The requirement for
an independent section for failure mode 𝑚 (𝑃T,m,cs) is given by:

𝑃T,m,cs =
𝜔m ⋅ 𝑎m ⋅ 𝑃T,segment

𝑏m
, (15)

here 𝑃T,segment is the maximum failure probability for the segment,
m is the fraction of the total failure probability that is allocated for

ailure mode 𝑚, 𝑎m and 𝑏m are length effect factors. 𝑎m represents
he fraction of the dike segment that is sensitive to failure mode 𝑚,
nd 𝑏m represents the length of an independent equivalent section in
etres. For more details see [32]. Values for the modes considered

re presented in Table 5, these are default values (see [32]). The
asic assumption is that these requirements have to be fulfilled for
period of 50 years, and that after improvement all cross-sectional

equirements have to be satisfied (i.e., all reinforcement works are done
n 2025). Note that values for 𝜔m do not add up to 1 as there are other
echanisms that are also considered in the reinforcement project but
ot in the analysis in this paper.

In the case study we consider a specific set of measures as defined by
he local water authority. We consider all measures in Set 6 in Table 2,
nd additionally we consider the option of soil based reinforcement
t 𝑡 = 20 (2045). Other assumptions are described in Section 4.1
nd Appendix A.

.2. Case study results

In order to assess the reliability deficit for the segment under
onsideration we first compute the current and predicted reliability
9

ithout taking any measures, which is displayed in pane (a) of Fig. 6 for
he year 2075. Here we see that for most sections either piping erosion
r inner slope instability has a reliability deficit, and that overall (bar
hart on the right) the system reliability (black line) 𝛽 ≈ 1, which is

extremely low, and much lower than the required value. Another thing
that quite clearly emerges from the figure is that neighbouring sections
often have similar issues: sections 34b-40 have a large deficit for inner
slope instability, whereas sections 16–22 have a large deficit for piping
erosion.

The reliability information from pane (a) of Fig. 6, together with
information on different available measures, their effects on reliability
and their respective costs can be used to generate design alterna-
tives for the entire segment, both with a greedy search optimiza-
tion and a reliability-based design approach based on cross-sectional
requirements.

Panes (b) and (c) of Fig. 6 show the selected measures and resulting
reliability in 2075, for an investment based on the greedy search
algorithm. Panes (d) and (e) show the same for a target reliability based
investment. Pane (f) shows the life cycle costs of both approaches.
There are a few distinct differences between the two methods. First
of all, the target reliability based investment results in a higher sys-
tem reliability due to some conservatism in the cross-sectional target
reliability values. Also, as for the target reliability based approach
each section has to satisfy a target reliability for each mode, there are
many sections where expensive diaphragm walls are needed to meet
the requirements. When using the greedy search algorithm such invest-
ments are avoided by increasing reliability at other dike sections, or
by using partial renewal measures (i.e., a Vertical Sandtight Geotextile
(VSG, inversed triangle) or stability screen (SS, circle), see Appendix A
for specifications). This is not feasible for the target reliability based
investment as it becomes impossible or extremely expensive to meet
requirements for other failure modes. For instance: dike section 38
is improved using a diaphragm wall when using the target reliability
based approach at a cost of ≈ 17 Me. In order to prevent these large
expenses in the optimized approach only a much cheaper stability
screen (cost ≈ 3.5 Me) is constructed, resulting in lower reliability, but
also only a fraction of the cost. This is then compensated by using more
extensive measures at other dike sections (e.g., section 34a), where
the benefit–cost ratio of extra investments is larger. This is a degree-
of-freedom ignored by the cross-sectional target reliability approach.
When looking at resulting system failure probabilities there are two
main differences between the two methods:

• For the optimized approach the resulting system reliability for
overtopping is highest, whereas for a target reliability based

approach it is lowest. There are clearly more investments in crest
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Fig. 6. Input and results for both planning approaches. Pane a shows the reliability in 2075 without investments, panes b and d show measures taken using the greedy optimization
and target reliability approaches; c and e show resulting reliability in 2075. Pane f shows the resulting life-cycle cost of both approaches. Vertical grid lines indicate boundaries
between sections, and the width of sections indicates their relative length (total length of the segment is 20 km).
height for the optimized approach (see Fig. 6b). Examples are
sections S34a, S34b, where higher crest increases are planned.

• The overall system reliability in 2075 is higher for the target
reliability based investment, most notably due to the fact that the
reliability for inner slope stability and piping erosion is higher.
10
The main reason is that for many sections a diaphragm wall or
Vertical Sandtight Geotextile is applied. These measures have a
reliability that is much higher than the required reliability, yet
there is no cheaper alternative that also meets the requirement.
This explains the higher system reliability for these failure modes.
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Fig. 7. Priority order for optimized investments (green) and investments based on
target reliability (brown). Markers denote different types of measures at different dike
sections, 𝛽 is the reliability index in 2075. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)

Fig. 6.f shows the LCC for both approaches. Here we observe that for
the target reliability based approach some sections have very high costs
(e.g., 10, 33 and 38), whereas the costs for the optimized approach are
much more evenly spread across the different sections. The difference
in total LCC is very large: using the greedy search optimization as a
basis for planning reduces the total investment from 213 Me to 123
Me, a reduction of about 42%.

One of the major advantages of the greedy search approach that was
mentioned is that it also yields a priority order of measures based on
the search path. This order can give decision makers insight into the
priorities for improving a dike segment, and can help making a risk-
informed selection of parts of the project, if not all budget is readily
available. The priority order is given in Fig. 7, which shows the LCC
relative to the reliability index 𝛽 in the year 2075. The green line de-
notes the search path for the optimized investments, whereas the brown
line denotes the investments based on target reliability, ordered by the
initial reliability of the sections (so the weakest is displayed first). For
the greedy search path it can be observed that many small increments
are taken, and that especially in the beginning the line is very steep,
meaning that large improvements in reliability are achievable for a
limited amount of money, but as the overall reliability increases, the
marginal risk reduction for additional investments decreases.

One particularly important challenge in flood defence reinforcement
projects is to properly deal with long term uncertainty in for instance
economic growth and increase in hydraulic loads. Fig. 8 shows the
resulting measures for a case where the increase in water level has
been multiplied by a factor 3 for all sections. By comparing with pane
(b) of Fig. 6 we can observe that investments in crest height increase
are larger, in order to cope with the higher water levels. However, the
influence on both the priority order and the investments in geotechnical
measures is very similar, which demonstrates that for this case study
the added value of including multiple scenarios for hydraulic load
increase is limited, both in terms of the prioritized measures as well
as the potential for future extension.

6. Discussion

In this study we demonstrate how the cost effectiveness of dike
reinforcements can be improved using a system optimization. We use
11
a greedy search algorithm with heuristics based on system reliability
rules and benefit–cost ratio of measures that yields near-optimal plans
for reinforcement of dike segments, at a much lower cost than the
commonly applied approach based on cross-sectional target reliability.
From a comparison with a Mixed Integer Programming approach it is
shown that in the majority of cases the algorithm finds the optimal
solution, and in the other cases it is close (i.e., very small differences
in Total Cost). Even for the systems where the algorithm performs
relatively bad (difference in Total Cost > 1%), this inaccuracy is minor
in comparison to other major uncertainties in the design, such as
estimates of improvement cost and geotechnical strength parameters.

It has to be noted that in this study we only consider dike sections
as part of the segment, but in practice there can also be hydraulic
structures (e.g. inlet sluices) that are part of the flood defence. As
typically the reliability of these structures can be computed, these
can also be included in the analysis. Thus, the approach is not solely
applicable to dikes, but to flood defences in general.

The method can also be used with more advanced methods such
as probabilistic reliability calculations and more advanced methods
for computing system reliability including correlation between sections
and mechanisms, such as the Equivalent Planes method [33]. In our
schematization of the dike system we use semi-probabilistic estimates
for reliability and relatively simple approaches to model the correlation
between different dike sections. As our case study concerns the early
planning phase of a reinforcement project it is not yet sensible to use
more advanced methods due to uncertainties in for instance geotechni-
cal strength parameters. The method is useable with more advanced
computation methods, the only requirement is that for each failure
mode per section the reliability (in time) can be computed, and that
this can be translated to a system reliability estimate. Of course, when
changing major underlying assumptions a re-evaluation of the accuracy
of the greedy algorithm advisable.

In the considered case study we do not explicitly deal with the wide
variety of potential future scenarios for increasing hydraulic load or
socio-economic conditions as has been done in other studies (e.g., [17,
18,48]). For the case study it is shown that, mainly due to the domi-
nance of geotechnical failure modes, different scenarios for hydraulic
loads have little bearing on the priority order and type of investments.
However, this might not always be the case, and in such cases including
these future uncertainties is recommended. This can be done either
by using probabilistic estimates of future uncertainty [e.g. 49], or by
considering multiple scenarios for which the different dike segment
designs can be evaluated (in line with e.g. Kwakkel et al. [18]). The
latter is quite feasible as the current computation time is still relatively
limited (approximately 10 min for 1 evaluation of the case study). It
has to be noted however, that such an extension and the subsequent
increase in computation time makes the approach less useable in the
design process, where it is often desired to have a practical tool that
can be used to quickly evaluate various design considerations.

In our approach we also assumed that the reinforcement costs for
different dike sections are independent. In reality this is not necessarily
the case: especially if a large project is cut up in different fragmented
small projects overhead costs may rise, resulting in higher overall costs.
In our case, as there are only 2 moments of investment this is not
relevant, but it might be for other cases. Correlations between the cost
of different otherwise independent sections cannot yet be dealt with in
the algorithm. It has to be noted that such correlations are not common
practice in cost estimates for dike improvements [44].

The approach has clear benefits compared to the commonly applied
reliability based design approach using cross sectional requirements:
the overall life-cycle costs are about 42% lower when using an opti-
mized design based on the greedy search algorithm, while the reliability
requirement is met in both cases. It has to be noted that in prac-
tice the target reliability based approach is also refined throughout
a reinforcement project, for instance by slightly altering the different
cross-sectional requirements between mechanisms or sections. Then
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Fig. 8. Measures for optimized investment with 3 times higher water level increase rates.
the difference would become slightly smaller, albeit in an ad hoc
manner. It has to be noted that the cost savings depend strongly on the
accuracy of the input, specifically the reliability estimates. For this and
other methods for planning flood defence reinforcements it is therefore
advised to ensure that trustworthy reliability estimates are available.

An added advantage of the optimized approach is that it helps
focusing attention on the reinforcement of the most important parts of a
large and complex dike segment. This structures the technical challenge
which aids in adding risk-informed information to the multi-objective
task of improving dike systems, where also other aspects of spatial
planning have to be dealt with. For instance, in our case study (Sec-
tion 5) we selected measures such that in both moments of investment
considered (now and in 20 years), only one type of investment with a
major impact could be done in order to limit nuisance to inhabitants.
Other secondary objectives could also be included in the choice of
measures, such that appropriate risk information is obtained, also for
other stakeholders with different objectives. The approach facilitates
such considerations, first of all by enabling quick evaluation of the
influence of such restrictions on the overall solution, and secondly by
providing insight into the importance of different measures through
analysis of the priority order of investments.

While in this study the approach was applied to an investment
decision for a dike segment, it is also useable for other types of
decisions, such as optimizing investments over multiple dike segments.
For instance, in the Netherlands about 1500 km of flood defences have
to be improved, resulting in (currently) a list of over 50 projects. The
greedy search algorithm could also be used to find a total cost optimal
prioritization that balances national flood risk and reinforcement costs.

Compared to other optimization approaches such as Mixed Integer
Programming, the greedy search routine encounters less issues with
state space explosion, making it more suitable for systems with many
components. Of course one could apply for instance a Mixed Inte-
ger Programming approach, whilst expanding the available hardware.
However, the dimensions of especially the constraint in Eq. (10) in-
crease almost quadratically with the number of sections (and solutions),
so this would still be challenging for segments of over 30 independent
sections. An added advantage of the greedy search routine is that it is
very explainable, also to stakeholders with different expertise. This is an
advantage compared to Mixed Integer Programming, and for instance
genetic algorithms.

7. Conclusions

In this paper we have proposed a design approach to optimize
reinforcements of a dike system. To make this computationally possible
we used a greedy search algorithm, for which we derived heuris-
tic rules that can be used for planning dike reinforcement projects
in flood defence systems with a large number of independent ele-
ments. It was demonstrated that for a real world dike system the
approach results in a 42% reduction of investment costs compared
to the method that is typically applied in the same phase of a re-
inforcement project. An additional advantage is that a priority order
of measures is determined, which is useful in making and explain-
ing risk-informed decisions during the planning and design of dike
reinforcement projects.
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The greedy search algorithm employs two main heuristic rules: use
of the benefit–cost ratio to select the local optimal investment, and
relations between system and component reliability to translate invest-
ments at a dike section to risk reduction for the system as a whole. The
approach is very useful in dike reinforcement projects as it offers good
accuracy compared to a Mixed Integer Programming implementation,
while it hardly suffers from state space explosion. From an analysis
of 2800 different realistic dike segments the average difference in
objective value was only 0.04%, which is negligible compared to other
uncertainties in dike reinforcement projects.

The case study in this paper concerned an analysis in the early
planning phase of a reinforcement project. Future developments could
focus on validating and using the method in later design stages where
typically more advanced reliability models are used. In principle the
method is already suited for such an extension. Another interesting
direction for future development is to use the approach for investments
at multiple large dike segments such that national investments in
flood protection can be optimized by balancing national flood risk and
investment costs.
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