

FIRE RESISTANT LAMINATED STRUCTURAL GLASS BEAMS

P5 Graduation Presentation Jelle Sturkenboom 4076060 7th of November 2018 First mentor: Dr. Christian Louter Second mentor: Dr. Regina Bokel Deligate Examiner: Dr. Nelson Mota

PRESENTATION CONTENT

- 1. INTRODUCTION TO STRUCTURAL GLASS
- 2. CURRENT BUILDING REGULATIONS
- 3. RELEVANT RESEARCH
- 4. EXPERIMENTAL TESTING
- 5. CONCLUSIONS
- 6. DESIGN RECOMMENDATION & APPLICATION
- 7. RECOMMENDATIONS

DEMATERIALISATION OF **BUILDING SKIN & MATERIAL**

First glass windows (79 AD)

Figure: Cast glass window pane fragments from Pompeii Naples - Archaeological Museum

Source: https://www.flickr.com/photos/70125105@ N06/7682216182

Full glass skin (1887)

Figure: Crystal Palace - Madrid

Source: https://io.wp.com/theweekendguide.com/wp-content/uploads/2017/07/crystal-palace-madrid-e1507126389143. jpg?w=619&h=825&crop

Structural glass (2005)

Source: http://www.annebagger.dk/CustomerData/Files/Images/Gallery/glass-columns-danfoss-2005_2891/6_2297.jpg

Figure: Laminated glass column - Danfoss - New York

GLASS AS STRUCTURAL MATERIAL

Cast structural glass

Figure: Chanel Amsterdam Boutique - Amsterdam https://www.deingenieur.nl/artikel/glazen-pui-aan-de-pc-hooft

Laminated structural glass

Figure: Apple Retail Store 5th Avenue - New York http://architizer-prod.imgix.net/mediadata/projects/212011/e093cba1.jpg?q=60&auto=format,compress&cs=strip&w=1680

1 - BRIEF INTRODUCTION TO GLASS

LAMINATED STRUCTURAL GLASS

P5 Presentation - Jelle Sturkenboom - 7th of November 2018 Fire Resistant Laminated Structural Glass Beams

1 - BRIEF INTRODUCTION TO GLASS

Source: Peter Aaron - Apple Cube II, Manhattan

VISION

P5 Presentation - Jelle Sturkenboom - 7th of November 2018 Fire Resistant Laminated Structural Glass Beams

1 - Vision

MY VISION

P5 Presentation - Jelle Sturkenboom - 7^{th} of November 2018 Fire Resistant Laminated Structural Glass Beams

Source: Eckersley O'Callaghan - Apple, Paris

MAIN RESEARCH QUESTION

" In what way can a laminated structural glass beam be **detailed** in such a way that it keeps the **aesthetic transparency** of glass, while being able to withstand a fire load during 30 minutes?"

2 - RESEARCH QUESTIONS

RESEARCH SUB-QUESTIONS

" In what way can a laminated structural glass beam be detailed in such a way that is keeps the aesthetic transparency of glass, while being able to withstand fire loading of 30 minutes?"

- 1. "What are the requirements set by building regulations?"
 - 2. "What research has been done and what are the conclusions?"
- 3. "What is the possible explanation for the different behaviour in thermally treated and non-treated glass beams?"
- 4. "What application presents itself when structural glass can be implemented as fire resistant building component?"

2 - RESEARCH OUESTIONS

BUILDING REGULATIONS

P5 Presentation - Jelle Sturkenboom - 7th of November 2018 Fire Resistant Laminated Structural Glass Beams

2 - Building Regulations

FIRE SAFETY AND FIRE RESISTANCE

BOUWBESLUIT 2012

MINIMUM EVACUATION TIME OF BUILDING COMPARTMENTS

INTERNAL FIRE LOAD < 500 MJ/m^2

~ 30 MINUTES

STANDARD TEMPERATURE TIME CURVE NEN-EN 13501-2 ;2016

FLEXURAL LOADED ELEMENTS NEN-EN 1363-A ;2012

FAILURE CRITERIA:

LIMITING DEFLECTION

LIMITING RATE OF DEFLECTION

P5 Presentation - Jelle Sturkenboom - 7th of November 2018 Fire Resistant Laminated Structural Glass Beams

RELEVANT RESEARCH

P5 Presentation - Jelle Sturkenboom - 7th of November 2018 Fire Resistant Laminated Structural Glass Beams

3 - RELEVANT RESEARCH

IMPORTANT & RELEVANT CONCLUSIONS

Christian Louter

"The order of failure is in order of the residual pre-stress" from thermal treatement. Annealed, heat-strengthened, followed by fully tempered"

<u>Michaël Debuyser</u>

"In **PVB** laminate gas formation started around 90°C and for a **SentryGlas** laminate this took place at 150°C."

Fred Veer

"The use of intumescent paint reduces the heat buildup and thus *slows down* the development of thermal strain in the glass and on the adhesive layer"

3 - RELEVANT RESEARCH

FIRE TESTING OF STRUCTURAL GLASS BEAMS ~DR. CHRISTIAN LOUTER & ALAIN NUSSBAUMER

Source: Fire testing of Structural Glass Beams - Dr. Louter & Nussbaumer

P5 Presentation - Jelle Sturkenboom - 7th of November 2018 Fire Resistant Laminated Structural Glass Beams

FOLLOW UP OF THE EMPA TEST

Figure: Beam configuration during EMPA test with protected top of flange Source: Fire testing of structural glass beams - Dr. Louter and Nussbaumer

Figure: Proposed test configuration of second set of glass beams at Efectis Source: Based on schematic made by Dr. Louter

EXPERIMENTAL TEST SET-UP

4 - EXPERIMENTAL TESTING

BUILDING THE TEST SET-UP

P5 Presentation - Jelle Sturkenboom - 7th of November 2018 Fire Resistant Laminated Structural Glass Beams

4 - EXPERIMENTAL TESTING

TEST SET-UP ON THE FIRE FURNACE

FIRE FURNACE TESTING AT EFECTIS

P5 Presentation - Jelle Sturkenboom - 7th of November 2018 Fire Resistant Laminated Structural Glass Beams

4 - EXPERIMENTAL TESTING

\sim VIDEO OF TEST \sim

P5 Presentation - Jelle Sturkenboom - 7th of November 2018 Fire Resistant Laminated Structural Glass Beams

4 - EXPERIMENTAL TESTING

4 - EXPERIMENTAL TESTING

TEST 1 - THERMAL FRACTURE

Beam 1 - PVB (AN) *Time:* **14.89 min** (513 °C) - thermal shock

Beam 2 - PVB (HS) *Time:* **17.23 min** (599 °C)

Beam 3 - SG (AN) *Time:* **7.81 min** (219 °C) - thermal shock

TEST 2 - RADIANT HEATING OF BEAM 2

Beam 1 - SG (HS) *Time:* **17.04 min** (508 °C) Beam 2 - SG (FT) *Time:* **15.39 min** (578 °C) - influenced by PVB flames

P5 Presentation - Jelle Sturkenboom - 7th of November 2018 Fire Resistant Laminated Structural Glass Beams

4 – EXPERIMENTAL TESTING

Beam 3 - PVB (FT) *Time:* **16.23 min** (585 °C)

TEST 2 - DISPLACEMENT

Beam 1 - SG (HS) *Time:* **17.04 min** (508 °C) Beam 2 - SG (FT) *Time:* **15.39 min** (578 °C) - influenced by PVB flames

P5 Presentation - Jelle Sturkenboom - 7th of November 2018 Fire Resistant Laminated Structural Glass Beams

Beam 3 - PVB (FT) *Time:* **16.23 min** (585 °C)

TEST 3 - THERMAL FRACTURE

Beam 1 - SG (FT) *Time:* **17.46 min** (515 °C) Beam 2 - SG (AN) *Time:* **4.71** *min* (139 °*C*) - thermal shock

P5 Presentation - Jelle Sturkenboom - 7th of November 2018 Fire Resistant Laminated Structural Glass Beams

Beam 3 - SG (HS) *Time:* **15.71** *min* (571 °*C*)

TEST 3 - DISPLACEMENT

Beam 1 - SG (FT) *Time:* **17.46 min** (515 °C) Beam 2 - SG (AN) *Time:* **4.71** *min* (139 °*C*) - thermal shock

P5 Presentation - Jelle Sturkenboom - 7th of November 2018 Fire Resistant Laminated Structural Glass Beams

Beam 3 - SG (HS) *Time:* **15.71** *min* (571 °*C*)

PHYSICAL TESTING AT EFECTIS - OVERVIEW

Comparison of failure times with the EMPA test by Louter

PVB Interlayer	Failure time	Failure time	T
	Louter – EMPA	Sturkenboom - Efectis	
Annealed glass	34.6 min	14.9 min	
Heat Strengthened	39.6 min	17.2 min	
Fully Tempered	42.8 min	16.2 min	

SentryGlas Interlayer	Failure time	Failure time	Т
	Louter – EMPA	Sturkenboom - Efectis	
Annealed glass	32.9 min	7.8 min (fracture)	
Heat Strengthened	41.8 min	17.0 min	
Fully Tempered	48.0 min	17.5 min	

ime difference

19.8 min

22.4 min

26.6 min

ime difference

25.1 min

24.8 min

30.5 min

DIANA SIMULATION - TEMPERATURE VALIDATION

Comparison SentryGlas - Simulation vs. Test

Comparison PVB - Simulation vs. Test

Heat flow simulation

P5 Presentation - Jelle Sturkenboom - 7th of November 2018 Fire Resistant Laminated Structural Glass Beams

CONCLUSIONS AFTER TEST 1,2 & 3

- 1. The *tougher* the glass, the *slower* the *temperature increase* the later the failure. ~ | outer
- 2. PVB laminate starts to evaporate and burn at an earlier stage than *SentryGlas laminate* ~ Debuyser
- 3. The *increased load* does *not* seem to *influence* failure time
- 4. Protecting the *top 3 cm* of the beam by *Louter* seems optimal ~ 33 - 48 minutes
- 5. The *radiant heat* from the burning PVB interlayer *influences* the heating of the *glass* and *interlayer* facing the flames

4 - Experimental testing

MODIFIED BEAM - FINAL TEST

P5 Presentation - Jelle Sturkenboom - 7th of November 2018 Fire Resistant Laminated Structural Glass Beams

4 - EXPERIMENTAL TESTING

IMPLEMENTATION TEST AT EFECTIS - TEST 4

IMPLEMENTATION TEST AT EFECTIS - TEST 4

Heat-strengthened PVB

Bottom 3 cm - HCA-TR Intumescent paint ~ Veer

Heat-strengthened PVB	
6-6 mm Glass buffer	

Heat-strengthened PVB

3 sided (10 cm) - HCA-TR Intumescent paint ~ Veer

IMPLEMENTATION TEST AT EFECTIS - TEST 4

Thermal fracture - Beam 2 6-6 mm Glass buffer

Spontaneous ignition at the top of beam 3 3 sided (10 cm) - HCA-TR

4 - EXPERIMENTAL TESTING

RESULTS TEST AT EFECTIS - TEST 4

- Beam 1 PVB (HS) 3 cm HCA-TR
- Time: **19.68 min** (574 °C) Beam 2 - PVB (HS) - 6-6mm Glass buffer Time: **14.60 min** (549 °C) - thermal shock
- Beam 3 PVB (HS) 10 cm HCA-TR

Time: 23.43 min (524 °C)

Reference - PVB (HS)

Time: 17.23 min (599 °C)

CONCLUSIONS OF TEST 4

- The goal of a fire resistance of 30 minutes has not been achieved 1.
- 2. HCA-TR intumescent paint has an improved effect on the failure time and heating rate

+2.45 min & +6.2 min

- 3. Protecting 3 sides of the beam from direct heating has great effect on the performance
- 4. Protecting the *top edge* of the beam is necessary
- 5. The 6-6 glass buffer underperforms the former standard PVB-HS However, it provides *resisdual strength* after fracture.

6 - Experimental testing

CONCLUSIONS EXPERIMENTAL TESTING

- 1. The goal of a fire resistance of 30 minutes has not been achieved
- 2. Protecting the *top 3 cm* of the beam by *Louter* seems optimal ~ 33 - 48 minutes
- 3. The order of failure seems to be in the order of thermal treatment
- 4. Protecting 3 sides of the beam from direct heating has great effect on the performance
- 5. Additional glass on the underside protects the interlayer from direct heating and offers *residual strength* after fracture

6 - Experimental testing

INTERPRETATION

7 - Conclusions

EMPA test by Louter

Efectis test by Sturkenboom

7 - Conclusions

Development of surface & centre stress during tempering

Development of surface & centre stress during tempering

Source: Finite element implementation of a glass tempering model in three dimensions - Nielsen

Source: Stress and structural relaxation in tempering glass - Narawanaswamy

Source: Finite element implementation of a glass tempering model in three dimensions - Nielsen

Source: Stress and structural relaxation in tempering glass - Narawanaswamy

7 - CONCLUSIONS

000 Calculated

Distribution of internal stresses & density in Louter set-up

7 - Conclusions

1. The pre-stress in a beam "absorbs" energy in the heating process

Because:

2. Thermal treatement of structural glass, induces varying thermal properties

OR

3. The tests have been influenced by other variables chemical composition, oven placement, oven temp, measurement errors, "n" is too small, beam thickness, etc. 7 - Conclusions

CASE APPLICATION

P5 Presentation - Jelle Sturkenboom - 7th of November 2018 Fire Resistant Laminated Structural Glass Beams

DESIGN RECOMMENDATIONS FOR A FIRE RESISTANT STRUCTURAL GLASS BEAM

Fire Resistant Structural Glass Beams:

- 1. Use *fully tempered glass*, due to delayed temperature increase
- 2. Use *SentryGlas interlayers* due to higher transition temperature
- 3. Apply an *Intumescent interlayer* on 3 sides ,laminated underneath a thin sacrificial glass plane.
 - e.g. Pilkington Pyrostop, Vetrotech Vetroflam
- 4. Protect the *top (tempered) area* of the glass beam ~ Louter

APPLICATION OF FIRE RESISTANT GLASS BEAMS

APPLICATION OF FIRE RESISTANT GLASS BEAMS

P5 Presentation - Jelle Sturkenboom - 7th of November 2018 Fire Resistant Laminated Structural Glass Beams

1:5 Details

Cross section of two glass beams with spanning glass panels

1:5 Details

Corner longitudinal section of the transition from facade to floor

| 1.

| 2. 3.

| 4.

| 5.

6.

| 7.

8.

| 9.

| 10. Structural glass beam resting in steel shoe

P5 Presentation - Jelle Sturkenboom - 7th of November 2018 Fire Resistant Laminated Structural Glass Beams

RESEARCH RECOMMENDATIONS

- 1. Increase the *number of tests* (n) to eleminate the factor of chance
- 2. Repeat Fire furnace test with tempered glass beams from a *different* manufacturer
- 3. Determine the *thermal coefficient* of of *toughened glass*.
- 4. Repeat Glass exposed to *radiant heat*, using thermally toughened and chemically *toughened glass* ~Debuyser, Ahmad, Jørgensen
- 5. Investigate the effect of a *low-e coating*, which stops radiation/light with a low wavelength.

9 - Recommendations

MY VISION

THANK YOU

Table 17 – Failure comparison of the PVB beams between the EMPA test and the Efectis test

PVB Interlayer	Failure time	Failure time	Time difference
	Louter – EMPA	Sturkenboom - Efectis	
Annealed glass	34.6 min	14.9 min	19.8 min
Heat Strengthened	39.6 min	17.2 min	22.4 min
Fully Tempered	42.8 min	16.2 min	26.6 min

Table 18 – Failure comparison of the SentryGlas beams between the EMPA test and the Efectis test

SentryGlas Interlayer	Failure time	Failure time	Time difference
	Louter – EMPA	Sturkenboom - Efectis	
Annealed glass	32.9 min	7.8 min (fracture)	25.1 min
Heat Strengthened	41.8 min	17.0 min	24.8 min
Fully Tempered	48.0 min	17.5 min	30.5 min

Beam 1 - PVB (AN)

Test 1 Beam 2 - SG (AN) Beam 3 - PVB (HS)

Beam 1 - SG (HS)

Test 2 Beam 2 - SG (FT) Beam 3 - PVB (FT)

Beam 1 - SG (FT)

Test 3 Beam 2 - SG (AN) Beam 3 - SG (HS) Time: **14.89 min (513 C)**

Time: **7.81 min (219 C)** - the Time: **17.23 min (599 C)**

Time: **17.04 min (508 C)** Time: **15.39 min (578 C) - infl** Time: **16.23 min (585 C)**

Time: **17.46 min (515 C)** Time: **4.71 min (139 C)** - thermal shock Time: **15.71 min (571 C)**

SG-Beams	Time: 16.4 min	Тетр: 543 С	- exc
PVB-Beams	Time: 16.1 min	Temp: 566 C	

- thermal shock

- influenced by PVB flames

cl. thermal shock AN

Beam 1 - PVB (AN)

Time: **14.89 min** (513 °C)

- thermal shock

Beam 2 - PVB (HS) *Time:* **17.23** *min* (599 °*C*)

Beam 3 - SG (AN) *Time:* **7.81 min** (219 °C) - thermal shock

Beam 1 - **SG (HS)** *Time: 17.04 min (508 °C)* Beam 2 - SG (FT) Beam 2 - SG (FT) Beam 2 - SG (FT) Beam 2 - Inne: 15.39 min (578 °C) Time: 15.39

Beam 3 - **PVB (FT)** *Time: 16.23 min (585 °C)*

Beam 1 - SG (FT) *Time:* **17.46 min** (515 °C)

Beam 2 - SG (AN) *Time:* **4.71** *min* (139 °*C*) - thermal shock

Beam 3 - SG (HS) *Time:* **15.71 min** (571 °C)

Beam 1 - **3 cm HCA-TR** *Time: 19.68 min (574 °C)*

Beam 2 - **6-6mm Glass buffer** Bea *Time:* **14.60 min** (549 °C) *Tim* - thermal shock

Beam 3 - **10 cm HCA-TR** *Time: 23.43 min (524 °C)*

PHYSICAL TESTING AT EFECTIS - OVERVIEW

SG-Beams

PVB-Beams

Time: 16.4 min (543 C) *Time: 16.1 min (566 C)*

- excl. thermal shock AN

PVB Beams	Beam #	Researcher	Test #	Addition	Position	Loadcase	Fracture	Observation	Start Temp.
					AN PVB - pos				
Annealed	1	Christian	Test PVB	х	2	115 kg	NO		27.22
					AN PVB - pos				
	2	Jelle	Test 1	Х	1	115 kg	NO		12.27
Heat Strengthened	3	Christian	Test PVB	х	HS PVB - pos 3	115 kg	NO		25.26
	4	Jelle	Test 1	х	HS PVB - pos 2	115 kg	NO		12.43
	5	Jelle	Test 4	3 cm HCA-TR	HS PVB - pos 1	115 kg	NO		23.91
	6	Jelle	Test 4	2x 6 mm glas	HS PVB - pos 2	115 kg	(Yes)		23.81
	7	Jelle	Test 4	10 cm HCA-TR	HS PVB - pos 3	115 kg	NO		23.52
Fully Tempered	8	Christian	Test PVB	x	FT PVB - pos 3	115 kg	NO		21.74
	9	Jelle	Test 2	х	FT PVB - pos 3	115 kg	NO		15.65

SG Beams	Beam #	Researcher	Test #	Addition	Position	Loadcase	Fracture	Observation	Start Temp.
Annealed	10	Christian	Test SG	х	AN SG - pos 1	115 kg	NO		25.23
	11	Jelle	Test 1	х	AN SG - pos 3	115 kg	Yes		12.47
	12	Jelle	Test 3	х	AN SG - pos 2	250 kg	Yes		12.03
Heat Strengthened	13	Christian	Test SG	х	HS SG - pos 2	115 kg	NO		25.25
	14	Jelle	Test 2	х	HS SG - pos 1	115 kg	NO		15.19
	15	Jelle	Test 3	х	HS SG - pos 3	250 kg	NO		11.92
Fully Tempered	16	Christian	Test SG	х	FT SG - pos 2	115 kg	NO		21.64
	17	Jelle	Test 2	x	FT SG - pos 2	115 kg	NO		15.61
	18	Jelle	Test 3	x	FT SG - pos 1	250 kg	NO		12.30

PVB Beams	Beam #	Max increase >0.94mm/min	Corresponding temperature	Max deflection >21.16 mm	Corresponding Temp.
Annealed	1	34.68	742.43	39.83	N/A
	2	14.89	513.05		
Heat					
Strengthened	3	39.55	755.79	44.59	779.46
	4	17.23	599.20	19.56	661.67
	5	22.27	633.06	22.27	633.06
	6	14.60	549.30	17.68	720.74
	7	23.43	582.02	25.27	644.52
Fully Tempered	8	42.83	749.46	48.48	774.56
	9	16.23	585.56	18.54	639.05

SG Beams	Beam #	Max increase >0.94mm/min	Corresponding temperature	Max deflection >21.16 mm	Corresponding Temp.
Annealed	10	32.93	723.76	42.44	765.66
	11	7.81	219.71	8.14	230.46
	12	4.71	139.27	5.13	151.96
Heat					
Strengthened	13	41.75	760.00	47.81	769.90
	14	17.04	508.50	19.45	654.58
	15	15.71	571.36	18.63	625.56
Fully Tempered	16	48.04	751.42	54.13	762.26
	17	15.39	578.46	17.87	500.56
	18	17.46	514.92	20.29	600.48

1:5 Details

Cross section of the support detail between glass beams with aluminium window frame

