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A B S T R A C T

An existing interface material model for quasi-brittle fracture, originally developed within the Discrete Element 

Method framework, is implemented and enhanced for use in implicit Finite Element analyses of unreinforced ma­

sonry structures. The model captures mixed-mode fracture in tension-shear and combines cohesion with Coulomb 

friction in compression-shear. To address convergence issues arising when loading–unloading takes place, due to 

a discontinuity in the traction–separation relation, a regularization of the frictional contribution is proposed. A 

new model parameter is introduced and a calibration procedure to ensure numerical robustness and objectivity 

is presented. Furthermore, the consistent tangent stiffness matrix is derived to improve convergence in full-scale 

simulations. The improved model is applied within a simplified micromodelling approach to simulate the in-

plane cyclic response of 2D masonry structures, including a shear wall and a spandrel subjected to a combination 

of horizontal and vertical actions. The results demonstrate that the model accurately reproduces key aspects of 

masonry behaviour, including stiffness degradation, energy dissipation, and crack patterns, while maintaining 

robustness and efficiency in complex cyclic loading scenarios.

1 . Introduction

The vast majority of historical structures and a large portion of old 

dwellings in Europe are composed of unreinforced masonry (URM), a 

construction technique that, while historically significant, is particularly 

vulnerable to damage. Mechanical stresses, environmental degradation 

and natural hazards, such as earthquakes, pose serious threats to the 

integrity of these buildings. Therefore, there is need for advanced nu­

merical methods to accurately and efficiently assess their structural 

condition and ensure their preservation for future generations.

Masonry is a composite material consisting of units and dry or 

mortar joints. Its response is strongly nonlinear and depends on the 

response of each constituent, their arrangement within the structure 

and the quality of their bond. Due to the highly asymmetric behaviour 

in tension and compression of this material, URM buildings are de­

signed to work in compression [1], resulting in vulnerability to both 

horizontal loads (earthquakes [2,3]) and differential settlements (tun­

nelling, excavations, mining, cyclic seasonal effects [3–7]). Depending 

on the origin of the loads, structures can be subjected to monotonic or 

cyclic actions. The simulation of the latter is particularly challenging 

since, under cyclic loading, masonry exhibits both damage accumulation 

and permanent deformations, leading to a complex unloading-reloading

response.

Various modelling approaches have been applied to simulate ma­

sonry behaviour. Among these, brick-to-brick micromodels represent 

masonry on the scale of its main heterogeneity. These models, despite 

their high computational cost, are frequently used when an accurate de­

scription of the response of masonry is required. A distinction can be 

made between detailed and simplified micromodels [8], see Fig. 1. The 

former explicitly describe bricks and mortar joints as (linear or nonlin­

ear) continuum elements and allow discontinuities in the displacement 

field by placing zero-thickness interfaces between the bricks and the 

mortar. In contrast, simplified micromodels describe masonry as being 

made of elastic or inelastic bricks with expanded geometry and allow 

the formation of potential cracks by placing zero-thickness interfaces 

that account for the behaviour of both the mortar and the brick-mortar 

interaction. By not explicitly modelling the mortar joints, this approach 

enables the use of a coarser mesh and generally provides a better balance 

between accuracy and analysis time. 

Interface elements provide a realistic description of cracks modelled 

as geometric discontinuities. Their constitutive relation describes the 
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\begin {align}\lBrack u \rBrack _{\text {eq}} = \sqrt {\langle \lBrack u \rBrack _{\text {n}} \rangle ^2 + \lBrack u \rBrack _{\text {s}}^2 } \label {eq:u_eq}\end {align}


\begin {align}\label {eq:damage_initiation_criterion} {\left ( \frac {\langle t_{\text {n}} \rangle }{f_{\text {n}}} \right )}^2 + {\left ( \frac {t_{\text {s}}}{f_{\text {s}}} \right )}^2 = 1\end {align}
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\begin {align}\label {eq:failure_criterion} {\left ( \frac {G_{\text {f,mix,I}}}{G_\mathrm {f, I}} \right )}^\alpha + {\left ( \frac {G_{\text {f,mix,II}}}{G_\mathrm {f, II}} \right )}^\alpha = 1\end {align}
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\begin {align}\label {ieq4} G_{\text {f,mix}} = G_{\text {f,mix,I}} + G_{\text {f,mix,II}}\end {align}


\begin {align}G_{{\text {f,mix}},i} = \psi _{i} \,G_{{\text {f}},i} \qquad i=\text {I, II} \label {eq:Gfmixi}\end {align}
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Fig. 1. Masonry micromodelling (adapted from [9]).

progressive separation of the two crack faces that occurs in the fracture 

process zone through a cohesive relation formulated within the frame­

work of damage or plasticity [10,11]. This representation is widely used 

for studying the initiation and propagation of cracks in various com­

posite materials and is particularly appealing for modelling brickwork 

masonry, since the regularity of its texture generates preferred fracture 

planes. These weak paths are frequently determined by the joint layers 

[12].

A significant number of interface constitutive models have been de­

veloped to investigate the response of different materials, such as rocks, 

concrete and fibre reinforced composites [13–17]. Starting from the 

work of Page [18], interface material models have been proposed for 

the micromodelling of masonry structures. In this context, several con­

tributions have been formulated in a plasticity framework [19–27]. 

Lotfi and Shing [19] presented a non-associative plasticity-based in­

terface material model for the analysis of masonry panels. Lourenço 

and Rots [21] proposed a multi-surface plasticity model, which sim­

ulates cracking, joint slip and crushing. To capture the local failure 

mechanisms of masonry within the interfaces, this model was used in 

combination with quasi-brittle interfaces, located inside elastic units, to 

describe the potential splitting of the bricks [20]. Plasticity-based formu­

lations offer the advantage of readily accounting for masonry dilatancy 

[19,21,23,24,27]. However, by displaying an elastic unloading, they are 

not directly suitable for describing the complex behaviour of masonry 

under cyclic actions.

To describe the cyclic response of materials that exhibit both stiff­

ness degradation and permanent displacements, formulations combining 

damage and friction have been developed [28–33]. Interesting contribu­

tions have proposed smooth transitions from a cohesive to a frictional 

response [29–33]. In particular, a physically-based approach to com­

bine cohesion and friction was proposed by Raous and Monerie [30] 

and Alfano and Sacco [31]. These authors distinguished between an un­

damaged and damaged area. By allowing the friction to act only on the 

latter, cohesive and frictional behaviours were combined through a mea­

sure of the interface damage. This idea has been applied to studying the 

cohesive-frictional interaction of masonry material at different scales, 

ranging from small samples to walls and arches [34–36].

More recently, Venzal et al. [35] presented an interface mate­

rial model for quasi-brittle fracture in the context of the Discrete 

Element Method (DEM), which combines cohesion and Coulomb fric­

tion in compression-shear [31] and accounts for mixed-mode fracture in 

tension-shear [37]. This interface material model, which requires only a 

few model parameters for its characterization, was used in a detailed 

micromodelling description to simulate a small masonry assemblage 

(triplet test). Boukham et al. [38] extended the model in [35] and pre­

sented a hybrid approach, combining the Discrete and Finite Element 

Methods (DEM-FEM). The model consists of non-expanded bricks de­

scribed by plastic-damage finite elements, while an extension of Venzal’s 

interface model is used to simulate the behaviour of the elastic mortars 

and the brick-mortar interaction. This DEM-FEM approach was applied 

to study a masonry shear-wall subjected to monotonic loading. So far, 

the performance of Venzal’s interface model has not been tested on a 

full-scale wall subjected to cyclic loads.

In this work, the interface material model proposed by Venzal et al. 

[35] is extended for use in an implicit scheme and applied for the first 

time to analyses of full-scale masonry structures subjected to cyclic load­

ings. To this end, the formulation in [35] is implemented in an implicit 

finite element framework and improved to increase the robustness and 

the efficiency of the analyses. Specifically, a regularization of the fric­

tional term [39] is proposed to enhance the convergence behaviour of 

Venzal’s model, thereby enabling the simulation of full-scale structures. 

Furthermore, the traction update algorithm is consistently linearized 

for efficient analyses. These enhancements enable to simulate the post-

peak response of full-scale masonry structures with the micromodelling 

approach, while retaining computational efficiency.

The paper is organized as follows. Venzal’s interface constitutive 

model is described in Section 2.1. Details about the regularization of 

the frictional term are presented in Section 2.2, and the consistent tan­

gent stiffness matrix is derived in Section 2.3. In Section 3, the model is 

validated against a cyclic shear wall experiment, and the robustness and 

efficiency of the model are demonstrated in Section 4 through the sim­

ulation of a complex spandrel laboratory test subjected to differential 

settlements. Finally, the conclusions are discussed in Section 5.

2 . Frictional cohesive zone model

2.1 . Venzal’s interface material model

Venzal’s interface material model [35] accounts for mixed-mode co­

hesive fracture in tension-shear, and combines cohesive fracture and 

friction in compression-shear. A schematic representation of the model 

is provided in Fig. 2. In tension, both mode I and mode II components of 

the response are cohesive and characterized by exponential softening. 

In compression, the response in mode I is elastic, while in mode II the 

response is frictional-cohesive, see Fig. 3. This combination is based on 

the physical idea that, in the interface, it is possible to discern between 

an undamaged and a damaged area (𝐴u and 𝐴d respectively), with the 

cohesion acting on 𝐴u and the friction on 𝐴d [30,31]. 

An interface damage variable is introduced as a measure of the 

damaged area with respect to the total area:

𝑑 =
𝐴d

𝐴u + 𝐴d
, 𝑑 ∈ [0, 1] (1)

The total traction 𝐭 consists of two contributions, 𝐭coh and 𝐭fric, which 

represent the cohesive and frictional parts, respectively:

𝐭 = 𝐭coh + 𝑓d(𝑑) 𝐭fric (2)

In this equation, the function 𝑓d(𝑑) regulates the interaction between the 

two contributions.

The interface material model is formulated in a local reference sys­

tem, with normal and shear components (denoted by the subscripts n 

and s) oriented in the normal and tangential directions with respect to 

the interface geometry, respectively (Fig. 2, right). In this local frame, 

the traction and displacement jump vectors, 𝐭 and ⟦u⟧, are expressed as:

𝐭 =
[

𝑡n, 𝑡s
]T

⟦u⟧ =
[

⟦𝑢⟧n, ⟦𝑢⟧s
]T

(3)
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Fig. 2. Schematic representation of Venzal’s model for mode I and mode II components of the response: in tension (top) and compression (bottom).

Fig. 3. Traction-separation curves in mode I (a) and mode II (b).

The constitutive equation that relates the total traction, Eq. (2), to the 

displacement jump is

𝐭 = (𝐈 − 𝑑 𝐏)𝐊⟦u⟧
⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟

𝐭coh

+𝑓d(𝑑) sgn
(

Δ⟦𝑢⟧s
)

𝜇 𝑘n⟨−⟦𝑢⟧n⟩
[

0, 1
]T

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐭fric

, 𝑑 ∈ [0, 1] (4)

where 𝐈 is the identity matrix. The matrices 𝐊 and 𝐏 are specified as:

𝐊 =
[

𝑘n 0
0 𝑘s

]

; 𝐏 =

[

⟨⟦𝑢⟧n⟩
⟦𝑢⟧n

0
0 1

]

(5)

with 𝑘n and 𝑘s denoting the initial values of the elastic stiffness in pure 

modes and ⟨𝑥⟩ = max (0, 𝑥). The function sgn
(

Δ⟦𝑢⟧s
)

 determines the 

direction of the frictional term while the symbol 𝜇 indicates the friction 

coefficient that accounts in a simplified way for the roughness of the 

damaged area 𝐴d. Each contribution in Eq. (4), cohesive and frictional, 

is individually explained in the following.

2.1.1 . Cohesive contribution to traction

Under tension-shear, the response is purely cohesive as illustrated 

in Fig. 2. In mode I, the matrix P accounts for the unilateral response 

of masonry: the model shows a reduction in the stiffness in tension 

during damage growth, while it recovers the initial elastic stiffness in 

compression upon crack re-closure.

The model accounts for mixed-mode cohesive fracture through a 

mixed-mode ratio 𝛽 [37]. The definition of 𝛽 has been modified with 

respect to [35] where it was defined as 𝛽 = ⟦𝑢⟧s∕⟦𝑢⟧n and ranged from 

0 (pure-mode I) to ±∞ (pure-mode II). In this work, to avoid numerical 

instability, the mixed-mode ratio is expressed as [40]:

𝛽 =
⟦𝑢⟧2s

⟨⟦𝑢⟧n⟩2 + ⟦𝑢⟧2s
(6)

and ranges from 0 (pure-mode I) to 1 (pure-mode II).1 The equivalent 

displacement jump in mixed-mode is defined as:

⟦𝑢⟧eq =
√

⟨⟦𝑢⟧n⟩
2 + ⟦𝑢⟧2s (7)

1 The re-definition of the mixed-mode ratio 𝛽 leads to changes in the mixed-

mode equations with respect to [35]. A more extensive explanation of the 

cohesive equations is presented in Appendix A.

In the case of mode-mixity, the onset of a developing cohesive crack 

is established through a damage initiation criterion. In particular, a 

quadratic relation is used [41]:

(

⟨𝑡n⟩
𝑓n

)2
+
(

𝑡s
𝑓s

)2
= 1 (8)

with 𝑓n and 𝑓s denoting the strengths in pure-mode I and II, respectively 

(Fig. 4a). Furthermore, the mixed-mode cohesive fracture energy 𝐺f ,mix
is given as:

(𝐺f,mix,I

𝐺f ,I

)𝛼

+
(𝐺f,mix,II

𝐺f ,II

)𝛼

= 1 (9)

where 𝐺f,𝑖, 𝑖 = I, II indicate the pure-mode fracture energies and 

𝐺f,mix,𝑖, 𝑖 = I, II denote the pure-mode components of the mixed-mode 

fracture energy 𝐺f,mix (Fig. 4b). The interaction between mode I and II 

components is regulated by the parameter 𝛼. The damage initiation cri­

terion, Eq. (8), leads to the expressions for the mixed-mode strength 𝑓m
and the corresponding mixed-mode displacement jump ⟦𝑢⟧m:

𝑓m = ⟦𝑢⟧e
n⟦𝑢⟧

e
s

√

√

√

√

(1 − 𝛽) 𝑘2n + 𝛽 𝑘2s
𝛽
(

⟦𝑢⟧e
n
)2 + (1 − 𝛽)

(

⟦𝑢⟧e
s
)2

(10)

⟦𝑢⟧m = ⟦𝑢⟧e
n⟦𝑢⟧

e
s

√

1

𝛽
(

⟦𝑢⟧e
n
)2 + (1 − 𝛽)

(

⟦𝑢⟧e
s
)2

(11)

where ⟦𝑢⟧e
n and ⟦𝑢⟧e

s  are the limit elastic values of the displacement jump 

for each mode. From Eqs. (10) and (11) the initial stiffness in mixed-

mode can be computed:

𝑘 =
𝑓m
⟦𝑢⟧m

(12)

The mixed-mode fracture energy 𝐺f,mix is evaluated from its pure-mode 

components 𝐺f,mix,i, 𝑖 = I,II:

𝐺f,mix = 𝐺f,mix,I + 𝐺f,mix,II (13)

where

𝐺f,mix,𝑖 = 𝜓𝑖 𝐺f,𝑖 𝑖 = I, II (14)

with 𝜓𝑖, 𝑖 = I, II denoting the ratio of the mixed-mode components of the 

fracture energy with respect to the pure-mode fracture energies, which 

are expressed as:

𝜓I =
(1 − 𝛽)

(

⟦𝑢⟧e
s
)2

(1 − 𝛽)
(

⟦𝑢⟧e
s
)2 + 𝛽

(

⟦𝑢⟧e
n
)2

; 𝜓II =
𝛽
(

⟦𝑢⟧e
n
)2

(1 − 𝛽)
(

⟦𝑢⟧e
s
)2 + 𝛽

(

⟦𝑢⟧e
n
)2

(15)

Consequently, the failure criterion, Eq. (9), can be rewritten as:

𝜓I + 𝜓II = 1 (16)
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Fig. 4. Cohesive mixed-mode formulation (the mixed-mode response is depicted for 𝛽 = const).

Finally, the scalar damage parameter 𝑑 in Eq. (4) at the current load-step, 

is given as [35]:

𝑑 = max
{

𝑑0, 1 −
(

𝑓m
𝑘 ⟦𝑢⟧eq

)

exp
(

𝜙
(

𝑓m
𝑘

− ⟦𝑢⟧eq

))}

, 𝑑 ∈ [0, 1]

(17)

where 𝑑0 is the damage at the last converged load-step. The parameter 

𝑑 monotonically increases and depends on the mixed-mode quantities 

⟦𝑢⟧eq, 𝑓m, ⟦𝑢⟧m, 𝑘 and 𝜙. The function 𝜙 ensures that the fracture en­

ergy, dissipated upon complete decohesion of the interface unit area, 

corresponds to 𝐺f,mix [35]:

𝜙 =
2 𝑘 𝑓m

2 𝑘𝐺f,mix − 𝑓 2
m

(18)

The expression for the damage variable, Eq. (17), corresponds to an 

exponential softening response [35].

2.1.2 . Frictional contribution to traction

Under compression-shear, the mode II component is frictional-

cohesive (Fig. 2). The function 𝑓d(𝑑) that governs this interaction, 

Eq. (4), is defined as [35]:

𝑓d(𝑑) = 𝑑𝑝, 𝑝 ≥ 1 (19)

where 𝑝 is a coupling parameter, which controls the interaction between 

cohesion and friction. Its effect on the response is studied in Section 3. If 

the material is pristine (𝑑 = 0), the response is elastic (Fig. 5a), whereas 

after the strength of the material is reached and the damage occurs 

(0 < 𝑑 < 1), the cohesive response goes into softening and a frictional 

response arises on the damaged part of the interface (Fig. 5b). When the 

interface reaches complete decohesion, its response is fully frictional 

(Fig. 5c). Note that coupling cohesion and friction through a function 

that depends on the damage 𝑑 allows for a smooth transition from a 

purely cohesive behaviour to a purely frictional one, as illustrated in 

Fig. 6. 

Finally, in Eq. (4), the expression 𝜇 𝑘n⟨−⟦𝑢⟧n⟩ defines the magnitude 

of the Coulomb friction, while the function sgn
(

Δ⟦𝑢⟧s
)

 determines its 

direction. In general, friction acts in the opposite direction to the rela­

tive sliding motion between two bodies or, specifically for the case at 

hand, between the faces of a crack. In the interface material model, the 

sign of the frictional term is determined by the local sign of the sliding 

displacement jump increment, Δ⟦𝑢⟧s. Therefore, a change in the direc­

tion of the relative motion, which, at the integration point level, can be 

due to stress redistribution in the structure (e.g., when damage occurs), 

can lead to a switch in the local sign of the frictional contribution. When 

this occurs, the total traction experiences an abrupt change in its value, 

with magnitude 2𝜇|𝑡n|, as illustrated in Fig. 7. 

The function sgn
(

Δ⟦𝑢⟧s
)

, in Eq. (4), introduces a strong discontinu­

ity (jump) in the constitutive relation. For Δ⟦𝑢⟧s = 0 (singularity point) 

the tangent stiffness matrix is undefined. Consequently, during global 

iterations, the absence of a proper definition of the tangent modulus can 

lead to oscillations at the sign of the frictional term, in the integration 

points where |Δ⟦𝑢⟧s| ≪ 1. This can ultimately cause a loss of conver­

gence in the analysis, as will be demonstrated with a numerical example 

in Section 3.2. To increase the robustness of the model, a regularization 

of the frictional term is proposed in the next section.

2.2 . Proposed regularization of the frictional contribution

To improve the convergence behaviour of Venzal’s model, a modifi­

cation to the definition of the frictional term is proposed. Specifically, 

the discontinuous function sgn
(

Δ⟦𝑢⟧s
)

, Eq. (4), is replaced by one of its 

smooth approximations ℎs [39]:

sgn
(

Δ⟦𝑢⟧𝑠
)

≈ tanh
(

𝜗Δ⟦𝑢⟧𝑠
)

⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟
h𝑠

, h𝑠 ∈ 𝐶∞ (20)

The use of the differentiable function ℎs allows a proper definition of 

the tangent modulus. However, it introduces a new model parameter 𝜗, 

which regulates the steepness of ℎs and requires calibration, see Fig. 8. 

In particular, a larger value of the regularization parameter 𝜗 provides 

a better approximation of the sign function. In the limit, the smooth 

function ℎs converges to the discontinuous function sign:

lim
𝜗→∞

tanh(𝜗Δ⟦𝑢⟧s) = sgn(Δ⟦𝑢⟧s) (21)

The performance of the proposed formulation and the effect on the 

response of varying the regularization parameter, 𝜗, are investigated in 

Section 3.2.

2.3 . Derivation of the algorithmic tangent stiffness matrix

For implicit finite element analyses, the definition of the algorithmic 

tangent stiffness matrix is crucial to efficiently achieve convergence in 

full-scale analyses. In this section, the traction update is consistently 

linearized. The traction-separation relation, Eq. (4), can be rewritten in 

a compact manner as:

𝐭 = (𝐈 − 𝑑 𝐏)𝐊⟦u⟧ + 𝑓d ℎs 𝐭c (22)
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Fig. 5. Sketch of an interface damage state (top) and corresponding evolution of the cohesive-frictional response in compression-shear at constant compressive traction 

(bottom).

Fig. 6. Limit strength domain (solid line) and ultimate domain (𝑑 → 1, dashed 

line).

Fig. 7. Unloading-reloading behaviour for the mode II component of the 

response (𝑡n < 0).

where the Coulomb frictional term is collected in the vector 𝐭c:

𝐭c = 𝜇 𝑘n⟨−⟦𝑢⟧n⟩
[

0, 1
]T

(23)

The consistent tangent operator, which maps an increment in the dis­

placement jump, 𝛿⟦u⟧, to an increment in the total traction, 𝛿𝐭, is given 

as:

𝜕𝐭
𝜕⟦u⟧

= (𝐈 − 𝑑 𝐏)𝐊 −𝐊⟦u⟧ 𝜕𝑑T

𝜕⟦u⟧
+ ℎs 𝐭c

𝜕𝑓T
d

𝜕⟦u⟧
+ 𝑓d 𝐭c

𝜕ℎT
s

𝜕⟦u⟧
+ 𝑓d ℎs

𝜕𝐭c
𝜕⟦u⟧

(24)

Fig. 8. Functions defining the frictional direction: discontinuous sign function (in 

blue) and smooth function ℎs for different values of the regularization parameter 

𝜗 (in red). As the value of the regularization parameter 𝜗 increases, the smooth 

function approaches the discontinuous sign function.

The derivatives in this expression are derived in the following.

The derivative 𝜕𝑑∕𝜕⟦u⟧, without damage accumulation (𝑑 = 𝑑0) and 

during damage growth (𝑑 > 𝑑0), is given as:

𝜕𝑑
𝜕⟦u⟧

=

⎧

⎪

⎨

⎪

⎩

𝟎2×1 if 𝑑 = 𝑑0
𝜕𝑑
𝜕𝑓m

𝜕𝑓m
𝜕⟦u⟧

+ 𝜕𝑑
𝜕𝑘

𝜕𝑘
𝜕⟦u⟧

+ 𝜕𝑑
𝜕𝜙

𝜕𝜙
𝜕⟦u⟧

+ 𝜕𝑑
𝜕⟦𝑢⟧eq

𝜕⟦𝑢⟧eq

𝜕⟦u⟧
if 𝑑 > 𝑑0

(25)

During damage growth, the derivatives of the damage parameter 𝑑 with 

respect to the mixed-mode quantities 𝑓m, 𝑘, 𝜙 and ⟦𝑢⟧eq at constant ⟦u⟧
yield:

𝜕𝑑
𝜕𝑓m

= − Γ
𝑘2⟦𝑢⟧eq

(

𝑘 + 𝜙𝑓m
)

(26)

𝜕𝑑
𝜕𝑘

=
𝑓m Γ
𝑘3⟦𝑢⟧eq

(

𝑘 + 𝜙𝑓m
)

(27)

𝜕𝑑
𝜕𝜙

= −
𝑓m Γ

𝑘2 ⟦𝑢⟧eq

(

𝑓m − 𝑘 ⟦𝑢⟧eq
)

(28)

𝜕𝑑
𝜕⟦𝑢⟧eq

=
𝑓m Γ
𝑘 ⟦𝑢⟧2eq

(

1 + 𝜙 ⟦𝑢⟧eq
)

(29)
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with

Γ = exp
[

𝜙
(

𝑓m
𝑘

− ⟦𝑢⟧eq

)]

(30)

The derivatives of the mixed-mode quantities with respect to the dis­

placement jump, 𝜕𝑓m∕𝜕⟦u⟧, 𝜕𝑘∕𝜕⟦u⟧, 𝜕𝜙∕𝜕⟦u⟧ and 𝜕⟦𝑢⟧eq∕𝜕⟦u⟧, follow 

from applying the chain rule to each term. The term 𝜕𝑓m∕𝜕⟦u⟧ reads:

𝜕𝑓m
𝜕⟦u⟧

=
𝜕𝑓m
𝜕𝛽

𝜕𝛽
𝜕⟦u⟧

(31)

where

𝜕𝑓m
𝜕𝛽

= 1
2
⟦𝑢⟧e

n⟦𝑢⟧
e
s

√

𝐴
𝐵

×

⎛

⎜

⎜

⎜

⎝

𝜕𝐵
𝛽
𝜕𝐴

−
𝐵 𝜕𝐴
𝜕𝛽
𝐴2

⎞

⎟

⎟

⎟

⎠

(32)

with

𝐴 = 𝛽
(

⟦𝑢⟧e
n
)2 + (1 − 𝛽)

(

⟦𝑢⟧e
s
)2

(33)

𝐵 = (1 − 𝛽)𝑘2n + 𝛽 𝑘
2
s (34)

𝜕𝐴
𝜕𝛽

=
(

⟦𝑢⟧e
n
)2 −

(

⟦𝑢⟧e
s
)2

(35)

𝜕𝐵
𝜕𝛽

= −𝑘2n + 𝑘
2
s (36)

and

𝜕𝛽
𝜕⟦u⟧

=

⎧

⎪

⎨

⎪

⎩

2⟦𝑢⟧n⟦𝑢⟧s
(⟦𝑢⟧2n+⟦𝑢⟧2s )

2

[

−⟦𝑢⟧s, ⟦𝑢⟧n
]T

if ⟦𝑢⟧n> 0

𝟎2×1 if ⟦𝑢⟧n≤ 0
(37)

The term 𝜕𝑘∕𝜕⟦u⟧ is given as:

𝜕𝑘
𝜕⟦u⟧

= 𝜕𝑘
𝜕𝑓m

𝜕𝑓m
𝜕⟦u⟧

+ 𝜕𝑘
𝜕⟦𝑢⟧m

𝜕⟦𝑢⟧m
𝜕⟦u⟧

(38)

with

𝜕𝑘
𝜕𝑓m

= 1
⟦𝑢⟧m

(39)

𝜕𝑘
𝜕⟦𝑢⟧m

= −
𝑓m
⟦𝑢⟧2m

(40)

𝜕⟦𝑢⟧m
𝜕⟦u⟧

=
𝜕⟦𝑢⟧m
𝜕𝛽

𝜕𝛽
𝜕⟦u⟧

(41)

where

𝜕⟦𝑢⟧m
𝜕𝛽

= 1
2
⟦𝑢⟧e

n⟦𝑢⟧
e
s

√

𝐴 ×

⎛

⎜

⎜

⎜

⎝

−

𝜕𝐴
𝜕𝛽
𝐴2

⎞

⎟

⎟

⎟

⎠

(42)

with 𝜕𝛽∕𝜕⟦u⟧ already evaluated in Eq. (37). The derivative 𝜕𝜙∕𝜕⟦u⟧ in 

Eq. (25) reads:

𝜕𝜙
𝜕⟦u⟧

=
𝜕𝜙
𝜕𝑘

𝜕𝑘
𝜕⟦u⟧

+
𝜕𝜙
𝜕𝑓m

𝜕𝑓m
𝜕⟦u⟧

+
𝜕𝜙

𝜕𝐺f,mix

𝜕𝐺f,mix

𝜕⟦u⟧
(43)

where

𝜕𝜙
𝜕𝑘

=
2 𝑓m
𝐷2

(

𝐷 − 2𝑘𝐺f,mix
)

(44)

𝜕𝜙
𝜕𝑓m

= 2𝑘
𝐷2

(

𝐷 + 2𝑓 2
m
)

(45)

𝜕𝜙
𝜕𝐺f,mix

= −
4 𝑘2𝑓m
𝐷2

(46)

with

𝐷 = 2 𝑘𝐺f,mix − 𝑓 2
m (47)

and

𝜕𝐺f,mix

𝜕⟦u⟧
=
𝜕𝜓I
𝜕𝛽

𝜕𝛽
𝜕⟦u⟧

𝐺f,I +
𝜕𝜓II
𝜕𝛽

𝜕𝛽
𝜕⟦u⟧

𝐺f,II (48)

with

𝜕𝜓I
𝜕𝛽

= −
(⟦𝑢⟧e

n)
2(⟦𝑢⟧e

s )
2

𝐴2
(49)

𝜕𝜓II
𝜕𝛽

=
(⟦𝑢⟧e

n)
2(⟦𝑢⟧e

s )
2

𝐴2
(50)

The last derivative in Eq. (25) reads:

𝜕⟦𝑢⟧eq

𝜕⟦u⟧
= 1

⟦𝑢⟧eq

[

⟨⟦𝑢⟧n⟩, ⟦𝑢⟧s
]T

(51)

Finally, the derivatives pertaining to the frictional contribution (last 

three terms in Eq. 24) are given as:

𝜕𝑓d
𝜕⟦u⟧

= 𝑝 𝑑𝑝−1 𝜕𝑑
𝜕⟦u⟧

(52)

𝜕ℎs
𝜕⟦u⟧

=
[

1 − tanh2
(

𝜗Δ⟦𝑢⟧s
)] [

0, 𝜗
]T

(53)

𝜕𝐭c
𝜕⟦u⟧

= 𝜇 𝑘n

[

0 0
⟨−⟦𝑢⟧n⟩
|⟦𝑢⟧n|

0

]

(54)

3 . Validation against a masonry shear wall with an opening

In this section, the improved material model is applied to simulate 

the response of a masonry shear wall subjected to compression-shear 

loading [42,43] through a simplified micromodelling approach. First, a 

preliminary numerical study of the shear wall under monotonic action 

is carried out to investigate the sensitivity of the response to different 

values of the regularization parameter 𝜗, Eq. (20). Subsequently, the 

model is validated against the cyclic laboratory test of the shear wall 

[42,43]. Finally, the effects of varying the value of the coupling param­

eter 𝑝, Eq. (19), and the quality of the head-joints on the response are 

investigated.

3.1 . Experimental test and numerical model

The experimental setup of the shear wall under compression-shear 

loading [42,43] is shown in Fig. 9. The specimen is made of clay bricks, 

210 × 50 mm2, laid in a running bond configuration, with a mortar joint 

thickness of 10 mm. The thickness of the wall is 100 mm. It is placed on a 

fully constrained steel beam (HEA300) and it is restrained at the top by 

another steel beam (HEA600) which can vertically translate and rotate 

during the test. A concrete lintel is located above an asymmetric opening 

and two notches are inserted during the construction of the specimen. 

The wall is subjected to a (constant) vertical overload of 0.12 MPa, before 

a horizontal quasi-static cyclic displacement 𝑢 is applied to the top beam.
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Table 1 

Shear wall: material parameters.

Bricks Lintel Bed-joint interfaces

𝐸 [N mm−2] 8000 31,000 [42,43] 𝑘n [N mm−3] 115 [44]

𝜈 0.14 0.2 [42,43] 𝑘s [N mm−3] 50 [44]

𝜌 [kg m−3] 1708 2400 [42,43] 𝑓n [N mm−2] 0.09 [42,43]

𝑓s [N mm−2] 0.14 [42,43]

𝐺f,I  [N mm−1] 0.014 [45,46]

𝐺f,II [N mm−1] 0.14 [45,46]

𝛼 1 [47]

𝜇 0.79 [42,43]

𝑝 3 [⋅]
𝜗 105 [⋅]

[42,43] material characterization; [44] formula; [45,46] formula; [47] formula; 

[⋅] calibration.

In the numerical model, bricks, lintel and beams are modelled with 

bilinear elastic elements. The only source of nonlinearity is provided by 

the nonlinear zero-thickness interfaces located between the expanded 

bricks, according to the simplified micromodelling approach, Fig. 1. The 

material parameters of bricks, lintel and bed-joints used in the simula­

tions are summarized in Table 1. The interface stiffness is computed as 

[44]:

𝑘n =
𝐸b 𝐸m

ℎm
(

𝐸b 𝐸m
) , 𝑘s =

𝐺b 𝐺m

ℎm
(

𝐺b 𝐺m
) (55)

where the subscripts b and m refer to brick and mortar, respectively; 

𝐸 and 𝐺 are the elastic moduli and ℎm is the mortar thickness. These 

relations do not result in penalty stiffness values. Therefore, in the com­

pressive areas, exaggerated deformed plots may show penetration of 

the interface faces. However, this should be interpreted as the actual 

compression of the mortar joints that are not explicitly modelled. The 

interface fracture energies are determined by the formulas [45,46]:

𝐺f,I = 0.16 𝑓n, 𝐺f,II = 10𝐺f,I (56)

Due to the construction process, the head-joints are usually character­

ized by poorer mechanical properties than the bed-joints. To account 

for this, their material parameters are evaluated from those of the bed-

joints by applying a reduction of 15%. The effect of this assumption on 

the response is explored later in this section.

In all simulations, continuum elements (masonry units, lintels and 

beams belonging to the experimental setup) are modelled by 4-node 

plane stress finite elements with 2×2 Gauss integration, whereas 4-node 

zero-thickness finite elements with Lobatto integration are used for the 

interfaces [48,49]. The total number of interface elements is 2716. The 

analyses are performed with adaptive stepping and Newton-Raphson 

with force norm of 104 or an energy norm of 105.

3.2 . Performance assessment of the frictional regularization parameter

The performance of the proposed formulation and the effect of vary­

ing the new model parameter, 𝜗, are investigated by simulating the shear 

wall subjected to a monotonic horizontal displacement of the top edge 

(Fig. 9).

A comparison between the global response curves, expressed in terms 

of total horizontal reaction 𝐹h with respect to the horizontal displace­

ment of the top left corner 𝑢P, obtained without and with regularization 

of the frictional term, is carried out and presented in Fig. 10(a). The 

function used to determine the direction of the friction is specified in 

Fig. 10(b). To highlight the effect of the frictional contribution, the 

response of a purely cohesive material (without friction) is shown as 

reference line (brown solid curve). For this case, the softening branch 

in the global response indicates damage localization in a horizontal 

mortar layer, resulting in a sliding plane at the base of a pier and a 

subsequent reduction of the capacity. The response obtained without 

regularization of the frictional term is depicted in dark blue. It can be 

observed that determining the direction of 𝐭fric, Eq. (4), through the dis­

continuous function, sgn
(

Δ⟦𝑢⟧s
)

, leads to premature abortion of the 

analysis, indicated with a dark blue cross. In contrast, the use of the 

smooth function, ℎs, allows for simulating the complete response with­

out convergence issues for a wide range of values of the regularization 

parameter 𝜗. However, the capacity of the wall increases with 𝜗 since, 

to properly model the frictional contribution, the absolute value of ℎs
should approximate unity (|ℎs| ≈ 1). Fig. 11 illustrates the frictional 

contribution to the traction, 𝑑𝑝ℎs𝜇⟨−𝑡n⟩, at 𝑢P = 1.5 mm for analyses 

with 𝜗-values of 103, 105 and 106. It can been seen that for 𝜗 = 103

the frictional response arises in a smaller portion of the wall than for 

𝜗 = 105 (cf. Fig. 11a and b). This is due to the fact that for low values 

of 𝜗, in some areas of the structure |ℎs| < 1, and as a consequence the 

friction is not entirely accounted for. It is worth noting that when the 

value of 𝜗 is considerably small (dashed pink line), the corresponding 

global response approaches the curve obtained without friction. As 𝜗 in­

creases, |ℎs| reaches unity in more points and consequently the frictional 

contribution grows (cf. Fig. 11a and b) together with capacity (cf. the 

dotted gray and purple curves in Fig. 10(a). When the friction is suf­

ficiently accounted for, a further increment of 𝜗 does not change the 

frictional response (cf. Fig. 11b and c) and, therefore, does not result in 

an increase of capacity (the orange and purple curves overlap, Fig. 10(a). 

However, upon further increasing 𝜗, convergence issues re-emerge since 

ℎs approaches sign(Δ⟦𝑢⟧s) as 𝜗→ ∞, Eq. (21). Consequently, the smooth 

function ℎs is so steep that it is almost characterized by an unbounded 

tangent for Δ⟦𝑢⟧s = 0, (cyan line, Fig. 10). It is worth noting that this nu­

merical problem arises for a value of 𝜗 three orders of magnitude higher 

than what already represents a good approximation for the sign function 

(purple line, Fig. 10). 

From this analysis, it can be concluded that an optimum for 𝜗 can 

be found for which the response does not change with further increase, 

while improving the robustness of the simulations.

Fig. 9. Experimental setup (adapted from [42]) and cyclic loading scheme. The analysis is quasi-static. The variable 𝑡 on the 𝑥-axis indicates a pseudo-time.
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Fig. 10. Sensitivity analysis varying the values of the regularization parameter 𝜗.

Fig. 11. Frictional contribution to the traction, 𝑑𝑝ℎs𝜇⟨−𝑡n⟩, at the last stage of the monotonic analysis (𝑢P = 1.5 mm) for different values of the regularization 

parameter 𝜗.

3.3 . Simulation of the experimental cyclic test

After having demonstrated the effect of varying the regularization 

parameter 𝜗 through a monotonic test of the shear wall, the model is 

validated against the laboratory test of the same shear wall subjected 

to a cyclic horizontal displacement of the top beam. During the exper­

iment, each displacement amplitude is applied ten times before being 

progressively increased. To save computational time, only one cycle for 

each amplitude is numerically simulated (Fig. 9 right). For the cyclic 

analysis, the regularization parameter 𝜗 is set to 105, as indicated by the 

previous numerical study (Section 3.2).

Experimental and numerical global response curves are compared in 

Fig. 12(a). The numerical model satisfactorily captures the initial stiff­

ness, the capacity, the energy dissipated during the analysis and the 

unloading-reloading behaviour of the wall. The hysteresis loops in the 

global response curve emerge naturally from the decomposition of the 

total traction into cohesive and frictional parts, with the former char­

acterized by a secant unloading and the latter by a rigid unloading. 

In addition, the crack pattern at the maximum applied displacement, 

𝑢P = 1.52 mm, is in good agreement with the experiment (cf. Fig. 12b 

and c). It can be observed that the location of the cracks is well repro­

duced, although their widths are slightly underestimated and a small 

mismatch with respect to the direction of the bottom right crack can be 

noticed. 

A mesh refinement study is carried out: two mesh sizes are used, a 

coarser and a finer mesh. In case of brickwork masonry characterized 

by strong bricks and weak mortar joints [12], a refinement of the mesh 

does not modify the potential crack path which remains constrained in 

the joint layers. The comparison between the global response curves 

(Fig. 13a) and the crack patterns (cf. Fig. 13b and c) shows that the 

model is mesh-insensitive. A more accurate representation of the evo­

lution of the crack pattern together with an objective description of 

the energy dissipated during the analysis of strain softening materials 

with respect to the mesh size [13] represents considerable advantages 

of discrete over local continuum models [21]. The drawback of mi­

cromodels is that they usually require higher computational cost and 

longer pre-processing times. In particular, the pre-processing phase can 

become tedious when larger structures and complex bond patterns are 

considered. Nonetheless, it is important to highlight that the model with 

consistent tangent is rather efficient and the coarse-mesh simulation 

takes 25 min on a laptop computer with processor 12th Gen Intel(R) 

Core(TM) i7-1265U 1.80 GHz and RAM 16 GB (CPU time: 1519 s).

3.4 . Sensitivity studies on model parameters affecting the frictional 

contribution

In the following, the influence on the response of the model pa­

rameters 𝑝 and 𝜗 (Eqs. 19 and 20) that affect the frictional term is 

explored.

First, the effect of varying the coupling parameter 𝑝, which deter­

mines the interaction between cohesive and frictional behaviours, is 

investigated. Increasing 𝑝 results in a delay in the mobilization of the 
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Fig. 12. Experimental vs numerical response of the shear wall under cyclic loading: global response curves (a); experimental crack width from [42] (b) and numerical 

crack width (c) at the maximum applied displacement 𝑢P = 1.52mm.

Fig. 13. Mesh refinement study: global response curves (a); numerical crack width with different mesh sizes at the maximum applied displacement 𝑢P = 1.52mm (b) 

and (c).

frictional term, since a higher level of damage is required to attain the 

same contribution of the friction (Fig. 14a). This results in a lower capac­

ity at the integration point level: the strength of the material decreases 

(Fig. 14b) and the limit strength domain reduces (Fig. 14c). This ulti­

mately leads to a lower capacity of the wall (Fig. 14d). Moreover, as the 

value of 𝑝 grows, the frictional contribution reduces (Fig. 15), influenc­

ing the amount of permanent displacements accumulated in the system 

and therefore affecting the cyclic response. Since the cohesive part of 

the response is characterized by secant unloading (no residual displace­

ments upon unloading) whereas the frictional part is characterized by 

rigid unloading (no recovery in displacements upon unloading), it can be 

observed that the force 𝐹h at the end of the analysis, 𝑢P = 0 mm, changes 

with 𝑝 (from the value −3.6 to -3.0 kN by assuming, respectively, 𝑝 = 3
and 𝑝 = 30, Fig. 14d).

Next, a sensitivity study with different values of the regularization 

parameter 𝜗 is illustrated in Fig. 16. It can be observed that, similarly 

to the monotonic case (Section 3.2), when a cyclic load is applied, 

the global response curves obtained with sufficiently high values of 

the regularization parameter, 𝜗 = 105 and 106, overlap (Fig. 16a). 

The corresponding friction contour plots at the maximum applied dis­

placement (𝑢P = 1.52 mm) show complete agreement (cf. Fig. 15a and 

16b). Therefore, as already explored with the monotonic analysis in 

Section 3.2, by using 𝜗 = 105, the smooth function ℎs represents a good 

approximation for the sign function, Eq. (20), and the frictional part of 

the traction is adequately taken into account.

3.5 . Head-joints sensitivity

So far, the analyses were performed with a 15% reduction of the head-

joint parameters with respect to the bed-joint values. To explore the 

effect on the response of the head-joint quality, which can vary depend­

ing on the manufacturing process [50], a sensitivity study with different 

values of the head-joints material parameters is carried out. The prop­

erties are chosen as 100%, 85% (used in the previous analyses) and 50%
of the corresponding bed-joints values (Table 2). The outcomes of the 

simulations are compared in terms of global response curves and crack 

patterns. 

The global response curve (Fig. 17a) is only slightly affected by a 

variation in the head-joint properties, indicating that the test is governed 

mainly by the bed-joints characteristics. If 100% or 85% of the bed-joint 

properties are used to characterize the head-joints, the outcome of the 

simulation does not change, neither in terms of global response (blue 

and red curves, Fig. 17a) nor crack pattern (cf. Fig. 12c and Fig. 17b). 

The only difference concerns the bottom left crack that develops in a 

different mortar layer. In contrast, some discrepancies in the results 
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Fig. 14. Sensitivity analysis varying 𝑝.

Fig. 15. Frictional contribution to the traction, 𝑑𝑝ℎs 𝜇⟨−𝑡n⟩, at the maximum applied displacement 𝑢P = 1.52mm for different values of the coupling parameter 𝑝 and 

with regularization parameter 𝜗 = 105.

Table 2 

Shear wall: head-joint material parameters as 

percentages of the bed-joint values.

100% 85% 50%

𝑘n 115 100 55 N mm−3

𝑘s 50 40 25 N mm−3

𝑓n 0.09 0.075 0.045 N mm−2

𝑓s 0.14 0.12 0.07 N mm−2

𝐺f,I 0.014 0.012 0.007 N mm−1

𝐺f,II 0.14 0.12 0.07 N mm−1

𝛼 1 1 1

𝜇 0.79 0.67 0.4

𝑝 3 3 3

𝜗 105 105 105

can be observed when a reduction of 50% of the head-joint parame­

ters is applied. This case shows a slightly higher capacity (green curve, 

Fig. 17a) and a crack pattern that differs from the other simulations: at 

the top left, a crack grows diagonally and at the bottom left, a crack 

localizes in two mortar layers, (cf. Fig. 12c, 17b and c). This crack pat­

tern requires more energy to develop. Therefore, although in this case 

poorer properties are used for characterizing the head-joints, the energy 

dissipated to meet the same demand in displacement is higher, explain­

ing the increased capacity. However, since the specimen is built in a 

laboratory and particular attention is paid to its construction, a large re­

duction in the head-joint properties with respect to the bed-joints does 

not appear appropriate. Thus, the head-joints material parameters were 

assumed as 85% of the bed-joints values as base case throughout this

section.
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Fig. 16. Sensitivity analysis of the regularization parameter 𝜗: global response curves (a); frictional contribution to the traction, 𝑑𝑝ℎs 𝜇⟨−𝑡n⟩, at the maximum applied 

displacement 𝑢P = 1.52 mm for 𝜗 = 106 (b).

3.6 . Discussion

In this section, the performance of the interface material model has 

been examined. First, the effect of regularizing the frictional term on 

the response has been investigated for a monotonic loading case and a 

procedure to achieve objectivity of the frictional contribution has been 

outlined. Subsequently, the model has been used to simulate a cyclic ex­

perimental test. The results of the simulation show that the numerical 

model is able to accurately capture capacity, stiffness degradation and 

energy dissipated during the cycles and describe the complex unloading-

reloading behaviour characteristic of masonry. Furthermore, the crack 

pattern is well reproduced and the model is mesh-objective. The effect 

of varying the model parameter that governs the interaction between 

cohesion and friction has been investigated and its influence on the re­

sponse has been discussed. Moreover, sensitivity analyses varying the 

value of the regularization parameter confirm the objectivity of the re­

sponse during the cyclic simulation. For both the monotonic and cyclic 

tests, a 𝜗-value of 105 appears appropriate. However, this may vary de­

pending on the specific case. Therefore, varying 𝜗 is recommended to 

assess the objectivity of the response and the robustness of the simula­

tion. Finally, the sensitivity study of the head-joint material parameter 

shows that, in this case study, the quality of the head-joints has minor 

influence on the response.

The outcomes of the simulations in this section demonstrate that 

the removal of the loading-unloading discontinuity in the Coulomb 

frictional term and the derivation of the consistent tangent stiffness 

matrix lead to an efficient and robust formulation. Objective results are 

achieved and the frictional term is adequately described.

4 . Validation against a masonry spandrel wall

In this section a full-scale spandrel test subjected to cyclic settlements 

[51,52] is simulated to assess the performance of the model under com­

plex loading schemes and damage patterns. Furthermore, the effects 

on the response of varying the regularization parameter 𝜗 and using 

different values of the material properties are investigated.

4.1 . Experimental test and numerical model

The spandrel wall [51,53] is made of clay bricks, with dimensions 

250 × 120 × 60 mm3, laid in a double-wythe English bond pattern. It con­

sists of a spandrel, placed on a timber lintel, and two piers, see Fig. 18. 

The piers are located on lever beams which rotate, alternatively, clock­

wise and anticlockwise with increasing amplitude. Additional loads are 

applied to the specimen via vertical and horizontal tendons. Specifically, 

a vertical stress 𝜎v is imposed on each pier and a horizontal load 𝐻sp is 

applied to the spandrel. The magnitude of these loads is modified three 

times during the experimental test to arrest the development of failure 

mechanisms outside the spandrel. This resulted in the sequential appli­

cation of three combinations of loads, corresponding to three loading 

phases (LP), shown in Table 3.

The test is simulated through a two-dimensional finite element 

model, consequently the actual geometry in the thickness is neglected. 

Fig. 17. Sensitivity analysis for different reductions of head-joint parameters with respect to the corresponding bed-joints values: global response curves (a); crack 

width at the maximum applied displacement 𝑢𝑃 = 1.52 mm (b), (c).
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Table 3 

Spandrel test: loads in the tendons 

during each loading phase.

𝜎v [N mm−2] 𝐻sp [kN]

LP 1 0.18 80

LP 2 0.33 80

LP 3 0.33 40

Before the experimental test started, a crack above the lintel was 

recorded, thus, in the numerical model, the corresponding interfaces are 

assumed to be pre-damaged (Fig. 18). The material parameters used in 

the analysis are summarized in Table 4. For the bed-joint interfaces, the 

parameters 𝑘n, 𝑘s, 𝐺f,I, 𝐺f,II are computed through Eqs. (55) and (56). The 

interface strength in mode I, 𝑓n, is evaluated as [44]:

𝑓n =
𝑓s
2𝜇

(57)

The head-joint properties are assumed as 85% of the bed-joint values to 

account for their inherently lower quality and the simplified geometry. 

Moreover, the friction coefficient acting between the wooden lintel and 

clay bricks is assumed to be 0.6 [54,55]. The use of parameters from 

material characterization or formulas revealed a significant discrepancy 

between the experimental and numerical initial stiffness of the spandrel. 

Therefore, the value of the elastic stiffness of the bricks 𝐸b has been 

reduced to match the initial slope of the experimental response curve. To 

investigate the consequences of this choice, a sensitivity study varying 

the value of 𝐸b is carried out later in this section.

Experimental and numerical outcomes are compared in terms of 

global response curves and evolution of the crack pattern. The global 

response curve is expressed as the shear force in the spandrel 𝑉  with 

respect to the rotation of the piers 𝜑p. These quantities are computed 

as the average of the southern and northern values (see Fig. 18), indi­

cated by the subscripts S and N, respectively. The shear forces 𝑉S/N are 

evaluated as:

𝑉S/N = 𝐹act,S/N + 𝑅sup,S/N − 𝑊
2

(58)

where 𝐹act,S/N is the force in the actuators, 𝑅sup,S/N is the vertical reaction 

of the supports and 𝑊  is the self-weight of the complete set-up. The half-

amplitude of the rotations (positive if clockwise, negative otherwise) is 

computed as:

𝜑p,S/N =
𝑣1,S/N − 𝑣2,S/N

𝑙pier
(59)

where 𝑣𝑖,S/N, 𝑖 = 1, 2 indicates the vertical displacement of the points 

𝑃1,S/N and 𝑃2,S/N and 𝑙pier = 𝑃1,S/N𝑃2,S/N is the length of the piers (Fig. 18). 

Fig. 19. Cyclic loading scheme. The cross indicates the end of the simulation.

During the experiment, the magnitude of the rotations is increased every 

two cycles. To reduce the computational cost, only one cycle for each 

amplitude is numerically simulated. The loading scheme is illustrated in 

Fig. 19.

In all simulations, continuum elements (masonry units, lintels and 

beams belonging to the experimental setup) are modelled by 4-node 

plane stress finite elements with 2×2 Gauss integration, whereas 4-node 

zero-thickness finite elements with Lobatto integration are used for the 

interfaces [48,49]. The total number of interface elements is 3147. The 

load step sizes are automatically adjusted with adaptive stepping.

4.2 . Simulation of experimental cyclic test

Experimental and numerical outcomes are compared in Fig. 20 and 

Fig. 22. For the first loading phase LP 1, both the global response 

(Fig. 20a) and the crack pattern (cf. Fig. 21a–d) are in good corre­

spondence with the experiment. For the second loading phase LP 2, 

the capacity is well captured, although the hysteresis loop is underes­

timated (Fig. 20b). In the piers, the horizontal cracks that occur during 

the previous loading phase (LP 1, Fig. 21d), re-open during the second 

loading phase LP 2, without dissipating further energy. Nevertheless, 

the evolution of the crack pattern is adequately described (Fig. 21e–h). 

During the third loading phase LP 3, numerical and experimental re­

sponses are in good agreement until 𝜑p = 0.2% and the capacity is well 

captured (Fig. 20c). Furthermore, experimental and numerical crack pat­

terns show a good match, with the formation of vertical cracks with 

different lengths at the edges of the spandrel (cf. Fig. 22a and b). These 

Fig. 18. Spandrel TUA: experimental setup.
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Table 4 

Spandrel test: material parameters. 

Bricks Lintel Bed-joint Head-joint [⋅]

𝐸 [N mm−2] 1000 [⋅] 6700 [51,52] 𝑘n [N mm−3] 200 [44] 170

𝜈 0.15 [51,52] 0.3 [51,52] 𝑘s [N mm−3] 80 [44] 68

𝜌 [kg m−3] 1880 [51,52] 477 [51,52] 𝑓n [N mm−2] 0.2 [44] 0.17

𝑓s [N mm−2] 0.35 [51,52] 0.3

𝐺f,I  [N mm−1] 0.03 [45,46] 0.025

𝐺f,II [N mm−1] 0.3 [45,46] 0.25

𝛼 1 [47] 1

𝜇 0.85 [51,52] 0.72

𝑝 1 [⋅] 1

𝜗 2 ⋅ 104 [⋅] 2 ⋅ 104

[51,52] material characterization; [44] formula; [45,46] formula; [47] formula; [⋅] calibration

cracks are caused by the asymmetric application of the loading ampli­

tudes which are gradually increased. Discrepancies in the results arise 

at 𝜑p = −0.2% when, in the experimental test, a loss of capacity due 

to the occurrence of a diagonal shear crack in the spandrel is observed 

(Fig. 20c and 22c). Conversely, in the numerical simulation, this diago­

nal shear crack does not develop (Fig. 22d), leading to an overestimation 

of the global response curve (Fig. 20c). As the analysis progresses, the 

damage continues to evolve and the two vertical cracks at the edges of 

the spandrel grow towards the lintel (Fig. 22d and f). At 𝜑p = 0.4% an 

area of diffuse damage at the base of the spandrel is visible (Fig. 22f). At 

𝜑p = −0.4%, the two vertical cracks at the edges of the spandrel reach 

the lintel (Fig. 22h). When the rotation of the beams reaches the value 

𝜑p = 0.6%, in the simulation, a crack initiates at the left edge of the 

spandrel, while another crack, starting at the right side, reaches the top 

(Fig. 22j). The simulation was terminated at 𝜑p = −0.2% when these two 

cracks merge (Fig. 22k). 

Finally, in Fig. 20(c) in both the experimental and numerical global 

response curves, from 𝜑p = 0.6% to the end of the simulation (indicated 

by a cross), a change in curvature can be noticed. This recovery in stiff­

ness is due to the re-closure of the vertical cracks at the edges of the 

spandrel (Fig. 22j).

4.3 . Sensitivity analysis varying 𝜗

In the following, the effect of varying the value of the regulariza­

tion parameter 𝜗 is explored. Fig. 23 shows the first cycles of the global 

response curves (LP 1) for different values of the model parameter 𝜗. It 

can be observed that the curves obtained with 𝜗 = 2 ⋅ 104 and 𝜗 = 1 ⋅ 105

overlap (red and green curves). The parameter 𝜗 = 2 ⋅ 104 (Table 4) 

is sufficiently high to represent a good approximation of the discontin­

uous sign function and, therefore, adequately describes the frictional 

term. When the value of this regularization parameter is considerably 

increased, 𝜗 = 1 ⋅ 106 (orange curve), convergence problems reappear 

and the analysis stops prematurely (orange cross in the global response 

curve). Therefore, without the regularization of the frictional term, an 

implicit analysis of the spandrel test was not possible. The use of a 

smooth approximation of the sign function results in robust analysis, 

without compromising accuracy. 

4.4 . Sensitivity analysis varying 𝐸b

As mentioned in Section 4.1, the use of parameters from material 

characterization leads to a mismatch between the experimental and nu­

merical initial stiffness of the spandrel. Fig. 24 shows the first cycles 

of the global response curve (LP 1) obtained by using the material pa­

rameters from Table 4, and varying the Young modulus of the bricks, 

𝐸b. Assuming the value of 𝐸b from material characterization results in 

an overestimation of the initial slope (blue curve). Therefore, the value 

of the elastic modulus of the bricks has been reduced to match the ini­

tial stiffness of the system (red curve) and has been used throughout 

Section 4. Nevertheless, this choice affects the results of the simula­

tion: the energy dissipated by the system diminishes, since part of the 

displacement demand is accommodated by the brick elastic deforma­

tions which increase as the value of 𝐸b decreases. The present analysis 

confirms that a reduced value of the Young modulus of the bricks is 

necessary for capturing the initial stiffness of the spandrel, as done 

throughout Section 4. 

4.5 . Discussion

In this section, the interface material model has been tested by simu­

lating a spandrel wall subjected to differential settlements. The outcome 

of the simulation is in good agreement with the experiment for the load­

ing phases LP 1 and LP 2, both in terms of global response curves and 

crack patterns. For the loading phase LP 3, a mismatch between numer­

ical and experimental outcomes has been observed: the simulation is 

unable to predict the formation of a shear crack in the spandrel, lead­

ing to a discrepancy in the global response. However, it is important 

to highlight that the interface material parameters are taken from mate­

rial characterization or formulas when experimental data is unavailable, 

without further calibration. Moreover, by considering the 2D simplifica­

tion of the complex geometry, the assumptions about the brick stiffness 

and the experimental uncertainties regarding boundary conditions and 

material characterization, the numerical model decently describes the 

evolution of the crack pattern.

The sensitivity study of the regularization parameter 𝜗 has demon­

strated objectivity of the results in the spandrel simulation. Furthermore, 

the comparison between the global response curves obtained with re­

duced and experimental values of the Young modulus of the bricks 

confirms the necessity of adjusting the 𝐸b-value to achieve a good match 

with the experiment.

Finally, the model shows satisfactory results in terms of robust­

ness and efficiency: the derived consistent tangent allows for relatively 

fast simulation times (2:58 hours on a laptop computer with proces­

sor 12th Gen Intel(R) Core(TM) i7-1265U 1.80 GHz and RAM 16 GB, 

and CPU time 12,932 s), enabling implicit micromodelling simulations 

of full-scale structures under cyclic loads with complex damage-friction 

interactions.

5 . Conclusions

An interface material model for quasi-brittle fracture, originally pre­

sented in the context of the Discrete Element Method has been improved, 

implemented in an implicit finite element code and tested to simulate 

the in-plane behaviour of full-scale masonry structures. In tension-shear, 

the model is characterized by a cohesive response and accounts for 

mixed-mode fracture. In compression-shear, cohesion is combined with 

Coulomb friction in a physically meaningful way. This mixed-mode fric­

tional cohesive zone model allows for a proper description of the cyclic 

response of masonry material that would not be possible with plasticity-

based models characterized by elastic unloading. While previous works 

introduced a discontinuity in the traction–separation relation to incor­

porate the frictional term, the present study proposes a regularization of 

the frictional contribution, together with a consistent linearization of the 

Computers and Structures 322 (2026) 108116 

13 



G. Cera, J.G. Rots, A.T. Slobbe et al.

Fig. 20. Spandrel test: experimental vs numerical global response curves. In (c) a cross indicates the abortion of the analysis. Note that for displaying purposes, 

different 𝑥-axis scales are used.

Fig. 21. Evolution of the damage  for LP 1 and 2: experimental (left) versus numerical (right). The original pictures are provided by K. Beyer and modified by the 

authors to highlight the crack pattern.
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Fig. 22. Evolution of the damage for LP 3: experimental (left) versus numerical (right).

traction update algorithm, to improve the convergence behaviour and 

enable the analysis of large-scale structures. A new regularization pa­

rameter, which determines the degree of approximation of the frictional 

term to the Coulomb friction, has been introduced. A procedure for cali­

brating this parameter has been outlined and the robustness of the model 

has been demonstrated. Sensitivity analyses varying the magnitude of 

the regularization parameter have been performed to demonstrate that 

objectivity of the numerical results can be achieved. 

The improved model has been applied in a simplified micromodelling 

approach for the analysis of 2D masonry structures under different cyclic 

actions: a shear wall subjected to horizontal loading and a spandrel wall 

subjected to vertical displacements. In the simulation of the shear wall, 
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Fig. 23. First cycles of the global response curve (LP 1) for different values of 

the model parameter 𝜗. A cross indicates the abortion of the analysis.

Fig. 24. First cycles of the global response curve (LP 1) for different values of 

the bricks’ Young modulus [MPa].

the improved model accurately captures the initial stiffness, capacity, 

stiffness degradation over cycles, energy dissipation and crack patterns. 

In the simulation of the spandrel test, discrepancies between the exper­

imental and numerical outcomes have been highlighted. Nevertheless, 

by considering the experimental uncertainties, the assumptions regard­

ing the material properties and the simplification of the actual geometry 

of the sample, the model decently describes the mechanical response.

The improved model with consistent tangent stiffness is able to ro­

bustly and efficiently simulate the in-plane cyclic response of masonry 

structures. However, it is worth mentioning that even though the mi­

cromodel is computationally efficient, the generation of the numerical 

model can become expensive if more complex bond patterns and larger 

structures are analysed. The interaction between decohesion and friction 

is properly taken into account and the regularization of the frictional 

term enables robust and accurate implicit micromechanical simulations 

of complex full-scale masonry walls under cyclic loads.

To conclude, in combination with elastic bricks, the improved inter­

face is able to capture the response of masonry under both tension-shear 

and compression-shear, provided that the compressive stress does not 

exceed the strength of the material (compressive crushing). Future 

perspectives regard the addition of a plastic-damage cap for the phe­

nomenological description of compressive crushing and the extension 

to 3D for modelling the out-of-plane response of masonry.
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Appendix A . Cohesive constitutive equations

In this Annex, Eqs. (10), (11) and (15) are derived. The procedure 

follows the same steps as outlined in [35], but with a different definition 

of the mode-mixity 𝛽 (Eq. 6).

A.1 . Derivation of the mixed-mode limit elastic displacement jump ⟦𝑢⟧m
(Eq. 11)

The damage initiation criterion (Eq. 8) can be rewritten in terms of 

displacement jump components as [35]: 

(

⟨⟦𝑢⟧n⟩

⟦𝑢⟧e
n

)2
+
(

⟦𝑢⟧s
⟦𝑢⟧e

s

)2
= 1 (A.1)

Furthermore, by rearranging Eq. (6) and substituting into Eq. (7), the 

displacement jump components ⟦𝑢⟧n and ⟦𝑢⟧s are expressed in terms of 

the equivalent displacement jump ⟦𝑢⟧eq as: 

⟦𝑢⟧n =
√

1 − 𝛽 ⟦𝑢⟧eq; ⟦𝑢⟧s =
√

𝛽 ⟦𝑢⟧eq (A.2)

By inserting these expressions into Eq. (A.1), the damage initiation cri­

terion can be rewritten in terms of ⟦𝑢⟧eq. The value of ⟦𝑢⟧eq that satisfies 

the criterion Eq. (A.1) is the mixed-mode limit elastic displacement ⟦𝑢⟧m: 

⟦𝑢⟧m = ⟦𝑢⟧e
n⟦𝑢⟧

e
s

√

1

𝛽
(

⟦𝑢⟧e
n
)2 + (1 − 𝛽)

(

⟦𝑢⟧e
s
)2

(11)
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Fig. A.25. Cohesive fracture energy for pure-mode 𝑖 = n, s, divided in elastic 

and inelastic parts.

A.2 . Derivation of the mixed-mode strength 𝑓m (Eq. 10)

Through the relations in Eqs. (11) and (A.2), the traction components 

at the elastic limit (𝑑 = 0) are: 

𝑡en =
√

1 − 𝛽 𝑘n⟦𝑢⟧m; 𝑡es =
√

𝛽 𝑘s⟦𝑢⟧m (A.3)

The mixed-mode strength 𝑓m is defined as 

𝑓m =
√

(𝑡en)
2 + (𝑡es )

2 (A.4)

Substituting the expressions from Eqs. (11) and (A.3) into Eq. (A.4) 

yields: 

𝑓m = ⟦𝑢⟧e
n⟦𝑢⟧

e
s

√

√

√

√

(1 − 𝛽) 𝑘2n + 𝛽 𝑘2s
𝛽
(

⟦𝑢⟧e
n
)2 + (1 − 𝛽)

(

⟦𝑢⟧e
s
)2

(10)

A.3 . Derivation of the ratios 𝜓I and 𝜓II (Eq. 15)

The cohesive energy, for each mode 𝑖 = I,II, is defined as the sum of 

the elastic and inelastic parts (Fig. A.25), indicated by the subscripts “e” 

and “in”, respectively:

𝐺f,𝑖 = 𝐺e
f,𝑖 + 𝐺

in
f,𝑖 𝑖 = I,II (A.5)

The expressions in Eq. (15) are computed by assuming that the ratio 

of the elastic energy over the total energy during pure-mode fracture is 

the same as the ratio of the pure-mode components during mixed-mode 

fracture:

𝐺e
f,𝑖

𝐺f,𝑖
=
𝐺e

f,mix,𝑖

𝐺f,mix,𝑖
= const𝑖 𝑖 = I,II (A.6)

Thus, Eq. (14) can be rewritten as:

𝜓𝑖 =
𝐺f,mix,𝑖

𝐺f,𝑖
=
𝐺e

f,mix,𝑖

𝐺e
f,𝑖

𝑖 = I,II (A.7)

where

𝐺e
f,I =

𝑓n⟦𝑢⟧e
n

2
; 𝐺e

f,II =
𝑓s⟦𝑢⟧e

s

2
; 𝐺e

f,mix,I =
𝑡en⟦𝑢⟧

0
n

2
; 𝐺e

f,mix,II =
𝑡es⟦𝑢⟧

0
s

2
(A.8)

with ⟦𝑢⟧0n and ⟦𝑢⟧0s  being the components of the mixed-mode limit elastic 

displacement jump:

⟦𝑢⟧0n =
√

1 − 𝛽 ⟦𝑢⟧m; ⟦𝑢⟧0s =
√

𝛽 ⟦𝑢⟧m (A.9)

Substituting Eqs. (11), (A.8) and (A.9) into Eq. (A.7) gives:

𝜓I =
(1 − 𝛽)

(

⟦𝑢⟧e
s
)2

(1 − 𝛽)
(

⟦𝑢⟧e
s
)2 + 𝛽

(

⟦𝑢⟧e
n
)2

; 𝜓II =
𝛽
(

⟦𝑢⟧e
n
)2

(1 − 𝛽)
(

⟦𝑢⟧e
s
)2 + 𝛽

(

⟦𝑢⟧e
n
)2

(15)

Data availability

The data presented in this article can be accessed through the 

4TU.ResearchData repository: https://doi.org/10.4121/fcc76932-05e1-

46f1-869e-25ab0a09b4f8.
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