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Giuseppe Peronato (Idiap)

Co-reader: Azarakhsh Rafiee Voermans

http://creativecommons.org/licenses/by/4.0/


Abstract

Issues such as climate change, ecological conservation and sustainable energy have received
a great deal of attention in the last decade. Studies have shown that cities are responsible for
major energy use and waste emissions. In dealing with the growing environmental problems,
people have to look to the cities they live in. Today, urbanisation is still accelerating world-
wide which heralds a potentially huge opportunity to improve the environment by increasing
the energy sustainability of cities.

To address the energy sustainability of cities, policymakers and urban planners are looking
for ways to control energy consumption in buildings. Faced with a large number of urban
buildings and complex climate factors, the measurement of building energy consumption has
to be done with the help of relevant simulation software. Luckily, software and data formats
associated with the calculation of building energy consumption have matured over the years
through the efforts of academics and research institutions. This largely helps to solve the
complex problem mentioned above. However, these elements still need to be optimized and
improved. In this thesis, the research will focus on one of the urban energy simulation soft-
ware CitySim, the 3D city database 3DCityDB and the 3D city model data format CityGML.
Although it is currently possible to rely on these elements for urban energy simulation, the
whole simulation process is complex. The main reason for this problem is the number of data
extractions, data conversions and data storage required throughout the whole process. Also,
the lack of proficiency in data formats, software usage and data storage can be a difficult
problem for potential users. Therefore, this research will focus on developing a python-based
interface to achieve the goal of well connecting the entire urban energy simulation process.

This approach simplifies the process of urban energy simulation from the preparation of a
complete database related to urban energy simulation, to the full process of data extraction,
conversion and simulation in python, to the final storage of simulation results back to the
database. In addition to this, several user-friendly customised operations are also developed
in python. In this way, I hope to help more users to conduct urban energy simulation analysis
conveniently.
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Zürich city . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.2. Machine learning for the energy of buildings on a GIS tool design project

2021 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3. METHODOLOGY 17
3.1. Research Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1.1. Data inspection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.1.2. Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.1.3. Data extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.1.4. Spatial And Non-spatial Data Pre-processing Functions . . . . . . . . . . 19
3.1.5. Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.1.6. Simulation and result storage . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2. Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3. Spatial and non-spatial data pre-processing functions . . . . . . . . . . . . . . . 20

3.3.1. Study area selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3.2. Terrain processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3.3. Building surface processing . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4. DATA PREPARATION 25
4.1. Data Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.2. Geometry Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.3. physics parameters Libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.3.1. Building physics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.3.2. Additional physics parameters . . . . . . . . . . . . . . . . . . . . . . . . 28

4.4. Weather Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

ix



Contents

5. PYTHON IMPLEMENTATION 33
5.1. Data Extraction And Pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.1.1. Connect to the database . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.1.2. Geometry data extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.1.3. Building attributes extraction . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.1.4. Physics parameters extraction . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.2. Shading Surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.3. Terrain Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.4. Party Wall Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.5. Building Surface Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.6. Write CitySim Input XML File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.6.1. Write the composite part . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.6.2. Write the profile part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.6.3. Write the building part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.6.4. Write the shading surface part . . . . . . . . . . . . . . . . . . . . . . . . 44
5.6.5. Write the tree part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.6.6. Write the terrain part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.7. CitySim Simulation And Result Storage . . . . . . . . . . . . . . . . . . . . . . . 46
5.7.1. Call CitySim and run the simulation . . . . . . . . . . . . . . . . . . . . . 46
5.7.2. Simulation result storage . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6. RESULT ANALYSIS, REFLECTION AND FUTURE WORK 49
6.1. Testing The Python Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
6.2. Guidelines For The Python Interface . . . . . . . . . . . . . . . . . . . . . . . . . 50
6.3. Reflection And Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

A. PHYSICS LIBRARY DATA SHEET IN THE DATABASE 53

B. WEATHER LIBRARY DATA SHEET IN THE DATABASE 57

x



List of Figures

1.1. The current urban energy simulation process with CitySim and 3DCityDB . . . 2
1.2. The proposed urban energy simulation process with CitySim and 3DCityDB . . 2

2.1. Thematic modules and associated feature types including the LoDs in which
they are defined [OGC, 2010]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2. The color-coded modular structure of the Energy ADE UML diagram [Agu-
giaro et al., 2018] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3. CitySim workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4. The idealized data structure of CitySim (a), and CityGML Energy ADE (b) [Coc-
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1. INTRODUCTION

The world’s urbanization is accelerating. According to the United Nations [Nations et al.,
2018], as of 2018, fifty-five percent of the world population lives in urban areas, and by mid-
century, this percentage will expand to roughly two-thirds (sixty-eight percent). More and
more people are living in cities, which poses a greater challenge to urban-related environ-
mental issues. In fact, nowadays Cities count for more than seventy-five percent of primary
energy use and more than eight percent of greenhouse gas emissions, which shows a tremen-
dous opportunity for urban buildings to enhance the energy sustainability of cities [Nutkiewicz
et al., 2018].

As a result, urban planners and policymakers are facing challenges in controlling the amount
of shelters growth and their associated energy consumption [Coccolo and Kämpf, 2015].
Faced with a large number of urban buildings and complex climate factors, the measurement
of building energy consumption has to be done with the help of relevant simulation soft-
ware. Fortunately, in order to support energy transition processes at the urban scale, there
has been a continuous development of Urban Energy Modelling in the last decade: many
actors (e.g. international research centers, private sector, universities) have been developing
relevant algorithms and software to provide new digital methods for energy planning and de-
cision support [Agugiaro et al., 2018]. Those are powerful tools for calculating urban energy
consumption which largely helps to solve the complex problem mentioned above. However,
these elements still need to be optimized and improved. This project will focus on one of the
topics of urban energy simulation. To start with, the current urban energy simulation process
needs to be introduced.

Recently, the 3D geoinformation at TU Delft released the 3D BAG 2.0, a dataset containing
the 3D representation of buildings in several Level of Detail (LoD) of the whole Netherlands.
This dataset can be used for applications that are related to building energy use, such as
wind environment simulation, noise pollution measurement, etc. With complete urban data
and constantly updated maintenance, this dataset is an ideal data source for urban energy
simulations. To better manage large city model from 3D BAG 2.0, the manipulation is done
by the open source 3D City Database (3DCityDB) which is able to store, represent, and manage
virtual 3D city models on top of a standard spatial relational database.

CitySim is one of the urban energy simulation tools, which allows quantifying the heating and
cooling energy demand at the single building or urban scale with specific input physics and
geometry data [Robinson, 2012]. with the peculiar characteristic of considering the simulation
scene as an urban environment whose individual elements interact with each other, CitySim
is the ideal software for conducting urban energy simulations. It is important to mention that
CitySim has its own unique input and output data format.

The current urban energy simulation process related to the above elements is cumbersome:
first, the building data (from 3D BAG 2.0) are extracted from the 3DCityDB. Then those data
are transformed into CitySim format as the input file for simulation. After loading into the
CitySim Pro software, users need to set the simulation parameters before running the simu-
lation. When the simulation is complete, the result files are not stored back to the 3DCityDB

1
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1. INTRODUCTION

due to the different data formats. The lack of direct connection between 3DCityDB and CitySim
results in relatively complex operations for data retrieval, transformation, and storage. The
current process is shown in Figure 1.1.

Figure 1.1.: The current urban energy simulation process with CitySim and 3DCityDB

To address the issue mentioned above, the aim of this thesis is to link the 3DCityDB and
CitySim in order to allow for a seamless flow of information and perform energy simula-
tions in CitySim based on 3D BAG 2.0. More specifically, the thesis will focus on developing
a Python-based bidirectional interface to feed and retrieve data between the 3DCityDB and
CitySim (see Figure 1.2).

Figure 1.2.: The proposed urban energy simulation process with CitySim and 3DCityDB

1.1. Research Question

The main research question of this project is defined as follow:

• To what extent is it possible to link the 3DCityDB and CitySim, for a seamless flow of information
between the two platforms to perform urban energy simulations?

To achieve the goal of this project, several relevant sub-questions need to be answered:

• What information is needed for CitySim urban energy simulation?

2



1.2. Thesis Outline

• Where and how to collect and store the data needed for CitySim simulation?

• What is the difference of data formats between CityGML and CitySim? What are the mapping
rules between those two?

• How to extract information from the 3DCityDB and transformed into the CitySim input file?

• To clearly structure the overall data transformation, how to enrich the CitySim input file step by
step from basic information to complex information (e.g. from basic LoD2 geometries to geome-
tries with enriched energy simulation-related information)?

• How to define and design the database schema in 3DCityDB for storing libraries of energy simulation-
related parameters and profiles?

• After the simulation, which results need to be stored back into the database, and how to store
them back? Should certain data be aggregated?

• Does CitySim mechanism require pre-processing of geometry? How to handle this in Python
environment?

• Whether it is possible to design functions to fulfill the different needs of users (e.g. interest area
selection, counting the number of buildings)?

1.2. Thesis Outline

This thesis is organised as follows:

• Chapter 2 introduces the concepts of urban energy simulation data model and tools.
Two case studies related to CitySim urban energy simulation will also be presented.

• Chapter 3 describes the research methodology of this project. An overall research method-
ology covering the whole process will be introduced first. Then, detail discussion will
address on the data management and spatial and non-spatial data pre-processing func-
tions.

• Chapter 4 introduces the detail work of data preparation. Starting with an overview of
what data is needed for CitySim urban energy simulation to detail work of collecting
and storage relates to geometry data, physics parameters and weather data.

• Chapter 5 describes each step of the development of the python-based bidirectional
interface.

• Chapter 6 gives a testing of the python interface and provides a guideline for prospec-
tive users. Also, the reflection and potential improvements that could be done for future
work are presented.
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2. THEORY BACKGROUND AND
RELATED WORK

A python-based interface will be developed to enable an seamless flow of information through
the urban energy simulation process. Before the implementation of the python interface, all
the data relate to urban energy simulation will be well organized and stored in the database.
Then in the python environment, the data needed for CitySim urban energy simulation will
be extracted and pre-processed until it is complete for generating the CitySim input data file.
After running the simulation in python console, the simulation results will be converted and
stored back to the database. Before starting the project, it is very important to understand the
theory and relationships among the elements involved. Those topics are related to the urban
energy simulation data model and urban energy simulation tools. In this chapter, the detail
theory background and several case studies will be discussed.

2.1. Urban Energy Simulation Data Model

Throughout the urban energy simulation process, from the initial data storage to the con-
tinuous data format conversion, several theories relate to data model are involved. In this
subsection, the detail theory of urban energy simulation data model will be discussed.

2.1.1. CityGML

For varies application of 3D city models, not only are the geometrical and graphical aspects
relevant, but also the semantics of objects [Gröger and Plümer, 2012]. To illustrate the prob-
lem in more detail, in urban energy simulation, the function of buildings plays an important
role, since buildings with different function have different energy demand. Besides, calcu-
lating the heat transfer of walls, roofs, and floors are likely to be different. This places high
demands on the urban energy simulation data model. CityGML gives a solution to those
problems.

CityGML is from the international standard of the Open Geospatial Consortium (OGC) for
representing and exchanging of 3D objects related to city since 2008. It defines how to rep-
resent the geometrical, semantic, and visual aspects of 3D city models, such as buildings
and their components (building parts, walls, roofs, floors, windows, etc.), terrain, vegetation,
transportation, water bodies and furniture (see figure 2.1). What’s more, the representation of
those objects’ relationship is also include, like the relationship of a wall to the floor it bounded.
These thematic definitions address the problem of differentiate semantic objects and facilitate
data integration [Gröger and Plümer, 2012]. It also defines the standard of representing dif-
ferent LoD for the 3D objects, which can be used in various situation and purpose. In urban
energy simulations, for example, detailed LoD2 building models containing thematic surfaces
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(roofs, walls and floors) are used for energy calculation, while basic LoD1 building models
containing geometry solid are more suitable as shading surfaces.

For the representation of 3D objects, CityGML uses a standardized model that is provided by
the Geography Markup Language (GML) [OGC, 2010] which is based on the markup language
Extensible Markup Language (XML). This makes CityGML fits perfectly in exchanging and
modifying spatial data. CityGML has been accepted well by the software industry: tools
from nearly all notable companies provide CityGML interfaces [OGC, 2010]. This allows the
CityGML data model to be well adapted to almost all urban energy simulation tools.

Figure 2.1.: Thematic modules and associated feature types including the LoDs in which they
are defined [OGC, 2010].
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2.1.2. CityGML Energy ADE Extension

In the energy sector, however, CityGML is not sufficient to cover all energy-related infor-
mation. To address this issue, Nouvel et al. [2015] presented an extension of CityGML
called CityGML Energy Application Domain Extensions (ADE) Extension. The overall goal
of CityGML Energy ADE Extention is to tackle the existing data interoperability issues when
dealing with energy-related applications at the urban scale. This interface is able to increase
the number of energy-relevant properties that the city model offers (like physical materials,
thermal zones, boundaries, and building occupant behaviour illustrated in Figure 2.2), thus
makes CityGML well adapted [Sola et al., 2020].

Figure 2.2.: The color-coded modular structure of the Energy ADE UML diagram [Agugiaro
et al., 2018]

The detail introduction and description of the latest release of the Energy ADE Extension (v.
1.0) is given by Agugiaro et al. [2018]. The paper presents a number of software as well
as concrete case studies where Energy ADE plays a role in facilitating data interoperability
for energy-related applications, albeit with varying degrees of integration. In this research,
the use of CityGML Energy ADE Extention well supports the simulation result storage. For
example, the extended tables ng building, ng timeserises and ng regulartimeseries are used for
storing the heat and cooling energy demands.

2.2. Urban Energy Simulation Tools

As mentioned above, with wide range of adaptability, a great number of urban energy simula-
tion tools have been developed based on the open semantic 3D city model CityGML [Gröger
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and Plümer, 2012]. The aim of those tools is to be the basis of computing energy related infor-
mation (such as solar irradiance of building surfaces and heat and cooling demands of single
building) and help design and operation of building and district energy systems [Sola et al.,
2020]. Each tools has its own characteristics and is suitable for different scenarios. Those tools
include such as CitySim, SynCity, LakeSim and IDEAS. In this research, the exploration and
processing will be established on CitySim.

2.2.1. CitySim

CitySim belongs to the family of energy simulation software with the peculiar characteristic
of considering the simulation scene as an urban environment whose individual elements in-
teract with each other. CitySim was initially developed as a command-line solver and tested
at the Solar Energy and Building Physics Laboratory (LESO-PB) of EPFL. After years of satis-
factory results, the energy consulting company kaemco developed a graphical user interface
called CitySim Pro, which is a more user-friendly version. CitySim is based on algorithms
providing good balance among simulation requirements, simulation speed and simulation
accuracy at urban scale [Peronato et al., 2017]. This makes CitySim the ideal software to
fulfill the intended urban energy simulation scenario. CitySim takes two main data files to
compose the simulation scene, one is the analysed location weather data and the other is
geometric and physics information of the buildings [Mutani et al., 2018]. The workflow of
CitySim is shown in figure 2.3.

Figure 2.3.: CitySim workflow

2.2.2. CitySim data model and CityGML with Energy ADE data model

CitySim has its own data model which is different from the CityGML with Energy ADE data
model. In order to perform energy simulation based on the existing CityGML with Energy
ADE data model, the characteristics and relationship between those two data formats need to
be explained.

The relationship between CitySim data model and CityGML with Energy ADE data model
is given by Coccolo and Kämpf [2015]. CitySim data model is based on XML format. The
structure is tree-based with objects included in other objects. For example, every building in
the scene defined with energy system for heating and cooling purposes and building thermal
zone which contains the information about volume, temperature for heating/cooling and
infiltration, etc. The building thermal zone contains further information such as occupation
(number of occupants and profile), description of walls, roofs and floors (geometrical and
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physical information). Whereas, the CityGML with Energy ADE data model is structured by
four interrelated modules which are building, zone and boundaries, construction and layers,
occupancy module and energy system module. Those modules can present individually or
linked with other through reference. The structure of those two data model is shown in 2.4.

Figure 2.4.: The idealized data structure of CitySim (a), and CityGML Energy ADE (b) [Coc-
colo and Kämpf, 2015]

With above analysis, it can be concluded that CitySim and CityGML data model are able to
have common data organized in different structures. Containing the same information, the
CitySim data model is structured as tree-based whereas CityGML data model is organized
in independent modules. To illustrate with concrete cases, below is a XML file containing a
LoD2 building written by the software CitySim. The tree-based structure XML has its vertex
in the geometry, which belongs to thermal zone together with occupants information. While
the thermal zone and energy systems information are inside the building tag.
<Building id="0" key="id_building_01" Vi="1250.0" Ninf="0.1" BlindsLambda="0.2"

BlindsIrradianceCutOff="100" Simulate="true">

<HeatTank V="0.01" phi="20.0" rho="1000.0" Cp="4180.0" Tmin="20.0" Tmax="35.0"/>

<CoolTank V="0.01" phi="20.0" rho="1000.0" Cp="4180.0" Tmin="5.0" Tmax="20.0"/>

<HeatSource beginDay="258" endDay="135">

<Boiler name = "spaceX" Pmax="10000000.0" eta_th="0.95"/>

</HeatSource >

<CoolSource beginDay="136" endDay="257">

<HeatPump Pmax="10000000.0" eta_tech="0.3" Ttarget="5.0" Tsource="air"/>

</CoolSource >

<Zone id="0" volume="1000.0" psi="0" Tmin="20" Tmax="26" groundFloor="true"

nightVentilationBegin="0" nightVentilationEnd="0">

<Occupants n="5.0" sensibleHeat="90" sensibleHeatRadiantFraction="0.6" latentHeat="0"

type="1"/>

<Wall id="0" key="id_building_1_polygon_4" type="204.0" ShortWaveReflectance="0.3"

GlazingRatio="0.17" GlazingGValue="0.6" GlazingUValue="3.7" OpenableRatio="0">

<V0 x=" -40.0" y="40.0" z="0.0"/>

<V1 x=" -40.0" y="40.0" z="10.0"/>

<V2 x=" -35.0" y="40.0" z="15.0"/>
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<V3 x=" -30.0" y="40.0" z="10.0"/>

<V4 x=" -30.0" y="40.0" z="0.0"/>

</Wall>

......

<Floor id="2" key="id_building_1_polygon_3" type="132.0" ShortWaveReflectance="0.0"

GlazingRatio="0.0" GlazingGValue="0" GlazingUValue="0" OpenableRatio="0">

<V0 x=" -40.0" y="30.0" z="0.0"/>

<V1 x=" -40.0" y="40.0" z="0.0"/>

<V2 x=" -30.0" y="40.0" z="0.0"/>

<V3 x=" -30.0" y="30.0" z="0.0"/>

</Floor>

<Roof id="3" key="id_building_1_polygon_2" type="166.0" ShortWaveReflectance="0.2"

GlazingRatio="0.0" GlazingGValue="0.6" GlazingUValue="3.7" OpenableRatio="0" kFactor="0">

<V0 x=" -35.0" y="30.0" z="15.0"/>

<V1 x=" -30.0" y="30.0" z="10.0"/>

<V2 x=" -30.0" y="40.0" z="10.0"/>

<V3 x=" -35.0" y="40.0" z="15.0"/>

</Roof>

</Zone>

</Building >

On the contrary, the CityGML data model is written in modular structure based on four in-
terconnected models (Building, Zones and Boundaries, Construction and Layers, Occupancy
Module and Energy System Module).

<core:cityObjectMember >

<bldg:Building gml:id="id_building_01">

<bldg:lod2Solid >

<gml:Solid >

<gml:exterior >

<gml:CompositeSurface >

<gml:surfaceMember >

<gml:Polygon gml:id="b0_p_w_0">

<gml:exterior >

<gml:LinearRing >

<gml:posList >

-40 40 0

-40 40 10

-35 40 15

-30 40 10

-30 40 0

-40 40 0

</gml:posList >

</gml:LinearRing >

</gml:exterior >

</gml:Polygon >

</gml:surfaceMember >

......

<energy:volume >

<energy:VolumeType >

<energy:type >grossVolume </ energy:type >

<energy:value uom="m3">1000</ energy:value >

</energy:VolumeType >

</energy:volume >

......

<energy:thermalZone >

......

<energy:usageZone >

......

In this research, the transformation between those two data formats consists the core of the
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information flow during the energy simulation process. The conversions between those two
types of data models will be achieved in Python environment.

2.2.3. 3D city database

As mentioned in Section 2.1, CityGML data model is widely used in representing 3D city
objects which benefits application and users a lot. However, there are also shortcomings
exist.

Typically, a CityGML data file contains all the building data within the scope of the required
analysis. This results in a large file size of the 3D models of cities and single CityGML file for
a bigger city or region can have from tens over hundreds gigabytes in size. This brings high
demand on the need for efficient tools to query, visualize, and update the 3D city model [Yao
et al., 2018].

3DCityDB addresses the challenge above. 3DCityDB is a free and open-source database platform.
As a spatial Relational Database Management System (RDBMS), 3DCityDB perfectly suit the
needs of storing, representing, and managing virtual 3D city models. It can decode CityGML
and map its data model from inheritance hierarchy onto several tables (see figure 2.5). This
database mapping schema is the core component of the 3DCityDB [Yao et al., 2018]. For exam-
ple, the 3DCityDB supports the PostgreSQL with the PostGIS extension, after the installation in
pgAdmin, there is a citydb schema which contains tens of tables ready for storing the parsed
CityGML information such as table building, citymodel, cityobject, surface geometry and so on.
The database schema makes the parsed CityGML data well distinguished and connect. Worth
to mention, the importing and exporting of CityGML file can be done by software citydb im-
porter/exporter.

Figure 2.5.: Example of mapping an inheritance hierarchy onto one table [Yao et al., 2018]

In order to handle CityGML with Energy ADE data model, through research work being
carried out recent years, the 3DCityDB extension for the Energy ADE is also released to the
public. As a powerful tool chain, the Energy ADE extension extend the 3DCityDB with tens of
tables specifically for dealing with energy related information. The combination of 3DCityDB
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and Energy ADE extension makes the ideal database for handling data related to urban en-
ergy domain. For example, the figure 2.6 shows the geometry of a CityGML data file stored
in 3DCityDB table surface geometry and the figure 2.7 shows the intended Energy ADE table
ng timeseries for storing the simulation result.

Figure 2.6.: A glimpse of 3DCityDB table surface geometry with data of alderaan.gml

Figure 2.7.: The intended Energy ADE table ng timeseries for simulation result storage

Further information about 3DCityDB can be read in Agugiaro et al. [2018]. In this research, the
3DCityDB (v. 5.0.0), Energy ADE (v. 2.0) and PostgreSQL (V. 13) are being used.

2.2.4. Weather data

As mentioned before, CitySim takes location weather data as an input file for energy simu-
lation. The analysed location weather data have to be hourly resolution and contains infor-
mation such as solar irradiance, wind speed and wind direction which are stored in a .cli file.
Those elements are shown in Table 2.1.

CLI file requirement UOM
d Day
m Month
h Hour

G Dh Diffuse horizontal irradiance W/m2
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CLI file requirement UOM
G Bn Beam (solar) normal irradiance W/m2

Ta Air temperature °C
Ts Ground surface temperature °C
FF Wind Speed m/s
DD Wind Direction °
RH Relative Humidity %
RR Precipitation mm
N Nebulosity Octas

Table 2.1.: CitySim input climate file elements

As introduced by Mutani et al. [2018], there are several tools able to create climate data file
of a specific location in the world (e.g. Meteonorm). In this research two ways of gener-
ating .cli weather file are developed. One is from open source website https://climate.

onebuilding.org/default.html which contains climate data designed specifically to sup-
port building simulations. Another is from available weather data stored in database. The
detail implementation is illustrated in Section 4.4.

2.2.5. Horizon data

Apart from weather data, CitySim also needs the horizon information as the starting input
data which gives the shape of the horizon according to the direction or simulation scene. As
it is beyond the scope of this research, it will not be covered in this thesis.

2.3. Case Study

This section will discuss two case studies related to CitySim urban energy simulations. The
first one shows the urban energy simulation processing workflow of a neighborhood in ZÜRICH.
The second one shows a similar research goal as proposed in this research which I take inspi-
ration and partially continues their methodology.

2.3.1. CitySim simulation: the case study of alt-wiedikon a
neighbourhood of Zürich city

In order to perform energy simulation of a district, first, varies data needed for CitySim are
collected from different sources. Then a simulation model for CitySim needs to be generated
from those collected data. The problem is organising those data into a coherent simulation
model is a highly time-consuming task. This research presents the creation of a database
model for storing urban energy information using PostgreSQL and its link to the CitySim (see
figure 2.8). With this designed database, the information are well organized and the creation
of the CitySim input file and results storage are made automatically by JAVA interface.

The ideal of storing and managing the data in database and the use of JAVA interface making
data handling automated to reduce data conversion are same as proposed in this research.
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Figure 2.8.: Schema of the designed CitySim database [Perez et al., 2011]

However, since the database is specifically tailored to CitySim urban energy simulation, the
method doesn’t adapted to other energy application since the schema of the database doesn’t
cover all energy related information. For a large city instead of a neighborhood, the data
collection time consuming would be another issue.

2.3.2. Machine learning for the energy of buildings on a GIS tool design
project 2021

In order to predict the energy demand of residential buildings with different hourly reso-
lutions, preliminary work of the same research goal mentioned in Chapter 1 was made by
Sélène Ledain and Maxwell Bergström from EPFL in 2021. The complete task plan for data
collection and organization is shown in Figure 2.9. The goal of this project is to collect data
on buildings (located in Monthey, Switzerland) which are connected to the SATOM network
to perform energy simulations in the CitySim in order to evaluate the temporal granularity
of the energy measurements.

The 3D building models are stored in 3DCityDB based on the CityGML 2.0 structure. The
physics parameters are collected from RegBL of the Federal Statistical Office by web scrap-
ing. Those physics parameters are linked to buildings by attribute year of construction (it is
possible to relate the year to the materials and properties of the building). After collection,
those data are inserted into the database for storage by Structured Query Language (SQL)
queries (represented by the green arrows in Figure 2.10). Besides, the information about en-
ergy consumption measurements (which reach at best a three-hour accuracy) collected from
open source website are also stored in the database. Once the data preparation is complete,
the data are extracted by SQL queries to generate a CitySim input file (represented by the
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Figure 2.9.: Scheme of complete tasks for data collection and organization (Sélène Ledain and
Maxwell Bergström, 2021)

yellow arrows in Figure 2.10) for simulation. After the simulation, several needed simula-
tion results are stored back into the database. All steps mentioned above are achieved by a
python-based interface.

Figure 2.10.: Urban energy simulation workflow (Sélène Ledain and Maxwell Bergström,
2021)

From a database containing energy-related data to CitySim simulation and results storage
back, the ideal of creating an seamless information flow was proposed. However, the data
collected are incomplete due to the different sources of collection for different data. The
missing of certain information makes the program not well performed. Thus, a stable and
complete data source could make the project much more easier. In addition, the program
was not fully developed due to lack of time. From the two cases discussed above, they both
have advantages and shortcomings that can be learned and addressed in this study. With a
complete data source (3D BAG 2.0), a data management platform (3DCityDB), and a simulation
tool (CitySim), the above problems will be solved.

15





3. METHODOLOGY

In this chapter, the research methods will be discussed. Firstly, a research approach covering
the whole project process will be presented. This includes data inspection, management, data
extraction, spatial and non-spatial data pre-processing functions, mapping and simulation
and results storage.

3.1. Research Approach

In order to answer the main and sub research questions, a research methodology covering the
entire project process needs to be designed. This research methodology includes the follow-
ing points:

• Data inspection: examine the existing data and the data needed for CitySim urban
energy simulation and compare it to identify what data preparation is required.

• Management: for missing data, data collection is performed. This includes data re-
lates to specific building entity and the data library covering all geometries. If the data
storage schema is not contained in 3DCityDB, a schema design is carried out so that the
relevant data can be stored with the rest all in one database.

• Data extraction: in python environment, the data required for the urban energy sim-
ulation is extracted from the database, including geometry data, physics parameters
and weather data. The data is converted into dataframes and merged step by step to
generate a complete input file for CitySim simulation.

• spatial and non-spatial data pre-processing functions: in python environment, several
spatial and non-spatial data pre-processing functions related to CitySim urban energy
simulation are carried out.

• Mapping: once the extraction of the data and associated processing are complete, the
data is translated into CitySim XML input format in python.

• Simulation and result storage: in python environment, call CitySim to run the energy
simulation, and after the simulation is complete, store the simulation results back into
the database based on 3DCityDB Energy ADE 2.0 schema.

The overview of the workflow is shown in the figure 3.1. The six main steps are discussed
further in subsections.
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Figure 3.1.: Methodology of the research

3.1.1. Data inspection

In the data inspection session, it is first necessary to identify what input data is required by the
CitySim urban energy simulation and then to see what the CityGML data stored in 3DCityDB
consists of. Based on Mutani et al. [2018], it is possible to know the input files required for
CitySim simulations. As mentioned in Section 2.2.1, CitySim takes two main information
to compose the simulation scene, one is the analysed location weather data and the other is
geometric and physics information of the buildings. After comparison, it is confirmed that
apart from geometric data stored 3DCityDB, the physics parameters and weather data need to
be collected. In addition to this, it is important to understand the data storage structure of
3DCityDB as it relates to how data is extracted from multiple tables.

3.1.2. Management

Data collection is required for the missing data. One way of collecting data is from open
source websites. The other way is to construct synthetic data. As the aim of this project
is to build a python-based interface that covers the whole process of CitySim urban energy
simulation, the synthetic data will not affect the adaptation of the program to the real dataset.
There are two datasets that will be used in this research. One is the test dataset Alderaan.gml
to build the python interface and the other is a real dataset RijssenHolten.gml from 3D BAG
2.0 for testing the interface adaptability. Apart from the CityGML data that are decoded and
well stored in 3DCityDB, for the rest data collected (i.e. physics parameters and weather data),
a storage schema targeting those data is designed in order to build a physics and weather
data library which covering all potential need in future simulation. Worth to mention, since
the 3DCityDB extension for energy ADE is used for storing information of each buildings in
database, it is not able to store the physics and weather information library which covers all
circumstance (i.e. the physics parameters libraries are about all buildings in the Netherland).
Detail information regarding data collection and preparation will be given in Section 3.2 and
Chapter 4.
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3.1.3. Data extraction

The extraction of the data from the database containing complete information required for
CitySim simulation will be done in python. The data to be extracted includes geometry data,
physics parameters and weather data. Those data are converted into pandas.DataFrame and
merged from basic LoD2 geometries to enriched energy simulation-related data. The work-
flow is shown in figure 3.2. The purpose of this is to check the integrity of the data at each
level and to enable the user to extract data of varying precision. The implementation details
will be given in Section 5.1.

Figure 3.2.: Data enrichment workflow

3.1.4. Spatial And Non-spatial Data Pre-processing Functions

As mentioned in Section 2.3, the problem of CitySim data manipulation still exists which af-
fect the consuming time such as data collection and simulation calculation. Besides, CitySim
has special requirements for the input geometry which needs to do several pre-processing
before simulation. As the data related to the urban energy simulation will all be extracted by
the python interface, it makes it possible to design spatial and non-spatial functions based in
the python environment. These can include functions which helps different purposes of data
collection such as extracting data inside the study area, displaying the number of buildings
selected, setting the buffer of buildings to include the surrounding trees, terrain and shading
surfaces, coordinate shifting, decimal place managing of coordinate, etc. In addition to this,
functions that make the geometry pre-processing of buildings and terrain will be developed
according to the input data requirements of CitySim. Based on the python environment, those
spatial and non-spatial data pre-processing can be done. Detail information regarding spatial
and non-spatial data pre-processing functions will be given in Section 3.3 and Chapter 5.

3.1.5. Mapping

As mentioned in Section 2.2.2 CitySim and CityGML data models organize data in differ-
ent structures and the mapping between those two formats will be established. The data
extracted and processed in python will be mapped to the CitySim input data structure (i.e.
the data organized in dataframes will be written as an XML file according to the formatting
requirements). It is worth noting that the output data is subject to coordinate conversion
and the retention of specific decimal places, which is intended to reduce the effect of loss of
significance. This can help reduce the XML file size and reduce the simulation time. Detail
information regarding mapping will be given in Section 5.6.
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3.1.6. Simulation and result storage

With a complete CitySim input data, CitySim is called in python to perform energy simula-
tion. After the simulation, the needed data are extracted from the result files and reorganised
into dataframes. Finally those simulation results are stored back in 3DCityDB according to the
Energy ADE (v. 2.0) structure. Detail information regarding simulation and result storage will
be given in Section 5.7.

3.2. Management

In the data management section, the data storage schema design needs to be further clarified
which are not covered by 3DCityDB structure.

The 3DCityDB (v. 5.0.0) and Energy ADE (v. 2.0) architecture includes storage of 3D models of
cities, trees, terrain etc. as well as energy-related information. However, the architecture is
not able to store the data libraries for building physics, terrain physics, tree physics, weather
data, heating and cooling devices information required for CitySim simulation. To well or-
ganize those data in a library for future use, a data storage schema needs to be designed. To
enable data to be stored in a clear storage structure for data extraction, the design principle
is: one category information is stored in a schema, and the information is split by content
and stored in multiple tables. Data in different tables are associated with each other based on
their primary key or foreign key or attribute. The data storage structure design methodology
is shown in figure 3.3. Detail implementation will be given in Chapter 4.

Figure 3.3.: Data storage structure design methodology

3.3. Spatial and non-spatial data pre-processing functions

In this section, one spatial and two non-spatial data pre-processing functions are further dis-
cussed.
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3.3.1. Study area selection

CitySim input geometry data for urban energy simulations only requires information about
the building to be simulated and its surrounding information (e.g. trees, terrain and shading
buildings), so it is often sufficient to provide the data required for a specific area to be simu-
lated. For database that may contain 3D model for the whole city, if only certain area’s energy
simulation is needed, then extracting the data for the whole city for simulation is unneces-
sary and computational expensive. This not only increases the energy calculation time, but
also causes problems for simulation result storage (e.g. extracting certain values from a large
amount of data is complicated).

In order to solve the above problems, the function study area selection will be developed in
this project. The function can only extract the geometry data from the database within the
user input bounding box, including buildings to be simulated (LoD2), buildings as shading
objects (LoD1), trees and terrain. It is Besides, based on the bounding box, this function also
sets the buffer for including buildings as shading surfaces (LoD1), trees and terrain around the
simulated building that affect the energy calculation. The workflow of study area selection
is shown in figure 3.4. Detail implementation regarding study area selection will be given in
Section 5.1.2.

Figure 3.4.: Workflow of the study area selection

3.3.2. Terrain processing

The geometry data of the terrain is constructed according to triangular irregular network
(TIN). In CitySim mechanism, the terrain triangle will not be simulated (e.g. to get the solar
irradiance result) if its centre point is under the building being simulated. This can result in
inaccurate energy simulation result due to the lack of complete terrain geometries. The issue
is illustrated in figure 3.5.

To solve this problem, the terrain geometry needs to be pre-processed before simulation. The
first step is to project the 3D terrain and building footprints onto the 2D X-Y plane, the second
step is to cut the building footprints out of the terrain, the third step is to re-triangulates
the cut terrain and the fourth step is to project the terrain back into the 2.5D representation.
The workflow of terrain processing is shown in figure 3.6. Detail implementation regarding
terrain processing will be given in Section 5.3.
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Figure 3.5.: The difference of input geometry and simulated geometry

Figure 3.6.: Workflow of terrain processing
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3.3.3. Building surface processing

The LoD2 building geometry is made up of surfaces (polygons), including walls, roofs and
floors. In CitySim mechanism, if the centre point of a surface does not lie on that surface,
then the surface related energy simulation will not by carried out (e.g. solar irradiance). This
mostly occurs with concave (non-convex) surfaces. See figure 3.7.

Figure 3.7.: Building surface will be simulated or not

It should be clear that not all concave surfaces have a centre point that lies inside the surface.
The function is designed to process re-triangulation of all concave surfaces instead of only
targeting surfaces whose center points do not lie on itself. The division of a surface into
triangular surfaces ensures that the centre of the surface lies on itself. The workflow of re-
triangulation of concave surfaces is shown in figure 3.8.

Figure 3.8.: Re-triangulation of concave surfaces

The re-triangulation of concave surfaces is handled in a similar way to the re-triangulation
of terrain mentioned in Section 3.3.2. The first step is to check whether the building sur-
face is concave or not, and for concave surfaces continue to determine whether the surface
is perpendicular to the X-Y plane; if not, operations such as projection can be carried out in
accordance with the processing of the terrain. If the concave surface is perpendicular to X-Y
plane, the surface can not be project to X-Y plane. Then the x-axis and y-axis lengths of the
surface bounding box are used to determine whether the surface should be projected onto the
X-Z or Y-Z plane to get the 2D projection for further processing. The building surface pro-
jection workflow is illustrated in figure 3.9. It should be noted that the reason for comparing
the x-axis and y-axis lengths of the surface bounding box is to ensure that there is a larger
2D surface after projection and that a larger 2D surface improves the accuracy of the further
re-triangulation algorithm. Detail implementation regarding building surface processing will
be given in Section 5.5.
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Figure 3.9.: Workflow of building surface projection
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In this chapter, the detail information regarding data preparation is described. From an
overview of the required data to specific geometry data, physics parameters and weather data
including collection method and storage processing will be presented. The data preparation
content covered in this chapter is the basis for implementing the python-based bidirectional
interface.

4.1. Data Overview

By comparing existing data with the data required for CitySim energy simulations, the overall
picture of work needs to be done for data preparation is clear. Table 4.1 shows the CitySim
simulation required data, the existing data, the data source and the storage method. The next
sections describe detailed procedure of preparing those data.

Required data Existing data Data source Storage method

building geometry Alderaan.gml Testing model Through 3DCityDB
importer/exporter

building energy
related information Alderaan.gml Testing model Through 3DCityDB

importer/exporter

building physics Dutch building
physics.xml TABULA Storage schema design

and through pgAdmin

tree geometry Alderaan Trees.gml Testing model Through 3DCityDB
importer/exporter

tree physics NaN CitySim example
parameters

Storage schema design
and through pgAdmin

terrain geometry Alderaan DTM.gml Testing model Through 3DCityDB
importer/exporter

terrain physics NaN CitySim example
parameters

Storage schema design
and through pgAdmin

weather NaN Climate.OneBuilding.Org Storage schema design
and through pgAdmin

heat and cool
information NaN CitySim example

parameters
Storage schema design
and through pgAdmin

Table 4.1.: Data preparation overview
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4.2. Geometry Data

The alderaan.gml is a CityGML 2.0 test dataset. This file contains a collection of building
geometry and their generic attributes (including energy related information, see Table 4.2).
The building geometry is divided into two parts, the first part contains 11 buildings. Each
building contains 1 LoD0 footprint, 1 LoD1 prismatic solid, a set of LoD2 thematic surfaces. The
second part contains a group of additional ancillary buildings. Each ancillary building con-
tains 1 LoD0 footprint and 1 LoD1 prismatic solid. Those ancillary buildings will be input as
shading surfaces for energy simulation. In order to adapt the program to multi-part building
circumstance, one of the first part 11 buildings is a multi-part building which consists of 2
building parts. In addition, to store the information about building surfaces topology (ad-
jacency), the existing generalisation property of CityGML is used innovatively (which is not
originally meant for). Those topology information will be used in party wall processing (see
Section 5.4). The alderaan.gml is shown in figure 4.1. Trees and terrain of alderaan are also
CityGML 2.0 test datasets. The trees are modelled in LoD1, LoD2 and LoD3 using implicit ge-
ometries and terrain are modelled as tiled TIN. Those three CityGML files are imported into
database via software 3DCityDB importer/exporter. The geometry and attributes are stored in
3DCityDB schema.

attributes UOM description
lod2 volume m³ Involved in citysim energy simulation calculations
num residents Involved in citysim energy simulation calculations

building type Link the building physic.
e.g. SFH (single family house)

function
Link the building physics and filter out non-resid-
ential buildings
e.g. residential building

year of construction Link the building physics, e.g. 1955

Table 4.2.: Attriibutes of Alderaan.gml that are important for CitySim

4.3. physics parameters Libraries

CitySim for energy simulation calculations requires input files containing physics informa-
tion. The physics information makes up the content of the Composite, OccupancyDayProfile,
OccupancyYearProfile, Building, ShadingSurface, Trees and GroundSurface in the CitySim input
XML file. As the preparation of the physics parameters of the building is the most complex, it
will be described in detail.

4.3.1. Building physics

The existing building physics library data is extracted from TABULA which contains Dutch
building physics library. It is originally created for SimStadt. The content contained in this
file is composed as shown in the figure 4.2.
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4.3. physics parameters Libraries

Figure 4.1.: 3D view of alderaan.gml shown in FZKViewer

Figure 4.2.: The component structure of TABULA.xml
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As 3DCityDB does not contain a storage schema for building physics library, the goal is to
design a storage schema based on TABULA.xml content in the database. Also, this physics
library can be stored in a separate online sever that can be queried from different applications.
By analysing the data content, the TABULA.xml is parsed and stored in several tables (see
figure 4.3). The physics parameters in those tables are related to each other by id attribute
and also linked to the building geometry data by building type, building function and year of
construction attributes. The links between those information are shown in the figure 4.4.

Figure 4.3.: Parse TABULA.xml into tables to be stored in database

4.3.2. Additional physics parameters

In addition to building physics parameters, terrain physics, tree physics and heating and
cooling information are also required in CitySim energy simulations. As there is no existing
file of those data, in this research the relevant parameters in CitySim example input files were
extracted and stored via pgAdmin in designed storage schema.

The storage schema design follows the same principle as the building physics library storage
schema, i.e. the information is split by content, stored in multiple tables and associated based
on id attribute. The overview of parsing and storing those physics parameters is shown in
figure 4.5.

4.4. Weather Data

Climate data are collected from open source websites such as https://climate.onebuilding.
org/. Files containing hourly resolution of climate data are available in EnergyPlus Weather
Format (EPW) format. The EPW and .cli (the CitySim input weather file) files are in different
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4.4. Weather Data

Figure 4.4.: The links between building geometry and building physics

Figure 4.5.: The overview of parsing and storing other physics parameters
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formats and do not contain the same attributes, but the EPW file contains all the information
needed for generating a .cli file (see Table 4.3).

CLI file requirement uom EPW available uom
d Day Date – Day
m Month Date – Month
h Hour Time – Hour
G Dh Diffuse horizontal irradiance W/m2 Diffuse Horizontal Radiation Wh/m2
G Bn Beam (solar) normal irradiance W/m2 Direct Normal Radiation Wh/m2
Ta Air temperature °C Dry Bulb Temperature °C
Ts Ground surface temperature °C Dry Bulb Temperature °C
FF Wind Speed m/s Wind Speed m/s
DD Wind Direction ° Wind Direction °
RH Relative Humidity % Relative Humidity %
RR Precipitation mm Liquid Precipitation Depth mm
N Nebulosity Octas Total Sky Cover tenths

Table 4.3.: The mapping between EPW file and .cli file

A python-based program is developed in order to extract data from EPW files and produce
the .cli file. The process of the program is to read the EPW file, extract the required attribute
information and map it to generate the .cli file. The .cli file content generated from EPW file in
python is shown in figure 4.6).

A situation is also considered in the research where EPW files can be stored in database, and
a python-based program is also developed for extracting the climate information from the
database and generating the .cli file. The storage of a large number of EPW files in a database
makes it possible to construct a climate database that is easy to organize and editing the
climate information for urban energy simulation. Therefore, a storage schema for EPW file
needs to be designed. The overview of parsing and storing EPW data in database is shown in
figure 4.7.

Figure 4.6.: The .cli file generated from EPW file in python
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Figure 4.7.: Parse EPW files into tables to be stored in database

After the data preparation process, the database contains the 3DCityDB (which include all the
geometry data and associated attributes), physics library and weather data library (see 4.8).
This complete database will be used as the data source of python interface.

Figure 4.8.: The complete database for python interface development

31





5. PYTHON IMPLEMENTATION

With a complete database, next step is to develop the entire process in the python environ-
ment. This chapter will describe how the python-based bidirectional interface is developed
to meet the goal of feeding and retrieving data between the 3DCityDB and CitySim.

5.1. Data Extraction And Pre-processing

After connecting the python environment to the database, the user can enter the preferred
bounding box of the study area. The data inside the study area for CitySim urban energy sim-
ulation are read with python library geopanda. Those data include geometry data (buildings,
trees and terrain), physics parameters and several building attributes (e.g. building function
and building type). By merging the building geometry with attributes, the physics informa-
tion can be fused with the building geometry. Those data are organized and stored in several
dataframes for later use (i.e. spatial and non-spatial functions). The result of data extrac-
tion and pre-processing operations are two dataframes, one contains the geometry data of
buildings, tree and terrain (for writing the geometry part of CitySim input file) and the other
contains the physics and attributes information of buildings that are intended to be simulated
(for writing the rest parameters part of CitySim input file). The overview of data extraction
and pre-processing is shown in figure 5.1.

Figure 5.1.: The overview of data extraction and pre-processing

5.1.1. Connect to the database

The connection between the database and the python environment is established by the
python library sqlalchemy. This library can create the database engine for extracting data
from the connected database in python environment. Users need to type in the connection
information and in this step, the file path of the climate file is also recorded. The example of
how to connect a database to python environment is shown in figure 5.2.
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Figure 5.2.: Example of establishing a connection between the database and the python envi-
ronment

5.1.2. Geometry data extraction

Once connected to the database, the bounding box of the study area entered by the user (i.e.
x min, y min, x max, y max, buffer) will be used for filtering geometries inside (by postgis
function ST MakeEnvelope). Combined with the python library geopandas, it is able to get the
geometry dataframes by cross link multiple tables in 3DCityDB (e.g. the geometry envelope
is from table surface geometry and the gmlid is from table cityobject). By extending the study
area with the input buffer, the trees and terrain around the buildings which affect the energy
simulation results are also selected. In this way, the geometry data inside the study area can
be obtained for CitySim energy simulation. For instance, the figure 5.3 shows the original
geometry and the geometry after processing the study area selection.

Figure 5.3.: Geometries shown in CitySim GUI; Left one: the original geometry bounding box
as xmin 0 ymin -30 xmax 70 ymax 15; Right one: the selected geometry bounding box as
xmin 0 ymin -20 xmax 70 ymax 15, buffer as 20m

In the processing mentioned above, linking several tables and selecting required data are
made by SQL queries. For example, the extraction of building geometry is from varies tables
such as thematic surface, surface geometry and cityobject, the detail query is as follows:

geometry_envelope = gpd.read_postgis(

"SELECT thematic_surface.objectclass_id,

thematic_surface.building_id, thematic_surface.lod2_multi_surface_id,

surface_geometry.gmlid, surface_geometry.geometry, cityobject.gmlid as

parent_gmlid, surface_geometry.cityobject_id

FROM thematic_surface
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LEFT JOIN surface_geometry ON

thematic_surface.lod2_multi_surface_id = surface_geometry.parent_id

LEFT JOIN cityobject ON

thematic_surface.building_id = cityobject.id

WHERE surface_geometry.geometry && st_makeenvelope(%s,%s,%s,%s,%s)

ORDER BY parent_gmlid",

%(x_min_selection, y_min_selection, x_max_selection, y_max_selection, EPSG),

db_engine, geom_col = "geometry")

After processing via python libraries and SQL queries, the building, tree (tree geometry is
stored as implicit geometries which are extracted differently from the building and terrain)
and terrain geometry data inside the study area are well stored in dataframes. A glimpse of
building geometry dataframes is shown in figure 5.4. It is worth mentioning that the python
interface also shows the number of buildings selected inside the study area in case the user
want to redefine the area to select different amount of buildings.

Figure 5.4.: The building geometry dataframe

5.1.3. Building attributes extraction

In addition to the geometry data, several attributes related to the building geometry are also
needed. The purposes of those attributes information are:

• Filter out non-residential buildings that are not intended for energy simulation (by at-
tribute building function).

• Provide information needed for the CitySim energy simulation (by attribute lod2 volume
and number of residents).

• As the key to link the building geometry and the building physics parameters (by at-
tribute building type and year of construction).

The number of inhabitants per building is also required in the CitySim energy simulation
which will be calculated accompany with the occupancy profile (one of the physics parame-
ters) for energy demand. However, 3D BAG 2.0 does not contain those information. In such
case, assumptions need to be made from the information already available. For example, with
the available information about building volume and storey height, it is able to calculate the
floor area; by multiplying the floor area by the number of residents per square meter (with
assumption), the number of inhabitants can be got. Although, it is not as accurate as reality, it
provides a way to make assumptions for such situation. The function to calculate the number
of residents of the building is defined as below:
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def calculate_num_residents(lod2_volume,storeyHeightsAboveGround):

floor_area = lod2_volume/storeyHeightsAboveGround

density = 1/20 #1 person per 20 square meters

num_residents = round(floor_area * density)

return num_residents

By extraction and pre-processing presented above, a dataframe containing information about
the building that will be simulated can be obtained. (see figure 5.5). This tables will be
enriched with physics parameters discussed in the next subsection.

Figure 5.5.: The building list dataframe

5.1.4. Physics parameters extraction

The physics parameters are stored in the physics library in the database. Those informa-
tion are extracted from five tables building type, composite, layer, profile and window, which
are integrated into a physics parameters dataframe in python. Those information are then
fused with buildings according to the attribute year of construction, building type and build-
ing function (they have a mapping relationship), and finally integrated into the building list
dataframe (see figure 5.6). As the types and categories of trees and terrain are not differen-
tiated further in this study, the physics parameters on trees and terrain do not need to be
integrated with the specific geometry entities.

5.2. Shading Surfaces

The shading surface section in CitySim input XML file is used for storing all shading objects.
Since the non-residential buildings and all other ancillary buildings play a role as shading
objects in the 3D urban scene, those buildings can be converted to shading surfaces for simu-
lation. It is worth mentioning that shading objects only play a role in influencing the sunlight
on the simulated building, so it is not necessary to use a high level of detail model for these
objects (e.g. use LoD1 instead of LoD2). By modelling lower lever of detail models as shad-
ing surfaces, it can simplify the CitySim input XML file and reduce the simulation time. As
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Figure 5.6.: The final building list and building physics parametersframe

mentioned before, alderaan.gml contains a group of ancillary buildings which are modelled
in LoD1. Those buildings inside the study area (plus the buffer) will be modelled as shading
surfaces. Besides, for building modelled in LoD2 which are not selected for simulation (the
non-residential buildings), their LoD1 geometry will be extracted and written as shading sur-
faces. The overall workflow of shading surfaces implementation is shown in figure 5.7 and
processing out come is shown in figure 5.8.

Figure 5.7.: The overview of shading surface processing

5.3. Terrain Processing

The terrain geometry data consists of a 3D triangular network, as mentioned in Section 3.3.2,
the python interface is implemented as follows:

• Extract the building footprint. According to the CityGML mapping structure of 3DCityDB,
the thematic surfaces of the building footprint has a distinct object class id (35). Based
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Figure 5.8.: The processing result shown in CitySim GUI, bounding box as xmin 0 ymin -30
xmax 70 ymax 15, buffer 50m

on this information, first, the simulated building footprint geometry will be selected
from the geometry dataframe, and then those 3D building footprints are projected into
2D planes for next spatial processing.

• Find the intersect building footprints and dissolve them into one polygon. To avoid
duplication of intersecting building footprints effecting the terrain processing, it is nec-
essary to integrate the intersecting building footprints in advance. The check and pro-
cessing of intersection of building footprints are made by python library shapely.

• Project the 3D terrain geometry to 2D. As mentioned before, the python library such as
trimesh and shapely can only work with 2D objects. Thus, before the terrain processing,
the 3D terrain geometry needs to be projected to 2D.

• Crop and re-triangulate the terrain. In this step, first, find the terrain that intersects
the building footprints, then cut off the overlay part on the terrain geometry and re-
triangulate the rest. It is worth noting that the re-triangulation can make a terrain sur-
face to multiple triangle surfaces. Those surfaces are labeled with the same id as their
’parent’. In this way, the simulation results for each terrain fragment can still be got (by
merging those terrain pieces) and stored in the database.

• Transform the 2D terrain dataframe to 3D terrain dataframe. As mentioned above,
every processed terrain surface is labeled with same id as its ’parent’ by the one to one
relationship. In this step, first, identify the 3D terrain surface corresponding to the 2D
terrain surface. Then, the z-value of the 2D terrain coordinates can be calculated by the
3D plane formula formed from the 3D terrain.

After the terrain processing, every terrain TIN surface will be simulated in CitySim which
contributes to a better simulation result. The processed terrain is shown in figure 5.9 and 5.10.
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Figure 5.9.: The processed terrain shown in CitySim GUI

Figure 5.10.: The processed terrain with the rest geometries shown in CitySim GUI
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5.4. Party Wall Processing

Since there is little heat transfer through the party wall of two adjacent buildings. To reduce
the input file size and calculation time consuming, those walls can be identified and removed
before the CitySim energy simulation. As mentioned in Section 4.2, the part wall information
are stored in table generalization (stored as a one to one relationship, see figure 5.11). The first
step is to determine the building adjacency. Those information can be obtained by merging
the database table generalization with the geometry dataframe. After filtering out the party
wall belonging to residential building, a geometry dataframe without party wall can be ob-
tained. The figure 5.12 shows the aldraan.gml party walls before and after processing.

Figure 5.11.: The party walls’ relationship stored in table generalization

Figure 5.12.: The alderaan.gml party wall processing result shwon in FZKViewer
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5.5. Building Surface Processing

To take each surfaces valid for CitySim simulation, the concave building surfaces need to be
re-triangulated, especially after the removal of party walls, where additional concave surfaces
may exist. As mentioned in Section 3.3.3, the python interface is implemented as follows:

• Check if the surface geometry is convex or not. Based on python function, determine
whether the building surfaces geometry are convex or not.

• For concave surfaces, check if the surface is perpendicular to X-Y plane. First, find the
three points on the surface polygon that can form a plane formula, and then determine
whether the plane is perpendicular to the X-Y plane.

• Determine the projection direction to get the 2D surface. While the concave surface is
perpendicular to the X-Y plane, calculate the surface bounding box length on x-axis and
y-axis. If the x-axis is larger than y-axis, then project the surface to X-Z plane, otherwise
project the surface to Y-Z plane. For concave surfaces that are not perpendicular to the
X-Y plane, project the surface to X-Y plane.

• Re-triangulate the concave surface and transform the 2D surfaces back to 3D. The
implementation of re-triangulating and transforming back to 3D is the same as terrain
processing.

With the building surface processing, every surface will be valid in the CitySim simulation.
The re-triangulated building surfaces is highlighted shown in figure 5.13.

Figure 5.13.: The aldraan.gml building surface processing outcome shown in CitySim GUI

5.6. Write CitySim Input XML File

The writing of CitySim input XML file from the prepared dataframes above needs to strictly
follow the required format structure. If the output file is missing required elements or con-
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structed differently, the CitySim would report the reading error. To start with the header
section, the file path of the climate file, the simulation period and general information need
to be included. For example, they can be written as:

<?xml version ="1.0" encoding ="ISO -8859 -1"?>

<CitySim name="alderaan">

<Simulation beginMonth="1" endMonth="12" beginDay="1" endDay="31"/>

<Climate location="C:/ Climate_file/alderaan.cli"/>

5.6.1. Write the composite part

The composite part consists of construction material’s physics information. The material of
the simulated buildings, trees and terrain will all be written in this section. For each material,
its output structure includes the id, name, and tcategory, followed by different layer infor-
mation which includes attributes such as thickness, conductivity, Cp and Density, etc. Before
writing this part, a dataframe for containing composite information is generated from physics
parameters. From figure 5.14 can see three types of wall materials (wall 1.61, wall 0.36 and
wall 1.45) with their layer information are well prepared. With this dataframe, for instance,

Figure 5.14.: The dataframe of composite information

the composite section of one category material (wall 1.61) is written as:

<Composite id="204.0" name="Wall_1 ,61" category="outWall">

<Layer Thickness="0.2" Conductivity="0.96" Cp="840.0" Density="2000.0"

NRE="0" GWP="0" UBP="0"/>

<Layer Thickness="0.011" Conductivity="0.045" Cp="1800.0" Density="105.0"

NRE="0" GWP="0" UBP="0"/>

<Layer Thickness="0.0" Conductivity="0.79" Cp="1014.0" Density="1329.0"

NRE="0" GWP="0" UBP="0"/>

</Composite >

5.6.2. Write the profile part

In the profile part, the building occupancy information will be written. The occupancy day
profile and year profile are constructed similarly and written in the section of Occupancy-
DayProfile and OccupancyYearProfile in CitySim XML input file. For occupancy day profile, 24
records for 24 hour need to be output. For occupancy year profile, 365 records for a 365 days
need to be output. Those records are extracted from the database and stored in a profile
dataframe in array type (see figure 5.15). By extracting those values from the array, the record
can be written as follows:
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Figure 5.15.: The dataframe of occupancy profile information

<OccupancyDayProfile id="1" name="occupancy_day_profile_of_residential_buildings"

p1="1.0" p2="1.0" p3="1.0" p4="1.0" p5="1.0"

p6="1.0" p7="0.8" p8="0.6" p9="0.4" p10="0.4"

p11="0.4" p12="0.6" p13="0.8" p14="0.6" p15="0.4"

p16="0.4" p17="0.6" p18="0.8" p19="0.8" p20="0.8"

p21="0.8" p22="1.0" p23="1.0" p24="1.0" />

<OccupancyYearProfile id="1" name="occupancy_year_profile_of_residential_buildings"

d1="1.0" d2="1.0" d3="1.0" d4="1.0" d5="1.0"

d6="1.0" d7="1.0" d8="1.0" d9="1.0" d10="1.0"

d11="1.0" d12="1.0" d13="1.0" d14="1.0" d15="1.0"

d16="1.0" d17="1.0" d18="1.0" d19="1.0" d20="1.0"

d21="1.0" d22="1.0" d23="1.0" ...... d365="1.0" />

5.6.3. Write the building part

The building information is written in section Building in CitySim XML input file. This part
consists of the building energy related attributes, heat and cool physics parameters, building
physics parameters and building geometry. Apart from the information already stored in
building list dataframe, the building physics information is linked to the building geometry
by gmlid. The LoD2 building geometries are written by thematic surfaces polygon coordinates.
Every vertexes coordinates of polygon will be written in one line. When writing coordinates,
in order to reduce the loss of significance, the program will first ask the users to enter the
number of decimal places they want to keep, then translate the coordinates according to the
coordinates recorded of the bounding box. In addition, the type of the thematic surfaces
is also required in writing this part. This is achieved by checking the geometry attribute
objectclass id. The objectclass id 33, 34 (36) and 35 refers to the type Roof, Wall (Party Wall) and
Floor. For examply, one LoD2 building geometry and related physics parameters are written
as follow:

<Building id="0" key="id_building_01" Vi="1250.0" Ninf="0.1" BlindsLambda="0.2"

BlindsIrradianceCutOff="100" Simulate="true">

<HeatTank V="0.01" phi="20.0" rho="1000.0" Cp="4180.0" Tmin="20.0" Tmax="35.0"/>

<CoolTank V="0.01" phi="20.0" rho="1000.0" Cp="4180.0" Tmin="5.0" Tmax="20.0"/>

<HeatSource beginDay="258" endDay="135">

<Boiler name = "spaceX" Pmax="10000000.0" eta_th="0.95"/>

</HeatSource >

<CoolSource beginDay="136" endDay="257">

<HeatPump Pmax="10000000.0" eta_tech="0.3" Ttarget="5.0" Tsource="air"/>

</CoolSource >

<Zone id="0" volume="1000.0" psi="0" Tmin="20" Tmax="26" groundFloor="true"

nightVentilationBegin="0" nightVentilationEnd="0">

<Occupants n="5.0" sensibleHeat="90" sensibleHeatRadiantFraction="0.6"

latentHeat="0" type="1"/>

<Wall id="0" key="id_building_1_polygon_4" type="204.0" ShortWaveReflectance="0.3"

GlazingRatio="0.17" GlazingGValue="0.6" GlazingUValue="3.7" OpenableRatio="0">

<V0 x=" -40.0" y="40.0" z="0.0"/>

<V1 x=" -40.0" y="40.0" z="10.0"/>
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<V2 x=" -35.0" y="40.0" z="15.0"/>

<V3 x=" -30.0" y="40.0" z="10.0"/>

<V4 x=" -30.0" y="40.0" z="0.0"/>

</Wall>

......

<Roof id="3" key="id_building_1_polygon_2" type="166.0" ShortWaveReflectance="0.2"

GlazingRatio="0.0" GlazingGValue="0.6" GlazingUValue="3.7" OpenableRatio="0" kFactor="0">

<V0 x=" -35.0" y="30.0" z="15.0"/>

<V1 x=" -30.0" y="30.0" z="10.0"/>

<V2 x=" -30.0" y="40.0" z="10.0"/>

<V3 x=" -35.0" y="40.0" z="15.0"/>

</Roof>

......

<Floor id="2" key="id_building_1_polygon_3" type="132.0" ShortWaveReflectance="0.0"

GlazingRatio="0.0" GlazingGValue="0" GlazingUValue="0" OpenableRatio="0">

<V0 x=" -40.0" y="30.0" z="0.0"/>

<V1 x=" -40.0" y="40.0" z="0.0"/>

<V2 x=" -30.0" y="40.0" z="0.0"/>

<V3 x=" -30.0" y="30.0" z="0.0"/>

</Floor>

......

</Zone>

5.6.4. Write the shading surface part

The shading surface information is written in tag ShadingSurface in CitySim XML input file.
The writing of the shading surface geometry is similar to the building part. The LoD1 ge-
ometry will be written in the same structure as the thematic surfaces. The same number of
decimal places and coordinate transformation as building part will be applied. For example,
one LoD1 building as shading surfaces can be written as follow:

<ShadingSurface >

<Surface id="0" ShortWaveReflectance="0.2">

<V0 x=" -20.0" y=" -20.0" z="5.0"/>

<V1 x="0.0" y=" -20.0" z="5.0"/>

<V2 x="0.0" y=" -10.0" z="5.0"/>

<V3 x=" -20.0" y=" -10.0" z="5.0"/>

</Surface >

......

</ShadingSurface >

5.6.5. Write the tree part

The tree data is written in tag Trees in CitySim XML input file. Every tree geometry component
(polygons) and physics parameters will be written. Those polygons are labeled as leaf. Worth
mentioning, the attribute id written in this part is important for associating simulation results
with identities in database (the id will also be recorded in the simulation results). The same
number of decimal places and coordinate transformation as building part will be applied.
The tree part is written as follow:

<Trees >

<Tree id="240" name="Maple" leafAreaIndex="3.0" leafWidth="0.1" leafDistance="1.0"

deciduous="false">

<Leaf id="240" ShortWaveReflectance="0.3" LongWaveEmissivity="0.95">

<V0 x="14.791" y="20.0" z="3.283"/>
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<V1 x="14.791" y="20.0" z="0.0"/>

<V2 x="15.209" y="20.0" z="0.0"/>

<V3 x="15.209" y="20.0" z="3.283"/>

<V4 x="15.0" y="20.0" z="3.2"/>

</Leaf>

<Leaf id="240" ShortWaveReflectance="0.3" LongWaveEmissivity="0.95">

<V0 x="15.0" y="19.791" z="3.283"/>

<V1 x="15.0" y="19.791" z="0.0"/>

<V2 x="15.0" y="20.209" z="0.0"/>

<V3 x="15.0" y="20.209" z="3.283"/>

<V4 x="15.0" y="20.0" z="3.2"/>

</Leaf>

<Leaf id="240" ShortWaveReflectance="0.3" LongWaveEmissivity="0.95">

<V0 x="15.0" y="19.791" z="3.283"/>

<V1 x="15.0" y="20.0" z="3.2"/>

<V2 x="15.0" y="20.209" z="3.283"/>

<V3 x="15.0" y="21.771" z="3.903"/>

<V4 x="15.0" y="22.505" z="5.6"/>

<V5 x="15.0" y="21.771" z="7.297"/>

<V6 x="15.0" y="20.0" z="8.0"/>

<V7 x="15.0" y="18.229" z="7.297"/>

<V8 x="15.0" y="17.495" z="5.6"/>

<V9 x="15.0" y="18.229" z="3.903"/>

</Leaf>

<Leaf id="240" ShortWaveReflectance="0.3" LongWaveEmissivity="0.95">

<V0 x="14.791" y="20.0" z="3.283"/>

<V1 x="15.0" y="20.0" z="3.2"/>

<V2 x="15.209" y="20.0" z="3.283"/>

<V3 x="16.771" y="20.0" z="3.903"/>

<V4 x="17.505" y="20.0" z="5.6"/>

<V5 x="16.771" y="20.0" z="7.297"/>

<V6 x="15.0" y="20.0" z="8.0"/>

<V7 x="13.229" y="20.0" z="7.297"/>

<V8 x="12.495" y="20.0" z="5.6"/>

<V9 x="13.229" y="20.0" z="3.903"/>

</Leaf>

</Tree>

......

</Trees>

5.6.6. Write the terrain part

The terrain information is written in tag GroundSurface. Every terrain triangular polygon and
their associate physics information are recorded. The attributes id and key will be stored in
simulation results for associating simulation results with identities in database. The same
number of decimal places and coordinate transformation as building part will be applied.
The terrain part is written as follow:

<GroundSurface >

<Ground id="677" key="ID_d5a47bcc -398d-4d4a -8b28 -a5d1bbbbadf1"

ShortWaveReflectance="0.3" type="999" kFactor="0.7" detailedSimulation="true">

<V0 x="20.0" y="30.0" z="0.0"/>

<V1 x="20.0" y="50.0" z="0.0"/>

<V2 x="0.0" y="50.0" z="0.0"/>

</Ground >

......

</GroundSurface >
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By the writing above, a complete CitySim input XML file is ready. In order to keep all files
organized, this file is best to be stored in a folder together with the simulation results later
on. Apart from running the simulation in python environment, the input XML file can also
optionally be loaded into CitySim Pro GUI and the user can start the simulation manually
using the CitySim Pro GUI (see figure 5.16).

Figure 5.16.: Running the simulation in CitySim Pro GUI

5.7. CitySim Simulation And Result Storage

In this section, the detail implementation of calling CitySim to perform energy simulation
and simulation result manipulation in python envronment will be discussed.

5.7.1. Call CitySim and run the simulation

The calling of CitySim is made by python library subprocess. The subprocess module allows
the python program to spawn new processes, connect to their input/output pipes, and obtain
the return codes. The user needs to type in the file path of CitySim solver and the XML input
file. Then the simulation will start automatically. The CitySim simulation progress will be
shown in the python console. Once the simulation is finished, the result .tsv files containing
all the energy related data produced by CitySim simulation are stored in the same path as the
XML input file. Among those result files, one file containing the information we need and for
result storage illustration is the ’ TH’ file (see figure 5.17).

The ’ TH’ file contains twelve simulated parameters correspond to each building (or layer).
Those are Internal temperature Ta, Heating, Cooling, Qi, Qs, VdotVent, HeatStockTemperature,
ColdStockTemperature, MachinePower, FuelConsumption, ElectricConsumption, SolarThermalPro-
duction. For each parameters there are 8760 hourly records corresponding to 8760 hours dur-
ing a typical year. If users need the monthly or yearly result, the data need to be summed
based on time period. For illustration purpose, in this research the result storage will focus
on Qs data representing the hourly total heating and cooling demand for each building.

46



5.7. CitySim Simulation And Result Storage

Figure 5.17.: CitySim simulation result TH.tsv in Excel window

5.7.2. Simulation result storage

The simulation result storage is based on the Energy ADE 2.0 storage schema. According to
the Energy ADE Core Unified Modeling Language (UML) diagram, the energy demand of each
building can be stored which is structured as feature EnergyDemand (see figure 5.18).

Figure 5.18.: Part of the UML diagram of the Energy ADE Core

As mentioned in Section 5.7.1, the ’ TH’ file contains 8760 hourly records of total heating
and cooling demand (Qs value) for each simulated building. The result storage workflow is
carried out as follows:

• Extract the hourly Qs value from the ’ TH’ file. Read the file in python environment
and filter out the Qs data for each simulated building.

• Calculate the monthly and yearly Qs value. For potential needs of monthly and yearly
Qs data, the calculation is made in python. The result will contain 12 monthly Qs value
and 1 yearly Qs value for each simulated building.
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• Organize data into dataframes. As mentioned above, the simulation result can be
stored based on feature EnergyDemand. There are five tables in database (from Energy
ADE 2.0) relating to this storage schema which are cityobject, ng timeseries, ng regulartimeseries,
ng cityobject and ng energydemand. In this step, 5 dataframes containing Qs realted in-
formation are created with the same structure of those 5 tables.

• Insert the dataframes into database. Insert the 5 dataframes into the corresponding 5
tables in 3DCityDB.

By the above operation, the hourly, monthly and yearly Qs value of each simulated building
is stored in the database. Figure 5.19 shows the table ng regulartimeseries in database which
contains the result Qs value of 10 simulated buildings in Alderaan.gml.

Figure 5.19.: Table ng regulartimeseries in database contains the Alderaan simulation result

To store the simulation results of other categories, the same workflow mentioned above can be
applied. For example, the solar irradiance simulation result (in the ’ SW’ file ) of each surfaces
can also be stored in the database based on the Energy ADE 2.0 storage schema. Different from
the energy demand like Qs value, the storage of solar irradiance result is structured as feature
WeatherData and stored in tables cityobject, ng timeseries, ng regulartimeseries, ng cityobject and
ng weatherdata. Detail implementation see the python script in Section 6.2.
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6. RESULT ANALYSIS, REFLECTION
AND FUTURE WORK

6.1. Testing The Python Interface

The python interface is developed based on the test dataset Alderaan.gml. To examine the
adaptability of the interface to dataset from 3D BAG 2.0, the RijssenHolten.gml (from 3D BAG
2.0) is used for testing. After processing in the python interface, it proved that it can be run
without problems. However, due to the large number of vertexes on building footprints, the
terrain geometry pre-processing doesn’t function well. This is due to the fact that in a real
dataset, there will be more complex vertexes on the building footprints.Functions related to
spatial processing can cause erroneous processing results when dealing with close and dense
vertexes due to insufficient processing precision. In this case, in order to generate a valid
input file and obtain relatively accurate simulation results, the python interface gives user
the option to skip the terrain geometry pre-processing. Instead, the original terrain is written
in CitySim XML input file for simulation. After the simulation, the result data is also well
stored back in the database. One of the energy simulation result of RijssenHolten.gml (study
area as xmin 231952 ymin 479844 xmax 232266 ymax 479944, buffer 20m) viewed in CitySim
Pro is shown in figure 6.1 and 6.2.

Figure 6.1.: The CitySim simulation result of short wave irradiance of RijssenHolten.gml
viewed in CitySim Pro GUI
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Figure 6.2.: Table ng regulartimeseries in database contains the RijssenHolten simulation result

6.2. Guidelines For The Python Interface

The script of the python interface along with physics library and weather library backup files
are posted on GitHub.

https://github.com/yuzhenjin3000/Dynamic-energy-simulations-based-on-the-3D-BAG-2.

0.git.

Notice:

• This python interface is developed with Python 3 and adapted to the CitySim (v. 22.05.2022)
3DCityDB (v. 5.0.0), Energy ADE (v. 2.0) and PostgreSQL (V. 13).

• The physics library and weather library storage schemas along with the data can be
directly installed by importing the SQL files into the database.

• The geometry GML file can be imported into the database via software 3DCityDB im-
porter/exporter.

6.3. Reflection And Future Work

As environmental issues receive more and more attention, it makes more sense to contribute
in this area. In this research, the development of python-based interface well achieved the
goal of linking the 3DCityDB and CitySim based on 3D BAG 2.0 in order to allow for a seamless
flow of information and perform energy simulation. In general, the development of python-
based bidirectional interface successfully manage the flow of information between 3DCityDB
and CitySim. Based on 3D BAG 2.0, it is able to extract any study area in the Netherland
for conducting energy simulation via the python interface. The design concepts and python
interface development details of data managing or mapping (like the storage schema design,
spatial and non-spatial functions and writing CitySim input XML file) could be useful for
other researchers who would like to explore further. Compared to the current way of urban
energy simulation (with CitySim and 3DCityDB), the python interface not only automates the
data feeding and retrieving process, but also able to store the energy simulation results back
into the database. The design of physics and weather library storage schema makes physics
parameters and weather data along with geometry data (stored in 3DCityDB) stored in one
database for efficient management and future use.

During the processing of spatial geometry, varies python libraries are used, such as trimesh
and shapely. Since those libraries are suitable for handling 2D geometries, several projections
from 3D (which is actually 2.5D) to 2D are carried out in geometry pre-processing (i.e. the
terrain and building surfaces pre-processing). Besides, because those libraries cannot handle
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surfaces with inner rings, the inner rings (i.e. projections of building footprints) are treated as
polygons and removed in geometry pre-processing. Those features limit the adaptability of
the python interface when dealing with real 3D geometries. And also increase the complexity
of spatial processing which increases the running time of the program. Those problems could
be addressed by using more powerful geometry processing libraries, such as CGAL which
provides more geometric algorithms (it is in the form of a C++ library). Besides, the spa-
tial handling process and the data organization can also be simplified to increase the overall
performance in the future.

When testing the python interface adaptability to the real 3D BAG 2.0 dataset, the complex
geometries resulting in failure of processing is also an issue to be fixed. When dealing with
tight vertexes, the triangulation of cut terrain surfaces causes computational errors. Also, tiny
surfaces are not covered when removing the overlapped surfaces. It is not the problem of 3D
BAG 2.0 dataset (all geometry in 3D BAG 2.0 are valid). When dealing with real complex
geometries, those issues always happen. To fix this problem, a pre-processing of all geome-
tries could be carried out to clean up and simplify the objects. By removing tiny surfaces and
tight vertexes, it reduces the probability of computational errors and also it will not affect the
simulation results.

For potential users who are not familiar with python, a graphical user interface could be
developed in the future. Through a user-friendly graphical interface, users can obtain en-
ergy simulation results by simply entering the database name, weather file path, study area
bounding box, preferred coordinate decimal places, and the result data they want to store.

The CitySim and 3DCityDB as well as all other tools and data formats included in this study, are
constantly being developed and optimized. The developed python interface should also be
constant update to be well adapted for those elements. The research carried out in the thesis
is meant for giving an idea of how those elements could be improved to meet the demand
of potential users for urban energy simulation. If it can give a hint to the CitySim developer
or someone who is working on urban energy simulation domain, the purpose of the research
is achieved. Hopefully, more and more people will find it easy to implement urban energy
simulations, which helps them better control and address the environmental issues.
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A. PHYSICS LIBRARY DATA SHEET IN
THE DATABASE

Table A.1

Schema Table Attribute Type Description Example

physics

building
type

id int The index of each row 0

system str
The system where the
building physics information from TABULA

country str
Countries to which
building physics applies NL

year
initial int Starting year of building construction 1965

year
end int End year of building construction 1974

construction
period numrange The period of building construction [1965,1974]

building
type str

The type of the building
(e.g. SFH, single family house) SFH

function str The function of the building residential

element str The condition of refurbishment
Medium

-Refurbishment

attribute str All attributes relate to building physics
outWalls
shortWave

-Reflectance

data type str
The data type of attributes
(e.g. for outWalls shortWaveReflectance) float

value float
The value of attributes
(e.g. for outWalls shortWaveReflectance) 0.3

uom str The unit of measure of attributes -
description str The description of each row -

composite

id int The index of each row 0

system str
The system where the
building physics information from TABULA

country str
Countries to which
building physics applies NL

construction
id int

Link to the table building type
attributes ’ constructionTypeId’ 0

construction
category str The construction object outWall

construction
name str The construction material name

Aerated
concrete-25cm

material
id str The id of construction material 62

attritube str The thickness of construction material thickness
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Schema Table Attribute Type Description Example
data
type str

The data type of attributes
(e.g. for thickness) float

value float
The value of attributes
(e.g. for thickness) 0.01

uom str The unit of measure of attributes -
description str The description of each row -

layer

id int The index of each row 0

system str
The system where the
building physics information from TABULA

country str
Countries to which
building physics applies NL

material
category str The category of construction material Brick

material
id int The id of construction material 62

material
name str The name of the material Solid brick

density float
The attribute relates
to construction material 2000

heat
capacity float

The attribute relates
to construction material 840

conductivity float
The attribute relates
to construction material 0.96

embodied
energy float

The attribute relates
to construction material 0.8

embodied
carbon float

The attribute relates
to construction material 0.25

disposal
energy float

The attribute relates
to construction material 0.11

disposal
carbon float

The attribute relates
to construction material 0.02

construction
description str The description of construction material -

disposal
description str The description of disposal -

profile

id int The index of each row 0

system str
The system where the
building physics information from TABULA

country str
Countries to which
building physics applies NL

profile
id int The index of each profile information 1

profile
type str The type of the profile occupancy

element str
The category of profile
(e.g. day or year) day

function str
The function of buildings
that the profile applies to

residential
building

data type str The data type of the profile array

length int
The length of data
(e.g. 24 for hourly day record,
365 for daily year record)

24
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value
double
precision[] The value of the profile {1,1,......,1}

description str The description of the profile -

window

id int The index of each row 0

system str
The system where the
building physics information from TABULA

country str
Countries to which
building physics applies NL

window
id int

Link to the table building type
attributes ’ windowTypeId’ 0

window
name str The name of the window

Window
1,8

u value float
The attribute relates
to window material 1.8

g value float
The attribute relates
to construction material 0.6

glazing
number float

The attribute relates
to construction material 2

frame
ratio float

The attribute relates
to construction material 0.3

description str
The description of
the window material -

terrain
physics

id int The index of each row 0
composite
id int

The composite id linked
to table composite 999

name str The name of the terrain Clay soil
category str The thematic catrgory of the terrain groundsurface
short wave
reflectance float

The attribute relates
to terrain material 0.3

k factor float
The attribute relates
to terrain material 0.7

detailed
simulation str

The parameter relates to CitySim
simulation ture

thickness float
The attribute relates
to terrain material 3.82

conductivity float
The attribute relates
to terrain material 0.25

cp float
The attribute relates
to terrain material 890

density float
The attribute relates
to terrain material 1600

tree
physics

id int The index of each row 0
category str The typy of the tree Maple
leaf area
index float

The attribute relates
to tree physics parameter 3

leaf width float
The attribute relates
to tree physics parameter 0.1

leaf
distance float

The attribute relates
to tree physics parameter 1

deciuous str
The parameter relates to CitySim
simulation false

short wave
reflectance float

The attribute relates
to tree physics parameter 0.3
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Schema Table Attribute Type Description Example
long wave
emissivity float

The attribute relates
to tree physics parameter 0.95

heat cool
source

id int The index of each row 0

country str
Countries to which
heat or cool source applies NL

category str The heat source or the cool source HeatSource
beginday int The start day of heat or cooling in a year 258
endday int The end day of heat or cooling in a year 135
name str The name of the heat or cool source spaceX

pmax float
The attribute relates
to heat or cool source 100000

eta th float
The attribute relates
to heat or cool source 0.95

eta tech float
The attribute relates
to heat or cool source 0.3

ttarget float
The attribute relates
to heat or cool source 5

tsource str
The attribute relates
to heat or cool source air

description str
The description of
heat or cool source -

heat cool
tank

id int The index of each row 0

country str
Countries to which
heat or cool tank applies NL

category str The heat tank or cool tank HeatTank

v float
The attribute relates
to heat or cool tank 0.01

phi float
The attribute relates
to heat or cool tank 20

rho float
The attribute relates
to heat or cool tank 1000

cp float
The attribute relates
to heat or cool tank 4180

tmin float
The attribute relates
to heat or cool tank 20

tmax float
The attribute relates
to heat or cool tank 35

description str
The description of
heat or cool tank -

Table A.1.: The physics library data sheet in the database
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B. WEATHER LIBRARY DATA SHEET
IN THE DATABASE

Table B.1

Schema Table Attribute Type Description Example

weather

weather
location

city str
The city of where
the weather station
located

Twenthe
Enschede

AP

state province
region str

The state of where
the weather station
located

OV

country str
The country of where
the weather station
located

NL

wmocode int
The WMO station
number 62900

latitude float
The latitude of the
weather station 52.2731

longitude float
The longitude of the
weather station 6.8908

altitude float
The altitude of the
weather station 34.6

timezone str
The timezone of
where the weather
station located

1

weather
parameters

reference str

The city where
the weather station
located is used
as reference

Twenthe
Enschede

AP

country str
The country where
the weather station
located

NL

temporal
resolution str

The temporal
resolution of
the weather
parameters

hour

attribute str
The name of
weather parameters

Diffuse
Horizontal
Radiation

data type str
The data type of
weather parameters float
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Schema Table Attribute Type Description Example

length int

The length of the
weather parameters
data (the data are
stored in list, there
are 8760 hourly
values in one year)

8760

value
double
precision
[]

The value of the
weather parameters
data

{5,6,...,7}

uom str The units of measure Wh/m2

description str
The description of
each row weather
parameters

-

Table B.1.: The weather library data sheet in the database
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