

Delft University of Technology

Explainable artificial intelligence for intrusion detection in IoT networks
A deep learning based approach
Sharma, Bhawana; Sharma, Lokesh; Lal, Chhagan; Roy, Satyabrata

DOI
10.1016/j.eswa.2023.121751
Publication date
2024
Document Version
Final published version
Published in
Expert Systems with Applications

Citation (APA)
Sharma, B., Sharma, L., Lal, C., & Roy, S. (2024). Explainable artificial intelligence for intrusion detection in
IoT networks: A deep learning based approach. Expert Systems with Applications, 238, Article 121751.
https://doi.org/10.1016/j.eswa.2023.121751

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1016/j.eswa.2023.121751
https://doi.org/10.1016/j.eswa.2023.121751

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!' - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

Expert Systems With Applications 238 (2024) 121751

A
0

Contents lists available at ScienceDirect

Expert Systems With Applications

journal homepage: www.elsevier.com/locate/eswa

Explainable artificial intelligence for intrusion detection in IoT networks: A
deep learning based approach
Bhawana Sharma a, Lokesh Sharma a,∗, Chhagan Lal b, Satyabrata Roy a

a Manipal University Jaipur, Jaipur, Rajasthan, India
b Department of Intelligent Systems, Cybersecurity Group, TU Delft, Netherlands

A R T I C L E I N F O

Keywords:
Intrusion detection system
DL
Deep neural network
Convolution neural network
XAI
Local interpretable model-agnostic
explanations
Shapley additive explanations

A B S T R A C T

The Internet of Things (IoT) is currently seeing tremendous growth due to new technologies and big data.
Research in the field of IoT security is an emerging topic. IoT networks are becoming more vulnerable to new
assaults as a result of the growth in devices and the production of massive data. In order to recognize the
attacks, an intrusion detection system is required. In this work, we suggested a Deep Learning (DL) model
for intrusion detection to categorize various attacks in the dataset. We used a filter-based approach to pick
out the most important aspects and limit the number of features, and we built two different deep-learning
models for intrusion detection. For model training and testing, we used two publicly accessible datasets,
NSL-KDD and UNSW-NB 15. First, we applied the dataset on the Deep neural network (DNN) model and
then the same dataset on Convolution Neural Network (CNN) model. For both datasets, the DL model had
a better accuracy rate. Because DL models are opaque and challenging to comprehend, we applied the idea
of explainable Artificial Intelligence (AI) to provide a model explanation. To increase confidence in the DNN
model, we applied the explainable AI (XAI) Local Interpretable Model-agnostic Explanations (LIME) method,
and for better understanding, we also applied Shapley Additive Explanations (SHAP).
1. Introduction

In recent years, IoT has been gaining popularity, and with the
advancement of technologies, the internet, and big data, security has
become essential for IoT networks. Researchers are seeking attention to
the intrusion detection system for IoT networks for detecting malicious
activities. Identifying any suspicious or abnormal activity generates a
signal, thus preventing vulnerable devices. Since many heterogeneous
devices for different applications are connected in IoT networks and
generate big data within the network, thus the significant challenges
are storage, computation of big data, and cyber security in IoT net-
works (Al-Fuqaha, Guizani, Mohammadi, Aledhari, & Ayyash, 2015;
Da Xu, He, & Li, 2014).

The Intrusion Detection System (IDS) has two types of detection
methods. One method is Signature-based IDS which detects malicious
activity based on known signatures stored in the database; another
method is anomaly-based, which detects the abnormal behavior of the
system.

Signature-based IDS are proven to be inefficient in today’s scenario
for two main reasons. First, it needs the predetermined knowledge of

∗ Corresponding author.
E-mail addresses: bhawana.199308601@muj.manipal.edu (B. Sharma), lokesh.sharma@jaipur.manipal.edu (L. Sharma), c.lal@tudelft.nl (C. Lal),

satyabrata.roy@jaipur.manipal.edu (S. Roy).

signatures or attacks and is thus incapable of detecting new or zero-
day attacks. Secondly, storing attacks in the database and computation
for the devices in IoT networks with limited storage and computation
capacity is inefficient.

Anomaly-based IDS detects abnormal behavior and is thus capable
of detecting new or unknown attacks which are different from normal
ones. The drawback is that it detects any change from the normal
behavior and identifies it as abnormal behavior, and thus false positives
are generated (Ahmad, Shahid Khan, Wai Shiang, Abdullah, & Ahmad,
2021; Sharma, Sharma, & Lal, 2019). With recent development in
Machine Learning (ML)/Deep Learning (DL) techniques, these tech-
niques are employed in Anomaly-based IDS to remove the drawbacks.
Anomaly-based detection using ML/DL techniques can detect intrusions
with higher accuracy and is attracting many researchers for solutions
in the direction of network security in IoT networks (Al-Garadi et al.,
2020; Lin et al., 2017; Xin et al., 2018). Various attacks/threats occur
daily in IoT systems, so there is a need to identify and mitigate the
attacks to protect the network. In an IoT system, there are three layers
first is perception; the network is middle, and the last is the application
layer.
vailable online 25 September 2023
957-4174/© 2023 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.eswa.2023.121751
Received 15 June 2023; Received in revised form 22 August 2023; Accepted 19 Se
ptember 2023

https://www.elsevier.com/locate/eswa
http://www.elsevier.com/locate/eswa
mailto:bhawana.199308601@muj.manipal.edu
mailto:lokesh.sharma@jaipur.manipal.edu
mailto:c.lal@tudelft.nl
mailto:satyabrata.roy@jaipur.manipal.edu
https://doi.org/10.1016/j.eswa.2023.121751
https://doi.org/10.1016/j.eswa.2023.121751

Expert Systems With Applications 238 (2024) 121751B. Sharma et al.

b
i
F
s
p
w

a
D
f
i
i
a
b
a
b
e
u

• Perception layer: : In this layer, sensors/devices termed as things
in IoT network collect the useful data, and then the data is trans-
mitted to the network layer after processing. There are three ma-
jor security issues disturbance of signals, tampering of hardware,
and constrained IoT devices and sensors. Signals are transmitted
via wireless technologies, so there is a risk of signal disturbance,
and thus, the efficiency of signals is compromised. Furthermore,
a physical attack can weaken hardware components because IoT
devices and sensors function in an external environment. The
third problem is that IoT devices and sensors’ limited power
consumption, storage, and processing power make them suscepti-
ble to attacks. Sleep deprivation, node capturing, data injection,
eavesdropping, and interference by sending noise signals can
affect confidentiality. We can mitigate these issues by encrypting
data from one end to another.

• Network Layer: This layer transfers data using modern tech-
nologies, including Bluetooth, Zigbee, WIFI, and ‘‘Long-Term Evo-
lution (LTE)’’ as well as cloud computing platforms, network
gateways, routers, and switches. Eavesdropping, traffic analy-
sis, and monitoring are three major security challenges in the
network layer. Massive traffic overload has rendered the target
inaccessible to authorized users. The device can shut down and
stop working by DoS attacks and sinkhole attacks. Data secrecy
can be hampered by Man-in-the-Middle (MitM) attacks. We can
prevent eavesdropping and heavy traffic bombardment by using
a network object with the appropriate protocols and software to
monitor the network.

• Application Layer:This layer provides application-specific ser-
vices to the system. It offers a range of applications where IoT
systems are installed, such as smart parking, smart healthcare,
smart homes, smart cities, etc. It monitors different applications
and other layers of the IoT system.
The main security issue in this layer is the authentication of dif-
ferent mechanisms used by various applications. IoT involves a lot
of connected devices or things in the network, so there is a need
to monitor shared data and manage the data. There are risks of
phishing, malicious scripts, and SYN flooding. Different protocols,
such as ‘‘Message Queuing Telemetry Transport (MQTT)’’ and
‘‘Constrained Application Protocol (CoAP)’’, are used to mitigate
these issues (Al Nafea & Almaiah, 2021; Altulaihan, Almaiah, &
Aljughaiman, 2022).

Nowadays, ML and DL techniques are widely used for anomaly-
ased detection, where models learn to determine the normal behavior
n the training phase (Chaabouni, Mosbah, Zemmari, Sauvignac, &
aruki, 2019). Before applying ML and DL techniques, we intelligently
elect features to attain the maximum accuracy with the fewest features
ossible. By lowering the amount of features, we can speed up training,
hich lowers the cost of computation and storage.

In this paper, we employed DL models to detect intrusions based on
nomaly detection, which depends on the behavior of the system. The
NN model classifies the normal/attack categories in multi-class classi-

ication. Since the ML and DL models are black boxes, we explain and
nterpret the models using the concept of explainable AI. Explainable AI
s to explain and interpret the models and find what makes the model
rrive at such predictions. Mostly ML and DL models are considered
lack boxes, and it is not easy to understand the models. Researchers
re working in this direction to develop methods for explaining the
lack box ML and DL models. For greater comprehension and model
xplainability, the XAI approaches LIME and SHAP are frequently
tilized today. The major contributions of this research document are:

1. Design a DL model to classify normal/attack categories in IoT
networks.

2. The accuracy and computation speed of feature reduction utiliz-
ing a filter-based approach is improved with the fewest possible
2

features. c
3. Analyze the model, contrast it with other models, and fine-tune
it using various hyper-parameters.

4. Explain the model using the concept of Explainable AI and
identify important features and the effects of a feature on the
prediction/detection results using LIME and SHAP.

The subsequent part of the paper is organized as follows: Section 2
describes the state-of-the-art review of ML/DL techniques used for
detecting the intrusion and the concept of explainable AI. Section 3
details the research design and methodology, based on deep learning
techniques, to classify normal/ attack classes in IoT networks. Section 4
shows the evaluation and analysis of the model’s accuracy and eval-
uation metrics. Section 5 includes the model explanation. Section 6
insights into the future work and limitations of the model, and Section 7
summarizes the work done in the paper and includes the future work.

2. Related works

In this section, we conduct a study and present a systematic liter-
ature review providing the introspection about different ML/DL tech-
niques based intrusion detection systems. With the vast expansion of
IoT networks, security, and privacy are the prime areas which need
to be considered. Researchers effectively analyze the network and
identify different attacks to take measures to prevent the network.
Deep learning and Machine Learning are widely used in the field of
intrusion detection systems (Karatas, Demir, & Sahingoz, 2020; Khan &
Herrmann, 2019; Ma, 2020).

2.1. IDS studies based on ML and DL techniques

With the recent advancement in ML/DL techniques, models con-
structed using these techniques are used by researchers for intrusion
detection systems. Different ML models are applied by the researchers
for intrusion detection, such as ‘‘K-Nearest Neighbor (KNN)’’ (Xu et al.,
2018) and ‘‘Support Vector Machine (SVM)’’ (Teng, Wu, Zhu, Teng, &
Zhang, 2017), and evaluated the models using KDD99, NSL-KDD, and
DARPA datasets.

On openly accessible NSL-KDD1 and UNSW-NB152 datasets, Fe-
nanir, Semchedine, and Baadache (2019) implemented various ML-
based models, utilized a filter approach to pick features, and used a
Decision Tree (DT) to get the maximum accuracy. A lightweight IDS
model was suggested by the author. The characteristics were selected
using the filtering process, and the data was then categorized using ML
techniques. The DT generates the most effective classification model on
a variety of datasets, according to the experts’ comparison of several
machine learning techniques. The characteristics were selected using
many datasets, various threshold values, and filter techniques such
as the correlation filter methods like ‘‘Pearson Correlation Coefficient
(PCC)’’, ‘‘Kendall Correlation Coefficient (KCC)’’ and ‘‘Spearman corre-
lation coefficient (SCC)’’.3 The author used a number of ML methods,
including DT, SVM, and ‘‘Logistic Regression (LR)’’ for classification on
multiple datasets, including UNSW-NB15, KDD99, and NSL-KDD.

Sun et al. (2020) created an LSTM-CNN model for classification
using the hybrid method concept. To deal with the dataset’s uneven dis-
tribution of the target class, the author employed the weight optimiza-
tion strategy. The model’s accuracy was tested using the CICIDS2017
dataset, and it was 98.67% accurate. Hassan, Gumaei, Alsanad, Al-
rubaian, and Fortino (2020) also suggested a hybrid deep neural net-
work model that integrates CNN and LSTM. Model performance was
evaluated based on accuracy parameters using the openly accessible
UNSW-NB15 dataset, and an overall accuracy of 97% was attained.

1 https://www.unb.ca/cic/datasets/nsl.html.
2 https://www.unsw.adfa.edu.au/unsw-canberra-cyber/cybersecur.
3 https://www.sciencedirect.com/topics/social-sciences/pearson-

orrelation-coefficient.

https://www.unb.ca/cic/datasets/nsl.html
https://www.unsw.adfa.edu.au/unsw-canberra-cyber/cybersecur
https://www.sciencedirect.com/topics/social-sciences/pearson-correlation-coefficient
https://www.sciencedirect.com/topics/social-sciences/pearson-correlation-coefficient

Expert Systems With Applications 238 (2024) 121751B. Sharma et al.

𝜖

w
f
w
m

A CNN-based IDS model was proposed by Xiao, Xing, Zhang, and
Zhao (2019), and the model performance was evaluated using the KDD
Cup 99 dataset and found that it had a 94% accuracy rate. Denial
of Service (DoS) attacks were the subject of Kim, Kim, Kim, Shim,
and Choi (2020)’s CNN and RNN model, which had an accuracy of
almost 99 percent on evaluating the model using KDD Cup dataset and
similarly 91 percent on the CICIDS2018 dataset.

On the publicly accessible dataset UNSW-NB15, which was used to
evaluate Kasongo and Sun (2020)’s DNN model, the model’s accuracy
for multi-class classification was 77.16%. On the publicly accessible
dataset NSL-KDD cup, 97% accuracy was attained using the DNN model
that Liang et al. (2019) presented. The DNN model was created by
Thamilarasu and Chawla (2019), who then tested it on their own
dataset and attained great precision. Ge, Syed, Fu, Baig, and Robles-
Kelly (2021) developed the FNN model, evaluated it using the BoT-IoT
dataset, and achieved a multi-class classification accuracy of above
99%. The DNN model was created by Vinayakumar et al. (2019), and it
achieved a 78 percent accuracy rate on the publicly accessible dataset
NSL-KDD.

Nagisetty and Gupta (2019) suggested many DL models, including
CNN, DNN, MLP, and autoencoder. The models were tested using the
open-source datasets UNSW-NB15 and NSL-KDD, and the DNN model
outperformed them in terms of accuracy. Qiu et al. (2020) developed
a DL-based model in which DoS assaults might be generated by a
little modification in the characteristics. On the DMD-2018 dataset,
the Vinayakumar et al. (2020)-proposed deep learning CNN and RNN
models yielded 99% accuracy. A DNN model with varying numbers of
neurons and hidden layers that are customized with different learning
rates was proposed by the author. Model performance was evaluated
on several publicly accessible datasets, including binary-class datasets
with attack and normal classes and multi-class datasets with various
attacks and normal classes. On the KDDCup99 dataset and the NSL-KDD
dataset, the authors’ model had an accuracy of 93% and 78%, respec-
tively, after they reduced the number of features and tested it. With the
features reduction Zhou, Han, Liu, He, and Wang (2018) recommended,
his DL model had a 93% accuracy rate. Meidan et al. (2018) suggested
a deep autoencoder and used the Mirai dataset to train the model. The
model was then adjusted using various hyperparameters.

In 31, Kasongo et al. developed the FNN model and used the
filter approach to choose the feature. Following that, the model was
adjusted using a variety of hyperparameters and parameters, including
the learning rate and the number of neurons in hidden layers. The
model was evaluated and contrasted with other ML approaches using
the NSL-KDD dataset. The author’s model, which included three hidden
layers with 30 neurons each and was tested on a binary classification
dataset, had an accuracy of 88 percent. Similar results were obtained
for multi-class classification utilizing 3 hidden layers and 150 neurons,
which yielded an accuracy of 86.19

Almaiah et al. used the Frequency Particle Swarm Optimization
(FPSO) approach in Almaiah and Almomani (2020) to identify the char-
acteristics of the Shamoon attack. The Shamoon addresses industrial
data, while the Fog nodes supply medical, educational, and industrial
data. The source of the assault can be determined by locating the initial
node because the author studied the Shamoon attack’s movement and
discovered that it follows the shortest path.

In Siam et al. (2021), Siam et al. proposed an IoT-based smart health
monitoring system that uses sensors to evaluate temperature, blood
oxygen levels, and heart rate. The Advanced Encryption Standard (AES)
technique is then used to encrypt the data before it is delivered to the
organization for decryption. A 95% confidence interval was achieved
using the suggested procedure.

Almaiah et al. applied the blockchain concept for IIoT and proposed
the deep learning model in Almaiah, Hajjej, Ali, Pasha, and Almo-
mani (2022). The proposed model outperformed the current consensus
protocol employed in the benchmark models, according to the results
3

of the improvement in the blockchain’s existing consensus protocol. b
In Ali et al. (2022), Ali et al. put out a blockchain-based model for
the health care system and for the protection of data that uses a homo-
morphic encryption method. Using the Hyperledger Caliper, a hybrid
DNN model with binary spring search (BSS) was put into practice
for both intrusion detection and blockchain. The proposed approach
obtained shorter confirmation time and computational cost for security
compared to benchmark models.

Al Hwaitat et al. (2020) proposed the Particle Swarm Optimization
(PSO) algorithm and compared the model to the existing optimization
approaches. The program was improved to detect jamming attacks,
which are the most prevalent kind of DoS attack. The outcome has
shown that the suggested strategy produced superior outcomes in terms
of the coverage area and the least fitness value. In Fatani et al. (2023),
Fatani et al. proposed a deep learning model with an optimization
technique. The author employed the CNN model for feature extraction,
the growth optimizer modified version (MGO) for feature selection, and
the whale optimization algorithm for the search process. An experiment
using several datasets revealed that the MGO performed better than
other strategies. The KDD dataset experiment shows that the training
accuracy is 99.9 while the testing accuracy is 92.04. Similarly, the
training accuracy on the NSL KDD dataset is 99.214. In contrast, the
testing accuracy is 76.72, demonstrating that the model is over fit and
performs well on the training dataset, but accuracy decreases on the
testing dataset.

Similarly, in Abd Elaziz, Al-qaness, Dahou, Ibrahim, and Abd El-
Latif (2023), the author builds the CNN-CapSA model for Intrusion
detection using a combination of a deep learning model and the swarm
intelligence method. The author used a deep learning model to find
optimal features, and then an optimizer based on a swarm intelligence
method called the Capuchin Search Algorithm (CapSA) was applied
for efficient feature selection. The experiment was conducted on four
different datasets.

2.2. Explainable AI and IDS studies based on model explanation

Explainable AI is being researched because ML and DL models are
opaque and challenging to grasp, making it difficult to interpret model
predictions. Explainable AI explains the predictions model, fostering
model transparency and confidence. The idea of explainable AI is a
new one, and it entails employing model explanation techniques to
explain the models created and the contributions of each feature to
the prediction (Ribeiro, Singh, & Guestrin, 2016; Samek, Wiegand, &
Müller, 2017).

In Zhou, Hooker, and Wang (2021), Zhou et al. recommended stable
LIME to be used for explaining models and deployed a random forest
classifier to the data set containing breast cancer data, and it achieved
95% accuracy.

2.3. Local interpretable model-agnostic explanations (LIME)

LIME gives the user the model interpretation, which clarifies the
forecast on a given instance. Having confidence in the model comes
from understanding it, and LIME explains the predictions the model
made. LIME checks the model using an instance’s explanation as a basis.
Eq. (1) provides the formula for LIME, which minimizes loss L and
determines how closely the explanation resembles the original model.
𝜖(𝑥) is the explanation for instance 𝑥 of the model 𝑔.

(𝑥) = 𝑎𝑟𝑔𝑚𝑖𝑛(𝐿(𝑓, 𝑔, 𝜋𝑥)) +𝛺(𝑔) (1)

here, 𝑔 represents the interpretable model 𝑔𝜖 G. 𝐺 represents the
amily of the model. 𝜋x is the proximity measure of the neighborhood
e used to explain the instance. 𝛺(𝑔) represents the complexity of the
odel eg, the number of features. 𝑓 represents the probability of 𝑥
elonging to specific class.

Expert Systems With Applications 238 (2024) 121751B. Sharma et al.
Fig. 1. Workflow of the proposed framework.
2.4. Shapley additive explanations (SHAP)

SHAP explains the model using Shapley values based on the feature
importance. For a given data point for extracting the SHAP value in
the Shapley value extraction formula, the contribution of the j feature
is calculated using Eq. (2).

𝜙(𝑖) = 𝛴𝑆⊆𝐹∕𝑗 ((|𝑆|!(|𝑃 | − |𝑆| − 1)!)∕|𝑃 |!)(𝑣(𝑆 ∪ 𝑗) − 𝑣(𝑆)) (2)

where 𝑃 is all features in the dataset and 𝑆 is the set of all except the
feature j, and 𝑣(𝑥) is the contribution of a subset x.

In summary, the review of the literature reveals that the researchers
have proposed a variety of machine learning and deep learning tech-
niques for intrusion detection and evaluated the model based on accu-
racy, precision, recall, and F1 score metrics using various benchmark
datasets, but they have not provided any metrics for the model’s
trustworthiness and ability to explain the model. The feature selection
also minimizes the number of features, which lowers the model’s com-
plexity. It also reduces the amount of time needed to test and train the
model, which improves the model’s performance. The model’s accuracy
and performance can be improved by integrating filter-based selection
with deep learning methods. Since trustworthiness is not discussed in
the literature, we reviewed our study’s goal to make the IDS more
trustworthy. The model must be trusted to be used in the real world.
By utilizing the techniques of explainability, this study seeks to expand
the field of XAI.

The literature review revealed that the described approaches’ ac-
curacy is high but that the DL and ML models are complex and that
comprehension of the prediction is necessary in order to place trust
in the model. Each feature contribution should be explained in the
prediction. We can use the concept of explainable AI to explain each
feature’s prediction and contribution, which builds trust in the model.
Secondly, the training time and complexity of the model should be
reduced by reducing the features. Feature selection techniques could
be used, which reduce the number of input variables to the model by
eliminating redundant and irrelevant features and thus reducing both
model training time and complexity.

3. Proposed framework

This section presents the workflow of the framework for detecting
attacks in the network, as shown in Fig. 1. The main steps are Dataset
4

Description, Data Preprocessing to encode and normalize the data,
Feature Selection to identify important features and thus reduce the
input variables, Feature Preprocessing to transform the dataset, and
then training and testing the proposed deep learning method, and last
explanation of the model. We explain them in detail as follows:

3.1. Dataset description

Using a network analyzer tool, raw traffic is gathered, and the
features are then extracted. The researchers used publicly accessible
datasets to test the DL models for intrusion detection systems. One
of them NSL-KDD dataset is made up of 42 features in all, 38 of
which are numerical values, 3 of which are nominal values, and one
label indicates the normal/attack type category. Furthermore, another
UNSW-NB15 dataset has 44 characteristics in total, including 4 categor-
ical values, 39 numerical values, and one label indicating the category
of normal/attack.

3.2. Data preprocessing

In this stage, the dataset is transformed and normalized after re-
dundant data has been eliminated from it. During data transformation,
various encoding techniques are used to translate the nominal val-
ues of the characteristics in the dataset into numerical values. Label
encoding and one hot encoding are the two most popular encoding
techniques. Data must be normalized such that values fall within the
range of 0 to 1, enhancing the model’s accuracy and performance. Min–
Max normalization is used to normalize data (Sharma, Sharma, & Lal,
2022b).

3.3. Feature selection

Features are the input variables to the ML/DL models. The model is
trained after selecting the important features, and the method is called
the feature selection technique, which subsequently decreases the fea-
ture columns in the dataset, thus reducing storage and computing costs.
Different feature selection approaches are:

Expert Systems With Applications 238 (2024) 121751B. Sharma et al.
3.3.1. Correlation-based filter method
The features are chosen using this method’s correlation-based so-

lution, where the correlation score and threshold value are used to
determine which characteristics to use. Screening is used to remove du-
plicated features and highly associated characteristics from the dataset.
Features with a correlation score higher than the threshold value are
deemed highly correlated. The following step is dropping one of the
highly associated attributes.

3.3.2. Wrapper methods
The induction methodology is used in this method to choose the

feature subset. Through the use of backward elimination and forward
selection techniques, the subset of features is chosen. Backward elimi-
nation involves starting with all of the set’s features and then removing
those that have a negative impact on the model’s performance. When
using forward selection, we begin with a subset that is empty and
then add features to improve the model’s performance and provide the
optimal feature subset.

3.3.3. Embedded methods
To choose the best characteristics, this method combines the filter

and wrapper methods. LASSO regularization and Random Forest are the
two most used variations of this technique. In our experiment, we used
filter-based method as the method requires less time and computation.

3.4. Feature preprocessing

After encoding and rescaling, the processed dataset is converted
to model-compatible format, and the dataset is split into three parts,
namely training and validation sets for training the dataset and testing
sets for testing the model. The dataset is used to train the DNN model
after normalization, encoding, and feature selection because it is now
compatible with the model. The dataset must be transformed into 1D
vector form before being applied to the 1D CNN model. To make the
dataset compatible with the 2D CNN model, the processed data is
converted to n×n matrix form, and the dataset is then applied to the
model for training.

3.5. Training and testing the dataset

The training dataset is then applied to the deep learning training
model and is classified as normal/attack class type, and validate the
model with the validation dataset. DNN and CNN models are built
during the training phase, and the training dataset is then fed as
input. CNN model has a convolution layer, and max-pooling layers,
and the DNN model has a dense layer. To prevent overfitting, the
models are trained first and then tuned with various parameters and
hyperparameters. After training, the deep learning model is tested with
a testing dataset and classifies normal/attack categories.

3.6. Model explanation

After training and testing the model, we explain the prediction of
the model. The concept of explainable AI is used to interpret the model
prediction using a testing dataset. LIME and SHAP are two common
surrogate models that aid in understanding the models. Model agnostic
and modal specific are two broad categories of model explainability.
Methods that are model-agnostic concentrate on input and output and
can be used with any model, whereas a small number of models, such
as linear regression, decision trees, and neural networks, are subjected
to model-specific approaches. LIME provides the local explanation and
explains the prediction of a particular instance. SHAP generates the
explainer and provides local and global explanations. In a local expla-
nation, a particular prediction is selected and explained using a plot
based on features. Moreover, in a global explanation, the explanation
5

is provided for the model predictions based on the features.
4. Evaluation and analysis

4.1. Dataset analysis

We used two publicly available datasets, namely NSL-KDD Cup and
UNSW-NB15, to evaluate the model.

4.1.1. NSL-KDD dataset
KDDCup dataset was obtained from DARPA98 NIDS Evaluation

Program managed by MIT Lincoln Labs, and the dataset is widely used
in the field of NIDS. However, the main disadvantage of the dataset
is that it contains duplicate or redundant records, so the new dataset
named NSL-KDD was introduced that does not contain the duplicate
or redundant records in the dataset. The dataset contains 42 features
consisting of 3 nominal values, 38 numeric values, and 1 label showing
the normal/attack category.

The dataset contains a total of 23 attack types, and we reduced the
number of attack classes by grouping them into 4 main attack classes,
namely Probe, DoS, U2R, and R2L.

The dataset consists of a total of 125 972 records having 67 342
records of normal class and 11 656, 995, 45 927, 52 records of Probe,
R2L, DoS and U2R, respectively, as shown in Table 1 and the complete
set of features are shown in Table 2.

4.1.2. UNSW-NB15 dataset
The lab of the Australian Centre for Cyber Security (ACCS) created

the widely utilized dataset known as the UNSW-NB15 dataset to test
the models. The dataset is made up of total of 44 features, where
39 are numerical values consisting of numbers, 4 nominal/categorical
values made up of limited discrete values, and one label showing
the normal/attack category. In the label feature column, there are
ten classes with one normal class and nine different attack classes.
The attack classes in the label column are Generic, Reconnaissance,
DoS, Exploits, Analysis, Worms, Shellcode, Backdoor, and Fuzzers. The
dataset contains 93 000 records of the Normal category and 164 673
attack categories. Total records in the dataset are 257 673, as shown in
Table 4. The complete set of features is shown in Table 3. We selected
five classes of normal and four attacks categories for experimental
evaluation, namely Generic, Exploits, DoS, and Fuzzers. We selected
a 50K sample size for class so that for classes having records greater
than 50K, we selected a sample of size 50K, and for the class having
records less than 50K, we selected all records. Normal and Generic
classes have records greater than 50K size, so we randomly selected
50K size samples, and for the other three classes, namely fuzzers, DoS,
and Exploits, records are less than 50K size, so we selected all records
to resolve the class imbalance issue.

4.2. Data pre-processing

After the dataset extraction, we uploaded the CSV file format from
the local drive on Google’s Colaboratory and then imported the dataset
into the pandas data frame. We dropped redundant columns and then
encoded all the categorical features of the dataset into numeric val-
ues using the encoding method. One hot and label encoding are the
two encoding methods available. In our experiment, we used label
encoding, where each value in the column is converted into an integer.
The dataset contains the values of different scales and needs to be
normalized to a common scale ranging from 0 to 1.

NSL-KDD dataset contains 4 features which have categorical values
‘‘protocol_type’’, ‘‘flag’’, ‘‘services’’, ‘‘class’’ containing 3, 70, 11, 5
types, respectively. UNSW-NB15 contains 4 categorical value features,
namely ‘‘proto’’, ‘‘service’’, ‘‘state’’, ‘‘attack_cat’’ containing 133, 13, 11,
10 types, respectively. We encoded using label encoding and converted
the categorical values into integer values. The data normalization tech-
nique is applied to the dataset to convert the values of the dataset at
a common scale. We used Min–max normalization, one of the several

Expert Systems With Applications 238 (2024) 121751B. Sharma et al.
Table 1
NSL-KDD CUP dataset attack statistics showing number of records in every normal/attack category.

Attack_class Attack_SubType No. of records

‘‘Denial of Service (DoS)’’ ‘‘apache2’’, ‘‘land’’, ‘‘pod’’, ‘‘smurf’’, ‘‘udpstorm’’, ‘‘worm’’
‘‘back’’, ‘‘mailbomb’’, ‘‘teardrop’’, ‘‘neptune’’, ‘‘processtable’’

45 927

‘‘Probe’’ ‘‘ipsweep’’, ‘‘mscan’’, ‘‘portsweep’’, ‘‘satan’’, ‘‘nmap’’, ‘‘saint’’ 11 656

Root to local (R2L) ‘‘ftp_write’’, ‘‘httptunnel’’, ‘‘imap’’, ‘‘named’’, ‘‘phf’’, ‘‘sendmail’’,
‘‘Snmpgetattack’’, ‘‘snmpguess’’, ‘‘warezclient’’, ‘‘warezmaster’’,
‘‘xlock’’, ‘‘guess_passwd’’, ‘‘multihop’’, ‘‘spy’’, ‘‘xsnoop’’

995

User to Root (U2R) ‘‘buffer_overflow’’, ‘‘perl’’, ‘‘ps’’, ‘‘sqlattack’’, ‘‘xterm’’,
‘‘loadmodule’’, ‘‘rootkit’’

52

Normal 67 342

Sum of records 125972
Table 2
The features of NSL-KDD cup dataset.

S.No Feature name S.No Feature name S.No Feature name

1 protocol_type 15 num_shells 29 srv_rerror_rate
2 src_bytes 16 num_access_files 30 root_shell
3 rerror_rate 17 serror_rate 31 dst_host_diff_srv_rate
4 is_guest_login 18 dst_host_serror_rate 32 num_root
5 srv_serror_rate 19 duration 33 dst_host_same_src_port_rate
6 diff_srv_rate 20 count 34 is_host_login
7 service 21 srv_count 35 dst_host_srv_serror_rate
8 num_failed_logins 22 wrong_fragment 36 num_file_creations
9 dst_host_count 23 dst_bytes 37 dst_host_srv_rerror_rate
10 num_compromised 24 land 38 num_outbound_cmds
11 dst_host_same_srv_rate 25 hot 39 dst_host_srv_count
12 su_attempted 26 urgent 40 same_srv_rate
13 Flag 27 srv_diff_host_rate 41 dst_host_srv_diff_host_rate
14 dst_host_rerror_rate 28 logged_in 42 class
w
t
v
n
0
f
d
r
c
r
f

I
r
r
t
i

Table 3
The features of UNSW-NB 15 dataset.

S.No Feature name S.No Feature name S.No Feature name

1 Dur 16 djit 31 trans_depth
2 dpkts 17 ct_dst_src_ltm 32 response_body_len
3 spkts 18 ct_ftp_cmd 33 ct_srv_src
4 dbytes 19 ct_src_ltm 34 is_ftp_login
5 sbytes 20 is_sm_ips_ports 35 ct_dst_ltm
6 rate 21 swin 36 ct_dst_sport_ltm
7 Sttl 22 attack_cat 37 ct_src_dport_ltm
8 dttl 23 Stcpb 38 ct_state_ttl
9 sload 24 dtcpb 39 ct_flw_http_mthd
10 dload 25 dwin 40 ct_srv_dst
11 sloss 26 tcprtt 41 proto
12 dloss 27 synack 42 service
13 sinpkt 28 ackdat 43 state
14 dinpkt 29 smean 44 label
15 sjit 30 dmean

Table 4
UNSW NB15 dataset attack statistics displaying number of records in every
normal/attack category.

Attack category No of records Attack category No of records

Generic 58 871 Exploits 44 525
DoS 16 353 Fuzzers 24 246
Analysis 2677 Reconnaissance 13 987
Backdoor 2329 Worms 174
Shellcode 1511 Total Attack 164 673

Normal 930 00

Total records 257673

data normalization techniques available, to transform or normalize the
dataset at a common scale as shown in Eq. (3)

𝐹𝑛𝑒𝑤 = (𝐹 − 𝐹𝑚𝑖𝑛)∕(𝐹𝑚𝑎𝑥 − 𝐹𝑚𝑖𝑛), (3)

where 𝐹𝑚𝑖𝑛 is the smallest value of the feature and 𝐹𝑚𝑎𝑥 is the largest
6

value of the feature, and the 𝐹 is the actual value of the feature in the ‘
column. Furthermore, we get 𝐹𝑛𝑒𝑤 as the new value, which lies in the
range of 0 to 1. After label encoding, we then normalized the datasets
using min–max normalization.

4.2.1. Feature selection
After transforming the dataset to the common scale, we select the

important features by the feature selection techniques. We choose the
correlation-based filter method to select the features from various fea-
ture selection techniques. Feature selection reduces the computational
time and increases the storage efficiency. Using the correlation-based
filter method, where the features are chosen based on correlation score,
we picked the features. We applied the Pearson correlation method
to find the association between the features. The similarity measure
between two features/variables, F1 and F2, is given by Eq. (4) given
below:

𝑃𝐶𝐶 = 𝑐𝑜𝑣(𝐹1, 𝐹2)∕𝜎(𝐹1)𝜎(𝐹2), (4)

here the covariance is denoted by 𝑐𝑜𝑣, 𝜎 denotes the standard devia-
ion, and the Pearson correlation coefficient is denoted by 𝑃𝐶𝐶, whose
alue ranges from −1 to 1. Highly correlated features have a 𝑃𝐶𝐶 value
ear to −1 and 1, and uncorrelated features have a 𝑃𝐶𝐶 value near
. The features with high correlation values are considered redundant
eatures; thus, depending on the threshold value, we reduce the redun-
ancy by removing one of the features from the collection of highly
edundant features. We chose a threshold of 0.95, and features with
orrelation values higher than this value was chosen and considered
edundant. We then deleted one feature from the group of redundant
eatures.

During model building, we applied correlation for feature selection.
n NSL-KDD Cup dataset 6 features ‘‘srv_serror_rate’’, ‘‘dst_host_srv_
error_rate’’, ‘‘num_root’’, ‘‘dst_host_serror_rate’’, ‘‘dst_host_srv_serror _
ate’’, ‘‘srv_rerror_rate’’ are dropped from the dataset. After dropping,
he new dataset contains 36 features. Similarly we applied correlation
n UNSW-NB15 and ‘ct_src_dport_ltm’, ‘loss’, ‘dwin’, ‘ct_ftp_cmd’, ‘label’,

ct_srv_dst’ features are dropped from the dataset and the new dataset

Expert Systems With Applications 238 (2024) 121751B. Sharma et al.
Fig. 2. Correlation matrix of the NSL-KDD dataset.
Fig. 3. Correlation matrix of the UNSW-NB 15 dataset.
contains 38 features. The correlation matrix of the features of the NSL-
KDD and UNSW-NB15 datasets is shown in Figs. 2 and 3 respectively,
which shows the highly correlated features. Features are chosen that
have a value higher than the threshold of 0.95 and are regarded
as redundant, which leads to the removal of redundant features by
dropping one of the features. Fig. 4 shows the architecture of the DNN
model representing the layers and neurons, while Fig. 5 presents the
architecture of the CNN model representing a number of convolution,
pooling layers with filter size. We presented the confusion matrix for
classification in Fig. 6.

4.3. Feature preprocessing

The processed data is then made compatible with the model for
training after feature selection. The datasets are applied as input to
7

the DNN model and are compatible with it. However, the data is
transformed into 1D vector form for the 1D CNN model, which is then
used as input. The data is transformed into a 2D matrix for the 2D CNN
model before being compatible with it.After encoding and scaling, the
processed data is converted into 2D matrix form, which is then given as
input into the CNN model. The dataset is transformed into a 2D matrix
depending on the number of features. The dataset containing 𝑋 features
is rescaled into the 𝑁 × 𝑁 matrix, and if 𝑋 is not a perfect square, then
the record in the dataset is padded with ‘0’ and then transformed into
the nearest perfect square.

NSL-KDDnew dataset, after feature selection, has a total of 36
features ; therefore, in order to input the dataset into a 2D CNN model,
we first transformed the features into a 6 × 6 matrix. Then, we input the
dataset into the 2D CNN model, where each record of the dataset with
its 36 features is transformed into a 6 × 6 pixels. The UNSW-NBnew

Expert Systems With Applications 238 (2024) 121751B. Sharma et al.

d

Fig. 4. Architecture of the DNN model.

ataset contains 38 features and is transformed into a 7 × 7 matrix with
a padding of 11 pixels. We then split/divide the dataset into 25%–75%
testing and training sets.

4.4. Training and testing the model

Following encoding, scaling, and transformation, the transformed,
compatible dataset is used as the input for the training model, and
the model is trained using the training dataset. We trained DNN and
CNN models by randomly putting 75% rows in the training dataset
and then further split into putting 60% rows for the training and 15%
rows for the validation of the model. 25% dataset is applied for testing
the model. DNN model contains dense hidden layers, and the CNN
model contains three layers, namely a convolution layer, then a pooling
layer, and at last, it contains a fully connected layer for classification.
The convolution layer uses a filter or kernel, stride, padding, and an
activation function is applied, and the output is termed a ‘feature map’.
Pooling is applied for dimensionality reduction of each feature map,
such as Max pooling and Avg pooling. The resultant data from the
convolution and pooling is then input to a fully connected layer. The
model is trained using the training dataset during the training phase. In
order to make sure that the training and testing accuracies are nearly
comparable, the trained model is now tested in the testing phase using
a new dataset called the testing dataset that contains normal/attack
classes. The model is overfit if training accuracy is high and testing
accuracy is low.

5. Experimental setup

We utilized the TensorFlow library to build the models after upload-
ing the dataset to Google’s Colaboratory. After feature selection and
data preparation, the dataset is divided into three sets, each measuring
60%, 15%, and 25% of the total data set. These sets are referred to as
8

Table 5
Model performance evaluation metrics.

Accuracy A = (TrueP+TrueN)/(TrueP+TrueN+FalseP+FalseN)
Precision P = TrueP/(TrueP+FalseP)
Recall R = TrueP/(TrueP+FalseN)
F1 Score F = 2PR/(P+R)

the training set and validation set for training the model, and then the
model trained is tested on the testing set.

Each of the three dense hidden layers in our DNN model, each with
64 neurons, contains five neurons in it. Dense hidden layers receive
ReLu activation, but the last dense layer receives softmax activation, as
seen in Fig. 4. Fig. 4 illustrates how we used the Adam optimizer. The
sparse categorical loss function is used to optimize the model during
training. The probability between the real value and predicted values
is compared, and the loss, which measures how far the predicted value
is from the actual value, is determined. Loss minimization is the goal
during the model training. To prevent the model from being overfitting,
we tweaked it using several hyperparameters like weight decay and
dropout rate.

With a kernel size of (3, 3), ReLu activation function, and Max
pooling with a pool size of (2, 2), we create a 2D-CNN model with three
convolution layers and 64, 32, and 32 neurons. According to Fig. 5, the
number of neurons in the last layer depends on the number of classes
in the dataset, and there are 5 classes in the dataset; the dense layer,
which is at the last of the model, has 5 neurons. The softmax activation
function, which converts the n real values into values between 0 and
1, is utilized at the last layer. Additionally, we chose a 3 kernel size
and a 2 pooling size for the 1D-CNN model. With the help of various
hyperparameters, including kernel size and dropout rate, the model was
tweaked.

To prevent overfitting, we trained the model with various hyperpa-
rameters, a weight decay of 0.0001, a dropout rate of 0, and a learning
rate of 0.001 for epochs of 20 (Sharma, Sharma, & Lal, 2022a). Using a
test dataset, we evaluated the model. For the NSL-KDDnew dataset, the
accuracy obtained by the DNN, 1D-CNN, and 2D-CNN models is 0.993,
0.992, and 0.994, respectively. With the UNSW-NBnew dataset as our
test subject, we were able to get accuracy scores of 0.80, 0.80, and 0.81
for the DNN, 1D-CNN, and 2D-CNN models, respectively.

6. Result analysis

The performance of deep learning models is evaluated using differ-
ent parameters. In our experiment, to evaluate the performance of the
model, we have used the following evaluation metrics, where C1 and
C2 are the two different classes:

• True-positives (TrueP): the outcome/predicted value which be-
longs to class C1 is accurately categorized as class C1.

• False-positive (FalseP): the outcome/predicted value which be-
longs to class C2 is incorrectly identified as class C1.

• True-negatives (TrueN): the outcome/predicted value which be-
longs to class C2 is accurately categorized as class C2.

• False-negative (FalseN): the outcome/predicted value which be-
longs to class C1 is incorrectly identified as class C2.

We presented the confusion matrix for classification in Fig. 6. We also
calculated the following evaluation metrics as mentioned below and
tabulated in Table 5

• Precision (P): It finds how accurate/ precise the model is by
measuring the number of actual positives from the total number
of predicted positives.

• Recall (R): It finds how many are predicted as positives out of the
actual positives.

Expert Systems With Applications 238 (2024) 121751B. Sharma et al.
Fig. 5. Architecture of the CNN model.
Fig. 6. Confusion matrix.

• F-measure (F1-Score): It finds the balance between Precision and
Recall by calculating the harmonic mean of recall (R) and preci-
sion (P).

• Accuracy (ACC): It finds how many are correctly predicted as
positives and negatives from the total number of predictions
made.

6.1. Analysis and comparison of results

After training the DNN and CNN model for 20 epochs, we evaluate
the performance of the model by testing the model on unseen data. We
verified the model with testing data of both datasets, namely NSL-KDD
and UNSW-NB15, for multi-class classification. The evaluation metrics
used for evaluating the performance of the model are as follows:

1. Confusion matrix: It presents the different outcomes in the table
form and helps to visualize the outcome of the model. We plot
the confusion matrix for both datasets containing the number
and percentage of different normal/attack classes. The number
of True Positives (TP) for each class is derived from the di-
agonal elements in the confusion matrix. The DNN, 1D-CNN,
and 2D-CNN model’s confusion matrix for the testing set of the
NSL-KDDnew dataset is shown in Fig. 7, and for UNSW-NBnew
dataset is shown in Fig. 9.

2. Precision, recall, and F1-Score: we derived the value of P, R, and
F1-Score for the NSL-KDDnew dataset as shown in Table 6 and
for UNSW-NBnew as shown in Table 7. High precision shows
that the False Positives (FP) are less, and the high recall value
shows that the False Negatives (FN) are less. Comparison of P, R,
and F1-Score evaluation metrics of deep learning models for the
NSL-KDDnew dataset is shown in Fig. 8, and for UNSW-NBnew
dataset is shown in Fig. 10.

3. Accuracy and Loss: The NSL-KDDnew dataset: The proposed
DNN model with a 0.001 learning rate, 0.0001 weight decay,
0.01 dropout rate, and 20 epochs achieved the accuracy of 0.99
and loss is 0.04. The 2D CNN model with a 0.001 learning rate
is trained to 20 epochs and attained the training and testing
accuracy of 0.994, with a loss of 0.01. 1D-CNN model achieved
9

an accuracy of 0.989 and a loss is 0.02. A model with higher
accuracy and reduced loss is considered better. The results show
that the 2D CNN model performs better in accuracy and loss, as
shown in Figs. 11(a) and 11(b).
The UNSW-NBnew dataset: The proposed DNN model with the
same parameters attained an accuracy of 0.80 and a loss of 0.47.
1D-CNN model with the same kernel and pool size achieved an
accuracy of 0.80 and a loss of 0.41. 2D-CNN model with the same
configuration attained an accuracy of 0.81 and a loss of 0.40, as
shown in Figs. 11(c) and 11(d).

4. Model Training Time: We evaluated the training time of the
model. The difference between the start and end times is eval-
uated during model training. The training times for the DNN,
1D CNN, and 2D CNN models for the NSL-KDDnew dataset are
142 ms, 325 ms, and 340 ms, respectively. The training times
for DNN, 1DCNN, and 2DCNN models are 323 ms, 442 ms, and
455 ms for the UNSW-NBnew dataset, respectively. The 2D-CNN
model achieved higher accuracy for both datasets; however, the
time taken to train the CNN model is more than the DNN model.
The DNN model trained faster on two separate datasets.

We also compared the proposed Deep learning models with the
other machine learning (ML) models such as ‘‘k-nearest neighbors
algorithm (KNN)’’, ‘‘Decision Tree (DT)’’, and ‘‘support vector machine
(SVM)’’ models using the accuracy evaluation metric for multi-class
classification as shown in Fig. 12. We applied the same label encod-
ing, normalization methods, and selected features using correlation,
and trained the models using two datasets, NSL-KDDnew, and UNSW-
NBnew datasets. We implemented ML and DL techniques and achieved
higher accuracy using DL models with less training time. We conclude
that the 2D-CNN model achieved the highest accuracy for both datasets,
but the training time of 2D-CNN is more than the DNN model.

6.2. Model explanation

The DNN and 2D CNN models outperformed the other models when
we compared them on two separate datasets. We also discovered that
the DNN model required less time for model training when comparing
the training times of the CNN model. Therefore, we chose the DNN
model, and to build trust, we used explain ability tools to the DNN
model.

• LIME Model Explanation: Select a particular instance in the
testing dataset to get the probability values for each class. The
LIME method explains the reason for assigning the probability to
each class. Probability values are compared with the actual class
of the instance.
Instance prediction: Depending upon the values and weight
assigned to the features, class probability is calculated, and then
predict the class (Sharma, Sharma, & Lal, 2023). We selected four
instances from the testing set and predicted the probability values
of each class, as shown in Figs. 13 and 14. The left side of the
Figure shows the probability of each class, and in the middle bar

Expert Systems With Applications 238 (2024) 121751B. Sharma et al.
Fig. 7. Confusion matrix of (a) DNN, (b) 1D CNN and (c) 2D CNN model for NSL-KDDnew dataset.
Fig. 8. (a) Precision, (b) Recall and (c) F1-Score of DNN, 1D-CNN and 2D-CNN model for NSL-KDDnew.
Fig. 9. Confusion matrix of DNN, 1D CNN and 2D CNN model for UNSW-NBnew.
Fig. 10. (a) Precision, (b) Recall and (c) F1-Score of DNN, 1D-CNN and 2D-CNN model for UNSW-NBnew.
Table 6
Evaluation metrics of DNN, 1D-CNN and 2D-CNN model for NSL-KDDnew.

Classification report

Attacks DNN model ID CNN model 2D CNN model

Precision Recall F1-Score Precision Recall F1-Score Precision Recall F1-Score

DoS 1.00 0.99 1.00 1.00 0.99 0.99 1.00 1.00 1.00
Normal 0.99 1.00 0.99 0.98 0.99 0.99 0.99 1.00 0.99
Probe 0.99 0.99 0.99 0.98 0.99 0.98 0.98 0.99 0.99
R2L 0.80 0.54 0.06 0.85 0.70 0.77 0.93 0.51 0.66
U2R 0.83 0.38 0.53 0.58 0.54 0.56 0.60 0.23 0.33

Accuracy 0.99 0.99 0.99
10

Expert Systems With Applications 238 (2024) 121751B. Sharma et al.
Table 7
Evaluation metrics of DNN, 1D-CNN and 2D-CNN model for UNSW-NBnew dataset.

Classification report

Attacks DNN model ID CNN model 2D CNN model

Precision Recall F1-Score Precision Recall F1-Score Precision Recall F1-Score

DoS 0.49 0.03 0.06 0.48 0.06 0.10 0.57 0.04 0.07
Exploits 0.67 0.90 0.77 0.64 0.94 0.76 0.69 0.91 0.78
Fuzzers 0.59 0.81 0.68 0.65 0.67 0.66 0.60 0.80 0.69
Generic 1.00 0.97 0.98 0.99 0.97 0.98 1.00 0.97 0.99
Normal 0.93 0.79 0.85 0.91 0.81 0.85 0.91 0.81 0.86

Accuracy 0.80 0.80 0.81
Fig. 11. (a) Accuracy vs. Epochs for NSL-KDDnew dataset (b) Loss vs. Epochs for NSL-KDDnew dataset (c) Accuracy vs. Epochs for UNSW-NBnew dataset (d) Loss vs. Epochs of
UNSW-NBnew dataset.
chart, it shows the features of interest, and in the right, it shows
the value of features. Orange specifies the positive impact, and
blue specifies the negative impact of the feature.
Fig. 13(a) shows that the actual value is Normal, and the pre-
dicted value is normal. On the left, we see that the model pre-
dicted as Normal with 100% accuracy, and in the middle, it
shows the top ten features. The right side of the bar chart shows
the features which help to predict the instance as Normal, and
the left side shows the features which help to predict the in-
stance as not Normal. To predict instance as Normal, the features
wrong_fragment, hot, serror_rate, rerror_rate, su_attempted have
values ≤ 0.00, and the weight assigned are 0.40, 0.39, 0.30, 0.23,
0.16 respectively. And to predict an instance as Not Normal, the
features protocol_type and num_shells have values ≤ 0.50 and
0.00, respectively and the weights assigned are 0.14 and 0.09.
The value of features is shown on the right side for the selected
11
instance. Logged_in has a value of 1.00, and the weight assigned
in the bar chart is 0.26, the value of protocol_type is 0.5, and the
weight assigned is 0.14. The total value is 0.26 for Normal and
0.07 for Not Normal, and since the value of Normal is greater
than Not Normal, the model predicted the instance as Normal.
Similarly, the actual value is DoS, and the predicted value is DoS
with 100% accuracy, as shown in Fig. 13(b).
For UNSW-NB 15, the actual value is Normal, and the predicted
value is Normal with 100% accuracy, as shown in Fig. 14(a).
Another instance selected to form the testing set shows that the
actual value is Exploits and the predicted value is Exploits with
51% accuracy, as shown in Fig. 14(b).

• SHAP Model Explanation: SHAP is used widely for explaining
models and understanding how the features are related to the
predictions. SHAP provides the local and global explanation. In
local explanation, we select a particular instance and explain

Expert Systems With Applications 238 (2024) 121751B. Sharma et al.
Fig. 12. Comparisons of accuracy of different models.
Fig. 13. LIME explanation of NSL-KDDnew dataset instances.
the model prediction showing each feature’s contribution to the
prediction of the instance selected. In the global explanation,
we explain the model prediction using the contribution of each
feature in the prediction.
SHAP calculates the Shapley value, which shows the impact of
features on the model predictions. We selected a particular in-
stance and calculated the shape values. Fig. 15 shows the local
12
plot of the DoS instance, showing each feature’s contribution to
the prediction. The plot shows the base value, and the features
having a positive impact on the prediction are in red, and the
features showing a negative impact on the predictions are in
blue. The base value in the plot is the average of all prediction
values. Each strip in the plot shows the impact of the features in
pushing the predicted value close or farther from the base value.

Expert Systems With Applications 238 (2024) 121751B. Sharma et al.
Fig. 14. LIME explanation of UNSW-NBnew dataset instances.
Fig. 15. The local plot of DoS instance of NSL-KDDnew showing the each feature’s contribution to the prediction.
Fig. 16. The local plot of normal instance of UNSW-NBnew showing the each feature’s contribution to the prediction.
13

Expert Systems With Applications 238 (2024) 121751B. Sharma et al.
Fig. 17. Summary plot of DoS class of NSL-KDDnew dataset.

Fig. 18. Summary plot of normal class of UNSW-NBnew.

Red strip features push the value to higher values, whereas blue
strip features push the value to lower values. The contribution of
features having wider strips is more.
The base value is 0.361, and for the particular record selected
from the NSL-KDDnew dataset, the features ‘same_srv_rate’, ‘dst_
host_same_srv_rate’, ‘dst_host_srv_count’, ‘flag’, ‘diff_srv_rate, srv_
count’’, srv_count’ and hot have a positive contribution on the
prediction value, and dst_host_count have a negative contribution.
Hot is the most important feature as the contribution has a wider
range. The total positive contribution is greater than the negative
contribution, and the final predicted value is greater than the base
value, so the predicted class is DoS.
Similarly, we selected the record from the UNSW-NBnew dataset
and found that the base value is 0.1684, and the predicted value is
0.80, as shown in Fig. 16. The feature ’dttl’ has a wider range and
14
Fig. 19. Force plot of NSL-KDDnew dataset.

Fig. 20. Force plot of UNSW-NBnew.

is the most important feature. For a global explanation, we plot
a summary chart. We selected 50 samples of the testing dataset
and derived a summary plot for both datasets where each point
in the row shows the sharp value of testing samples. The higher
value impacts positively on the prediction, and the lower value
contributes negatively. Serror_rate is the most important feature
for the DoS class in NSL-KDD dataset, as shown in Fig. 17. The
most important feature for the Normal class in the UNSW-NB
dataset is ‘data’, as shown in Fig. 18.
Force plot shows that for the NSL-KDD dataset, ‘serror_rate’ is
the most important feature, and class labels are 0 for DoS, 1 for
Normal, 2 for Probe, 3 for R2L, 4 for U2R in the NSL-KDDnew
datasets, as shown in Fig. 19. Similarly, the Force plot shows that
‘dttl’ is the most important feature, and class labels are 0 for DoS,
1 for Exploits, 2 for Fuzzers, 3 for Generic, 4 for Normal classes
in the UNSW-NBnew datasets, as shown in Fig. 20.

Expert Systems With Applications 238 (2024) 121751B. Sharma et al.

W

W

D

c
i

D

R

A

A

A

A

A

A

A

A

A

A

C

D

F

F

S

S

S

S

7. Conclusions

In this manuscript, we study different layers of IoT with the main
security issues in each layer and propose a deep learning model for
intrusion detection, and explain the model using an explainable AI
concept to build trust in the model. In multiclass classification, our
Deep learning model achieved higher accuracy for both datasets. We
also explained the DNN model using LIME and SHAP. The dataset
applied to the model is not balanced, so the accuracy of the class having
a majority number of records are high as compared to the number of
minority class, so our future work is to resolve the issue and improve
the accuracy of minority classes in the dataset. Our proposed method
achieved high accuracy with reduced training time. However, several
issues still need to be improved.

The proposed model can be applied to other datasets, and the pre-
dictions of the model can be explained using LIME and SHAP methods.
We reduced the number of features by selecting fewer features, which
reduced the number of inputs and decreased the computational cost.
Our future work is to apply other feature reduction techniques and
find the optimal number of features that gives high accuracy to the
model. The limitation of our model is the class imbalance issue in the
dataset. We need to resolve the class imbalance issue by generating the
synthetic data using GANs, applying other feature reduction techniques,
and finding the best possible set of features. We applied LIME and SHAP
to explain the model only, but after visualizing the outcome of SHAP
and LIME, we can make the changes to the DNN model and find the
best model for the dataset.

CRediT authorship contribution statement

Bhawana Sharma: Conceptualization, Methodology, Software,
riting – original draft. Lokesh Sharma: Visualization, Investigation,

Supervision. Chhagan Lal: Supervision, Software. Satyabrata Roy:
riting – review & editing, Supervision, Investigation.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared to
nfluence the work reported in this paper.

ata availability

Data will be made available on request

eferences

bd Elaziz, M., Al-qaness, M. A., Dahou, A., Ibrahim, R. A., & Abd El-Latif, A. A.
(2023). Intrusion detection approach for cloud and IoT environments using deep
learning and Capuchin search algorithm. Advances in Engineering Software, 176,
Article 103402.

hmad, Z., Shahid Khan, A., Wai Shiang, C., Abdullah, J., & Ahmad, F. (2021).
Network intrusion detection system: A systematic study of machine learning and
deep learning approaches. Transactions on Emerging Telecommunications Technologies,
32(1), Article e4150.

l-Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari, M., & Ayyash, M. (2015).
Internet of things: A survey on enabling technologies, protocols, and applications.
IEEE Communications Surveys & Tutorials, 17(4), 2347–2376.

l-Garadi, M. A., Mohamed, A., Al-Ali, A. K., Du, X., Ali, I., & Guizani, M. (2020). A
survey of machine and deep learning methods for internet of things (IoT) security.
IEEE Communications Surveys & Tutorials, 22(3), 1646–1685.

l Hwaitat, A. K., Almaiah, M. A., Almomani, O., Al-Zahrani, M., Al-Sayed, R. M.,
Asaifi, R. M., et al. (2020). Improved security particle swarm optimization (PSO)
algorithm to detect radio jamming attacks in mobile networks. International Journal
of Advanced Computer Science and Applications, 11(4).

l Nafea, R., & Almaiah, M. A. (2021). Cyber security threats in cloud: Literature
review. In 2021 international conference on information technology (ICIT) (pp.
779–786). IEEE.

li, A., Almaiah, M. A., Hajjej, F., Pasha, M. F., Fang, O. H., Khan, R., et al. (2022).
An industrial IoT-based blockchain-enabled secure searchable encryption approach
15

for healthcare systems using neural network. Sensors, 22(2), 572.
lmaiah, A., & Almomani, O. (2020). An investigation of digital forensics for shamoon
attack behaviour in FOG computing and threat intelligence for incident response.
Journal of Theoretical and Applied Information Technology, 15, 98.

lmaiah, M. A., Hajjej, F., Ali, A., Pasha, M. F., & Almomani, O. (2022). A novel
hybrid trustworthy decentralized authentication and data preservation model for
digital healthcare IoT based CPS. Sensors, 22(4), 1448.

ltulaihan, E., Almaiah, M. A., & Aljughaiman, A. (2022). Cybersecurity threats,
countermeasures and mitigation techniques on the IoT: Future research directions.
Electronics, 11(20), 3330.

haabouni, N., Mosbah, M., Zemmari, A., Sauvignac, C., & Faruki, P. (2019). Net-
work intrusion detection for IoT security based on learning techniques. IEEE
Communications Surveys & Tutorials, 21(3), 2671–2701.

a Xu, L., He, W., & Li, S. (2014). Internet of things in industries: A survey. IEEE
Transactions on Industrial Informatics, 10(4), 2233–2243.

atani, A., Dahou, A., Abd Elaziz, M., Al-Qaness, M. A., Lu, S., Alfadhli, S. A., et
al. (2023). Enhancing intrusion detection systems for IoT and cloud environments
using a growth optimizer algorithm and conventional neural networks. Sensors,
23(9), 4430.

enanir, S., Semchedine, F., & Baadache, A. (2019). A machine learning-based
lightweight intrusion detection system for the internet of things. Revista d’Intelligence
Artificial, 33(3), 203–211.

Ge, M., Syed, N. F., Fu, X., Baig, Z., & Robles-Kelly, A. (2021). Towards a deep learning-
driven intrusion detection approach for Internet of Things. Computer Networks, 186,
Article 107784.

Hassan, M. M., Gumaei, A., Alsanad, A., Alrubaian, M., & Fortino, G. (2020). A hybrid
deep learning model for efficient intrusion detection in big data environment.
Information Sciences, 513, 386–396.

Karatas, G., Demir, O., & Sahingoz, O. K. (2020). Increasing the performance of machine
learning-based IDSs on an imbalanced and up-to-date dataset. IEEE Access, 8,
32150–32162.

Kasongo, S. M., & Sun, Y. (2020). A deep learning method with wrapper based feature
extraction for wireless intrusion detection system. Computers & Security, 92, Article
101752.

Khan, Z. A., & Herrmann, P. (2019). Recent advancements in intrusion detection
systems for the internet of things. Security and Communication Networks, 2019.

Kim, J., Kim, J., Kim, H., Shim, M., & Choi, E. (2020). CNN-based network intrusion
detection against denial-of-service attacks. Electronics, 9(6), 916.

Liang, C., Shanmugam, B., Azam, S., Jonkman, M., De Boer, F., & Narayansamy, G.
(2019). Intrusion detection system for Internet of Things based on a machine
learning approach. In 2019 international conference on vision towards emerging trends
in communication and networking (ViTECoN) (pp. 1–6). IEEE.

Lin, J., Yu, W., Zhang, N., Yang, X., Zhang, H., & Zhao, W. (2017). A survey on
internet of things: Architecture, enabling technologies, security and privacy, and
applications. IEEE Internet of Things Journal, 4(5), 1125–1142.

Ma, W. (2020). Analysis of anomaly detection method for internet of things based
on deep learning. Transactions on Emerging Telecommunications Technologies, 31(12),
Article e3893.

Meidan, Y., Bohadana, M., Mathov, Y., Mirsky, Y., Shabtai, A., Breitenbacher, D.,
et al. (2018). N-baiot—network-based detection of iot botnet attacks using deep
autoencoders. IEEE Pervasive Computing, 17(3), 12–22.

Nagisetty, A., & Gupta, G. P. (2019). Framework for detection of malicious activities in
IoT networks using keras deep learning library. In 2019 3rd international conference
on computing methodologies and communication (ICCMC) (pp. 633–637). IEEE.

Qiu, H., Dong, T., Zhang, T., Lu, J., Memmi, G., & Qiu, M. (2020). Adversarial attacks
against network intrusion detection in IoT systems. IEEE Internet of Things Journal,
8(13), 10327–10335.

Ribeiro, M. T., Singh, S., & Guestrin, C. (2016). ‘‘Why should i trust you?’’ Explain-
ing the predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD
international conference on knowledge discovery and data mining (pp. 1135–1144).

Samek, W., Wiegand, T., & Müller, K.-R. (2017). Explainable artificial intelligence:
Understanding, visualizing and interpreting deep learning models. arXiv preprint
arXiv:1708.08296.

Sharma, B., Sharma, L., & Lal, C. (2019). Anomaly detection techniques using
deep learning in IoT: a survey. In 2019 international conference on computational
intelligence and knowledge economy (ICCIKE) (pp. 146–149). IEEE.

harma, B., Sharma, L., & Lal, C. (2022a). Anomaly based network intrusion detection
for IoT attacks using convolution neural network. In 2022 IEEE 7th international
conference for convergence in technology (I2CT) (pp. 1–6). http://dx.doi.org/10.1109/
I2CT54291.2022.9824229.

harma, B., Sharma, L., & Lal, C. (2022b). Feature selection and deep learning technique
for intrusion detection system in IoT. In Proceedings of international conference on
computational intelligence: ICCI 2020 (pp. 253–261). Springer.

harma, B., Sharma, L., & Lal, C. (2023). Anomaly-based DNN model for intrusion
detection in IoT and model explanation: Explainable artificial intelligence. In
Proceedings of second international conference on computational electronics for wireless
communications: ICCWC 2022 (pp. 315–324). Springer.

iam, A. I., Almaiah, M. A., Al-Zahrani, A., Elazm, A. A., El Banby, G. M., El-Shafai, W.,
et al. (2021). Secure health monitoring communication systems based on IoT and
cloud computing for medical emergency applications. Computational Intelligence and
Neuroscience, 2021.

http://refhub.elsevier.com/S0957-4174(23)02253-4/sb1
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb1
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb1
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb1
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb1
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb1
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb1
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb2
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb2
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb2
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb2
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb2
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb2
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb2
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb3
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb3
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb3
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb3
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb3
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb4
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb4
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb4
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb4
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb4
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb5
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb5
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb5
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb5
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb5
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb5
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb5
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb6
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb6
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb6
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb6
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb6
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb7
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb7
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb7
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb7
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb7
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb8
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb8
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb8
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb8
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb8
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb9
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb9
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb9
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb9
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb9
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb10
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb10
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb10
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb10
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb10
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb11
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb11
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb11
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb11
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb11
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb12
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb12
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb12
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb13
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb13
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb13
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb13
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb13
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb13
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb13
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb14
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb14
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb14
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb14
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb14
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb15
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb15
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb15
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb15
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb15
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb16
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb16
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb16
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb16
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb16
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb17
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb17
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb17
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb17
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb17
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb18
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb18
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb18
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb18
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb18
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb19
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb19
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb19
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb20
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb20
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb20
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb21
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb21
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb21
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb21
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb21
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb21
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb21
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb22
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb22
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb22
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb22
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb22
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb23
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb23
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb23
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb23
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb23
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb24
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb24
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb24
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb24
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb24
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb25
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb25
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb25
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb25
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb25
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb26
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb26
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb26
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb26
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb26
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb27
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb27
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb27
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb27
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb27
http://arxiv.org/abs/1708.08296
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb29
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb29
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb29
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb29
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb29
http://dx.doi.org/10.1109/I2CT54291.2022.9824229
http://dx.doi.org/10.1109/I2CT54291.2022.9824229
http://dx.doi.org/10.1109/I2CT54291.2022.9824229
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb31
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb31
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb31
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb31
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb31
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb32
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb32
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb32
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb32
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb32
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb32
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb32
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb33
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb33
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb33
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb33
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb33
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb33
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb33

Expert Systems With Applications 238 (2024) 121751B. Sharma et al.

T

V

V

X

X

X

Z

Z

Sun, P., Liu, P., Li, Q., Liu, C., Lu, X., Hao, R., et al. (2020). DL-IDS: extracting
features using CNN-LSTM hybrid network for intrusion detection system. Security
and Communication Networks, 2020.

Teng, S., Wu, N., Zhu, H., Teng, L., & Zhang, W. (2017). SVM-DT-based adaptive
and collaborative intrusion detection. IEEE/CAA Journal of Automatica Sinica, 5(1),
108–118.

hamilarasu, G., & Chawla, S. (2019). Towards deep-learning-driven intrusion detection
for the internet of things. Sensors, 19(9), 1977.

inayakumar, R., Alazab, M., Soman, K., Poornachandran, P., Al-Nemrat, A., &
Venkatraman, S. (2019). Deep learning approach for intelligent intrusion detection
system. Ieee Access, 7, 41525–41550.

inayakumar, R., Alazab, M., Srinivasan, S., Pham, Q.-V., Padannayil, S. K., &
Simran, K. (2020). A visualized botnet detection system based deep learning for the
internet of things networks of smart cities. IEEE Transactions on Industry Applications,
56(4), 4436–4456.
16
iao, Y., Xing, C., Zhang, T., & Zhao, Z. (2019). An intrusion detection model based on
feature reduction and convolutional neural networks. IEEE Access, 7, 42210–42219.

in, Y., Kong, L., Liu, Z., Chen, Y., Li, Y., Zhu, H., et al. (2018). Machine learning and
deep learning methods for cybersecurity. Ieee Access, 6, 35365–35381.

u, H., Fang, C., Cao, Q., Fu, C., Yan, L., & Wei, S. (2018). Application of a
distance-weighted KNN algorithm improved by moth-flame optimization in network
intrusion detection. In 2018 IEEE 4th international symposium on wireless systems
within the international conferences on intelligent data acquisition and advanced
computing systems (IDAACS-SWS) (pp. 166–170). IEEE.

hou, Y., Han, M., Liu, L., He, J. S., & Wang, Y. (2018). Deep learning approach
for cyberattack detection. In IEEE INFOCOM 2018-IEEE conference on computer
communications workshops (INFOCOM WKSHPS) (pp. 262–267). IEEE.

hou, Z., Hooker, G., & Wang, F. (2021). S-lime: Stabilized-lime for model explanation.
In Proceedings of the 27th ACM SIGKDD conference on knowledge discovery & data
mining (pp. 2429–2438).

http://refhub.elsevier.com/S0957-4174(23)02253-4/sb34
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb34
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb34
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb34
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb34
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb35
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb35
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb35
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb35
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb35
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb36
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb36
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb36
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb37
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb37
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb37
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb37
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb37
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb38
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb38
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb38
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb38
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb38
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb38
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb38
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb39
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb39
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb39
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb40
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb40
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb40
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb41
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb41
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb41
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb41
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb41
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb41
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb41
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb41
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb41
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb42
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb42
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb42
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb42
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb42
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb43
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb43
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb43
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb43
http://refhub.elsevier.com/S0957-4174(23)02253-4/sb43

	Explainable artificial intelligence for intrusion detection in IoT networks: A deep learning based approach
	Introduction
	Related Works
	IDS Studies Based on ML and DL techniques
	Explainable AI and IDS studies based on model explanation
	Local Interpretable Model-Agnostic Explanations (LIME)
	Shapley Additive Explanations (SHAP)

	Proposed Framework
	Dataset Description
	Data Preprocessing
	Feature Selection
	Correlation-Based Filter Method
	Wrapper Methods
	Embedded Methods

	Feature Preprocessing
	Training and Testing the dataset
	Model explanation

	Evaluation and Analysis
	Dataset Analysis
	NSL-KDD dataset
	UNSW-NB15 dataset

	Data Pre-processing
	Feature Selection

	Feature Preprocessing
	Training and Testing the model

	Experimental Setup
	Result Analysis
	Analysis and comparison of results
	Model Explanation

	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	References

