
RainGuRu - Rainfall Nowcasting App

Diverse Explorations of Rainfall
Nowcasting with TrajGRU:
Mitigating Smoothness and Fading Out
Challenges for Longer Lead Times
Yanghuan Zou

Diverse Explorations
of Rainfall

Nowcasting with
TrajGRU:

Mitigating Smoothness and Fading Out
Challenges for Longer Lead Times

by

Yanghuan Zou
to obtain the degree of Master of Science at the Delft University of Technology,

to be defended publicly on Tuesday October 31, 2023 at 9:30 AM.

Student Number: 5458463
Master Programme: Water Management
Project Duration: January, 2023 - October, 2023
Thesis Committee: Dr. M.A. (Marc) Schleiss, TU Delft, dept. Geoscience & Remote Sensing (CiTG)

Dr. F. (Francesco) Fioranelli, TU Delft, dept. Microelectronics (EEMCS)
Dr. R. (Riccardo) Taormina, TU Delft, dept. Watermanagement (CiTG)

An electronic version of this thesis is available at http://repository.tudelft.nl/.

Contents

Preface iii

Abstract iv

1 Introduction 1
1.1 Problem statement . 2
1.2 Research objectives . 3
1.3 Research questions . 3

2 TrajGRU Background 5
2.1 TrajGRU architecture . 5
2.2 TrajGRU unit . 6
2.3 TrajGRU training loss function . 7

3 Methodology 8
3.1 Data . 8
3.2 Alternative loss functions . 9

3.2.1 Temporal weights on balanced loss . 10
3.2.2 Wet mask . 10
3.2.3 Neighborhood loss functions . 11

3.3 Hyperparameter tuning . 12
3.3.1 Batch size and learning rate . 13
3.3.2 The number of filters . 13
3.3.3 Multiple parameter groups . 14

3.4 Changes in model inputs and outputs . 15
3.4.1 Temporal difference of rain intensity . 15
3.4.2 Multiple model inputs . 16

3.5 Verification . 17
3.5.1 Visual analysis . 17
3.5.2 Metric analysis . 18

3.6 Model training . 19

4 Results 20
4.1 Predictive features of the benchmark . 20
4.2 The effect of modified loss functions . 20

4.2.1 Consequences of temporal weights . 20
4.2.2 Consequences of wet mask . 22
4.2.3 Consequences of neighborhood loss functions . 23

4.3 The effect of hyperparameter tunning . 27
4.3.1 Batch size and learning rate . 27
4.3.2 Number of filters . 28
4.3.3 Multiple parameter groups . 31

4.4 The effect of changed model inputs and outputs . 33
4.4.1 Time-differenced rain intensity . 33
4.4.2 Multiple model inputs . 35

5 Conclusion 39
5.1 Answers to research questions . 39
5.2 Recommendations . 41

A The metrics over lead times for various approaches 42

B Single model input: Modified radar images 45

i

Contents ii

C Two-stage loss optimization 46

D The hidden circular pattern in low rain intensity 49

Preface

This thesis project marks the completion of my master’s degree as a water management student at
TU Delft. It is definitively a content and unforgettable journey in my lifetime. I am happy to get this
opportunity to explore such an interesting and meaningful topic about precipitation nowcasting with
machine learning techniques.

This research was done with the great help of my supervisor, Marc Schleiss, my main supervisor
and the chair of the committee. It is my luck to have you as my supervisor. I really like our weekly
meetings, in which you patiently speculate and discuss the new thoughts with me. Thank you for
your constructive feedback and detailed guidance on my work and presentation during these months,
helping me progress on what I am weak at. I would like to thank the rest of the committee. To Riccardo,
thank you for the suggestion and inspiration concerning the machine learning part to expand my
knowledge. Thanks to Francesco for the valuable feedback on presentations and draft reports, standing
from different perspectives to evaluate my works and help me wisely and effectively present it.

Lastly, I want to thank my parents and my friends for their constant support and company. To my
parents, even though we are far from each other, I am grateful for your constant and supportive trust in
all the things and choices I have made, giving me the freedom to explore what I want. To my friends, I
feel fortunate to have encountered many lovely friends who share similar interests, values, and outlooks.
Thank you for your prompt reminders and suggestions during critical moments. Life is a one-time
journey, and I am grateful for this experience.

Yanghuan Zou
Delft, October 2023

iii

Abstract

Machine learning models offer promising potential in precipitation nowcasting. However, a common
issue faced by many of these models is the tendency to produce blurry precipitation nowcasts, which
are unrealistic. Previous research on the deep learning model - TrajGRU (Shi et al., 2017) indicated that
data imbalance in radar images and the double-penalty effect of pixel-wise loss functions are underlying
causes for this blurriness.

In this thesis, we continue to explore various approaches to improve the predictive performance of
TrajGRU. Our research has first investigated spatially and temporally enhanced loss functions to address
the two remaining issues: data imbalance and double penalty. The second part of our research focuses
on manifold optimizations within the model network, such as incorporating additional model inputs or
increasing batch size, to understand the model’s limitations.

Our results reveal that enhanced loss functions did not lead to predictive improvements and even
resulted in undesired checkerboard patterns. Changes to the model network make a difference in the
image sharpness and predictive rain evolution. Our visual analysis indicates that a larger batch size
generates sharper rain field edges; predictions by using multiple parameter groups exhibit more rain
dynamics. The incorporation with other transformed datasets introduces finer structures within rain
fields. Although the blurriness has not been completely resolved, our study recommended future work
can continue exploring the optimization in the TrajGRU network.

iv

List of Figures

2.1 The TrajGRU architecture with 5 input frames and 20 output frames; layers named with
’rnn’ include TrajGRU unit. 6

2.2 A TrajGRU unit illustrating the computational flow. (Source: van der Kooĳ (2021)) . . . 7

3.1 Image extent: the 700x765 array the data is provided in. Radar extent: the pixels
containing radar measurements. Model input: 480x480 array. Research domain: 360x360
array. (Source: van der Kooĳ (2021)) . 9

3.2 Temporal weighting strategies in 20 output frames. 10
3.3 The illustration of using wet masks in loss calculation. In the wet mask, wet pixels with a

value of 1 indicate that pixel values in observations or predictions exceed the threshold
and are included in the optimization process. 11

3.4 Observation-oriented evaluation, in which the central pixel in the observation should be
compared with all predicted pixels in the same neighborhood. The minimum difference
among them will be considered in the loss evaluation. (In prediction-oriented evaluation,
the central pixel is in the prediction.) . 12

3.5 The transition from original radar images to time-differenced images; Note: the input
number decreases from 5 to 4, and the output number is still 20. 15

3.6 The distribution of the training data in NPV and time-differenced NPV. 16
3.7 The gradient maps in the y or x direction, in both NPV and RR domain. 16
3.8 The brief illustration of experiments with additional model inputs. 17
3.9 Artificial radar sequence help better analysis and comparison between observations

and predictions by simplifying the precipitation features such as the distribution and
movement patterns of fine structures. 17

4.1 The prediction of an artificial event, illustrating current predictive features of the bench-
mark setting such as continuous fading out of high intensity and blurring pattern for fine
structures within rain fields. 20

4.2 The predictions are tested with temporal weighting strategies. 21
4.3 Metrics over the lead times for experiments combined with temporal weighting strategies.

A lower value indicates a better score for all metrics. 22
4.4 The prediction results with the application of wet mask and different thresholds. 23
4.5 The predictions with the max pooling applied in loss calculation. Apart from the

benchmark, it shows that the max pooling will cause a checkerboard pattern. 24
4.6 The illustration of a possible reason for checkerboard pattern; The maximum value within

each sliding kernel is selected and becomes the output value for that corresponding central
pixel in the feature map; The manually hypothetical prediction can store substantial zeros
without penalty because the max pooling operation can ignore predictive performance in
most pixels. 24

4.7 The effect of combining additional penalty with the max pooling. (Kernel size: 3) 25
4.8 Without max pooling, checkerboard patterns are also found out at the early training stage

of the benchmark. 26
4.9 Prediction results with prediction-oriented and observation-oriented losses. 27
4.10 The magnified version of observation-oriented results at early iterations (t +50min); it

illustrates how the model does the optimization. It showcases the mode change the
blocky design and pixel intensity but keep retaining a significant number of zero values. 27

4.11 Predictions about experiments with batch size of 8 and varied larning rates in two events
(t +100min). 28

4.12 Forecasts about experiments with decreased filter numbers at the last lead time for two
cases. 29

v

List of Figures vi

4.13 Predictions of three modes in terms of decreased filter number with different lead times. 30
4.14 Metric results for experiments with decreased number of filters. 31
4.15 The prediction results using 4 sets of parameters and learning rates. 32
4.16 Metric results with 4 parameter groups. 32
4.17 Predictions by using time-differenced images as model input and output. Two weighting

strategies are studied, in which original weights represent Equation 2.4. 33
4.18 The illustration of the ghost formation when using time-differenced images. Models

struggle to predict correct time-differenced rain intensity to remove the ghost from the
last input (t + 0min). 34

4.19 The direct time-differenced outputs before adding with the radar image of the current
moment (t +0min). 35

4.20 Regional details after magnifying a specific part of rain fields; the first row is the ground
truth, the second row shows the benchmark, the third row illustrates the prediction
combined radar images in RR as an additional input. 36

4.21 Radar images in RR and NPV domains exhibit opposite patterns within the rainy area.
RR images show high contrasts within rain fields, indicating greater variation in pixel
values. On the contrary, NPV images show a smaller range of pixel values within rain fields. 36

4.22 Results from different combinations with various model inputs. 37

A.1 The different metrics over the lead times with wet masks 42
A.2 The different metrics over the lead times when using max pooling operation in loss function 43
A.3 The various metrics across different lead times in experiments conducted with larger

batch sizes and learning rates . 43
A.4 The different metrics over the lead times, with additional model inputs 44
A.5 The different metrics over the lead times, in the experiments with time-differenced data 44

B.1 Observation and predictions trained by different datasets which are transformed from
radar images in NPV. 45

C.1 Top: The track of the training process with different metrics. Bottom: Predictions after
40k iterations, where the loss function transitioned from the balanced loss to GDL at the
40k iteration. 47

C.2 Top: The track of the training process with different metrics. Bottom: Predictions after
40k iterations; before 40k iterations, the balanced loss averages 20 output frames, while in
the second stage, it averages the latter 10 output frames. 48

D.1 Left: The binary image used to exhibit the rainy area, where NPV values between 0.417
and 1 are set to 1; Middle: Observation image filtering out NPV values greater than 0.417,
with circular patterns marked with red squares; Right: Prediction image filtering out
NPV values greater than 0.417. In our regular visual analysis, pixel values larger than
0.05 mm/h (0.417 NPV) will be displayed representing wet pixels. 49

List of Tables

2.1 TrajGRU settings in the benchmark. 6

3.1 Overview of sequences in training, validation, testing datasets 9
3.2 Formulae for vairous enhanced loss functions. Note: n is the index for one of the 20

outputs; w𝑛 is the temporal weight in nth image; m𝑛,𝑖, 𝑗 is the pixel weight to identify
wet or dry pixel (1 or 0); w𝑛,𝑖, 𝑗 means the spatial weight at pixel (i, j) in the nth output
frame; F𝑛,𝑖, 𝑗 represents the forecasted value at pixel (i, j) in the nth output frame; O𝑛,𝑖, 𝑗

is the observed values at pixel (i, j) in the nth output frame; r means the applied kernel
size; F𝑚𝑎𝑥

𝑛,𝑖, 𝑗
(r) is the maximum forecast in the neighbour of width r centered at pixel (i, j);

F(r) represents all the forecasted values within a neighborhood of width r centered at a
specific pixel (i, j) . 12

3.3 The overview of experiments with different combinations between batch size and learning
rate. 13

3.4 The overview of experiments with decreased channel number in encoder. 14
3.5 The overview of experiments with 4 sets of parameter in forecaster. 14
3.6 An overview of the above mentioned approaches. We come up with these approaches

from different perspective, all aimed at mitigating blurriness and fading issues in our
current model. Experiments are divided into three main categories based on which
component in TrajGRU we make changes. 19

4.1 Total parameter number and model size after decreasing filter number. 30
4.2 An overview of all results from above approaches. Approaches are divided into three

main categories based on which component in TrajGRU we make changes. 38

C.1 Stage-base training: dividing the training process into two stages, each with its own
specific loss function. 46

vii

1
Introduction

Due to global climate change, the frequency of extreme weather events is increasing. Making urban areas
climate-resilient is becoming the common goal of multiple research domains at the moment. Rainfall
forecast is a key ingredient of flood forecasting and early warning systems. Precipitation nowcasting is
known as the high-resolution forecasting of rainfall and hydrometeors for zero to two hours into the
future (Ravuri et al., 2021). It provides prompt warnings for various emergency services, such as urban
flood early-warning systems, traffic control, and agriculture, helping each sector to collaborate more
effectively and reduce losses.

Most popular forecast applications are made by numerical weather prediction (NWP) models and
radar extrapolation-based models. NWP models, such as STEPS and PySTEPS, make predictions based
on the physical equations of the atmosphere. Because they take into account various atmospheric
processes and relations, NWPs are able to generate highly sharp and reliable forecasts. However, NWPs
often yield less accurate forecasts when the lead time is under two hours. This is primarily due to the
limited time available for model spin-up and the challenges associated with assimilating non-Gaussian
data (Ravuri et al., 2021). As for radar extrapolation-based models, which are based on advecting
present rainfall observations along their current trajectories, they can outperform NWPs in the 0-2 hour
range. However, they assume that the motion fields are stationary. This assumption renders them
unable to capture convection when the rain is chaotic and changes quickly (Prudden et al., 2020).

The physical constraints and underlying assumptions in NWP and extrapolation-based nowcasting
hinder models’ performance. As the increasing heavy summer precipitation events are of shorter
duration and higher intensity, data-driven models can resolve this complex non-linear nature of rainfall
information. Unlike traditional approaches, deep learning models operate without making explicit
assumptions or relying on complex mathematical equations. Instead, they utilize vast amounts of raw
radar information with convolution operations to uncover intricate patterns and relationships within the
dataset. Over the past few years, various deep learning methods have been studied and explored in the
precipitation nowcasting domain (Shi et al., 2017; Agrawal et al., 2019; Ravuri et al., 2021; Ayzel et al., 2020).

Convolutional neural network (CNN) is considered good at spatial learning (Reichstein, 2019). A
typical CNN model related to precipitation nowcasting is U-Net, first used by Agrawal et al. (2019) who
trained it directly on one-hour prediction of radar fields. In terms of recurrent neural network (RNN)
which is considered better at sequence learning, Shi et al. (2015) first proposed an RNN-based model,
the convolutional long short-term memory (ConvLSTM), to capture the spatial and temporal features
of radar echo sequence. Shi et al. (2017) later improved it using the trajectory gated recurrent units
(TrajGRU) which carries out trajectory convolution between different time steps to learn the structure of
spatial variations for recurrent connections. Additionally, deep generative models, such as GANs and
DGMR (Elsmann, 2023; Ravuri et al., 2021), began to be widely studied for precipitation nowcasting
tasks. The generative approach, aimed to addressing the blurriness in most deep learning models,
samples the most appropriate prediction from the distribution of possible futures instead of returning a
single best result.

1

1.1. Problem statement 2

In this thesis, we investigate the application of TrajGRU for precipitation nowcasting in the Nether-
lands. The Dutch weather is known for its unpredictability, which poses a substantial forecasting
challenge. TrajGRU presents a promising solution by facilitating the active learning of location-specific
patterns within recurrent connections. This model addresses the spatiotemporal correction challenges
that have traditionally been a primary concern in ConvLSTM models (Shi et al., 2017). Before our
works, TrajGRU has been customized for the Netherlands by van der Kooĳ (2021) and Dekker (2022).
According to their conclusion and model performance presented in section 1.1, TrajGRU requires more
improvement and experiments to achieve more accurate predictions for longer lead times and higher
rainfall intensities. This thesis builds upon the work of van der Kooĳ (2021) and Dekker (2022), with the
primary goal of enhancing the predictive performance of TrajGRU.

1.1. Problem statement
Many deep learning models exhibit a common limitation, as they tend to produce smoothed rainfall
fields and consistently underestimate high rainfall values at longer lead times. TrajGRU is no different
in this regard.

This project began with the objective of exploring TrajGRU to predict heavy summer precipitation
in the Netherlands with lead times of up to 100 minutes. van der Kooĳ (2021) and Dekker (2022)
conducted various experiments and work. van der Kooĳ (2021) explored the effects of training datasets
with different sizes. She discovered that the larger dataset with a smaller proportion of heavy events
achieved the best scores in Root Mean Square Error (RMSE) and Mean Absolute Error (MAE). In her
second experiment, comparing two loss functions, her final analysis concluded that the balanced loss
function could outperform the RMSE loss function for higher rainfall intensities (> 5 mm/h). However,
these differences are subtle, and the blurriness still persists in the visual results. van der Kooĳ (2021)
also noted that there appears to be a trade-off between performance at high rainfall intensities and
performance at low rainfall intensities. The choice of which model performs ’best’ depends on how the
loss function defines good model performance.

Dekker (2022) conducted an extensive study on the influence of loss functions, following van der Kooĳ
(2021)’s conclusion about establishing optimal guidance for the model. She investigated five different loss
functions that emphasize various features in radar images. For instance, Structural Similarity loss (SSIM)
focuses on detecting brightness, contrast, and structural similarity between two images. In the end, she
found that using alternative loss functions could improve the quality of predicted images for the first few
lead times, but the blurriness persists at longer lead times. She also trained the model on rain rate (RR)
instead of normalized pixel value (NPV), as RR pertains to the domain of interest and the distribution
of RR values places greater emphasis on higher intensity. However, from a visual perspective, the
models trained on RR showed less favorable results, as RR will spread out the rain with longer lead times.

Dekker (2022) identified two possible causes of the blurriness in longer lead times. Firstly, TrajGRU
often predicts pixel values close to zero, as zero is the most common state in radar images. Bakkay
et al. (2022) stated in this study that about 98% of the pixels have no precipitation, and predicting pixel
values close to the majority value helps models minimize errors. Consequently, the data imbalance
in the radar dataset leads to the fading of rainfall with increasing lead times. The second reason is
the location specificity of the loss functions, often regarded as the ’double penalty’ issue (Gilleland
et al., 2009; Dekker, 2022; Lagerquist and Ebert-Uphoff, 2022). The pixel-wise loss function requires
rainfall features predicted at the exact same location as in the observations, which is challenging. If the
intensities in predictions are accurate but the rain field shifts in space by just one pixel, it can result in a
significant loss (Lagerquist and Ebert-Uphoff, 2022). To minimize the loss, models will blur the high
intensity in predictions.

So far, several studies have noticed the data imbalance issue and proposed novel loss functions.
Ko et al. (2022) modified the critical success index (CSI) by increasing the CSI score for minor classes;
similarly Lin et al. (2018) proposed the focal loss which focuses on challenging examples and down-
weights the importance of easy examples during training. To reduce the influence of enormous zero

1.2. Research objectives 3

values in radar images, Bakkay et al. (2022) added a weighting in the loss function in which the loss
for each frame is weighted based on its standard deviation. A single frame with more valued pixels
could lead to a higher standard deviation and be assigned a larger weight. In addition to modifying
the loss function, Yang and Mehrkanoon (2022) trained models with three precipitation datasets, each
containing different percentages of rainy pixels. Their results indicated that datasets with a higher
proportion of rainy pixels could lead to less blurriness in predictions. Regarding the double penalty
issue, Lagerquist and Ebert-Uphoff (2022) explored the effect of neighborhood loss functions which
enable models to compare with neighboring pixels and more tolerant of displacement errors.

1.2. Research objectives
As mentioned, two main issues exist in the current model: blurriness and fading out of predictions. The
blurriness primarily relates to the loss of distinct and sharp gradients within predicted rain fields and
the smooth edges of rainy areas. At longer lead times, all fine structures are lost and fused together.
Fading out focuses on the continuous decay of intensity over time, resulting in the underestimation
of high rain intensity in the longer lead times. The overall goal of this research is to identify effective
solutions that can make prediction more realistic. To be more specific, the objective is to ensure that fine
structures and more actual rain evolution can show up in predictions.

The first objective is to tackle the blurriness in predictions. Following van der Kooĳ (2021) and Dekker
(2022), two factors contribute to the blurring: the imbalance in the dataset and the uncertainty with
respect to the location of the rain. We aim to understand and evaluate the impact of the data imbalance
and the double penalty issue. In this regard, rather than exploring various model architectures, it
is more straightforward to consider alternative modified loss functions that emphasize wet pixels or
employ location-invariant loss functions taking the surrounding context into account. Since the double
penalty hinders the sharpness, this thesis accepts the scenario that the model may predict an incorrect
location as long as it produces sharp images.

The second objective is to break the continuity among output frames and introduce more realistic
dynamics, particularly rain growth into the predictions. It is essential to investigate the possible reasons
for the continuous fading-out pattern of rain intensity observed in current forecasts. In addition to
coping with too many zeros and the location specificity of the loss function, the optimization of the
model network or hyperparameters will be tested to evaluate their impact on the rain dissipation.

1.3. Research questions
According to the research objectives mentioned above, the research question of this thesis is:

How can TrajGRU be upgraded to mitigate issues related to the prediction blurriness and fading out?

As mentioned before, the blurriness and fading out are probably caused by the data imbalance and the
double penalty. To answer this question, three sub-research questions (SQ) assoticated with research
objectives have been formulated:

SQ1: Can model performance be improved by applying temporal or spatial weighting strategies
which aim at addressing the data imbalance?

SQ2: Is it possible to sharpen the predictions and avoid the double penalty issue by using spa-
tial neighborhood loss functions?

SQ3: Are there specific elements within TrajGRU, such as hyperparameters and model inputs/outputs,
that can be adjusted to enhance predictive performance?

To evaluate the predictive performance of models in precipitation nowcasting, our evaluation strategy
integrates both visual and numerical evaluations. The visual analysis involves animations, figures, and

1.3. Research questions 4

magnified images. This approach allows us to gauge the model’s predictions from a user’s viewpoint. In
parallel, we employ a range of quantitative metrics, such as mean error, Gradient Difference Loss (GDL),
and Structural Similarity Index (SSIM). These metrics are instrumental in providing a quantitative
assessment of the model’s performance across varying lead times. The details about the evaluation will
be introduced in section 3.6.

The rest of the thesis report is structured as follows: Chapter 2 provides a description of the target
model – TrajGRU, including the overview of the model framework and the basic loss function we use in
this thesis. Chapter 3 introduces the radar dataset and manifold approaches studied in this thesis. In
Chapter 4, the corresponding visual and metric results for each approach are presented and discussed
respectively. In the end, conclusions and key findings of the study are given in Chapter 5.

2
TrajGRU Background

Deep learning models have already demonstrated great potential for short-term precipitation forecasting
(Shi et al., 2017; Agrawal et al., 2019; Ravuri et al., 2021; Ayzel et al., 2020). The recurrent neural
network (RNN) is a special type of network that includes additional connections to enable the passing of
information from one timestep to the next within the same layer of the network. GRU (Gated Recurrent
Unit) and LSTM (Long Short-Term Memory) are two types of recurrent neural network architectures
that enhance the model’s ability to capture long-term dependencies in sequential data. Both GRU and
LSTM control the flow of information between inputs and outputs by employing gating mechanisms.
These gates determine which information from the past is important and should be retained, and which
information should be forgotten or updated. This gating mechanism allows models to maintain both
short-term and long-term memory for rainfall information. Compared to LSTM, GRU, with fewer
parameters, excels in terms of faster training times and lower memory requirements. In this study, our
focus is on the TrajGRU model which is introduced by Shi et al. (2017).

In this chapter, the background information of the TrajGRU architecture is in section 2.1. TrajGRU
architecture usually consists of multiple TrajGRU units connected in a recurrent manner. A brief
description of TrajGRU unit is provided in section 2.2. The principal training loss function is described
in section 2.3.

2.1. TrajGRU architecture
The encoder is a downsampling process, in which the traditional convolution is employed before each
TrajGRU cell. The convolution operation in the encoder is used to reduce the image size and abstract
important features from different perspectives. For example, some resulting feature maps highlight the
rain field’s boundaries, while others magnify high rainfall rates in the center. This highlighted feature
helping the network easier to learn spatial information. In TrajGRU, the encoder first downsamples the
image three times and then the forecaster upsamples it again (Figure 2.1). The forecaster operates in
the reverse order of the encoder and incorporates deconvolution operations. The upsampling process
involves translating the diverse features into a complete image.

5

2.2. TrajGRU unit 6

Figure 2.1: The TrajGRU architecture with 5 input frames and 20 output frames; layers named with ’rnn’ include TrajGRU unit.

The model architecture in Figure 2.1 indicates that it utilizes the five most recent radar images to
generate 20 predictions. The network consists of three main layers, with each layer containing a TrajGRU
unit and one convolution (or deconvolution) operation. It’s important to note that the outputs of the
encoder in the three layers serve as the input for the forecaster. The learnable components during the
optimization process are the parameter sets stored in the convolutional filters. Each layer of the encoder
or forecaster (Figure 2.1) uses the same set of parameters. Specific details of the parameter settings,
such as kernel size and channel number, can be found in Table 2.1. Dekker (2022) mentioned that
there are changes in settings when van der Kooĳ (2021) transferred her code. Although Dekker (2022)
recommended switching to the settings from Shi et al. (2017), this thesis employed the same model
settings as those used in van der Kooĳ (2021).

Table 2.1: TrajGRU settings in the benchmark.

2.2. TrajGRU unit
TrajGRU is an upgraded version of ConvLSTM and ConvGRU that serves as the core of RainGuRu.
Instead of solely relying on fixed filters in convolution, TrajGRU employs location-variant filters, increas-
ing the model’s flexibility, as discussed in Shi et al. (2017), van der Kooĳ (2021) and Dekker (2022). In
the encoder-forecaster structure, a TrajGRU cell is integrated and positioned in the layer labeled ’rnn’ in
Figure 2.1.

Zooming in on the typical TrajGRU unit (Figure 2.2), there are two input streams entering each

2.3. TrajGRU training loss function 7

unit: H𝑡−1, which is the hidden state from the previous lead time, and X𝑡 , which is the input from the
original radar image or the previous convolution operation. After processing by gating mechanisms, the
output of unit (H𝑡) becomes the input for the next time step. TrajGRU excels at capturing spatiotemporal
correlations compared to other models due to its use of location-variant filters. The flow generator
(described in Equation 2.3 in van der Kooĳ (2021)) is a subnetwork that applies these location-variant
filters to determine the flow fields based on the current input and the previous hidden state. These flow
fields store dynamically changing local connection structures, which are then incorporated into the
reset gate and update gate. The reset gate controls whether the previous state should be cleared or not,
while the update gate manages how much of the new information should be written to the state.

Figure 2.2: A TrajGRU unit illustrating the computational flow. (Source: van der Kooĳ (2021))

2.3. TrajGRU training loss function
Unless specified otherwise, the default loss function used for training in this thesis is the balanced
loss. The balanced loss function is a pixel-wise loss function that takes into account the differences
between the predictions and the observations at the pixel level. It is a combination of MAE and MSE
(Equation 2.1), with equal weights for both components. The primary distinction between these two
metrics is that MSE (Equation 2.2) is more sensitive to outliers than MAE (Equation 2.3) due to the
squaring operation. The determination of weights is based on observed rainfall intensity (Equation 2.4).
These weights are calculated according to rainfall intensity classes. This weighting strategy rewards the
model for correctly predicting heavy precipitation, as discussed in Shi et al. (2017).

𝐿𝑜𝑠𝑠 = 𝐵𝑀𝑆𝐸 + 𝐵𝑀𝐴𝐸 (2.1)

𝐵𝑀𝑆𝐸 =
1

20 · 360 · 360

20∑
𝑛=1

360∑
𝑖=1

360∑
𝑗=1

𝑤𝑛,𝑖, 𝑗(𝐹𝑛,𝑖, 𝑗 − 𝑂𝑛,𝑖, 𝑗)2 (2.2)

𝐵𝑀𝐴𝐸 =
1

20 · 360 · 360

20∑
𝑛=1

360∑
𝑖=1

360∑
𝑗=1

𝑤𝑛,𝑖, 𝑗 |𝐹𝑛,𝑖, 𝑗 − 𝑂𝑛,𝑖, 𝑗 | (2.3)

𝑤𝑛,𝑖, 𝑗 =

1 (𝑅𝑛,𝑖, 𝑗 ≤ 1)
𝑅𝑛,𝑖, 𝑗 (1 ≤ 𝑅𝑛,𝑖, 𝑗 ≤ 1)
30 (𝑅𝑛,𝑖, 𝑗 > 30)

(2.4)

Where, F𝑛,𝑖, 𝑗 and O𝑛,𝑖, 𝑗 are the predicted and observed normalized pixel values, respectively, corre-
sponding to the (i, j)th pixel in the nth frame. The weights w𝑛,𝑖, 𝑗 in RR domain refer to the rainfall value
according to certain categories.

3
Methodology

In this chapter, a lot of different ideas for improving the performance of TrajGRU in terms of the
blurriness and fading out patterns have been explored. Section 3.1 provides basic information about
the radar dataset and their preprocessing. In section 3.2, some enhanced loss functions to deal with
data imbalance and double penalty problems are described. Followed by section 3.3, optimizations
of TrajGRU hyperparameters are proposed. In section 3.4, approaches about using transformed radar
datasets as new or additional model input are introduced. The verification scores and strategy used to
judge the pros/cons of each model are presented in section 3.5. Lastly, the training setting in DelftBlue
(the supercomputer device) is briefly described in the section 3.6.

3.1. Data
The Royal Netherlands Meteorological Institute (KNMI) operates two C-band Doppler weather radars
situated in Herwĳnen and Den Helder (Figure 3.1), which together cover the entire area of the Netherlands.
The raw radar composites can be obtained through the KNMI data platform using an API. The archived
composites are accessible under the product name ‘𝑟𝑎𝑑𝑎𝑟_𝑡𝑎𝑟_𝑟𝑒 𝑓 𝑙_𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑒𝑠/𝑣𝑒𝑟𝑠𝑖𝑜𝑛𝑠/1.0′ while
the near real-time images are available after 3 to 4 minutes and can be accessed under the product
name ‘𝑟𝑎𝑑𝑎𝑟_𝑟𝑒 𝑓 𝑙𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦_𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑒𝑠/𝑣𝑒𝑟𝑠𝑖𝑜𝑛𝑠/2.0′ For further information on the radar dataset,
please refer to van der Kooĳ (2021). KNMI produces a radar composite with a spatial resolution of
1×1 km and a temporal resolution of 5 minutes. The data are stored in hdf5 files, containing 2D arrays
representing a 700×765 pixel image with 8-bit (0-255) radar reflectivity values. These 8-bit integers can
be converted into reflectivity values in dBZ using Equation 3.1. Then, rainfall rates can be derived from
radar reflectivity with Equation 3.2. The pixels for which no measurements are available, because they
are outside of the range of the radars or the radar was turned off, have a no-data value of 255.

𝑍 = (𝑝𝑖𝑥𝑒𝑙 𝑣𝑎𝑙𝑢𝑒 ∗ 0.5) − 32 (3.1)

𝑧 = 10𝑍/10 = 200𝑅1.6 (3.2)

Where, z means reflectivity in mm6/m3; Z is reflectivity in dBZ; R refers to rainfall rates [mm/h]; Dekker
(2022)) indicated that the model trained on NPV yields more visually realistic and sensible predictions
compared to the model trained on RR. Consequently, in this thesis we continue using NPV as the unit
of target data. The relationships between different units can be understood by referring to the equations
above.

8

3.2. Alternative loss functions 9

Figure 3.1: Image extent: the 700x765 array the data is provided in. Radar extent: the pixels containing radar measurements.
Model input: 480x480 array. Research domain: 360x360 array. (Source: van der Kooĳ (2021))

The original radar image used as a model input has a fixed size of 480×480 pixels, as shown in
Figure 3.1. However, during the loss calculation, the model’s performance will be evaluated within
a domain of 360×360 pixels, referred to as the ’research domain.’ This adjustment is made primar-
ily to mitigate border effects. The model requires the ability to detect rainfall cells approaching in
order to make accurate predictions, and this is challenging for pixels near the border (van der Kooĳ, 2021).

The radar data cover the period from 2008 to 2020. The dataset is divided into three parts: training,
validation, and testing. The training period spans from 2008 to 2018; the validation dataset consists
of data from 2019, and the remaining data from 2020 are used for testing (Table 3.1).To enable the
prediction of heavy rain, van der Kooĳ (2021) proposed an event extraction strategy that selects sequences
containing precipitation. It’s important to note that a sequence is defined as a series of 25 consecutive
frames. Different extraction strategies will result in different composite sizes. In this thesis, we directly
employ radar sequences which have already been pre-processed by van der Kooĳ (2021). The pickle
name including ’c1’ (Table 3.1) represents that all images in the dataset have at least 1% of the area with
a rain intensity of 1mm/h, and at the same time, more than 12 frames in the sequence contain the peak
intensity of 10mm/h. Since the research focus is on heavy summer precipitation events, sequences
extracted using stricter criteria are used as summer testing events. Similarly, the name of a pickle file
labeled with ’c6’ indicates that there is more than 2% rain area with an intensity of 1mm/h, and more
than 12 frames with a pixel value of 30mm/h. The resulting number of eligible sequences selected by
different strategies is shown in Table 3.1. All experiments are trained and tested with the same dataset.

Table 3.1: Overview of sequences in training, validation, testing datasets

Data types Year Number of sequences File name
Training data 2008-2018 185,324 events_train_all_c1.pickle

Validation data 2019 15,015 events_valid_all_c1.pickle
Testing data 2020 476 events_test_heavy_c6.pickle

3.2. Alternative loss functions
The loss function used in the benchmark is the balanced loss. In this section, the balanced loss is
modified by adding additional temporal weights on lead times or spatial weights on each pixel. In
addition to that, we also consider the case where the loss function includes several neighborhood pixels
instead of the classical pixel-by-pixel comparisons. The objective of modifying the loss function is to
help machine learning models extract key information from the training data and reward models that

3.2. Alternative loss functions 10

have desirable properties (e.g., in terms of smoothness, structure or distributions).

3.2.1. Temporal weights on balanced loss
Because of the increasing uncertainty from the rainfall movement and evolution, it is hard for a neural
network to predict the accurate track of rains at longer lead times. If the high intensity is forecasted at a
slightly wrong location from where it actually occurred. The model will strongly get penalized by this
error due to the large differences in rainfall rates between the observations and predictions. TrajGRU
tends to spread out the rainfall over large areas and smooth out the spatial details. The uncertainty
from the complex and dynamic atmosphere discourages the model from predicting high intensity, small
scale features.

A new loss function that reduces the model’s sensitivity to displacement errors at longer lead times is
proposed. In the original code, the overall balanced loss is calculated by averaging loss values at each lead
time. In order to reduce the emphasis on the later lead times, which are harder to predict, a decreasing
weighting function is used. Two types of decreasing weights are investigated: linear and exponential.
In order to make results comparable, we set the temporal weight of the first lead time to 1, and ad-
just the slope of the weighting function. The temporal weight details are shown in Figure 3.2 and Table 3.2.

In addition to decreasing weighting pattern, we also did some trials in which we just put more
emphasis on the middle lead times (Figure 3.2), since the uncertainty between the input and the middle
output is much less than with the longer lead times. Models start to blur the predictions from the first
few lead times. It is easier for the model to predict the small scale feature changes for shorter lead times,
without creating large error. Therefore, by putting more weight on the middle lead times, we expect the
model can provide sharper and more accurate predictions for intermediate lead times.

Figure 3.2: Temporal weighting strategies in 20 output frames.

3.2.2. Wet mask
As mentioned in previous works, the blurriness for longer lead times is probably caused by data
imbalance in the dataset. In regular radar images, most pixels contain the value of zero. Because of this,
the intensity error for the wet pixels only has a negligible effect on overall loss after averaging with more
than a hundred thousand of pixels. Too many zeros also result in small and stable loss values during
training, which relates to the vanishing gradient problem causing the weights in filters to receive very
small updates. Under such a scenario, models make a habit of predicting values close to the majority
which is zeros (Dekker, 2022). Few studies already investigated the effect of data imbalance. Bakkay et al.
(2022) put more weight on frames with the greater standard deviation by adding additional weights.
Ko et al. (2022) used critical success index (CSI) and You et al. (2023) explores the role of the Dice loss
function in dealing with sample imbalance.

3.2. Alternative loss functions 11

To mitigate the impact of zeros and only put emphasis on wet regions during training, we integrate
a wet mask into the loss computation. Originally, the loss is the average balanced loss across all pixels.
However, with the wet mask approach, we first identify "wet pixels" which should be larger than a
certain threshold, then assign them a value of 1. This leads to the creation of wet masks for both
observations and predictions. Combining these wet masks results in an integrated wet mask where
valued pixels indicate rainfall presence in either the Observation or Prediction images. The final loss
is then computed by averaging the balanced loss of all wet pixels (Table 3.2). Figure 3.3 explains the
concept of applying the wet mask in loss.

Figure 3.3: The illustration of using wet masks in loss calculation. In the wet mask, wet pixels with a value of 1 indicate that pixel
values in observations or predictions exceed the threshold and are included in the optimization process.

3.2.3. Neighborhood loss functions
When addressing the issue of double penalties, employing neighborhood analyses can be a viable option.
A neighborhood loss function involves a mean or maximum filter, taken over a square neighborhood of
pixels (Lagerquist and Ebert-Uphoff, 2022). Traditionally, pixel-wise loss assesses predictions at pixel C
by comparing them with observations at the same pixel location, C. However, pixel-wise verification
encourages models to produce blurry predictions (Dekker, 2022). High pixel-wise error will occur if the
predicted pixel with high intensity is not situated at the right location. With the neighborhood loss
function, models compare target pixels with their surroundings. In this case, models are trained with
more freedom and become insensitive to displacement errors. To reduce the blurriness and fading out,
this section will use a kernel centered at pixel ’C’ to compare the predictions and observations around
’C’. Two types of neighborhood loss functions will be explored and combined into the loss calculation.

Max Pooling
Due to the tendency of high intensity to fade over longer lead times, preventing such underprediction
requires a focus on extreme precipitation. Max pooling can enhance the high intensity prediction. It
abstracts the highest value in the pixel neighborhood and replaces the center pixel with the max. After
the max pooling process, more pixels in feature maps are assigned with high intensity. This approach
prioritizes intensity prediction rather than exact location, ensuring high intensities exist in adjacent
pixels at least.

In the first phase, both the predictions and observations undergo the max pooling operation before
they are compared with each other. The resulting feature maps are then used for balanced loss
calculation (Table 3.2). Theoretically, larger kernel sizes perform better at the prediction of extreme
precipitation, because the sliding kernel covers a broader pixel range and has greater possibility to
access higher rainfall values. Thus, the effect of different kernel sizes is also investigated, with kernel
sizes of 2, 7, and 15. The stride size remains fixed at 1.

3.3. Hyperparameter tuning 12

Table 3.2: Formulae for vairous enhanced loss functions.
Note: n is the index for one of the 20 outputs; w𝑛 is the temporal weight in nth image; m𝑛,𝑖, 𝑗 is the pixel weight to identify wet or
dry pixel (1 or 0); w𝑛,𝑖, 𝑗 means the spatial weight at pixel (i, j) in the nth output frame; F𝑛,𝑖, 𝑗 represents the forecasted value at
pixel (i, j) in the nth output frame; O𝑛,𝑖, 𝑗 is the observed values at pixel (i, j) in the nth output frame; r means the applied kernel
size; F𝑚𝑎𝑥

𝑛,𝑖, 𝑗
(r) is the maximum forecast in the neighbour of width r centered at pixel (i, j); F(r) represents all the forecasted values

within a neighborhood of width r centered at a specific pixel (i, j)

Observation-oriented evaluation
Similar to the max pooling approach, the model continues using the sliding kernel over prediction and
observation images. Instead of comparing the max value in the target neighborhood, in this section,
models use a patch centered at pixel C to compare the predictions and observations around C, and
calculate the minimum difference. There are two types of evaluation settings: prediction-oriented and
observation-oriented. In the observation-oriented approach, if the patch is 3 x 3, the center pixel in the
observation patch is compared with 9 neighboring pixels in the corresponding position in predictions
(Figure 3.4). Later, the minimum difference between the center pixel and neighboring pixels will be
considered in the loss calculation. Related formulas about neighborhood loss functions are shown in
Table 3.2. By using the smallest difference, the model is expected to minimize the high displacement
error and mitigate the double-penalty problem. The effect of two types of evaluation settings will be
studied.

Figure 3.4: Observation-oriented evaluation, in which the central pixel in the observation should be compared with all predicted
pixels in the same neighborhood. The minimum difference among them will be considered in the loss evaluation. (In
prediction-oriented evaluation, the central pixel is in the prediction.)

3.3. Hyperparameter tuning
In previous research conducted by van der Kooĳ (2021) and Dekker (2022), their models were trained on
a personal workstation and the VR-Lab infrastructure. In contrast, models in this thesis were trained on
DelftBlue, a high-performance supercomputer, rather than a personal computer. The difference between
these devices is that DelftBlue could offer higher performance and larger memory, such as RAM in a
single GPU node. Under this new condition, some hyperparameters can be adjusted to a larger value,

3.3. Hyperparameter tuning 13

such as batch size and learning rate. Following, the effect of three types of alterations in TrajGRU will be
studied. First, using the larger batch size and learning rate is introduced in section 3.3.1; then changes
of filter number are described in section 3.3.2; lastly, the increase of parameter groups in TrajGRU is
discussed in section 3.3.3.

3.3.1. Batch size and learning rate
Hyperparameters of models will affect the performance of the network along its time to convergence.
Batch size is a crucial hyperparameter in modern deep learning systems. Batch size refers to the number
of training sequences utilized in the gradient estimation process in each iteration. Understanding its
impact is challenging (Balles et al., 2017; Smith et al., 2018; Zhang et al., 2019), as its effects can vary
across different cases and models (Shallue et al., 2019). In general, larger batch sizes yield better gradient
estimates and lead to shorter training times by reducing the number of required steps (Hoffer et al.,
2018; Zhang et al., 2019). However, too large of a batch size will lead to poor generalization (Keskar et al.,
2017; De et al., 2017). On the other hand, some stated that a small batch size can converge faster and
predict better than the large batch sizes, as the noise helps the model escape from the ’sharp minima’
(Keskar et al., 2017; Kandel and Castelli, 2020) to reach a more global minima.

Using larger batch size has another advantage is that the entire data-set can be fully utilized. In
previous works, the loss value starts to become stable and reaches the minimum after around 30k
iterations. In this case, more than half of sequences in the dataset still not get trained. Utilizing
all data helps the model generalize better to unseen data. It learns patterns from the entire dataset,
improving its ability to make accurate predictions on new, unseen data. When using a larger batch
size, each iteration is able to involve 8 or 10 sets of sequence, meaning the entire data-set can be fully used.

The batch size in the previous works is fixed to 2 because of the limited GPU RAM. As the model is
trained on DelftBlue, larger available GPU RAM memory is accessible. The maximum batch size can be
up to 10. Kandel and Castelli (2020) suggests that the number of batch sizes should be a power of 2 to
take full advantage of GPUs processing. Thus, the batch size of 8 are used in our models. Generally,
larger batch sizes require larger learning rates (Balles et al., 2017). The experiments with different
combinations of batch size and learning rate are shown below in Table 3.3.

Table 3.3: The overview of experiments with different combinations between batch size and learning rate.

Experiments Batch Size Learning Rate
Benchmark 2 0.0001

BS_8_1 8 0.0001
BS_8_2 8 0.0002
BS_8_4 8 0.0004
BS_8_5 8 0.0005
BS_8_10 8 0.0010

3.3.2. The number of filters
TrajGRU employs an encoder-forecaster structure. In the encoder, the radar image will be down-sampled
three times. Downsampling refers to the process of reducing the size of images, which can help
reduce computational time and memory usage. However, due to the resizing of images, downsampling
accompanies the loss of detailed information. In order to pass on adequate information to the next layer,
the key information will be interpreted and be transferred to feature maps after each convolution. In
total, there are around 6.1 millions filters in original TrajGRU model.

Filters consist of learnable parameters that are adjusted during training. Compared to the great
number of filters we point out above, the number of parameters is much more than that. In gen-
eral, the great amount of parameters ensure the model ability to capture essential patterns. But,
the excessive number of parameters will lead to the issue of model equifinality which means many
different parameter sets may perform similarly and yield equally good results. The more number
of parameters, the high equifinality. Moreover, excessive parameters attempt to compensate for er-

3.3. Hyperparameter tuning 14

rors in other parameters and adapt to noise in the dataset, contributing minimally to overall performance.

Our current visual results demonstrate a similar pattern in work with different loss functions or
parameter sets, which means the existence of model equifinality. To avoid model equifinality, reducing
the number of filters is the idea to make the model simpler and focus on the key information in the
dataset. There are three modes chosen to be presented (Table 3.4), with decreasing number of filters:
Light, Medium, and Extreme. The extreme mode with the least number of filters is going to understand
whether the neural network will suffer a breakdown. The input channel before starting the encoder is
always 1. The amount of output channels represents the number of resulting feature maps, determined
by filter number. The number of channels in forecaster will be changed correspondingly.

Table 3.4: The overview of experiments with decreased channel number in encoder.

Channel Input / Channel Output
Layer Name Benchmark Light Medium Extreme

econv 1/8 1/8 1/4 1/4
ernn1 8/64 8/64 4/8 4/4

edown1 64/192 64/64 8/16 4/4
ernn2 192/192 64/64 16/16 4/4

edown2 192/192 64/64 16/16 4/4
ernn3 192/192 64/64 16/16 4/4

3.3.3. Multiple parameter groups
Upon observing the predicted results, it’s interesting to note that 20 predicted frames exhibit a consistent
spatial pattern within the wet region. The only difference in spatial details between lead times is that
forecasts for later lead times are blurred versions of the first lead time (Figure 4.2). This predictive feature
indicates the predictability limit of TrajGRU. On the other hand, an intuitively irrational setting in the
TrajGRU architecture is found, where all images in the encoder or forecaster share an identical parameter
group. Examination of parameter settings in Table 2.1 reveals that, within the same layer, images at
different lead times undergo identical convolution operations. The encoder processes 5 input images,
while the forecaster manages 20 predicted outputs. Visual analysis suggests that the consistent pattern
may originate from TrajGRU using a single parameter set. During the training, learnable parameters are
updated per iteration. Compared with last lead times, the adjustment of parameters largely depends
on performance at first lead times, because it is easier for models to realize the correct prediction and
reduce the overall loss value. On the contrary, there is more uncertainty and changes in the last few
lead times, requiring more radical adjustment of parameters. In this case, parameters stored in filters
contain information which are more associated with how to reproduce the prediction at the first lead time.

The main goal of this section is to improve the model’s ability to predict unseen patterns. To break
the continuous fading out pattern and reduce the continuity between the lead times, a strategy of
multiple parameter sets is implemented here. This experiment intends to first understand the effect
of using multiple parameter groups. Assigning a specific parameter group to each lead time is quite
complicated and time-consuming. To simplify the process, 20 outputs are split into 4 groups, thereby
increasing the number of parameter sets from 1 to 4. The uncertainty in precipitation motion increases
with lead time. This requires an increase in the learning rate for later lead times. This section will also
explore the influence of varied learning rates across different parameter groups. Details of experiments
are shown in Table 3.5.

Table 3.5: The overview of experiments with 4 sets of parameter in forecaster.

Learning Rate
Job Name [5-25 min] [30-50 min] [55-75 min] [80-100 min]

PG1 1 1 1 1
PG2 1 2 3 4
PG3 1 5 10 15

3.4. Changes in model inputs and outputs 15

3.4. Changes in model inputs and outputs
In the standard procedure, only raw radar images are used in the model. TrajGRU might not obtain
sufficient information regarding the spatial structure and temporal variation of rain, resulting in fading
out and the blurriness in predictions. Moreover, models relying on a single input source can be sensitive
to inherent noise within that data. Incorporating multiple data sources can help alleviate this issue and
offer a more balanced and robust perspective of underlying patterns. This section aims to incorporate
various modified data types and assesses their potential in enhancing the model’s performance across
different aspects. The initial phase will investigate the inclusion of time-differenced rainfall as new
model input and output, followed by some trials conduct the utilization of multiple model inputs.

3.4.1. Temporal difference of rain intensity
The model tends to fade out precipitation and does not show any signs of predicting rain growth in later
lead times. The raw radar image, which serves as the model’s input, represents real-time precipitation.
In this case, the model needs to learn and understand rain growth and decay from sequential real-time
radar images. By subtracting two consecutive radar images, we can obtain time-differenced data that
directly represents rain growth or decay over a 5-minute period. In this experiment, the radar image,
which is the current model input, will be replaced by time-difference data. dR = R𝑡 - R𝑡−1. R𝑡 is the
radar image; dR is the time-differenced image. Note that the distribution of time-differenced data
becomes symmetric (Figure 3.6). The intention here is to provide the model with direct information
about temporal variations, facilitating its prompt utilization and learning from the given data.

The Figure 3.5 illustrates the transition of the model input from radar data to time-differenced data.
As for time-differenced images, there are pixels with negative values that represent the rain decay. It’s
important to note that the original model had 5 inputs. Using time-differenced data as the model input
reduces the number of input images to 4. In addition, as the model output is time-differenced, in order
to obtain the target rainfall intensity, the radar image at the present moment should be added with
time-differenced output.

Figure 3.5: The transition from original radar images to time-differenced images; Note: the input number decreases from 5 to 4,
and the output number is still 20.

In this thesis, two trails related to the time-differenced input are explored. The only difference
between the two experiments lies in the weighting strategy: one follows the original strategy putting
more weight on high rain rates, while the other employs the absolute value of the time difference for
each pixel to transfer the emphasis to the maximum temporal changes.

3.4. Changes in model inputs and outputs 16

Figure 3.6: The distribution of the training data in NPV and time-differenced NPV.

3.4.2. Multiple model inputs
In addition to using time-differenced data as model input, there are various transformations to radar
images that can be explored. Dekker (2022) conducted a experiment on the effect of different data units,
comparing NPV (applied domain) and RR (target domain). It was observed that there is a significant
imbalance in the occurrence frequency of different precipitation values, resulting in different emphasis.
This difference in distributions of two datasets can affect the model’s focus, for example models trained
on NPV will particularly focus on the edges and low rainfall rates (Figure 3.7), while model trained on
RR did in an opposite way. This phenomenon is caused by the gradient difference. The range from
0 - 0.1 mm/h is transformed to 0 - 0.42 NPV, enlarging its gradient in NPV domain. Dekker (2022)
recommended in her thesis that switching to the rainfall rates is preferable, as the way we perceive an
image depends on the relation between rain rates in an image. It is worth exploring a combination of
both domains to get the details in both boundary and within the rain fields.

Figure 3.7: The gradient maps in the y or x direction, in both NPV and RR domain.

By incorporating multiple sources of data, models are expected to capture various aspects of the
underlying patterns and relationships at the same time, and gain a more comprehensive understanding
of rain evolution. In the study by Dekker (2022), RR images serve as both model input and output. In
this thesis, model inputs incorporate both RR images and NPV images, while the output remains as
NPV images. Time-differenced images are combined with the original radar image to encourage models
to capture temporal changes (Figure 3.8). Gradient images in the y-direction are another transformation,
used to prompt models to learn gradients between pixels and sharpen predictions. Additionally, radar
images with pixels filtering NPV smaller than 0.854 are incorporated in the model inputs to improve the
high-intensity prediction.

3.5. Verification 17

Figure 3.8: The brief illustration of experiments with additional model inputs.

3.5. Verification
This section introduces the verification method used for the outcome. As mentioned before, the
benchmark in this thesis is van der Kooĳ (2021)’s model trained on DelftBlue. The assessment of the
predicted performance is based on both visual analysis and several metrics. Each regular metric biases
a different aspect in the prediction. Since our analysis object is the radar image which will be displayed
on forecast applications, visual analysis is prioritized in this regard. Ravuri et al. (2021) stated that the
same prediction can be judged as significantly different by expert meteorologists, but the scores do
not provide this insight. Our thesis also highlights the limitation of using existing metrics to evaluate
forecasts when using time-differenced as model output, which is discussed in section 4.4.1

3.5.1. Visual analysis
Visual analysis consists of three types: regular prediction images, animation and zoomed-in images.
The visualized predictions will provide us with the initial impression of the model’s performance.
Five real precipitation events have been selected for visual analysis. In addition to these actual events,
some artificial events are created to gain a better understanding of the model’s predictive patterns.
Precipitation events are diverse, dynamic and complicated. For each single precipitation event, features
such as the intensity, movement, and structure of a precipitation system can change randomly over time.
Analyzing and describing these dynamic changes to evaluate the prediction quality is challenging, as
there are too many aspects can be considered and they are inherently linked to each other. To focus
on one specific feature, for example heavy shower movements, we can create some artificial events to
simplify and emphasize the feature. This artificial events help readers to observe and draw effective
conclusions. The most commonly used sequence is depicted in Figure 3.9. The large green patch
represents the main rain field, while the small red patch within it indicates an isolated shower with a
high rain rate. Both patches move at a certain pace, but in different directions. The small patch moves
from the upper left to the bottom right, while the large patch moves in the opposite direction.

Figure 3.9: Artificial radar sequence help better analysis and comparison between observations and predictions by simplifying
the precipitation features such as the distribution and movement patterns of fine structures.

3.5. Verification 18

The above method belongs to the static analysis. Although it exhibits predicted images at different
lead times, we still need to envisage how the rain moves or how the rain decays over these 100
minutes by ourself. Therefore, GIFs are generated for each experiment evaluation. These animations
allow continuous observation of the rain evolution, underlining the dynamic process. The benefits of
animations as an analytical tool will be fully reflected in section 4.

3.5.2. Metric analysis
The metrics employed in this thesis are same with Dekker (2022)’s previous work. Continuous metrics,
including MAE, MSE, SSIM, MS-SSIM, GDL, Wasserstein, and FFL loss, are plotted across lead times to
analyze model performance in temporal terms. Categorical metrics (MSE, MAE, CSI, and Frequency
bias) assess accuracy across various rain intensity categories, enabling an analysis of their impact on the
prediction of distinct rain intensities (mm/h). The used categories are: [0, 0.1], (0.1, 0.5], (0.5, 1], (1, 5],
(5, 10], (10, 20], (20, 30], and > 30. Below is the brief introduction of each metric; more comprehensive
information can be found in Dekker (2022).

Mean Absolute Error (MAE): Measures the magnitude of the absolute error. A smaller MAE means
better performance. (The definitions of certain variables can be found in section 3.2.3.)

Mean Squared Error (MSE): Measures the magnitude of the squared error. It punishes large errors to a
greater extent than the MSE. The lower the better.

Structural Similarity (SSIM) loss: The SSIM looks at the differences in brightness l(F,O) , contrast
c(F,O) and structure similarity s(F,O) between two images. 𝜇𝐹 and 𝜇𝑂 are the means of observations and
predictions. 𝜎𝐹 and 𝜎𝑂 represent the standard deviations of observations and predictions.C1, C2 and C3
(C3 = C2/2) are small positive constants to avoid division by zero and to obtain numerical stability. The
value of SSIM ranges between 0 and 1, with 1 indicating perfect similarity.

Gradient Difference Loss (GDL): This loss penalises gradient differences between the prediction and
the observations by only considering the neighbour pixel intensity differences. 𝛼 is an integer of 1 or
larger.

3.6. Model training 19

Wasserstein loss: The idea behind this loss is that it sees every pixel value as a mass at a location and that
it calculates how much it would cost to transfer these masses to the correct pixel to match the observation.
The parameter p determines the power to which the euclidean distance, between location x and y, is taken

3.6. Model training
All experiments were trained on a new device - DelftBlue. DelftBlue is the supercomputer at TU Delft,
which can offer higher performance and abundant computing resources. There are 10 GPU nodes,
with each node having 4 GPUs: NVIDIA Tesla V100S 32GB. The RAM (Random-access memory) of
each GPU node can go up to 256GB. In DelftBlue, because of easier access to the larger memory and
more GPU resources, we can explore the potential of various configuration settings through different
combinations, such as larger batch size. The relative disadvantage of training on DelftBlue is the
waiting time is uncertain, depending on how much users and jobs are waiting in the queue at the moment.

The benchmark in this thesis was trained on DelftBlue with the identical configuration settings,
using the identical configuration settings as those employed in van der Kooĳ (2021) and Dekker (2022);
the only difference is the device. Experiments are trained with the batch size of 2 or 8 depending on
the approach, for 100,000 iterations. The learning rate schedule with step-decay, with a decay-factor of
LR*0.1 at the 30,000th and 60,000th iteration. The optimization algorithm is Adam. The benchmark
works with NPV. The actual and normal training time last for about 1 and a half day.

Table 3.6: An overview of the above mentioned approaches. We come up with these approaches from different perspective, all
aimed at mitigating blurriness and fading issues in our current model. Experiments are divided into three main categories based
on which component in TrajGRU we make changes.

4
Results

In this chapter, we present and discuss the results of different approaches, organized into three sections
based on the modifications made to TrajGRU. Section 4.1 assesses the effectiveness of the modified
loss functions; while Section 4.2 looks at the influence of hyperparameters on predictive performance.
The effect of using temporal data or additional transformed inputs are analyzed in Section 4.3. A
subset of metric results with lead time is provided in Appendix A. You can also refer to online
datasets which stores all visual results: 1) DOI: 10.4121/12437ba3-4cf4-47c4-928b-94dc9bdec663; 2) Miro:
https://miro.com/app/board/uXjVM_zMm0s=/?share_link_id=288593714945

4.1. Predictive features of the benchmark
Figure 4.1 shows the prediction produced by the benchmark. By comparing these predictions with the
ground truth (Figure 3.9), we can identify predictive features in the current model. In terms of the
main rain field (green patch in Figure 4.1), its location is properly predicted and consistent with the
ground truth. Despite the rectangular shape we make is apparently unrealistic, the shape of the wet
region in our artificial sequence is also well-preserved by the model. Concerning the rain intensity,
the benchmark tends to overpredict it over the primary rain field in longer lead times, as there is no
observed increase in intensity in the ground truth.

Regarding isolated showers (red patch in Figure 4.1) within the rain field, the visual results reveal
that the benchmark struggles to predict the motion trajectory of heavy rainfall. In the ground truth, the
intensity of these isolated showers remains constant over time. However, the benchmark fails to preserve
the high intensity and square pattern, instead it fades out and merges them with their surroundings as
time progresses. By summarizing the predictive features of the model, we can conclude that the model
provides decent predictions at the global scale but still struggles with predicting internal details within
rain fields.

Figure 4.1: The prediction of an artificial event, illustrating current predictive features of the benchmark setting such as
continuous fading out of high intensity and blurring pattern for fine structures within rain fields.

4.2. The effect of modified loss functions
4.2.1. Consequences of temporal weights
Some examples of predictions for four different temporal weights are depicted in Figure 4.2. Overall,
the new predictions look similar to the benchmark in terms of shape, location and spatial structure

20

https://miro.com/app/board/uXjVM_zMm0s=/?share_link_id=288593714945

4.2. The effect of modified loss functions 21

inside the rainy area. Most importantly, there is no clear improvement in sharpness. The models with
the new weights still smooth out the rain a lot and appear unable to predict detailed spatial features
within the rain fields, especially at the longer lead times. Although fading out still persists, the addition
of temporally dependent weights can slow down the rate of decay of high rainfall intensities (e.g., see
the red patch in Figure 4.2).

Figure 4.2: The predictions are tested with temporal weighting strategies.

The performance metrics in Figure 4.3 show that, on average, the benchmark performed the best.
The experiment in which the weights decrease with lead time shows a slight decrease in all metrics for
the first lead time. However, beyond that, the benchmark consistently outperformed the alternative
models across all metrics, especially at longer lead times. In the context of emphasizing intermediate
lead times, the metrics revealed a certain decrease in values around the 4, 5 and 6 frames. Nevertheless,
this weighting strategy lead to the poorest model performance in both the initial and final lead times.

4.2. The effect of modified loss functions 22

Figure 4.3: Metrics over the lead times for experiments combined with temporal weighting strategies. A lower value indicates a
better score for all metrics.

4.2.2. Consequences of wet mask
In this experiment, the loss value is only computed over wet pixels, by excluding those pixels with
values smaller than a certain threshold in both observation and prediction. The idea behind using a wet
mask is to reduce data imbalance between wet and dry pixels in the training data, and transfer more
emphasis on high intensities.

The visual results indicate that models trained with a wet mask struggle to preserve extreme rain
pixels over time (Figure 4.4). They consistently display a blurry pattern in longer lead times, similar to
the benchmark. When a large threshold is applied, these models fail to predict dry pixels and mistakenly
classify them as wet pixels. This is due to the fact that we do not consider these dry pixels in the loss
calculation. Because assigning values to them does not penalize the model, the model are free to on dry
pixels. Employing a high threshold can enhance performance in the initial lead time (Figure 4.4). When
zooming into the circled area in Figure 4.4, more separate small rain fields outside the main field are
successfully predicted,which the benchmark fails to predict.

The fact that the wet mask did not produce the expected results indicates that too many zeros in the
training data might not be the main reason for the blurriness and decay of precipitation in the longer
lead times.

4.2. The effect of modified loss functions 23

Figure 4.4: The prediction results with the application of wet mask and different thresholds.

The fact that the wet mask did not produce the expected results indicates that too many zeros in the
training data might not be the main reason for the blurriness and decay of precipitation in the longer
lead times.

4.2.3. Consequences of neighborhood loss functions
Max pooling
Three experiments with kernel sizes of 2, 7 and 15 are presented below (Figure 4.5). To our surprise,
combining max pooling into the loss calculation actually made predictions worse across all lead times.
Visually, Figure 4.5 shows that applying max pooling results in underprediction of rainfall intensities
over the entire image, which is the opposite of what was intended (i.e., preserving high rain rates).
Moreover, the max pooling approach also caused curious checkerboard patterns inside the rainfall fields.
This checkerboard pattern becomes more apparent with larger kernel sizes. Interestingly, Lagerquist
and Ebert-Uphoff (2022) also found this checkerboard pattern in their predictions; they explained it
by the “excessive freedom” of the model during training, which makes the neural network produce
erroneous small-scale patterns without penalty.

Let’s assume there is a hypothetical prediction with the size of 9 by 9. In this hypothetical prediction,
only 9 pixels are filled with the value of 1 (Figure 4.6). Then the max pooling with the kernel size of 3 by
3 will be applied to this hypothetical image. Although most pixels in the hypothetical image are zero,
the resulting feature map after max pooling process can be filled up with the value of 1. This is because
the sliding kernel can always cover at least one valued pixel in the hypothetical prediction and extract
it. The feature map in this hypothetical prediction is identical to that in the ground truth (Figure 4.6),
resulting in a loss value of 0 which means a perfect fit. This kind of model behavior is consistent with
our findings about checkerboard patterns in the wet region. The checkerboard pattern could get rid of
being correspondingly penalized and be preserved in latter iterations.

4.2. The effect of modified loss functions 24

Figure 4.5: The predictions with the max pooling applied in loss calculation. Apart from the benchmark, it shows that the max
pooling will cause a checkerboard pattern.

Figure 4.6: The illustration of a possible reason for checkerboard pattern; The maximum value within each sliding kernel is
selected and becomes the output value for that corresponding central pixel in the feature map; The manually hypothetical
prediction can store substantial zeros without penalty because the max pooling operation can ignore predictive performance in
most pixels.

To avoid this checkerboard pattern, we tried to add a penalty to counteract the adverse effect of
max pooling operation. For example, the average or min pooling can be combined with max pooling
before loss calculation to prevent models from only predicting a few pixels surrounded by zeros. The
resulting predictions are shown in Figure 4.7. The use of a min pooling mitigates the checkerboard
patterns but does not completely remove them. The combination with average pooling can eliminate
the checkerboard pattern, but this prediction closely resembles the benchmark’s output. Also, the
blurriness issue at longer lead times still persists.

4.2. The effect of modified loss functions 25

Figure 4.7: The effect of combining additional penalty with the max pooling. (Kernel size: 3)

Checkerboard patterns also emerge in the early stage of other trainings. Figure 4.8 displays
predictions trained with the benchmark setting at 50, 90, 110, 150, 190, and 210 iterations. At the 50th
iterations, there is distinct blocky pattern; however, this regular pattern gradually improves, and each
pixel is filled with a value. When compared with neighborhood loss function, the pixel-wise loss
function can help prevent it from occurring, but it does not fully resolve the issue. By the 210th iteration,
the checkerboard pattern weakens, but we can still observe values of the same level appearing at regular
intervals. This checkerboard pattern seems to be a natural phenomenon during the early training, and
is not triggered by neighborhood loss. As it is not exclusive to experiments using the neighborhood loss,
further research is needed to understand its underlying causes in the future.

4.2. The effect of modified loss functions 26

Figure 4.8: Without max pooling, checkerboard patterns are also found out at the early training stage of the benchmark.

Observation-oriented and Prediction-oriented loss
Fig 4.9 shows results created by the other way which interacts with neighborhood pixels in the evaluation.
Checkerboard patterns also showed up during the observation-oriented evaluation. This time, the entire
image including the dry area starts to contain checkerboard pattern. The reason is models succeed in
finding another simple strategy to get satisfying loss results. By this simple strategy models only need
to predict and adjust part of pixels, with the rest of pixels remaining zeros. This can be demonstrated by
magnifying the prediction at early iteration. In Figure 4.10, a regular and organized pattern is created,
in which the arrangement of colored pixels changes every iteration, in addition, the intensity level for
each colored pixels is updated together. Turning to the prediction-oriented evaluation (Fig 4.9), related
predictions are similar with the benchmark, without any significant difference. Similar with the max
pooling, increasing the kernel size results in the underprediction of rain intensity.

4.3. The effect of hyperparameter tunning 27

Figure 4.9: Prediction results with prediction-oriented and observation-oriented losses.

One of the main reasons for using max pooling during the loss calculation was to reduce the double
penalty issue and allow the model to take more risks and predict higher rainfall intensities, even if
they are not exactly at the right location. However, our results suggest that there is little usefulness in
using neighborhood loss functions. This suggests that the double penalty is not the biggest issue when
training a precipitation nowcasting model. This findings agree with the conclusion in Lagerquist and
Ebert-Uphoff (2022).

Figure 4.10: The magnified version of observation-oriented results at early iterations (t +50min); it illustrates how the model does
the optimization. It showcases the mode change the blocky design and pixel intensity but keep retaining a significant number of
zero values.

4.3. The effect of hyperparameter tunning
4.3.1. Batch size and learning rate
Figure 4.11 illustrates the visual differences associated with various batch sizes and learning rates.
Regarding the impact of batch size, the figure demonstrates that increasing the batch size is able to
significantly change the shape of rain fields. For instance, in the last lead time, models trained with a
batch size of 8 manage to predict a sharply defined outline of the wet region. In contrast, the benchmark’s
predictions result in a more rounded boundary for the wet region.

4.3. The effect of hyperparameter tunning 28

Figure 4.11: Predictions about experiments with batch size of 8 and varied larning rates in two events (t +100min).

Smaller batch sizes require smaller learning rates, while larger batch sizes allow for more substantial
steps (Balles et al., 2017). Hence, the exploration of different learning rates is also conducted. Specifically,
with a batch size of 8, learning rates of 1, 2, 4, 5, and 10 were investigated. The results show that a
learning rate below 5 works well (Figure 4.11). When a larger learning rate is employed, the model’s
stability starts to be compromised. This is evident from the loss graph, where beyond a certain number
of iterations, the loss value starts to fluctuate wildly and even reaches irrational levels, indicating the
model’s inability to effectively learn from the data.

From the loss graphs, whether a small or large batch size is used, the loss values reach a plateau at
approximately 30,000 iteration. This suggests that the model’s learning progress slows down significantly
after 30,000 iteration. There are 185,324 sequences in our training set. At 30,000 iteration, Models with a
batch size of 2 have got trained with 60,000 sequences, while models with a batch size of 8 have already
utilized all available sequences. The metric results (Appendix A) show that the benchmark outperform
others in most metrics, only except for MAE and GDL. This is consistent with other studys stating the
larger batch size will lead to a degradation in the quality of the model (Keskar et al., 2017; De et al., 2017).
But based on the visual analysis, a larger batch size is able to generate sharp and distinct boundary of
rainy area. This shows the potential of reducing the blurriness regarding the rain field shape.

4.3.2. Number of filters
As decribed in the Methodology, the input images undergo three downsampling stages in the encoder.
The precipitation information contained in radar images is transformed through convolutional opera-
tions into new images referred to as feature maps. The number of output feature maps depends on the
number of filters employed in the convolutional operations. In this section, resulting predictions with
decreasing amount of filters are presented in the Figure 4.12

4.3. The effect of hyperparameter tunning 29

Figure 4.12: Forecasts about experiments with decreased filter numbers at the last lead time for two cases.

First, the predicted locations of the main rain field in three different downsizing modes align with
the benchmark predictions (Figure 4.12). Even when reducing the number of filters from 192 to 4 in
the top layer, the model consistently maintains the proper rain field location over time (Figure 4.13).
However, regarding spatial details, it’s evident that predictions become heavily blurred with fewer
filters. While rainfall centers with relatively high rain rates are still distinct in Figure 4.12, they tend
to be more centrally located within the wet region, showing reduced spatial bias. In contrast to the
impact of a larger batch size, reducing the number of filters results in wet region outlines becoming
more rounded and distorted at longer lead times. And in terms of intensity, fewer filters lead to an
overall underestimation of the wet region, particularly along the boundaries.

TrajGRU improve the prediction by adjusting and updating the parameters in filters. Different
feature maps emphasize a specific aspect of spatial characteristic. For example, some feature maps
will stress the edges or gradient in the left-hand side of wet regions. In the image recognition liter-
ature, an increasing the number of filters is needed to ensure that information is not lost too much
when down-scaling (Tran and Song, 2019). However, in the prediction task such as this case-study,
using too many filters could make the models suffer from the over-fitting problem. Because at a
higher abstraction layer, a model is expected to make assumption about the global rather than the
local variations (Tran and Song, 2019). In our case, local details within the wet region significantly
decide the sharpness of prediction. As mentioned in section 4.1, the benchmark shows its weakness
of the prediction at local scale (Figure 4.1). As the image undergoes downsizing in the top layer,
this valuable local information converted and included in the feature maps, becomes diluted. At the
same time, excessive feature maps are generated from images with limited local details, displaying
slight difference in global features. With too much redundant global features, models may fail to
predict effectively. Based on our visual results (Figure 4.13), after decreasing the filter number at
the last layer from 192 to 64, there is no significant changes in the inner spatial structure, implying
the two-thirds of filters at a highest layer don’t significantly contribute to prediction. Thus, there
is no need to make 192 kinds of assumptions at global scales as it will generate many similar feature maps.

Additionally, there’s a significant reduction in model size, with the trained model’s file size dropping
from 48.7 MB in the Benchmark to 9.35 MB in ’Light’ mode Table 4.1. For the ’Extreme’ mode, the model
size can shrink to smaller than 1 MB. In general, smaller models can be applied and updated by the
platform more rapidly.

4.3. The effect of hyperparameter tunning 30

Table 4.1: Total parameter number and model size after decreasing filter number.

Benchmark Light Medium Extreme
Total parameter number 12,753,909 2,444,917 323,913 159,377

Model size 48.7 Mb 9.35 Mb 1.26 Mb 648 Kb

Figure 4.13: Predictions of three modes in terms of decreased filter number with different lead times.

According to the metric results (Figure 4.14), we observed that the "Light" mode achieved scores
similar to the benchmark, with better performance at 4, 5, and 6 frames. On the other hand, the
"Medium" and "Extreme" modes, on average, performed worse than the benchmark. However, the
"Extreme" mode managed to achieve scores comparable to the benchmark, particularly in the last few
lead times, except for the balanced loss which we used as the objective function. In fact, the "Extreme"
mode exhibited a smaller MAE, GDL, and a larger SSIM than the benchmark, indicating preferable
performance. Initially, there was concern that the "Extreme" model might lead to the breakdown of
TrajGRU. However, both metrics and visual analysis demonstrate that even with extremely fewer filters,
the model still performs logically.

4.3. The effect of hyperparameter tunning 31

Figure 4.14: Metric results for experiments with decreased number of filters.

The pruning technique is to reduce the extent of a neural network by removing unwanted and
insignificant parts. In this thesis, we focus on the filter pruning and randomly reduce filter number in
the top layer. Many studies related to the weight pruning demonstrated that eliminating unnecessary
weights from neural networks (Han et al., 2015; Li et al., 2017; Frankle and Carbin, 2019) can reduce
parameters by more than 90% without harming accuracy. Frankle and Carbin (2019) innovated an
iterative pruning strategy, cutting down some connections with least importance in multiple rounds.
They found that smaller networks are able to retain the same level of accuracy and can even go higher.
As we have observed that randomly removing filters in our current network can maintain similar
performance, future studies can explore different pruning methods and further compress the model
network to identify the most optimal and efficient mode.

4.3.3. Multiple parameter groups
In the Benchmark scenario, isolated showers with high precipitation rates remain fixed within the wet
region. There’s minimal variation in the spatial structure of the rain field over time, only with finer
details getting increasingly blurred. In this section, the performance of multiple parameter groups will
be displayed. The introduction of multiple parameter groups aims to provide the model with more
freedom and flexibility. In Figure 4.15, We have extracted 6 frames from the middle position (+30 to +75
minutes) of the entire sequence, as special changes are concentrated on this interval.

For the benchmark in the first row of Figure 4.15, those fine details within the rain field at the
first lead time gradually blur and merge together with increasing lead times. The orange patch
representing the high intensity keep shrinking with increasing lead times. Besides that, there is no
significant change observed within 45 minutes. When employing 4 sets of parameter groups, some
isolated showers will start to emerge and dissipate among these 6 frames, referring to patches that
are circled in Figure 4.15. Although there is only one or two such smoothed red patches popping
up in the sequence, this dynamic changes will not occur in the benchmark or other experiments.
Additionally, expansion of the high rainfall in the wet region area can also be found out in the last
25 minutes. Thus, more spatial dynamics start to show up with the involvement of multiple param-
eter groups. Compared to a consistent fading of rain, the dynamic pattern aligns more closely with reality.

The trained model, which employs uniform learning rates set at 1 for all four parameter sets, exhibits

4.3. The effect of hyperparameter tunning 32

a fading-out pattern similar to the benchmark. In this configuration, there are no sudden high-intensity
appearances or expansions in the rain field after the initial lead time. Conversely, assigning higher
learning rates to later lead times results in certain spatial dynamics and variability (refer to Figure 4.15),
effectively manage to break the continuity of predictions. These momentary instances of rain appearance
can represent the growth and evolution of rain. Hence, there is a need to set different learning rates to
different lead times.

Figure 4.15: The prediction results using 4 sets of parameters and learning rates.

In this approach, the metrics result exhibit irregular curves with increasing lead times when
compared to other trials. Unlike the consistent and smooth trend observed in the metric curves of other
experiments, using four different sets of parameter groups results in a fluctuating loss curve (Figure 4.16.
This fluctuation in the loss curve aligns with those visual dynamics observed and found out in this
approach. For the first few lead times, the benchmark always performs the best, while experiments with
large learning rates yield abnormally high values in MSE, Balanced loss, and FFL. However, upon visual
analysis, they are able to produce similar rain forecasts. Both SSIM and MS-SSIM did not be displayed
here, as the loss curves of all experiments closely overlap.

Figure 4.16: Metric results with 4 parameter groups.

4.4. The effect of changed model inputs and outputs 33

4.4. The effect of changed model inputs and outputs
4.4.1. Time-differenced rain intensity
In previous experiments, radar image sequences have been used as both model input and output.
However, we are now exploring the utilization of different types of data, such as the time difference of
precipitation, as input and output for the model. The outcomes of two experiments are presented in
Figure 4.17.

It is interesting to find that the resulting forecasts exhibit intricate structures within the wet region,
not only during the initial lead time but also in the final lead time (Figure 4.17). The model didn’t blur out
the spatial structure; and the isolated showers with high precipitation rates show up in different location
with increasing lead times. Furthermore, the choice of weighting strategy influences the prediction
features. Images trained with the original weighting strategy depict more extreme precipitation inside
the rain field. This divergence stems from the distinct prioritization of stressed pixels. The original
strategy emphasizes pixels with high rain rates, often positioned within the middle or interior of the wet
region. Conversely, assigning pixel weights based on the absolute time difference values emphasizes
pixels along the edge of the wet region (Figure 4.19). Contrary to the visual result, which displays
impressive sharpness, the metric analysis does not agree with such improvement (Appendix. A), but
rather indicates a completely inaccurate prediction.

Figure 4.17: Predictions by using time-differenced images as model input and output. Two weighting strategies are studied, in
which original weights represent Equation 2.4.

However, in comparison to observations, these isolated showers and fine structures are not positioned
accurately. It remains challenging to comprehend how the model predicts these intricate patterns.
The underlying logic guiding the model’s determination of isolated shower locations remains unclear.
To enhance our understanding of precipitation evolution over time in the output sequence, we have
incorporated GIFs as an additional analytical tool. Through this approach, we find that these fine
structures (regions of extreme precipitation) remain fixed in image position as time progresses. Isolated
showers emerge when covered by rainy areas and abruptly vanish when the rain shifts away. Their
positions do not alter with the movement of rainfall zones. The finding of isolated shower evolution in
GIFs prove that corresponding predictions are unrealistic and contrived.

4.4. The effect of changed model inputs and outputs 34

Figure 4.18: The illustration of the ghost formation when using time-differenced images. Models struggle to predict correct
time-differenced rain intensity to remove the ghost from the last input (t + 0min).

The origin of these unrealistic fine structures can be attributed to the radar image at 0 minutes. As
both the input and output of the model are time-differenced NPV images, the generation of predicted
radar images involves adding time-differenced images to the radar image at 0 minutes (Figure 3.5). An
artificial example in the Figure might help to explain this phenomenon. In this scenario, the main wet
region moves from the lower left to the upper right, accompanied by a small independent rain field at
the upper part of the main wet region, moving at a steady pace from left to right (Figure 4.18). Actual
observations reveal that the two independent rain fields move separately and converge at +25 minutes.
However, in the model’s predicted frames, it fails to anticipate the movement patterns of both rain
fields (Figure 4.18). The model provides relatively more accurate predictions for the larger moving rain
field compared to the smaller one. Additionally, the position of the upper small rain field in forecasts
remains stationary and identical over time. When the two rain fields overlap, the rainfall intensity of the
overlapping section amplifies, similar to the phenomenon seen in the prediction of the realistic case
(Figure 4.19). Consequently, it is possible that the irrational isolated showers depicted in the Figure
originate from the overlap of the two rain fields.

The predictions of rainfall time differences are presented below (Figure 4.17). Although the models
appear to produce sharp forecasts of radar images, they still yield blurred predictions of time difference
values over time (Figure 4.19). Time difference of rainfall represents the direct model output. The
ultimate predicted radar images are formed by combining the radar image of the current time (+0
minutes) with the cumulative predicted time difference. Based on the above analysis, the sharpness of
the final prediction likely originates from the details in the present time’s radar image. However, due to
the limited predictive capacity of models for time difference values, these details cannot be promptly
eliminated or counterbalanced. As a result, they persist in the same positions across varying lead times.
Overall, fine rainfall structures shown in predictions (Figure 4.17) are not predicted by trained models
but the ghost of radar input.

4.4. The effect of changed model inputs and outputs 35

Figure 4.19: The direct time-differenced outputs before adding with the radar image of the current moment (t +0min).

4.4.2. Multiple model inputs
In the following section, we will present the model’s performance in integrating NPV images with
other types of model inputs. Unlike rain fields’ shape got changed through the use of larger batch sizes
or more internal dynamics predicted by involving multiple parameter groups, using multiple model
inputs shows that this approach is able to refine the rain fields with more details. The visual predictions
(Figure 4.22) with inputs combining time-differenced maps, gradients maps in the y direction, and
maps only storing pixel values larger than 0.854 NPV, show that the blurriness and fading out did not
get solved. Among them, the experiment incorporating RR images as the additional model input is
the most promising. This approach enriches the wet region with more internal details (Figure 4.20),
especially at the first lead time. The Figure 4.20 magnifies a specific part of the rain field, which displays
the actual intensity of the individual pixel. It shows an enhanced performance of the internal rain field
with finer structures in comparison to the Benchmark. In the benchmark, the pixels with the same
value are more closely packed together in certain areas, resulting in a concentrated distribution pattern
(Figure 4.20). When incorporating RR images as the additional model input, the high-intensity pixels
can become more scattered and detailed. The overall blurriness is reduced to some extent, while some
details may not precisely match the reality.

The fine details can be derived from the higher contrast between the highest and the lowest rain
intensities inside the rain field when perceiving radar images on the RR domain. This is previously
mentioned in Dekker (2022). Figure 4.21 displays radar observations in different domains. Both images
do a logarithmic normalization in the colorbar. The upper and lower limits of the colorbar are defined
according to the maximum and minimum values within their respective domains. Observations have a
maximum value of 1 in terms of NPV and a maximum of 48.6 mm/h in RR. The contrast of values inside
the rain field emphasizes fine structures and contributes to its prediction. In the interior of the rain
field, Figure 4.21 shows that the NPV image has low contrast with a smaller range of pixel values falling
between 0.7 and 1 within the precipitation field. With such subtle contrast, models can not detect spatial
patterns. Radar images presented in the RR domain convey more informative details and gradients,
which enable the model to learn effectively.

4.4. The effect of changed model inputs and outputs 36

Figure 4.20: Regional details after magnifying a specific part of rain fields; the first row is the ground truth, the second row shows
the benchmark, the third row illustrates the prediction combined radar images in RR as an additional input.

Figure 4.21: Radar images in RR and NPV domains exhibit opposite patterns within the rainy area. RR images show high
contrasts within rain fields, indicating greater variation in pixel values. On the contrary, NPV images show a smaller range of
pixel values within rain fields.

It should be noted that, except for the radar image in RR, all other transformed model inputs
(gradient images or time-differenced images) are displayed in the NPV domain. After we understand
that enhanced contrast can help the model extract features effectively, future work should consider RR
values rather than NPV for all additional datasets. Because the underlying distribution of pixel values
inside the precipitation field is more important than the overall distribution of the entire image. Using
data in RR has the potential to amplify the gradient and sharpen precipitation fields.

4.4. The effect of changed model inputs and outputs 37

Figure 4.22: Results from different combinations with various model inputs.

4.4. The effect of changed model inputs and outputs 38

Table 4.2: An overview of all results from above approaches. Approaches are divided into three main categories based on which
component in TrajGRU we make changes.

5
Conclusion

This thesis began with the goal to address the remaining problems from Dekker (2022): data imbalance
and double penalty, which were believed to be the two major causes responsible for the smoothing and
fading out of the forecasts. To achieve this, various changes were made to TrajGRU, and they can be
generally be grouped into three parts: 1) the use of new weighting strategies, 2) the use of neighborhood
loss functions, and 3) modifications to the model structure of TrajGRU. This final chapter summarizes
our findings and answers the research questions.

5.1. Answers to research questions
SQ1: Can model performance be improved by applying temporal or spatial weighting strategies
aimed at addressing data imbalance?

Our results show that models in which the error weights decrease with lead time may slow down the
decay of high intensities. However, the alternative weighting strategies did not solve the blurriness issue
and fading out of rainfall at longer lead times. The wet masks that forced TrajGRU to exclusively focus on
predictive performance within precipitation regions, and was supposed to mitigate issues related to data
imbalance between dry and wet pixels, did not substantially improve the results either. The resulting
predictions were similar to the benchmark, and their blurriness increased with lead time. One advantage
of the wet mask approach when combined with a larger threshold, is that it can potentially sharpen
a bit the predictions at short lead times compared to the benchmark. However, overall, the weight-
ing and masking strategies did not significantly contribute to improving the sharpness of the predictions.

SQ2: Is it possible to sharpen the predictions and avoid the double penalty issue by using spatial
neighborhood loss functions?

Our results show that models trained with such neighborhood loss functions exhibit strange
“checkerboard patterns”, in which only a small fraction of pixels have a positive rainfall value, and the
others around them are zero. Lagerquist and Ebert-Uphoff (2022) also mentioned this pattern in their
work, and attributed it to and excessive freedom issue during parameter adjustments (i.e., the fact that
many weights and biases can be changed simultaneously without affecting the loss). However, the
excessive freedom issue does not explain why good models that have realistic spatial structures (e.g.,
the benchmark) systematically converge to checkerboard patterns when trained with neighborhood loss
functions. This strange behavior holds regardless of the starting point, learning rate and optimizer used
during the training. The emergence of checkerboard patterns and how to avoid them is something that
should be investigated in more detail in future work. It is crucial for determining the role played by the
double penalty issue in controlling the blurriness of precipitation forecasts.

SQ3: Are there specific elements within TrajGRU, such as hyperparameters and model inputs/outputs,
that can be adjusted to enhance predictive performance?

39

5.1. Answers to research questions 40

Our results show that larger batch sizes lead to better models with sharper edges and better defined
rainfall cells. However, the larger batch sizes did not reduce the overall blurriness of the predictions
at longer lead times. The shrinking experiments during which TrajGRU was retrained with a smaller
number of spatial filters showed that the benchmark contains a lot of unnecessary complexity. Smaller
models that use fewer filters in the convolutional layers were able to reproduce very similar structures.
This finding implies that some parameters in the benchmark are redundant and can be removed to
enhance the robustness and speed of the model while reducing its size.

Another improvement to TrajGRU that way explored in this thesis consisted in dividing the shared
parameter set in the forecaster into four distinct groups. One of the limitations of the benchmark is
that it uses the same parameter set to forecasts all 20 lead times. To give the model more flexibility, we
performed experiments in which the parameter sets were divided into 4 different groups, one group
for every 5 frames. Our results show that with this approach, rainfall fields do not systematically fade
out with increasing lead time anymore. Instead, small-scale isolated showers can emerge and intensify
at intermediate lead times. We conclude that the use of different parameter sets for short, medium
and extended lead times appears to be a rather promising approach for combating the fading out of
rainfall fields. However, it also increases the size of the models and adds new parameters, which
need to be properly adjusted. The choice of the learning rate plays a key role in this approach and we
recommended to assign larger learning rates to longer lead times.

Finally, the influence of changing the model input was tested. In the initial phase, we replaced the
standard radar images with time-differenced images. This approach yielded sharper predictions for
all lead times. However, it also resulted in unrealistic space-time patterns where high intensity rain
cells stayed at the same location over multiple lead times. We think that these stationary structures
(i.e., the “ghosts” of previous radar images) emerge because of the natural tendency of the model to
predict zero changes in rainfall intensity from one time step to another. To avoid these ghosts, we
combined the time difference inputs with the original radar images. However, the resulting predictions
looked very similar to the benchmark and were not sharp anymore. Only the experiments which used
the rainfall rate as an input instead of the normalized pixel values exhibited some slightly finer structures.

Research Question: How can TrajGRU be upgraded to mitigate issues related to the prediction
blurriness and fading out?

Overall, the blurriness and fading out issues still remain open challenges that need to be investigated
in more detail. The loss function modifications, which in theory, have the potential to alleviate data
imbalances and avoid the double penalty issues, did not solve the blurriness issue. In some cases, like
for the experiments with the neighborhood loss functions, it can even lead to other undesirable effects
such as the appearance of a checkerboard patterns, which requires further investigation. Based on these
results, we conclude that the loss function does not appear to be the most important factor limiting
TrajGRU’s performance, and that there are likely other, more important, underlying factors that are
responsible for the blurriness and fading out.

By contrast, modifying the model itself and its architecture seems more promising. A larger batch
size, for example, reduces the blurriness of rain field boundaries at longer lead times, and adding more
parameter groups helps mitigate the fading out of high-intensity predictions. Changing model inputs
also has the potential to enrich precipitation fields with more detailed spatial patterns. However, this is
not guaranteed and can also lead to unrealistic space-time patterns, as demonstrated by the experiments
conducted on rainfall difference maps. It is important to note that in this thesis, changes were mostly
assessed through visual analysis of individual predictions and animations. But sharper images alone
may not necessarily be better and a more comprehensive and quantitative analysis of each change is
required before final conclusions can be drawn.

Although it already performs well, the current model still appears to have some limited room for
improvement. In this thesis, a lot of ideas were explored, but there’s still much more to investigate.
The following section provides some recommendations for future work by highlighting the critical
components that should be investigated in more depth.

5.2. Recommendations 41

5.2. Recommendations
Instead of tweaking the loss functions, we recommend shifting the attention to the model network
structure itself. One recommendation is to continue to optimize the number of filters in different layers in
TrajGRU. When exploring this approach, one should keep in mind that the feature maps corresponding
to the top layer represent spatial features from a global perspective. After the convolution operation
is applied, a feature map is generated for each filter. Each feature map highlights specific features
or patterns present in the input image. These features can include edges, corners, textures, or more
complex patterns, depending on the layer and filter. Compared to global-scale spatial features, the
current model conveys insufficient local-scale spatial information, which may be the cause of the blurry
predictions. Referring to Table 2.1, in the initial convolution process, the input image is transformed into
only 8 feature maps, with the image size reduced to one-fifth of the original radar image. Possibility, a
great deal of spatial information is lost during this downsampling process. In the top layer (Table 2.1),
referred to as ’edown2’, although the image size is halved, the number of feature maps remains the same,
which also indicates possible information loss. To address this issue, I propose to reduce the redundant
feature maps in the top layer and increase the number of filters in the bottom layer. Alternatively, one
could enlarge the output size in the top layer, since the resizing of the image from 480x480 to 16x16 is a
big reduction.

Regarding the number of parameter groups: in this thesis, the 20 frames corresponding to the 20
different lead times were split into 4 distinct parameter groups. However, one could also consider a larger
number of groups, up to 20. Our results show that some (small) variations in rain dynamics are possible
using this approach. But the potential has not been fully explored yet. When working with multiple
parameter groups, we recommended to increase the learning rate as lead times progresses. However,
finding the right balance can be hard, as excessively large learning rates might also cause the optimization
process to jump over the optimum and the loss curve to exhibit large fluctuations. For example, one
experiment we conducted with learning rates set to 1, 10, 20, and 30 did not train properly. The tuning
of learning rates is something that should be looked at in more detail but can also be very time-consuming.

Another promising approach is to use multiple model inputs during training. For example, in
addition to using NPV, we recommend to also incorporate radar images in RR into the model input. In
other relevant experiments, such as combining the original radar image with time-differenced data,
all of those additional input data are in NPV. Testing all images in the RR domain, rather than NPV,
is recommended. Since RR exhibits more significant value differences between pixels, this feature
should also be reflected and have an impact on time-differenced radar images or gradient images in the
y-direction. Similarly, Dekker (2022) recommended applying alternative data transformations to rainfall
rates, such as the log transformation. This idea is to balance the dataset and magnify the gradients
within the rain field. On the other hand, the inclusion of other data types such as Echo Top Height
(Elsmann, 2023), wind speed (Kaparakis and Mehrkanoon, 2023) or numerical weather prediction data
(Niu et al., 2023) is also promising and worth trying. In this regard, various information in terms of
temporal and spatial aspects can be blended into the predictions. One important thing to keep in mind
is the value distribution: whether this specific data distribution amplifies value gradient within the rain
field rather than at the edge of the rain fields. Alternatively, transforming data into a different unit, such
as using RR, can enhance image detail.

As we evaluate the effectiveness of each approach in our results, you can observe that each approach
has a distinct influence on the predictions; some introduce more internal dynamics, while others
enhance the prediction of finer structures. The influence of each approach is currently subtle, possibly
because the effect of each approach is constrained by the others. To continue forward after this research,
it is important to move away from using only radar data and incorporate more understanding into
machine learning models. I think the addition of other atmospheric information could help sharpen
the predictions, but it may not fully address increasing blurriness over time, as this issue is related to
the model architecture. Thus, we also need to further optimize the model structure to help TrajGRU
adjust its predictions over time and space as a function of the observed weather patterns and combine
information from different sources to capture the nuances of each individual situation.

A
The metrics over lead times for

various approaches

Figure A.1: The different metrics over the lead times with wet masks

42

43

Figure A.2: The different metrics over the lead times when using max pooling operation in loss function

Figure A.3: The various metrics across different lead times in experiments conducted with larger batch sizes and learning rates

44

Figure A.4: The different metrics over the lead times, with additional model inputs

Figure A.5: The different metrics over the lead times, in the experiments with time-differenced data

B
Single model input: Modified radar

images

In contrast to Section 3.4.2 in which we integrated additional datasets with radar images in NPV,
these modified datasets were also evaluated as standalone inputs to replace NPV images. These
supplementary datasets align with those depicted in Figure 3.8. As previously mentioned, these
datasets, transformed from radar images in NPV, offer enhanced spatial and temporal information
within rain fields. Gradient images depict variations and contrasts between adjacent pixels, while
time-differenced images reveal trends about rain growth and decay at the pixel level. It’s important to
note that these datasets do not directly represent precipitation intensity. The resulting predictions are
displayed in Figure B.1.

Predictions using gradient and time-differenced datasets appear slightly less sharp than those
using NPV and RR images, which directly represent rain distribution. As the lead time increases, all
predictions consistently exhibit a gradual increase in blurriness. It’s worth noting that even without the
input of precipitation intensity, models can effectively learn about actual rainfall from a single discrete
dataset and generate accurate predictions. This type of experiment encourages further exploration with
different datasets.

Figure B.1: Observation and predictions trained by different datasets which are transformed from radar images in NPV.

45

C
Two-stage loss optimization

In the initial phase, we conducted experiments involving two different loss functions at different training
stages. When the Benchmark used a balanced loss, the loss value began to stabilize after 30,000 iterations,
indicating that the model had reached the minimum, and further training was unlikely to significantly
enhance its performance. Consequently, in this kind of experiment, another loss function, different from
the initial one, was implemented in the subsequent stage. By sequentially employing these two different
loss functions, we assumed the model inherits the optimizer state from the previous stage and refines
its performance from other perspectives.

Table C.1 presents the changes in the experimental setup. In Experiment 1, during the first 40,000
iterations, the model was trained with the balanced loss. In the subsequent iterations, the target loss was
switched to GDL, aiming to sharpen the predictions with more gradients. In Experiment 2, during the ini-
tial 40,000 iterations, the model’s evaluation was based on the average performance of 20 outputs. In the
following iterations, as the predictions in longer lead times were less sharp than those in the initial lead
times, we directed the model’s focus towards improving the predictive performance of the last 10 outputs.

Table C.1: Stage-base training: dividing the training process into two stages, each with its own specific loss function.

Iteration Experiment 1 Experiment 2
0 - 40k Balanced Loss All 20 output frames

40k - 85k GDL Last 10 output frames

By looking at the loss curve and visual predictions (Figure C.1), we can observe a distinct shift in the
loss occurring at the 40,000-iteration mark. In Experiment 1, GDL value continued to decrease after it
was set as the target loss, eventually converging to around 0.45. However, this transition corresponded
to a noticeable decline in visual predictions across all lead times, exacerbating the fading of rain. The
visual results obtained with GDL in the second stage resembled the predictions reported in Dekker
(2022), characterized by an overall underestimation of radar images.

In Experiment 2, after the initial 40,000 iterations, the loss was calculated with the last 10 outputs,
causing an increase in loss value (Figure C.2). This shift was attributed to the fact that the model’s
performance in longer lead times was inferior to that in the earlier lead times. Visual predictions
indicated a trade-off between the performance of the first half of the outputs and the latter half. When
the focus of the loss shifted to the latter half of outputs, the predictions for the initial lead time gradually
deteriorated, but there was no expected improvement in the longer lead times.

46

47

Figure C.1: Top: The track of the training process with different metrics. Bottom: Predictions after 40k iterations, where the loss
function transitioned from the balanced loss to GDL at the 40k iteration.

In experiment 1, balanced loss emphasizes the intensity accuracy at the pixel level, while GDL
penalizes the gradient difference between pixels. Such different principles of loss functions can be
the reason for prediction degradation. The concept behind progressive training is one loss function
focuses on capturing fundamental features of the data while the other further refine specific aspects.
It is recommended that there should be a logical connection between two loss functions. In addition,
when using two loss functions, you may need to adjust hyperparameters such as the learning rate for
each loss function separately. The learning rate wasn’t adjusted in our report, which could be a possible
reason for the loss failing to decrease further in the second stage.

Both experiments were trained using pixel-wise loss functions. An intriguing idea is to incorporate
a neighborhood loss function as the second loss during training. As mentioned in section 4.2.3, if the
neighborhood loss function were the sole loss function, it might leave many pixels at zero, resulting in a
checkerboard pattern. When used in the second stage, the neighborhood loss function is assumed to
leave most pixels with their previous values while helping improve high-intensity predictions. However,
time constraints prevented us from further exploring this idea.

48

Figure C.2: Top: The track of the training process with different metrics. Bottom: Predictions after 40k iterations; before 40k
iterations, the balanced loss averages 20 output frames, while in the second stage, it averages the latter 10 output frames.

D
The hidden circular pattern in low

rain intensity

The colorbar in previous radar images only displayed pixel values greater than 0.417 NPV (equivalent
to 0.05 mm/h). In this section, we aim to observe the pattern of smaller NPV values (0 – 0.417 NPV). In
Figure D.1, the radar image discover distinct circular patterns when only depicting NPV values below
0.417. These circular patterns can not represent actual rain scenarios. Figure D.1 shows two circles, with
one being more distinct and positioned outside the rainy area. Below it, there is another circle, but it
partially overlaps with the main rainy region.

It is mentioned in Section 3.1 that KNMI operates two C-band Doppler weather radars in Herwĳnen
and Den Helder (Figure 3.1). These Doppler radars are likely responsible for the observed circular
pattern, as their locations overlap each other. We have also observed this circular pattern in the forecast
(Figure D.1). It’s important to note that this circular pattern should not be predicted, as it results from
the mutual interaction between the Doppler radars and raindrops.

Figure D.1: Left: The binary image used to exhibit the rainy area, where NPV values between 0.417 and 1 are set to 1; Middle:
Observation image filtering out NPV values greater than 0.417, with circular patterns marked with red squares; Right: Prediction
image filtering out NPV values greater than 0.417. In our regular visual analysis, pixel values larger than 0.05 mm/h (0.417 NPV)
will be displayed representing wet pixels.

In this thesis, our radar images typically focus on the rain field, displaying normalized pixel values
greater than 0.417. However, the unprinted patterns suggest that the performance of the model may
be influenced by Doppler weather radars. In most experiments, our models operate using NPV. As
highlighted by Dekker (2022), training on NPV instead of RR places extra emphasis on low RR values
due to their different dataset distributions. To prevent models from predicting these artifacts (circle
patterns), it is suggested to either train models in the RR domain or perform data preprocessing in
future work.

49

Bibliography

S. Agrawal, L. Barrington, C. Bromberg, J. Burge, C. Gazen, and J. Hickey. Machine learning for
precipitation nowcasting from radar images, 2019.

G. Ayzel, T. Scheffer, and M. Heistermann. Rainnet v1.0: a convolutional neural network for radar-based
precipitation nowcasting. Geoscientific Model Development, 13(6):2631–2644, 2020. doi: 10.5194/
gmd-13-2631-2020. URL https://gmd.copernicus.org/articles/13/2631/2020/.

M. C. Bakkay, M. Serrurier, V. K. Burda, F. Dupuy, N. C. Cabrera-Gutierrez, M. Zamo, M.-A. Mader,
O. Mestre, G. Oller, J.-C. Jouhaud, and L. Terray. Precipitaion nowcasting using deep neural network,
2022.

L. Balles, J. Romero, and P. Hennig. Coupling adaptive batch sizes with learning rates. 2017.

S. De, A. Yadav, D. Jacobs, and T. Goldstein. Big batch sgd: Automated inference using adaptive batch
sizes, 2017.

D. Dekker. Perceptual losses in precipitation nowcasting. 2022.

F. Elsmann. Exploring the impact of echo top heights in generative models. 2023.

J. Frankle and M. Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural networks, 2019.

E. Gilleland, D. Ahĳevych, B. G. Brown, B. Casati, and E. E. Ebert. Intercomparison of spatial forecast
verification methods. Weather and Forecasting, 2009.

S. Han, J. Pool, J. Tran, and W. J. Dally. Learning both weights and connections for efficient neural
networks, 2015.

E. Hoffer, I. Hubara, and D. Soudry. Train longer, generalize better: closing the generalization gap in
large batch training of neural networks, 2018.

I. Kandel and M. Castelli. The effect of batch size on the generalizability of the convolutional neural
networks on a histopathology dataset. ICT Express, 2020.

C. Kaparakis and S. Mehrkanoon. Wf-unet: Weather data fusion using 3d-unet for precipitation
nowcasting. Procedia Computer Science, 222:223–232, 2023. ISSN 1877-0509. doi: https://doi.
org/10.1016/j.procs.2023.08.160. URL https://www.sciencedirect.com/science/article/pii/
S1877050923009250. International Neural Network Society Workshop on Deep Learning Innovations
and Applications (INNS DLIA 2023).

N. S. Keskar, D. Mudigere, J. Nocedal, M. Smelyanskiy, and P. T. P. Tang. On large-batch training for
deep learning: Generalization gap and sharp minima. 2017.

J. Ko, K. Lee, H. Hwang, S.-G. Oh, S.-W. Son, and K. Shin. Effective training strategies for deep-learning-
based precipitation nowcasting and estimation. Computers & Geosciences, 161:105072, apr 2022.
doi: 10.1016/j.cageo.2022.105072. URL https://doi.org/10.1016%2Fj.cageo.2022.105072.

R. Lagerquist and I. Ebert-Uphoff. Can we integrate spatial verification methods into neural-network
loss functions for atmospheric science?, 2022.

H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf. Pruning filters for efficient convnets, 2017.

T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár. Focal loss for dense object detection, 2018.

D. Niu, H. Che, C. Shi, Z. Zang, H. Wang, X. Chen, and Q. Huang. A heterogeneous spatiotemporal
attention fusion prediction network for precipitation nowcasting. IEEE Journal of Selected Topics in
Applied Earth Observations and Remote Sensing, 16:8286–8296, 2023. doi: 10.1109/JSTARS.2023.3310361.

50

https://gmd.copernicus.org/articles/13/2631/2020/
https://www.sciencedirect.com/science/article/pii/S1877050923009250
https://www.sciencedirect.com/science/article/pii/S1877050923009250
https://doi.org/10.1016%2Fj.cageo.2022.105072

Bibliography 51

R. Prudden, S. Adams, D. Kangin, N. Robinson, S. Ravuri, S. Mohamed, and A. Arribas. A review of
radar-based nowcasting of precipitation and applicable machine learning techniques, 2020.

S. Ravuri, K. Lenc, M. Willson, D. Kangin, R. Lam, P. Mirowski, M. Fitzsimons, M. Athanassiadou,
S. Kashem, S. Madge, R. Prudden, A. Mandhane, A. Clark, A. Brock, K. Simonyan, R. Hadsell,
N. Robinson, E. Clancy, A. Arribas, and S. Mohamed. Skilful precipitation nowcasting using deep
generative models of radar. Nature, 597(7878):672–677, sep 2021. doi: 10.1038/s41586-021-03854-z.
URL https://doi.org/10.1038%2Fs41586-021-03854-z.

G. S. B. Reichstein, M.and Camps-Valls. Deep learning and process understanding for data-driven earth
system science. Nature, 2019.

C. J. Shallue, J. Lee, J. Antognini, J. Sohl-Dickstein, R. Frostig, and G. E. Dahl. Measuring the effects of
data parallelism on neural network training. 2019.

X. Shi, Z. Chen, H. Wang, D.-Y. Yeung, W.-k. Wong, and W.-c. WOO. Convolutional lstm network:
A machine learning approach for precipitation nowcasting. 28, 2015. URL https://proceedings.
neurips.cc/paper_files/paper/2015/file/07563a3fe3bbe7e3ba84431ad9d055af-Paper.pdf.

X. Shi, Z. Gao, L. Lausen, H. Wang, D.-Y. Yeung, W. kin Wong, and W. chun Woo. Deep learning for
precipitation nowcasting: A benchmark and a new model. 2017.

S. L. Smith, P.-J. Kindermans, C. Ying, and Q. V. Le. Don’t decay the learning rate, increase the batch
size, 2018.

Q. Tran and S. Song. Computer vision in precipitation nowcasting:applying image quality assessment
metrics for training deep neural networks. atmosphere, 2019.

E. van der Kooĳ. Nowcasting heavy precipitation in the netherlands: a deep learning approach. 2021.

Y. Yang and S. Mehrkanoon. Aa-transunet: Attention augmented transunet for nowcasting tasks, 2022.

X. You, Z. Liang, Y. Wang, and H. Zhang. A study on loss function against data imbalance in deep
learning correction of precipitation forecasts. Atmospheric Research, 281:106500, 2023. ISSN 0169-
8095. doi: https://doi.org/10.1016/j.atmosres.2022.106500. URL https://www.sciencedirect.com/
science/article/pii/S0169809522004860.

G. Zhang, L. Li, Z. Nado, J. Martens, S. Sachdeva, G. E. Dahl, C. J. Shallue, and R. Grosse. Which
algorithmic choices matter at which batch sizes? insights from a noisy quadratic model, 2019.

https://doi.org/10.1038%2Fs41586-021-03854-z
https://proceedings.neurips.cc/paper_files/paper/2015/file/07563a3fe3bbe7e3ba84431ad9d055af-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2015/file/07563a3fe3bbe7e3ba84431ad9d055af-Paper.pdf
https://www.sciencedirect.com/science/article/pii/S0169809522004860
https://www.sciencedirect.com/science/article/pii/S0169809522004860

	Preface
	Abstract
	Introduction
	Problem statement
	Research objectives
	Research questions

	TrajGRU Background
	TrajGRU architecture
	TrajGRU unit
	TrajGRU training loss function

	Methodology
	Data
	Alternative loss functions
	Temporal weights on balanced loss
	Wet mask
	Neighborhood loss functions

	Hyperparameter tuning
	Batch size and learning rate
	The number of filters
	Multiple parameter groups

	Changes in model inputs and outputs
	Temporal difference of rain intensity
	Multiple model inputs

	Verification
	Visual analysis
	Metric analysis

	Model training

	Results
	Predictive features of the benchmark
	The effect of modified loss functions
	Consequences of temporal weights
	Consequences of wet mask
	Consequences of neighborhood loss functions

	The effect of hyperparameter tunning
	Batch size and learning rate
	Number of filters
	Multiple parameter groups

	The effect of changed model inputs and outputs
	Time-differenced rain intensity
	Multiple model inputs

	Conclusion
	Answers to research questions
	Recommendations

	The metrics over lead times for various approaches
	Single model input: Modified radar images
	Two-stage loss optimization
	The hidden circular pattern in low rain intensity

