
 
 

Delft University of Technology

Lessons learned from developing mbeddr
a case study in language engineering with MPS
Völter, Markus; Kolb, Bernd; Szabó, Tamás; Ratiu, Daniel; van Deursen, Arie

DOI
10.1007/s10270-016-0575-4
Publication date
2019
Document Version
Accepted author manuscript
Published in
Software and Systems Modeling

Citation (APA)
Völter, M., Kolb, B., Szabó, T., Ratiu, D., & van Deursen, A. (2019). Lessons learned from developing
mbeddr: a case study in language engineering with MPS. Software and Systems Modeling, 18(1), 585-630.
https://doi.org/10.1007/s10270-016-0575-4

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1007/s10270-016-0575-4
https://doi.org/10.1007/s10270-016-0575-4


Delft University of Technology
Software Engineering Research Group

Technical Report Series

Lessons Learned from Developing
mbeddr: A Case Study in Language

Engineering with MPS

Markus Voelter, Bernd Kolb, Tamás Szabó,
Daniel Ratiu and Arie van Deursen

Report TUD-SERG-2016-025

SERG



TUD-SERG-2016-025

Published, produced and distributed by:

Software Engineering Research Group
Department of Software Technology
Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology
Mekelweg 4
2628 CD Delft
The Netherlands

ISSN 1872-5392

Software Engineering Research Group Technical Reports:
http://www.se.ewi.tudelft.nl/techreports/

For more information about the Software Engineering Research Group:
http://www.se.ewi.tudelft.nl/

Note: Accepted for publication in Software & Systems Modeling, 2017. DOI https://doi.org/10.
1007/s10270-016-0575-4

c© 2016 Springer. The final publication is available at http://link.springer.com/

https://doi.org/10.1007/s10270-016-0575-4
https://doi.org/10.1007/s10270-016-0575-4
http://link.springer.com/


Lessons Learned from Developing mbeddr
A Case Study in Language Engineering with MPS

Markus Voelter
independent/itemis, Germany

voelter@acm.org

Bernd Kolb
itemis AG, Germany

kolb@itemis.de

Tamás Szabó
itemis AG, Germany and

Delft University of Technology, The
Netherlands

tamas.szabo@itemis.de

Daniel Ratiu
Siemens AG, Germany

daniel.ratiu@siemens.com

Arie van Deursen
Delft University of Technology, The Netherlands

Arie.vanDeursen@tudelft.nl

Abstract
Language workbenches are touted as a promising technol-
ogy to engineer languages for use in a wide range of do-
mains, from programming to science to business. However,
not many real-world case studies exist that evaluate the suit-
ability of language workbench technology for this task. This
paper contains such a case study.

In particular, we evaluate the development of mbeddr, a
collection of integrated languages and language extensions
built with the Jetbrains MPS language workbench. mbeddr
consists of 81 languages, with their IDE support, 34 of
them C extensions. The mbeddr languages use a wide va-
riety of notations – textual, tabular, symbolic and graphical
– and the C extensions are modular; new extensions can be
added without changing the existing implementation of C.
mbeddr’s development has spanned 10 person years so far,
and the tool is used in practice and continues to be devel-
oped. This makes mbeddr a meaningful case study of non-
trivial size and complexity.

The evaluation is centered around five research questions:
language modularity, notational freedom and projectional
editing, mechanisms for managing complexity, performance
and scalability issues and the consequences for the develop-
ment process.

We draw generally positive conclusions; language engi-
neering with MPS is ready for real-world use. However, we
also identify a number of areas for improvement in the state
of the art in language engineering in general, and in MPS in
particular.

Categories and Subject Descriptors D.3.2 [Extensible
languages]; D.3.4 [Code Generation]; D.2.3 [Program
Editors]

General Terms Languages, Experimentation

Keywords Language Engineering, Language Extension,
Language Workbenches, Domain-Specific Language, Case
Study

1. Introduction
The Importance of Languages Languages are the back-
bone of computer science and software engineering: they
are used for programming, configuration, testing, archi-
tecture modeling or requirements specification. Languages
come with various syntactic styles including textual (most
programming languages), tabular (spreadsheets), symbolic
(mathematical) and graphical (architecture modeling lan-
guages). The productivity of a language is amplified by in-
tegrated development environments (IDEs) that are aware of
the language structure, syntax and semantics. They support
the language user by rendering the notation, providing code
completion (or its graphical equivalent, the palette), high-
lighting errors and debugging the program as it executes.
Suitably designed languages are enablers for advanced tool-
ing such as formal verification.

As software is established as the backbone of more
and more domains, specialized domain-specific languages
(DSLs) are needed to efficiently write this software. Tra-
ditional domains for DSLs include language and compiler

SERG Lessons Learned from Developing mbeddr

TUD-SERG-2016-025 1



implementation [37, 46], embedded software [13, 53, 55,
56, 107] or web applications [94]. More recently, DSLs
have been used in domains that are not traditionally as-
sociated with formal, executable or analyzable languages.
Examples include home automation [43], computational bi-
ology [76] and business applications [106] in the insurance
industry. Because the users in such domains are not trained
as programmers, they have different expectations of how
languages and IDE should work; the diversity of linguis-
tic styles and their syntax grows. The economies of DSLs
– smaller user groups and more rapid evolution – requires
the effort for implementing DSLs to be reduced in compari-
son to general-purpose programming languages. All of these
trends lead to a growing need for addressing language and
IDE development more systematically.

Language Engineering Language engineering [102] is the
term applied to this field, and provides a holistic view of all
aspects of designing, implementing and using languages and
IDEs. It encompasses grammars, parsing, type systems, se-
mantics, compilers, refactorings and program analyses and
targets programming languages, DSLs, modeling languages
and specification languages, covering all the various nota-
tional styles mentioned above. Language engineering em-
phasizes language extension and composition to manage the
complexity of ecosystems of languages [31, 97].

Language Workbenches Language workbenches (LWBs)
are tools to efficiently support language engineering. While
the term was introduced by Martin Fowler in 2004 [32, 34]
the field dates back to the 1980s with tools such as the Syn-
thesizer Generator [72] and the Meta Environment [47]. The
latter is an editor for languages defined via SDF, a general
parsing framework. Rascal [49] and Spoofax [45] provide
Eclipse-based IDE support for SDF-based languages and,
together with Xtext1, MetaEdit+ [83] and MPS [4], are con-
temporary language workbenches.

Jetbrains MPS Jetbrains MPS is particularly interesting
because it aims at supporting seamless language composi-
tion and mixed notations. It is the target of evaluation in this
paper and is described in more detail in Section 2.1.

1.1 Contribution
MPS is a state-of-the-art language workbench that promises
to be suitable for developing industrial-grade ecosystems
of related and integrated languages, some of them modular
extensions of others, mixing textual, graphical, tabular and
mathematical notations. In this paper we validate the degree
to which this promise holds by critically reviewing the de-
velopment of mbeddr [103], a set of languages for embed-
ded software engineering built with MPS. Both MPS and
mbeddr are open source software, making them especially
interesting as a case study.

1 http://eclipse.org/Xtext

Existing publications cover the development of relatively
simple DSLs with one or more of the above-mentioned lan-
guage workbenches (see related work in Section 9), but,
to the best of our knowledge, none evaluates a language
workbench with a case study at the scale of mbeddr. How-
ever, such case studies are critically needed in order to test
whether language workbenches are suitable for developing
the backbones of the domains mentioned above. The 10 per-
son years of effort invested into development of mbeddr
(more details on the effort are discussed in Section 6.2) puts
us in a unique position to perform such an evaluation.

1.2 MPS vs. Other Language Workbenches
A case study of this size and scope can only be performed
once, based on one language workbench. The results are thus
specific to this particular language workbench. We chose
MPS because it is the only industry-strength language work-
bench that uses a projectional editor, it is freely available
and promises to be ready for real-world use. This makes it
an interesting target for evaluation. MPS can justifiably be
considered as the most complete language workbench today;
evaluating it may lead to increased research in this class of
tools. Such research can address the limitations we identify,
while at the same time keeping the positive aspects of MPS
we point out in this paper.

1.3 Relationship to Earlier Publications
We have published on mbeddr and MPS before. An early
paper [96] at MoDELS 2010 was based on a predecessor
of mbeddr called the Modular Embedded Language (MEL)
and introduced the idea of using language engineering to
build embedded software development tools. mbeddr itself
was introduced at SPLASH/Wavefront 2012 [101] based on
the then-current state of the mbeddr implementation. It con-
tains a thorough and systematic treatment of the challenges
in embedded software development and how language engi-
neering can help to solve them. It describes the extensions
available in mbeddr in some detail, and discusses how they
are implemented. At OOPSLA 2015 we published a case
study paper that evaluates the use of mbeddr from the per-
spective of embedded software development [107].

A paper published in 2013 in the Journal of Automated
Software Engineering [103] adopted the perspective of lan-
guage engineering with MPS, and also evaluates the devel-
opment of mbeddr to some degree (in Section 5). However,
the current paper treats mbeddr much more systematically as
a case study: Sections 4, 5 and 6 either do not exist in [103]
or are much more detailed in the current paper. We also ask
additional research questions in the current paper, and we
discuss them in substantially more detail, partly also as a
consequence of three more years of mbeddr development
(2016 vs. 2013).

We have also published on specific topics of MPS-based
language engineering such as notational flexibility [100],
language composition [97], usability of projectional edi-

Lessons Learned from Developing mbeddr SERG

2 TUD-SERG-2016-025



tors [105], language testing [67] and combining language
engineering and formal verification [59, 68, 69]. The present
papers adds to this by evaluating these aspects collectively,
by studying the development of one complex set of lan-
guages. A few paragraphs and figures are adopted from these
earlier publications.

1.4 Structure
We organize the paper according to the structure for case
studies proposed by Runeson et al. [74] and Yin [111]. We
begin by outlining the background on MPS, projectional
editing and mbeddr in Section 2. A brief tutorial on language
development with mbeddr is contained in Section 3. In Sec-
tion 4 we discuss the setup of the case study by introducing
the research questions and the collected data. Section 5 then
describes the relevant context of the case study (cf. Dyba
et al. [27]), including the team, the development tools and
the development process. The implementation of mbeddr in
terms of size, effort, development timeline and major struc-
tures is discussed in Section 6. The core of the paper is Sec-
tion 7 where we answer the research questions in detail. The
discussion in Section 8 looks at lessons learned from the de-
velopment of mbeddr that do not fit the research questions
and addresses threats to validity. Related work is covered in
Section 9 and we conclude the paper with Section 10.

1.5 Audience
This paper is primarily targeted towards language engineer-
ing researchers who want to understand the state-of-the-art
in language engineering and identify areas for future re-
search. Secondarily, the paper addresses developers of lan-
guage workbenches who want to understand what contem-
porary language workbenches, and in particular, MPS, are
capable of, and what is still missing. Third, the paper helps
practitioners understand the degree to which language engi-
neering (and in particular, MPS) can be used to build large-
scale, real-world DSLs.

2. Background
This section provides a brief background on MPS (Sec-
tion 2.1), projectional editing (2.2) and mbeddr (2.3). More
details on language development with MPS (i.e., the subject
of evaluation in this paper) and mbeddr (i.e., the case study
used for the evaluation) are provided in Section 3.

2.1 Jetbrains MPS
MPS2 is an open source language workbench developed by
Jetbrains since the early 2000s3. It has comprehensive sup-
port for specifying structure, syntax, type systems, trans-
formations and generators, debuggers and IDE support (see
Figure 1). According to the comparison in [32] it is one

2 http://jetbrains.com/mps
3 This, as well as other statements about Jetbrains’ activities are based on
our regular communication with the MPS team at Jetbrains (see Section 5.2)
and used with their permission.

of the most fully-featured language workbenches. It is also
used in practice for developing languages in domains such
as computational biology [76], web applications [1], require-
ments engineering [104], insurance DSLs [106], safety engi-
neering [71] as well as embedded software [103]. MPS has
an active user community and continues to be developed by
Jetbrains and other contributors. One of MPS’ distinguish-
ing features is that it uses a projectional editor; we explain
this technology in the next subsection.

2.2 Projectional Editing
Projectional editing is one style of implementing the core of
a language workbench. It avoids parsing the concrete syntax
of a language to construct the abstract syntax tree4 (AST);
instead, editing gestures directly change the AST, and the
concrete syntax is rendered (“projected”) from the chang-
ing AST.5 This means that, in addition to text, languages
can also use non-parsable notations such as mathematical
symbols, tables and diagrams [100]. Since projectional ed-
itors never encounter grammar ambiguities6, they support a
wide range of language composition [97] techniques, such
as those defined in [31].

Projectional editing (sometimes also called structured
editing or syntax-directed editing) is not new, and tools such
as the Incremental Programming Environment [58], GAN-
DALF [62], and the Synthesizer Generator [72]) were de-
veloped in the 1980s. Work on projectional editors contin-
ues today; Intentional Programming [17, 23, 77, 78] is its
best known incarnation. Other contemporary tools include
Más [2], the Whole Platform [6], and MPS, which is the
subject of this paper.

Projectional editors have two main advantages, both re-
sulting from the absence of parsing. First, they support nota-
tions that cannot easily be parsed, such as tables, diagrams or
mathematical formulas—each of which can be mixed among
each other and with textual notations [78, 100]. Second, they
support various methods of language composition, including
modular language extension as well as embedding of unre-
lated languages into a host language [77, 97].

Traditionally, projectional editors were tedious to use and
were hardly adopted in practice. This was mainly because
of problems in editor usability and editing efficiency, nicely
illustrated by the following quote, taken from a paper [66]
that describes the development of a DSL with the Synthe-
sizer Generator mentioned earlier: “Program editing will be
considerably slower than normal keyboard entry, although
actual time spent programming non-trivial programs should
be reduced due to reduced error rates.” With MPS, in con-

4 Technically, MPS’ abstract syntax is a graph because it contains cross-
references in addition to the containment structures of a tree. We call it
AST nonetheless.
5 Watch this video https://www.youtube.com/watch?v=iN2PflvXUqQ
to gain a better understanding of projectional editing.
6 Essentially, they make the user decide in situations where a parser would
encounter an ambiguity.

SERG Lessons Learned from Developing mbeddr

TUD-SERG-2016-025 3



Figure 1. The screenshot shows various parts of the mbeddr languages: a part of a protocol parser state machine (top left), unit
declarations (top right) and component wiring for a test case (bottom). It also illustrates how mbeddr provides IDE support for
C and its extensions, including syntax highlighting, code completion, error markup, refactorings, quick fixes and tooltips. The
screenshot also showcases the support for mixed notations (text, tables, diagrams).

trast, editing textual syntax can be made quite close to “nor-
mal text editing”. It also supports diff-merge on the level
of the projected concrete syntax. The study in [105] shows
that users are willing and able to work with the editor after
getting used to it. However, even in MPS, the editor is not
identical to a text editor; this can be a hurdle for new MPS
users who are used to text editors, and thus a barrier to adop-
tion7. The trade-offs implied by projectional editing are one
aspect of the evaluation in this paper.

2.3 mbeddr
mbeddr applies MPS and projectional editing to embedded
software engineering: it provides an extensible version of C
plus a set of predefined extensions such as physical units,
interfaces and components, state machines and unit testing.
Since extensions are embedded in C programs, users can
mix higher-level abstractions with low-level C code. Some
extensions use tabular, mathematical or graphical notations,
usually mixed with text. Figure 1 shows some examples.
Developers are not forced to use the extensions; they may
use them only when they consider them appropriate. mbeddr
also supports product line variability, requirements traces
and documentation as well as formal verification [59, 70].
For reasons of space, we do not introduce in detail any
of the languages provided by mbeddr; we encourage the
interested reader to take a look at [103]. mbeddr is open-

7 We have used the MPS projectional editor also with users from business
domains who do not have years of exposure to textual IDEs; for them, a
projectional editor is much easier to get used to.

source under the Eclipse Public License and is available
from http://mbeddr.com. Figure 2 shows an overview of
mbeddr’s ingredients.

mbeddr continues to be actively developed as open source
software by a team at itemis in Stuttgart, Germany. In addi-
tion, Siemens PLM Software has released the commercial
Embedded Software Designer (ESD)8 that is essentially a
set of mbeddr extensions. mbeddr has been (and continues
to be) used successfully in a variety of systems with sev-
eral different users. The case study in [107] reports on an
industrial case study on developing the embedded software
for a smart meter using mbeddr. It finds that the extensions
help significantly with managing the complexity of the de-
veloped software. They improve testability mainly by sup-
porting hardware-independent testing, as illustrated by low
integration efforts, and do not incur significant overhead re-
garding memory consumption and performance.

The case study in [107] demonstrates that mbeddr fulfils
its purpose from the perspective of an end user, and illus-
trates that language engineering can lead to useful results
which would be otherwise much more expensive to achieve.
In this paper we switch the perspective to language engineer-
ing, aiming at evaluating the development of mbeddr itself.

2.4 The mbeddr Platform
In addition to mbeddr itself (Figure 2) we also developed a
set of MPS utilities called the mbeddr.platform. It consists

8 https://www.plm.automation.siemens.com/en_us/products/
lms/imagine-lab/embedded-software-designer.shtml

Lessons Learned from Developing mbeddr SERG

4 TUD-SERG-2016-025



Figure 2. mbeddr addresses software implementation, supports aspects of the development process, and also integrates formal
analysis and verification techniques. At the core, mbeddr is a version of C99 that can be extended incrementally. It ships with
a wide range of extensions for embedded software development. It relies on MPS as the language workbench, plus various
enhancements and extensions collected in the platform. mbeddr relies on exiting (command line) tools as a foundation.

of MPS extensions useful for building languages, ways to
customize the MPS application UI (outside the languages
and editors themselves) as well as support for mathemati-
cal notations, graphical editors or unstructured prose. The
platform is used in mbeddr, but also in a variety of other
commercial projects developed by the team at itemis. As dis-
cussed in Section 6.1, the size and effort spent on the plat-
form is comparable to that of mbeddr; a lot of MPS expertise
has accumulated in the platform and is now used to further
simplify language and IDE development for language engi-
neers. The platform is open source software and available
from http://mbeddr.com/platform.html.

The case study in this paper refers to mbeddr itself (the C
extensions and associated languages for embedded software
development), and not the platform. We have made this
decision to limit the scope of this paper to a manageable size.
We also feel that the actual language engineering case study
is mbeddr itself; the utilities we created in the platform along
the way are a side-effect of how one manages complexity
with MPS. We discuss this aspect in Section 7.3.

2.5 Language Engineering and Formal Verification
As mentioned earlier, we integrated several formal verifi-
cation tools into mbeddr, exploring the synergies between
language engineering and formal verification. In the present
paper we discuss these aspects only to a very limited de-
gree to limit the scope of this paper. We refer the reader to
[59, 68, 69] for details.

3. Language Development with MPS
This section describes language development with MPS as
a foundation for the evaluation of MPS. As a running ex-
ample, this section illustrates the development of a simple
extension of C for concurrent programming. Readers who

are familiar with MPS may skip this section. This section is
not a full tutorial for which we refer the reader to [102], [15]
and [5]. Also, some of the more advanced aspects of MPS
language development are introduced later in the context of
their respective evaluation.

Example The running example we use in this section shows
the implementation of one of the language extensions from
mbeddr’s concurrency support: the dequeue statement. Its
purpose it to take an element from a non-blocking queue in
a way that is safe (i.e., the queue is locked if necessary) and
convenient (i.e., the user does not have to take care of the
low level locking details). Here is an example use:

shared int64Q data;

cyclic task sumUp {
dequeue if available from data -> val {

sum += val;
}

}

We first declare a shared global variable data of type
int64Q (the type int64Q is declared elsewhere). Then we
implement a task that is expected to be scheduled cycli-
cally (the schedule itself is not shown). cyclic tasks are
prohibited from blocking and are expected (and possibly
monitored) to have an execution time for each activation
lower than a particular cycle time. Inside the task we use
the dequeue statement to take one element from the data
queue if one is available; that element is available as val
inside the body of dequeue. The body is only executed if
an element is available in the queue. This syntax has been
chosen to structurally enforce the following characteristics:

• Users cannot forget to lock the queue or test for availabil-
ity of an element.

SERG Lessons Learned from Developing mbeddr

TUD-SERG-2016-025 5



• The lock, if acquired, is released immediately after the
value has been taken from the queue and placed into val
(short lock times are essential for good performance of
concurrent systems because it reduces contention).

• Users can only access the dequeued element through val
if one is available; otherwise the whole body is skipped.

These characteristics are enforced by the lower-level code
generated from the dequeue statement above:

uint64 ___val = 0;
boolean ___taken = false;
atomic <data/readWrite> {
if (!data.isEmpty) {

___val = data.take;
___taken = true;

}
}
if (___taken) {
sum += ___val;

}

This code uses other extensions available in mbeddr, such
as atomic for locking a shared variable or data.take for
taking an element from a queue. These are then reduced
further by downstream generators. Using this kind of multi-
step reductions is idiomatic in MPS. Note how the lock is
only held while we check the queue for availability and take
an element from the queue to achieve short lock-hold times.

The extension as implemented in MPS supports code
completion for all syntactic elements, respects scoping rules
(for example, when resolving the reference to the queue),
restricts the visibility of val to the body of dequeue and
performs type checking (for example, the val variable has
the same type as the queue elements).

Terminology We introduce some of the most important ter-
minology used in MPS. A program denotes code written by
a developer. It is represented as the AST and projected in
whatever notation is defined for the language in which the
program is written. A program consists of a tree of nodes
(the AST) with resolved cross-references between nodes (so
it is effectively a graph). A root node is a node that has no
parent; it is edited in its own editor tab in the MPS IDE and
intuitively corresponds to a file in a classical IDE. The model
is the granularity of physical storage in MPS. It is an XML
file and contains a number of root nodes, each with its own
tree/graph beneath it. Models are owned by modules, and a
project is a collection of modules.9 Modules come in three
kinds: Languages are modules that contain language imple-
mentations. Solution are modules that contain end-user pro-
grams, as well as support libraries for languages. Thus, lan-
guage modules are the meta level relative to solution mod-
ules. Devkits are groups of languages to simplify a solution’s
import of related groups of languages. Finally, the BaseLan-
guage is MPS’ (slightly extended) version of Java. It can be
used for Java programming (in solutions) and also plays a

9 For Eclipse users: the project corresponds to the Eclipse Workspace, the
modules correspond to projects and models correspond to files or packages.

role in language implementation. We now discuss some de-
tails of the various languages used for language implemen-
tation.

Aspects, DSLs and BaseLanguage In MPS, a language
definition consists of language aspects such as structure, ed-
itor or type system. Each of the aspects is implemented with
an aspect-specific DSL. Some of these DSLs are declarative,
others are rule-based, and yet others are imperative. How-
ever, all of them reuse MPS’ BaseLanguage to some extent,
typically by embedding BaseLanguage expressions or state-
ments. We discuss each language aspect below, each in a
separate subsection. We start with a subsection on language
modularity and dependencies in general.

3.1 Created and Used Languages
The concurrency support developed in this running exam-
ple is intended to be a modular C extension, not requiring
changes to the implementation of the core C language. Thus
we start out by creating a new language com.mbeddr.ext.
concurrency. Because we will reuse parts of the definition
of C, we make this new language extend com.mbeddr.core.
statements and com.mbeddr.core.expressions; these
are part of the modularized implementation of mbeddr C.
Creating new languages and defining their dependencies is
handled via menu items and property dialogs in MPS; we do
not show these in this paper.

The mbeddr concurrency support is intended to pro-
vide language extensions for safe and convenient concur-
rent programming for diverse platforms. This means that
the language that defines the extensions should not pre-
scribe the way the language is translated to C, because
this will be different for the different platforms. So each
of the possibly multiple transformations is implemented in
its own language.10 In this example we look at the trans-
formation to an implementation based on Pthreads [61],
so the language that contains the transformations is called
com.mbeddr.ext.concurrency.pthreads. It has a de-
pendency on com.mbeddr.ext.concurrency so it can see
the concepts for which it provides the translations to C.

3.2 Structure
A language contains a number of language concepts (known
as meta class or AST type in other tools). Each of the lan-
guage aspects mentioned before contributes to each con-
cept’s definition. In this sense, a language definition in MPS
is a 2-dimensional matrix of concepts and aspects.

The definition of a language concept starts with its struc-
ture, because all other aspects refer to the structure of con-
cepts in one form or another. For our example we need two
concepts: the dequeue statement itself as well as the val
expression used inside its body.

10 The set of asepcts used to define a language includes transformations. A
language that contains only transformations for concepts defined in another
language is still called a language in MPS

Lessons Learned from Developing mbeddr SERG

6 TUD-SERG-2016-025



The val expression is a keyword expression, i.e., it is an
expression with a language-defined structure and syntax. It
has no further substructure under it (in terms of the AST).
Here is the structure definition:11

concept ValExpr extends Expression
alias val

MPS uses an object-oriented style subtyping to implement
structural compatibility: if the ValExpr is to be legal in
places where C expects an Expression, then ValExpr has
to extend mbeddr C’s Expression concept. It is visible here
because our new language extends com.mbeddr.core.
expressions, which contains the Expression concept.

The alias is the string a user has to type (or select from
the code completion menu) to enter an instance of ValExpr
when editing a program. It is good practice, though not tech-
nically required, to make the alias the same as the leading
keyword of the concrete syntax of the concept.

The DequeueStatement extends C’s Statement, and
defines an alias dequeue:

concept DequeueStatement extends Statement
implements IAtomic

alias: dequeue
children:

queue : GlobalVarRef [1]
body : StatementList [1]

It also defines two children, both reusing existing concepts
from mbeddr C, and both using a cardinality of 1 (mandatory
single child; 0..1, 0..n and 1..n are also available). The
first one represents the queue from which we intend to take
an element. Instead of referencing the queue directly, the
statement owns a GlobalVarRef as a child; it in turn refer-
ences the queue (we will discuss the necessary type checks
in Section 3.5). The second child is a StatementList
that contains the code that will be executed inside the
DequeueStatement. Finally, the DequeueStatement also
implements the IAtomic interface. This is a marker inter-
face that expresses that the DequeueStatement acts simi-
larly to an atomic statement in that it provides a lock for
particular global variables; we explain the details on this
below.

3.3 Editors
In MPS, editors play the role of the concrete syntax, or
notation: they define how an instance of a concept is visually
represented. They also define actions that customize how the
user interacts with the instance of the concept when editing
a program. We discuss both below.

Notation Each language concept has its own editor.12 An
editor consists of a collection of editor cells. There are many

11 As long as MPS uses textual notations for language definition, we show
the example code as text; when non-textual notations are used, such as in
editor definitions, we use screenshots.
12 A concept can have several editors; they can be switched for each pro-
gram.

Figure 3. The editor definition for the DequeueStatement.

different kinds of cells available for use by the language
developer: examples include constant cells, cells that contain
child nodes, collection cells that act as containers for more
cells as well as cells that render arbitrary strings. The editor
for the ValExpr is the simplest one possible: it contains a
single constant cell with the text “val”.

Figure 3 shows the editor definition of the Dequeue-
Statement. It contains a horizontal collection ([- .. -]),
four constant cells (dequeue, from, -> and val) as well
as two child cells13 for the two child nodes defined in the
structure (%queue% and %body%). When an instance of a
DequeueStatement is projected in the editor, the two child
cells contain the visual representation defined by the editor
definitions for the respective children. At the point of em-
bedding, the language designer does not have to care about
the concrete syntax of the embedded child; they only declare
the syntactic nesting using the syntax shown above.

Actions In addition to the definition of the visual repre-
sentation of concepts in the editor, the editor aspect14 also
defines how users interact with the notation. Examples of
such interactions include:

• Deletion: what happens when the user presses Backspace
on a given cell.

• Side transformations: how can tree structures be entered
linearly (entering 2+3 by typing 2, then + and then 3).

• Substitutions: allow a local variable declaration (such as
int32 x;) to be created by entering the type int32.

No such editor behavior definitions are necessary for the
DequeueStatement or the ValExpr; the defaults provided
by MPS suffice. However, to illustrate the mechanism, let us
imagine that the DequeueStatement can be configured to
block; the syntax would be

dequeue blocking if available ...

To enable the user to “just type” the blocking keyword on
the right side of the dequeue keyword, the language de-
veloper has to define a right transformation on the Take-
Statement keyword. The following code is a slightly sim-
plified version of this transformation:

right transformed node: TakeStatement {
matching text: "blocking"
transform: (model, sourceNode, pattern)->node<> {

13 For historic reasons, MPS uses %child% to enclose child cells in editors.
14 Strictly speaking, some of this behavior is defined in the Actions aspect.
However, since the Editor and Actions aspects will be merged in the up-
coming version of MPS, we already treat them as one in this tutorial.

SERG Lessons Learned from Developing mbeddr

TUD-SERG-2016-025 7



sourceNode.blocking = true;
sourceNode;

}
}

Many such actions, as well as others, are necessary to build
usable editors for realistic languages. It is a significant effort
to implement those completely and consistently, as we dis-
cuss in the Editor Usability paragraph of Section 7.2. Based
on this experience we have automated the generation of
such actions from semantically more meaningful editor cells
based on an MPS extension called Grammar Cells [108].

3.4 Constraints
As a first approximation, the validity of a program is deter-
mined by the structure: only nodes of a compatible concept
(in terms of subtyping through the extends relationship be-
tween concepts) can be instantiated in any given program
location. However, validity is further determined by typing
rules (see next subsection) and constraints. A constraint is
a Boolean expression that determines whether a structurally
compatible concept can actually be instantiated in a given
location, thereby further restricting the tree structure beyond
pure structural compatibility.

Tree Constraints The ValExpr extends Expression,
so, structurally, it can be used wherever an Expression is
expected. However, from a semantic perspective, it is only
valid inside the body of a dequeue statement. To enforce
this, we define a can be child constraint for the ValExpr:

can be child
(childConcept, node, parentNode)->boolean {

parentNode.ancestor<DequeueStatement> != null;
}

Note that constraints prevent the user from entering invalid
code15. This means that they are executed before the node,
in this case the ValExpr, has been created. This is why
the constraint is expressed in terms of the parentNode:
we check if the ancestors (the sequence of parent nodes,
i.e., the containment hierarchy) contains an instance of
DequeueStatement. Only if we find one are we allowed
to instantiate the ValExpr.

Scopes Constraints are also used to express visibility rules,
known as scopes in MPS. A scope is a constraint that de-
termines which target nodes are visible to a reference (as
opposed to the containment constraints discussed before).
These targets are then made available to the user through
the code completion menu, so they can be selected or just
typed in (scopes also lead to error markers in the case where
a (now) invalid reference was entered when the scope was
(erroneously) still more permissive). Our language exten-
sion does not contain any references, but we can look at the
GlobalVarRef used to refer to the queue. It has a reference
member called var:
15 Remember that a projectional editor only lets the user enter programs that
are structurally valid.

concept GlobalVarRef extends Expression
references:

var : GlobalVarDecl[1]

This reference can refer to any global variable declara-
tion; it is the responsibility of the scope to determine
the set of valid targets. Since the reference is typed to
be a GlobalVarDecl, the scope implementation must re-
turn a sequence of global variable declaration nodes (an
nsequence<GlobalVarDecl>). The implementation of the
scope shown below starts from the enclosing node, navigates
up the tree to find the Module in which the current node
resides, gets its contents and filters for GlobalVarDecls.
Since it is structurally ensured that all C code is written in
Modules, we can assume that one of the ancestors is actually
a Module.

link var scope:
(enclosingNode, pos) -> nsequence<GlobalVarDecl> {

enclosingNode.ancestor<Module>.contents.
ofConcept<GlobalVarDecl>;

}

Note that this implementation is slightly simplified com-
pared to mbeddr’s actual implementation of this scope, be-
cause mbeddr uses a set of library functions to take import
relationships between modules into account.

3.5 Type System
The type system aspect encodes the static semantics of a
language; it ensures the consistency of the types in the pro-
gram and also checks other arbitrary correctness rules be-
yond structure.16 We start with the latter, because it is differ-
ent in an interesting way from the constraints just discussed.

Checking Rules As discussed above, constraints use
Boolean expressions to determine whether a node is valid
in a given program location. If it is not valid, they prevent
the user from entering that node. The type system’s checking
rules similarly use Boolean expressions to determine valid-
ity. However, they are evaluated after the node has already
been entered. Instead of preventing invalid use, they flag in-
valid use with a red squiggly line and an error message after
the fact. The following code shows a checking rule for the
queue global variable reference of the DequeueStatement:

checking rule for DequeueStatement {
ensure node.queue.var.type.isInstanceOf(QueueType)

else error "global variable not a queue"
on dqs.queue;

ensure node.queue.var.@shared != null
else error "queue must be shared"

on dqs.queue;
}

The first of the two ensure statements verifies that the type
of the variable referenced by the queue child of the current

16 In traditional, parser-based language definitions, the type system is typ-
ically considered to also include the name-based resolution of references.
However, in MPS, references are not encoded by name resolution rules, but
by actual references to the unique ID of the target node that are established
upon entering the reference (by code completion or plain typing).

Lessons Learned from Developing mbeddr SERG

8 TUD-SERG-2016-025



node (the DequeueStatement) is a QueueType. If not, we
report an error message on the global variable reference. The
second ensure checks that the global variable referred to by
queue has the shared annotation, since only shared global
variables can be accessed safely in a concurrent context. An-
notations are discussed in the Annotations paragraph in Sec-
tion 7.1; for now you can consider them to be a optional flag
on the variable. In addition to ensure statements, checking
rules can also use regular if statements to check more com-
plex conditions, and report errors using the error statement.

Typing Rules Our example also makes use of an ac-
tual typing rule: the val expression inside the body of the
DequeueStatement must have the same type as the ele-
ments of the queue from which we take the element. MPS’
type system relies on typing equations: for every concept,
the developer specifies one or more typing equations. MPS
then instantiates all type equations for all program nodes and
uses a solver [8, 12] to infer types and detect typing errors.
Below is the code that types the val expression:

typing rule typeof_QueueValExpr for ValExpr {
node<DequeueStatement> dqs =

node.ancestor<DequeueStatement>;
node<QueueType> qt = dqs.queue.type : QueueType;
typeof(node) :==: typeof(qt.queue.elementType);

}

We first find the DequeueStatement inside whose body the
current ValExpr resides (the tree constraint shown above
enforces that val can only be used under a dequeue state-
ment). We then get the type of the queue global variable ref-
erence. We ensured earlier that it is a QueueType so we can
safely downcast using the colon operator. We then declare
a typing equation that expresses that the type of the current
node (the ValExpr) must be identical to the element type
of the queue. Note that the :==: operator is not an assign-
ment, but it establishes type equivalence. If one of the two
typeof expressions evaluates to an unbound type variable
(based on all the other typing equations for the given pro-
gram), the operator propagates the type to the unbound type
variable, thus implementing type inference. If both typeof
expressions return actual types, then the operator acts as a
constraint: if the two types are not the same, an error is re-
ported. There are additional typing operators beyond :==:.
For example, :<=: takes subtypes into account.

The QueueType, though not shown, is just another con-
cept defined in the com.mbeddr.ext.concurrency lan-
guage. It has a child elementType that contains the type
of the queue elements. It’s syntax is queue<ElementType>.
The int64Q type used in the initial example for the dequeue
statement is typedef’d to be a queue<int64>.

3.6 Behavior
The behavior aspect allows the definition of methods on
concepts. These act similar to Java methods and can be in-
voked from all other aspects (often called from constraints,
the type system and generators). Methods are polymorphic,

and they can also be declared on interfaces. For example, the
IAtomic interface (implemented by the DequeueStatement)
defines two abstract behavior methods:

concept behavior IAtomic {
public abstract boolean getsReadLockFor(

node<GlobalVarRef> r);
public abstract boolean getsWriteLockFor(

node<GlobalVarRef> r);
}

The purpose of this interface is to express that a statement
acts similarly to an atomic statement in that it provides read
or write locks for global variables. The DequeueStatement
implements this interface and realizes the atomic-semantics
by translating to code that uses an atomic statement. Since
DequeueStatement is not abstract, it has to implement
these two methods; we show one of them:

public boolean getsReadLockFor(node<GlobalVarRef> r) {
return r.var == this.queue.var;

}

This one returns true (“dequeue statement provides a read
lock for”) if the global variable referenced by r is the same
variable referenced by the global variable reference owned
by the DequeueStatement.

The method is then invoked polymorphically from a
checking rule. The rule reports an error if a global vari-
able is accessed from outside an IAtomic context, and if
that atomic context does not provide a lock. The somewhat
simplified implementation is show here:

checking rule check_Lock for GlobalVarRef {
node<IAtomic> a = node.ancestor<IAtomic>;
if (a == null || !a.providesReadLockFor(node))

error "global variables must be locked" -> gvr;
}

3.7 Generators
The name generator is a little bit misleading: in fact, gener-
ators are tree transformations that map a source AST to an
output AST. Generators consist of various different kinds of
transformations rules, which in turn make use of templates,
i.e., fragments of target language code that determine how
the source AST is transformed to the target AST.

Templates The most important kind of transformation
rule is the reduction rule. Reduction rules replace a pro-
gram node that is an instance of a particular concept with
another node, typically an instance of another concept. The
DequeueStatement is translated with the reduction rule
shown in Figure 4. We will now discuss this rule in detail.

At the top level, a reduction rule consists of the source
and the target, separated by the ––> arrow. The source spec-
ifies the to-be-reduced concept, a flag whether subconcepts
should be transformed as well and a Boolean expression that
further constrains applicability.17 The target side is what re-
places each match of the left side. Notice how the target side

17 It is also possible to use a pattern that is matched against the tree, roughly
similar to tree pattern matching in Scala [63] or Stratego [95].

SERG Lessons Learned from Developing mbeddr

TUD-SERG-2016-025 9



Figure 4. The generator templates used for translating the
DequeueStatement. The dummy function acts as scaffold-
ing for the template fragment; the details are explained in the
text.

syntactically resembles the generated code (cf. the example
at the beginning of Section 3). The reason for this resem-
blance is that MPS uses the concrete syntax of the target
node in the templates. In contrast to text-generation tools,
MPS provides full IDE support for the to-be-generated target
code (an example of MPS’ language composition abilities).

The target code also contains generator markup, in par-
ticular the template fragment (<TF .. TF>) and macros
($..$[]). Macros are attached to nodes and represent in-
structions to the generator engine itself. Macros are an ex-
ample of annotations, and hence can be attached to any pro-
gram node, without the node’s concept being aware of this;
they are orthogonal to the definition of the language to whose
instance nodes they are attached.

Transformations are executed in two steps. The first step
copies the target code verbatim into the to-be-transformed
tree (including the macros), replacing the source node. In
step two, the transformation engine executes the macros,
which typically change the copied tree. We discuss this in
more detail below.

The template fragment separates the code that should be
used to replace the source node from the scaffolding, the
code outside the fragment. The scaffolding is code that is re-
quired to be able to write the target code fragment in the first
place (the dummy function in Figure 4 is an example). For
example, if the to-be-generated code contains a reference to
a global variable (such as the q in the atomic statement),
then there must be a global variable in the generator tem-

plate; otherwise the transformation developer could not enter
a global variable reference (remember that the template code
must be a valid tree expressed in the target language). During
transformation, only the code inside the template fragment
is copied into the source tree, and references to scaffolding
code have to be changed to point to a node in the source tree
by a reference macro.

Let us look at some of the macros. The simplest one is
the $IF$ macro (not used in Figure 4). It contains a Boolean
expression and if it evaluates to false, the node to which the
macro is attached is not copied into the source tree (strictly
speaking, it is copied and then later deleted again during step
two, macro evaluation). The $COPY_SRC$ replaces the node
it is attached to with a node returned from an expression
inside the macro. For example, the $COPY_SRC$ around the
int8 type in the first line of the template fragment contains
the following expression18, which returns the type of the
queue used in the DequeueStatement:
node.queue.var.type : QueueType.queue.elementType;

The effect is that the int8 dummy node is replaced with the
type used by the queue from the input node. Similarly, the
$COPY_SRCL$ (notice the L) copies a list of nodes. We use
it to copy all the body statements into the generated code.
The ->$ is called a reference macro. It is used to change
the target of a reference. The contained expression has to
return the new target (either by unique name to be resolved
by MPS, or by returning an actual reference to the target
previously stored in a map). In Figure 4 we use a reference
macro to make the reference to q point to the actual global
variable referenced in the source tree. The expression inside
that reference macro returns the variable referenced by the
dequeue statement’s queue child: node.queue.var.

Reduction rules are executed recursively, until no more
rules apply. For example, when copying the statements in
the body of the DequeueStatement, we have to take care
of the val expression: it is not valid in regular C code,
outside the dequeue statement. Figure 5 shows the right
side of the reduction rule for the val expression. It re-
duces the val expression to a reference to a local vari-
able ___val. This works because the reduction rule for the
DequeueStatement creates a local variable of this name
(see the first line of the template fragment in Figure 4).

Scripts MPS also supports generation scripts. These are
essentially BaseLanguage programs that procedurally create
the output AST. Scripts are typically used for transforma-
tions that are algorithmically complex (for example, flatten-
ing of hierarchical structures) or for generic transformations
(such as removing commented code).

Priorities The rules inside a particular language’s gener-
ator are automatically scheduled in a meaningful way. For

18 The expression is not visible in Figure 4 because it is shown in the
macro’s inspector, an additional IDE window that shows details about the
node currently selected in the main editor.

Lessons Learned from Developing mbeddr SERG

10 TUD-SERG-2016-025



Figure 5. The reduction rule for the val expression used
inside a dequeue statement’s body.

example, the rule that reduces an atomic statement to valid
C code is executed after the rule that creates an atomic state-
ment from a DequeueStatement. However, the generators
of different languages have to be scheduled manually, if they
have a dependency. To this end, MPS supports generator pri-
orities. A priority is defined between any two generators and
expresses whether a generator should be run before or af-
ter the other one. For example, a priority schedules the con-
currency generator before the one that reduces mbeddr’s C
extensions (because they are used in some locations in the
concurrency generator):
com.mbeddr.ext.concurrency.pthreads: main

<< com.mbeddr.core.utils: main

Cyclic dependencies are not allowed and will lead to a gen-
erator error.

Text Generators Finally, MPS also supports to-text gener-
ators to generate text files as part of the transformation chain
(for subsequent compilation with an existing C compiler, for
example). MPS provides a DSL that essentially serializes
text into a buffer, with support for indentation and dealing
with list separators. Since this is not very important for the
remainder of the paper we do not discuss this any further.

3.8 Intentions
Intentions are program transformations that change the pro-
gram in the editor (as opposed to generators which trans-
form programs during MPS’ make process). Intentions are
invoked by pressing Alt-Enter on a program node and then
selecting a particular intention from the menu that pops up.
MPS has a DSL for specifying such intentions, but the ac-
tual transformation is typically implemented procedurally
using BaseLanguage (similar to generator scripts). Since in-
tentions are not very important for the remainder of the paper
we do not discuss them any further.

3.9 Refactorings
Refactorings are available from the context menu. They are
also implemented procedurally. While they are important for
the user, they are not particularly important for the rest of
this paper, so we provide no more details.

3.10 IDE Customization
MPS supports the customization of various aspects of the
user interface of the tool itself, including buttons, menu
items, customized project views as well as additional win-
dows. These customizations are crucially important for

building end user friendly products based on MPS. How-
ever, they are not relevant to language engineering per se,
which is why we do not discuss them in this paper.

4. Case Study Setup
In this section we describe the setup of the case study. In
particular, we introduce the research questions (Section 4.1),
and the data we have collected to answer these questions
(Section 4.2).

4.1 Research Questions
The research questions aim at critically evaluating the degree
to which it is feasible to build non-trivial ecosystems of
languages with MPS. The questions will be evaluated based
on the development of mbeddr; we describe the structure of
the implementation of mbeddr as well as some details about
the development process in the next two sections.

RQ1: Is it practically feasible to define a modular set
of languages of the size of mbeddr? A cornerstone of
mbeddr is the modularity of the languages; mbeddr consists
of 81 different languages, 34 of them extensions to C. Our
first research question evaluates the feasibility of defining
such a large set of modular languages. Among other things,
we investigate the modularity and extensibility of the struc-
ture, editor, type system and generator language aspects.

RQ2: What is the contribution of projectional editing
to the success of mbeddr? Projectional editing is the
distinguishing characteristic of MPS compared to most other
industrial-strength language workbenches [32], and as far as
we know, mbeddr is the largest set of languages built with
a projectional editor. This question evaluates whether the
tradeoffs inherent in projectional editing work in practice: its
contribution to language modularity, the flexibility of using
and mixing diverse notational styles, the usability of the
editor and the effort of developing them.

RQ3: How effective are MPS’ mechanisms for managing
the complexity inherent in language development? As il-
lustrated in the tutorial in Section 3, MPS is essentially a set
of DSLs for language definition, each language describing
a particular aspect of the language (such as syntax, the type
system or transformations). It is also bootstrapped, i.e., im-
plemented with itself. With this research question we elabo-
rate on whether this approach is adequate for managing the
complexity of implementing sets of integrated languages.

RQ4: What are the performance and scalability implica-
tions? mbeddr is one of the largest language engineering
projects built in MPS (and maybe, generally). This raises
the question of whether we encountered problems of perfor-
mance and scalability as a consequence of the size of the
system.

RQ5: What are the interactions with the development
process? This question evaluates whether and how an es-

SERG Lessons Learned from Developing mbeddr

TUD-SERG-2016-025 11



tablished development process (requirements, test, imple-
mentation, build, packaging) has to be adapted in the face
of language development with MPS.

Another natural research question relates to the usability and
productivity of using the projectional editor, because, even
if RQ2 finds advantages, these are irrelevant if nobody is
willing to use the editor. We have investigated this ques-
tion in detail in [105]. More generally, the present paper pre-
sumes that it is actually worthwhile to build large, integrated
sets of languages. Empirical support for this assumption is
provided in our previous paper assessing the usefulness of
mbeddr itself for the purpose of embedded software devel-
opment [107].

4.2 Data Collected
Quantitative Data For the numbers regarding the size of
mbeddr in Section 6.1 we have counted concepts and lines
of code in the mbeddr sources. The efforts reported in Sec-
tion 6.1 are careful estimates based on developer involve-
ment, when they joined the team, and how much work they
performed on mbeddr vs. on other projects. For the develop-
ment progress discussed in Section 6.3 we have analyzed the
history of our two source code repositories. For the perfor-
mance numbers cited in Section 7.4 we have made measure-
ments in the way outlined in that section.

Qualitative Data Most of the evaluation in this paper is
qualitative in nature, reflecting on the good and the bad in the
development of mbeddr. It is based on recollections of the
team members, notes taken during the project, and findings
discussed in [99] and [103].

5. Case Study Context
5.1 Development Team
39 developers have contributed to mbeddr over the 4.5 years
of its existence so far. During the first two years, where
mbeddr was developed as part of the government-funded
LWES research project19, 4 developers did essentially all of
the work. Since mid 2013, the core team has steadily grown
to 8 developers. The remaining 31 have contributed small
amounts of code, in total 10% of commits.

At the beginning of the project, two of the four developers
(the first and second author of this paper) had significant ex-
perience in language engineering with Xtext, the Intentional
Domain Workbench and other language engineering tools.
One of them had initial experience with MPS from build-
ing an early prototype implementation of C with MPS [96];
Team member three had no experience with DSLs, but had
built (graphical) modeling tools before. He also had experi-
ence with formal verification techniques. Developer four had

19 The first two years of mbeddr development happened as part of the LWES
research project, a KMU Innovativ project funded by BMBF under FKZ
01/S11014. The participating companies were itemis, fortiss, SICK, Lear
and BMW Car IT.

no previous experience with either of these techniques. The
first three had some experience with embedded software and
C, but only number three could be considered reasonably
proficient.

Of the four team members that have been added to the
core team since the research project ended, two had experi-
ence with EMF-based (meta-)modeling [79], one was pro-
ficient with Xtext, and two had previous experience with
MPS (one superficial, the other one deep). All developers
have learned the details of MPS-based language engineering
during the project – which partially explains why some of
the languages were reimplemented later, after the team had
gained more experience with MPS.

5.2 Collaboration with Jetbrains
The mbeddr development team collaborates closely with Jet-
brains’ MPS development team: they report bugs, test mile-
stone releases and contribute extensions to MPS. In return,
the MPS team has supported the mbeddr team by explaining
MPS details, implementing required features or prioritizing
bugs. Both parties see this as a fruitful collaboration.

5.3 Tools
The development mainly relied on MPS itself for all aspects
of language development and testing. In this section we in-
troduce the tools we used beyond MPS; we put them into the
context of the development process in the next subsection.

git We used git for version control. MPS is fundamentally
file-based, so any file-based version control system can be
used. MPS provides GUI integration with a wide range of
version control systems, git included, so users can pull, com-
mit or merge from within MPS.

Assembla and github For storing the centralized reposito-
ries we used a private Assembla repository for the duration
of the research project. A private repository was important
because it also contains project-proprietary reports. After the
research project ended, the code was moved to the public
github repository at github.com/mbeddr/mbeddr.core/.

Bugtracker We used the bugtracker associated with the
Assembla and github repository for reporting and discussing
bugs and features.

Wiki Both Assembla and github come with simple Wikis,
which we used to document various aspects of the mbeddr
design and implementation.

Teamcity We used Jetbrains’ Teamcity20 continuous inte-
gration (CI) server for building the languages, packaging the
plugins, and running the tests. The build itself relies on ant
scripts, so it can be used with any other CI server as well.

Since mbeddr is a version of C, we also used the gcc tool
suite for compiling and debugging C code. In addition, we
used various verification tools. However, these tools did not

20 https://www.jetbrains.com/teamcity/

Lessons Learned from Developing mbeddr SERG

12 TUD-SERG-2016-025



play a role in the development of the mbeddr languages, so
we will not discuss them any further.

5.4 Development Process
Stakeholders and Requirements The primary stakehold-
ers for mbeddr were the members of the development team:
several team members had enough experience with embed-
ded software engineering to be able to identify useful ab-
stractions that would be worth adding as language exten-
sions. In addition, the team collaborated with embedded
software developers from various associated companies,
among them the partners of the LWES research project:
SICK, Lear and BMW Car-IT. After one year of develop-
ment, the Smart Meter project started [107], and the devel-
opers of the Smart Meter became additional stakeholders.
They helped guide the evolution of the mbeddr C language
and its extensions. They also suggested a few additional
general-purpose extensions. The mbeddr team also helped
develop a few extensions specifically for the Smart Meter
project (see [107]). Finally, several requirements for mbeddr
came out of the Siemens ESD project which itemis devel-
oped with Siemens from 2013.

Development Process The development process was iter-
ative and incremental, with the team learning about the tar-
get domain and MPS-based language engineering along the
way. We were able to quickly build a first version of a lan-
guage, try it out, learn from the experience, and then iterate
to build better versions. We used an issue tracker, but no for-
malized requirements engineering process. In the last two
years of the project, as external users started using mbeddr
and the number of stakeholders grew, the pace of change
slowed down and we started collecting requirements more
systematically through the issue tracker. As we illustrate in
Section 6.1, we wrote a significant number of tests for the
languages we developed. We used a CI server for continu-
ous build and testing.

6. The mbeddr Implementation
In this section we describe the implementation of mbeddr
in MPS. The goal of this section is mainly to provide an
overview over the size (Section 6.1), effort (Section 6.2),
timeline (Section 6.3) and structure (Section 6.4).

6.1 mbeddr Quantified
Top-level structure As shown in Figure 2, mbeddr consists
of five major parts. core contains C itself plus the support
for build, unit tests and a few smaller utility extensions such
as queues and stacks. ext covers the major extensions, in-
cluding physical units, components and state machines. cc is
the support for cross-cutting concerns such as requirements,
requirements tracing and product line variability. doc is a
Latex-like language for creating documents that are tightly
integrated with mbeddr code. And analyses contains support

Part Language #L #LC #S #C #LOC

core base 1 - 1 98 6,163
C 8 - 7 354 20,114
unittest 1 1 1 26 1,014
utils 3 3 1 116 6,306
build 2 - 1 48 2,080

ext components 9 9 1 160 11,173
state machines 1 1 1 48 3,194
concurrency 3 3 0 65 3,078
math 1 1 0 11 446
messaging 2 2 0 60 2,151
units 1 1 0 30 1,884

cc variability 7 3 1 87 3,638
reqmts/tracing 9 1 2 171 5,563

doc doc 10 - 1 153 6,355

analyses analysis 18 10 18 170 15,235

Total 81 34 38 1,597 88,394

Table 1. This table lists the top-level parts of mbeddr, the
languages/extensions contained in them plus the number of
actual MPS modules (separate languages (#L), C extensions
(#LC) and solutions (#S)) that makes up each language. We
also list the number of concepts (#C) and the lines of code
used in the implementation (#LOC). Of the 81 language mod-
ules in total, 34 are actual C extensions (the others are unre-
lated to C, for example, to express requirements or product-
line variability).

for formal verification of programs written with several of
the mbeddr DSLs.

Size of the Implementation Table 1 breaks down these
parts further. Each part consists of a number of languages (if
they are independent of C) or language extensions (if they
are C extensions). For various technical reasons, each lan-
guage may be implemented through a number of MPS lan-
guage and solution modules. Table 1 also lists the number of
language concepts for each of the languages as well as the
approximate lines of code (LOC) used in the implementa-
tion.

We refer to the approximate LOC because, as a conse-
quence of MPS’ projectional editor, counting the number of
lines is not straightforward: the same code may be projected
on one or several lines and some parts of the code may be
projected, but do not have to be entered manually (for exam-
ple, in Figure 3, only the cells have to be typed; the first two
lines are mostly rendered automatically by projection rules).
Counting the instances involved in the various language as-
pects is also not a good idea, because each is quite different
in size, and so things are not comparable. Instead we use
the approach introduced in [101]: we have associated a LOC
count with each language concept.21 For example, a state-
ment counts as 1 line; in a type system rule we count all the

21 This is not the number of lines generated from the DSL code, but an
equivalent, linearized, textual representation of the program nodes in the
MPS AST.

SERG Lessons Learned from Developing mbeddr

TUD-SERG-2016-025 13



lines where the user has to enter something (but not those
that are purely projected) plus the number of statements in
the body of the rule; for editor definitions, we count each cell
as 0.5 lines; on average, we estimate 4 editor cells per line.

In total, mbeddr consists of 1.597 language concepts.
Many of them do not directly relate to C extensions; for
example, 324 are in the documentation and requirements
languages. 919 concepts are related to the C extensions. In
other words, the extensions are roughly 2.5 times the size of
C itself.

The total lines of code for the whole mbeddr imple-
mentation (excluding utilities and MPS extensions in the
mbeddr.platform, as well as the test code) is 88,394. The
highest number is C itself (20,114), the components exten-
sion (11,173) and the analyses (15,235). The reasons for the
high line count for C and the components is that the lan-
guages are large and complex. For analyses, a lot of code
has been written to run the analyses in an external verifica-
tion tool and interpret the results.

It is hard to put these numbers into perspective. One at-
tempt is to compare the implementation of C itself to the
implementation of other C IDEs. One open source option is
the Eclipse CDT, which, however, also supports C++. We
have counted the lines of Java implementation code in the
core directory, removing all files that contain test and cpp
in their qualified package name, which should roughly rep-
resent the non-test code for C only. The resulting number is
562,000 lines.22 This makes it roughly a factor of 25 bigger
than mbeddr C, illustrating MPS’ expressive power in terms
of language implementation. Another comparison would be
to an implementation of C using another language work-
bench such as Xtext or Spoofax. However, since no reason-
ably complete implementation of C exists in any other lan-
guage workbench to our knowledge, we cannot make this
comparison. For a general comparison of language work-
benches, including the LOC to implement benchmark lan-
guages, see [32].

Size of the test code Table 2 provides an overview over the
test code for mbeddr, counting test cases, assertions as well
as lines of code. As we will discuss in Section 7.5, mbeddr
relies primarily on type system tests (verifying static seman-
tics, i.e., whether red squigglies show up where they should)
as well as executable tests (verifying execution semantics by
running generated C code). We also have a number of regu-
lar JUnit tests that verify the behavior of non-language def-
inition code, such as UI extensions or analyses. All in all,
mbeddr has 45,695 lines of test code, with is roughly 50%
on top of the implementation code (88,394 LOC).

The test code is not evenly distributed over the languages.
For example, as a consequence of the complexity of these
languages, ext.components alone has 35% of all exe-

22 Note that debugging and build support are outside core; counting all of
CDT’s non-test *.java files results in roughly 1.4 million lines.

cutable tests, and core has 57% of all type system tests.
ext.units has almost no executable tests, because this C
extension affects primarily the type system. doc has very
few of either kind, because it has few type checks, and we
generate static Latex code that cannot be executed for test-
ing the semantics. Of the 22,413 lines of regular test code,
10,704 relate to the analyses and 11,749 test the debugger.
We also have around 50 tests that verify especially tricky
editor behavior.

#Test Cases #Assertions #LOC

Type System Tests 324 1,381 8,243
Executable Tests 310 990 14,999
Other Tests 784 1,275 22,453

Total 1,418 3,646 45,695

Table 2. Breakdown of the test code for mbeddr.

Size of the MPS extensions As we will see in Section 7.3,
one of the major ways of managing complexity in language
development with MPS is to develop MPS extensions (which
are also languages) that simplify language development.
We have used this approach extensively, and the resulting
mbeddr.platform contains utilities ranging from a debugging
framework to new notational primitives to a language for
pattern matching over ASTs.23 In total, our utilities and ex-
tensions contain 1,088 language concepts and 75,097 lines
of code, making it comparable in size to mbeddr itself. Of
these, 43,025 lines are in solutions (i.e., not in language def-
initions) illustrating the utility nature of the platform.

Distribution among Language Aspects Figure 6 illus-
trates the distribution of the implementation code among
the language aspects for the various languages in mbeddr.
The distribution is quite different for the different languages,
illustrating their different natures. We discuss some exam-
ples. core.base has only a little structure but a lot of be-
havior. This is because it contains a relatively small num-
ber of abstract base concepts with lots of utility methods.
For the same reason, the type system is small. core.c and
ext.components are relatively similar in their distribution
and are typical examples of “real” programming languages:
they have relatively equal ratios of structure, editor, type
systems and generators. ext.concurrency has a compara-
tively large generator. This is because the language structure
of the extension is different from the structure of the gener-
ated C code, so the generator is sophisticated. analyses has
a lot of code that implements IDE support, because it has a
number of additional views to show the analysis results. doc
has a high ratio of structure and editor, but hardly any type
system because, as a Latex-like language for writing docu-
ments, little type checking is required. Finally, units has
almost no generator and an overwhelming ratio of type sys-

23 Despite the fact that it is called mbeddr.platform, its contents have been
developed during several MPS-based projects, not just mbeddr.

Lessons Learned from Developing mbeddr SERG

14 TUD-SERG-2016-025



tem code. This is because the units are a type system exten-
sion, and the computation with units in the type system is
non-trivial. The generators simply delete everything relating
to units during the transformation to plain C.

6.2 Development Effort
Based on worksheets reported by the core developers, the to-
tal effort of developing mbeddr and the platform was roughly
16 person years. Splitting this total amount based on the dis-
tribution between mbeddr (88,000 LOC) and the platform
(75,000 LOC), 8.8 person years must be allocated to mbeddr
itself. Considering that we redid some parts of mbeddr be-
cause of confusion about what was needed, we estimate that
a total of 10 person years was spent on mbeddr itself (i.e.,
excluding the platform).

Adding up mbeddr’s implementation and test code (88,000
+ 45,000) and dividing it by the number of developer years
(10), each developer, on average, wrote 13,300 lines of code
per year. To put this into context, a large-scale study by Jones
and Bonsignour [44] has found that, independent of process
and language, developers on average write between 3,900
and 9,000 (surviving) lines of code per year.

6.3 Development Timeline
Figure 7 shows the development timeline of the mbeddr
project. In this section we discuss some interesting aspects.

Projects mbeddr development started in 07/2011, after a
few preliminary prototypes with MPS by some of the team
members. Its development continues as we write this pa-
per. mbeddr was initially developed during the government-
funded LWES research project. It ran for two years, from
07/11 through 06/13. Roughly halfway through the project,
the development of the Smart Meter system [107] project
started. In May 2015, shortly before the end of LWES, we
were approached by Siemens PLM Software (then: LMS In-
ternational) about developing the previously mentioned Em-
bedded Software Designer (ESD) on top of the open source
mbeddr stack. Development started in July 2013 and contin-
ues today.

Resources and Efforts On average, 3.5 full-time equiv-
alent (FTE) developers worked on mbeddr. During the first
18 months, 4 developers worked as 3.2 FTEs. Because of
customer interest and the resulting business potential for
mbeddr, we hired a fifth developer who started working full-
time on mbeddr, resulting in 4.2 FTEs. Shortly before the
end of the research project, the Siemens ESD project started.
Over the following year, until 04/2014, it increased in vol-
ume, reducing the FTEs working on mbeddr to 2.6, with a
correspondingly slower pace in commits. This is also a con-
sequence of two of the developers involvement in manage-
ment of the team as well as sales and marketing activities for
mbeddr. We hired two more developers in 04/2014 and an-
other one in July. This brought up the workforce to 4.0 FTEs;
their remaining work time went into ESD. From 03/2015 on-

wards, the FTEs working on mbeddr again started to decline
because of number of additional projects (mbeddr-based, as
well as in other domains) started ramping up. Note that the
overall effort reported in this picture is higher than the 10
person years total effort reported earlier; this is because the
efforts for developing the mbeddr.platform could not be fac-
tored out completely (see Section 2.4).

Language Development Start Dates We started the
mbeddr implementation with core.c, because this is the
basis for everything else. We also implemented support for
unit tests and build very early on so we could write tests for
the languages we developed. core.base was only started 5
months in when we recognized the need for a C-independent
foundation layer. Components and state machines were also
started early, as a means to validate that two of the critical
extensions can actually be built the way we envisioned them.
There is a small peak in cc.variability, a very early pro-
totype to verify that our approach to managing product line
variability would work.

Analyses were also started in month 5, an indication that
the synergy of language extension and formal analyses plays
an important role in mbeddr. doc was started in early 2013
when we realized the need for efficiently documenting code
written in mbeddr. Finally, messaging and concurrency were
started only in 2015, when we got a few additional days of
research funding from another research project.

Development Effort over time The set of line diagrams in
the lower half of Figure 7 illustrates the development effort
over time for each language. Specifically, the diagrams show
the number of changed (added + deleted) LOC, scaled rela-
tive to the size of the language. We also annotate migration
events, because these typically lead to a lot of changes in all
languages, roughly at the same time (for example, a change
in MPS’ persistence format touches almost every LOC in
all model files and the migration to github meant re-adding
everything). Note that the migration to MPS 3.3 was differ-
ent. There is not a huge peak, because, for the first time, we
migrated various parts over time, based on subsequent mile-
stone builds of MPS.

We now investigate the development effort in more detail,
pointing out some interesting aspects of the line charts at the
bottom. core.c had modifications all through the project.
This was mainly because we had to fix type system problems
over and over again (as we better understood the intricacies
of the C type system), and because we had to undo some
“simplifications” we added to C initially that turned out to be
naive. core.build, instead, was hardly ever touched after
it had been created initially. Similarly, core.unittest was
also stable over time. core.utils had small scale changes
throughout the project as we saw the need for additional
utilities. The same occurred with core.base, into which
we factored reusable abstractions as the potential for reuse
became evident.

SERG Lessons Learned from Developing mbeddr

TUD-SERG-2016-025 15



Figure 6. The distribution of the implementation code over the various language aspects. Different languages exhibit different
distributions, the reasons for this are discussed in the text.

Figure 7. mbeddr development timeline. From top to bottom it shows when important projects (LWES, Smart Meter, ESD)
happened, FTEs working on mbeddr and the accumulation of commits in the repository, when the various developers joined,
when the development on the various languages was started, plus the time distribution of work on the various languages, scaled
relative to the size of the particular language. The bottom row illustrates migrations, which typically lead to a lot of batch code
changes.

Lessons Learned from Developing mbeddr SERG

16 TUD-SERG-2016-025



ext.components was modified during the smart meter
project, where components were used extensively – a bump
is visible in the line in early 2013. ext.units has a major
peak in the summer of 2014, which is where the language
was completely reimplemented: at this point we had a much
better understanding of how the MPS type system works,
and we were able to provide a more scalable and more flex-
ible implementation of units (for example, we introduced
generic units so that functions could work with arbitrary
units but still describe how the units of the return type are
computed from the units of the input arguments). State ma-
chines had a lot of changes in late 2012 when we added hier-
archical states and in the summer of 2014 when we added ep-
silon transitions (implicitly triggered transitions) and junc-
tions (states that only have epsilon transitions). ext.math
has a bump in the spring of 2014 when we completely reim-
plemented the notational primitives. cc.variability also
had changes throughout. For example, we have added com-
positional variability in 2014 and integrated a variability-
aware type system in 2015 when MPS added the necessary
new concepts in the type system language.

Implementing the analyses was an ongoing effort that can
be split into four phases, reflecting the learning process that
we went through. We started by integrating Yices [26] and
NuSMV [18] to analyze subsets of C on the model level
(by transforming C into the respective tool input languages).
Phase two was the integration of CBMC [20] in order to an-
alyze all of C on the level of generated C code. Phase three
was the maturation of the CBMC-based analyses and the re-
sulting abandonment of NuSMV and Yices. Finally, the on-
going fourth phase integrates new tools beside CBMC such
as Sat4J [54] (for checking the consistency of feature models
and presence conditions) and Z3 [24] (we are experimenting
with Z3 to verify the consistency of simple decision tables),
as well as Spin [42] (with which we experimented for model
checking).

6.4 Overall Structure
MPS uses inheritance in the style of object-oriented pro-
gramming as the means of language extension. Inheritance
can occur between language concepts as well as between
languages themselves. Only if a language A extends B can
concepts from A extend concepts from B.

Figure 8 shows a part of the inheritance structures of the
core languages and of ext.statemachines. The concepts
that are extended most are printed in bold font. They are
Expression (extended 270 times), Statement (115), Type
(74) and IModuleContent (70). The importance of the first
three should be obvious in C; the last one is an interface
used for all top-level language concepts such as structs,
functions, typedefs or component declarations.

In terms of language dependencies, core.expressions
is (almost, see below) at the root of the hierarchy. core.
statements depends on core.expressions, and core.
modules in turn depends on core.statements. Extensions

like ext.statemachines typically extend all of the three
aforementioned core languages because most extensions
contribute new top level contents (e.g., the Statemachine
itself), expressions (e.g., EventRef), types (Statemachine-
Type) and statements (e.g., TriggerStatement).

We mentioned before that core.expressions is almost
the root of the dependency chain. There are two additional
levels, both part of the mbeddr.platform (see Section 2.4). In
particular, core.base contains a number of utilities useful
for essentially all mbeddr languages (and others beyond
mbeddr). Most importantly, it contains about 40 trait-style
interfaces that can be implemented by otherwise unrelated
language concepts to benefit from predefined behavior or UI
features. Some examples are shown below; the number in
parenthesis represents the number of implementors:

• IIdentifierNamedConcept (250) used by concepts
that require a valid identifier as a name; contributes a
name property, a constraint check plus some IDE behav-
ior.

• IReference (65) implemented by all references; con-
tributes an abstract method that returns the target of the
reference as well as a type system rule that propagates
that target’s type to the reference.

• ITyped (53) implemented by every concept that has a
type:Type child; provides the necessary typing rules.

• IGenericDotTarget (74) represents everything on the
right of a dot expression (as in struct.member).

• IConfigurationItem (32) implemented by all con-
cepts that control the transformation process (similar to
compiler switches).

Figure 8. Class diagram that illustrates some of the core
structures and dependencies in mbeddr. Italics text denotes
abstract concepts, bold text represents important extension
points, names in angle brackets act as proxies for the named
concept to avoid even more lines. Details about the design
are explained in the running text.

SERG Lessons Learned from Developing mbeddr

TUD-SERG-2016-025 17



• ITreeViewable (39) implemented by all concepts whose
instances should be viewable in the tree view tool; this
tool relies on the interface to define behavior methods
that render the tree.

core.base contains utilities that reside on the same meta
level as mbeddr itself (i.e., mbeddr concepts extend them).
The second level of additional dependencies are the lan-
guages in the mpsutil package. These are extensions of
MPS languages; so the mbeddr language definitions instan-
tiate those. Examples include the tabular, mathematical and
diagram notations (instantiated in editors) or the pattern
matching language (instantiated in generators). mpsutil
also contains utilities that are not directly related to lan-
guages, such as an embedded HTTP server to control MPS
from external applications.

7. Evaluation
In this section we evaluate the research questions introduced
in Section 4.1, each in its own subsection. While we rely
mostly on the MPS features introduced so far, we introduce
and explain some new features as we evaluate them.

7.1 RQ1: Language Modularity
An important feature of MPS, and a cornerstone of modern
language engineering in general, is language modularity and
composition. The term refers to using a set of independently
developed languages together, in one file or model. It refers
not just to syntax, but also to the type system, the semantics
and the IDE support. Different approaches exist, and differ-
ent classifications schemes have been proposed [31, 97]. The
following approaches are most widely used (cf. Figure 9):

• Embedding refers to syntactically embedding an inde-
pendent language into a host language. Importantly, the
embedded language must have been developed without
knowledge about, and dependencies on, the host lan-
guage. This means that it can potentially be embed-
ded into several different host languages. Typically, an
adapter language (cf. the Adapter pattern [36]) is required
for each embedded/host language combination to fit them
together. mbeddr does not use embedding.

• Extension refers to adding new language constructs to
a base language. In contrast to embedding, the extend-
ing language is developed specifically for a particular
base language; it depends on this base language and can
only be used with this base language (but does not mod-
ify that base language invasively). mbeddr’s state ma-
chines are an example; Figure 8 shows how this ex-
tension works: the StateMachine concept extends the
IModuleContent interface defined in mbeddr C.

• Once several extensions have been developed for a partic-
ular base language, each independent from all others, ex-
tension composition refers to the ability to use several of

Figure 9. Three important kinds of language composition:
embedding, extension and extension composition

these independent extensions in a single program. For ex-
ample, state machines can be used together with physical
units in the same program Sometimes, when the seman-
tics of extensions need coordination, adapter languages
are required for specific compositions of extensions. We
have one such mbeddr language in mbeddr: embedding
state machines into components.

mbeddr relies almost exclusively on extension and extension
composition: mbeddr consists of 34 extensions to C (see Ta-
ble 1), all of which can be used together in a single program.
The requirements and doc languages act as base languages
as well, each having their own set of modular extensions.

Language modularization is essential for managing com-
plexity in language development, just as it is essential for
software engineering in general [80]: it helps break down
a large language into several smaller ones that are easier
to understand and maintain, it makes building and testing
each language module faster, and it allows new languages
(or language extensions) to be developed without changes
to the other modular languages, and in particular, the base
language (in case of extension).

Modularization is also important for language users, be-
cause they can use only those features (extensions) rele-
vant to their particular task or skill level. This has turned
out to be useful in mbeddr [107], since it allows mbeddr
applications to be developed bottom-up: first implement C,
and then, incrementally, add domain-specific abstractions as
modular language extensions. Users can skip down to the
next lower abstraction level if an abstraction is not suitable
or if it introduced too much performance overhead (a very
important concern in embedded software). Based on a case
study in enterprise systems, [57] suggests that “the use of
hand-written code [..] was instrumental in implementing the
fine details of some functional requirements. We propose
that designers of model driven development environments
introduce such a feature [..]” mbeddr supports this not by
generating skeletons that users can then fill in with “man-
ually written code” in an external IDE. Instead, users can
write lower-level code directly in mbeddr, avoiding integra-
tion issues with the external IDE. [57] continues to conclude

Lessons Learned from Developing mbeddr SERG

18 TUD-SERG-2016-025



with “[..] and at the same time try to prevent [the user of
manually written code] by (incrementally) perfecting their
modeling languages.” This is exactly what has been done in
mbeddr by successively adding language extensions.

MPS supports different composition techniques for the
various language aspects. For the structure, composition
works roughly similar to object-oriented programming, in
that a language concept can extend a base concept (with
which it is then polymorphically replaceable) and implement
several interfaces. The syntax, behavior, actions, intentions
and refactorings can be understood as methods (defined with
their own particular DSL) on these OO-style structures.24 In
the type system, language concepts contribute typing equa-
tions which are then solved by a solver. This approach is
declarative, so a language can contribute additional typing
rules for existing and new language concepts; in the rare
cases where conflicts arise, a rule for a subconcept can spec-
ify that it overrides the inference rule for a superconcept (we
have two such cases in mbeddr, both related to pointers).
For generators, composition is based on priorities that deter-
mine the execution order of transformations. Composition
is specified by declaring pair-wise priorities of a particular
generator relative to other generators. Almost all of our C
extensions only specify priorities relative to C itself, and not
to other extensions (which would compromise the indepen-
dent composability of extension composition). We discuss
our experience with each of these composition mechanisms
below. Details on language composition with MPS in gen-
eral can be found in [97].

Fundamentally it works and scales Fundamentally, MPS’
support for language modularization and composition scales
well in terms of managing the complexities of language
composition, as exemplified by mbeddr’s 34 extensions of C.
Importantly, the extensibility does not just apply to coarse-
grained syntactic blocks (as in Converge [85], for example).
In contrast, modularity works down to the expression level,
which is particularly important, for example, in the exten-
sion that supplies mathematical symbols to C [100], which
supports new expressions (such as abs ∣x∣), but also the sum
symbol which contains other, regular C expression in its
body, as exemplified by ∑ (x + i).
Annotations Annotations are another mechanism available
in MPS for implementing language extensions. Specifically,
an extension adds arbitrary child nodes (the annotation) to
an existing node (the annotated node), without changing the
definition of the annotated node. This supports adding arbi-
trary additional data into an AST. In terms of concrete syn-
tax, the annotation can contribute concrete syntax to the an-
notated node (above, below, left or right of the annotated
node), or even replace it completely. There is no limit to the
syntactic structure of the annotation, because, as a conse-

24 There are restrictions. For example, in an editor one cannot call super to
delegate to the editor of the base concept.

quence of projectional editing, no interference can happen
with the syntax of the annotated node.

Annotations are frequently designed to be independent of
the annotated language, which makes them a form of em-
bedding instead of extension (where the extension depends
on the base language). For example, a comment or an ar-
chitectural layer constraint may be attached to any program
node. Since the language that defines the original node can-
not know about the annotation, the type system and the trans-
formations will not take into account the annotation. This
means that the semantics of the annotation either must not
change the semantics of the annotated node, or the semantics
are implemented by a preprocessor that is built specifically
for the annotation. We describe a couple of example annota-
tions in the remainder of this paragraph, grouped by how the
semantics are realized.

The simplest case for annotations are those where the
semantics are completely generic and independent of the
semantics of the annotated node. For example, an anno-
tation that stores the code review state (new, ready for
review, reviewed) of a piece of code only stores the
name of the reviewer, the date of the review, as well as a
hash of the reviewed code to detect changes. Checking rules
specific to the annotation verify the validity of a code review,
but there is not semantic relationship to the annotated node.

The second case are annotations where the semantics af-
fect the annotated code, but in a generic way. For exam-
ple, mbeddr’s presence conditions [22] (Boolean expressions
that determine whether a node is part of a given product
line variant; think #ifdef) are processed by removing the
annotated node from the tree if the the condition evaluates
to false. Similarly, comments are simply pushed down the
transformation chain, so that they eventually end up in the
generated code. These behaviors can be implemented inde-
pendent of the specific semantics of the annotated nodes.
Note that another case of annotations with generic seman-
tics are the transformations macros (such as COPY_SRC, IF
or ->) used in the generator (and explained in Section 3.7).

The third category of annotations are those that are de-
veloped specifically for a given language. While the depen-
dency is similar to language extension (because the language
that defines the annotation has a dependency on the language
that defines the annotated concept), there is an important dif-
ference: a concept can be annotated without changing the
identity of the node. In this case, the semantics of the an-
notation relates to the semantics of the annotated node. An
example of this type of annotation is the checked annotation
for state machines. If attached, the generator for the state ma-
chine generates additional code (i.e., has different semantics)
that is used to verify properties using the CBMC [20] model
checker. The annotation can be attached to existing state ma-
chines; if an extension had been used, the existing instance
of StateMachine would have had to be replaced with a (dif-

SERG Lessons Learned from Developing mbeddr

TUD-SERG-2016-025 19



ferent) instance of CheckedStateMachine, breaking refer-
ences to that existing state machine.

Generally, annotations are an essential ingredient to lan-
guage modularity, and as the examples above illustrate,
mbeddr makes use of them extensively. Nonetheless we
have encountered a few limitations. For example, the an-
notations are not automatically attached to nodes created
during a transformation. This means, for example, that the
above-mentioned comments have to be pushed down explic-
itly in every transformation. This is tedious and error prone.
The second limitation is that annotations cannot affect the
text generators. We encountered this problem when trying
to generically generate #ifdefs for mbeddr’s presence con-
ditions (instead of generically deleting all nodes where the
presence conditions evaluated to false). The third limitation
was that an annotation cannot affect the type of the anno-
tated node. This feature is necessary to implement typing
rules where the type of a node can vary based on the product
variant. All of these limitations have been fixed in MPS in
the meantime, based on the experience from mbeddr.

Limits to Non-Invasiveness In terms of structure and con-
crete syntax, MPS’ language modularity and composabil-
ity is analogous to object oriented programming in Java.
For example, a concept can extend another concept and
add children, override the editor or provide new behavior
methods. However, as we know from Java, this approach
also has certain limitations. For example, sometimes Java
requires refactoring a class hierarchy to introduce abstract
classes or interfaces that serve as extension points. This is
also true for language implementations in MPS. We some-
times had to invasively modify the C base language to in-
troduce abstract concepts or concept interfaces. An exam-
ple is IAssignmentLike, which is implemented by all con-
cepts that implement an assignment (such as +=, *= or
|=) so we can generically check whether the expression on
the left is an lvalue. Strictly speaking, this breaks the mod-
ular extensibility of languages. In practice, however, we did
not perceive this as a major problem, since the number of
such changes got lower over time as the language structure
matured (again, similar to the process of designing object-
oriented programs). We are confident that not many such in-
vasive modifications will be required in the future.

The invasive modification did not have an impact on
end users. Just introducing abstract base concepts does not
impact existing models; the refactorings are internal to the
language definition. Those changes that have consequences
for existing models were handled with MPS’ support for
migrating models. For details on model migration see the
Evolution of Models paragraph in Section 7.5.

Tree Constraints In object-oriented programming, and
also in MPS language design, a concept A that extends con-
cept B implies that an instance of a B can be used wher-
ever an instance of a superconcept A is expected. How-
ever, this can be a significant limitation. Consider test

cases: inside of a test case, a range of assert statements
should be available. To make them available in a test case
body (a StatementList), they have to extend Statement.
As a consequence of polymorphism, this design means
that AssertStatements can now be used anywhere a
Statement is expected (such as in regular functions or com-
ponents runnables, which also use StatementLists as their
body). However, this is semantically wrong. The alternative
of making a body of a test case use something other than
Statements is not a good alternative, because all of C’s re-
maining statements must be legal in tests as well. To solve
this apparent contradiction, MPS supports tree constraints.
A tree constraint decides whether a particular concept can
be a child of some other concept. For reasons of dependency
management, such a constraint can be written from the per-
spective of a parent (“can I have this concept as a child”)
or from the perspective of the child (“can I be used under
this parent”). As we have seen with the val expression in
the tutorial in Section 3, these constraints actually prevent
nodes from being instantiated, so the user cannot enter the
respective node. This effectively removes the respective con-
cepts from the language in a given context. Returning to the
assert statements, this means that they can use a tree con-
straint to limit their use to inside (“under”) a test case.

The approach works well, and we have used it in many
locations; mbeddr has 254 tree constraints. The problem is
that there is a tendency to forget to write the constraints, and
the transformations may break because of the incompatible
semantics; for example, in one case, operators specific to
the analyses have shown up in regular C, because they ex-
tended Expression without suitable constraints that limited
their use to analysis specifications. We used extensive test-
ing and automatic test case generation to address this issue
in mbeddr, as will be discussed in Section 7.5.

Overmodularization When designing the structure of
mbeddr C, we decided to modularize C itself. We cre-
ated separate MPS languages for primitive types and basic
expressions (core.expressions), for statements (core.
statements), pointer types and their operators (core.
pointers), user-defined types such as structs, unions and
enums (core.udt) as well as modules and top level con-
cepts such as global variables or functions (core.modules).
The reason for this modularization was the expectation that
we would reuse some of these languages independent of oth-
ers (e.g., use a safer subset of C without pointers, or using
the expressions in an external state machine DSL).

However, it has turned out over time that there are de-
pendencies in both directions and the modularity cannot re-
ally be sensibly maintained. In order to retain an adequate
layering of these languages and avoid cyclic dependencies,
we had to introduce a number of interfaces in some of the
languages (we estimate one third of the 380 interfaces are
playing this role in mbeddr and all of its extensions). In ret-
rospect we should have modularized the C core much less.

Lessons Learned from Developing mbeddr SERG

20 TUD-SERG-2016-025



Probably only core.expressions makes sense as a sep-
arate language: we have reused the C expression in many
other DSLs that generate code down to C.

Language Refactoring Moving concepts between lan-
guages is not a trivial matter. A concept is implemented via
several aspects, each residing is its own model inside a lan-
guage. These models have dependencies expressed as im-
ports. Also, models that use a concept in a program have
a use relationship to the language that defines the concept.
When a concept is moved from one language to another (as
happens when changing the modularization structure of lan-
guages), all these dependencies have to be updated. If the
models that use the language are not in the current project
(they may reside on customer machines), migration scripts
(see Section 7.5) have to be created. More generally, since
the modularization structure is hard to get right a priori,
strong refactoring operations are needed in language work-
benches that support language modularization and composi-
tion. While MPS provides some of those, this is an interest-
ing area for further research.

As a practical matter, at the time when mbeddr was built,
some of MPS’ refactoring operations have not always been
reliable and thus lead to invalid, unnecessary or circular
model imports. This means that changing the modularization
structure of languages is more complicated than it needs to
be – and consequently is often not done. Some of our lan-
guages, in particular, core.base, thus have become a huge
collection of unrelated features that require separation into
separate languages, and we do not dare to remodularize it.
This is also the reason why the aforementioned overmodu-
larization of the C implementation in the mbeddr core has
not been cleaned up yet.

Extension Composition As mentioned above, extension
composition refers to using several independently developed
extensions of a common base language in the same program
[31]. We distinguish two cases, which we discuss below.

In the first case, the extensions have neither structural/syn-
tactic nor semantic interactions. For example, a state ma-
chine can be used in the same program with an interface
or component: both of them are top-level module contents
(illustrated in Figure 10 A). Another example is the use of
units inside a state machine transition guard. Even though
the two are syntactically nested, they have no interactions
because the units attach to types and literals from C, which
are transitively used by state machine guards (Figure 10 B).

As a consequence of MPS’ OO-style model for language
modularization and composition, and because of how pro-
jectional editing works, there are never any syntactic inter-
actions when independently developed language extensions
are used in the same program – this is why units inside state
machines are not a syntactic problem. However, this is not
true for the execution semantics: it is possible that the two
generators for independently developed languages produce
code that does not behave as expected in terms of structure

Figure 10. Different scenarios for extension composition.
A: two independent extensions used in the same C pro-
gram. B: nesting independent extensions within each other.
C: making independent extensions collaborate by using an
adapter language.

(resulting C code may not compile), functionality (the pro-
gram behaves erroneously) or non-functional properties (the
program becomes unexpectedly slow). In particular, it is not
possible to detect such semantic interactions statically by an-
alyzing the generators. This is because transformation code
contains significant amounts of procedural BaseLanguage
code that is practically impossible to analyze (a limitation
of MPS we revisit in the Declarativeness and Analyses para-
graph in Section 7.3). While, in our experience, at least struc-
tural and functional problems occur only rarely (we cannot
remember such a case in mbeddr), it is still a significant lim-
itation that this cannot be statically guaranteed. In particular,
this will become a problem once mbeddr should be quali-
fied [21, 41] for use with safety-critical systems, where some
level of guarantees must be made regarding the correctness
of the generated C code.

We have addressed this problem by writing test cases
(programs that use more than one extension) for those com-
positions of extensions that were found most often in ap-
plication projects. Some of these tests have been gener-
ated [67]. Note that, with 34 C extensions, it is infeasible
to test all combinations. If an interaction were detected, it
could be resolved by actively preventing the use of the two
extensions in the same program (which of course puts some
kind of dependency between the two languages, compromis-
ing independence) or by changing one or both generators in
a way that avoids the interaction. The few examples of un-
intended interactions we have found in mbeddr were related
to name collisions in generated variables because the MPS
transformation framework is not hygienic [33].

The second case refers to the situation where two exten-
sions should interact in a controlled way. In mbeddr, we have
two such cases: it is possible to embed a state machine into a
component (Figure 10 C), and it is possible to use a compo-
nent runnable as a task in terms of the concurrency language.

SERG Lessons Learned from Developing mbeddr

TUD-SERG-2016-025 21



In this case, one could create a dependency between the two
languages. For example, the state machine language could
have a dependency on the components language and con-
tain language concepts that make the state machine fit into a
component. However, this would compromise the required
independence of the two extensions. A better solution is to
factor the adapter code into a separate language (SM2Comp
in Figure 10). This way, the two original extensions remain
independent, and the adapter language deals with adapting
syntax and semantics. The language that moderates the in-
teractions between components and state machines is called
ext.components.statemachine; among other concepts,
it contains a concept StatemachineComponentAdapter
that adapts StateMachines to Components and Required-
OperationBinding which allows component Runnables
to be used as a state machine’s out event bindings.

Generator Exchange and Orchestration Idiomatically,
MPS uses transformations from AST to AST as the means
to define the semantics for languages (see Section 3.7). In
the context of extension, the transformation maps a concept
from the extension language to an “implementation” based
on concepts in the base language. Typically, there are several
such mappings involved to map a high-level C extension to
executable C code, so generators are stacked. In a test model
that uses all of mbeddr’s languages, the generator scheduler
computes 40 phases (AST to AST transformations) from the
dependencies expressed between the languages used in the
model.

As an example of step-wise transformations consider the
mocking [82] extension for components. It transforms to
the components language, which transforms to C + utilities,
which in turn transforms to plain C. This stacking leads to
the challenge of defining the order of the generators, because
a generator for a language D that maps D concepts to con-
cepts defined in some language I has to run before the trans-
formation that further transforms the I concepts. Expressing
this ordering constraint inevitably leads to a dependency be-
tween D and I. If D is an extension of I, then there is already
a dependency between the languages, and the transforma-
tion dependency does not make the situation any worse (see
Figure 11 A-C).

If two extensions D1 and D2 of I interact, then an order-
ing constraint between D1 and D2 may be required: this com-
promises the independence of D1 and D2 and is generally not
desired (see Figure 11 D). While we did not encounter such a
case in mbeddr, a hypothetical example could be where D2 is
the components language which transforms Runnables into
Functions and D1 is a tracing language that adds a trace
point to every Function. It is important that the runnables
are transformed into functions before the trace points are
added to all functions (to make sure the functions generated
from runnables also get trace points), even though the two
extensions have no other relationship and hence are indepen-

Figure 11. Ordering constraints for generators. A: simple
ordering, where an extension generator runs before the gen-
erator of the base language. B: Two independent extensions
both expressing an ordering constraint relative to the com-
mon base language. C: Generator stacking, where an exten-
sion D2 of D1 must be transformed before D1. D: Two inde-
pendent extensions of I who nonetheless have an ordering
constraint between each other.

dent25. We have no such case in mbeddr, although the trace
point example is a realistic one.

An important form of modularity is the ability to define
several alternative generators for the same language con-
cept(s). Typically, their semantics will be similar in terms
of functionality, but differ in terms of non-functional proper-
ties. We have used this approach for components: they can be
translated with function pointers (supporting polymorphism,
but somewhat slower and requiring more memory) or via di-
rect function calls (no polymorphism, but faster and using
less memory). While the ability to exchange generators adds
flexibility, it also makes testing more cumbersome: it must
be assured that the functional semantics are identical for all
generators, typically by running the same tests for all gener-
ators.

Another issue is the case where a particular instance of
a concept must be mapped to an instance of several target
concepts at the same time (so this is different from the
alternative generators discussed in the previous paragraph).
This does not directly fit with the MPS approach of reducing
nodes into other nodes, because a reduction consumes the
node and replaces it with the transformation result – so the
source node is gone after the first transformation. We have
encountered this problem in the context of early analyses
where, in addition to generating the executable code, we also
generated the input to the analysis tool.

25 Another way of solving this issue is to make functions and runnables
implement a common interface, and then make the tracing language insert
trace points to all nodes that implement that interface; however, this would
lead to the need to (retroactively) introduce this new interface, requiring
invasive changes to the components language. This is also not desirable.

Lessons Learned from Developing mbeddr SERG

22 TUD-SERG-2016-025



We use an idiomatic approach to solve this issue. We
clone the original node first (typically with a script involving
node.copy), and mark the clone by reflectively storing a
flag in the node’s user objects26. We then define several
reduction rules, the first one reducing the original node, and
the second one reducing its clone with the flag set to true.
While this works, first class support for “branching” the
generation chain would be very useful. Jetbrains is planning
to add support for this in MPS 3.4.

Summary for RQ1, Language Modularity:
mbeddr’s 34 extensions to C are a clear indication that
MPS’ language modularity works. Modularity is useful
for language understanding, testing and reuse.

In rare cases, modularity is compromised by necessary
changes to the base language and unwanted dependencies
between independent extensions.

Currently there is no way to detect (unwanted) seman-
tic interactions between independent language extensions
through analysis of their transformations.

7.2 RQ2: Contribution of Projectional Editing
We feel that the support of projectional editing for language
modularity and mixing notations has been an enabler for
managing the complexity involved in building mbeddr (and
for making it useful to end users, as discussed in [107]). At
the same time, projectional editing also has disadvantages
in terms of usability and infrastructure integration. In this
subsection we discuss the trade-off.

Language Modularity As mentioned earlier, projectional
editors never run into ambiguities when composing exten-
sions. This was a significant contribution to mbeddr, because
languages extensions could be designed without considering
the syntax of other extensions, and/or without writing disam-
biguation code for every possible combination of extensions.

We now investigate the claim that projectional editors
never run into ambiguities when composing extensions in
more detail. If two extensions define the same syntax for dif-
ferent concepts, this may be confusing for the user, but the
underlying data structure is still unambiguous once it has
been entered. Similarly, if two extensions define the same
alias (i.e., the same way of entering the construct), then the
user, when typing the alias, has to use the code completion
menu to make a decision. In other words, disambiguation is
delegated to the user. While this can be seen as a drawback,
it is still better than failing to compose the extensions com-
pletely. The problem of overlapping aliases only affects the
user if both extensions constructs are valid in the same loca-
tion. Constraints, as discussed before, limit such situations.
In mbeddr this happened only very rarely. One example is

26 A map associated with each node.

the { alias, which is used for entering statement lists {...}
as well as closure literals { => ... }. Both are allowed in
statement context, hence the overlap. Users have to manually
disambiguate. { is also used for array init expressions (as in
int8[3] = {1, 2, 3};). However, they are only allowed
in variable initializations (where the other two are not al-
lowed), so there is no conflict in this case.

If two language extensions that have a syntactical sim-
ilarity or alias overlap are used together regularly, then it
is always possible to define a third language that (non-
invasively) changes the syntax of one of the two or uses
actions to effectively change the alias of one of them. We
have not seen the need for such a language so far.

Flexible Notations The ability of projectional editors to
support a wide range of notations [100] in the same editor
was very useful; Figure 12 shows a few examples. Nota-
tional flexibility is not just a gimmick, it was actually useful
in practice, as illustrated in the smart meter case study [107].
For example, connecting component instances is naturally
done with a graphical notation (Figure 1), state machines
rendered as tables (Figure 1) or diagrams help understand
their structure, and mathematical symbols improve readabil-
ity for complex mathematical expressions.

What is particularly important is that all the different no-
tations are based on the same editor architecture: this means
that the different notations integrate seamlessly from a user’s
perspective (e.g., in terms of interactions). It also means that,
from the perspective of the language developer, the editors
for the different notations are defined in the same way (in-
stantiating and parameterizing editor cells, see Section 3.3).
For example, to embed text in a graphical shape, one just has
to use MPS editor cells for textual notations as the editor
part of the editor for the graphical node (see Figure 13). The
effort for building such mixed-notation editors is not higher
than for building single-notation editors, once the respective
primitive editor cells for text and diagrams have been de-
fined (the mbeddr.platform contains such primitive cells for
math, tables and diagrams). This is in sharp contrast to mix-
ing notations with classical editor technologies (for example,
integrating text and diagrams in Eclipse [92]).

Decoupled Primitives MPS editor definitions rely on the
instantiation and parametrization of editor cells. Once new
editor cells are defined, they can be used in multiple lan-
guages. This way, the notations themselves can be reused,
independent of the language (which defines structure and se-
mantics). For example, mbeddr uses the same math notation
cells as an insurance system (which is not built on top of
mbeddr C); two different languages (with different seman-
tics) rely on the same cells for the definition of notations.
Similarly, the languages for connecting component instances
and for graphical state machines both rely on the diagram
notation, and the table notation is used for both decision ta-
bles and state machines.

SERG Lessons Learned from Developing mbeddr

TUD-SERG-2016-025 23



Figure 12. Illustration of the syntactic flexibility afforded by projectional editing. The comment in the code example is
unstructured text with embedded real references (to arguments in this case). The tables and diagrams can be embedded in
text, and text can be embedded in diagrams, each time with full IDE support.

Developing new Notations Since MPS is bootstrapped,
all the languages used in MPS for language definition can
be extended in the same way as any other language built
with MPS. This is also true for editor cells, the language
for defining the notation of language constructs. The editor
cells for rich text, tables, math and diagrams have been built
as modular extensions to MPS’ editor definition language.
The diversity of these notations illustrates the flexibility of
MPS’ underlying architecture. The effort for implementing
such languages depends on the kind of notation. MPS was
originally developed with textual notations in mind, so the
more the new notation is different from text, the more effort
it is to develop. For example the mathematical cells were de-
veloped in 8 person days. The table notation was developed
in 2 months, and the diagrams was roughly 8 months of ef-
fort. The latter also required a few patches to MPS’ editing
framework which made assumptions about the notations be-
ing fundamentally line-oriented. In particular, the layout al-
gorithms had to be adapted; in the meantime we have imple-
mented a new top-down layout that replaces MPS’ default
bottom-up layout. Note, however, that this effort had to be
spent only once; as discussed above, these notations are now
available for use with arbitrary languages.

Figure 13. The definition of the graphical editor for a
State (as part of a state machine diagram). It uses
the diagram.box primitive, delegates to the StateShape
shape to actually render the rounded-edge rectangle, and
them embeds regular MPS editor cells as the content edi-
tor. Here, the embedded editor contains the name of the state
({name}), a horizontal compartment (––) as well as the list
of contents of the state (transitions, entry actions, exit ac-
tions). These use their own textual editor for representation.

Editor Usability Projectional editing, while having a lot of
advantages, also has drawbacks. The two primary ones are
that the editor feels similar, but not identical, to a text editor
when editing textual notations and that programs cannot be
edited, or diff/merged outside the tool. However, diff/merge
in MPS works well, and the editor usability for textual nota-
tions has improved over time. As our survey [105] indicates,
these issues are less and less of a problem in practice.

We encountered two issues regarding editor usability that
are fundamental and worth discussing here. The first one re-
lates to notations whose on-screen representation is different
from the way they are entered. Traditionally, for example in
an if statement, the construct can be entered by typing what
is seen on the screen (“if” in this example). However, com-
pare this to the∑2 or

√2 symbols used as part of the math
notation as shown in Figure 12. There, the user has to type
the alias sum and sqrt to enter the symbols. This is hard
to find out and we have added a palette (Figure 14), simi-
lar to diagram editors or the formula editor in MS Word, to
help users enter these constructs. The palette always shows
constructs dependent on the current editor position and the
languages included in the program. We have generalized the
palette to be able to show arbitrary actions (not just help with
node creation), depending on the current context.

The second problem is that, while it is possible to define
languages with a textual notation that are good enough to be
usable [105], the effort for building them, and for building
them consistently within one and between several languages,
is still too high. The reason is that the editor behavior (i.e.,
how the editor reacts to a user’s editing gestures) must be
implemented manually, using actions. It is easy to forget an
action (for example, for deleting elements) or to implement
different behaviors for the same editing gesture in different
languages, confusing users. The solution to this problem is
to put more behavioral semantics into the editor cells used

Figure 14. The context actions palette that helps users enter
language constructs whose syntax is dissimilar from the way
they are typed.

Lessons Learned from Developing mbeddr SERG

24 TUD-SERG-2016-025



for defining the editors, and then automatically generate the
actions from the semantically enriched editor cells. We have
since developed such cells and used them in several language
projects [108]; the experience with these cells suggests that
they are a significant step forward regarding the definition of
usable projectional editors.

Integration with Version Control As mentioned above,
version control integration of a projectional editor requires
the use of the editor (MPS in our case) for diff and merge
operations. MPS supports this for arbitrary notations, and we
have used a git-based workflow for several years now. For
the graphical notations we encountered a problem: we did
not want the merge algorithm to report conflicts just because
the position and size of diagram nodes was changed by
both users. To solve this issue, Jetbrains has added a feature
to MPS where the language designer can mark properties
with merge-ours or merge-theirs annotations to force
the respective merge strategy and never report a conflict.

Another conceptual problem relates to merging of lan-
guage definitions and instance models at the same time. MPS
requires a working (and compiled) language definition to
render programs expressed in this language. If, in a single
update from the version control system, both the language
and its instance models change, then the editor for the in-
stances cannot be rendered in the diff view because the lan-
guage has not yet been updated and compiled. To remedy
this issue, one should first update/merge the language def-
initions, build the language, and then update/merge the the
instance models. Note that this problem only occurs during
language design and implementation, and not during normal
language usage.

Multiple Notations MPS supports the definition of sev-
eral editors (with different notational styles) for the same
language concept. Each editor is associated with an editor
hint (essentially a tag). By “pushing” editor hints on a given
program, the program’s notation can be switched. Different
hints can be pushed on different parts of a program, so sev-
eral instances of the same concept can be shown with differ-
ent notations in one editing session. We have used this fea-
ture extensively. For example, a state machine can be edited
as text, table or diagram. Similarly component instances can
be connected graphically or textually. The approach works
well in general, but there are two problems.

The first problem relates to the fact that (some) editor be-
havior has to be implemented explicitly with actions. The
behavior of the editor may depend on the projection. Con-
sider infix (a + b) versus prefix (+(a b)) notations for ex-
pressions. In the former case, an action is needed to handle a
user’s pressing + on the right side of variable references (a or
b) in order to construct the infix binary expression that repre-
sents +. In the case of the prefix notation, this action should
not be available because it is not applicable. The problem is
that currently, such transformations and other editor behav-
ior actions are not specific to the various notations assignable

to the editors – they can only be defined once for every lan-
guage. This is currently being fixed by the Jetbrains team.

The second problem is that sometimes notation influences
structure. For example, the textual notation for state ma-
chines intuitively leads to a structure where the state machine
owns a number of states which in turn own entry actions, exit
actions and transitions; each transition points to the trigger-
ing event as well as the target state; Figure 15 shows this
structure. A textual syntax for state machines can directly
resemble this structure. However, a tabular notation for state
machines that renders states as column headers, events as
row headers and the transitions in the content cells suggests a
structure where the state machine owns the transitions; in ad-
dition, the representation is not a tree, but more like a matrix
where a transition has to be located in the table by its source
state and its triggering event (row and column, respectively).
This is especially critical since, by default, MPS can show a
node only in the location that corresponds to its position in
the tree (the parent editor cell of a node N must be the cell
rendered for N ’s AST parent node). To address this appar-
ent contradiction, the newly developed editor cells for tables
and diagrams rely on expressions to allocate content, and
not just references to links in the structure of language con-
structs. In other words, an arbitrary expression can be used
to “collect” one or more cells from anywhere in the tree to
show in a given location. In the example of the tabular no-
tation for state machines, each (non-header) cell contains an
expression that collects all those transitions whose originat-
ing state corresponds to the current row header, and whose
triggering event corresponds to the event located in the cur-
rent cell’s column header. We have generalized this ability
to collect to-be-projected nodes from arbitrary locations in
the tree to so-called querylists, i.e., lists whose contents
can be dynamically assembled through a query expression.
We use this construct to render nodes in locations other than
their location in the AST. We use querylists in many places.
The most prominent one is tooltips for references, where the
tooltip contains a rendering of the reference target node.

Partial Projections A special case of the ability of hav-
ing multiple projections for the same language concept is
partial projections. This is useful to hide information that is
not relevant to a particular stakeholder or for a specific step

Figure 15. An AST structure for a state machine language
where the transitions are owned by their source state. It
directly fits a corrsponding textual notation, but does not fit
with a tabular notation for state machines.

SERG Lessons Learned from Developing mbeddr

TUD-SERG-2016-025 25



in the development process. To avoid confusion, this should
only be used for program elements whose absence does not
change the semantics of the core program (for example those
that are added in via annotations, see paragraph Annotations
in Section 7). For example, we use this feature to option-
ally hide requirements traces [104]27 (programmers may not
want to see them while optimizing an algorithm) or review
state (the coloring of the code can be distracting). Hiding
parts of programs can be achieved either by defining sepa-
rate editors using the mechanism explained in the previous
paragraph or by using IF cells in the editor definition. There
is one problem, though: type system rules and other checks
are evaluated on the AST, not on what is shown in the edi-
tor. So if a hidden program element has an error, this error
is still shown in the gutter of the IDE, while the node that
causes the error is not projected in the editor; obviously, this
can be confusing to users and should hence be avoided by
the language designer. In mbeddr we have this problem in
the state machines: the tabular notation does not show entry
and exit actions.

Enhanced Projections We developed a new editor cell
called a conditional editor. It can be used to intercept the ren-
dering of existing concepts and show additional information
above, below, left or right of the original editor. An arbitrary
condition can be used to determine which concepts should
be intercepted. For example, the following condition can be
used to identify program nodes (n) that are variables and that
have vector type, useful for rendering an arrow above them
(as in x⃗); this example is taken from mbeddr’s math exten-
sion:

n.isInstanceOf(VarRef) && n.type.isSubtypeOf(VecType)

In contrast to annotations, which can also be represented
above, below, left or right of the annotated element, condi-
tional editors only change the editor and do not insert a new
node into the tree. Data needed by the conditional editor can
be retrieved from places other than the AST. In mbeddr, we
use the approach to change the background color of program
parts according to whether they have been covered by a test
suite, or to annotate test cases and assert statements ac-
cording to whether they have failed or succeeded. In both
cases we use external files (written by the test execution
framework) to determine how to color the nodes.

Projectional Editing and Transformations Projectional
editing supports language composition. Thus it is possible
to compose the transformation language with the language
of the to-be-generated program (C in the transformations
of mbeddr’s extensions). Consequently, MPS supports using
the concrete syntax of the target language in the transforma-
tion templates (see Figure 4). This is useful because, com-
pared to text-based template engines where the to be gener-
ated code is “just text”, MPS can provide full IDE support

27 Traces are pointers from program nodes to requirements to help with
quality assurance [109]

for the target language while writing transformation tem-
plates. However, this comes with two drawbacks.

First, it means that when generating a reference, the tem-
plate code has to contain the reference target, even if the tar-
get itself should not be generated. This is, because in valid
target language programs, a reference can only be written if
a target for the reference is available in the code as well. This
leads to the use of scaffolding (as shown in Figure 5), which
is hard to learn and sometimes leads to repetition and bloat
in templates. Second, the composition mechanism between
the transformation language and the target language is em-
bedding, so no dependencies between the two are allowed.
Consequently, the target language definition cannot allow for
“meta escapes”, the expressions that navigate, and retrieve
nodes from, the input model. The way this is solved in MPS
is that annotations are used to attach generator macros to tar-
get program nodes. This, in turn, leads to two consequences.
The first one is that the meta escapes are not shown in the
template code itself, but in the inspector. Some language de-
velopers find this confusing. The other problem is that the
template code contains nodes whose sole purpose is to act as
anchors for macros; they will be replaced during generation.

Some new MPS users have reported that this was hard
to learn initially, but became clearer with more experi-
ence. Language developers who are not comfortable with
the approach can avoid template-based transformations al-
together and rely on abstract syntax-based transformations
in transformation scripts. These are essentially procedural
Base Language code with embedded tree literals or builders
(expressions that use nested node constructors). Figure 16
shows an example. mbeddr uses generation scripts mostly
for algorithmically complex or generic transformations, and
not to avoid the problem described above. Examples include
removal of units before code generation, flattening of hier-
archical components or state machines, and the removal of
nodes from the AST whose presence conditions evaluate to
false.

Handling Comments There are two kinds of comments in
program code: documentation comments that contain prose
(perhaps with references to program elements) and program
code that has been commented out. In parser-based editors
the two kinds are technically similar – both are just se-
quences of characters, preceded or surrounded by whatever
token represents comments (// or /* and */ for C). How-
ever, in a projectional editor, the two kinds must be distin-
guished, because commented code must retain its tree struc-
ture so that it can be uncommented later.

MPS handles documentation comments with the multi-
line text widget (discussed in detail in [98]). It supports edit-
ing unstructured text, but can also seamlessly embed pro-
gram nodes such as references to other nodes (such as vari-
ables or arguments). Documentation comments are inserted
into the program tree primarily via annotations. Because this
means that they are attached as a child to a program element,

Lessons Learned from Developing mbeddr SERG

26 TUD-SERG-2016-025



Figure 16. A generation script that collects all for state-
ments and replaces them with an equivalent while. At
the core of the loop is an AST builder that creates a new
StatementList that adds the iterator (e.g., int i = 0;)
of the for as the first statement, and the while as the sec-
ond one. The body of the while is comprised of the original
body of the for, plus the for’s incrementor (e.g., i++). The
condition of the while is the condition of the for (e.g., i <
arrLength;.

they are included in cut, copy and paste operations of the
documented node. This approach works well, and, in our ex-
perience, is better than comments in textual editors, where
the relationship between the comment and the commented
code is expressed only by conventions (location proximity).

Commenting out code requires storing the commented
nodes in the program tree, retaining their structure, sur-
rounding them with comment tokens, painting them grey, ig-
noring errors inside them, removing potential reference tar-
gets from scopes, and ignoring them during generation.

In earlier versions of MPS, addressing these requirements
required special support for each particular commentable
node. This was a lot of effort and not really practicable,
which is why commenting out code was supported only in
a very limited way. In MPS 3.3, based on our feedback,
Jetbrains added a generic commenting facility. Commented
AST subtrees are stored in a special child list28 of the parent,
but rendered (in grey) in the original location. This requires
special support in the editor framework, which is warranted
because it works generically for all languages and all forms
of comments. Since this feature has been added, comment-
ing out nodes in MPS has worked well, and generically for
any language, without any mbeddr-specific extensions.

28 The mechanism is the same as for annotations. They are also stored in
a special child collection, and the editor is aware of this collection when
projecting the tree.

Summary for RQ2, Projectional Editing:
The two main benefits of projectional editing – language
modularity and a range of combinable notations – have
been used extensively in mbeddr. The anticipated benefits
have been observed.

The editor can be flexibly extended with new notational
styles with acceptable effort, as exemplified by the sup-
port for math, tables and diagrams.

The ability to use multiple and partial projections must
be further improved by integrating with other language
aspects, in particular, editor actions and type checks.

7.3 RQ3: Mechanisms for Managing Complexity
MPS uses a set of DSLs for implementing language aspects.
More generally, the fact that MPS is bootstrapped suggests
that developing additional meta-languages is a natural way
to manage complexity. In this section we discuss the extent
to which this approach worked for mbeddr.

Projectional Editing We consider projectional editing
itself an important mechanism for managing complexity.
While it introduces some additional complexity (in partic-
ular, writing editor behavior actions, as discussed in Sec-
tion 3.3 and [108]), the fact that no disambiguation code [7,
28, 39] between language extensions is required to support
extension composition represents a huge reduction in acci-
dental complexity. We would not have been able to develop
such a rich and composable ecosystem of C extensions us-
ing parser-based language engineering technology; we were
unable to find a comparable system (for C or any other lan-
guage) built using parsers.

Aspect DSLs As explained in Section 3, MPS uses a sepa-
rate language for specifying each language aspect (structure,
notation, type system, transformation, etc.). While these lan-
guages all rely on BaseLanguage (Java) expressions and
statements as their common core, they are all tailored specif-
ically to their task: the structure language is essentially a
declarative meta modeling language, editor definition relies
on instantiating, composing and parameterizing editor cells,
the type system uses typing equations solved by a solver and
the transformations use various kinds of templates to map a
source AST to a target AST.

The approach of providing specialized DSLs for each
aspect is not unique to MPS (Spoofax [45], for example, uses
this approach as well). The alternative (used for example by
Rascal [49] and Xtext [11]) is to have a single, powerful
language (usually with aspect-specific libraries).29

29 Typically, the language syntax is specified using a grammar, which is
an aspect-specific DSL. In addition, some tools provide DSLs for code
generation or model transformation. But all other aspects are implemented
using the same language.

SERG Lessons Learned from Developing mbeddr

TUD-SERG-2016-025 27



During the development of mbeddr, we found that using
aspect-specific DSLs is an appropriate way to address the
complexities in language development. We discuss a few ex-
amples below. For textual notations, MPS’ editor language
approximates the to-be-rendered notation in the editor def-
inition itself, making it easier to understand the editor defi-
nition. In addition, as we have discussed, the abstraction of
cells can handle textual, tabular, mathematical and diagram-
matic notations; we have used all of those in mbeddr. The
use of a declarative, rule-based language for expressing type
system means that the type system is easily extensible – de-
velopers do not have to care about the execution order of
typing rules of composed languages. For example, the units
extension, which performs computations of physical units in
the type system, has been added as a modular set of typing
equations requiring no changes to the type system imple-
mentation of C and the other C extensions. In contrast, since
the order of stacked transformations is semantically relevant,
the priority-based scheduling of transformations seems to be
the right approach for this particular aspect. So is the use of
concrete-syntax templates in code generation rules, because
it makes it very easy to understand the structure of the gen-
erated code and allows IDE support for the target language.

However, the approach also has drawbacks. It takes time
for new developers to learn the various languages (a charac-
teristic of DSLs that is typically defended by stating that a
DSL is built for the expert in the domain, not the novice).
In addition, every language requires its own debugger. MPS
does not always do a good job with debuggers; we elaborate
on this issue in the next item.

Debugging Aspect DSLs A drawback of using specific
DSLs for each language aspect is that tool support must be
built specifically for each of these DSLs. While supplying
code completion, error checking and syntax highlighting
is essentially free in MPS and is supported for all aspect
DSLs, supporting a meaningful debugger is not. This is
particularly true if the DSLs stray away from fundamentally
imperative execution paradigms. For example, MPS’ type
system language is based on typing equations and a solver.
A debugger for this paradigm must essentially illustrate the
solver state, and do this in a way that is useful to the type
system developer. MPS has a way to visualize the solver
state, but we, as a team, have not figured out how to use
it to effectively debug problems in the type system. The
debugging experience for type systems is not satisfactory
and we have reverted to inspecting types in programs and
using console-debugging in the typing rules.

The MPS transformation engine works by applying vari-
ous kinds of rules to models, stacking transformations on top
of each other, resulting in the potentially long transforma-
tion chains (up to 40 phases in mbeddr) mentioned before).
To debug the transformation of a particular model, MPS pro-
vides two mechanisms. First, MPS can show the list of gen-
eration phases (also known as the generation plan) as calcu-

lated from the pair-wise priorities specified for each involved
transformation. This helps to understand which transforma-
tions run, and in which order. This is important, because in-
advertently running transformations in the wrong order as
languages are composed in new combinations is a major
source of errors when writing the generators for composable
extensions (see also the paragraph on Extension Composi-
tion in Section 7.1).

The second mechanism is the ability to (temporarily)
store all intermediate models and inspect them. In addition,
users can select a node in any of the intermediate models
and navigate forward and backward between intermediate
models and see which transformation rule created a specific
node.

Overall, debugging template-based transformations with
the tools provided by MPS works reasonably well. The vast
majority of transformations in mbeddr are implemented this
way. Transformations that are implemented as a imperative
scripts (we have 70 transformation scripts in mbeddr, most
of them short and simple) can only be debugged with the
limited facilities provided for BaseLanguage discussed be-
low. The same is true for the BaseLanguage code embedded
in generator macros.

For the editor, MPS supports outlining cell boundaries
with lines and showing the cell structure (as opposed to the
AST) of a given editor as a tree. This allows the language
developer, to some extent, to track down problems in editor
definitions. We have used this facility only during the devel-
opment of new notations.

Those parts of MPS that are based on Java/BaseLanguage
expressions or involve procedural code (behaviors, refactor-
ings or expressions and statement lists in the DSLs discussed
above) can be debugged by running MPS inside MPS, and
then stepping through the code with MPS’ Java debugger.
However, this is slow and unwieldy, and we hardly use this
approach. Consequently, we mostly used console-debugging
using System.out.println statements or slightly more
fancy alternatives based on custom Java extensions. A fi-
nal fallback for debugging relies on running MPS from the
sources inside IntelliJ, and using IntelliJ’s Java debugger to
debug MPS. The problem with this approach is that debug-
ging happens on the level of the Java code generated from
the aspect DSLs, which can be quite voluminous and initially
hard to understand. One of our developers reports: “I prefer
the IntelliJ solution. Interestingly, this approach results in a
change of the coding style on the DSL level, because I have
learned roughly what kind of code is generated and I try to
write the aspect code in a way that results in better debug-
gable code”. Clearly, this is not a satisfying solution. The
debugging of MPS language definitions must be improved.
More generally, debugging DSLs, whether they are used for
language definition or not, is an area in language engineering
that requires much more research beyond what has already
been done [16, 64, 110].

Lessons Learned from Developing mbeddr SERG

28 TUD-SERG-2016-025



Missing Aspects While MPS comes with a significant
number of predefined language aspects and associated DSLs,
some aspects are missing. These include language docu-
mentation (similar to JavaDoc, but for languages defined
in MPS), various mapping specifications (for example, to
tree views or graphical visualizations), debugger specifica-
tion, an interpreter for the language or importers/parsers for
legacy code. As a workaround, we have put many of these
things into behavior methods, sometimes using custom Java
extensions inside these methods to simplify the implemen-
tation (for example, of the debugger; see below). However,
this is unsatisfactory, because it clutters the behavior with
methods for different language aspects. It also requires in-
vasive changes to the concept in order to implement a new
aspect-specific interface and the associated behaviors. Fi-
nally, it makes it hard to use abstractions that cannot be
sensibly expressed as more or less imperative code.

The solution to this problem would be to make the set of
language aspects supported by MPS extensible. While lan-
guage documentation and debugger specification can be ar-
gued to be central to language definition and should thus be
supported by MPS out of the box, some of the other aspects,
such as the interpreter or mappings to various graphical vi-
sualizations, are more mbeddr-specific. Based on the expe-
rience with mbeddr, Jetbrains has added custom language
aspects in MPS 3.3. This way, users can define their own lan-
guage aspects, together with custom specification languages,
and integrate them seamlessly into the MPS language defi-
nition infrastructure. Based on this new feature, we are cur-
rently in the process of developing a language documen-
tation aspect. We will also move the interpreter definitions
(which are already expressed with a DSL) into an aspect.

Declarativeness and Analyses Some of MPS’ aspect DSLs
aim to be declarative. Examples include the editor defini-
tion (instantiate, compose and configure editor cells), the
type system (type equations that are solved) and transfor-
mations (templates with node replacements). However, the
declarativeness is compromised by the ability to inject unre-
stricted Java expressions and statements into the programs.
From the pragmatic perspective of making something work,
this is useful. However, from the perspective of analysing
the programs written with these DSLs, it is problematic.
Some of the potentially useful analyses include: analysing
editor definitions to automatically derive grammars/parsers
for legacy code import, impact analysis on the typing rules
to understand when to re-evaluate which rule, as well as an-
alyzing the transformations to automatically derive a debug-
ger and to verify user-specified properties on the transfor-
mations. The debugger issue is especially problematic; we
discuss this in the next paragraph.

Analyzing language definitions is also important when
certifying mbeddr for use in safety-critical environments [21,
41]. One ingredient to such a certification is a correctness
proof of the transformations. In principle, such proofs are

feasible, and we are cooperating with a group at McGill
university and Fortiss GmbH to prove transformations rele-
vant to mbeddr. However, this relies on reimplementing the
transformations with a more restricted, and hence analyzable
language [9, 75]. Proving properties on MPS’ transformation
specifications that mix declarative parts with imperative Java
code is not feasible. We are also considering using scope
graphs [60] to express scoping rules; as a consequence of
their declarative nature, we hope to be able to automatically
derive wizards to create reference targets. Finally, we are
considering replacing the use of procedural Java code with
a more limited, functional expression language that can be
analyzed more easily.

Debugger According to the language workbenches sur-
vey [32], the development of debuggers for the languages
developed with a workbench is not a widespread feature:
only 4 of the 10 evaluated workbenches support it, and to
various degrees. MPS is one of them. Out of the box, it sup-
ports debugging of Java (in its BaseLanguage incarnation),
and also allows language developers to reuse the UI infras-
tructure for DSL-specific debuggers (setting breakpoints, in-
specting variables, step in/over/out buttons) for the devel-
oped languages.

However, MPS does not specifically support the devel-
opment of debuggers for languages that support modular
language extensions. To address this shortcoming, we have
developed our own debugger framework for extensible lan-
guages as part of mbeddr [65]. It works by running a de-
bugger (typically gdb in case of mbeddr C) on the gener-
ated code. However, the user sees and interacts with the pro-
gram’s MPS representation, including domain-specific ex-
tensions. The current statement, breakpoints, the watched
variables, and the step in/out/over are shown relative to the
program in MPS, not the executing C code. Two ingredi-
ents are necessary to make this work: first, it must be pos-
sible to trace back from the low-level C code to the origi-
nal source nodes in the extended MPS program. MPS writes
traces during transformation, and the traces can be evaluated
backwards. Second, the behavior of the debugger (where to
step into, which variables to show and hide in the Watch
window) must be specified by the language developer. Us-
ing this approach, we have built a debugger that works for
the existing mbeddr language extensions, and extension de-
velopers can define debugger integration for their own ex-
tensions. By using the Eclipse CDT debug bridge [3], the
approach even supports on-device debugging (debugging of
programs running on an embedded device, connected, for
example, through a serial port).

However, there is a problem. The specification of the de-
bugger behavior involves conceptually reversing the trans-
formation that maps the extensions to C, a problem known
as origin tracking [91]. Unfortunately, due to the non-
declarativeness of the implementation of the transformations
discussed in the previous paragraph, this reverse mapping

SERG Lessons Learned from Developing mbeddr

TUD-SERG-2016-025 29



cannot be obtained by analyzing the transformations30. In-
stead, it is implemented in behavior methods using a custom,
embedded DSL. While the DSL significantly reduces the im-
plementation effort, the specification is still fundamentally a
duplication of the transformations. Another problem is that a
language can have several generators, mapping an extension
to different low-level C code structures (for example, to re-
alize different non-functional requirements). In these cases,
the debugger specification must also be changed. However,
since it is specified in the behavior and not as part of the
(exchangeable) transformations, this is not easily possible.

Overall, the situation with building debuggers in MPS
(and more generally, in language workbenches) is not yet
satisfactory. Further research is required. Our team is look-
ing into debugging mbeddr code at different intermediate
transformation steps [64]; we are investigating the develop-
ment of a custom language aspect for debugger specification
or inlining the debugger definition into the transformation
rules. More generally, it may be possible to derive transfor-
mations and debuggers from a single integrated semantics
specification, expressed in a language like DynSem [93] or
the K framework [73]. The developers of the K framework
have already defined a formal semantics for C [29, 38] and
we are currently investigating if and how this could be ex-
ploited for mbeddr. There are other attempts at formalizing
C, such as the work by Krebbers [52] that might be useful
for mbeddr. However, we have not investigated this in any
detail.

Self-Extension The development of MPS extensions is
outside the scope of the case study itself; however, in this
paragraph we briefly discuss such extensions as a means of
building mbeddr. They are an important approach for man-
aging the complexity involved in language definition. As
mentioned several times before, the languages used by MPS
for defining languages are MPS languages themselves. This
means that they can be extended with the same mechanisms
that are used to extend mbeddr C. We have used this capabil-
ity extensively and consider it a major ingredient of dealing
with complexity in MPS. Here are a few examples:

• Notations: We have already discussed earlier that we have
added math, tables and diagrams as new notations by
implementing additional editor cells.

• Debugger: In the previous paragraph we have discussed
a DSL for defining the behavior of debuggers for C ex-
tensions. The DSL is essentially a set of special-purpose
statements and expressions used in behavior methods.

• IncQuery: We have integrated the IncQuery graph pat-
tern language [86] as a means for expressing incremental
computations for program analyses. This is a new lan-
guage that is used as part of the behavior models.

30 The same problem occurs in the context of verification: lifting the low-
level counterexamples generated by a verification tool to the level of the
DSLs in MPS also requires this reverse mapping.

• Patterns: This language is primarily used in transforma-
tions where it can be used to match a transformation rule
against program trees. The language supports nested pat-
terns, where the pattern components can also be refer-
enced from the consequence part of a transformation.

• Importer Test: This language is used to specify test cases
for the legacy C code importer. It uses the Pattern lan-
guage to verify the structure of code imported from tex-
tual C files (includi preprocessor directives).

• Counter Example Testing: This DSL is used to assert that
the verifier reports the correct counter examples in tests
of the mbeddr C model checking infrastructure [59].

• Interpreter: This language is used to quickly and effi-
ciently implement AST interpreters. It also supports in-
terpreter composition, to ensure that interpreters can be
extended in the same way as the languages themselves.

• IDE Customization: Several DSLs are used to configure
the set of actions shown in the IDE (menus, buttons), for
customizing the contents of the palette, as well as for
defining new project tree views. All of these languages
are used to customize MPS for different user groups.

In addition to these major extensions, we have also de-
veloped a number of smaller utilities, including tooltips in
the editor, the conditional editor and querylists mentioned
earlier, plus a more sophisticated version of System.out.
println for console debugging.

However, there are also some limitations. The most
prominent example is the inability to extend the generator
language with additional kinds of transformation rules or
generator macros: we would like to introduce new macros
that support inserting subtrees matched by the pattern lan-
guage or capture some data necessary for debugging. These
limitations are not conceptual, but rather a consequence of
specific low-level implementation decisions in the generator
language.

Summary for RQ3, Managing Complexity:
The approach of using a DSL for each language aspect
works well based on our experience, even though some
aspects are missing and some are not declarative enough
to support meaningful analyses.

The support for debugging is spotty: it works well for
transformations, but debugging generator macros, behav-
iors and type system rules is very tedious.

The ability to extend MPS’ language definition DSLs
with MPS itself is a powerful approach for managing
complexity, and we have used it extensively, even though
it has some limitations.

Lessons Learned from Developing mbeddr SERG

30 TUD-SERG-2016-025



7.4 RQ4: Performance and Scalability
Performance and scalability is crucial for any tool if it is to
be used for real-world applications. The Smart Meter system
that was built with mbeddr [107] is non-trivial in size: it has
roughly 30,000 lines of code, spread over 428 chunks (which
are roughly equivalent to files). As described in Section 6.1,
the mbeddr implementation is also significant in size, prob-
ably one of the largest systems developed using a language
workbench. So, generally, performance and scalability are
sufficient for building significantly sized systems. However,
there are a number of issues to consider during the design
and implementation of a language.

Editor responsiveness For a user’s perception of a lan-
guage workbench’s performance, the responsiveness of the
editor is of utmost importance: editing operations must work
without any noticeable delay. In MPS, editor performance is
governed by three ingredients: rendering, code completion
as well as type checks and other analyses. We discuss them
in turn.

Rendering of the editor involves re-layouting and redraw-
ing the concrete syntax of the program after it has changed as
a consequence of an editing gesture. MPS tracks the changes
to the AST and then computes the parts of the editor that
must be redrawn. Depending on the notations used, and the
layout algorithms they employ, the fraction of the editor that
has to be redrawn varies. As a consequence, this limits the
amount of code that can be edited in one editor window
without slowing down the editor too much. The MPS aspect
DSLs tend to use a relatively large number of relatively small
roots, and we have not run into any performance problems
while editing MPS language definition code.

The situation for mbeddr C is different: mbeddr’s equiv-
alents of C files can become large, especially if legacy code
is imported (it is not untypical to find C files with thousands
of lines of code). A recent test showed that up to 4,000 lines
of code in one editor/file can be edited with good editor re-
sponsiveness.

Code completion is extremely critical to editor perfor-
mance in MPS. In contrast to a parser-based editor, a pro-
jectional editor only lets users type things that are listed in
the code completion menu. This means that for every “to-
ken” a user types, the code completion menu must be calcu-
lated in real time, even if the user does not explicitly invoke
the code completion menu and just enters the code by typ-
ing. For example, if a user wants to instantiate a class using
Java’s new keyword, the list of all visible classes must be put
into the code completion menu so that the user can type the
name of the to-be-instantiated class. Similarly, when calling
a function in mbeddr C, all functions defined in all (poten-
tially transitively) imported modules must be collected be-
fore the user can type anything. This illustrates why code
completion performance is crucial.

The code completion menu is populated in the follow-
ing way: MPS checks the used languages for subconcepts

of the concept under the cursor position (for example,
Expression). It then evaluates any existing tree structure
constraints to filter the list of applicable concepts (for exam-
ple, the EventArgRef expression may only be used in state
transitions that are triggered by an event). If the concepts
are smart references, i.e., their only purpose is to reference
another node, then the scoping rules are evaluated, and the
valid targets are put into the code completion menu (for
function calls all visible functions must be collected). While
finding the subconcepts of a given concept is framework
functionality and aided by caches, the tree constraints and
scopes are code written by the language developer. Local
constraints (such as resolving the event arguments owned
by the event triggering the transition under which we are
editing) can be handled efficiently (even many of them), but
global lookups (for example, for all functions in all imported
modules) can become a performance bottleneck for large
systems. While in our practical work with MPS, mbeddr
and Smart Meter we did not run into serious problems, we
are experimenting with speeding up global lookups by using
IncQuery [86], an incremental query engine. It essentially
keeps caches of all visible elements, so lookup is cheap.
However, it leads to additional memory use because of the
necessary caching. The caches are incrementally updated as
the model changes.

Type checking in MPS includes two tasks. The first one
involves calculating derived types (for example, calculating
the type of + in 2 + 3.33, an int8 and a float) and check-
ing type compatibility (for example, verifying that the init
expression is compatible with the declared type, as in int32
x = 2 + 3.33;). As discussed earlier, this task relies on
the type equations and the solver. The second task evalu-
ates checking rules. These are essentially procedurally writ-
ten code that uses if statements to check arbitrary Boolean
conditions across the model to detect errors (for example,
violations of name uniqueness rules). In addition, checking
rules may also invoke other, more advanced analyses such as
SMT solvers.

MPS evaluates type system rules in realtime, as the user
edits the program. MPS does this incrementally: it tracks
which nodes are changed in the editor (using a fine-grained
notification mechanism) and reevaluates only the type sys-
tem rules affected by the edits. For the first task, the actual
type calculation and checking, this works reasonably well.
But for the second task, where the user potentially writes
checking code that traverses large parts of the model, perfor-
mance can become an issue. The evaluation of these rules is
not on the critical path: they do not have to be evaluated be-
fore the user can type (in contrast to the constraints used in
code completion). In fact, MPS evaluates type system rules
in the background.

However, to access the model, the type checker must ob-
tain a read lock on the model repository. While this happens,
the editor itself cannot get a write lock, preventing the user

SERG Lessons Learned from Developing mbeddr

TUD-SERG-2016-025 31



from editing the code. Consequently, the type system unfor-
tunately interferes with the user’s editing activities. While
MPS abandons long running checking rules when the user
continues typing, the type checking required for large pro-
grams can become a problem. The performance is also im-
pacted by the number of actual errors that must be annotated
to the code. As an extreme case, we once had an imported
header file with thousands of errors. The mbeddr C editor
was unresponsive for several seconds while MPS added the
error markers to the code. If type checking becomes the bot-
tleneck in an editor (as opposed to the rendering process),
MPS allows disabling realtime type checking as a last resort.

To address these issues, we use several strategies. First,
we are experimenting with integrating IncQuery to incre-
mentalize global checks, as discussed above. Second, we
have developed assessments, which are persisted queries
over the model with persistent result sets. They are executed
only upon user request. We use them instead of checking
rules for long-running, global queries, for example to de-
tect code smells [35]. We also allow users to selectively dis-
able checks and analyses they are not interested in at a given
time. Finally, the Jetbrains team is currently prototyping a
new type system engine that hopefully scales better. They
are also looking into avoiding the need for read locks in the
type system, so that users can continue typing during the ex-
ecution of checking rules.

Generation MPS stores programs in models: each model
is essentially an XML file that contains program elements
expressed in any MPS language. When code generation is
initiated, each model is processed separately. The MPS build
engine makes sure that, when make-ing a project, it only re-
generates those models that have changed since the last make
(a full rebuild is of course also supported). Consequently,
generation is modular/incremental for each model.

Figure 17 shows generation time (vertical axis) over the
size of the model (horizontal axis) and the number of lan-
guages used (the three lines). We can make the following
observations. As the size of the synthesized model increases,
the generation time increases roughly linearly: doubling the
number of nodes or roots leads to doubling the generation
time. If more languages are used, the generation time takes
significantly longer. However, the difference between using
one extension (state machines) and several (state machines +
units + components) is very small. This means that the num-
ber of different transformations (and the resulting number of
generation phases) is not what slows down the transforma-
tions. Instead, it is the growth of the size of the model as
the transformations execute (because the lower the abstrac-
tion level, the more code is typically needed to express the
same behavior): in both cases, the LoC generated is around
200,000 for the largest models; the last intermediate models
have roughly 400,000 nodes that must be processed. In the
smart meter case study, the generation times for each model
were kept under 10 seconds by modularizing the system into

an appropriate number of models. While we would appre-
ciate a faster generator, the performance characteristics dis-
cussed so far are acceptable and scale to reasonable program
sizes.

For large systems, however, models have dependencies:
a reference in model M may target a node in model B. B
can still be generated modularly. However, when generat-
ing M, then the intermediate models created from B must
be available, otherwise the references in intermediate mod-
els break. Currently, MPS does not support this alignment
of intermediate models. To work around this problem, our
first generation step, when generating some model M, is to
physically copy in all the elements from all models refer-
enced by M, and then generate the compound model. This
has several problematic implications, for example, regard-
ing product line engineering and generation of C code with
#ifdefs. More importantly, however, it means that genera-
tion will take significantly longer for all models that have
outgoing model dependencies, because generating such a
model always implicitly generates the transitive closure of
all dependencies, voiding the benefits of the modularization
into separate models. While we have managed to deal with
this problem in Smart Meter by carefully designing the de-
pendencies, it is an impediment to building larger systems.
Based on this experience, Jetbrains is currently working on
a way to support cross-model generation, where intermedi-
ate models are (temporarily) persisted so that models with
outgoing references can rely on these persisted models to re-
solve their dependencies when they are generated.

Figure 17. Generation time (in seconds) for a single, syn-
thesized model depending on the number of roots with 1,000
nodes each. The model with 128 roots corresponded to
68,400 LoC of generated C code (for Plain C), 202,000 LoC
(C + State Machines) and 198,000 LoC (C + State Machines
+ Units + Components). The data was measured on a Mac-
book Pro, 2.7 GHz Core i7, 8GB RAM.

Lessons Learned from Developing mbeddr SERG

32 TUD-SERG-2016-025



Summary for RQ4, Performance and Scalability:
If attention is paid to the size of roots and the distribution
of code over multiple models, then systems of significant
size can be built with MPS.

The performance of the type system (as it is evaluated
in realtime in the editor) and support for cross-model
generation are the two most critical ways of improving
MPS performance.

During the development of languages we have not run
into any problems regarding performance or scalability
(of editor, type system or generator definitions).

7.5 RQ5: Interactions with the Development Process?
Automated testing, continuous integration and version con-
trol are crucial for any project. In this section we evaluate
how those work for MPS language development.

Testing Works The following aspects of a language imple-
mentation can be tested: structure and syntax, type checks,
scopes and constraints, IDE support, plus the semantics. We
discuss all of them in turn.

Testing the structure and syntax is not necessary in MPS.
In a projectional editor, entering code that is structurally
invalid at a given location is impossible in the sense that the
editor cannot bind the text and construct the AST; the code
is rendered with a red background as shown in Figure 18. No
AST is constructed. MPS does not support any way to test
this: since the code cannot be entered, one cannot even write
a test for this case.

Another aspect of testing structure and syntax is whether
users can express all the programs that are required to cover
a given domain. Strictly speaking, this is not really testing
(“does the program do things right”) but validation (“does
the program do the right thing”). This is mostly a manual
process: a tester tries to write programs that are meaningful
in the domain, and if she cannot express a particular pro-
gram, the language has to be changed. We have done this
implicitly when writing the test cases discussed below, and
based on feedback from users.

Figure 18. Trying to enter code in a context where it is not
allowed leads to unbound (red) code. This example shows
the attempt of entering a for statement outside a function
and trying to define a struct inside a function.

Figure 19. This test case asserts that the structure of the
expression, after being entered linearly using editor actions,
respects the precedence specified for the + and * operators.

A final aspect of structure testing involves testing the
construction of the AST based on what the user types. For
example, if the user enters an expression such as 4 + 3
* 2, precedence rules must be respected and the resulting
tree must correspond to 4 + (3 * 2) and not (4 + 3)
* 2. This can be tested by writing a node test case: the
tester writes the program and then adds a test method that
procedurally inspects the tree and asserts over the structure.
Figure 19 shows an example.

Note how the test case in Figure 19 is also a nice example
of language composition: the node under test is entered
between the large square brackets using the syntax and IDE
support of the target language (C in this case). It is marked up
using annotations (the expr label attached to the expression
we are interested in). Below we then write BaseLanguage
code to inspect the structure of the C program.

A similar approach based on example code and annotated
markup is used for testing type system rules and checking
rules. An example is shown in Figure 20. When such a test
case is executed in MPS, nodes that have an error message
attached (i.e., are marked with a red squiggly line) without
having the green has error annotation will result in a test
failure. Conversely, nodes that have a has error annotation
but do not actually have an error annotated will also count
as a failure. This approach is very convenient to test type
systems, checking rules and constraints/scopes (even though
in the latter case one has to first disable the constraint to be
able to enter the code that violates the constraint).

As Table 2 shows, mbeddr has 324 such tests, with 1,391
assertions (mostly has error annotations). It would have
been impossible to implement the C type system without
this capability. We have regularly used a test-first approach
here, where we first wrote the code with the expected error
markup, and then implemented or fixed the type system to
behave in the expected way.31

31 Note that, because one cannot write code before the language structure
and syntax are implemented, MPS does not support test-first development

SERG Lessons Learned from Developing mbeddr

TUD-SERG-2016-025 33



Figure 20. Testing type system rules is done by writing
code that provokes the error, and then asserting that the error
actually occurs.

MPS also supports writing editor tests in order to test
whether editor actions (side transformations or deletions;
see the Actions paragraph in Section 3.3) work correctly.
They rely on entering an initial program, a script to de-
scribe a user’s changes to the initial program using in-
teractions with the IDE (press Up arrow, type “int8”,
press Ctrl-Space), and an expected resulting program.
When running such tests, MPS starts with the initial struc-
ture, executes the scripted user actions on that initial struc-
ture, and then validates whether the resulting tree is struc-
turally identical to the resulting node structure specified in
the test case. All IDE interactions can be tested this way. In
mbeddr, we have decided to use editor test cases only in a
few circumstances, where editor behavior is especially com-
plex (for example, parenthesis editing). Using it throughout
mbeddr would not have been cost effective in our assess-
ment. Instead, we relied on user feedback when writing the
other kinds of test cases to detect problems with IDE be-
havior. This resulted in a few regressions from time to time,
but not enough of them to justify the effort of writing more
editor test cases.

Figure 21. Example state machine with transitions used in
the text to explain semantics testing.

Whenever possible, we tested the semantics of a program
as opposed to its structure. Since mbeddr extensions define
their semantics by transformation to C, semantics testing
means that we generated the mbeddr program to C and then
executed it. As an example, consider the verification of the
order of entry, exit and transition actions for hierarchical
state machines, as shown in Figure 21. If a transition T goes
from a state R nested in state A to a state S nested in state
B, then the order of actions must be as follows: R.exit,

for language syntax. However, it supports test-driven development, where,
for every piece of language syntax one defines, one can immediately write
a test case. For other kinds of tests (type checks, semantics), a test-first
approach is feasible and has been used occasionally by the mbeddr team.

Figure 22. An example state machine plus a test cases that
uses a state machine-specific C extension to express the test
for the state machine.

A.exit, T.transition, B.entry, S.entry. Instead
of testing the (quite complex) structure of the generated
code, we wrote a test that allocated a buffer of 5 integers
all initialized to zero, and then each action added a specific
number to that buffer. We then asserted over the contents of
this buffer: if the actions were executed in the wrong order,
the order of the action-specific numbers in the buffer would
be wrong, and the test would have failed.

Testing semantics this way requires that it is possible to
express expected behavior in the DSL programs. As a con-
sequence, one of the first C extensions we have developed
(even before C itself was completely implemented) was the
support for unit tests (cf. Figure 7). As the right half of Fig-
ure 22 shows, test cases are almost like void functions, but
support assert statements. The number of failed assertions
is counted, and the test case as a whole fails if that count
is non-zero. Test cases can be executed from the console
(where the test count is typically returned as the return value
of main), or they can be run from within the MPS IDE. We
have built an MPS UI extension that enables users to click
on an assertion failure message in the MPS console window
to navigate to the failed assertion in the code.

For many of the C extensions, we have developed cor-
responding C extensions to test the original extension; this
allows writing tests at the same level of abstraction as the
extension itself, thereby improving efficiency of testing. The
example in Figure 22 shows the test statemachine state-
ment that can be used to concisely test the transition behav-
ior of state machines: each line is an assertion that checks
that, after receiving the event specified on the left side of the
arrow, the state machine transitions to the state given on the
right. Such extensions are not just useful for the language
developers to test the transformations; they are also useful
for the end user to write tests for a particular state machine.
In the former case, one expects the state machine and the
test case to both be correct, testing whether the transforma-
tions work correctly. In the second case, one expects that
the transformations are correct, testing whether the state ma-
chine corresponds to the assertions expressed in the test case.

A concern for tests cases where both the test subject and
the test case are expressed with mbeddr language extensions
is that the generators for both may be compatibly wrong,
resulting in erroneously successful tests. However, for any

Lessons Learned from Developing mbeddr SERG

34 TUD-SERG-2016-025



non-trivial coverage, this is exceedingly unlikely to happen.
We have never experienced this problem during the devel-
opment of mbeddr. We are currently investigating this issue
more systematically in the context of using MPS and mbeddr
in safety-critical systems.

Relative to semantics testing we have only experienced
one significant problem. MPS relies on multi-step trans-
formations. For example, the test statemachine state-
ment shown in Figure 22 is translated to a sequence of
trigger/assert statement pairs, which are then reduced
to C code using their own generators. Currently, MPS does
not support executing single transformation steps at a time,
asserting the structure of the intermediate results. This has
been submitted as a feature request for MPS.

A conceptual problem relates to mbeddr’s extensibility.
Users can compose languages arbitrarily, but, as discussed
earlier, we cannot prove that such combination will not lead
to unintended semantic interactions (and hence, program
failure). If we find out that a particular combination does
lead to faulty behavior, we report an error if such an invalid
program is written. More generally, testing for the absence
of required error messages is hard: in order to write a test
for a missing error message, the tester has to think about a
particular use of the language. If he does think of it, then he
could write the error check; if he forgot to write the checking
rule, then it is likely he will not think about writing a test
either. To address this issue, we have implemented a test case
generator that uses the following algorithm to automatically
explore the set of possible programs:

• Select a set of language extensions
• Randomly generate structurally sound programs (struc-

turally unsound programs cannot be written in MPS)
• If the type system finds errors in the program, discard the

program (because errors are correctly reported)
• If the program has no errors, try to generate and com-

pile it. If either generation or compilation fails, flag this
particular generated program as a failed test.

While successful generation and compilation is not conclu-
sive evidence of the absence of undesired semantic interac-
tions, it is a meaningful proxy. We have found several tens
of missing checks using this approach. The details are dis-
cussed in [67].

Version Control MPS stores its models in XML files,
which cannot be used for diff/merge directly. However, as
we have already discussed in Section 7.2, MPS provides a
diff/merge facility in the tool that uses the projectional edi-
tor to render the code in its natural notation. So, as long as
users use MPS for resolving conflicts, the established work-
flows based on git or other version control systems can be
continued unchanged. To reduce the number of merge con-
flicts, MPS require a dedicated merge driver. These exist for
git and SVN, but according to Jetbrains, drivers for version
control systems can be built easily.

CI Server Integration Automatically building the lan-
guages and test cases, executing type system and semantics
tests, and packaging the plugins and the mbeddr IDE can be
automated using a continuous integration server. In mbeddr
we use Jetbrains Teamcity, mainly because it scales well as
a consequence of its support for distribution of build agents
over several machines.

MPS supports a headless mode to run tests or gen-
erate models. To initiate this, MPS provides ant32 tasks.
These tasks can be integrated with essentially all existing
CI servers.

However, it is painful to manually write the necessary ant
scripts: assembling the necessary path and classpath vari-
ables, plus establishing references to all necessary language
definition artifacts is tedious and error prone. So is packag-
ing the built languages as deployable plugins for the IDEA
platform that forms the foundation of MPS. To remedy this
problem, MPS ships with a DSL for specifying builds and
packaging languages and solutions into plugins. While such
a language is generally a good idea, it is not as mature as
it should be. For example, the DSL does not report all rel-
evant errors, which means that even though a build script
has no error shown by MPS, generation can fail with a low-
level error that is hard to track down. Second, these scripts
contain substantial duplication relative to project, solution
and model properties specified in the IDE. For example, de-
pendencies (on other languages or solutions, as well as on
libraries) must be maintained in both places. While the data
in the build scripts can be updated based on the data in the
properties with one click, this still has to be initiated man-
ually. Forgetting this is a frequent source of build failures.
Third, as a consequence of its implementation, the build lan-
guage is not as extensible as it should be. We have tried to
add several extensions that would make an idiomatic mbeddr
build easier to express, but found it hard or impossible to
write these extensions. Generally, specifying and maintain-
ing the build scripts and CI server infrastructure is still too
much work and requires very specific experience. Only two
of our team members know in detail how to do it.

Another problem with the ant-based command line build
is that it takes very long: during a typical, modularized
mbeddr build, several dozen build tasks are started, each of
them launching a new (headless) MPS instance. In all, a full
rebuild of mbeddr takes around 25 minutes on a modern
root server or a developer’s notebook. While this is not a
problem for nightly builds on the server (we also compensate
with more build agents), it is a problem for the command-
line rebuilds that are typically run by each developer locally
before they check in or after they switch a branch.

Evolution of Models Iterative incremental development
implies frequent changes to the languages. This then may

32 http://ant.apache.org/

SERG Lessons Learned from Developing mbeddr

TUD-SERG-2016-025 35



require changes to existing models.33 One proven way of
avoiding the need for this kind of model migration is to not
make incompatible changes; however, this severely limits
the flexibility in terms of how languages are allowed to
change over time and is generally not desirable.

During the early phases of mbeddr development, the de-
velopment team had access to all instance models because no
external parties used mbeddr; all instance models were in the
mbeddr repository. We created a project that contains every-
thing, and developers who made incompatible changes often
directly migrated everything, typically through a (structural)
global search and replace. Over time, as we got external
users and the instance models were not all in our repository
anymore, we had to use the following more principled ap-
proach when changing a concept C in an incompatible way.

1. Implement a new concept C’

2. Mark the existing concept C as deprecated. The depre-
cation is achieved through an annotation that stores the
timestamp of the deprecation, plus a message that points
the user to the new, replacing construct C’. The message
is reported as a warning in the IDE.

3. If possible, prevent the old construct C from being en-
tered, for example, by removing transformations or mark-
ing it as IDontAllowEntering.

4. If an algorithmic migration is semantically possible,
write the necessary transformation that transforms in-
stances of C to instances of C’. Otherwise, we expect the
user to migrate manually, based on the instructions in the
deprecated annotation.

5. Finally, after a suitable period of time (and possibly af-
ter checking existing models for occurrences of C), we
remove C from the language, making sure that no “sedi-
ment of old stuff” accretes in the languages.

Writing the migration transformation is typically not a big
challenge: the developer who changes the language by defi-
nition understands the original structure C and the new struc-
ture C’. The migration script is simply a model transforma-
tion written in BaseLanguage, similar to the code that im-
plements an intention, a refactoring or a non-template trans-
formation. What is more challenging is to decide when to
execute the migration script.

One approach is to execute the script manually, triggered
by the user. While this works for the language developers if
they have access to the instance model, it is not realistic to
expect end users to do this.

Another approach relies on attaching the migration script
to the deprecation warning, letting the user run the transfor-
mation by executing the quick fix via Ctrl-1. On the plus

33 In a projectional editor like MPS, only changes to the language structure
may lead to the need to migrate models; a change in concrete can simply be
achieved by changing the projection rules; the new notation is rendered as
soon as users open the program with the updated language.

side, this makes the user aware of the change, and lets the
user decide whether to run the scripted migration or manu-
ally change the code, maybe in a different way. The prob-
lem is that only models that anyone ever opens in an edi-
tor are migrated. MPS can also run quick fixes for warnings
and errors automatically: as soon as the model is opened in
the editor the quick fix is executed, without user interaction.
The good thing is that migrations happen automatically. The
problem is that the code “changes under the user’s finger-
tips”, and also that it only happens in the editor, so the model
must be opened by the user in the first place.

Since MPS 3.3, based on feedback from the mbeddr team,
MPS provides a more robust approach. As soon as a devel-
oper creates a migration script in MPS, the language that
contains the script (presumably the language that is in the
process of changing incompatibly) gets its version number
incremented. This version number is stored in all models
that use the language. This way, MPS can detect which ver-
sion of a language has been used to edit a model. When MPS
opens a project, it checks this version number for all models:
if a version number n is found in a model when the version
of the deployed language has advanced to m, then all migra-
tion scripts from n to m are executed automatically. This way,
models are always kept up to date, and they are migrated if
and when the user updates his language definitions. The user
does not have to open the model in the editor, loading the
project is enough to trigger the migration.

The migrations, if implemented wrongly, have the poten-
tial to damage models. This is all the more critical if they
are run automatically on a client’s computer. To avoid this,
the migrations must be tested. Jetbrains is working on a new
kind of test case that supports testing migrations. For now,
we implement the migration behavior in a regular class and
call it both from the migration script and from an intention.
This way, a migration developer can try out the migration
code on a number of example models before deploying it for
automatic execution with customers.

All in all, the need for systematic handling of migrations
slows down our development process, because a change to
a language must be done more consciously. However, this
is not a tool problem; it is a fundamental consequence of
mbeddr being used with real end users, and the models being
out of reach for the mbeddr team.

Lessons Learned from Developing mbeddr SERG

36 TUD-SERG-2016-025



Summary for RQ5, Development Process:
Except for the missing test support for model migrations
and single-step transformations, language testing works
well, and we have achieved good coverage as demon-
strated by a stable code base.

We have successfully integrated mbeddr’s build, test and
packaging with the Teamcity CI server, but the effort to
get there was significant, partially as a consequence of the
inadequacy of MPS’ build language.

Migrating instance models as the underlying languages
change incompatibly is feasible with manually scripted
migrations and their automatic execution based on
implicitly-maintained language version numbers.

8. Discussion
8.1 Frictions in mbeddr’s development
Unsustainable C Improvements We made a few changes
to C when implementing it in MPS. For example, users are
not required to manually maintain .c and .h files; they just
attach an exported flag to a struct, function or typedef if
they want it to be declared in the header file (and hence po-
tentially visible to other .c files). However, some of these
“improvements” were not sustainable because people really
needed to use what we considered a strange, or bad feature
of C. For example, we had to add back for-loops with more
than one counter variable. We ascribe our misjudgements to
a lack of detailed, real-world C experience of the mbeddr
developers, and to the fact that different user communities
use C in different ways. Other changes are subtly different
from standard C, which may make them dangerous for ex-
perienced C developers. For example, we have switched the
order of the dimensions in multi-dimensional arrays to make
them easier to understand and implement. However, when
experienced C developers look at mbeddr code they might
be surprised by the code doing something different. We are
in the process of changing this back to the standard order.

Reimplementation of Languages Some extensions had to
be reimplemented because we did not have any real require-
ments and/or we did not get them right the first time. An
example is the units extension, whose original implementa-
tion was not extensible with generic units (see the hump in
summer 2014 in Figure 6).

Also, because we got additional requirements over time,
the complexity of some languages and generators grew, and
we did not do enough refactoring. For example, the generator
for the components language must be rewritten completely.
It is too convoluted to support the additional language fea-
tures required of the components language. We do not at-
tribute this issue to specific problems with the MPS genera-
tors; it is a case of delayed refactorings because of pressure

to implement new features. This happens in many projects,
independent of the implementation technology.

8.2 What we Underestimated
Languages are not Enough In addition to the languages
and their editor support, effective IDEs also require other
kinds of tools, in particular, various tree views and visual-
izations. While those can be implemented easily in MPS as
part of a language’s plugin aspect, we have underestimated
the users’ needs for those. We had to retrofit some of them.

Tool Chrome We underestimated the importance of clean-
ing up MPS’ chrome (menu items, dialogs, actions). MPS
“looks” complicated to end users. This is partially because
it is used for language development (with “real” develop-
ers who can cope with dense UIs) and by mbeddr end users
(who appreciate simple UIs). The problem was bad enough
that prospective users did not “see” the benefits of the lan-
guages, notations and extensibility, since they were put off
by the UI. Thus we have recently invested significantly into
cleaning up the MPS UI. In particular, we have built DSLs
for customizing the actions shown in MPS menus, for devel-
oping custom structures for the project view and for adding
context actions (similar to a diagram palette, see Figure 14).

Education and Adoption We underestimated the re-
sistance of mbeddr’s target audience to change to using
mbeddr, as well as the importance of integrating with legacy
tools (IBM Doors, Eclipse EMF or Microsoft Excel). Also,
the initial level of education expected of mbeddr users is
quite high. Many embedded developers have a background
in electrical engineering or mechanical engineering with lots
of domain knowledge about the systems as part of which the
embedded software will run – but often only with relatively
basic experience in software engineering and the concepts
embodied in mbeddr. While these issues are not directly rel-
evant to the experience of building mbeddr, they are relevant
considerations when deciding to address a domain problem
with language engineering.

8.3 Onboarding of Developers
During the mbeddr project we integrated several new devel-
opers into the team, which allows us to evaluate, to some
degree, the time it takes to become productive with MPS.
In our experience, competent developers become produc-
tive with MPS in six to eight weeks of coaching by col-
leagues, and learning on their own. Considering the capabil-
ities of MPS, we think this number is reasonable. However,
the learning effort is not distributed equally between the var-
ious aspects of MPS. Structure and behavior are understood
readily, since they directly resembles OO-style modeling and
programming. Editor definition is also understood quickly,
once developers get over some off-putting notational details
in the editor definition language (such as the use of the per-
cent sign for child collections). New languages developers
struggle most with are the type system and the transforma-

SERG Lessons Learned from Developing mbeddr

TUD-SERG-2016-025 37



tions. The type system language is hard to learn because of
its reliance on declarative equations and solvers. Most de-
velopers are not familiar with this programming paradigm.
The transformation language is hard because of the way tem-
plates, scaffolding and macros interact.

On the plus side, it is very easy to find out how to solve
specific issues using MPS’ languages. Users can always
take an existing language, such as MPS’ BaseLanguage, and
jump to its definition to investigate how a particular language
feature is implemented.

8.4 Conceptual Challenges
Optimizing Generators We underestimated the inher-
ent (and MPS-independent) complexity of writing optimiz-
ing generators. For example, the components generator opti-
mizes unnecessary indirections through function pointers (if
it determines that polymorphism of interfaces is not used in
a given system), avoids the use of extra arguments to pass
around component state (if it determines that a component
only has one instance and thus the state can be held as a
global variable) and optionally generates code to treat inter-
faces as values (so they can be used as values). We were able
to modularize some of these optimizations into preprocess-
ing scripts, but others crosscut the templates and thus cannot
be modularized. In both cases they are hard to extend when
new language constructs are added.

Modularity vs. Optimizations Global optimizations are
often necessary in embedded software. An example is global
lock ordering in the ext.concurrency language: for global
lock ordering, the whole system must be generated in one
generator run so that all locks are known to the optimizer.
Another example is the analysis of components to find out
if a component is instantiated more than once, and whether
interfaces require polymorphism. If some parts of the sys-
tem are generated independently, such global analyses are,
by definition, not possible. At this point we are not sure how
to resolve this issue; we currently opt for compromised mod-
ularity in such cases, because, in embedded software, com-
promising on optimizations is almost always the wrong deci-
sion. Nonetheless, the situation is unsatisfactory and requires
additional conceptual research in the future.

Open vs. Closed World The open-world assumption un-
derlying mbeddr’s extensibility is great for flexibility and
productivity, because it allows third parties to add their own
language extensions to mbeddr, with IDE and tool support
that is as good as that provided for mbeddr’s native ex-
tensions. However, the open-world assumption is at odds
with the requirements for tool qualification and certifica-
tion [21, 41] in safety-critical contexts, where a tool’s be-
havior has to be known and predictable for quality assurance
purposes. This issue is particularly critical for tools that cre-
ate (generate or configure) part of an executable system –
in other words, exactly what mbeddr does with its C exten-
sions. Specifically, the ability to add new languages and gen-

erators makes it impossible to know what the generated code
will look like when a certain fragment of the program is in-
vestigated. Other parts of the program or configuration flags
that control the code generators can lead to different gener-
ated code. A similar problem occurs for some generic tools
in the IDE: for example, to build a call graph for mbeddr, we
must consider function calls, triggered events in state ma-
chines, component runnables calls, and test-calls. In addi-
tion, a new DSL might come with its own "call-like" con-
struct that should become part of a call graph. However, this
is impossible to know in advance. One way of alleviating
this issue to some degree is to provide interfaces – such as
ICallLike – that act as markers. However, extension devel-
opers have to be aware of interfaces like this one and imple-
ment it (correctly) for the new construct to integrate effec-
tively. They also require invasive changes to base languages
if they are introduced after the fact. At this point, we do not
know how to resolve this issue; more research is required.

8.5 Threats to Internal Validity
A factor that affects the findings in this paper is the bias
because of the involvement of the authors in mbeddr itself.
The first and second authors are the lead creators of mbeddr,
and the third and fourth author are long-time contributors.
To counter this bias, we focused on aspects that can be ob-
jectively measured (size, concept counts, effort, scalability).
Furthermore, the fifth author has no connection to mbeddr or
the companies involved in the case study, and was brought
in primarily for his experience in conducting qualitative re-
search. Finally, mbeddr and MPS are open source software,
so interested parties can look at the code and check many of
the conclusions, at least through random samples.

8.6 Threats to Conclusion Validity
Conclusion validity raises the question whether there is an
explanation for our findings, which are positive overall. Sev-
eral factors can contribute to this explanation:

First, MPS has been designed to support large ecosystems
of languages. Specifically, the support for language compo-
sition facilitated by the projectional editor is the raison d’être
for MPS in the first place; Sergey Dmitriev’s 2004 article on
Language Oriented Programming [25] articulates this goal.

Second, MPS has been developed since the early 2000s
and Jetbrains estimates that a total of 125 person years has
been spent on its development over the 15 years since. Ad-
ditional effort has been spent validating MPS by develop-
ing several MPS-based languages inside Jetbrains (including
various languages for web development). This huge effort
has obviously helped mature MPS to the point where it is
now able to effectively implement systems like mbeddr.

Finally, the key members of the team that developed
mbeddr have significant experience with language engineer-
ing, primarily based on Xtext. The limitations of Xtext re-
garding language composition and notational flexibility mo-
tivated them to develop mbeddr based on MPS; they had a

Lessons Learned from Developing mbeddr SERG

38 TUD-SERG-2016-025



clear vision of where they wanted to go, and hence were able
to drive mbeddr in the direction described in this paper, fully
exploiting the capabilities of MPS.

8.7 External Validity
In this section we discuss a key question: to what extent can
the results of this case study be generalized?

Beyond mbeddr As of now, no other case study of the same
magnitude has been run, neither by the mbeddr team nor
by other groups – this is why we consider the mbeddr case
study interesting in the first place. So we have no hard facts
about generalizing beyond mbeddr. However, only a few
of the findings in this case study are specific to embedded
software or the mbeddr languages. In fact, the team at itemis
has built several other language ecosystems (in requirements
engineering, financial systems, health and security analysis),
and, while they are not as big as mbeddr, the team has
fundamentally had comparable experiences. We thus think
that the findings in this study can be generalized to other
language ecosystems developed with MPS.

Beyond MPS mbeddr has been built with MPS, so the
findings in this paper apply primarily to MPS-based lan-
guage engineering. However, there are some other tools that
have (some) comparable features. For example, the Inten-
tional Domain Workbench is a projectional editor as well
and should support language composition and notational
flexibility in a similar way. Similarly, Spoofax and Rascal
support similar (but not identical) composition approaches,
as a consequence of their use of GLR parsing [84]. Also,
as mentioned before, the Spoofax team is working on bet-
ter and more formalized DSLs for DSL design and imple-
mentation [60, 87, 93]. These should further simplify the
implementation of language ecosystems like the one dis-
cussed in this paper. We would welcome a reimplementation
of mbeddr (or a similarly large set of languages) on one of
these platforms to compare the findings in this paper.

Beyond the Team At the beginning of the mbeddr project,
some team members had experience in language design (see
Section 5.1). However, for all of them, building mbeddr was
the first attempt at large-scale language ecosystem design.
In particular, they had only very limited experience with
language composition and the use of multiple notations.
MPS experience was also limited. The team learned about
both in the course of the project. Therefore we see no reason
why other teams could not do the same.

There was significant collaboration between the mbeddr
team and the MPS team at Jetbrains; a risk to external va-
lidity is that this access to the Jetbrains team may not be
available to other teams. However, we think that this risk is
limited for several reasons. First, MPS is now much more
mature than five years ago when we started. The neces-
sary amount of help from Jetbrains is now lower. The need
for support is also reduced because more documentation is

available today; beyond the user guide and all the tutori-
als on the MPS website, several books cover MPS either
exclusively [14] or partially [99, 102]. Furthermore, many
of the discussions with Jetbrains have been about extend-
ing MPS at a fundamental level to enable us to build the
mbeddr.platform, which is now available to other teams who
want to build something similar to mbeddr. Finally, the MPS
team is accessible to users through the MPS discussion fo-
rum.34

8.8 Reliability (Repeatability)
mbeddr is open source. The sources are all available from
http://github.com/mbeddr/. The version used for this
paper can be retrieved from the buildingMbeddrPaper
tag. The version of MPS used at this time was 3.3.4; it should
also work with subsequent 3.3.x releases of MPS. MPS it-
self can be obtained from http://jetbrains.com/mps.
This means that all the measurements, size and performance
numbers can be reproduced. The use of the MPS language
definition DSLs to build mbeddr can also be observed. The
mbeddr implementation in MPS can also be seen as a spec-
ification for other teams to reimplement mbeddr itself with
another language workbench and compare their findings.

9. Related Work
Evaluating DSLs Several papers evaluate a specific (set
of) languages, and whether they are useful relative to some
metric or better than some alternative. Van den Bos and
Storm evaluate Derric, a DSL for digital forensics [88]. They
conclude that the DSL supports the development of typical
forensics applications with much reduced effort compared to
manual coding. A similar conclusion is drawn by Klint and
van Rosen in [48] relative to Micro Machinations, a DSL
for game design. Our own case study on using mbeddr to
develop a smart meter [107] comes to a similar conclusion
relative to mbeddr’s suitability to develop embedded soft-
ware. Often the alternative to developing a DSL is to pro-
gram against an object-oriented framework. Van Deursen
compares the Risla DSL (for financial software) against an
alternative use of a framework and concludes positively for
the DSL [89]. In particular, the paper states that end users
can now define questionnaires (the domain of the DSL) and
correctness can be asserted more easily. Another paper [90]
by Klint and van Deursen on the same language concludes:
“a DSL designed for a well-chosen domain and implemented
with adequate tools may drastically reduce the costs for
building new applications as well as for maintaining exist-
ing ones.” Kosar et al. also concludes in favor of DSLs [51]:
a 15% higher success rate has been measured (regarding
achieving the goals that the DSL or framework was designed
to achieve). Finally, the fact that well-designed DSLs can in-
crease productivity or quality for a given domain is also cor-

34 https://mps-support.jetbrains.com/hc/
en-us/community/topics/200363779-MPS

SERG Lessons Learned from Developing mbeddr

TUD-SERG-2016-025 39



roborated by systematic studies such as the one by Hermans,
Pinzger and van Deursen [40], which used a survey among
18 students to come to the same positive conclusion.

On the one hand, these papers are only marginally related:
they all evaluate the usefulness of a language, and not its im-
plementation, the objective of the current paper. On the other
hand, MPS can be seen as a set of DSLs for language imple-
mentation, and the current paper can be seen as an evaluation
of these DSLs. In this sense, the findings of the current pa-
per and those listed above are similar: well-designed DSLs
make the job they are designed for easier.

Language Implementation Case Studies The History of
Programming Languages conference series35 collects invited
papers about the design and implementation of programming
languages. Some of the papers focus on the history, influ-
ences and design decisions, whereas others also touch on
implementation issues; however, even those issues are more
like implementation decisions. The papers do not cover the
actual implementation of structure, parsers, type systems,
compilers or IDE support.

One of the earliest dedicated reports on the implementa-
tion of a language with (what would now probably be called)
a language workbench is Porter’s master thesis [66] on the
implementation of the editor for the Prototype Systems De-
sign Language based on the Synthesizer Generator [72, 81].
Porter concludes that “the Synthesizer Generator has great
power in its ability to transform input into various forms and
is quite capable in the areas of consistency checking and ver-
ification of conventions.”

Visser discusses the design of WebDSL [94], a set of in-
tegrated DSLs for web application development. It looks in
detail at the requirements for a DSL for web applications,
the design decisions taken as well as implementation alter-
natives. However, it does not critically review the actual im-
plementation of WebDSL with the Spoofax [45] language
workbench, evaluating the language workbench itself.

Basten et al. [10] evaluate the implementation of Oberon-
0 with the Rascal [49] language workbench, focusing on
modularity. They implement the four levels of Oberon-0 as
separate language definition modules, each higher level be-
ing an extension of the lower level. At the same time, differ-
ent aspects, such as abstract syntax, concrete syntax and type
checks, have been implemented as separate modules as well.
The paper concludes that “Rascal is a suitable language for
prototyping languages in a modular fashion with relatively
little effort. All five tasks across the four language levels
have been implemented in under 1500 source lines-of-code”.
While the Oberon-0 case study is simpler than mbeddr, and
Rascal does not rely on a projectional editor and supports
only textual notations, the conclusions are similar to those in
the current paper.

35
https://en.wikipedia.org/wiki/History_of_Programming_Languages

Reviewing the examples above, it becomes obvious that
in terms of the number of languages, implementation effort,
the support for modular extension, and support for different
notations, the mbeddr/MPS system discussed in this paper is
the largest, making it a relevant case study.

Projectional Editors Early projectional editors include the
aforementioned GANDALF [62], the Incremental Program-
ming Environment (IPE) [58] and the Synthesizer Genera-
tor [72]. They all interpret the notion of projectional editing
slightly differently. For example, GANDALF and the IPE
do not try to make projectional editing “feel like text edit-
ing” for textual notations, compromising usability. Others,
such as the Synthesizer Generator do not use projection at
the fine-grained expression level, where textual input and
parsing is used. This compromises language composition at
the expression level. Contemporary projectional editors in-
clude Más/Concrete [2], Clark’s prototype [19], the Whole
Platform [6] as well as Intentional Programming [23, 77]
and its newer cousin, the Intentional Domain Workbench
(IDW) [17, 78]. Only the Whole Platform is reported to have
been used for real-world projects36, and the IDW has demon-
strated some language composition and notational capabili-
ties similar to MPS. While the Whole Platform has taken part
in the Language Workbench Challenge [32], neither one has
been evaluated with a case study comparable to mbeddr. It
is hard to judge whether either of them could be used to ef-
ficiently build something similar to mbeddr.

Alternative Implementation Techniques Many different
techniques exist for DSL implementation. The primary dis-
tinction is between internal DSLs and external DSLs. Kosar
et al. compares several implementation approaches [50], in-
ternal and external included, and conclude: “when small
groups of users are going to use a new DSL (error report-
ing is not that important) and when notation should not be
strictly obeyed, then the recommended approach is [inter-
nal DSLs]. Otherwise, the recommended solution is to im-
plement a full DSL compiler using compiler generators.”
This advice, as well as our experience, suggests that mbeddr
could not have been implemented with anything other than a
language workbench, comparable in features to MPS.

We have discussed other projectional language work-
benches above; in terms of parser-based language work-
benches, only those that support language modularity are
candidates for implementing a version of mbeddr without
the non-textual notations. This rules out Xtext. Effectively,
only Spoofax and Rascal are candidates; Rascal has demon-
strated language modularity in the aforementioned paper
about Oberon-0 [10] and the modularity of Spoofax lan-
guage definitions is discussed in [30]. Both the Spoofax and
Rascal team have expressed interest in implementing (parts

36 The developers, Solmi and Persiani, have talked about commercial
projects in finance with the authors of this paper.

Lessons Learned from Developing mbeddr SERG

40 TUD-SERG-2016-025



of) mbeddr to compare the implementations as part of their
future work.

Summing up, we found no evidence of implementations of
languages similar to mbeddr in terms of modularity and no-
tational diversity, in any of the other language workbenches.

10. Conclusions
Over the last five years we have built mbeddr, a large set
of languages and language extensions of C, targeted to em-
bedded software development. mbeddr comprises roughly
88,000 lines of code, and around 10 person years of devel-
opment effort. mbeddr continues to be used in real world
projects and serves as the basis for Siemens’ ESD product.
This paper describes and critically evaluates the develop-
ment of mbeddr using the MPS language workbench.

Regarding our research questions, we draw generally
positive conclusions regarding the experience of develop-
ing mbeddr, even though MPS still has a few problems, and
various places for optimization. Specifically, we conclude:

• Language modularity works well enough for it to be a
benefit with regards to managing the overall complexity;
it does not introduce too much accidental complexity for
it to be infeasible.

• Although projectional editing has some drawbacks re-
garding editor usability, diff/merge and “simple” things
like commenting, the benefits regarding multiple no-
tations and simplified language composition outweigh
these challenges by far.

• The approach of using aspect-specific DSLs to man-
age the complexity of implementing DSLs works, even
though, because of their declarative nature, debugging
some of the programs can be painful. We have built a
number of additional DSLs for implementing additional
language aspects.

• Performance and scalability, as with most other pro-
gramming and modeling tools, needs care: the sizes of
roots (editor tabs) and models (units of generation) must
be carefully managed for performance to be acceptable.

• In terms of the development process – iterative devel-
opment, testing or CI server integration – we found no
significant limitations.

In terms of impact on language engineering research, this pa-
per is the largest case study on language engineering using a
language workbench. To corroborate and challenge our find-
ings, additional studies are needed, both for MPS-based sys-
tems as well as for similar systems built with other language
workbenches. Furthermore, to better understand long term
implications regarding maintainability, longitudinal studies
should be set up. We will monitor and report on the contin-
ued evolution of mbeddr itself as part of our future work.

In terms of impact on industry, this paper demonstrates
that systems of significant size can be developed using lan-

guage workbenches, and, together with [107], demonstrates
that useful systems can be built this way. The effort that has
gone into the development of MPS – roughly 125 person
years – suggests that the effort necessary to develop a lan-
guage workbench that can be used for systems like mbeddr
is significant. However, based on the experience with MPS,
some of the findings in this paper, and the improved state
of frameworks for developing tools in general, we expect
that developing a comparably powerful language workbench
today would require much less effort than what went into
MPS.

As a consequence of the largely positive experiences with
MPS, we have branched out into other domains: we are
currently running several projects in the financial, health,
security and automotive domains based on MPS and the
mbeddr.platform. In addition, we have started a new research
project in which we explore the use of this approach in
requirements engineering and system specification, aiming
at combining informal, semiformal and formal specification
languages. We will also continue to monitor the evolution
of mbeddr itself to understand the long-term consequences
of this approach (in terms of maintainability and evolution)
that have not been covered in this paper.

Acknowledgements
We thank all mbeddr contributors for their hard work over
the years: Domenik Pavletic, Kolja Dumman, Sascha Lis-
son, Niko Stotz and Zaur Molotnikov. We are also grateful to
the MPS team at Jetbrains, and in particular, Alex Shatalin,
for their continued support of our work with MPS. We thank
itemis for giving us the freedom to work on MPS and mbeddr
for the last 6 years; as well as Bernhard Schätz at fortiss
for mentoring the LW-ES research project. We acknowledge
Laurence Tratt and Jurgen Vinju for their help with related
work. We appreciate the feedback on the paper from Niko,
Domenik and Kolja. Finally we thank the SOSYM review-
ers: they prompted many important additions to the paper
and pointed out lots of grammar and spelling issues, even in
the second round of reviewing. Thank you!

References
[1] Code Orchestra IDE. http://codeorchestra.com/ide.

[2] Concrete. http://concrete-editor.org.

[3] Eclipse CDT. http://www.eclipse.org/cdt/.

[4] Jetbrains Meta Programming System.
http://www.Jetbrains.com/mps, .

[5] Jetbrains MPS Documentation. https://www.jetbrains.com
/mps/documentation, .

[6] Whole Platform. http://whole.sourceforge.net.

[7] A. V. Aho, S. C. Johnson, and J. D. Ullman. Deterministic parsing of
ambiguous grammars. Communications of the ACM, 18(8), 1975.

[8] M. Backes, C. Hriţcu, and T. Tarrach. Automatically verifying typing
constraints for a data processing language. In Certified Programs and
Proofs. Springer, 2011.

SERG Lessons Learned from Developing mbeddr

TUD-SERG-2016-025 41



[9] B. Barroca, L. Lúcio, V. Amaral, R. Félix, and V. Sousa. DSLtrans: A
Turing incomplete transformation language. In Software Language
Engineering, pages 296–305. Springer, 2011.

[10] B. Basten, J. van den Bos, M. Hills, P. Klint, A. Lankamp, B. Lisser,
A. van der Ploeg, T. van der Storm, and J. Vinju. Modular language
implementation in Rascal – experience report. Science of Computer
Programming, 114:7–19, 2015.

[11] L. Bettini. Implementing Domain-Specific Languages with Xtext and
Xtend. Packt Publishing Ltd, 2013.

[12] G. M. Bierman, A. D. Gordon, C. Hriţcu, and D. Langworthy. Se-
mantic subtyping with an SMT solver. In ACM Sigplan Notices, vol-
ume 45, pages 105–116. ACM, 2010.

[13] M. Broy, S. Kirstan, H. Krcmar, and B. Schätz. What is the benefit
of a model-based design of embedded software systems in the car
industry? In J. Rech and C. Bunse, editors, Emerging Technologies
for the Evolution and Maintenance of Software Models. IGI Global,
2011.

[14] F. Campagne. The MPS Language Workbench: Volume I, volume 1.
Fabien Campagne, 2014.

[15] F. Campagne. The MPS Language Workbench. CreateSpace Publish-
ing, 2014.

[16] A. Chiş, T. Gîrba, and O. Nierstrasz. The moldable debugger: A
framework for developing domain-specific debuggers. In Interna-
tional Conference on Software Language Engineering, pages 102–
121. Springer, 2014.

[17] M. Christerson and H. Kolk. Domain Expert
DSLs, 2009. talk at QCon London 2009, available
at http://www.infoq.com/presentations/
DSL-Magnus-Christerson-Henk-Kolk.

[18] A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore,
M. Roveri, R. Sebastiani, and A. Tacchella. NUSMV 2: An open-
source tool for symbolic model checking. In Computer Aided Verifi-
cation, pages 359–364. Springer, 2002.

[19] T. Clark. A declarative approach to heterogeneous multi-mode mod-
elling languages. In Proc of the GEMOC Workshop, 2014.

[20] E. Clarke, D. Kroening, and F. Lerda. A tool for checking ANSI-C
programs. In Tools and Algorithms for the Construction and Analysis
of Systems, volume 2988 of Lecture Notes in Computer Science.
Springer, 2004.

[21] M. Conrad, G. Sandmann, and P. Munier. Software tool qualification
according to ISO 26262. Technical report, SAE, 2011.

[22] K. Czarnecki and M. Antkiewicz. Mapping features to models:
A template approach based on superimposed variants. In Gener-
ative Programming and Component Engineering, pages 422–437.
Springer, 2005.

[23] K. Czarnecki and U. W. Eisenecker. Generative Programming: Meth-
ods, Tools, and Applications. ACM Press/Addison-Wesley Publish-
ing Co., New York, NY, USA, 2000.

[24] L. De Moura and N. Bjørner. Z3: An efficient SMT solver. In Tools
and Algorithms for the Construction and Analysis of Systems, pages
337–340. Springer, 2008.

[25] S. Dmitriev. Language oriented programming: The next program-
ming paradigm. JetBrains onBoard, 1(2):1–13, 2004.

[26] B. Dutertre and L. De Moura. The Yices SMT solver. Tool paper at
http://yices. csl. sri. com/tool-paper. pdf, 2(2), 2006.

[27] T. Dybå, D. I. Sjøberg, and D. S. Cruzes. What works for whom,
where, when, and why?: on the role of context in empirical software
engineering. In Proceedings of the ACM-IEEE International Sympo-
sium on Empirical Software Engineering and Measurement, 2012.

[28] J. Earley. Ambiguity and precedence in syntax description. Acta
Informatica, 4(2):183–192, 1975.

[29] C. Ellison and G. Rosu. An executable formal semantics of C with
applications. In ACM SIGPLAN Notices, volume 47, pages 533–544.
ACM, 2012.

[30] S. Erdweg, L. C. Kats, T. Rendel, C. Kästner, K. Ostermann, and
E. Visser. Growing a language environment with editor libraries. In
Proc. of OOPSLA 2011, volume 47, pages 167–176. ACM, 2011.

[31] S. Erdweg, P. G. Giarrusso, and T. Rendel. Language composition
untangled. In Proceedings of LDTA, 2012.

[32] S. Erdweg, T. Storm, M. Völter, et al. The state of the art in language
workbenches. In M. Erwig, R. Paige, and E. Wyk, editors, Software
Language Engineering, volume 8225 of LNCS. Springer, 2013.

[33] S. Erdweg, T. van der Storm, and Y. Dai. Capture-avoiding and hy-
gienic program transformations. In European Conference on Object-
Oriented Programming, pages 489–514. Springer, 2014.

[34] M. Fowler. Language workbenches: killer-app for dsls? Thought-
Works, http://www.martinfowler.com/ articles/languageWork-
bench.html, 2005.

[35] M. Fowler and K. Beck. Refactoring: improving the design of
existing code. Addison-Wesley Professional, 1999.

[36] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design patterns:
elements of reusable object-oriented software. Pearson Education,
1994.

[37] J. Gray and G. Karsai. An examination of DSLs for concisely rep-
resenting model traversals and transformations. In Proc. of HICSS,
2003.

[38] C. Hathhorn, C. Ellison, and G. Roşu. Defining the undefinedness
of c. In ACM SIGPLAN Notices, volume 50, pages 336–345. ACM,
2015.

[39] J. Heering, P. R. H. Hendriks, P. Klint, and J. Rekers. The syntax
definition formalism SDF - reference manual. SIGPLAN, 24(11),
1989.

[40] F. Hermans, M. Pinzger, and A. Van Deursen. Domain-specific lan-
guages in practice: A user study on the success factors. In Inter-
national Conference on Model Driven Engineering Languages and
Systems. Springer, 2009.

[41] J. Hillebrand, P. Reichenpfader, I. Mandic, H. Siegl, and C. Peer.
Establishing confidence in the usage of software tools in context of
ISO 26262. In Computer Safety, Reliability, and Security, pages 257–
269. Springer, 2011.

[42] G. J. Holzmann. The model checker SPIN. IEEE Transactions on
software engineering, (5):279–295, 1997.

[43] M. Jimenez, F. Rosique, P. Sanchez, B. Alvarez, and A. Iborra. Habi-
tation: a domain-specific language for home automation. Software,
IEEE, 26(4):30–38, 2009.

[44] C. Jones and O. Bonsignour. The economics of software quality.
Addison-Wesley Professional, 2011.

[45] L. C. L. Kats and E. Visser. The Spoofax language workbench: Rules
for declarative specification of languages and IDEs. In OOPSLA.
ACM, 2010.

[46] R. B. Kieburtz, L. McKinney, J. M. Bell, J. Hook, A. Kotov, J. Lewis,
D. P. Oliva, T. Sheard, I. Smith, and L. Walton. A software engineer-
ing experiment in software component generation. In Proc. ICSE,
1996.

[47] P. Klint. A Meta-Environment for Generating Programming Environ-
ments. ACM Transactions on Software Engineering Methodology, 2
(2), 1993.

[48] P. Klint and R. Van Rozen. Micro-machinations. In Software Lan-
guage Engineering, pages 36–55. Springer, 2013.

[49] P. Klint, T. van der Storm, and J. Vinju. EASY meta-programming
with Rascal. In GTTSE III, volume 6491 of LNCS. Springer, 2011.

Lessons Learned from Developing mbeddr SERG

42 TUD-SERG-2016-025



[50] T. Kosar, P. E. Martı, P. A. Barrientos, M. Mernik, et al. A preliminary
study on various implementation approaches of domain-specific lan-
guage. Information and Software Technology, 50(5):390–405, 2008.

[51] T. Kosar, N. Oliveira, M. Mernik, V. J. M. Pereira, M. Črepinšek,
C. D. Da, and R. P. Henriques. Comparing general-purpose and
domain-specific languages: An empirical study. Computer Science
and Information Systems, 7(2):247–264, 2010.

[52] R. Krebbers. The C standard formalized in Coq. PhD thesis, Radboud
University Nijmegen, 2015.

[53] A. Kuhn, G. Murphy, and C. Thompson. An exploratory study of
forces and frictions affecting large-scale model-driven development.
In R. France, J. Kazmeier, R. Breu, and C. Atkinson, editors, Model
Driven Engineering Languages and Systems, volume 7590 of LNCS.
Springer, 2012.

[54] D. Le Berre and A. Parrain. The Sat4j library, release 2.2. Journal on
Satisfiability, Boolean Modeling and Computation, 7:59–64, 2010.

[55] G. Liebel, N. Marko, M. Tichy, A. Leitner, and J. Hansson. Assessing
the state-of-practice of model-based engineering in the embedded
systems domain. In Proc. MODELS, 2014.

[56] P. Liggesmeyer and M. Trapp. Trends in embedded software engi-
neering. IEEE Softw., 26, May 2009.

[57] V. Lussenburg, T. Van Der Storm, J. Vinju, and J. Warmer. Mod4j:
a qualitative case study of model-driven software development. In
Model Driven Engineering Languages and Systems, pages 346–360.
Springer, 2010.

[58] R. Medina-Mora and P. H. Feiler. An Incremental Programming
Environment. IEEE Trans. Software Eng., 7(5), 1981.

[59] Z. Molotnikov, M. Völter, and D. Ratiu. Automated domain-specific
C verification with mbeddr. In Proc. of the 29th ACM/IEEE Intl.
Conference on Automated Software Engineering. ACM, 2014.

[60] P. Neron, A. P. Tolmach, E. Visser, and G. Wachsmuth. A theory
of name resolution. In J. Vitek, editor, 24th European Symposium
on Programming, ESOP 2015, volume 9032 of Lecture Notes in
Computer Science, pages 205–231. Springer, 2015. ISBN 978-3-
662-46668-1. .

[61] B. Nichols, D. Buttlar, and J. Farrell. Pthreads programming: A
POSIX standard for better multiprocessing. O’Reilly, 1996.

[62] D. Notkin. The GANDALF project. Journal of Systems and Soft-
ware, 5(2), 1985.

[63] M. Odersky, L. Spoon, and B. Venners. Programming in Scala.
Artima Inc, 2008.

[64] D. Pavletic and K. Haßlbauer. Interactive debugging for extensible
languages in multi-stage transformation environments. In 2nd Inter-
national Workshop on Executable Modeling at MODELs 2016, 2016.

[65] D. Pavletic, M. Voelter, S. A. Raza, B. Kolb, and T. Kehrer. Extensi-
ble debugger framework for extensible languages. In Reliable Soft-
ware Technologies–Ada-Europe 2015, pages 33–49. Springer, 2015.

[66] S. W. Porter. Design of a syntax directed editor for PSDL. Master’s
thesis, Naval Postgraduate School, Monterey, CA, USA, 1988.

[67] D. Ratiu and M. Voelter. Automated testing of DSL implementa-
tions. In 11th IEEE/ACM International Workshop on Automation of
Software Test (AST 2016), 2016.

[68] D. Ratiu, M. Voelter, Z. Molotnikov, and B. Schaetz. Implementing
modular domain specific languages and analyses. In Proceedings of
the Workshop on Model-Driven Engineering, Verification and Vali-
dation. ACM, 2012.

[69] D. Ratiu, M. Voelter, B. Schaetz, and B. Kolb. Language engineering
as enabler for incrementally defined formal analyses. In Proceed-
ings of the Workshop on Formal Methods in Software Engineering:
Rigorous and Agile Approaches (FORMSERA’2012), 2012.

[70] D. Ratiu, M. Voelter, B. Kolb, and B. Schaetz. Using language
engineering to lift languages and analyses at the domain level. In

Proceedings the 5th NASA Formal Methods Symposium (NFM’13),
2013.

[71] D. Ratiu, M. Zeller, and L. Kilian. Safety.Lab: Model-based domain
specific tooling for safety argumentation. In Proceedings of the 3rd
International Workshop on Assurance Cases for Software-intensive
Systems, 2015.

[72] T. W. Reps and T. Teitelbaum. The Synthesizer Generator. In
First ACM SIGSOFT/SIGPLAN software engineering symposium on
Practical software development environments. ACM, 1984.

[73] G. Rosu and T. F. Serbănută. An overview of the k semantic frame-
work. The Journal of Logic and Algebraic Programming, 79(6):397–
434, 2010.

[74] P. Runeson, M. Host, A. Rainer, and B. Regnell. Case study research
in software engineering: Guidelines and examples. Wiley, 2012.

[75] G. M. Selim, L. Lúcio, J. R. Cordy, J. Dingel, and B. J. Oakes. Spec-
ification and verification of graph-based model transformation prop-
erties. In Graph Transformation, pages 113–129. Springer, 2014.

[76] M. Simi and F. Campagne. Composable languages for bioinformat-
ics: The NYoSh experiment. PeerJ PrePrints, 1:e112v2, 2013.

[77] C. Simonyi. The death of computer languages, the birth of intentional
programming. In NATO Science Committee Conference, 1995.

[78] C. Simonyi, M. Christerson, and S. Clifford. Intentional Software.
SIGPLAN Not., 41(10), Oct. 2006.

[79] D. Steinberg, F. Budinsky, E. Merks, and M. Paternostro. EMF:
Eclipse Modeling Framework. Pearson Education, 2008.

[80] K. J. Sullivan, W. G. Griswold, Y. Cai, and B. Hallen. The structure
and value of modularity in software design. In ACM SIGSOFT
Software Engineering Notes, volume 26, pages 99–108. ACM, 2001.

[81] T. Teitelbaum and T. Reps. The Cornell program synthesizer: a
syntax-directed programming environment. Communications of the
ACM, 24(9):563–573, 1981.

[82] D. Thomas and A. Hunt. Mock objects. Software, IEEE, 19(3), 2002.

[83] J.-P. Tolvanen and S. Kelly. MetaEdit+: defining and using integrated
domain-specific modeling languages. In OOPSLA 2009, OOPSLA
’09. ACM, 2009.

[84] M. Tomita. Generalized LR parsing. Springer Science & Business
Media, 2012.

[85] L. Tratt. Domain specific language implementation via compile-time
meta-programming. TOPLAS, 30(6):1–40, 2008.

[86] Z. Ujhelyi, G. Bergmann, Á. Hegedüs, Á. Horváth, B. Izsó, I. Ráth,
Z. Szatmári, and D. Varró. EMF-IncQuery: An integrated develop-
ment environment for live model queries. Science of Computer Pro-
gramming, 98:80–99, 2015.

[87] H. van Antwerpen, P. Neron, A. P. Tolmach, E. Visser, and
G. Wachsmuth. A constraint language for static semantic analysis
based on scope graphs. In M. Erwig and T. Rompf, editors, 2016
Workshop on Partial Evaluation and Program Manipulation, PEPM
2016, pages 49–60. ACM, 2016. .

[88] J. van den Bos and T. van der Storm. Bringing domain-specific lan-
guages to digital forensics. In Proceedings of the 33rd International
Conference on Software Engineering, pages 671–680. ACM, 2011.

[89] A. van Deursen. Domain-specific languages versus object-oriented
frameworks: A financial engineering case study. Smalltalk and Java
in Industry and Academia, STJA’97, pages 35–39, 1997.

[90] A. van Deursen and P. Klint. Little languages: little maintenance?
Journal of software maintenance, 10(2), 1998.

[91] A. Van Deursen, P. Klint, and F. Tip. Origin tracing. Journal of
Symbolic Computation, 15(5):523–545, 1993.

[92] O. van Rest, G. Wachsmuth, J. R. Steel, J. G. Süß, and E. Visser. Ro-
bust real-time synchronization between textual and graphical editors.
In Theory and Practice of Model Transformations, pages 92–107.
Springer, 2013.

SERG Lessons Learned from Developing mbeddr

TUD-SERG-2016-025 43



[93] V. Vergu, P. Neron, and E. Visser. DynSem: A DSL for dynamic
semantics specification. In LIPIcs-Leibniz International Proceedings
in Informatics, volume 36. Schloss Dagstuhl-Leibniz-Zentrum fuer
Informatik, 2015.

[94] E. Visser. WebDSL: A case study in domain-specific language engi-
neering. In Generative and Transformational Techniques in Software
Engineering II, International Summer School, GTTSE 2007, LNCS.

[95] E. Visser. Program transformation with Stratego/XT. In Domain-
specific program generation, pages 216–238. Springer, 2004.

[96] M. Voelter. Embedded software development with projectional lan-
guage workbenches. In MODELS 2010, Lecture Notes in Computer
Science. Springer, 2010.

[97] M. Voelter. Language and IDE development, modularization and
composition with MPS. In GTTSE 2011, LNCS. Springer, 2011.

[98] M. Voelter. Integrating prose as first-class citizens with models and
code. In 7th International Workshop on Multi-Paradigm Modeling
MPM 2013, 2013.

[99] M. Voelter. Generic tools, specific languages. Delft University of
Technology, 2014.

[100] M. Voelter and S. Lisson. Supporting diverse notations in MPS’
projectional editor. Proc. of the GEMOC Workshop, 2014.

[101] M. Voelter, D. Ratiu, B. Schaetz, and B. Kolb. mbeddr: an extensible
C-based programming language and IDE for embedded systems. In
Proceedings of the 3rd annual conference on Systems, programming,
and applications: software for humanity. ACM, 2012.

[102] M. Voelter, S. Benz, C. Dietrich, B. Engelmann, M. Helander,
L. Kats, E. Visser, and G. Wachsmuth. DSL Engineering. dsl-
book.org, 2013.

[103] M. Voelter, D. Ratiu, B. Kolb, and B. Schaetz. mbeddr: Instantiating
a language workbench in the embedded software domain. Automated
Software Engineering, 20(3):339–390, 2013.

[104] M. Voelter, D. Ratiu, and F. Tomassetti. Requirements as first-
class citizens: Integrating requirements closely with implementation
artifacts. In ACESMB@MoDELS, 2013.

[105] M. Voelter, J. Siegmund, T. Berger, and B. Kolb. Towards user-
friendly projectional editors. In 7th International Conference on
Software Language Engineering (SLE), 2014.

[106] M. Voelter, B. Kolb, and J. Warmer. Projecting a modular future.
IEEE Software, Volume 32, Issue 5, 2015.

[107] M. Voelter, A. van Deursen, B. Kolb, and S. Eberle. Using C lan-
guage extensions for developing embedded software: A case study.
In OOPSLA 2015, 2015.

[108] M. Voelter, T. Szabo, S. Lisson, B. Kolb, S. Erdweg, and T. Berger.
Efficient development of consistent projectional editors using gram-
mar cells. In Proceedings of the 9th Conference on Software Lan-
guage Engineering (SLE), 2016.

[109] S. Winkler and J. Pilgrim. A survey of traceability in requirements
engineering and model-driven development. Software and Systems
Modeling, 9, 2010.

[110] H. Wu, J. Gray, S. Roychoudhury, and M. Mernik. Weaving a de-
bugging aspect into domain-specific language grammars. In Pro-
ceedings of the 2005 ACM symposium on Applied computing, pages
1370–1374. ACM, 2005.

[111] R. K. Yin. Case study research: Design and methods. Sage publica-
tions, 2014.

Lessons Learned from Developing mbeddr SERG

44 TUD-SERG-2016-025





TUD-SERG-2016-025
ISSN 1872-5392 SERG


