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A B S T R A C T   

The UniGrow model is an analytical procedure to assess the fatigue crack growth based on elastic–plastic crack 
tip stresses and strains. The assumption is that fatigue crack growth (FCG) can be considered as a process of 
successive crack re-initiations resulting from material damage in the crack tip zone. The main parameters of this 
model are the crack tip radius and the elementary block size. Experimental FCG data obtained for S355 carbon 
steel showed that assuming the elementary block size with the same value of the crack tip radius to collapse FCG 
data using UniGrow model is non-coherent with experimental evidence. In this sense, a new approach is pro-
posed by establish a clear distinction between crack tip radius and elementary block size. The value of the crack 
tip radius, ρ, was defined by correlation with experimental and numerical values of residual compressive stress 
field ahead of the crack tip while for the elementary block size, ρ*, a new expression was proposed which relies 
on effective stress intensity factor range and cyclic yield strength. This research intends to be a valuable 
contribution for the implementation of UniGrow model to assess the fatigue crack growth of a material.   

1. Introduction 

Fatigue crack propagation has been analyzed mainly using the 
expression proposed by Paris and Erdogan [1]: 

da
dN

= C
(
ΔKappl

)m (1)  

where da/dN is the fatigue crack growth rate, ΔKappl is the applied value 
of the stress intensity factor range and C and m are material constants. 
The main limitation of this model is that mean stress effects are not 
considered and there are many materials in which the stress ratio 
changes the FCG behavior. In 1970, Elber [2] studied the influence of 
mean stress effects on FCG and proposed new parameters to describe it. 
He introduced the concept of the crack tip closure which conducted to 
present FCG models based on effective stress intensity factor range, 
ΔKeff : 

da
dN

= C
(
ΔKeff

)m (2) 

In 1985, Glinka [3] introduced the use of strain-based fatigue models 

to analyze FCG process. He developed the concept of discretization using 
elementary material blocks whose failure defines the crack growth. 
Later, in 1999 Peeker and Niemi [4] proposed a model for FCG based on 
the superposition of the near threshold and stable fatigue crack growth 
regimes using cyclic elastoplastic stress–strain constants as well as 
strain-life constants. More recently, Noroozi and Glinka [5–7] developed 
the UniGrow model based on the elastoplastic crack tip stress-stain 
history analysis in which the influence of the compressive stress field 
formed ahead of the crack tip during FCG is included. This model was 
develop using the Smith-Watson-Topper as fatigue damage parameter. 
In 2007, Hurley and Evans [8] presented a new methodology based on 
the assumption that the number of cycles to propagate a crack through 
the cyclic plastic zone is the same as the one to initiate a crack in a 
specimen under plain strain conditions. In 2017, Ferreira et al [9] pro-
posed the use of strip-yield mechanics to model fatigue crack growth. 
New developments on crack propagation models based on residual 
stresses has been proposed by Correia et al. [10], Hafezi et al. [11] and 
Jesus and Correia [12] which considers the assumption of the UniGrow 
model but the elastoplastic stress fields are obtained by finite elements. 
It is also important to refer that the implementation of probabilistic 
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analysis to FCG models based on local approaches has been performed 
by Correia et al. [13] and Bogdanov et al. [14]. These FCG models have 
been also used in procedures to compute S-N curves of structural details, 
namely notched plates. Correia et al. [15,16] proposed a general pro-
cedure to obtain probabilistic S-N fields for notched plate details. 

General applications of UniGrow model are related with FCG for long 
cracks (>0.5–1.0 mm), however Bang et al [17] proposed a modification 
on the model for short FCG based on experimental results on aluminum 
and titanium alloys. Two improvement modelling methods were pre-
sented: stress intensity correction and data fitting. Results from both 
methods were better for high stress levels and stress intensity correction 
method lead to more accurate predictions. Later on 2019, Bang et al [18] 
further improved the proposed modifications on the UniGrow model in 
order to consider both short and long crack growth behavior. More 
recently, Bang et al [19] developed a unified modelling framework for 
integrating short and long crack propagation for the formulation of the 
crack driving force of the UniGrow model. 

The stress ratio effects have also been studied by Daniel Kujawski 
[20–22]. An analytical method to estimate the elastoplastic stress–strain 
field ahead of the crack tip was proposed and results were compared 
with experimental and numerical data [20]. Moreover, in 2021 a 
damaging stress intensity function was proposed (analogous to SWT 
parameter) to analyze stress ratio effects in metallic materials under 
constant amplitude loading mainly in threshold and lower Paris region 
of FCG [21]. Later on 2022, the new crack driving force proposed by 
Daniel Kujawski [22] was extended to a wide variety of different alloys 
and for both positive and negative stress ratios. 

As it was studied in Mikheevskiy [23], by computing the stresses and 
strains ahead of the crack tip with a stationary crack, the effect of the 
prior loading history is neglected. However, it was concluded that it 
influences only the stresses at maximum load level and insignificant 
effect on stresses at minimum load level. 

In this paper, fatigue crack propagation of S355 is analyzed consid-
ering a unified two-stage methodology. This material was chosen 
because it is commonly used in civil engineering structures that are 
subjected to fatigue loading conditions, namely bridge structures. 
Experimental results of low-cycle fatigue tests conducted by different 
authors are analyzed and a cyclic elastoplastic stress–strain curve is 
proposed. Fatigue crack growth tests on specimens from S355 were 
conducted and the applied and effective values of stress intensity factors 
were measured. The main goal of this scientific investigation was to 
analyze the implementation of UniGrow model to predict the fatigue 
crack growth behavior of S355 material. Additionally, it is proposed to 
distinguish the value of the crack tip radius and the value of the 
elementary block size. Residual stress intensity factor was computed by 
means of experimental and numerical procedures which enable to 
determine the proposed crack tip radius for this material. The elemen-
tary block size was considered as dependent on the effective stress in-
tensity factor range and the cyclic yield strength of the material. An 
expression to compute the elementary block size is proposed that 
showed good results to collapse FCG experimental data. 

2. Fatigue crack propagation model - UniGrow 

Fatigue crack growth process is mainly controlled by the stress–-
strain field ahead of the crack tip. However, it is not easy to compute 
elastoplastic stresses and strains at the crack tip since they are strongly 
dependent on the applied method. To overcome this problem, general 
approaches to fatigue crack growth are based on fracture mechanics 
which uses global parameters such as nominal stress, crack length, ge-
ometry, for example, which are then combined to obtain one general 
parameter, usually, the stress intensity factor (SIF). However, the effect 
of residual stresses induced by reversed plastic deformations affects the 
correlation between SIF and actual stress–strain field. 

Fig. 1. Schematic representation of remote applied stress and resulting local crack tip stress fields.  
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There are several scientific investigations in literature aiming to 
model the crack on the basis of the mechanics of continuum. Irwin [24] 
and Hutchinson [25] computed stresses and strains near the crack tip 
using a sharp crack (tip radius ρ = 0) which leads to unrealistically high 
values. More recently, several authors [3,26] implemented the approach 
of modelling the crack as a notch with a small but finite tip radius ρ > 0. 
Notch analytical theories are applied and stress–strain field ahead of the 
crack tip become more realistic. Noroozi et al. [5] suggested that there is 
a minimum value of the notch tip radius,ρ, that can be considered as a 
material property and results in the maximum stress concentration 
which can be generated in the material. Noroozi et al. [5] also empha-
sizes that the plastic yielding around the crack tip formed during one 
load reversal generates plastic deformations which resists to be 
deformed during subsequent reversals of cyclic loading. The effect of 
plastic deformations ahead of the crack tip can be determined by solving 
the notched body boundary problem using elastic–plastic material 
properties resulting in the residual stress field σr. Even if nominal stress 
ratio is positive, a compressive (residual) stress field is generated ahead 
of the crack tip when the load is at the minimum level as described in 
Fig. 1. This residual compressive stress field increases as the stress ratio 
is closer to zero. 

Glinka [3] proposes to model the crack with a finite tip radius ρ 
which allows the calculation of crack tip stress and strain distributions 
with notch theories and assumes that the crack region just behind the tip 
remains open – see Fig. 2. The value of ρ stands as the smallest notch tip 

radius that the material can “feel” as a notch. 
Noroozi et al. [5] also suggested that notch tip radius,ρ, can be 

considered an elementary block size of the material which can be used to 
discretize the medium of the material in order to determine the relevant 
stresses and strains ahead of the crack tip. However, it was stated that 
the elementary block size cannot be associated with any specific micro- 
structural particle size. 

The fatigue crack growth model that is implemented in this paper 
was based on the assumptions presented by Noroozi et al. [5], however 
the elementary block size, ρ*, used to compute the relevant stresses and 
strains ahead of the crack tip was not considered as being the same size 
of the notch tip radius, ρ. The value of the elementary block size was 
found by correlation with experimental data and a new formulation is 
proposed based on the effective stress intensity factor range and on the 
cyclic yield strength of the material. 

The FCG model used in this paper is based on the following as-
sumptions:  

• The fatigue crack is analyzed as a notch with a tip radius ρ; 
• The Ramberg-Osgood cyclic stress–strain formulation is used to ex-

presses the material behavior;  
• The relevant stresses and strains to analyze fatigue crack growth are 

measured within an elementary block size ρ* ahead of the crack tip – 
see Fig. 2. This parameter is a function of the effective stress intensity 
factor range, ΔKeff , and the cyclic yield strength of the material, σ’0: 

ρ* =
1

28π

(
ΔKeff

σ’0

)2

(3)    

• Fatigue crack growth is considered as successive crack re-initiations 
over the distance ρ*;  

• The number of cycles N to reach failure of the first elementary block 
ahead of the crack tip can be determined using the Smith-Watson- 
Topper (SWT) fatigue damage parameter: 

Dblock = σeff
max,blockεeff

a,block (4)  

where Dblock is the fatigue damage of the block, σeff
max,block corresponds to 

the maximum effective stresses over the block size and εeff
a,block is the 

effective strain amplitude over the block size.  

• The fatigue crack growth rate is determined as the average fatigue 
crack growth rate over the elementary block size, ρ*: 

da
dN

=
ρ*

NBlock
(5)  

where NBlock is the number of cycles to fail the elementary block. 

2.1. Stresses and strains at the crack tip 

The Neuber rule [27] is used to compute the elastoplastic stresses 
and strains ahead of the crack tip in which linear elastic values are used 
as input data. In the following subsections, the analysis is made only for 
the case of tensile loading (Rσ > 0). 

2.1.1. Linear elastic analysis 
Linear elastic stress field is computed using the concept of linear 

elastic fracture mechanics (LEFM) by assuming a notch with tip radius ρ 
and crack length a. The Creager-Paris solution [28] was used and the 
result is presented in Eq. (6). 

Fig. 2. Schematic representation of the stress and strain distributions ahead of 
the crack tip induced by a tensile load. 
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⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

σe
x =

K̅̅̅
̅̅̅̅̅

2πx
√

(
1 −

ρ
2x

)

σe
y =

K
̅̅̅̅̅̅̅̅
2πx

√
(

1 +
ρ
2x

)

τe
xy = 0

(6) 

With these equations, the elastic stress–strain field ahead of the crack 
tip is fully characterized. Variables σe

x and σe
y are the elastic normal 

stresses (directions according to Fig. 2), τe
xy is the elastic shear stress 

component and K is the stress intensity factor. 

2.1.2. Elastoplastic analysis 
Elastoplastic stress–strain analysis is used to determine the actual 

stress–strain ahead of the crack tip. This is accomplished using the 
Neuber rule which uses the equivalence of strain energy density at the 
notch tip between the hypothetical linear-elastic notch tip stress–strain 
input data and the actual elastic–plastic response. This approach was 
originally derived for a uniaxial stress state, but recently Moftakhar et al. 
[29] extended it for multi-axial proportional and non-proportional 
loading conditions. In cases of elements in plane strain, the near tip 
stress–strain field is tri-axial but the third principal stress is a function of 
the other two. Additionally, the components of the elastic stress tensor 
change proportionally during loading which means that Hencky equa-
tions of the theory of plasticity can be used. In this sense, the whole 
notch-tip stress–strain problem can be reduced to the solution of a set of 
five nonlinear algebraic equations including Hencky stress–strain re-
lationships, Ramberg-Osgood equation and multi-axial Neuber rule:  

A) Generalized Neuber rule. 

σe
yεe

y + σe
xεe

x = σe− p
y εe− p

y + σe− p
x εe− p

x (7)    

B) Constitutive stress–strain relationships. 

εe− p
z = −

ν
E

(
σe− p

y + σe− p
x

)
−

f
(

σe− p
eq

)

2σe− p
eq

(
σe− p

y + σe− p
x

)
(8)  

εe− p
y =

1
E

(
σe− p

y − νσe− p
x

)
+

f
(

σe− p
eq

)

2σe− p
eq

(
σe− p

y − 0.5σe− p
x

)
(9)  

εe− p
x =

1
E

(
σe− p

x − νσe− p
y

)
+

f
(

σe− p
eq

)

2σe− p
eq

(
σe− p

x − 0.5σe− p
y

)
(10) 

Where 

σe− p
eq =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(σe− p
y )

2
− σe− p

y σe− p
x + (σe− p

x )
2

√

(11)  

f
(

σe− p
eq

)
=

(σe− p
eq

K’

) 1
n’

(12)    

C) The fractional contribution of the total strain energy density. 

σe
yεe

y

σe
yεe

y + σe
xεe

x
=

σe− p
y εe− p

y

σe− p
y εe− p

y + σe− p
x εe− p

x
(13) 

In these set of equations σe
x, σe

y and εe
x, εe

y and εe
z are the elastic normal 

stresses and strains, respectively, and σe− p
x , σe− p

y and εe− p
x , εe− p

y and εe− p
z are 

the elastoplastic normal stresses and strains, respectively (directions 
according to Fig. 2). Additionally, ν corresponds to the Poisson coeffi-
cient, E is the Young’s modulus, K’ is the cyclic strain hardening coef-
ficient and n’ is the cyclic strain hardening exponent. 

2.2. Effective stress intensity factor 

The set of equations presented before enable the computation of the 
stress–strain field ahead of the crack tip induced by a load reversal 
which can be represented by the fluctuations of the stress intensity 
factor, ΔKapp – see Fig. 3a). The analysis and computation of residual 
stress field, σr(x), formed ahead of the crack tip by the load reversal is 
then executed. Fig. 3b) represents a schematic distribution of stresses 
ahead of the crack tip corresponding to maximum and minimum applied 
load level for positive (but close to zero) value of stress ratio. In this 
situation, a compressive residual stress field is generated at minimum 
load level whose effects need to be included in the analysis. In this sense, 
an effective stress intensity factor range is computed by deduct the re-
sidual values of the stress intensity factor on the applied values of the 
stress intensity factors. 

Kr =

∫ a

0
σr(x)m(x, a)dx (14) 

The physical crack tip location at ‘x = a’ was chosen as the upper 

Fig. 3. a) Schematic representation of stress intensity factor history; b) elastic–plastic stress field induced by cyclic loading ahead of the crack tip.  
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limit of the integration. The universal weight function expression for CT 
specimens (Eq. (15)) was used in the analysis. 

m(x, a) =
2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2π(a − x)

√

[

1+M1

(
1 −

x
a

)1/2
+M2

(
1 −

x
a

)1
+M3

(
1 −

x
a

)3/2
]

(15) 

The geometry dependent factors M1, M2 and M3 for a CT specimen 
are given in Glinka [5]. The effective values of the stress intensity factor 
to use in fatigue crack growth analysis are based on the applied values of 
the stress intensity factor affected by the residual value of the stress 
intensity factor. Its influence is considered by changing (decreasing) the 
maximum value of the stress intensity factor. The minimum value re-
mains equal to the applied value. The effective value of the stress in-
tensity factor range, ΔKeff , and the effective value of the maximum stress 
intensity factor, Kmax,eff , are presented in Eq. (16) and Eq. (17), respec-
tively. Since the residual stress intensity factor is computed from 
compressive stresses, its value is negative. 

ΔKeff = ΔKapp +Kr (16)  

Kmax,eff = Kmax,app +Kr (17)  

3. Experimental characterization 

3.1. Low cycle fatigue 

There are a set of experimental results on literature related to the 
characterization of cyclic elastoplastic behaviour of S355, namely the 
experimental campaign performed by Jesus et al. [30] and Carvalho 
[31]. They conducted low cycle fatigue (LCF) tests on smooth specimens 
according to ASTM E606 [32] under strain controlled conditions. The 
strain ratio was set to − 1 and the strain rate to 0.8%/s. The stabilized 
cyclic stress–strain curve was used to compute elastic and plastic strain 
amplitudes and results are summarized in Table 1. A representative 
cyclic stress–strain curve of the material was defined using the Ramberg- 
Osgood expression described in Eq. (18) which relates strain amplitude, 
εa, and stress amplitude, σa. Elastic and plastic strain amplitudes are 
identified as εE

a and εP
a , respectively. The obtained values of the strain 

hardening coefficient K’ and the strain hardening exponent n’ are pre-
sented in Table 2 considering the linear regression presented in Fig. 4. 

εa = εE
a + εP

a =
σa

E
+
(σa

K’

)1/n’
(18) 

The elastic and elastic–plastic stress–strain cyclic curve was 
computed and results are presented in Fig. 5. This representation 
allowed to determine the cyclic yield strength of the material, σ’0, whose 
value is presented in Table 2. 

Table 1 
Experimental results from LCF tests on smooth S355 specimens.  

Source εa[%] εE
a[%] εP

a[%] σa[MPa] σmax[MPa] 2 Nf 

Carvalho [31]  1.000  0.235  0.765  419.6  420.4 882  
1.000  0.235  0.765  428.6  429.6 798  
0.500  0.200  0.300  365.7  367.7 5 684  
0.500  0.190  0.310  371.2  373.5 6 282  
0.750  0.175  0.200  342.2  344.9 21 840  
0.750  0.175  0.200  336.7  336.8 15 606  
0.250  0.145  0.105  292.0  293.4 73 208  
0.250  0.150  0.100  292.0  292.2 56 504  
0.200  0.130  0.070  284.2  287.9 29 912  
0.200  0.135  0.065  272.3  273.5 79 152  
0.150  0.120  0.030  261.7  280.2 162 036  
0.125  0.115  0.010  240.7  245.8 2 777 

354 

Jesus et al.  
[30]  

1.000  0.279  0.722  487.7  497.4 672  
1.000  0.287  0.714  484.1  482.4 1 084  
0.500  0.215  0.285  408.7  409.5 9 610  
0.500  0.182  0.319  331.8  329.8 4 018  
0.250  0.141  0.110  284.8  282.9 32 350  
0.200  0.154  0.047  307.7  311.1 59 002  
0.200  0.164  0.036  330.6  376.5 128 488  
0.175  0.150  0.026  290.8  292.7 556 486  
0.150  0.140  0.011  268.2  253.3 1 722 

608  

Table 2 
Cyclic elastoplastic and fatigue properties of S355.  

E 
[GPa] 

K’ 
[MPa] 

n’ 
[-] 

σ’0 

[MPa] 
σ’f 

[MPa] 
b 
[-] 

ε’
f 

[-] 
c 
[-] 

210  804.6  0.132  180.2  1058.8  − 0.110  0.287  − 0.542  

Fig. 4. Determination of strain hardening coefficient and exponent for 
S355 material. 

Fig. 5. Stress–strain cyclic curve for S355 material.  

Fig. 6. SWT-life data for S355 and its elastic and plastic components.  
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Using the stabilized cyclic stress–strain curve for each experimental 
test, it is possible to compute the elastic and plastic strain amplitudes. 
Cyclic elastoplastic data is correlated with number of cycles at failure 

Fig. 7. a) CT specimen made from S355. b) Apparatus of FCG test: 1-MTS clip gage (extensometer); 2-MTS clevis grip for fracture mechanics; 3-specimen.  

Fig. 8. Fatigue crack growth rate for S355: applied values.  

Fig. 9. Determination of crack closure force in a load cycle.  

Fig. 10. Fatigue crack growth rate for S355: effective values.  

Table 3 
Summary of fatigue crack propagation parameters for S355.    

C* m 

ΔKapp Rσ = 0.1 7.27E-10  3.54 
Rσ = 0.5 1.63E-8  2.62 

ΔKeff 1.85E-8  2.91  

* da/dN in mm/cycle and ΔK in [MPa.m0.5].  

Table 4 
Estimation of crack tip radius: comparison with experimental results using MSE.  

ρ[m] 7.4E-6 5.4E-6 3.4E-6 

MSE MSE MSE 

Rσ = 0.1  0.60  0.43  0.26 
Rσ = 0.5  0.72  0.57  0.40  
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using the Smith, Watson and Topper (SWT) model [33] which considers 
mean stress effects. It correlates fatigue life Nf with the product of the 
maximum stress σmax and strain amplitude εa as described in the 
following equation. 

εaσmax =

(
σ’f
)2

E
(
2Nf
)2b

+ σ’f ε’f
(
2Nf
)b+c (19) 

Elastic component is expressed by the fatigue strength coefficient σ’f 

and fatigue strength exponent b while the plastic component is 
expressed by the fatigue ductility coefficient ε’f and fatigue ductility 

exponent c. These parameters were determined using a linear regression 
analysis on the experimental data from elastic and plastic components. 
Fig. 6 presents the obtained curve for elastic and plastic SWT-life com-
ponents as well as total SWT-life. The obtained values for these pa-
rameters are presented in Table 2. 

3.2. Fatigue crack growth rate 

Crack propagation tests were performed using CT specimens in 
accordance with the procedure of ASTM E647 [34] under load 
controlled conditions. Fig. 7 presents specimens produced for this 

Fig. 11. Boundary conditions and load definitions of the numerical model to compute residual stresses ahead of the crack tip.  

Fig. 12. Finite element mesh of the numerical model.  

Fig. 13. Elastoplastic stress field (in MPa) for crack length a = 18.67mm and Rσ = 0.1: a) at maximum load F = Fmax; b) at half of range load value F = ΔF/2.  
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experimental campaign defined by W (width) = 50 mm and B (thick-
ness) = 12 mm. One specimen was tested under stress ratio Rσ = 0.1 and 
controlled by ΔK decreasing procedure and one specimen was tested 
under stress ratio Rσ = 0.5 and controlled by ΔF constant procedure. 

Frequency was set to 12 Hz. A fatigue pre-crack was prepared on the 
specimen as recommended in the standard using a ΔK not higher than 
13–15 MPa.m0.5. 

The applied force F and the crack opening displacement (COD) ν 

Fig. 14. Elastoplastic stress field (in MPa) for crack length a = 23.92mm and Rσ = 0.1: a) at maximum load F = Fmax; b) at half of range load value F = ΔF/2.  

Fig. 15. Elastoplastic stress field (in MPa) for crack length a = 27.64mm and Rσ = 0.1: a) at maximum load F = Fmax; b) at half of range load value F = ΔF/2.  

Fig. 16. Elastoplastic stress field (in MPa) for crack length a = 16.53mm and Rσ = 0.5: a) at maximum load F = Fmax; b) at half of range load value F = ΔF/2.  
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were monitored during the test which is then used to compute the crack 
length using compliance method, a, and the applied stress intensity 
factor ranges by applying the compliance method described in ASTM 
E647 [34]: 

ΔKapp =
ΔF

B
̅̅̅̅̅
W

√
(2 + α)

(1 − α)3/2

(
0.886+ 4.64α − 13.32α2 + 14.72α3 − 5.6α4)

(20) 

in which α is the ratio a/W. 
Fig. 8 presents the experimental results relating fatigue crack growth 

rates with applied stress intensity factor ranges. It is evident that this 
material is influenced by the stress ratio. Lower stress ratio led to smaller 
fatigue crack growth rates. The slope of the regression line for stress 
ratio equal to 0.1 is superior to the slope of the regression line for stress 
ratio equal to 0.5 leading to reduced fatigue crack growth rates for 
smaller values of applied stress intensity factors ranges which means 
that mean stress effects are more relevant in this region. 

During the experimental test, for each chosen cycle, at least two 
hysteresis loops were registered in order to compute the F-ν behaviour. 
The effective stress intensity factor range, ΔKeff , was determined using 
the Elber concept [2] by computing at crack closure point the force, Fcl, 
which consists of splitting the recorded F-ν curve into linear and 
nonlinear segments. This approach is described in Fig. 9. 

The linear and nonlinear components of the curve are described 

using Eq. (21) and Eq. (22), respectively. 

νL = A0 +A1F (21)  

νQ = B0 +B1F +B2F2 (22) 

Coefficients A0 and A1 are determined by linear regression method, 
while B0, B1 and B2 were obtained with the following conditions: 

νL = νQ (23)  

d(νQ)

dF
=

d(νL)

dF
, forF = Fcl (24) 

In this case, B0, B1 and B2 should be optimal from the mathematical 
point of view which can be found by minimizing the value of the residual 
sum of squares (RSS). 

ξ =
1

(νmax − νmin)
2

∑N

i=1

(
(νQ − νi)

2
, forFi < Fcl

(νQ − νi)
2
, forFi ≥ Fcl

)

(25) 

Parameters νmax and νmin are the extreme values of COD for every 
cycle. This approach can be easily used in automated experiments, 
however data can be influenced by large degree of noise or wrong 
tuning. The effective stress intensity factor range can then be calculated 
using the Elber closure function as: 

Fig. 17. Elastoplastic stress field (in MPa) for crack length a = 23.12mm and Rσ = 0.5: a) at maximum load F = Fmax; b) at half of range load value F = ΔF/2.  

Fig. 18. Elastoplastic stress field (in MPa) for crack length a = 29.98mm and Rσ = 0.5: a) at maximum load F = Fmax; b) at half of range load value F = ΔF/2.  
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ΔKeff =
Fmax − Fcl

Fmax − Fmin
ΔKapp (26)  

where Fmax(min) represents the maximum (and minimum) force in each 
cycle of loading, Fcl is the crack closure load force obtained from hys-
teresis loop analysis. Experimental results for effective fatigue crack 
growth are presented in Fig. 10. Data converged to a uniform linear 
performance. A summary of results is presented in Table 3. 

4. Residual stress intensity factor 

The UniGrow analytical procedure described in Section 2 to compute 
residual stresses was implemented. The main parameter that influences 
residual stresses is the crack tip radius, ρ. The criterion chosen to define 
the correct value of the crack tip radius was by minimizing the mean 
squared error (MSE) when analytical values of residual stress intensity 
factors are compared to experimental values. Eq. (27) presents how MSE 
is computed using Kr,i as the experimental value and K̂r,i as the esti-
mation value of the residual stress intensity factor. It was found that the 
size of the tip radius that lead to good correlation with experimental 
results for both stress ratios is ρ = 3.4E− 6m since the value of MSE is 
inferior to 0.5 for both values of stress ratio as it is possible to observe in 
Table 4. The comparison between experimental and analytical stress 
intensity factor values is also presented in Fig. 20. The value found in 
this paper for crack tip radius differs from the value proposed in Correia 
et al. [13] (ρ = 5.5E− 5m) but it can be explained by the fact that their 
approach was based only on numerical and analytical values of residual 
stress intensity factor and in the present research we have experimental 
values to validate this parameter. 

MSE =
1
n
∑n

i=1

(
Kr,i − K̂ r,i

)2 (27) 

The analytical procedure enabled to compute residual stresses ahead 
of the crack tip that result from reversal plastification. The value of the 
crack tip radius, ρ = 3.4E− 6m, was then used to create a numerical 
model based on finite elements as presented in Fig. 11 using Abaqus 

Fig. 19. Residual compressive stresses ahead of the crack tip induced by reversed cyclic plasticity.  

Fig. 20. Residual stress intensity factor for different values of applied stress 
intensity factor ranges. 
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software [35]. 
Taking the advantage of the symmetry plan, the geometry of the CT 

specimen was defined considering the experimental tests. Three analysis 
were performed for each value of Rσ varying the value of the crack 
length, a. The material model implemented in this numerical analysis 
follows the values obtained for the cyclic elastoplastic behaviour of S355 
presented in Table 2. Boundary conditions of the numerical model are 
Uy = URx = URz = 0 in the symmetry line and Ux = 0 in the hole of the 
loading pin. Finite element mesh is presented in Fig. 12 and it is 
composed of CPS3 two-dimensional elements (3-node linear plane stress 
triangle). The geometric discontinuity in the crack tip requires a refined 
mesh to get accurate values of stresses and strains, therefore the enve-
lope of this zone has a mesh size smaller than the mesh size in the model 
and the minimum size in this zone is 4.6E-5 mm. 

These numerical analyses enable to get the stress field ahead of the 
crack tip aiming to compute compressive (residual) stresses and then 
residual stress intensity factor. From Figs. 13–18 it is possible to observe 
the stress field at maximum applied load and at half of the applied load 
range for three models with stress ratio equal to 0.1 and for three models 
with stress ratio equal to 0.5 varying the crack length. Residual stresses 
generated from each load reversal were computed considering the stress 
field ahead of the crack tip at maximum applied load minus two times 
the stress field ahead of the crack tip at half of the applied load range as 
presented in the following equation. The value of the applied load was 
taken from experimental data. 

σr = σe− p
y,Fmax

− 2 • σe− p
y,ΔF/2 (28) 

The comparison between Unigrow analytical procedure and nu-
merical approach to compute residual stress field ahead of the crack tip 
is presented in Fig. 19. The internal (residual) stresses induced by the 
reversed cyclic plasticity is shown for three different values of crack 
length for each stress ratio. It is possible to observe a very good corre-
lation between analytical and numerical results. 

The compressive residual stresses ahead of the crack tip were then 
used to compute the residual stress intensity factor, Kr, using in inte-
gration method presented in Eq. (14). Table 5 presents the results for the 
three values of crack length selected for each value of stress ratio 
comparing the results for experimental, analytical and numerical 
approach. It is possible to observe a very good correlation between both 
analytical and numerical approaches to experimental results. 

The relation between residual stress intensity factor and the applied 
stress intensity factor range is presented in Fig. 20. Higher values of 
applied stress intensity factor range conducted to higher values of 

Table 5 
Residual stress intensity factor obtained by three different methods.  

Rσ = 0.1 

a[mm] 18.67 23.92 27.64 

Kr 

[MPa.m0.5] 
Exp. Ana. Num. Exp. Ana. Num. Exp. Ana. Num. 
− 9.3 − 8.9 − 10.3 − 6.2 − 5.6 − 6.7 − 4.9 − 4.1 − 4.8 

Rσ = 0.5 

a[mm] 16.53 23.12 29.98 

Kr 

[MPa.m0.5] 
Exp. Ana. Num. Exp. Ana. Num. Exp. Ana. Num. 
− 2.4 − 2.0 − 2.8 − 3.7 − 3.0 − 3.9 − 5.9 − 5.0 − 5.87  

Fig. 21. Schematic illustration of monotonic and cyclic plastic zone and block 
size during FCG test. 

Fig. 22. Comparison between analytical and experimental values of effective 
fatigue crack growth rates. 

Table 6 
Analytical results to compute fatigue crack propagation rate based on effective stress intensity factor range.  

ΔKeff 

[MPa.m0.5] 

Variable block size and ρ* ∕=ρ Constant block size and ρ* =ρ 

Block size, 
ρ*[m] 

SWT 
[-] 

2Nf 

[-] 
da/dN 

[mm/cycle] 
Block size,ρ* 

[m] 
SWT 
[-] 

2Nf 

[-] 
da/dN 

[mm/cycle] 

7.1 1.7E-05 2.01 4809 7.3E-06 
3.4E-6 

6.7 477 1.4E-05 
9.8 3.4E-05 2.05 4614 1.5E-05 12.8 157 4.3E-05 
15.0 7.9E-05 2.15 4203 3.8E-05 30.5 37 1.8E-04  
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residual stress intensity factor. It is also evident that residual stress in-
tensity factor is smaller for higher values of stress ratio. It is also possible 
to observe the good correlation between analytical and numerical ap-
proaches with experimental results for all values of applied stress in-
tensity factor range. 

5. Fatigue crack growth rates 

Using the values for the effective stress intensity factor range 
computed for the three crack length values for both Rσ = 0.1 and Rσ =

0.5, fatigue crack growth rates were evaluated by means of UniGrow 
analytical approach described in Section 2. The original UniGrow model 
assumes that the elementary block size used to collapse FCG data is the 
same as the crack tip radius. This approach neglects the effect of the 
increasing plastic zone ahead of the crack tip during FCG test with 
constant stress ratio as represented in Fig. 21. In order to consider this 
effect, the elementary block size, ρ*, used in this investigation to 
collapse FCG data is based on a similar relation used to obtain the crack 
tip plasticity radius. As it is described in Eq. (3), the proposed expression 
relies on the effective stress intensity factor, ΔKeff , and on the cyclic 
yield strength of the material, σ’0 and it was defined by correlation with 
experimental data. 

In order to compare the original procedure of UniGrow model and 
the proposed method, the fatigue crack growth data and the stress in-
tensity factor range obtained experimentally is compared with predicted 
values in Fig. 22. In the original procedure, the elementary block size 
used to collapse the FCG data has the same value of the crack tip radius 
implemented to compute the residual stress intensity factor, however, 
this method presents uncoherent results when compared with experi-
mental data, as it can be observed. On the other hand, if the elementary 
block size is computed with Eq. (3), results can be correlated with 
experimental evidences. The computation of the predicted FCG for both 
methods were based on the results described in Table 6. 

6. Conclusions 

A unified two-stage fatigue methodology was implemented to assess 
the fatigue crack propagation behaviour of S355 considering the plas-
ticity induced crack closure effect. The cyclic elastoplastic behaviour of 
this material was assessed by analysing experimental data from previous 
researches. Low-cycle fatigue behaviour was determined using the 
Smith-Watson-Topper fatigue damage parameter. Fatigue crack growth 
tests were performed on CT specimens using different values for stress 
ratio. It was evident that fatigue crack growth of S355 is influenced by 
the mean stress effect. The effective value of the stress intensity factor 
was computed during FCG tests using Elber concept showing a converge 
in a uniform trend of the fatigue crack growth rate. 

UniGrow model was implemented to analyse fatigue crack growth 
behaviour of this material. The first step was to compute the residual 
stresses ahead of the crack tip induced by the load reversal and deter-
mine the value of the crack tip radius that better correlates with 
experimental results. It was found that crack tip radius should be ρ =

3.4E− 6m since it is the value that leads to lower mean squared error. The 
smaller the value of the crack tip radius, the closer we are to the 
experimental values, but the value proposed in this paper is the one that 
leads to satisfactory results by comparing with experimental data and to 
adequate process time. A numerical model was also implemented using 
the value of the crack tip radius proposed in which the main goal was to 
validate the residual compressive stress field ahead of the crack tip. 
Comparison between experimental, numerical and analytical ap-
proaches showed a good agreement in what concerns residual stress 
intensity factor. 

Finally, fatigue crack growth rates were computed using different 
approaches for the elementary block size. As it is proposed in original 
UniGrow model, the elementary block size used to collapse FCG data is 

the same as the crack tip radius used to compute residual stresses ahead 
of the crack tip. However, it is evident from the results that if this 
approach is implemented, there is no good correlation with experi-
mental FCG data. The proposal in this paper is to relate the elementary 
block size with the crack tip plasticity by establishing a relation between 
elementary block size and effective stress intensity factor and cyclic 
yield strength of the material. Since monotonic and cyclic crack tip 
plasticity increases during the FCG test, it is expected that elementary 
block size also varies and a new expression was proposed by correlation 
with experimental FCG data. 

Future investigations should be focused on finding different ap-
proaches to compute the stress–strain field ahead of the crack tip, 
namely by considering digital image correlation, in order to further 
validate the expression proposed for elementary block size. Other types 
of metallic materials should also be studied in order to analyse the 
possible generalization of the proposed approach. 
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