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Abstract
Event-based cameras do not capture frames like
an RGB camera, only data from pixels that de-
tect a change in light intensity, making it a
better alternative for processing videos. The
sparse data acquired from event-based video
only captures movement in an asynchronous
way. In this paper an evaluation is made on
the efficiency and accuracy of object detec-
tion, specifically localization, between sparse
and dense representations of data. Convolu-
tional Neural Networks are used to train and
test on images and event-based data. The re-
sults show a positive trade-off in terms of accu-
racy and efficiency for using sparse event-based
data instead of dense data like images. These
results provide a basis for an argument to use
event-based cameras instead of RGB cameras
when dealing with object detection. The code
for this research is available on GitHub1.

1 Introduction
Object detection is an important aspect of computer vi-
sion, it forms the basis of other computer vision tasks
such as segmentation and tracking [1]. In this research
the emphasis is on bounding box-based object detection.
A bounding box is a rectangle containing an object that
defines where the object is located in a frame and what
dimensions the object has. A machine learning model
can learn to detect the bounding boxes in a new frame
given the ground truth bounding boxes for each object
in the training frames. For image-based object detec-
tion, Convolutional Neural Networks (CNNs) are often
used. In this paper event-based data is used for object
detection with these neural networks. There are multi-
ple sources on processing event-based data [2], however
there is minimal research on the comparisons of process-
ing event-based data as opposed to image-based data.

Event-based data is represented as a stream of asyn-
chronous events which capture changes in light intensity
of a pixel. An event contains data of the location, times-
tamp and polarity of the event. The location is stored as
an x and y coordinate. The polarity indicates whether
an event occurred when the light intensity decreases or
increases over a certain threshold. For all events in this
research, the polarity value is discarded. The reason for
this is that an object at a certain time interval can consist
of events that have a positive polarity and events that
have a negative polarity. The stream of asynchronous
events can be converted to a sparse input representation
for a CNN compared to dense image-based data.

The difference in data representations as input to an
object detection CNN is interesting to investigate be-
cause of the performance increase that could be achieved
by processing less data. CNNs do not perform well on

1https://github.com/pascalbenschopTU/Event-based-
object-detection

sparse data, therefore events are often converted to an
image-like representation [3]. The time surface represen-
tation [2] is the only event-based representation adapted
for this research that resembles an image. However, it
is not the most sparse representation. In this research
the term "time surface" is exchanged with "time frame"
since it represents a frame of time values. In a time
frame a large portion of data is not useful since only pix-
els where events occurred have a value. The time frame
representation is used in this research since it retains the
temporal data of events and is further explained in sec-
tion 3. Events can also be transformed to a set of points
in two or three dimensions. By keeping only the x and y
coordinates of events a set of 2D coordinates is created.
When the timestamp is also added a set of 3D coordi-
nates is created. These sets of points are used as sparse
event-based data representations.

The research question is: "What is the accuracy-
efficiency trade-off of an object detection convolutional
neural network for using sparse event-based data instead
of dense image-based data?". For this research question
two hypotheses are made:

1. Using event-based data is more efficient and similar
in accuracy compared to using images as input for
an object detection CNN.

2. Using event-based data can lead to a better accu-
racy for object detection than image-based data at
a similar efficiency.

The paper first reviews existing literature related to
the research topic, then goes on to explain the exper-
iments for the hypotheses. After the experiments, the
results are presented and discussed. Finally the paper
provides conclusions for the research and future research
recommendations.

2 Related work
A popular object detection model for conventional im-
ages is YOLO (you only look once) [4], a single convo-
lutional network that predicts multiple bounding boxes
and class probabilities for these boxes. Since YOLO is
fast and accurate it provides a good basis for a model
that can be used to test the research question.

Cannici et al. [5] proposed an event-based adaptation
of YOLO and an event-based CNN. The object detection
model YOLE (you only look events) takes as input events
that are integrated into a frame-based representation.
The structure of this model is used as inspiration for
the model constructed in this paper. Also, Cannici et
al discussed a method called eFCN (event-based fully
convolutional object detection) to detect objects from
events without any preprocessing. However, the eFCN
model itself is not used in this research. For the more
sparse representation of events in this research another
approach is taken, this can be seen in section 3.2.

The representations of event-based data used in this
research either transform the input into another dimen-
sion (3D point cloud), disregard the use of temporal data
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(2D point cloud) or disregard the sparsity of events (time
frame). Messikommer et al. [3] proposed a model that
utilizes the sparse nature of events combined with the
temporal data to perform object detection. The model
itself is not used in this research, however, the results
from the paper complement the findings in this research.
These results are shown in figure 1, the event-based
model constructed in the paper is significantly more ef-
ficient compared to a standard convolutional model and
has a high accuracy.

Figure 1: Event-based Asynchronous Sparse CNN re-
sults. "Ours" describes the model used by the paper,
"MFLOP" describes the efficiency of the model in how
many millions of floating point operations were executed,
and "mAP" describes the accuracy of the model. Source:
[3]

Gehrig et al. [6] conducted experiments on the accu-
racy and efficiency of different event-based representa-
tions for classification. This paper inspired the formula-
tion of the research question. Nevertheless, the research
contains no description on how event-based representa-
tions compare to image-based representations and is not
focused on object detection.

Perot et al. [7] investigated the performance of a real-
time recurrent neural network architecture on a high-
resolution event-based detection dataset. The neural
network performed similarly in accuracy with a lower
runtime compared to Gray-RetinaNet, which is an adap-
tation of a frame-based neural network for grayscale im-
ages. The results of this experiment can be seen in fig-
ure 2. The paper describes that when colors are used
the accuracy of the RetinaNet detector increased to 0.56
mAP for the 1Mpx Detection Dataset, a 30% increase
from 0.43 mAP achieved with Gray-RetinaNet. The Re-
current Event-camera Detector is not perfect since the
sparsity of events is not fully exploited. There is also no
direct comparison of using event-based data with using
images in color in terms of accuracy and efficiency.

The discussed papers give results on the speed and
accuracy of predictions, however, results supporting an
advantage of using event-based data compared to images
for object detection are missing. In this research direct
comparisons between event-based data representations
and images are made.

3 Methodology
For the proposed hypotheses, two experiments are car-
ried out. These experiments complement each other in

Figure 2: Recurrent Event-camera Detector (RED) re-
sults, Gray-RetinaNet is the only image-based detector.
Source: [7]

exploring what the accuracy-efficiency trade-off is for us-
ing events instead of images. Before the methodology of
the experiments is stated, the definitions of the metrics
used in these experiments are given. In the first experi-
ment, event-based data and images are used in two sim-
ple CNN models. This experiment provides results on
the trade-off for using event-based data with the focus
on efficiency. In the second experiment, a novel model
is used on images and frames constructed from events.
This experiment provides results on the accuracy trade-
off for using event-based data.

3.1 Metrics
The efficiency mentioned in the research question is mea-
sured in both time needed for training the model, and
time needed for predicting a selection of inputs. The
idea behind this is that efficiency can be measured as the
amount of operations per time interval, which is equal to
measuring the time taken for a certain amount of oper-
ations. Since all experiments are executed on the same
hardware and software, the amount of time a single op-
eration takes is constant on average. For this reason
the times were measured instead of the total amount of
operations.

The accuracy of the models used in the first exper-
iment is measured with intersection over union (IOU)
of predicted and ground truth bounding boxes. IOU is
used in this research to test how close the bounding box
is to the ground truth and it is stated in percentages.
The procedure for finding the IOU is explained in figure
3.

Figure 3: IOU, Source: [8]

In the second experiment in this research the accuracy
of the predictions is stated in mean Average Precision
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(mAP). This metric is calculated with precision and re-
call values. The precision is defined as the ability of a
model to identify only relevant objects, the recall is de-
fined as the ability of a model to find all relevant objects
[8]. The mAP metric is more difficult to calculate than
IOU and generally used when multiple objects need to
be detected in a frame.

3.2 CNNs with event-based data
For this experiment events are converted to data repre-
sentations mentioned in section 1. Simple Convolutional
Neural Networks are used to test the accuracy and ef-
ficiency of bounding box-based object detection across
different input data representations.

The first data representation in the experiment is not
event-based, it is an image that is used as a comparison
to the event-based data representations. The image rep-
resentation used in this research is in red, green and blue
(RGB) format, this means that there are 3 channels or
simply said 3 frames in red, green and blue per image.
These frames consist of normalized values from 0 to 1,
these values are acquired by dividing the value of each
of the colors red, green and blue by 256. Each image is
scaled to frames of 128 by 128 pixels. The image repre-
sentation is the most dense data representation used in
this research with a total of 49152 values.

A less dense and event-based representation is the time
frame where events are encoded onto a 2D map based on
the recency of events. The encoding is as follows: a 2D
map is made where the X and Y coordinate of events are
used as indexes and the timestamp as value. The values
are taken and normalized over a time period of 10ms,
consequently, the final 2D map contains only values from
0 to 1. These values are then squared to highlight the
most recent events. The resulting 2D map is resized to a
128 by 128 pixel grayscale image which contains a total
of 16384 values.

The simplest and most sparse representation is having
only the coordinates of the events as a set of points.
The amount of points used as input for the model is
specified with N where N = 500. This representation
does not make use of the temporal data from events,
however for 2D bounding box-based object detection
this is not strictly necessary. To incorporate the time
value of events a 3D point set was made. The X and
Y coordinate combined with the timestamp form a 3D
set of points of length N. The timestamp, originally in
microseconds, is converted to milliseconds by dividing
by 1000. This improved the accuracy of the model. The
2D set of points contains 1000 values and the 3D set of
points contains 1500 values for each input.

Models: With the event-based data in the respective
formats, different models are constructed to train and
test with the data. All code is executed on a graphics
processing unit (GPU) to speed up the process. The
GPU used is a NVIDIA RTX 2060 super.

A simple object detection model is made to evaluate
the performance of bounding box regression on these for-

mats. The model is made on the basis of the YOLE
model [5] and is presented in figure 4. The model consists
of 2 stages. In the first stage 5 blocks of convolutional
and max-pool layers are used with leaky rectified linear
unit activation (leaky ReLu) layers. In the second stage
3 blocks of fully connected layers are used to retain fea-
tures from the data. In between the stages a dropout is
used to prevent the model from over-fitting. The model
uses a mean-squared-error loss and an Adam [9] opti-
mizer with a learning rate of 0.001. All data is trained
over 40 epochs with a batch size of 40. The model is
implemented with TensorFlow2 and Keras3 in Python.

The same model is constructed using sparse layers
since the object detection model does not exploit the
sparsity of the event-based data. The sparse model is
constructed using sparse convolutional and max pooling
layers in the same layout as the simple model. These
layers are implemented using code from [10]. The leaky
ReLu layers and the fully connected layers remain the
same. The sparse model is implemented with PyTorch4

in Python.

Data setup: The proposed models are used on a se-
lection of the original dataset Caltech101 [11] and the
event-based dataset N-Caltech101 [12]. The selection
consists of 4 classes: airplanes, cars, helicopters and
motor bikes. The training data is first parsed to the
correct representation. When the data preprocessing is
complete, the training data is split up for training and
testing in an 80-20 percent split. The part for training
is split up again for training and validation in an 80-20
percent split. The training and validation data is used
as input for the model. The model is thus trained with
only 80 percent of the data, leaving some unused data
for testing.

3.3 YOLOv3 with event-based data
The models used in the previous experiment are not
optimized for object detection, for this reason a novel
CNN model is used to train on images and event-based
data. The model used is YOLOv3 [13], and this model
is trained on the same GPU.

For the input of the YOLOv3 model, the data is sim-
ilar to the data used in the experiment from section 3.2.
The event-based representation used is a time frame,
which is converted to a JPG (image) file. The images
are already in JPG format. The same selection of classes
from the same datasets of the previous experiment is
used for training.

The YOLOv3 model can be trained via scripts that
read a dataset in a specified format. The format consists
of two folders named images and labels, each contain-
ing two folders for training and validation. The labels
contain the coordinates of the bounding boxes for each
object in a frame. To create the dataset in the required

2https://github.com/tensorflow/tensorflow
3https://github.com/fchollet/keras
4https://github.com/pytorch/pytorch
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Figure 4: Simple Convolutional Neural Network model, the input representations from top to bottom are as follows:
image, time frame, 2D point cloud, 3D point cloud.

format, the preprocessed data from the previous experi-
ment is stored in the correct folders. For the command
that executes the YOLOv3 training script the batch size
was chosen at 40, the amount of epochs is set at 20 and
the input image size is 256 by 256 pixels.

In order to verify the experiment and its results, the
model is also trained on the entire Caltech101 and N-
Caltech101 datasets. The same procedure is used to
transform the data into usable input for the YOLOv3
model. The entire Caltech101 dataset consists of 101
classes of objects. From these 101 classes 100 were used
since one class was not properly represented in both the
standard and event-based version of the Caltech dataset.
Since the data size increased, the amount of epochs to
train the model is increased from 20 to 40.

4 Results
For the experiments performed in section 3, results are
demonstrated that support the answer to the hypothe-
ses. In the first subsection the results of the first ex-
periment regarding simple models are presented. In the
second subsection the results of the second experiment
regarding the YOLOv3 model are given.

4.1 Accuracy vs efficiency
The results from the simple neural network are shown in
figure 5. The image-based representation performs the
best in terms of accuracy which is expected since this
representation contains the most data. It can also be
seen that the more sparse the representation becomes,
the faster the model prediction timing becomes. The
accuracy, measured in IOU, is lower for a more sparse
representation.

To test whether the results are accurate, the models
are trained 20 times. Each time a model is trained the
accuracy is tested. The test is run 10 times with 1000
random samples of the entire training dataset each time.
The average IOU score is taken from these 10 runs for the
test. The average IOU scores are shown in the scatter
plots in figures 5 and 6 for each representation. The final

Figure 5: Results from training and testing the simple
model 20 times for each representation. The trade-off
for using event-based data is illustrated with the trend
line. The accuracy achieved when using a time frame
representation is on par with using images while the ef-
ficiency is much better.

average IOU score of the 20 tested models can be seen in
tables 1 and 2. The reason for training a model 20 times
is that the accuracy of a model is not deterministic.

When looking at the IOU scores in figure 5 of the sim-
ple neural network, the sparser event-based data rep-
resentations show a lower score. As acknowledged in
section 3, the model used is not optimized for sparse
data representations and for this reason another model
was made to test whether the accuracy scores can be
improved.

The results of the sparse model are shown in figure
6. These results also show that event-based data rep-
resentations are more efficient, however the difference
in accuracy between all data representations is smaller.
The trade-off between accuracy and efficiency is signifi-
cantly better than for the simple model. The model has
a high variance however in predictions, and is not made
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for standard images.

Figure 6: Results from training and testing the sparse
model 20 times for each representation. The trade-off
for using event-based data is better when looking at the
trend line. However, the accuracy values of the predic-
tions have a high variance and therefore are not reliable.

The accuracy-efficiency trade-off of both models is
most noticeable between the image and the point sets.
The models are more efficient with the point sets since
these contain less data, however the predictions are also
less accurate. The best event-based representation is the
time frame, the accuracy is similar to the image-based
representation and the efficiency is better. This finding
is in line with the first hypothesis. For more information
about the trade-off, refer to tables 1 and 2. In these ta-
bles the model training time is presented together with
the average accuracy and efficiency score per represen-
tation. The model training times show a similar relation
as the model prediction times.

4.2 Accuracy with YOLOv3
When using event-based data, the YOLOv3 model per-
formed better over a longer time window. The difference
between the results from running the model on the input
data, is the accuracy of the model with respect to mean
Average Precision (mAP) scores as shown in figure 7.
The results consist of the accuracy scores of running the
model on the 4 classes specified in section 3.2, and the
scores of running the model on the entire dataset. For
some examples of the predictions made with the model
see appendix A.

In the results the model training times and prediction
times are not used since these are equal over different
inputs. For example, the logs from running the model
show that the time needed for predicting both images
and time frames, is about 1 ms on batches of 32 inputs.
The only thing that differs in terms of efficiency is the
data creation and preparation time. The data prepara-
tion time for an image to be converted to a correct input
representation is roughly 0.3ms, and for a time frame
roughly 0.04ms. Since these times are almost negligible

compared to the data creation time, the total time of
object detection depends primarily on how long it takes
to capture an image or gather enough events.
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Figure 7: Results from training and testing the YOLOv3
model on different representations. When only 4 classes
are used, event-based data can match and improve the
accuracy of image-based data. For the entire dataset,
the model achieves the best accuracy when trained on
images.

When more events are used to create the time frame,
the predictions of the model become more accurate. The
limiting factor here is how many frames can be gener-
ated per second. Creating a time frame of 50ms means
that a maximum of 20 frames can be generated and pro-
cessed per second. For processing images, this depends
on how many frames per second an RGB camera can pro-
duce. An interesting observation is that the time frame
of 25ms already outperforms the image-based represen-
tation in terms of accuracy when using a dataset of 4
classes. When the model is trained on the entire dataset
however the event-based data achieves a lower accuracy
score than images. These results contradict each other,
therefore the second hypothesis cannot be supported.

5 Responsible Research
The models used in this research are carefully designed
to test the performance of object detection when using
different input formats. The simple models are adapted
from the model YOLE as described in section 3. And the
YOLOv3 model is used directly from the source. How-
ever, there exists bias in this research: the sparse model
that is used with dense data is an example of algorith-
mic bias. The result of this bias: the model performing
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Table 1: Results of training and testing the model from figure 4. The data preparation time is the time taken on
average to construct the dataset in the given representation. The model training time is the time taken on average
to train the model over 40 epochs with the given representation. The prediction time is the time used to predict
bounding boxes for 1000 random inputs on average. The IOU value is the accuracy of the predicted bounding boxes
on average.

Representation Data preparation time Model training time Prediction time IOU

Image 6.9 s 31.46 s 0.35 s 80.5%

Time frame 23.0 s 26.07 s 0.24 s 80.0%
2D point cloud 9.5 s 15.46 s 0.13 s 71.3%
3D point cloud 9.9 s 16.19 s 0.13 s 68.9%

Table 2: Results of training and testing the model from figure 4 with sparse layers. For more information on the
data, see table 1

Representation Model training time Prediction time IOU

Image 412.20 s 1.13 s 72.5%

Time frame 39.84 s 0.55 s 74.7%
2D point cloud 25.39 s 0.40 s 70.9%
3D point cloud 26.30 s 0.39 s 70.4%

poorly, is still used as a comparison.
Another important ethical aspect of this research is

whether the data is used responsibly. In this research
two datasets are used, namely Caltech101 [11] and N-
Caltech101 [12]. These datasets are processed by the
models to obtain results about the model’s performance
in terms of accuracy and efficiency. The results, with re-
spect to object detection, of the machine learning mod-
els are not used other than for demonstrative purposes.
For the experiments that use a subset of the datasets, a
sample bias is introduced. This bias could mean that the
models predict poorly on data outside of this selection.
For the purpose of this research the sample bias is not a
problem, only the efficiency and accuracy of the model
on the selected data is measured.

A different topic is whether the results of the research
are useful and positive. Because negative results are
still scientifically significant, the results from training
the YOLOv3 model on the entire dataset, which are not
in line with the hypothesis for that experiment, are used
nonetheless. The model achieves a higher accuracy when
using images as input than when using event-based data
as input. This result is discussed in section 6.

The results from this research can be reproduced by
following the method from section 3. The results in sec-
tion 4 are obtained from running the models on the hard-
ware specified in section 3. For different hardware the
exact same timing data cannot be produced, however the
relation between the results with respect to accuracy and
efficiency will remain.

6 Discussion
From the first experiment the general trade-off for using
events instead of images can be seen as losing accuracy

for gaining efficiency. The results from the simple model
nicely portray the accuracy-efficiency trade-off and show
that event-based data can be preferred over image-based
data when efficiency is of importance. When using the
sparse model, event-based data even outperforms image-
based data in terms of accuracy. However, this result has
little meaning because the sparse model is not designed
for dense image-based data. Furthermore, the sparse
model is slower than the simple model and has lower
accuracy scores. If a better model is constructed that
can exploit the sparsity of events, the accuracy-efficiency
trade-off will have more value for the conclusion.

The second experiment, described in section 3.3, uses
a YOLOv3 model that is more optimized for object de-
tection than the simple models. This model is how-
ever made for images, therefore it does not fully uti-
lize the sparse and temporal nature of the events. Even
though it is not optimized for event-based data, a time
frame of events can perform better in terms of accu-
racy than standard images when using a small dataset.
The reason for this is probably because images contain
a lot of noise, which is less present in the time frame
of events. Nonetheless, the model achieves a higher ac-
curacy when using images instead of event-based data
when it is trained on the entire dataset. A possible rea-
son for this is that having colors in the input data is an
advantage for object detection, the results from paper
[7] mentioned in section 2 support this theory. Unfortu-
nately, since the YOLOv3 model only accepts image files
as input, the input data size does not change, and thus no
change in efficiency of the model could be measured. The
main findings from this experiment is that event-based
data can achieve a similar accuracy as image-based data
for the same amount of processing time.
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Regarding the experiments, the data used is not repre-
sentative for real life object detection. The simple mod-
els have an output layer that predicts the class label and
the bounding box coordinates of a single object. The
YOLOv3 model on the other hand can predict multi-
ple objects, the model is not utilized fully since there
was only one object in each data instance. The objects
that the models are trained and tested on are from Cal-
tech101, the objects are all centered and of similar size.
Even though the data is not optimal, the correlation be-
tween efficiency and accuracy shown from testing this
setup can be recreated using different data. The only
comparison that is not made is comparing efficiency and
accuracy of each data representation with the most op-
timal model for that representation.

The results achieved in this research are comparable
with results achieved in other papers. For instance, the
paper [3] mentioned in section 2 shows a model that
is actually optimized for sparse event-based data. The
model achieves a similar accuracy score with a much bet-
ter efficiency score for using event-based data instead of
images. In the paper [7] a similar conclusion can be
made, although the difference in efficiency is smaller.

7 Conclusions and Future Work
The research question was made to test whether using
sparser event-based data can be more efficient to train a
model without losing a significant amount of accuracy.
The question specifically asks what the trade-off is with
respect to accuracy and efficiency for using event-based
data.

The results discussed in section 6 show a clear relation
between sparsity of data representations and efficiency
of each model. The accuracy-efficiency trade-off for the
simple models is favorable for using event-based data.
The loss in accuracy is small compared to the gain in
efficiency. The experiment with YOLOv3 shows that
for the same efficiency of the model, a similar accuracy
can be achieved by using event-based data. When an
ideal model for event-based data is used, the accuracy-
efficiency trade-off for using event-based data instead of
image-based data is negligible.

In future research the best models with respect to
each data representation should be used to compare the
accuracy-efficiency trade-off. Furthermore, research can
be done on the best possible event-based data repre-
sentation and model for object detection. Finally, the
accuracy-efficiency trade-off for using events with color
values instead of regular events or images is interesting
to research.
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A YOLOv3 prediction example

Figure 8: Prediction results, from left to right: image, time frame of 10ms, time frame of 25ms, time frame of 50ms.
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