

Delft University of Technology

Behavior Trees for Evolutionary Robotics

Scheper, Kirk; Tijmons, Sjoerd; de Visser, Coen; de Croon, Guido

DOI
10.1162/ARTL_a_00192
Publication date
2016
Document Version
Accepted author manuscript
Published in
Artificial Life

Citation (APA)
Scheper, K., Tijmons, S., de Visser, C., & de Croon, G. (2016). Behavior Trees for Evolutionary Robotics.
Artificial Life, 22(1), 23-48. https://doi.org/10.1162/ARTL_a_00192

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1162/ARTL_a_00192
https://doi.org/10.1162/ARTL_a_00192

Behaviour Trees for Evolutionary Robotics

Kirk Y.W. Scheper∗, Sjoerd Tijmons, Coen C. de Visser, Guido C.H.E. de Croon

Faculty of Aerospace Engineering

Delft University of Technology

2629HS Delft, The Netherlands

Email: k.y.w.scheper@tudelft.nl

Telephone: +31 65 78 82127

Abstract—Evolutionary Robotics allows robots with limited
sensors and processing to tackle complex tasks by means of
sensory-motor coordination. In this paper we show the first
application of the Behaviour Tree framework to a real robotic
platform using the Evolutionary Robotics methodology. This

framework is used to improve the intelligibility of the emergent
robotic behaviour as compared to the traditional Neural Network
formulation. As a result, the behaviour is easier to compre-
hend and manually adapt when crossing the reality gap from
simulation to reality. This functionality is shown by performing
real-world flight tests with the 20-gram DelFly Explorer flapping
wing Micro Air Vehicle equipped with a 4-gram onboard stereo
vision system. The experiments show that the DelFly can fully
autonomously search for and fly through a window with only its
onboard sensors and processing. The success rate of the optimised
behaviour in simulation is 88% and the corresponding real-world
performance is 54% after user adaptation. Although this leaves
room for improvement, it is higher than the 46% success rate
from a tuned user-defined controller.

Index Terms—Behaviour Tree, Evolutionary Robotics, Reality
Gap, Micro Air Vehicle

I. INTRODUCTION

Small robots with limited computational and sensory ca-

pabilities are becoming more commonplace. Designing effec-

tive behaviour for these small robotic platforms to complete

complex tasks is a major challenge. This design problem

becomes even more complex when the robots are expected

to collaboratively achieve a task as a swarm. A promising

methodology to address this problem is found in Evolutionary

Robotics (ER), in which a robots controller, and possibly

its body, is optimised using Algorithms (EAs) [4, 41]. This

approach satisfies given computational constraints, while often

resulting in unexpected solutions which exploit sensory-motor

coordination to achieve complex tasks [39].

Early investigations into ER used on-line EAs, in which

evolution took place directly using the robotic hardware.

However, this process is time consuming [17, 42]. With the

ever improving computing technologies, off-line EAs based on

simulation has become the predominant method to evaluate

ER. However, this method has some drawbacks of its own.

∗ Corresponding author

Accompanying video showing some flight test results:
https://www.youtube.com/watch?v=CBJOJO2tHf4&feature=youtu.be

Simulated environments always differ to some degree from re-

ality. The resultant artifacts from the simulation are sometimes

exploited by the evolved solution strategy [17]. As a result

the behaviour seen in simulation can often not be reproduced

on a real robotic platform. This problem has been termed the

reality gap [25, 42].

Many methods have been investigated to reduce this reality

gap, which can be separated into three main approaches [4].

The first approach investigates the influence of simulation

fidelity on the EA, with investigation focusing on the influence

of adding differing levels of noise to the robotic agents inputs

and outputs [25, 32, 34]. It was shown that sufficient noise

can deter the EA from exploiting artifacts in the simulation

but that this approach is generally not scalable as more

simulation runs are needed to distinguish between noise and

true features. A notable exception to this is the work of Jakobi

who discusses the idea of combining limited but varying noise

with differing levels of simulation fidelity in what he calls

Minimal Simulations [24]. This approach requires the designer

to make choices as to which aspects of the environment

the robot will use before evolution even begins, limiting the

solution space of the EA. Additionally, selecting the type and

magnitude of the noise applied requires some foreknowledge

of the environmental model mismatch which is not always the

case.

The second approach focuses on co-evolution, this approach

simultaneously develops a robotic controller which is eval-

uated in simulation while the simulation model is updated

using the performance error with a real world robotic platform

[5, 48]. Alternatively, the error between the simulation and real

world environment can be used to estimate the suitability of a

learnt behaviour on the real robot. A multi-objective function

is used to trade off simulated robotic performance and the

transferability of the behaviour [29].

The third approach performs adaptation of the real robot

behaviour after first being optimised by the EA. This can be

achieved using many methods which are differentiated by their

level of supervision and how the fitness of the behaviour is

determined. One approach involves the use of unsupervised

learning where Lamarckian Evolutionary theory is used to

evolve the neural structure and ontogenetic learning rules

are used to generate a population of adaptive individuals

https://www.youtube.com/watch?v=CBJOJO2tHf4&feature=youtu.be

[18, 38, 40]. Alternatively, semi-supervised methods such as

Reinforcement Learning can be used to retrain the neural nets

after evolution [16]. This work shows that systems which adapt

to their environments are typically more robust to the reality

gap. A typical downside of this approach, however, is that

the time needed for the on-line learning to converge may be

significant. This is especially problematic for robotic platforms

performing complex tasks and operating in an unforgiving

environment.

One factor adding to the reality gap problem is that typically

Artificial Neural Networks (ANNs) are used to encode the

robot behaviour [41]. Although analysis of the evolved ANNs

is possible, they do not lend themselves well to manual

adaptation hence requiring retraining algorithms to bridge the

gap. Encoding the optimised behaviour in a more intelligible

framework would aid a user in understanding the solution

strategy. It would also help to reduce the reality gap by

facilitating manual parameter adaptation when moving to the

real robotic platform.

Traditionally, user-defined autonomous behaviours are de-

scribed using Finite State Machine (FSM) which has also

been successfully used within ER [19, 28, 44, 45]. FSMs are

very useful for simple action sequences but quickly become

illegible as the tasks get more complex due to state explosion

[36, 47] This complexity makes it difficult for developers to

modify and maintain the behaviour of the autonomous agents.

A more recently developed method to describe behaviour

is the Behaviour Tree (BT). Initially developed as a method

to formally define system design requirements, the BT frame-

work was adapted by the computer gaming industry to control

non-player characters [7, 14]. BTs do not consider states and

transitions the way FSMs do, but rather they consider self

contained behaviour made up of a hierarchical network of

actions and conditions [7, 22]. The rooted tree structure of

the BT makes the encapsulated behaviour readily intelligible

for users.

Previous work on evolving BTs has been applied to com-

puter game environments where the state is fully known to

the BT and actions have deterministic outcomes [31, 43].

The evolution of BTs has not yet been applied to a real

world robotic task. Operating in the real world introduces

complicating factors such as state and action uncertainty,

delays, and other properties of a non-deterministic and not

fully known environment.

In this paper, we perform the first investigation into the use

of Behaviour Trees in Evolutionary Robotics. Section II will

describe the DelFly Explorer [11], the flapping wing robotic

platform selected to demonstrate our approach as well as the

fly-through-window task it had to perform. This is followed

by a detailed description of the BT framework used in Section

III. Section IV goes on to describe how offline EAs techniques

are used to automatically develop BTs. The results of the

optimisation are presented in Section V.

Additionally, the performance of the best individual from

the EA is compared to a human user designed BT to show the

efficacy of this automatically generated behaviour. Finally, the

Fig. 1. DelFly Explorer 20-gram flapping wing MAV in flight with 4-gram
dual camera payload. An onboard stereo vision algorithm generates a depth
map of the environment which is used for autonomous navigation.

implementation of both behaviours on the real world DelFly

Explorer is described in Section VI to investigate if the reality

gap can indeed be actively reduced by a user as a result of the

legible behaviour expressed using the proposed method. This

is followed by a discussion of how this technique can be scaled

to more complex systems and applied to other applications in

Section IX.

II. DELFLY FLY-THROUGH-WINDOW

The limited computational and sensory capabilities of the

DelFly Explorer make it a challenge to design even the most

simple behaviour. As a result, the DelFly Explorer is an ideal

candidate for the implementation of ER. We will give a brief

description of this platform and its capabilities.

A. DelFly Explorer

The DelFly is a bio-inspired flapping-wing Micro Air Ve-

hicle (MAV) developed at the Delft University of Technology

(TU Delft). The main feature of its design is its biplane-

wing configuration which flap in anti-phase [10]. The DelFly

Explorer is a recent iteration of this micro ornithopter design

[11]. In its typical configuration, the DelFly Explorer is 20g

and has a wing span of 28cm. In addition to its 9 minute

flight time, the DelFly Explorer has a large flight envelope

ranging from maximum forward flight speed of 7m/s, hover,

and a maximum backward flight speed of 1m/s. A photo of

the DelFly Explorer can be seen in Figure 1.

The main payload of the DelFly Explorer is a pair of

light weight cameras used to perform onboard vision based

navigation as shown in Figure 1. Each camera is set to a

resolution of 128×96 pixels with a field of view of 60◦×45◦

respectively. The cameras are spaced 6cm apart facilitating

stereo-optic vision. Using computer vision techniques these

images can be used to generate depth perception with a method

called Stereo Vision [?]. This makes the DelFly Explorer

the first flapping wing MAV that can perform active obstacle

avoidance using onboard sensors facilitating fully autonomous

flight in unknown environments [11].

B. Fly-Through-Window Task

In this paper, the DelFly Explorer is tasked to navigate a

square room in search for an open window which it must

fly through using onboard systems only. This is the most

complex autonomous task yet attempted with such a light-

weight flapping wing platform. Due to the complexity of

finding and flying through a window, we currently limit the

task to directional control: height control can be added in

future work.

Other work on the fly-through-window task include the

H2Bird 13g flapping wing MAV [27]. Unlike the DelFly

Explorer, the H2Bird used a ground based camera and off-

board image processing to generate heading set-points. In this

work the DelFly must perform all tasks using only onboard

computation and sensing making the task much more complex

than that of the H2Bird.

C. Vision Systems

In the light of the task, the following vision algorithms will

be running onboard the DelFly Explorer:

1) LongSeq Stereo Vision: The DelFly Explorer uses a

Stereo Vision algorithm called LongSeq to extract depth in-

formation of the environment from its two onboard optical

cameras [11]. The main principle in artificial stereo vision is

to determine which pixel corresponds to the same physical

object in two or more images. The apparent shift in location

of the pixels is referred to as the disparity. This can be applied

to entire features, groups of pixels or to individual pixels. The

stereo vision algorithm produces a disparity map of all pixels

in the images [?].

LongSeq is a localised line based search stereo vision

algorithm. This is one candidate resulting from the trade-

off between computational complexity and image performance

made by all image processing algorithms. The relatively low

computational and memory requirements of LongSeq makes it

a good candidate for application on the limited computational

hardware onboard the DelFly Explorer.

2) Window Detection: An Integral Image window detection

algorithm is used to aid the MAV in the fly-through-window

task. Integral image detection is a high speed pattern recog-

nition algorithm which can be used to identify features in a

pixel intensity map [8, 26]. The integral image (II(x,y)) is

computed as

II(x,y) = ∑
x′≤x,y′≤y

I(x′,y′) (1)

where x and y are pixel locations in the image I. As each

point of the integral image is a summation of all pixels above

and to the left of it, the sum of any rectangular subsection is

simplified to the following computation

rect(x,y,w,h) =II(x+w,y+ h)+ II(x,y)

− II(x+w,h)− II(x,y+ h)
(2)

This method has been previously used to identify a dark

window in a light environment by using cascaded classifiers

[12]. That algorithm was designed specifically to operate when

approaching a building in the daytime on a light day. Naturally,

a more generalised method is to apply the same technique

described above to the disparity map rather than the original

camera images. The disparity map would show a window as

an area of low disparity (dark) in an environment of higher

disparity (light).

D. SmartUAV Simulation Platform

SmartUAV is a Flight Control Software (FCS) and simu-

lation platform developed in-house at the TU Delft [1]. It is

used primarily with small and micro sized aerial vehicles and it

notably includes a detailed 3D representation of the simulation

environment which is used to test vision based algorithms.

It can be used as a ground station to control and monitor

a single MAV or swarms of many MAVs. As SmartUAV is

developed in-house, designers have freedom to adapt or change

the operating computer code at will, making it very suitable

for use in research projects.

SmartUAV contains a large visual simulation suite which

actively renders the 3D environment around the vehicle.

OpenGL libraries are used to generate images on the PC’s

GPU increasing SmartUAV’s simulation fidelity without sig-

nificant computational complexity. In this paper we will only

utilise the simulation capabilities. The BT will be placed in

series following the LongSec disparity map generation and the

window detection algorithm.

In terms of the larger SmartUAV simulation, the vision

based calculations are the most computationally intensive

portion making it the limiting factor for the speed of operation

of the wider decision process. The higher the decision loop

frequency relative to the flight dynamics the longer a single

simulation will take. This must be balanced by the frequency at

which the DelFly is given control instructions, where generally

higher is better. Considering this trade-off, the decision loop

was set to run at 10Hz. This is a conservative estimate of

the actual performance of the vision systems onboard the real

DelFly Explorer.

E. Simplified DelFly Model

The modelling of flapping wing MAV dynamics is an active

research area driven by the largely unknown micro scale aero-

dynamic effects [3, 6, 10]. Due to the lack of accurate models,

an existing model of the DelFly II previously implemented

based on the intuition of the DelFly designers will be used

in this work. This model is not an accurate representation of

the true DelFly II dynamics but was sufficient for most vision

based simulations previously carried out.

The DelFly II has three control inputs, namely: Elevator

(δe), Rudder (δr) and Thrust (δt). The elevator and rudder

simply set the control surface deflection and the thrust sets the

flapping speed. The actuator dynamics of the DelFly rudder

actuator is implemented using a low pass filter with a rise time

of 2.2s and a settling time of 3.9s. The elevator deflection and

flapping speed have no simulated dynamics and are directly

set to the set-point.

For the simulated flights in this paper, the throttle setting

and elevator deflection were held constant at a trim position

resulting in a flight speed of 0.5m/s and no vertical speed.

Additionally, the rudder deflection was limited to a resultant

maximum turn rate of 0.4rad/s resulting in a minimum turn

radius of 1.25m. The simulated dynamics had no coupling in

the flight modes of the simulated DelFly which is a significant

simplification of real world flight.

Now, there are some notable differences between the DelFly

II and DelFly Explorer. Firstly the Explorer replaces the rudder

with a pair of ailerons which allows the DelFly Explorer

to turn without the camera rotating around the view axis.

Additionally, the DelFly Explorer is 4g heavier and has a

slightly higher wing flapping frequency. It is expected that the

DelFly model mismatch will exaggerate the resultant reality

gap.

III. BEHAVIOUR TREE IMPLEMENTATION

BTs are depth-first, ordered Directed Acyclic Graphs

(DAGs) used to represent a decision process [14]. DAGs are

composed of a number of nodes with directed edges. Each

edge connects one node to another such that starting at the

root there is no way to follow a sequence of edges to return

to the root. Unlike FSMs, BTs consider achieving a goal

by recursively simplifying the goal into subtasks similar to

that seen in the Hierarchical Task Network (HTN) [15]. This

hierarchy and recursive action make the BT a powerful way

to describe complex behaviour.

A. Syntax and Semantics

A BT is syntactically represented as a rooted tree struc-

ture, constructed from a variety of nodes. Each node has its

individual internal function whilst all nodes have the same

external interface making the structure very modular. When

evaluated, each node in a BT has a return status which dictates

how the tree will be traversed. In its simplest form, the return

statuses are either Success or Failure. As the terms suggest,

Success is returned on the successful evaluation of the node

and Failure when unsuccessful. As this does not provide

much information as to the condition under which the node

failed, some implementations have augmented states such as

Exception or Error to provide this information.

Figure 2 shows a typical BT and node types used in

this paper. Basic BTs are made up of three kinds of nodes:

Conditions, Actions and Composites [7]. Conditions test some

property of the environment whilst Actions allow the agent to

act on its environment. Conditions and Actions make up the

leaf nodes of the BT whilst the branches consist of Composite

nodes. Naturally, leaf nodes are developed for specific robotic

platforms dependent on the available sensors and actuators.

Composite nodes however are not platform dependent and

can be reused in any BT. Each node requires no information

about its location in the tree. Only Composite nodes need

to know who its children are in order to direct the flow of

Fig. 2. Typical representation of the Behaviour Tree showing the basic node
types and execution flow. The leaf nodes of the tree are composed of Action
and Condition nodes whilst the branches are referred to as Composites. All
nodes return either Success or Failure. There are two types of Composite
nodes used: Selectors and Sequences. Selectors return Success if one of their
children is successful and Failure if they all fail. Conversely, Sequences return
Failure if one of their children fail and Success is they all succeed. In this
example, Condition nodes 3, 13, 15, 17 and 20 return Failure in the given
time step or tick. The lightly shaded nodes return Success and the dark nodes
evaluate Failure. The nodes with no shading are not evaluated in this tick.
The arrows show the propagation of evaluations in the tree.

execution down the tree. This structure makes BTs inherently

modular and reusable.

The tree execution can also be seen in Figure 2. This demon-

strates how the Composite nodes determine the execution path

of the tree dependant on the return value of their children.

To understand this flow structure we must first describe the

Composite node in more detail. Although many different types

of Composite nodes exist, we will only consider the most basic

nodes in this paper: Selectors and Sequences.

Composites evaluate their children in a fixed order, graph-

ically represented from left to right. Selectors will break

execution and return Success when one of its children return

Success, or Failure when all of its children return Failure.

Conversely, Sequences will break execution and return Failure

when one of its children fails, or Success if all of its children

return Success. The first node in the tree is called the Root

node, which is typically a Selector with no parent. The

execution of the behaviour tree is referred to as a tick.

This execution framework means that not all nodes are

evaluated in every tick. The left most nodes are evaluated first

and determine the flow through the tree implementing a sort

of prioritised execution.

B. DelFly Implementation

Aside from the generic Sequence and Selector Composite

nodes, two condition nodes and one action node were de-

veloped for the DelFly, namely: greater than, less than and

set rudder. These behaviour nodes are accompanied by a

Blackboard which was developed to share information with

the BT.

The Blackboard architecture implemented for the DelFly

contains five entries: window x location (x), window response

(σ), sum of disparity (Σ), horizontal disparity difference (∆)

and rudder deflection (r). The first four are condition variables

and the last item is used to set the BT action output. The

condition variables are set before the BT is ticked and the

outputs are passed to the DelFly FCS after the tick is complete.

Fig. 3. Graphical depiction of user-defined BT for the fly-through-window
task. Different sub-behaviours of the flight are encapsulated in boxes. x is the
position of the centre of the window in frame, σ is window response value,
Σ is sum of disparity, ∆ is the horizontal difference in disparity and r is the
rudder deflection setting for the simulated DelFly II.

Note that this implementation of a BT has no explicit concept

of memory or time.

The Condition nodes check if some environmental variable

is greater than or less than a given threshold. This means that

each Condition node has two internal settings: the environ-

mental parameter to be checked and the threshold. The Action

node set rudder sets the DelFly rudder input and therefore

only has one internal setting. Actions were defined to always

return Success.

C. User Designed Behaviour Tree

A human designed behaviour was used as a baseline to

judge the performance of the genetically optimised solution.

The designed tree has 22 nodes and the structure of the BT

as shown in Figure 3. The behaviour is made up of four main

sub-behaviours:

— window tracking based on window response and location

in frame - try to keep the window in the centre of the

frame

- - go straight when disparity very low - default action, also

helps when looking directly through window into next

room

-.- wall avoidance when high disparity - bidirectional turns

to avoid collisions with walls, also helps to search for

window

... action hold when disparity very high - ensures the chosen

action is not changed when already evading a wall

After validation of this BT, it was observed that for 250

random initialisations in the simulated environment, 82% of

flights where successful. This behaviour is good but suffers

from one main flaw which was observed during the validation.

Unwittingly, the bidirectional wall avoidance in a square

room can result in the DelFly getting caught in and crashing

into corners. There are available methods to correct for this

behaviour [46, 49] but as this is a conceptual error typical

for human designed systems, we will keep this behaviour as

is. Figure 4 shows the path of successful and failed flight

realisations of DelFly with the user-defined behaviour.

IV. EVOLUTIONARY ALGORITHM

Evolutionary Algorithms are a population based metaheuris-

tic global optimisation method inspired by Darwinian evo-

x [m]

y
[m

]

0 2 4 6 8

0

2

4

6

8

Fig. 4. Path of successful (x) and unsuccessful flight (o) initialisations of
DelFly with the user-defined behaviour (top-down view). Line types denote
different decision modes: Solid - window tracking; Dash - default action in
low disparity; Dot Dash - wall avoidance; Dot - action hold

lution [20, 23, 30]. A population of feasible solutions for a

particular problem are made up of a number of individuals.

The fitness of each individual is measured by some user-

defined, problem specific, objective function. The fitness of

the individuals is evaluated each generation. Successful indi-

viduals are selected to generate the next generation using the

genetic recombination method crossover. Each generated child

may also be subject to mutation where individual parts of their

genes are altered. These operations allow the EA to effectively

explore and exploit the available search space [33].

There are many implementations of EAs, each with a dif-

ferent method to encode the genetic material in the individuals

[16, 20, 30?]. In this paper we will use an EA to optimise

the behaviour for a task using the BT framework. The custom

EA for BTs used in this work is described in the following

sections.

A. Genetic Operators

a) Initialisation: The initial population of M individuals

is generated using the grow method [?]. Nodes are selected at

random to fill the tree with Composite, Action and Condition

nodes with equal probability. Once a Composite node is

selected, there is equal probability for a Sequence or Selector.

This was done as more leaf nodes are typically needed in trees

than branch nodes.

The grow method results in variable length trees where

every Composite node is initialised with its maximum number

of children and the tree is limited by some maximum tree

depth. This provides an initial population of very different tree

shapes with diverse genetic material to improve the chance of

a good EA search.

b) Selection: A custom implementation of Tournament

Selection is used in this paper [35]. This is implemented by

first randomly selecting a subgroup of s individuals from the

population. This subgroup is then sorted in order of their

Fig. 5. Sample parent trees with selected nodes for crossover highlighted.
Two-parent, single point Crossover is used for evolution.

Fig. 6. Children of crossover of parents in Figure 5.

fitness. If two individuals have the same fitness they are then

ranked based on tree size, where smaller is better. The best

individual is typically returned unless the second individual is

smaller, in which case the second individual is returned. This

was done to introduce a constant pressure on reducing the size

of the BTs.

c) Crossover: Crossover is an operation where the com-

position of two or more parents is recombined to produce

offspring. In this paper we use two-parent crossover to pro-

duce two children. Each parent is selected from a different

tournament selection. The percentage of the new population

formed by Crossover is defined by the Crossover Rate Pc. The

point in the BT used to recombine the parents is selected at

random.

This selection is independent of its type or its location in

the tree. Crossover can be applied to any node location till the

maximum tree depth after which nodes are ignored. Figure 5

and Figure 6 graphically show this process.

d) Mutation: Mutation is implemented using two meth-

ods, namely: micro-mutation and macro-mutation (also re-

ferred to as Headless Chicken Crossover [2]). Micro-mutation

only affects leaf nodes and is implemented as a reinitialisation

of the node with new operating parameters. Macro-mutation

is implemented by replacing a selected node by a randomly

generated tree which is limited in depth by the maximum

tree depth. This is functionally identical to crossover with

a randomly generated BT. The probability that mutation is

applied to a node is given by the mutation rate Pm. Once a

node has been selected for mutation the probability that macro-

mutation will be applied rather than micro-mutation is given

by the Headless-Chicken Crossover Rate Phcc.

e) Stopping Rule: Like many optimisation methods, EAs

can be affected by overfitting. As a result an important

parameter in EA is when to stop the evolutionary process.

Additionally, due to the large number of simulations required

to evaluate the performance of the population of individuals,

placing a limit on the maximum number of generations can

help avoid unnecessarily long computational time.

For these reasons, the genetic optimisation has a maximum

number of generations (G) at which the optimisation will be

stopped. Additionally, when the trees are sufficiently small to

be intelligible, the process can be stopped by the user.

B. Fitness Function

The two main performance metrics used to evaluate the

DelFly in the fly-through-window task are: Success Rate and

Tree Size. The fitness function was chosen to encourage the

EA to converge on a population that flies through the window

as often as possible. After trying several different forms of

fitness functions a discontinuous function was chosen such

that a maximum score is received if the MAV flies through

the window and a score inversely proportional to its distance

to the window if not successful. The fitness F is defined as:

F =

{

1 i f success
1

1+3|e| else
(3)

where success is defined as flying through the window and e

is the vector from the centre of the window to the location of

the MAV at the end of the simulation. This particular form of

fitness function was selected to encourage the DelFly to try

to get close to the window with a maximum score if it flies

through. The values selected are not very sensitive and were

chosen at the discretion of the designer. Changing the gain of

the error term effects the selection pressure of the EA.

Although not incorporated in the fitness function, we will

also analyse some secondary parameters that are not vital to

the performance of the DelFly. These define the suitability

of its behaviour from a user point of view and define the

characteristics of a given fly-through-window behaviour. These

parameters are defined as: Angle of Window Entry, Time to

Success and Distance from Centre of Window at Fly-Through.

V. DELFLY TASK OPTIMISATION

A. Simulated 3D Environment

The environment chosen to evaluate the DelFly in simula-

tion was an 8× 8× 3m room with textured walls, floor and

ceiling. A 0.8 0.8m window was placed in the centre of one

wall. Another identical room was placed on the other side of

the windowed wall to ensure the stereo algorithm had sufficient

texture to generate matches for the disparity map when looking

through the window.

As it is not the purpose of this research to focus on

the vision systems, the environment was rather abundantly

textured. A multi-coloured stone texture pattern was used

for the walls, a wood pattern was used for the floor and a

concrete pattern used for the ceiling as shown in Figure 7.

The identically textured walls ensure that the behaviour must

identify the window and not any other features to aid in its

task.

Fig. 7. Virtual 8×8×3m room used to evaluate DelFly fly-through-window
task showing: virtual DelFly Explorer, textured walls used for stereo vision
and target 0.8×0.8m window.

B. Experimental Set-up

The evolved DelFly behaviour should be robust and there-

fore must fly through the window as often as possible. To

evaluate this, each individual behaviour must be simulated

multiple times in each generation defined by parameter k. Each

run is characterised by a randomly initiated location in the

room and a random initial heading.

Initially, it was observed that by randomly changing the ini-

tialisations in every generation made it difficult for evolution to

determine if the behaviour in subsequent generations improved

due to its behaviour or due to the initialisation. To remedy

this initial conditions are held over multiple generations until

the elite members of the population (characterised by Pe) are

all successful. Once all the elite members are successful in

a given initialisation run, the initial condition in question is

replaced by a new random initialisation. Each simulation run is

terminated when the DelFly crashes, flies through the window

or exceeds a maximum simulation time of 100s.

For the EA to converge to a near-optimum solution the

Crossover rate must be high enough to push the optimisation

to exploit the local maxima. Additionally, the mutation rate

must be high enough to explore the state space while not too

high to prematurely exit current solutions. The characteristic

parameters for optimisation shown in this paper are shown

in Table I. The parameter combination selected is naturally

only one realisation of many possibilities. The relatively large

number of runs per individual selected should promote the

development of robust flight behaviour. This however increases

the total simulation time needed to evaluate each generation

hence affecting the choice of population size.

The maximum tree depth is measured with the root node

as depth 0. The maximum tree size can be determined by

maxchildrenmaxdepth. So a tree depth of 6 with at most 6

children per Composite was used resulting in an upper limiting

tree size of over 46000 nodes. This is however not likely as

the node type selected in the trees is chosen at random over

Composite, Condition and Action.

TABLE I
PARAMETER VALUES FOR THE EVOLUTIONARY COMPUTATION

Parameter Value

Max Number of Generations (G) 150
Population size (M) 100
Tournament selection size (s) 6%
Elitism rate (Pe) 4%
Crossover rate (Pc) 80%
Mutation rate (Pm) 20%
Headless-Chicken Crossover rate (Phcc) 20%
Maximum tree depth (Dd) 6
Maximum children (Dc) 6
No. of simulation runs per generation (k) 6

Generation

N
o

rm
al

is
ed

F
it

n
es

s

Best of Population

Population Mean

0 50 100 150
0

0.2

0.4

0.6

0.8

1

Fig. 8. Progression of the fitness score of the best individual and the mean
of the population throughout the genetic optimisation. The fitness value is the
mean of the k simulation runs from each generation.

C. Optimisation Results

The main parameter which dictates the progress of the

genetic optimisation is the mean fitness of the population.

Figure 8 shows the population mean fitness as well as the

mean fitness of the best individual in each generation. It can

be seen in Figure 8 that at least one member of the population

is quickly bred to fly through the window quite often. Ad-

ditionally, as the generations progress and new initialisations

are introduced the trees have to adjust their behaviour to be

more generalised. The mean fitness also improves initially and

then settles out at around the 0.4 mark. The fact that this value

doesn’t continue to increase suggests that the genetic diversity

in the pool is sufficient to avoid premature conversion of the

EA.

The other main parameter which defines the proficiency of

the BTs is the tree size. The mean tree size of the population as

well as the tree size of the best individual from each generation

is shown in Figure 9. This figure shows that the average

tree size began at about 5000 nodes and initially increases

to 7000 before steadily dropping to around 1000 nodes at

generation 50. The trees then slowly continue to reduce in

size and eventually drop below 150 nodes. The best individual

Generation

T
re

e
si

ze

Best of Population

Population Mean

0 50 100 150
0

2000

4000

6000

8000

10000

Fig. 9. Progression of the number of nodes in the best individual and the
mean of the population.

Fig. 10. Graphical depiction of genetically optimised BT. Different sub-
behaviours of the flight encapsulated by boxes. x is the position of the centre
of the window in frame, σ is window response value, Σ is sum of disparity, ∆

is the horizontal difference in disparity and r is the rudder deflection setting
for the simulated DelFly II.

Generation

S
u

cc
es

s
R

at
e

[%
]

0 50 100 150
0

20

40

60

80

100

Fig. 11. Progression of the validation score of the best individual of each
generation subjected to the same set of 250 spacial initialisations in the
simulated room.

in the population oscillated around this mean value. The best

individual after 150 generations had 32 nodes. Pruning this

final BT, removing redundant nodes that have no effect on the

final behaviour, resulted in a tree with 8 nodes. The structure

of the tree can be seen graphically in Figure 10.

Figure 11 shows the progression of the validation success

rate for the best individual of each generation. It can be seen

that the score quickly increases and oscillates around about

80% success. In early generations the variation of success rate

TABLE II
SUMMARY OF VALIDATION RESULTS

Parameter user-defined genetically optimised

Success Rate 82% 88%
Tree size 26 8
Mean flight time [s] 32 40
Mean approach angle [◦] 21 34
Mean distance to centre [m] 0.08 0.15

x [m]

y
[m

]

0 2 4 6 8

0

2

4

6

8

Fig. 12. Path of successful (x) and unsuccessful (o) flight initialisations of
DelFly with the genetically optimised behaviour (top-down view). Line styles
denote different decision modes: Solid - window tracking; Dash - default
action in low disparity; Dash Dot - wall avoidance.

from one generation to the next is larger than later generations.

Figures 9 and 11 suggest that the population quickly con-

verges to a viable solution and then continues to rearrange

the tree structure to result in ever smaller trees. The fact that

the best individual of each population does not improve much

above the 80% mark possibly indicates that the selected initial

conditions used for training are in-fact not representative for

the full set of initial conditions. One method to make the initial

conditions more difficult is to adapt the environment to actively

challenge the EA in a sort of predator-prey optimisation.

Alternatively, the fact that the behaviour does not continue

to improve over the 80% mark may indicate that the sensory

inputs used by the DelFly are not sufficient.

The optimised BT was put through the same validation

set as used with the user-defined behaviour resulting in a

success rate of 88%. The performance characteristics of the

best individual from the optimisation as compared to those

from the user-defined BT is summarised in Table II. The

optimised BT has slightly higher success rate than the user-

defined BT but with significantly less nodes. The results of the

secondary parameters suggest that the genetically optimised

behaviour typically has a sharper window entry angle and

enters the window closer to the edge than the user-defined

behaviour. It also has a longer time to window fly-through as

it circles the room more often than the user-defined behaviour.

This result highlights the fact that EAs typically only

optimise the task explicitly described in the fitness function,

Fig. 13. Photograph showing the room environment used to test the DelFly
Explorer for the fly-through-window task. Inset is collage of DelFly as it
approaches and flies through window.

sometimes at the cost of what the user might think is benefi-

cial. The successful flight shown in Figure 12 shows that the

behaviour correctly avoids collision with the wall, makes its

way to the centre of the room and then tracks into the window.

Analysing the BT from Figure 10, the logic to fly through the

window can be separated into three sub-behaviours:

- - slight right turn default action when disparity low

-.- max right turn to evade walls if disparity high (unidirec-

tional avoidance)

— if window detected make a moderate left turn

Although this very simple behaviour seems to be very suc-

cessful, Figure 12 also highlights one pitfall of this solution.

As the behaviour does not use the location of the window in

the frame for its guidance it is possible to drift off centre and

lose the window in frame and enter a wall avoidance turn quite

close to the wall resulting in a collision.

These results show that based on the given fitness function

and optimisation parameters the genetic optimisation was very

successful. The resultant BT was both smaller and better

performing than the user-defined tree.

VI. DELFLY ONBOARD FLIGHT TESTING

The BT was implemented on the camera module of the

DelFly Explorer which is equipped with a STM32F405 pro-

cessor operating at 168MHz with 192kB RAM. The BT is

placed in series with the stereo vision and window detection

algorithms as was done in simulation and was found to run at
∼12Hz. The commands were sent from the camera module to

the DelFly Explorer flight control computer using serial com-

munication. The DelFly flight control computer implements

these commands in a control system operating at 100Hz.

A. Test 3D Environment

The environment designed to test the MAV was a 5×5×2m

room with textured walls. A 0.8× 0.8m window was placed

in the centre of one wall. The area behind the window was

a regular textured area. Artificial texture was added to the

environment to ensure we had good stereo images from the

DelFly Explorer onboard systems. This texture was in the

TABLE III
SUMMARY OF THE REALITY GAP

Parameter Simulated Reality

Flight Speed [m/s] 0.5 0.5
Minimum Turn Radius [m] 1.25 0.5
Actuator Response Time [s] 2.2 ¡1
Decision Loop Speed [Hz] 10 12
Actuator Deflection Symmetric Asymmetric
Environmental No Disturbances Drafts

form of newspapers draped over the walls at random intervals.

A sample photograph of the room can be seen below in

Figure 13.

B. Experiment Set-up

At the beginning of each run, the DelFly was initially flown

manually and correctly trimmed for flight. It was then flown

to a random initial position and pointing direction in the

room. At this point the DelFly was set to autonomous mode

where the DelFly flight computer implements the commands

received from the BT. The flight continued until the DelFly

either succeeded in flying through the window, crashed or the

test took longer than 60s. As the BT controls the horizontal

dynamics only, the altitude was actively controlled by the user

during flight which was maintained around the height of the

centre of the window.

All flights were recorded by video camera as well as an

Optitrack vision based motion tracking system [37]. Optitrack

was used to track the DelFly as it approached and flew

through the window to determine some of the same metrics

of performance that were used in simulation. As a result,

information on the success rate, flight time, angle of approach

and offset to the centre of the window can be determined.

VII. CROSSING THE REALITY GAP

The flight speed of the DelFly was set to ∼0.5m/s, the same

as was used in simulation. However, there were significant dif-

ferences observed between the system simulated in SmartUAV

and that in the flight tests. The most significant observations

are summarised in Table III. In short, the turn radius was

smaller and the actuator response was faster and asymmetric.

Additionally, aileron actuation would result in a reduction in

thrust meaning that active altitude control was required from

the user throughout all flights. It was also observed that there

were light wind drafts around the window which affected the

DelFly’s flight path. These drafts would typically slow down

the DelFly’s forward speed and push it to one side of the

window.

With these significant differences between the model used

to train the BTs and the real DelFly there was a clear reality

gap present. Initially both behaviours were not successful in

flying through the window. To adjust the behaviour to improve

the performance we first considered the definition of success

as defined by Jakobi [24]. In his paper he suggested that the

performance of the robotic system should be judged on a

subjective measure of how reliably the robot performs the task

in reality with no consideration to how the behaviour achieves

the task objective. In the case of this paper, that would simply

be defined as how often the DelFly flies through the window.

We initially tried to directly adjust the behaviour in reality

without comparing it to the behaviour seen in simulation.

To improve the fly-through-window performance we mainly

considered the final portion of the flight but this proved

ineffective. This results from the fact that the embodied agent’s

success is tightly coupled with interaction of the robot’s sub-

behaviours during the entire flight. For example, the way

the DelFly wall avoidance sub-behaviour performed defined

its approach to the window in such a way that the window

approach sub-behaviour would be successful. This suggests

then that to achieve a task reliably in reality the robot must

behave similarly to that observed in simulation for all sub-

behaviours.

The insight into what parameters to change and how, comes

from the user’s understanding of the BT. From this the user can

identify individual sub-behaviours. The technique of grouping

nodes into sub-behaviours can be seen in Figures 3 and 10.

This segmentation of the behaviour helps to identify individual

gaps simplifying the behaviour update process.

To demonstrate this let us first look at the evolved behaviour

tree shown in Figure 10 which can be considered as made up of

three sub-behaviours. Let us first look at the window detection

sub-behaviour. We flew the DelFly around our test room and

observed the window response value was never achieved with

the certainty value of 69 (a lower value represents higher

certainty that a window is in the frame). We increased the

threshold of node 7 till the node would be activated by the

window but false positives from other locations would not be

likely.

Let us now investigate the wall avoidance sub-behaviour.

This mode is entered when the total disparity is larger than a

threshold set by node 3. Observing the behaviour in Figure 12,

the DelFly tries to circle in around the centre of the room

entering the wall avoidance mode at ∼4m from the wall in

the 8× 8m room. This would suggest that the real DelFly

should enter this mode at ∼2.5m in the real 5× 5m room so

the threshold in node 3 should be changed accordingly.

It should be noted that it appears that evolution has opti-

mised the DelFly behaviour to fly through windows in square

rooms. The approach of avoiding walls at a fixed distance

to line the DelFly up for the window entry would be more

difficult if the window was not in the centre of the wall or

if the room size changed. This reiterates the strong coupling

between optimised behaviour and the environment that is

characteristic of ER. It is therefore essential to vary the

environment sufficiently to encourage the EA to converge to

solutions robust to changes in the environment. Last but not

least, applying this to the wall avoidance action, the simulated

DelFly had a minimum turn radius of 1.25m which was much

smaller in reality. A scaling factor was applied to increase the

turn radius to that seen in simulation.

Using this approach, tuning these parameters took about 3

flights of about 3 minutes each to result in behaviour similar to

that seen in simulation. The updated behaviour can be seen in

Fig. 14. Graphical depiction of genetically optimised BT after modification
for real world flight. Encapsulating boxes highlight updated nodes. x is the
position of the centre of the window in frame, σ is window response value,
Σ is sum of disparity, ∆ is the horizontal difference in disparity and r is the
aileron deflection setting for the DelFly Explorer.

Fig. 15. Graphical depiction of user-defined BT after modification for real
world flight. Encapsulating boxes highlight updated nodes. x is the position
of the centre of the window in frame, σ is window response value, Σ is sum
of disparity, ∆ is the horizontal difference in disparity and r is the aileron
deflection setting for the DelFly Explorer.

TABLE IV
SUMMARY OF FLIGHT TEST RESULTS

Parameter user-defined genetically optimised

Success Rate 46% 54%
Mean flight time [s] 12 16
Mean approach angle [◦] 16 37
Mean distance to window centre [m] 0.12 0.12

Figure 14. This same approach was used with the user-defined

BT with significantly more nodes and took a total of 8 flights

of about 3 minutes each to tune the parameters to mimic the

behaviour observed in simulation. The updated behaviour can

be seen in Figure 15.

VIII. FLIGHT TEST RESULTS

26 test flights were conducted for both the user-defined

behaviour as well as the genetically optimised BT1. The results

of the tests are summarised in Table IV.

It can be seen that the success rate of both behaviours is

reduced for both behaviours but notably, the relative difference

of the two behaviours is maintained. Additionally, the other

performance parameters which are the characteristic behaviour

descriptors are similar to that seen in simulation. This suggests

that the user adaptation of the real behaviour to emulate the

simulated behaviour was successful. The relative performance

of the behaviours is also similar to that seen in simulation. The

mean flight time of the behaviours was reduced but notably

the relative flight times of the behaviours is the same as seen

in simulation. The reduction in the time to success can be

1An accompanying video with some of the test flights can be found at:
https://www.youtube.com/watch?v=CBJOJO2tHf4&feature=youtu.be

https://www.youtube.com/watch?v=CBJOJO2tHf4&feature=youtu.be

x [m]

y
[m

]

0 1 2 3 4 5

0

1

2

3

4

5

Fig. 16. Flight path tracks of the last 7 seconds of all successful flights for
the user-defined behaviour. o represents start location of each flight.

explained by the reduced room size. The mean distance to the

centre of the window was higher for the user-defined behaviour

than observed in simulation. This can be the result of the drafts

around the window pushing the DelFly to the edges of the

window. This draft would also push the approaching DelFly

into the window edge on some approaches.

The time to success was lower for both behaviours as

compared to the values observed in simulation. This is mainly

due to the smaller room size used in reality. Notably, the user-

defined behaviour showed the characteristic failure of being

caught in corners. This happened 4/26 flights for the user-

defined behaviour but not once in the genetically optimised

behaviour. This is representative of the observations of the

behaviour in simulation, a fundamental deficiency of the bi-

directional wall avoidance in a room with corners. This obser-

vation additionally suggests that the behaviour seen in simu-

lation is effectively transferred to the real DelFly. Figures 16

and 17 show the last 7 seconds of the user-defined behaviour

for all flights grouped in successful and unsuccessful tests

respectively. The Optitrack flight tracking system did not suc-

cessfully track the DelFly in all portions of the room resulting

in some dead areas but did accurately capture the final segment

of the window approach. These plots show that the DelFly

tried to approach and fly through the window from various

areas of the room at various approach angles. Approaches from

areas of high approach angle typically resulted in a failed flight

as the DelFly would hit the edge of the window. Additionally,

the crashes in the wall due to being caught in corners can also

be seen. Figure 18 shows one full successful and unsuccessful

flight of the DelFly user-defined behaviour.

Similarly, Figures 19 and 20 show the successful and

unsuccessful flights of the genetically optimised behaviour as

captured from the Optitrack system. In these figures it can be

seen that the flight tracks of genetically optimised behaviour

are tightly grouped with the same behaviour repeated over

multiple flights. The DelFly always approaches from about the

x [m]

y
[m

]

0 1 2 3 4 5

0

1

2

3

4

5

Fig. 17. Flight path tracks of the last 7 seconds of all unsuccessful flights
for the user-defined behaviour. o represents start location of each flight.

x [m]

y
[m

]

0 1 2 3 4 5

0

1

2

3

4

5

Fig. 18. Flight path tracks showing one complete successful (dash dot) and
unsuccessful (solid) flight for the user-defined behaviour. o represents start
location of test. Doted path shows where tracking system lost lock of the
DelFly.

centre of the room with a coordinated left-right turn described

earlier. It can be seen that some of the unsuccessful flights

occur when the DelFly makes an approach from farther way

than normal so the coordination of the left-right turning is

out of sync causing the DelFly to drift off course and hit

the window edge. Figure 21 shows one entire successful and

unsuccessful flight of the genetically optimised behaviour in

more detail. The typical failure mode was turning into the edge

of the window in the final phase of the flight.

This is likely mainly due to the drafts around the window.

Additionally, the faster decision rate of the BT in reality

combined with the faster dynamics of the vehicle may play

a role here as well. The fact that the real world test was

conducted in a different sized room than tested in simulation

would have an effect on the success rate. In the future it

would be interesting to observe the converged behaviour if the

x [m]

y
[m

]

0 1 2 3 4 5

0

1

2

3

4

5

Fig. 19. Flight path tracks of the last 7 seconds of all successful flights for
the genetically optimised behaviour. o represents start location of each flight.

x [m]

y
[m

]

0 1 2 3 4 5

0

1

2

3

4

5

Fig. 20. Flight path tracks of the last 7 seconds of all unsuccessful flights for
the genetically optimised behaviour. o represents start location of each flight.

simulated room were not kept constant during evolution. It is

expected that this would result in behaviour more robust to

changes in the environment. The failure mode of hitting into

the window edge for both behaviours can be in part the result

of the drafts observed around the window or in part due to

the lack of detailed texture around the window. These external

factors would affect the two behaviours equally so would not

affect the comparison of behaviours.

The fact that both the user-defined and genetically optimised

behaviours were initially not able to fly through the window

but after user adaptation were able to fly through more than

50% of the time shows that the reality gap was actively

reduced by the user. These results show that it is feasible

to automatically evolve behaviour on a robotic platform in

simulation using the BT description language. This method

gives the user a high level of understanding of the underlying

behaviour and the tools to adapt the behaviour to improve

x [m]

y
[m

]

0 1 2 3 4 5

0

1

2

3

4

5

Fig. 21. Flight path tracks showing one complete successful (dash dot) and
unsuccessful (solid) flight for the genetically optimised behaviour. o represents
start location of test. Doted path shows where tracking system lost lock of
the DelFly.

performance and reduce the reality gap. Using this technique

an automated behaviour was shown to be at least as effective

as, if not better than, a user-defined system in simulation with

similar performance on a real world test platform.

IX. DISCUSSION

A. Behaviour I/O Abstraction

In this paper we use the descriptive and user legible frame-

work of the BT to improve the user’s understanding of the

solution strategy optimised through evolution. With this insight

the user can identify and reduce the resultant reality gap when

moving from simulation to reality. This approach therefore

necessitates that the elements of the tree are also conceptually

tangible for the user, as such a higher abstract level was

used for the sensory inputs. Unlike standard approaches which

use ANNs where raw sensor data is used as input, we first

preprocess the data into a form that a user can understand.

The only question is then, how do we determine what is the

best set of inputs to the robotic platform that will facilitate a

robust and effective solution to be optimised by evolution.

Now, compared to typical ER approaches, preprocessing the

inputs may affect the level of emergence of the EA such as hat

seen in Harvey et al. [21]. That paper demonstrated a robot

completing an object detection task which was simplified by

an EA to the correlation of just a few image pixels. This

level of optimisation may not be possible if the inputs are

preprocessed. However, preprocessing the input data typically

reduces its dimensionality, thereby reducing the search space

of the EA. This reduction in search space is crucial as we

implement this technique on even more complex task and

robotic platforms.

With regard to the actions, robotic outputs are typically

not robust as they are susceptible to unmodelled simulator

dynamics and changes in the operating environment. For

example, in this paper we set the output of the BT to be

the rudder deflection which in hindsight is not a very robust

parameter to control. It may have been more effective to have

controlled the turn rate and have a low level, closed loop

control system controlling the actuator deflection. The closed

loop controller would reduce the BT’s reliance on the flight

model in simulation. This would make the behaviour more

robust on the real robot inherently reducing the reality gap.

The concept of using nested loops to bound control sys-

tems in order to improve robustness is a concept long used

in control theory. Considering the reality gap, recent work

suggests that by limiting the EA to a set of predefined modules

can actually improve the optimised behaviour to the eventual

reality gap [19]. In this work, Francesca et al. compare an

optimised FSM using a limited set of predefined modules to a

traditional system using an ANN. The two systems performed

similarly in simulation but the ANN performed significantly

worse in reality whilst the FSM maintained its performance.

Francesca et al. present their work in the context of the bias-

variance trade-off where they suggest that the introduction of

the appropriate amount of bias will reduce the variance of

the optimised system thereby improving its generality. Bias

can be introduced to an optimisation problem by limiting

the representational power of the system, which in this case

is achieved by limiting the options of the optimisation to a

limited input-output state space [13]. This idea can also be

considered in this paper where the limitation of the state space

is not a hindrance or a limitation of the system but is in fact

a benefit of this approach.

The abstraction of the behaviour from the low level sensor

inputs and actuator output importantly not only introduces a

bias but additionally shields the behaviour from the simulation

mismatch causing the reality gap. The improved intelligibility

in combination with the improved generalizability and robust-

ness to the reality gap should ultimately make the approach

presented in this paper more suitable for extensive use in

real robots attempting complex tasks than conventional ER

approaches.

B. Scalability

The task completed in this paper is more complex than other

ER tasks typically quoted in literature. Yet in the larger scale

of autonomous navigation this task is only just a start. To

facilitate this growing task complexity we will recommend

some points for future research. Firstly, it is interesting to

investigate the implementation of memory and time to the BT.

Memory could be implemented as elements of the Black-

Board that are not outputs of the BT to the platform but rather

just internal variables. Time could be added by including a

Running state to the nodes where they would hold till the

action is completed. Alternatively, an explicit Timer node

could be added that would run for a given number of ticks.

Another point worth consideration is the addition of a Link

node to the BT framework. This node creates a symbolic link

to a static BT branch outside of the tree. Evolution could

select branches of its own behaviour which could be linked

and reused in other parts of the tree. This should help the

optimisation to reuse already developed behaviour effectively

throughout the tree. This would provide the EA with not only

the raw materials to build the behaviour but the ability to

save combinations of these raw materials in a blueprint which

can be reused at will. With that said, the technique described

in this paper is dependent on the user’s understanding of the

underlying robotic behaviour, so how does this change with

the growing task complexity? We showed in this paper that

the BT can be broken down into sub-behaviours which helps

the user to understand the global behaviour. The prioritised

selection of behaviours based on their location in the tree

creates an inherent hierarchical structure. This structure will

automatically group the nodes of a sub-behaviour spatially in

the tree.

This makes the identification of the sub-behaviours straight

forward. Tuning of the sub-behaviours would be accomplished

using a divide and conquer approach, one sub-behaviour at a

time.

C. Evolution of Behaviour Trees for Behavioural Modelling

The BT framework could also be used to model existing

behaviour of robots or animals. This would be in a similar

vein as a recent ER study, in which the insight into the evolved

neural controller’s strategy was verified by constructing an

equivalent FSM controller [9]. Instead of manually designing

such a controller, EAs could be used to optimise a BT to

best approximate the behaviour of a robot or animal. The BT,

optimised to mimic reality, would give researchers increased

insight into the underlying system dynamics. To mention a few

examples, this approach can be applied to: self-organisation,

swarming, emergence and predator-prey interaction.

X. CONCLUSION

We conclude that the increased intelligibility of the Be-

haviour Tree framework does give a designer increased under-

standing of the automatically developed behaviour. The low

computational requirements of evaluating the Behaviour Tree

framework makes it suitable to operate onboard platforms with

limited capabilities as it was demonstrated on the 20g DelFly

Explorer flapping wing MAV. It was also demonstrated that the

Behaviour Tree framework provides a designer with the tools

to identify and adapt the learnt behaviour on a real platform to

reduce the reality gap when moving from simulation to reality.

Future work will investigate further into optimising the

parameters of the Evolutionary Learning used in this paper.

Multi-objective fitness functions and co-evolution of behaviour

and simulated environment are interesting directions to inves-

tigate. Additionally, work will be done on investigating how

Behaviour Trees scale within Evolutionary Learning, both in

terms of Behaviour node types but also in task complexity.

Additionally, automated control will be extended to height

control for fully autonomous flight.

REFERENCES

1. Matthijs H.J. J. J Amelink, Max Mulder, M. M van Passen,

M M van Paassen, M M van Passen, and M M van

Paassen. Designing for Human-Automation Interaction:

Abstraction-Sophistication Analysis for UAV Control. In

S I Ao, Oscar Castillo, Craig Douglas, David Dagan Feng,

and Jeong-A Lee, editors, International MultiConference

of Engineers and Computer Scientists, volume I, pages

318–323, Hong Kong, mar 2008. IAE.

2. Peter J Angeline. Subtree Crossover: Building Block

Engine or Macromutation. In John R. Koza, Kalyanmoy

Deb, Marco Dorigo, David B Fogel, Max Garzon, Hitoshi

Iba, and Rick L Riolo, editors, Genetic Programming

1997: Proceedings of the Second Annual Conference,

pages 9–17, Stanford University, CA, jul 1997. Morgan

Kaufmann.

3. S Ansari, R Żbikowski, and K Knowles. Aerodynamic

modelling of insect-like flapping flight for micro air ve-

hicles. Progress in Aerospace Sciences, 42(2):129–172,

2006.

4. Josh C Bongard. Evolutionary Robotics. Communications

of the ACM, 56(8):74–83, 2013.

5. Josh C Bongard, Victor Zykov, and Hod Lipson. Resilient

machines through continuous self-modeling. Science,

314(5802):1118–21, 2006.

6. J V Caetano, J Verboom, C C de Visser, G C H E

de Croon, B D W Remes, C de Wagter, and M Mulder.

Linear Aerodynamic Model Identification of a Flapping

Wing MAV Based on Flight Test Data. International

Journal of Micro Air Vehicles, 5(4):273–286, 2013.

7. Alex J Champandard. Behavior Trees for Next-Gen Game

AI. In Game Developers Conference ’07, pages 1–96, San

Francisco, CA, 2007. GDC.

8. Franklin C Crow. Summed-Area Tables for Texture

Mapping. SIGGRAPH Computer Graphics, 18(3):207–

212, jul 1984.

9. G C H E de Croon, L M O Connor, C Nicol, and D Izzo.

Evolutionary Robotics Approach to Odor Source Local-

ization. Neurocomputing, 121(1):481–497, dec 2013.

10. G C H E de Croon, K M E de Clercq, R Ruijsink, B D W

Remes, and Christophe de Wagter. Design, aerodynamics,

and vision-based control of the DelFly. International

Journal of Micro Air Vehicles, 1(2):71–97, 2009.

11. C de Wagter, S Tijmons, B D W Remes, and G C H E

de Croon. Autonomous Flight of a 20-gram Flapping

Wing MAV with a 4-gram Onboard Stereo Vision System.

In International Conference on Robotics and Automation,

pages 4982–4987, Hong Kong, jun 2014. IEEE.

12. Christophe de Wagter, Alison A Proctor, and Eric N

Johnson. Vision-Only Aircraft Flight Control. In Digital

Avionics Systems Conference, volume 2, pages 8.B.2 – 1–

11, Indianapolis, IN, oct 2003. IEEE.

13. Thomas G Dietterich, Eun Bae Kong, and Dearborn Hall.

Machine Learning Bias , Statistical Bias , and Statistical

Variance of Decision Tree Algorithms. Technical report,

Department of Computer Science, Oregon State Univer-

sity, Corvallis, OR, 1995.

14. R G Dromey. From Requirements to Design: Formalizing

the Key Steps. In First International Conference on

Software Engineering and Formal Methods, pages 2–11,

Brisbane, sep 2003. IEEE.

15. K Erol, James Hendler, and Dana S Nau. HTN Planning:

Complexity and Expressivity. In Twelfth National Confer-

ence on Artificial Intelligence, pages 1123–1128, Menlo

Park, CA, 1994. AAIA Press.

16. Dario Floreano, Peter Dürr, and Claudio Mattiussi. Neu-

roevolution: from Architectures to Learning. Evolutionary

Intelligence, 1(1):47–62, jan 2008.

17. Dario Floreano and Francesco Mondada. Automatic Cre-

ation of an Autonomous Agent: Genetic Evolution of a

Neural-Network Driven robot. In D Cliff, P Husbands,

J-A Meyer, and S Wilson, editors, Proceedings of the

Third International Conference on Simulation of Adaptive

Behavior: From Animals to Animats 3, pages 421–430,

Cambridge, MA, 1994. MIT Press.

18. Dario Floreano and Francesco Mondada. Evolution of

homing navigation in a real mobile robot. IEEE Transac-

tions on Systems, Man, and Cybernetics, Part B: Cyber-

netics, 26(3):396–407, 1996.

19. Gianpiero Francesca, Manuele Brambilla, Arne Brutschy,

Vito Trianni, and Mauro Birattari. AutoMoDe: A novel

approach to the automatic design of control software for

robot swarms. Swarm Intelligence, 8:89–112, 2014.

20. David E Goldberg. Genetic Algorithms in Search, Opti-

mization and Machine Learning. Addison-Wesley Long-

man Publishing, Boston, MA, 1989.

21. Inman Harvey, Phil Husbands, and D Cliff. Seeing

the light: Artificial evolution, real vision. In D Cliff,

J-A Meyer, and S Wilson, editors, Proceedings of the

Third International Conference on Simulation of Adaptive

Behavior from Animals to Animats 3, volume 1994, pages

392–401, Cambridge, MA, aug 1994. MIT Press Bradford

Books.

22. Frederick W. P. Heckel, G. Michael Youngblood, and

Nikhil S. Ketkar. Representational Complexity of Reactive

Agents. In Computational Intelligence and Games, pages

257–264, Dublin, aug 2010. IEEE.

23. Frederick S Hiller and Gerald J Lieberman. Introduction

to Operations Research. McGraw-Hill, New York, 9

edition, 2010.

24. Nick Jakobi. Evolutionary Robotics and the Radi-

cal Envelope-of-Noise Hypothesis. Adaptive Behaviour,

6(2):325–368, 1997.

25. Nick Jakobi, Phil Husbands, and Inman Harvey. Noise and

the Reality Gap: The Use of Simulation in Evolutionary

Robotics. In Federico Morán, Alvaro Moreno, Juan Julián

Merelo, and Pablo Chacón, editors, Advances in Artificial

Life, pages 704–720, Granada, jun 1995. Springer Berlin

Heidelberg.

26. Michael J Jones and P Viola. Robust Real-Time Object

Detection. International Journal of Computer Vision,

57(2):137–154, 2001.

27. Ryan C Julian, Cameron J Rose, Humphrey Hu, and

Ronald S Fearing. Cooperative Control and Modeling for

Narrow Passage Traversal with an Ornithopter MAV and

Lightweight Ground Station. In International conference

on Autonomous agents and multi-agent systems, pages

103–110, St. Paul, MN, may 2013. IFAAMAS.

28. Lukas König, Sanaz Mostaghim, Hartmut Schmeck,

Lukas Konig, Sanaz Mostaghim, and Hartmut Schmeck.

Decentralized Evolution of Robotic Behavior using Finite

State Machines. International Journal of Intellegent Com-

puting and Cybernetics, 2(4):695–723, 2009.

29. Sylvain Koos, Jean-Baptiste Mouret, and Stéphane Don-

cieux. The Transferability Approach: Crossing the Reality

Gap in Evolutionary Robotics. Transactions on Evolution-

ary Computation, 17(1):122–145, feb 2013.

30. John R Koza. Genetic Algorithms and Genetic Program-

ming, 2003.

31. Chong-U Lim, Robin Baumgarten, and Simon Colton.

Evolving Behaviour Trees for the Commercial Game DE-

FCON. In Cecilia Di Chio, Stefano Cagnoni, Carlos Cotta,

Marc Ebner, Anikó Ekárt, Anna I Esparcia-Alcazar, Chi-

Keong Goh, Juan J Merelo, Ferrante Neri, Mike Preuß,

Julian Togelius, and Georgios N Yannakakis, editors,

Applications of Evolutionary Computation, volume 6024,

pages 100–110, Essex, 2010. Springer Berlin Heidelberg.

32. Lisa Meeden. Bridging the Gap Between Robot Simula-

tions and Reality with Improved Models of Sensor Noise.

In John R Koza, Wolfgang Banzhaf, Kumar Chellapilla,

Kalyanmoym Deb, Marco Dorigo, David B Fogel, Max H

Garzon, David E Goldberg, Hitoshi Iba, and Rick L

Riolo, editors, Genetic Programming, pages 824–831, San

Francisco, CA, jul 1998. Morgan Kaufmann.

33. Mitchell Melanie and M Mitchell. No Title. Cambridge,

MA.

34. Orazio Miglino, Henrik Hautop Lund, and Stefano Nolfi.

Evolving Mobile Robots in Simulated and Real Environ-

ments. Artificial life, 2(4):417–434, jan 1995.

35. Brad L Miller and David E Goldberg. Genetic Algorithms,

Tournament Selection, and the Effects of Noise. Complex

Systems, 9(3):193–212, 1995.

36. Ian Millington and John Funge. Artificial Intelligence

for Games. Morgan Kaufmann, San Francisco, CA, 2nd

edition, 2009.

37. Natural Point Inc. Optitrack, 2014.

38. S. Nolfi and D. Parisi. Learning to Adapt to Changing

Environments in Evolving Neural Networks. Adaptive

Behavior, 5(1):75–98, 1996.

39. Stefano Nolfi. Power and the Limits of Reactive Agents.

Neurocomputing, 42(1-4):119–145, 2002.

40. Stefano Nolfi and Dario Floreano. Learning and Evolu-

tion. Autonomous Robots, 7:89–113, 1999.

41. Stefano Nolfi and Dario Floreano. Evolutionary Robotics:

The Biology, Intelligence and Technology. MIT Press,

Cambridge, MA, 2000.

42. Stefano Nolfi, Dario Floreano, Orazio Miglino, and

Francesco Mondada. How to Evolve autonomous robots:

Different Approaches in evolutionary robotics. In

R Brooks and P Maes, editors, Artificial Life IV, pages

190–197, Cambridge, MA, jul 1994. MIT Press/Bradford

Books.

43. Diego Perez, Miguel Nicolau, Michael O Neill, Anthony

Brabazon, and Michael O’Neill. Evolving Behaviour

Trees for the Mario AI Competition using Grammatical

Evolution. In Cecilia Di Chio, Stefano Cagnoni, Carlos

Cotta, Marc Ebner, Anikó Ekárt, Anna I Esparcia-Alcázar,

Juan J Merelo, Ferrante Neri, Mike Preuss, Hendrik

Richter, Julian Togelius, and Georgios N Yannakakis,

editors, Applications of evolutionary computation, pages

123–132, Torino, apr 2011. Springer Berlin Heidelberg.

44. Pavel Petrovi. Evolving Behavior Coordination for Mo-

bile Robots using Distributed Finite-State Automata. In

Hitoshi Iba, editor, Frontiers in Evolutionary Robotics,

chapter 23, pages 413–438. I-Tech Education and Pub-

lishing, Vienna, 2008.

45. Ágnes Pintér-Bartha, Anita Sobe, and Wilfried Elmen-

reich. Towards the Light: Comparing Evolved Neural

Network Controllers and Finite State Machine Controllers.

In 10th International Workshop on Intellegent Solutions

in Embedded Systems, pages 83–87, Klagenfurt, jul 2012.

IEEE.

46. Sjoerd Tijmons, Guido de Croon, Bart Remes, Christophe

de Wagter, R Ruijsink, Erik-Jan van Kampen, and Q P

Chu. Stereo Vision based Obstacle Avoidance on Flapping

Wing MAV. In Euro Guidance, Navigation an Control

Conference, EGNC 2013, 2013.

47. Antti Valmari. The State Explosion Problem. In Wolfgang

Reisig and Grzegorz Rozenberg, editors, Lectures on Petri

Nets I: Basic Models, pages 429–528. Springer Berlin

Heidelberg, 1998.

48. Juan Cristóbal Zagal and Javier Ruiz-del Solar. Com-

bining Simulation and Reality in Evolutionary Robotics.

Journal of Intelligent and Robotic Systems, 50(1):19–39,

mar 2007.

49. Jean-Christophe Zufferey and Dario Floreano. Fly-

inspired visual steering of an ultralight indoor aircraft.

Transactions on Robotics, 22(1):137–146, feb 2006.

	Introduction
	DelFly Fly-Through-Window
	DelFly Explorer
	Fly-Through-Window Task
	Vision Systems
	LongSeq Stereo Vision
	Window Detection

	SmartUAV Simulation Platform
	Simplified DelFly Model

	Behaviour Tree Implementation
	Syntax and Semantics
	DelFly Implementation
	User Designed Behaviour Tree

	Evolutionary Algorithm
	Genetic Operators
	Fitness Function

	DelFly Task Optimisation
	Simulated 3D Environment
	Experimental Set-up
	Optimisation Results

	DelFly Onboard Flight Testing
	Test 3D Environment
	Experiment Set-up

	Crossing the Reality Gap
	Flight Test Results
	Discussion
	Behaviour I/O Abstraction
	Scalability
	Evolution of Behaviour Trees for Behavioural Modelling

	Conclusion

