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Extended Balancing of Continuous LTI Systems: a
Structure-preserving Approach

Pablo Borja™**, Member, IEFE, Jacquelien M.A. Scherpen™, Fellow, IEEFE, and Kenji Fujimoto™*, Mempber,
IEEE

Abstract—In this paper, we treat extended balancing
for continuous-time linear time-invariant systems. We
take a dissipativity perspective, thus resulting in a
characterization in terms of linear matrix inequalities.
This perspective is useful for determining a priori
error bounds. In addition, we address the problem of
structure-preserving model reduction of the subclass
of port-Hamiltonian systems. We establish sufficient
conditions to ensure that the reduced-order model
preserves a port-Hamiltonian structure. Moreover, we
show that the use of extended Gramians can be ex-
ploited to get a small error bound and, possibly, to
preserve a physical interpretation for the reduced-order
model. We illustrate the results with a large-scale me-
chanical system example. Furthermore, we show how to
interpret a reduced-order model of an electrical circuit
again as a lower-dimensional electrical circuit.

Keywords: port-Hamiltonian systems, model reduction,
extended Gramians, error bound.

I. INTRODUCTION

Balancing is a tool that is often used for model re-
duction purposes, giving rise to the balanced truncation
methodology. This approach relies on realization theory,
the observability and controllability Gramians, and it is
directly related to the concept of Hankel operator of a
system. Since its introduction in the seminal work of
Moore [17], balancing for stable linear systems has been
extensively studied, in particular, a thorough exposition of
this topic can be found in [1], while in [22] a brief tutorial
is presented, which provides the basis for extending the
results to nonlinear systems [10].

Balanced truncation, based on the use of standard ob-
servability and controllability Gramians, preserves some
relevant properties of the original system, e.g., asymptotic
stability, observability, and controllability. Furthermore, it
is possible to establish an error bound, which is given
in terms of the so-called Hankel singular values [11]
corresponding to the truncated states. Nevertheless, in
this standard formulation of balanced truncation, some
original system properties, like passivity or particular
structures, are not necessarily preserved. Another possible
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drawback of this approach occurs when the Hankel singu-
lar values are large, which originates a large error bound.
To overcome this issue, the use of the so-called generalized
Gramians for model reduction purposes was introduced
n [12]. The generalized observability and controllability
Gramians are solutions to the respective Lyapunov in-
equalities. This differs from the standard Gramians, which
are given by the solutions of Lyapunov equations. In
addition to stability, controllability, and observability, bal-
anced truncation using generalized Gramians can preserve
other properties, such as passivity, for the reduced-order
model. Moreover, since the solutions of the involved Lya-
punov inequalities are not unique, generalized Gramians
can be used to obtain smaller error bounds [8], and in
some cases, to preserve some particular structures for the
reduced-order model [4].

A further extension of balanced truncation can be for-
mulated by using the concept of extended Gramians,
which was introduced in [21] for discrete-time systems;
and a preliminary continuous-time counter part of these
results was recently reported in [23]. The discrete-time and
continuous-time methods are rather different, except from
the fact that the disspativity theory plays a fundamental
role in both to establish the error bound. In this approach,
referred to as extended balancing, the Gramians are so-
lutions to specific linear matrix inequalities (LMIs) and,
in contrast to other balancing methods, the error bound
is obtained by using dissipativity arguments [25] and not
through a transfer function approach. Furthermore, this
balancing method provides more degrees of freedom to
impose certain structure to the reduced-order model, and
can be potentially useful to improve the error bound.

In this work, we focus on the extended balanced trun-
cation of continuous-time linear time-invariant (CTLTI)
systems, where we are interested in the versatility of this
methodology to preserve specific structures. In particu-
lar, we are interested in CTLTI port-Hamiltonian (PH)
systems, which are suitable to represent a broad range of
physical systems in several domains, e.g., RLC circuits and
mechanical systems. These systems are passive, which is
convenient for control and analysis purposes. Moreover,
the interconnection of two or more PH systems yields
another PH system, which makes this modeling approach
ideal to deal with large networks of physical systems. Some
references where the problem of model reduction related to
balancing of PH systems has been studied are [19], for LTI
systems, and [9], [14] for the nonlinear case. With respect
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to those references, the novelty of this work lies in the use
of extended balanced truncation to obtain the reduced-
order model and, in contrast to the mentioned references,
to establish an error bound. Moreover, this approach
is fundamental to, under some conditions, preserve the
physical interpretation of the reduced-order model.

This work aims to obtain a reduced-order model that
approximates the behavior of the original system prop-
erly while preserving its PH structure. Towards this end,
we first study extended balanced truncation for CTLTI
systems, and then we focus on its application to CTLTI
PH systems for structure preservation purposes. The main
contributions of this paper are given as follows:

o We recall the results from [23], and provide novel
proofs for the error bound computation which turn
out to be rather different than in the discrete-time
case [21].

o We identify a family of generalized Gramians that are
suitable for balanced truncation of CTLTI PH sys-
tems with PH structure preservation. To the best of
our knowledge, the characterization of these solutions
to the Lyapunov inequalities is new.

e The use of extended balancing for PH structure
preservation and as a tool to obtain a reduced-order
system that approximates the original one with a
small error bound. Moreover, we show with an il-
lustrative example that this approach can be used
to preserve more particular structures, like RLC cir-
cuits structure, and a physical interpretation for the
reduced-order model.

The remainder of the paper is organized in the following
manner: we provide the basic background in Section II,
while the fundamental notion of extended Gramians and
the computation of the error bound are presented in
Section III. In Section IV, we introduce the generalized
and extended balancing of PH systems with structure
preservation. We present two illustrative examples in Sec-
tion V, where the use of extended Gramians in the second
example allows us to preserve an even more particular
structure than the PH one, that is, the reduced-order
system is physically interpretable as an RLC circuit again.
Finally, in Section VI we wrap-up this work with some
concluding remarks.

Notation: We assume that all the matrices have exclu-
sively real entries. The matrix A € R™ "™ is said to be
positive semi-definite if it is symmetric, and the inequality
2T Az > 0 holds for all z € R™ holds. Similarly, A is
said to be a positive definite matrix if it is symmetric
and " Az > 0 holds for all z € R™\{0}. The identity
matrix is denoted as I, when necessary a subscript is added
to indicate the dimension of the matrix. The symbol 0
denotes a matrix or vector whose entries are zeros. The set
of positive real numbers is expressed as R, while, the set
of nonnegative real numbers is denoted by R>(. Diagonal
matrices are denoted as diag{as,...a,}, where ay,...a,
are the elements of the main diagonal of the matrix. Ad-

2

ditionally, the symbol A is reserved for diagonal matrices
with positive entries, that is, the square matrix A € R**"
is given by A = diag{oi,...,0,}, where o; € R,
for ¢ = 1,...n. Block diagonal matrices are denoted as
block{Ai,..., A,}, where Ay, ..., A, are square matrices.
The symbol U is reserved to orthogonal matrices, that is,
UUT = I. Consider the vector z € R™, then ||z|| denotes
the Euclidean norm of z, that is, ||z|| = V& Txz. Consider
a signal e(t) € LY, then [le||2 denofes the L5 norm of e(t),

e’} 2
given by, |le]|2 = (/ ||€(t)||2dt) ‘
0

II. PRELIMINARIES

Consider a continuous-time linear time-invariant (CTLTI)
system described as

j’;:
E:{
y:

where x € R" is the state vector, for m < n, u € R™ is the
input vector and y € R? denotes the output vector. Ac-
cordingly, A € R"*" B € R™™™ and C € R?*". Assume
that the system (1) is asymptotically stable, thus, the so-
called generalized observability Gramians Q@ € R™ ™ are
positive semi-definite solutions to the following Lyapunov
inequality

Ax + Bu

C, (1)

QA+ATQ+CTC <. (2)

Analogously, the generalized controllability Gramians Pe
R™ ™ are given by positive semi-definite solutions to

AP+ PAT + BBT <. (3)

In particular, when (2) and (3) are equalities, the matrices
Q and P are known as the standard observability and
controllability Gramian, respectively. For further details,
we refer the reader to [1].

A. Generalized balanced truncation for LTI

A CTLTT system is said to be generalized balanced if
Q=P =Agp, (4)

where Agp > 0 is a diagonal matrix, see the Notation
section. Accordingly, balancing for LTI systems, [17], relies
on obtaining an invertible state transformation

=W,z (5)
such that
W, ' PQW, = Adp, (6)

where we assume that the elements of Agp =
diag{oi,...,o0n} are ordered from largest to smallest, that
is, 0y > 041, for i = 1,...,n — 1. Model reduction based
on balancing is carried out by truncating the states corre-
sponding to the small elements of Agp, i.e., if 0y >> 0441,
then we set

Tig1 ==y =0.
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The error bound is given by the sum of the truncated
singular values [11], i.e.,

n
18- Zle<2 ) oy (7)
j=it1

where % corresponds to_the realization of the reduced-
order system, and ||~ — X[|o denotes the H -norm of the
error system.

For a more elaborated exposition of balancing and the
corresponding reduced-order model properties, we refer
the reader to [26]. At this point, we highlight that the error
bound obtained through generalized balanced truncation
is lower than the one obtained with the use of standard
Gramians, for further details see [12].

III. EXTENDED BALANCED TRUNCATION

The generalized balanced truncation approach can be
extended by considering the so-called extended Gramians
instead of the generalized ones. This extension has two
main advantages: on the one hand, the error bound can
be reduced as has been shown in [20] for the discrete-time
case. On the other hand, the use of extended Gramians
provides extra degrees of freedom which can be exploited
to impose a certain structure on the reduced-order system.
In this section we revisit and significantly improve
the concept of extended balanced truncation for the
continuous-time case, which was first introduced in [23].
Towards this end, we introduce the following assumption
which is necessary to establish the concept of extended
Gramians.

Assumption 1. The solutions, @, 15, to the inequalities
(2) and (3) are positive definite.
We stress the fact that if the system (1) is controllable and
observable, then Assumption 1 holds. Nonetheless, this
latter condition is sufficient but not necessary, thus, might
be conservative. Moreover, if Assumption 1 is satisfied,
then we can define

P:=pP 1t (8)

Note that P is a positive definite matrix.

To ease the readability and simplify the notation of this
section, we define the following matrices

A, = al,+ A,

Ae = BIL+ A

X, = —-QA-ATQ-CTC, (9)
X, == —-PA—ATP—_PBBTP,

where P is defined in (8), @ > 0, and § > 0. Note that,
from (2) and (3), X, >0, X. > 0.

The definition of extended Gramians is the starting point
of the theory contained in the following sections of this
paper. These concepts were introduced for CTLTT systems
without proofs in [23]. Below we present the, slightly
altered, results and their corresponding proof.

3

Ezxtended Gramians. Consider the following two LMIs.

X, Q-AlS

0-5TA, >0 (10)

S+S5T |~
and
—-PA-A"P —-P+AlT -2PB
—P+TTA, T+TT 2TT'B| >0
—2BTP 2BTT 41,
with A,, X,, and A, defined as in (9), and T, S € R"*",
We call (10) and (11) the extended observability and
controllability LMIs with extended observability Gramian

(Q,S,a) and extended inverse controllability Gramian
(P, T, 3), respectively.

(11)

Now we are in position to formulate the relation between
the generalized observability Gramian and the extended
observability Gramian.

Theorem 1. (observability Gramians)

The inequality (2) has a solution @ > 0 if and only if the
LMI (10) admits a solution (Q,S,«) with Q@ > 0, (S +
ST) >0, and « large enough. Moreover, if X,, defined in
(9), is positive definite, then there exist « and S = ST > 0
such that the LMI (10) holds.

Proof. Only if. Assume that (10) has a solution (Q, S, @),
then multiplying (10) by [I, 0] from the left and by
[I,, 0] from the right, it follows that (2) admits a solution
Q> 0.

If. Assume there exists @ > 0 solving (2). Select S =
A>TQ, with —a not an eigenvalue of A. Then, the off-
diagonal blocks of (10) are zero. Furthermore,

S+ST=ATQ+ QA"
Accordingly, we have the following equivalence
0<5+8T =

0<AI(S+SNHA, = AJQ+QA,
= QQQ—CTC_Xm

(12)

Note that, since X, does not depend on «, the inequality
(12) holds for « large enough. Hence, there exist @ > 0
and a > 0 such that the LMI (10) holds.
Symmetric S. Assume that @ > 0 and X, > 0. Consider
a symmetric matrix I', € R™*" verifying

a@ +T4>0. (13)

Select
S=Q(aQ+T,) Q. (14)
Hence, S = ST > 0. Now, multiply (10) by

block{l,,QS~ '} from the left and by block{I,,S~'Q}
from the right, yielding

l X, QSTQ-AlQ
—1 _ —1
QST'Q - QA 2Q057°Q (15)
X, r,—ATQ
- {FO —QA 2(aQ+ ro)} 2 0.
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Furthermore, the LMI (15) is equivalent through Schur
complement to

20Q + 2T, — 0, > 0, (16)

with
0, =T, —QAX; YT, —ATQ).

Note that there exists «, large enough, such that (16) is
satisfied. This completes the proof. |

The results on generalized and extended observability
Gramians have a controllability version as follows.

Theorem 2. (controllability Gramians)

The inequality (3) has a solution P>0 if and only if the
LMTI (11) has a solution (P, T, ) with P > 0. Furthermore,
if X¢, defined in (9), is positive definite, then there exist
B>0andT =T" >0 such that the LMI (11) holds.

Proof. To simplify the notation, we define
Y,:=—-P+ (A + PBB")T.

Note that a Schur complement analysis yields that (11) is
equivalent to the following LMI

X Y.

Y., T+T"-T"BB'T
Only if. Assume that (11) admits a solution (P, T, 8) with
P > 0, thus equivalently, (17) is satisfied. Multiplying the

latter LMI by [I,, 0] from the left and by [I,, 0]" from
the right, it follows that

> 0. (17)

Xe =
e _PA-ATP-PBBTP > 0,
< AP+ PAT + BBT < 0,
where we used (8) to obtain the last inequality.
If. Assume there exists P > 0 solution to (3). Fix! T =
P(BI, — A)~!, with P defined in (8), then we get

Y. = —-P+ (Al +PBBT)P(BI, — A)~*
—P+(BP — PA - X.)(BI, — A)~*
—X.(BI, — A)~1

= —X.PT,

and

T+TT —TTBB'T = T (I"'+7-T —BBT)T
TTP(26P + X,) PT.
Hence, the LMI (17) takes the form

X -X_PT
- y ¢ . | >o0. 18
TTPX, TT"P(2BP+ X.)PT| — (18)

Now, we multiply (18) by block{[,, PT~ T} from the left,
and by block{[l,,T~'P} from the right, yielding

1Since 8 > 0 and R{A(A)} < 0, B is not an eigenvalue of A.

4

X, —-X. 0 o0
{—XC X, } + {0 254 =0
which holds for every 5 > 0.
Symmetric T. Assume that P > 0 and X, > 0. Consider
a symmetric matrix I'. € R™*™ verifying

BP+T.>0. (19)

Select .

T= (5}5 + FC) . (20)
Hence, T = T'T > 0. Multiply (17) by block{l,, T~ "}
from the left and by block{I,, 7'} from the right, and
substitute (20) to obtain

X,

—PI'.+ A" + PBBT 0
-T'.P+A+BB'P =

2(8P +T.)— BB"

which is equivalent to
28P+2I,—BB' —©,>0
where
©.:=(-I'.P+A+BB'"P)X_'(~PT.+ A" + PBB").

Since ©. does not depend on 3, it follows that the LMI
(21), and in consequence the LMI (11), holds for 5 > 0
large enough. Accordingly, there exists 5 > 0 such that
(19) and (21) are satisfied. This completes the proof. W

Remark 1. For clarity of presentation, we assume that
X, >0, X. >0 to prove the existence of symmetric solu-
tions to (10) and (11), respectively. While these conditions
are not restrictive, they can be relaxed to X, >0, X. >0
by using generalized inverses. This however mneeds the
introduction of the following conditions

(I, — X, X))(T,—ATQ) = 0

22
(I, — X.X1)(=PT,+ AT + PBBT) = o0, (22)

where X}, X1 denote generalized inverses of X, and
X, respectively. Note that both expressions in (22) are
satisfied if X, > 0, X. > 0.

Remark 2. If X, > 0, X, > 0, then the inequalities (2)
and (3) can be expressed as Lyapunov equations. Moreover,
since the system (1) is asymptotically stable, A is Hurwitz.
This implies that the mentioned Lyapunov equations have
positive definite solutions @ and P. Accordingly, in this
case, Assumption 1 is satisfied.

Remark 3. The symmetric matrices ', and I provide de-
grees of freedom in the selection of the extended Gramians.
These degrees of freedom can be used to improve the error
bound in case the Gramians are used for model reduction,
see Section III-A, or to impose a desired structure to the
reduced-order model as is illustrated in Section V.

For the model reduction application, we assume that the
matrices S and T are symmetric. From Theorems 1 and 2,
it is clear that this assumption is not necessary to ensure
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the existence of solutions to (10) and (11), but we need it
for obtaining an error bound in Section III-A.

In the extended balancing approach, we balance S and
T~! to establish the error bound. Consequently, a CTLTI
system is said to be extended balanced if

S=T""1=Agr, (23)

where Agr is a diagonal matrix, see the Notation section.
Hence, we look for an invertible state transformation
T=W 1z

e

(24)

such that

WA= ESW, = A%y (25)

Similar to Section II-A, we assume that the elements
of the diagonal matrix Agy are ordered from largest to
smallest. Hence, the order of the CTLTI system is reduced
by truncating the states that correspond to the smallest
elements of the aforementioned matrix.

The discrete-time version of the LMIs (10) and (11) can
be found in [5] and [6]. While, a thorough exposition
of extended balanced truncation for discrete-time linear
time-invariant (DTLTI) systems is given in [20] and [21].

A. Computation of the error bound

One of the appealing features of the balanced truncation
approach is the possibility of establishing a clear error
bound. For the generalized balanced truncation case, the
inequality (7) establishes the error bound, which is cus-
tomarily obtained through the analysis in the frequency
domain of the original system and the reduced-order one
[11], [26]. An alternative methodology to establish the
error bound is to propose a storage function for the error
system and use dissipativity arguments. Some references
that have investigated this method are [15], [16], [20], [21]
for discrete-time systems and [25], [23] for continuous-time
systems. In this subsection, we propose a storage function,
different from the one used in [23], to compute the error
bound for the extended balancing of CTLTI systems. To
this end, we assume that the linear transformation W,
such that (25) holds, is known. Then, we introduce the
following state-space systems

_ v = Az +B

R {”f i (26)
y = Cz,
i, = Ax,+DB t

5 {x Az + Bu+ v(t) (27)
Yr = Cl’r,

where z is defined as in (24), v(t) € R™ is an external
signal, x, € R™ is an auxiliary state, and

A=W AW, B:=W; 'B, C:=CW,.. (28)
Now, we split & into two parts, namely,
|
7= H , (29)

5

where Z; € R” is the part of the state to be preserved after
the reduction of the model and z, € RY, with £ :=n—k, is
the part to be truncated. Accordingly, the matrices given
in (28) can be expressed as follows

A- Ei ﬁ;z]  B- [gj L =[G G,
with
Ay € REXE AL, e RFXE A, e ROK A,y € RO
By e RF*m By, e RE*™ Oy e Rk Oy € RI¥L

Thus, the truncation of the state Zo leads to the following
reduced-order model

E:{

i':i'l, A\Z: Alla E:Z Bl, 621 C’l.

gfc—i-gu

30
Cz, (30)

<>

where

Now, inspired by the ideas presented in [25], and by the
approach adopted in [20], [21] for discrete-time, and in [23]
for continuous-time, we propose a storage function that is
instrumental to establish the error bound. Towards this
end, we first introduce the following definitions to simplify
the notation of this section:

Q:=W]QW., P:=W[PW,, (31)

20 =T — Ty, Ze ' =T+ Tp.

where P is defined as in (8). The proposition below
introduces a storage function suitable to establish an
error bound by using dissipativity arguments and the
LMIs (10) and (11).

Proposition 1. Consider the systems X, X, X, given
in (1), (26), and (27), respectively. Assume that the triplet
(Q, S, «) solves the LMI (10) and the triplet (P, T, 8) solves
the LMI (11). Consider the storage function

S(20, 2¢) = 2J Q2o + 022 Pz (32)

where o, is the n'" element in the main diagonal of Agr,
and zo, z. are defined in (31). Then,

S < do|lull® = lly — vl
+2 [0721 (Bze + ZC)T Ag% — (azo + ZO)T AST} v
(33)

Proof. Note that
S =22] Q3, +20%2] Pz.. (34)
Define the vectors

E . WeZo E . WGZC
o Wev I c

Wev
U
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Multiply the LMI (10) by &/ from the left and by &, from
the right, yielding

2" —zJ (al, + AT)] Asrv
+z) (WS XoWez, 4+ 2Qu] >0
= —2(2, + az,) " Agyv
+zg (W XoWezo +2Qu] >0
— —2(%, + azO)TASTv — z;—C_’TC'zO
—|—2on@ [v - Azo} >0
= =22, + azo) "Asrv = [ly =y, ||* — 220 Q2, > 0

(35)
where we used the facts
720 = flzo —v
Czo = Y—yr.
Note that (35) implies that
22, Q% < —2(%0 + azo) ' Asrv — [y —ye>. (36)

Now, multiply the LMI (11) by &I from the left and by &,
from the right to obtain

—2z] P [Azc + 2Bu + v] + 4/|ulf?
+2 (2] (BL, + AT)+ 0" +2u" BT Agrv >0
— —22] (Az. +2Bu+v) + 4|ul?
+2 (2 + B2e) | Aghv >0
= 4)|ull? +2 (Ze + Bz) | Agiv > 22T P,

(37)

where we used that
2. = Az, + 2Bu + v.

The proof is completed by substituting (36) and (37) in
(34) to obtain (33). ]

In order to establish the error bound, we propose a
particular selection of the signal v(¢) that allows us to
compare the behavior of systems (26) and (27).

Lemma 1. Consider { = 1. Assume that systems (27)
and (30) are initially at rest. Consider the partition x, =

[x) 2.7, with ., € R""! and x,, € R. Choose

0

O = g (8) = v (8) — Bou(t)|

(38)
with A, € R such that Ayy + A, # 0. Then, §(t) = y.(t),
and x,,(t) = 0 for every t > 0.

Proof. To establish the proof replace (38) in (27) to obtain

All'rﬁ =+ Algxm + Blu
(A22 + Av) m’l‘z

Ty, =
Ty

(39)

Since z,(0) = 0, from (39) we have the following chain of
implications
By, =0V t>0 = a,()=0VY t>0

DR TEET )
= Ty, = Alll'rl + Biu.

6

Since #(0) = 0, the last expression of (40) implies that
Z(t) = xp, (t) for all t > 0. Hence,

Yp = C’lxrl =03 = Y.
[ |

Using the results of Proposition 1 and Lemma 1, the
following Lemma establishes an error bound for the case
¢ =1, that is, when only one state is truncated.

Lemma 2. Consider the balanced system (26) with ex-
tended observability Gramian (Q, Agst, ), and inverse ex-
tended controllability Gramian (P, Ag%, ), where a = 8
and £ = 1. Assume that systems (50), (30) and (27) are
initially at rest and select v as in (38). Then,

12 = 2o < 20,.
Proof. Define
vy = AyZy, — f_lglxrl — Bou.

Hence, we can rewrite (38) as follows

12

On the other hand, from Lemma 1 we have that

L[ .
’l"_07 yT_y'

Therefore, since a = 3, we get

= Un(O[(EQ +i’2)’l}2

T A—
= 02 (Bze+2:) Agpv.

(azo + 2O)T Astv (41)

Now, consider the storage function S(z,, z.), given in (32).
Then, substituting (41) in (33), its derivative along the
trajectories reduces to

S <dopful® ~lly - 911%, (42)

where we used (41). Moreover, integrating (42) from 0 to
00, yields
0 < dopllull — lly — g1I3
which implies
ly — 4l

< 20,.
l[ull2

(43)

We recall, see [1], that the Hoo-norm of the error system

satisfies the following relationship

ly — 9l
full2

for uw € L, |lull2 # 0. Therefore, from (43) and (44), we

get

|2 = Zloc = sup (44)

”E - 2”00 < 204,

which completes the proof.
|

Now, we are in the position to present the main result of
this paper in terms of the error bound for model reduction
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of CTLTT systems based on extended balanced truncation. Since g%z‘ < 1, the inequality (46) is satisfied. |

Theorem 3. Consider the balanced system (26) with Remark 4. If the matrices 'y and T'c 1‘”“‘3 chosen as fem
extended observability Gramian (Q,AsT, ), and inverse ¥ (14), (%O), and o = f, then S = 5Q and T = _P.

extended controllability Gramian (P,Ag%,ﬁ), where o = 3 Hence, QP = ST, and Agp = Asr. Accordingly, the
and error bound obtained via extended balancing coincides with

Agp = diag{oy,...,0n}. the error bound obtained from the generalized balancing

approach. Moreover, the reduced-order model obtained from
Consider the truncated k" order system (30). Then, the  both methods is the same.

error bound is given by the following inequality

n
15— S <2 Z o (45) IV. BavancIiNG oF CTLTI PH SYSTEMS
j=k+1 The PH framework has been proven suitable to capture
physical phenomena in different domains while preserving
conservation laws [7], [24]. In this framework, it is possi-
ble to represent large-scale networks of complex physical

Similar to the discrete-time results reported in [20] and systems and7. at the same time, underscore the ro.les. of Fhe
[21], the error bound (45) is obtained by proposing a €Dergy; the interconnection pattern, and the dissipation
storage function and using dissipativity arguments, as in i the behavior of such systems. Moreover, the passivity

[25]. This procedure contrasts to the traditional analysis Property of these systems can be straightforwardly proven
using transfer functions. by selecting the Hamiltonian function as the storage

function. Thus, given the possible physical interpretation
of the PH models and their geometrical properties, this
framework is appealing from both points of view: the
theoretical and the practical one. Therefore, preserving the
PH structure for the reduced-order model is interesting
for analysis purposes and might be useful to give an
interpretation of the behavior of the reduced-order system.
This section addresses the model reduction problem of
CTLTI PH systems while preserving the PH structure
for the reduced-order system. Furthermore, in some cases,
more particular structures than the PH one are preserved,
endowing the reduced-order model with a more specific
physical interpretation.

Proof. To establish the proof apply iteratively Lemma 2.
|

Note that the extended Gramians depend on the gener-
alized ones and the parameters «, 3, and the symmetric
matrices T', and T'. verifying (13) and (19), respectively.
The following proposition establishes that for any given
generalized Gramians an appropriate selection of I', and
I'. ensures that the error bound obtained via extended
balanced truncation is smaller that the one obtained via
generalized balanced truncation.

Proposition 2. Given the generalized observability and
controllability Gramians @Q, 15, there exist matrices T, S,
and constants o, B such that extended balanced truncation
guarantees a smaller error bound for the reduced-order
system than generalized balanced truncation.

Proof. The error bound associated with generalized bal-
anced truncation is determined by the diagonal matrix
Agp, verifying (4). Similarly, the error bound associated  The representation of a CTLTI PH system is given by
with extended balanced truncation depends on the diago-
nal matrix Agr, which satisfies (23). Hence, the resulting

A. CTLTI PH systems

= (J—R)Hz + Bu

error bound from the extended balanced truncation ap- X y = B'Hzx (49)
proach is smaller if H(z) = L12"Hz
AsT < Agp. (46) where x € R™ is the state vector, u,y € R™ are the

input and output vectors, respectively, H(z) represents
the Hamiltonian of the system, with H = H' > 0; and
R=R" >0, J=—J" represent the dissipation and the
interconnection matrix, respectively. In order to simplify

To prove that the degrees of freedom in extended balancing
can be chosen such that (46) holds, select S and T as in
(14) and (20), respectively. Consider o = 3, and fix

T, =e,Q, I, = —¢e.P, (47) notation, we define F' :=J — R.
with 0 < &, and 0 < e, < a. Therefore, from (14) and The objective of this work is twofold: on the one hand,
(20), we get that we aim to balance system (49) and obtain a lower order
model. On the other hand, we want the reduced model to
Tl = @~ & 15@ have a PH structure because of the interpretation and the
a+é interconnection properties of this kind of systems. Towards
Accordingly, the linear transformation W, such that (6) this end, we assume that system (49) is asymptotically
holds also satisfies stable and we look for an invertible linear transformation
o —¢ W that balances the system. Such transformation is given
nglTilng = ﬁEZAZQP = A%T' (48) by W = W, in the generalized case, while in the extended
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case we have W = W,. Then, we write the dynamics of
the balanced system as follows

where

= BTHz,
F:=W-lFW-T,

<8I

H:=W'"HW, B:=W'B.

Hence, if we split z as in (29), the balanced system can be
expressed as

fTCl _ 1?11 }?12 I?u f:Iu Z1 n 3;1 u
- Z Fyy Fa| |H|, Ha| |Z2 By
e Hy o [z
- _ a7 7] [Hu Hiz| |71
v = Bl B [HE H22} L’J ’
(50)
with
Fii, Hyp € RE¥F D Foy Hop € RO iy, Hyp € RFXE
Bl S kam, Fgl c RZX]C, BQ S Rme.

Problem formulation for PH systems. Given the
system (49), find an invertible linear transformation W,
that performs the balancing of the system and at the same
time satisfies

Hyy = 0. (51)

Note that, if (51) holds, the truncation leads to the
following reduced-order system

.’1% an_lufc—i—élu
EH . :IQ = B;—HHJA? (52)
H(2) 12T H 2,
which is another CTLTI PH system, with & = z;.

Therefore, it follows that one solution to the problem of
model reduction with PH structure preservation takes
place when the Hamiltonian matrix of the balanced
system, H, is diagonal. In such case, our problem is
reduced to the simultaneous diagonalization of three
matrices, namely, (Q, P,H) or (S,T, H).

Remark 5. The complete diagonalization of H is not
necessary. In fact, a block diagonalization that ensures
(51) is enough to preserve the PH structure. Nevertheless,
if H is not a diagonal matrix, then it is necessary to know
the dimension of the part of the state to be truncated.

The subsequent sections of this paper are devoted to the
identification of a transformation W that balances the
system and ensures that (51) is satisfied.

B. Generalized balancing of CTLTI PH systems

In this subsection, we study the generalized balancing
method for CTLTI PH systems which is the starting point
of extended balancing of CTLTI PH studied in Section
IV-C. Below, we provide sufficient conditions to ensure

8

the existence of a transformation W, that complies with
the requirements established in Section IV-A. To this
end, we revisit the following theorem which establishes
necessary and sufficient conditions for the existence of
a transformation that diagonalizes simultaneously three
matrices when at least one of them has definite sign.

Theorem 4 ([18]). Let L, M, N be symmetric matrices.
In the case of at least one fixed-sign quadratic form (e.qg.,
M positive definite), the condition

LM™*N=NM"'L (53)

is necessary and sufficient for the existence of a linear
invertible congruent transformation W that diagonalizes
simultaneously L, M and N.

For the proof and further details about Theorem 4, we
refer the reader to [18] and [3]. For a thorough exposition
on simultaneously diagonalizable matrices, we refer the
reader to [13], Chapter 4.

In generalized balancing of CTLTI PH systems, the con-
dition (53) takes the form

HP™'Q = QP 'H. (54)

Accordingly, we look for Q and P verifying (2) and (3),
respectively, such that (54) holds. A trivial solution to
this problem takes place when @ or P coincides with
the (scaled) Hamiltonian matrix H or its inverse. This
idea has been studied in [9] and [14], among other works;
and for the sake of completeness, the proposition below
identifies a class of CTLTI PH systems for which the
(scaled) Hamiltonian matrix, or its inverse, solves the
inequalities (2) and (3).

Proposition 3. Consider § € R. Assume that the sys-
tem (49) is asymptotically stable. If the following condition
holds

20R — BB > 0. (55)
Then Q = 0H solves (2) and P = §H! is a solution to
(3)-
Proof. To establish the proof note that for CTLTI PH
systems (2) and (3) take the form

QFH+HF'Q+HBB'H

<
FHP+ PHF'" + BB <

0
0, (57)

respectively. Hence, substituting @ = 0H in (56), we

obtain
0 > SHFH+0HF'H+HBB'H
— H(BBT —20R)H
<~ 0 < 2R—BBT.

On the other hand, replacing P = §H ! in (57), we have

0 > 6F+0FT +BBT
= —20R+ BBT
<0 < 2R-BBT.
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Condition (55) is satisfied by systems that have
dissipation in all the input channels, e.g., fully damped
mechanical systems. Nonetheless, R and B are system
parameters, thus, it might happen that condition (55) is
not satisfied by the system (49). In order to overcome
this issue, below we state two propositions to identify
generalized Gramians such that the triplet (Q,Ig’, H)
verifies (54) and solves the Lyapunov inequalities (56)
and (57). These propositions represent the main result
of this paper in terms of generalized balancing with PH
structure preservation

Proposition 4. Let P be a solution to (57). Consider a
full rank matriz ¢p € R™*™ verifying the following

P =
opHop =
where Uy p is an orthogonal matriz, and Ay p is a diagonal

matriz whose entries are the singular values of ppHo},, see
the notation at the end of Section I. Define the matrices

Spop

UnpAuprUpp,

.7:0 = UI;FP¢;TF¢I_31UHP (58)
B. := Ugpdp B.
Assume that
—AypAypFe — FI A A p — BB >0 (59)

holds for a diagonal matriz Agp. Hence, (56) is solved by

Q=0p'UnpAgpUspdp (60)
Moreover, the transformation
Woe = 0pUnpAgp (61)

balances the system and diagonalizes H .
Proof. To establish the proof we define
- TA— T
XO = 7A2QPAH1P‘FC - ‘FC AHlP.AzQP - BCBC .

Note that, if (59) holds, we have the following chain of
implications

X, > 0
= ¢p' UnpAupXoAupUfpdp’ > 0
< -QFH-HF'Q-HBB'H > 0
<= QFH+HF'Q+HBB'TH < 0
where we used (58) and (60). Moreover,
W, QWye = Agp
W lPW.." = Agp
WgTCHWgc = AE;}:AHP.
This completes the proof. |
The following proposition is the dual version of

Proposition 4 and relaxes condition (55), in this case, for
a given generalized observability Gramian Q.

9

Proposition 5. Let Q be a solution to (56). Consider a
full rank matriz g € R™*™ wverifying the following

Q = 90,0
b5 Hog' = UngAuoUje-
Define the matrices
Fo = U FolU
ZQQSQ ¢Q HQ (62)
B, = Ugqg9eB.
Assume that
—FolhugAyp — AypAuF, —B.B) >0 (63)

holds for a diagonal matriz Agp. Hence, (57) is solved by

P =¢5'UnoAypUfiods - (64)
Moreover, the transformation
1
qu = (b(_glUHQA(QgP (65)

balances the system and diagonalizes H .

Proof. Define
XC = 7]:0AHQA22P - A2QPAHQ]:;|— - BOB;F.
Therefore, if (63) is satisfied, we have

X,

= 05" Un@XUfgog

= —FHP - PHFT — BBT
< FHP + PHF" + BBT

INIV IV IV
oo o o

b

where we used (62) and (64). To complete the proof, note
that

W;)ngo = AQP
W PW,,T = Age
WLHW, = Aohop.

In Propositions 4 and 5, the condition (55) is relaxed by
imposing a particular structure to the generalized observ-
ability and controllability Gramians, respectively. Such
structure depends on the Hamiltonian matrix, however, it
is less restrictive than (55). Indeed, if this latter condition
is satisfied, then (59) and (63) hold.

Using the results presented in this section, below we
study extended balancing of CTLTI PH systems. As was
mentioned in Section III, the use of extended Gramians
can be advantageous for different purposes, for instance, to
obtain a lower error bound or to impose a more particular
structure to the reduced-order model.
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C. Extended balancing of CTLTI PH systems

Similar to the generalized balancing case, in this section
we provide sufficient conditions for the existence of a
linear transformation W, that balances the system and
diagonalizes the Hamiltonian matrix. Towards this end,
below we introduce two propositions that provide a
suitable transformation W,. Such propositions constitute
the main result of this work regarding extended balancing
with PH structure preservation.

Proposition 6. Let P be a solution to (57) such that X, >
0. Select 8 and T'. such that (19) holds and T, defined
n (20), solves the LMI (11). Consider a full rank matriz
o € R™™ werifying the following

T-' = ¢1¢r
¢rHor = UprAprUpgp.
Define the matrices
fec U;T¢;TF¢;1UHT (66)
Bee = Uppér B.
Assume that
— Ay A Fec — FoehippAyr — BecBl, > 0 (67)

holds for a diagonal matriz Agr. Then, (56) is solved by

Q = &7 UnrAprUpror - (68)
Select o such that the matriz
1
5= a+e @ (69)

with €, > 0, solves the LMI (10). Then, the invertible
transformation

_1
Wee = Va+ e.prUnrAos (70)
balances the system and diagonalizes H.
Proof. Define
Keo 1= —ANGrAippFec — FoeNipr Ay — BecBl,.
Then, the inequality (67) is satisfied if and only if
Xeo > 0
o7 UnrAprXeoAgrUfrdr > 0
— X, > 0
— QFH+HFTQ+HBB'H < 0
<= QFH+HF'Q+HBB'H < 0,
where we used
A=FH. (71)

Select T', as in (47), with 0 < &,. Hence, for a large enough,
the selection of S given in (69) solves the LMI (10).
To establish the last part of the proof define

1
Agp = ———A
ST~ Jate, o

10
note that
W AT 1SW.e = Aip
WJHW,. = AHTAg%.
|
The following proposition is the dual version of

Proposition 6.

Proposition 7. Let Q) be a solution to (56) such that X, >
0. Select « and T, such that (13) holds and S, defined
n (14), solves the LMI (10). Consider a full rank matriz
os € R™ ™ yerifying the following

S = ¢5¢s
o5 Hos' = UnsAusUjs.
Define the matrices
]:eo U;S¢SF¢gUHS (72)
Beo = UfgpsB.
Assume
~FeohmsAip — A2 pApsF., — BoBL, >0 (73)

holds for a diagonal matriz Agp. Thus, (57) is solved by

P =¢5'UnsAspUssts - (74)
Select B such that the matriz
T =(B-c) P, (75)
with 0 < e, < B, solves the LMI (11). Then,
Weo = /B — 205 Unshy (76)

balances the system and diagonalizes H.
Proof. Define
Xeo = —FeohmsAip — NipApsF,, — BeoBl,.

Hence, if (73) holds, we have the following chain of impli-
cations

Xeo > 0
= 05 UnsXeoUfrsds' > 0
— —-FHP - PHF' —BBT > 0.
Moreover,
—~FHP - PHFT —BBT >0
. { FHP+PHFT + BBT <0
X. >0,
where we used (71). Select T'c as in (47), with 0 < e, < a.

Accordingly, for S large enough, the selection of T' given
in (75) solves the LMI (11).

To establish the last part of the proof, define

Ast := /B —ecAsp.
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Note that To illustrate the results of Section IV, we obtain PH
WoIT-1SW,., = A2, reduced-order models via generalized balanced truncation
and extended balanced truncation. Then, we compare the
results obtained from both techniques. For the generalized

B balancing case, we proceed as follows:

W;HWGO = ApsAsr.

o We consider a positive definite matrix X,. Then, using

We remark that I', and I'; are degrees of freedom in the ]
MATLAB, we solve the Lyapunov equation

selection of S and T, respectively. These matrices can be
selected in order to improve the error bound or preserve FHP+PHFT +BBT + X, =0

more particular structures as is illustrated in Section V. .
to obtain the generalized controllability Gramian P.

o We solve the LMI (59). Then, we propose @ and Wy,
as in Proposition 4.
o We use Wy, defined in (61), to balance the system.
FHP+PHF" +BB" <0. For the extended balancing, we follow the algorithm pro-
S2 Consider A = FH. Propose a symmetric matrix T, vided at thve end of Section IV. To this end, we consider
and a constant 3 > 0 such that T, defined as in (20), the same P as in the generalized balancing method. To
solves the LMI (11). address S2, we propose 5 > 0 such that the LMI (11) is

. 1 . _ = .
S3 If the inequality (55) holds, select Q = 6,H and § = Satisfied by T'= 5P. Then, we consider I'c = —. P, with

The following algorithm summarizes the extended balanc-
ing method for PH systems with structure preservation.

S1 Find a positive definite matrix P such that

7044}50 Q, with é,,e, > 0. Otherwise, use the result of 0 <ec < f, such that the LMI (11) is satisfied by
Proposition 6. T 1 p
S4 Check if the proposed S solves the LMI (10), with T B—e.

=g If 2 1 .
o = . lf not, return to §2 and propose a larger /5 For S3, we look for a diagonal solution to (67) and we

Fi he 1i 3 i such th 2
85 Find the linear transformation W, such that (25) propose ) as in (68). Then, we select S as in (69). The
holds. . . .
rest of the algorithm is straightforward, where we use We.,
Note that a similar algorithm starting for the proposition Jefined in (70), to balance the system.

of @ can be straightforwardly obtained. For illustration purposes, we consider that the masses

vary between 0.4[kg] and 0.6]kg], spring constants between
V. EXAMPLES 0.9[kg/s?] and 1.1[kg/s%], and damping coefficients be-

In this section we present two examples to illustrate the —tween 1.8[kg/s] and 2.2[kg/ SL We select a matrix X, that
applicability of the results reported in previous sections. guarantees a small trace of P without causing numerical
Both examples represent physical systems. The first one €rrors for the LMI solver of MATLAB. Here, we omit
is a larger scale mass-spring-damper mechanical system the matrices involved in the balancing processes due to
where we preserve the PH structure. While, the second their large dimension. The data of this example can be
example represents a smaller scale RLC circuit network found in [2]. Fig. 2 shows the singular values obtained from

where we illustrate how to preserve the RLC structure in both balancing techniques, where it is evident that the
addition to the PH one. singular values corresponding to extended balancing are

considerably smaller for all m = 1,...,400. Thus, a smaller
error bound is expected for extended balanced truncation.
Moreover, the last 100 singular values are much smaller
Consider the mechanical system depicted in Fig. 1, which  than the first 300 ones in both cases. Consequently, we
consists of 200 masses, 198 linear dampers, and 200 linear anticipate that a reduced-order system of dimension 300
springs. This system can be represented in the PH frame- can offer an appropriate approximation of the original
work as follows system.
q 0 oo | TK 0 q 0 To compare the performance of both model reduction
N —1 + u, (77) 1 3 - i -
P —Iyo —Ro| |0 M P G techniques, we present reduced-order models of dimen
~~ sions 300, 200, and 100, obtained through each balanced
F H B . . . .
truncation approach. To this end, we perform simulations
where ¢,p € R*, M e R?*"*2% is a positive definite using MATLAB, under initial conditions zero and inputs

A. Mechanical system

diagonal matrix, K € R?99%20% is positive definite, Ro € of the form u = 2sin(wt). The frequency w is chosen
R290%200 j5 a positive semi-definite matrix that contains as the peak frequency of the error system obtained via
the information of the dampers, and G = [1 0] . generalized balanced truncation. To present the results,

The objective is to reduce the order of the model and we adopt the following notation: EB stands for extended
ensure that the PH structure is preserved. Note that, balancing and GB stands for generalized balancing. The
independently of § > 0, this system does not satisfy the dimension of the reduced-order system is denoted by
condition (55). Thus the Hamiltonian matrix cannot be k. The output of the original system is represented by
proposed as a generalized Gramian. y, the output of the reduced-order system obtained via
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Fig. 1: Mass-spring-damper network.
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Fig. 4: Outputs comparison for k& = 200.
generalized balanced truncation is denoted by y¢g, and the
output of the reduced-order system obtained via extended
balanced truncation is given by yg.
The results of the simulations are depicted in Figs. 3—
6 and in Table I. While the error bound obtained via 15 Outputs comparison ‘
extended balancing is considerably smaller in all the cases, —y
for £ = 300, the performance of both methodologies is 10 ZZ b ,‘. f‘ i I i (\’
similar. This can be observed in Fig. 3, where the behavior I F\ {\ l I‘ I' I ! | '
of the reduced-order system outputs is very similar to - 5 {\ f\ } H 11 ‘| ]] !I|| | f II ( in
~ |
the behavior of the original system output. Moreover, the E N | !‘1 [I H | { ‘ !]\ | }’ [ 'I‘ {
Hoo-norm of both error systems coincides as is shown in £ 0 \\ \,‘ 111 ’! | { | \ | \ ’, \! F ,} | ; i‘
Table 1. However, we observe in Figs. 4-6 that the ex- 2 . | ’\f H 11 { lll' {l ;; { l‘ ;\]
tended balanced truncation approach approximates better | ‘J [ 1\ | 1” U ’] ; } 1,1
the original system as the number of truncated states 10 ' \j ‘. \ﬁi o ] \,’
increases. S LN AL
-15 |
15 Qutputs comparison 10 29Fime [30 0 %
—y
ol Fig. 5: Outputs comparison for & = 100.
""" Yo q
= O \ |
g \ |
20 RREE
3
5 |
J j \} B. RLC circuit
-10
-15 : :
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Time [s]
Fig. 3: Outputs comparison for k£ = 300. Consider the RLC network depicted in Fig. 7, which

admits a PH representation of the form (49) with

0018-9286 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE 0Ferm\i]ssion. Seel}ﬁt :(/)/szww.i]e-%ez)ig/ éﬂﬂi_lc_eéi(%nsﬁstlae(éaéd)s(/pIublicat"lgns/ri_gh_ts/index.hltml for more information.
on January 14, at 13:41: rom plore. Restrictions apply.

Authorized licensed use limited to: TU Delft Library. Downloade



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2021.3138645, IEEE

Transactions on Automatic Control

Errors

Errors

Velocity [m/s]

o 10 20 30 40 50 0 10 20 30 40 50

Time [s] Time [s]
(a) k = 200. (b) k = 100.
Fig. 6: Comparison of the errors obtained from both
techniques.
TABLE I:
Hoo-norm of the error system and sum of the singular
values.
GB EB
k w Hoo |2 05| Hoo |2 0
j=k+41 j=k+1
300 | 1.8078 | 0.0120 38.3047 0.0120 0.4943
200 | 1.7864 | 0.3801 140.0848 0.2492 1.7635
100 | 1.8081 | 0.6898 276.8439 0.4701 3.4875
0 R0
J = R=|"¢C
[—Jf 0}’ [ 0 RL]’
— a4 1 1 1 1 1 1 1 1 1 1
H = dieg{er. o oo 6ot I Ly Lo T b
Rc = diag{Rc,, Re,, Rey, Rey, Res )
R, = diag{RL1 ) RL27 Rst RL47 RL5}7
1 -1 0 0 0
0o 1 -1 0 O 05
Jo = [0 0 1 -1 0|, B=]1
0o 0 O 1 -1 04

0 O 0 0 1

where x; are the charges in the capacitors and x5; denote
the fluxes in the inductors, for ¢ =1,...,5.

TABLE II:
Parameters of the RLC network

R, | 2701 C1 | 2.2[mF]
R, | [k Cy | 1[mF]

Ro, | 3301 Cs | 3.3[mF]
Rc, | 1.5[kQ)] Cy | 15[uF]
Rc. | 220[Q Cs | 4.7[uF]
Ry, | 470 L, | 10[mH]
R, | 3.9[Q Lo | 4.3mH
Rr, | 2.2[Q Ls | 2.7mH
Ry, | 2.74[Q L, | 6.2[uH]
Rr. | 3.92[Q Ls | 3[uH)

The objective is to reduce the order of the model and
obtain a PH system that can be interpreted as an RLC
circuit. Hence, we require that the reduced PH system

0018-9286 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEEJ)ermission. See httg
zed licensed use limited to: TU Delft Library. Downloaded on January 14,2022 at 13:41:03 UTC from IEEE Xplore. Restrictions apply.

Authori

13

has a diagonal damping matrix, and the interconnection
matrix must be skew-symmetric and block anti-diagonal.
Note that this is a more particular structure than the
PH structure given in (49). We stress that the matrices
J, R, and H can be decomposed into block matrices
whose dimension depends on the number of inductors and
capacitors, i.e., 5. Moreover, H is already diagonal. Thus, a
block diagonal transformation W ensures that H remains
diagonal, and the block structure that determines the RLC
architecture of the system is not affected.

Note that the damping matrix R has full rank. Hence, we
can select
Q:(sOH) P:(SCH_lﬂ

where d,, and §, are positive constants such that (55) holds.
Therefore, both generalized Gramians are diagonal and the
resulting transformation W, does not modify the structure
of the original system. Nevertheless, the Hankel singular
values are given by Agp = v/0,0.1,. Since all the entries
of Agp are equal, the criterion of truncating the states
related to the smallest singular values is impractical, and
further information is required to decide which states can
be removed. To deal with this situation, we adopt the
extended balancing approach. In particular, we want to
have a significant contrast among the entries of Ag7, which
provides information about which states can be truncated
without affecting the response of the reduced-order system
significantly. To this end, we follow the algorithm provided
at the end of Section IV with a minor modification, i.e.,
since the generalized Gramians are diagonal, I'. can be
chosen as a diagonal matrix with nonpositive entries, and
I', can be selected as a diagonal matrix with nonnega-
tive entries. This selection improves the error bound and
provides the desired contrast among the singular values.
Moreover, the matrices H,T, and S are diagonal. As a
result, W, is a block diagonal matrix. Thus, we can express
the matrices W, and Agr as follows

W, = Dblock{W;, Wy}
Asr = blOCk{AST1 R ASTQ}
ASTi = diag{am...,ais}, 1= 1,2

At this point, we make three observations regarding the
preservation of the RLC structure:

(i) To preserve the RLC structure it is necessary to
ensure that W is a block diagonal matrix.

(ii) We truncate the states related to the entries of Agr
in pairs, that is, one state related to one element of
Agp, and one state related to one entry from Agr,.
A physical interpretation of this approach is that
we are removing the same number of inductors and
capacitors.

By fixing ', and I'. different from zero, we ensure
that the entries of Agr are different. Then, we can
truncate the states related to the smallest entries of
each submatrix Agr,.

(iii)

To illustrate the methodology, we consider the values in
Table II. Due to space constraints, we omit the matrices

://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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Fig. 7: RLC network

Eigenvalues of Agr, Eigenvalues of Agr,
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(a) Normalized singular values (b) Normalized singular values (a) k=8. (b) k = 6.
related to the capacitors. related to the inductors.

Fig. 8: Normalized singular values resulting from extended

balancing.

Input signal
50

40

30

Voltage [V]

0 1 2 3
Time [s]

Fig. 9: Input signal u.

involved in the extended balancing procedure. The corre-
sponding data can be found in [2]. Fig. 8 depicts the nor-
malized singular values of the balanced system, where we
observe that the last two singular values of each block Agr,
are smaller than the first three. Consequently, we expect
that, in the extended balancing approach, the reduced-
order models obtained by truncating o;,, or o;, and o;,,
approximate the original system properly. We carry out
simulations to compare the behavior of the original system
with the reduced-order systems of dimensions £ = 8
and k£ = 6 obtained via both balancing methodologies.
To this end, we consider the input shown in Fig. 9 and
initial conditions equal to zero. Figs. 10 and 11 show the
comparison of the outputs and the errors, respectively,
where EB stands for extended balancing, GB stands for
generalized balancing, the output of the original system is
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Fig. 10: Outputs comparison for different reduced-order
models.
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(a) k = 8. (b) k = 6.

Fig. 11: Errors from different reduced-order models.

represented by y, the output of the reduced-order system
obtained via generalized balanced truncation is denoted by
ya, and the output of the reduced-order system obtained
via extended balanced truncation is given by yg. Using
MATLAB, we compute the H,,-norm for each case and
methodology. The corresponding values are presented in
Table III, where it is evident that the extended balanced
truncation approach exhibits a better performance.

To illustrate that the RLC structure is preserved, we
consider the reduced-order model of dimension k& = 6,
i.e., we truncate the states related to o;,,0;,. Hence, the

ssion. See htt ‘//www.ieeeorgg)ublicationsﬁstandards/publications/ri_gh_ts/indexhtml for more information.
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Fig. 12: Reduced RLC network

TABLE III:
Hoo-norm of the error system.

GB
8 | 0.0747
6 | 0.2011

EB
0.0037
0.0043

reduced-order model admits a PH representation with

R, = block{R;Ru}, J,=| % b,
T ! J, 0
_ 11 1 1 1
H, = dlag{ﬁ,@7@7ﬁ7gam}a
Rcr = dlag {RC1T ) RC2T 5 RCgr } 5
RLT» = diag{RLh,?RLzT?RL&r} s
]. —Y2 0 03
Ji, = (0 1 —y|, B-=|m
0 0 1 0,
Moreover, the reduced-order model admits the RLC real-

ization depicted in Fig. 12, where the states Z; represent
the charges in the capacitors and Z;y3 denote the fluxes
in the inductors for i = 1,2, 3.

VI. CONCLUDING REMARKS

In this paper, we have provided sufficient conditions to
preserve the PH structure for reduced-order models ob-
tained via generalized and extended balanced truncation
of CTLTI PH systems. Moreover, we have shown how to
exploit the degrees of freedom in extended balancing to
obtain a lower error bound than the one obtained via
generalized balancing. Additionally, we have illustrated
with an example that more particular structures, such
as physical ones, can be preserved via extended balanced
truncation.

(1]
(2]

(3]

(4]

0018-9286 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE

REFERENCES

A. C. Antoulas. Approzimation of large-scale dynamical sys-
tems. Siam, Philadelphia, 2005.

P. Borja, J. M. A. Scherpen, and K. Fujimoto. Data of the
extended balanced truncation examples. https://github.com/
PabloBorja/PabloBorja-Data-TAC__1D19-2233.

T. K. Caughey. Classical normal modes in damped linear
dynamic systems. Journal of Applied Mechanics, 27(2):269-271,
1960.

X. Cheng, J. M. A. Scherpen, and B. Besselink. Balanced
truncation of networked linear passive systems. Automatica,
104:17-25, 2019.

M. C. de Oliveira, J. Bernussou, and J. C. Geromel. A new
discrete-time robust stability condition. Systems & Control
Letters, 37:261-265, 1999.

Authorized licensed use limited to: TU Delft Library. Downloade(fon

[6]

[7]

[9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

20]

21]

(22]

23]

[24]

M. C. de Oliveira, J. C. Geromel, and J. Bernoussou. Extended
Ho and Hoo norm characterizations and controller parameteri-
zations for discrete-time systems. Int. J. Control, 75(9):666—679,
2002.

V. Duindam, A. Macchelli, S. Stramigioli, and H. Bruyninckx.
Modeling and control of complex physical systems: the port-
Hamiltonian approach. Springer Science & Business Media,
2009.

G. E. Dullerud and F. Paganini. A course in robust control
theory: a convexr approach, volume 36. Springer Science &
Business Media, 2013.

K. Fujimoto. Balanced realization and model order reduction
for port-Hamiltonian systems. Journal of System Design and
Dynamics, 2(3):694-702, 2008.

K. Fujimoto and J. M. A. Scherpen. Balanced realization and
model order reduction for nonlinear systems based on singular
value analysis. SIAM Journal on Control and Optimization,
48(7):4591-4623, 2010.

K. Glover. All optimal Hankel-norm approximations of linear
multivariable systems and their £oo-error bounds. International
journal of control, 39(6):1115-1193, 1984.

D. Hinrichsen and A. J. Pritchard. An improved error estimate
for reduced-order models of discrete-time systems. IEEE Trans-
actions on Automatic Control, 35(3):317-320, 1990.

R. Horn and C. Johnson. Matriz Analysis. Cambridge Univer-
sity Press, 1985.

Y. Kawano and J. M. A. Scherpen. Structure preserving trunca-
tion of nonlinear port Hamiltonian systems. IEEE Transactions
on Automatic Control, 2018.

G. Kotsalis, A. Megretski, and M. A. Dahleh. Balanced trunca-
tion for stochastic jump linear systems and a model reduction
algorithm for hidden Markov models. IEEE Transactions on
Automatic Control, 53(11):2543-2557, 2008.

G. Kotsalis and A. Rantzer. Balanced truncation for discrete
time Markov jump linear systems. IEEE Transactions on
Automatic Control, 55(11):2606-2611, 2010.

B. C. Moore. Principal component analysis in linear systems:
Controllability, observability, and model reduction. IEEE trans-
actions on automatic control, 26(1):17-32, 1981.

M. A. Novikov. Simultaneous diagonalization of three real
symmetric matrices. Russian Mathematics, 58(12):59-69, 2014.

R. Polyuga and A. J. van der Schaft. Structure preserving
model reduction of port-Hamiltonian systems. In Proc. 18th Int.
Symposium on Mathematical Theory of Networks and Systems,
2008.

H. Sandberg. Model reduction of linear systems using extended
balanced truncation. In 2008 American Control Conference
(ACC), pages 4654-4659. IEEE, 2008.

H. Sandberg. An extension to balanced truncation with appli-
cation to structured model reduction. IEEE Transactions on
Automatic Control, 55(4):1038-1043, 2010.

J. M. A. Scherpen. The control handbook: control system
advanced methods, chapter Balanced realizations, model order
reduction, and the Hankel operator, pages 1-24. Taylor &
Francis group, second edition, 2011.

J. M. A. Scherpen and K. Fujimoto. Extended balanced trun-
cation for continuous time LTI systems. In Furopean Control
Conference (ECC), pages 2611-2615. IEEE, 2018.

A. J. van der Schaft. La-Gain and Passivity techniques in
nonlinear control. Springer, Berlin, third edition, 2016.

ermission. See htt ://www.ieeeorgg)ublicationsﬁstandards/publications/ri_gh_ts/indexhtml for more information.
January 14,2022 at 13:41:03 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2021.3138645, IEEE
Transactions on Automatic Control

16

[25] J. C. Willems. Model reduction by balancing. Lecture re- Kenji Fujimoto received his B.Sc. and M.Sc.
trieved from hitps://homes.esat.kuleuven.be/~sistawww/ smec/ degrees in Engineering and Ph.D. degree in
jwillems/ Lectures/ 2002/ modelred.pdf , 2002. Informatics from Kyoto University, Japan,

[26] K. Zhou, J. C. Doyle, and K. Glover. Robust and optimal control. in 1994, 1996 and 2001, respectively. He is
Prentice-Hall, New Jersey, 1996. currently a professor of Graduate School of

Engineering, Kyoto University, Japan. From

1997 to 2004 he was a research associate of

Graduate School of Engineering and Gradu-

ate School of Informatics, Kyoto University,

Japan. From 2004 to 2012 he was an associate

professor of Graduate School of Engineering,

Nagoya University, Japan. He has held visiting research positions at

the Australian National University, Australia and Delft University

of Technology, The Netherlands in 1999 and 2002. He received

The IFAC Congress Young Author Prize in IFAC World Congress

2005. His research interests include nonlinear control and stochastic

systems theory.

Pablo Borja obtained his B.Eng. degree in
electrical and electronics engineering from the
Universidad Nacional Auténoma de México
(UNAM), 2011, M.Eng. degree in electrical
engineering from UNAM, 2014, and the Ph.D.
degree in control systems from the Université
Paris Saclay, France, in 2017. From 2017 to
2018, he was a postdoctoral researcher mem-
ber of the Engineering and Technology Insti-
tute Groningen (ENTEG) at the University
of Groningen (RUG), The Netherlands. From
2018 to 2021, he was a fellow of the Faculty of Science and Engi-
neering and ENTEG member at the RUG. Since 2021, he has been
a postdoctoral researcher in the department of Cognitive Robotics
at the Delft University of Technology, The Netherlands. His research
interests encompass the control and analysis of nonlinear systems,
passivity—based control, control of physical systems, passivity and
its role in control theory, and model reduction.

Jacquelien M. A. Scherpen received her
Ph.D. (1994) degree in applied mathematics
from the University of Twente, The Nether-
lands. She was faculty at Delft University
of Technology until 2007. Since 2006, she is
professor at the Jan C. Willems Center for
Systems and Control, ENTEG, Faculty of Sci-
ence and Engineering, University of Gronin-
gen. From 2013-2019, she was scientific di-
rector of ENTEG. She is currently director
of the Groningen Engineering Center. She is
Captain of Science of the Dutch High Tech Systems and Materials
top sector since 2020. Her research interests include model reduction
for networks and nonlinear systems, modeling and control of physical
systems with applications to electrical circuits, mechanical systems,
and grid /network applications including distributed optimal control.
Dr. Scherpen has been an Associate Editor for the IEEE Trans-
actions on Automatic Control, International Journal of Robust and
Nonlinear Control (IJRNC) and the IMA Journal of Mathematical
Control and Information, and is in the editorial board of IJRNC. She
is fellow of IEEE, appointed Knight in the Order of The Netherlands
Lion, and received the best paper prize for the triennium 2017-2020
of Automatica in 2020. She is currently member of the IFAC council,
member of the IEEE CSS BoG (2018-2021), and President of the
European Control Association (2020-2021). She will be chair of the
SIAM Activity Group on Control and Systems Theory 2022-2023.

0018-9286 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE daermission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
Authorized licensed use limited to: TU Delft Library. Downloaded on January 14,2022 at 13:41:03 UTC from IEEE Xplore. Restrictions apply.



