
D
el

ft
U

ni
ve

rs
it

y
of

Te
ch

no
lo

gy

UVC Seed Sterilization
BSc Thesis
Software and Control

EE3L11: Bachelor Graduation Project
Erman Ergül
Erik van Weelderen

UVC Seed Sterilization
BSc Thesis
Software and Control

by

Erman Ergül
Erik van Weelderen

to obtain the degree of Bachelor of Science

at the Delft University of Technology,

to be defended publicly on Tuesday June 27, 2023 at 15:30.

Student number: 5334640 (E. Ergül)

5315115 (E.H. van Weelderen)

Project duration: 24 April, 2023 - 30 June, 2023

Thesis committee: Dr. M. Babaie, TU Delft, jury chair

Dr. ing. H. van Zeĳl, TU Delft, supervisor

Dr. S. Izadkhast, TU Delft

Prof. dr. ir. J. van Turnhout TU Delft

Drs. L. Wymenga, TU Delft, supervising PhD candidate

Faculty: Faculty of Electrical Engineering,

Mathematics and Computer Science, Delft

with contribution from the entire UVC Seed Sterilization group

Bsc. Electrical Engineering 2023 BAP group M:

E. Ergül 5334640

R.W.L Imbens 5155940

L.C. Klootwĳk 5155940

M. Mazurovs 5050545

D.O. Schat 5169801

E.H. van Weelderen 5315115

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Abstract

In this thesis for the Bachelor’s Degree in Electrical Engineering, a Control Unit (PCB and software) is

designed for inside the UVC Seed Disinfection Machine of Team UVO. The machine consists of four

modules: the Control Unit, the LED Driver, the motor controller and the power supply. The Control

Unit allows a user to input the intensity per wavelength (for possible wavelengths: 255 nm, 275 nm,

285 nm and 395 nm), the exposure time and the motor speed.

The design of the machine, including all the modules, is aimed at achieving the optimal wavelength

for inactivation and maximum and uniform irradiance, with the ability of changing radiation settings

according to the desire of the user.

The Control Unit manages communication with the other modules, data storage, the User Interface,

safety checks and system enabling. The thesis covers the design choices regarding the entire design,

with an in-depth analysis of the hardware implemented safety checks, the graphical user interface and

the design of the communication protocol.

Due to difficulties regarding uploading the code onto the PCB, not every developed functionality could

be tested or implemented. However, the functionalities that were tested, did perform as expected. In

addition to this, after the thesis has been submitted, more time will be spent on debugging the PCB,

implementing and testing its features.

The objective for the graduation project of Team UVO is to provide a proof-of-concept of disinfecting

cabbage seeds (Brassica oleracea capitata) from Alternaria using UVC LEDs. This thesis describes design

process of the Control Unit module. The results of the decontamination process are provided in

Appendix F.

i

Preface

For this Bachelor Graduation Project of Electrical Engineering, we, Team UVO, have worked on a device

to disinfect seeds. It was quite a challenge, and we knew from the start what we were getting ourselves

into. However, this challenge was what drove us, pushed us to go further and to reach for the best

possible. And so we did.

But not without help.

First and foremost, we would like to extend our gratitude to dr. ing. H. van Zeĳl, drs. L. Wymenga and

Prof. dr. ir. J. van Turnhout. Without you, this project would not have existed. Your guidance and

enthusiasm for the project has motivated us from the first meeting.

Additionaly, we would like to thank M. Schumacher and A.M.J. Slats for allowing us to make use of

their working equipment and supplies and allowing us to work inside the Tellegen Hall.

Finally, we would like to thank Rik Imbens, Lucas Klootwĳk, Maxim Mazurovs and Daan Schat for

joining us in this amazing project.

It took us long hard-working days, every possible drink at the coffee machine, and lots of fun, so hereby

we proudly present our Bachelor’s Graduation Thesis: Software and Control.

Erman Ergül
Erik van Weelderen

Delft, July 2023

ii

Contents

Abstract i

Preface ii

List of Figures vi

List of Tables vii

Nomenclature viii

1 Introduction 1
1.1 Project Objective . 1

1.2 State-of-the-Art Analysis . 2

1.2.1 Ultraviolet light in the light spectrum . 2

1.2.2 Germicidal properties of Ultraviolet light . 2

1.2.3 Comparison of mercury UV lamps and UV LEDs 3

1.2.4 Safety considerations of UV on humans . 4

1.3 Thesis Layout . 5

2 Programme of Requirements 6
2.1 System Requirements . 6

2.1.1 Mandatory Requirements . 6

2.1.2 Trade-off Requirements . 7

2.2 Control Unit Requirements . 7

2.2.1 Mandatory Requirements . 7

2.2.2 Trade-off Requirements . 8

3 Optimization of the Radiation Pattern 9
3.1 Introduction . 9

3.2 Wavelength selection of the UVC LEDs . 9

3.3 Analysis of the transmission of the plating . 10

3.4 Adding reflectors for optimal radiation . 11

3.5 LED placement for uniform irradiance . 12

3.6 Moving the seeds for uniform irradiance . 13

3.7 Overview of the radiation design . 13

4 System Enabling 15
4.1 Introduction . 15

4.2 Hardware error detection logic . 16

4.2.1 Requirements . 16

4.2.2 Design of the logic circuit . 16

4.2.3 Software bypass . 17

5 Implementation of a User Interface 19
5.1 Introduction . 19

5.2 Displaying on Screen using GUISlice . 19

5.2.1 Setup Screen . 19

5.2.2 Monitor Screen . 20

5.2.3 Error Popup Screen . 20

5.2.4 Physical User Input . 20

5.2.5 Visual feedback of the User Input . 21

5.3 LED Display . 21

iii

Contents iv

6 Communication Protocol 22
6.1 Introduction . 22

6.2 Selection of Base Protocol . 22

6.2.1 UART . 22

6.2.2 SPI . 23

6.2.3 I
2
C . 23

6.3 Class Implementation . 23

6.4 Template of Protocol Messages . 23

6.4.1 Tokens . 24

6.4.2 Sending the Command . 24

6.4.3 Request . 25

6.4.4 Receiving the Response . 25

7 Prototype Design and Implementation 26
7.1 Introduction . 26

7.2 Prototype Design . 26

7.2.1 General Software Information . 27

7.2.2 External Connections . 27

7.2.3 Power Conversion . 27

7.2.4 USB Programmable . 27

7.2.5 Software Safety Measures . 28

7.2.6 System State . 28

7.2.7 Data Logging . 28

7.2.8 Buttons . 28

7.2.9 Voltage step-up . 28

7.2.10 Design for debugging and testing . 29

7.2.11 Final PCB Design for Control Unit . 29

7.2.12 Final Software Design for Control Unit . 29

7.3 Complete System Implementation . 29

8 Prototype Validation and Discussion of the Results 31
8.1 Powering up the PCB . 31

8.2 Uploading to the PCB . 31

8.3 Testing of the User Inputs . 32

8.3.1 Push buttons . 32

8.3.2 Rotary encoder . 33

8.4 Testing the Error Detection Hardware . 33

8.5 Testing the I
2
C communication . 34

8.6 Testing the Screen . 34

8.7 Testing the entire software . 34

9 Conclusions, Recommendations, and Future Work 35
9.1 Conclusions . 35

9.2 Recommendations . 36

9.3 Future Work . 37

A CAD design of the Control Unit 42

B Test Setups 53

C Communication Protocol 55
C.1 General Tokens . 55

C.2 LED Driver Tokens . 56

C.3 Motor Controller . 57

D MATLAB Code 58
D.1 Plotting transmission against quartz plate thickness for 260nm 58

E C++ code 59

F Testing Report 104

List of Figures

1.1 This figure illustrates the electromagnetic radiation spectrum with the UVR in detail. [8] 2

1.2 Thymine dimers are created by the absorption of UVC radiations in adjacent thymine

nucleotides [10]. 3

1.3 A side by side illustration of the absorption spectra of the four main nucleotides and

proteins, DNA and RNA. 3

3.1 The transmission spectrum for different grades of Fused Silica: Suprasil, Infrasil, Ul-

trasil, Optosil 1 and Quartz crystal [28]. Note that the x-axis is given in angstroms

(1000 angstroms = 100 nm) . 11

3.2 The transmission for quartz of 260 nm given over a range of plate thickness. 11

3.3 The reflectance spectrum of different metals [30]. 12

3.4 A side by side illustration of the irradiance of square and circular shapes 12

3.5 Intensity distribution of 12 255nm UVC LEDs on a circular plate, with 2 rings with

respective radii [15,40] cm and [3,9] LEDs per ring, and a reflection coefficient of 0.75 [4], [5]. 12

3.6 Intensity distribution of 36 UVC LEDs on a circular plate, with 2 rings with respective

radii [15,40] cm and [3,9] LEDs per ring, and a reflection coefficient of 0.75 [4], [5]. 13

3.7 A breakdown of components of the radiation element of the device. 14

4.1 This overview illustrates how the other modules check for threshold violations and how

the error detection hardware enables the modules. 16

4.2 A schematic drawing of the error detection hardware logic. 17

4.3 A schematic drawing of the error detection hardware logic with the software enable

bypass implemented. 18

5.1 The two default screens the system switches between. 19

5.2 The default error message screen . 20

5.3 Representation of the layout of the User Interface. This schematic is not to scale. From

left to right: the screen, the rotary encoder and the up and down buttons. 20

5.4 Visual feedback of the User Input . 21

6.1 The I
2
C protocol is wrapped inside I2CInterface and communicates with the I

2
C bus.

The CommunicationInterface is connected to the rest of the code. 23

6.2 Blue, red, yellow, and green blocks respectively indicate identifiers, values, requests, and

acknowledgements. Each block represents one byte. 24

6.3 A schematic overview of all message types. 25

7.1 A block diagram presenting the system overview of the Control Unit. 26

7.2 The comparator checks if the power supply is connected by comparing the 3.3 V threshold

to the node voltage of the voltage divider. If the power supply is connected, the output

of this comparator will be high, causing the P-Channel MOSFET (Q2) to be in a not

conducting, thus not connecting VBUS to 5 V. This way, no current path from the power

supply to the PC is formed. If the power supply is not connected, the gate of the MOSFET

will be low, thus the MOSFET will be in conducting and powering the device via the PC. 27

7.3 This circuit elevates the voltage level of a signal to a higher voltage. Whenever the signal

at the source of the MOSFET is high, the N-Channel MOSFET will not conduct, thus

the drain is being pulled high to a higher voltage. If the signal at the source is low, the

MOSFET will conduct due to 𝑉𝑔𝑠 > 𝑉𝑇ℎ , thus pulling the signal at the drain low. So one

gets: 𝑉𝑠 = 3.3𝑉 ⇒ 𝑉𝑔𝑠 < 𝑉𝑇ℎ ⇒ 𝑉𝑑 = 5𝑉 or 𝑉𝑠 = 0𝑉 ⇒ 𝑉𝑔𝑠 > 𝑉𝑇ℎ ⇒ 𝑉𝑑 = 0𝑉 28

7.4 A capture of the final design of the Control Unit PCB. 29

v

List of Figures vi

7.5 The simplified overview of the software modules. 29

7.6 A complete overview of the system. The Control Unit communicates with the other

modules via I
2
C . The error flags are outputs of the sensory electronics located on the

other modules and act as inputs for the error detection hardware. The Control Unit sends

resets to the other systems to reset them. Enable is the output of the error detection

hardware and enables the system, if no error is detected. 30

7.7 An assembled prototype of the complete system. PCBs are not assembled as this was

built for fitting and not final integration. 30

8.1 The measurements of the push buttons located on the Control Unit PCB. 32

8.2 Measurements of the rotary encoder . 33

A.1 Top layer of the PCB routing design . 49

A.2 Ground layer of the PCB routing design . 50

A.3 Power layer of the PCB routing design . 51

A.4 Bottom layer of the PCB routing design . 52

B.1 On the left, the Control Unit is connected to the laptop using USB. On the right, it is

connected to the screen. This would be the test setup if uploading to the Control Unit

would have worked. 53

B.2 The UI screen functionality was developed using a test setup created by our colleague

Rik Imbens. The laptop is connected via USB to the test setup. The circuit used in the

Control Unit is the same as that from the test setup . 53

B.3 Two Arduinos (one Uno and one Nano) are connected to eachother at pins A4, A5 and

GND. This setup is representative for the final setup, as the arduinos employ the same

code, only the compilation differs. 54

List of Tables

3.1 A table illustrating which wavelengths were used by different references. 10

6.1 I
2
C is best used for communication in a complex system with multiple controllers and

targets. SPI is best used for connecting interfaces. *UART can only be implemented

between two modules, where both function as controller and target. 22

9.1 Evaluation of the System Requirements . 36

9.2 Evaluation of the Module Requirements . 36

C.1 Package Type Tokens Definitions . 55

C.2 General Address and Token Definitions . 55

C.3 The Sensor Tokens of the LED Driver . 56

C.4 Driver tokens of the LED Driver . 56

C.5 Variable Resistor Tokens of the LED Driver . 56

C.6 Sensor Tokens of the Motor Controller . 57

C.7 Driver Tokens of the Motor Controller . 57

vii

Nomenclature

Abbreviations

Abbreviation Definition

CAD Computer Aided Design

CS Chip Select, used to set a module as target in SPI

DNA Deoxyribonucleic acid

DNP Do-not-place

EMR Electromagnetic Radiation

GPIO General Purpose Input Output

GUI Graphical User Interface

IC Integrated-Circuit

I
2
C Inter-Integrated Circuit

LED Light-Emitting Diode

LED_OC_FLAG LED Driver Overcurrent Flag

LED_OO_FLAG LED Driver Overozone Flag

LED_OT_FLAG LED Driver Overtemperature Flag

MC_OC_FLAG Motor Controller Overcurrent Flag

PCB Printed Circuit Board

PoC Proof-of-Concept

PoR Programme of Requirements

PS_OC_FLAG Power Supply Unit Overcurrent Flag

PSD Power spectral density

RNA Ribonucleic acid

SPI Serial Peripheral Interface

UART Universal Asynchronous Receiver/Transmitter

UI User Interface

UVGI Ultraviolet germicidal irradiation

UVR Ultraviolet Radiation

WPE Wall-plug efficiency

UV Ultraviolet

Glossary

Term Definition

Base Protocol The protocol on which the communication protocol is built on top

of (i.e. UART, I
2
C , SPI)

Controller The module taking the lead in communication

Communication Protocol The protocol the systems uses defining how to communicate

Target The module that follows in the communication protocol

Symbols

Symbol Definition Unit

𝑇 Transmission [-]

viii

List of Tables ix

Symbol Definition Unit

𝐼 Irradiance of light exiting the solution [W/m
2
]

𝐼0 Irradiance of light entering the solution [W/m
2
]

𝐴 Absorbance [-]

𝑙 Thickness of the solution [cm]

𝑐 Concetration of solute [moles/liter]

𝑃𝑜𝑝𝑡 Optical power emitted from source [W]

𝑃𝑖𝑛 Total power dissipated by the source [W]

𝑊𝑃𝐸 Wall-plug efficiency [-]

𝐿 Total thickness of the material [mm]

𝑉𝑔𝑠 Gate-to-source voltage [V]

𝑉𝑇ℎ Threshold voltage of a MOSFET [V]

𝑡 Time [s]

𝜀 molar absorptivity [liters/mole-cm]

𝜂
𝐻𝑔

𝑒 𝑓 𝑓
optical power efficiency mercury lamp [-]

𝛼 Absorption coefficient per unit length [mm
−1

]

𝜃𝑖𝑛𝑛𝑒𝑟 Angle of inner ring of the LEDs on the LED panel [rad]

𝜃𝑜𝑢𝑡𝑒𝑟 Angle of outer ring of the LEDs on the LED panel [rad]

1
Introduction

Seeds are the basis of the agricultural industry and a source of a great portion of humanities food

supply. With the plants, fruits and vegetables that grow out of these seeds, humans can feed themselves.

Because of this very reason, the seed industry has specialized itself in making the perfect seeds for every

species. Rĳk Zwaan is one of the largest vegetable distribution companies in the Netherlands [1]. Their

main task is also to provide the healthiest and best seeds, as demanded by the market, whereby the

market demand varies per region and country.

One of their foremost challenges is to disinfect every single one of the seeds that is exported from

all sorts of pathogens, such as fungi, bacteria, and viruses. If the process of disinfection is not done

properly, the plants will grow contaminated by these pathogens and fall sick. This can have disastrous

consequences for the harvest. It may eventually also have an impact on how much people have to pay

for their vegetables. The reason for this is that disinfecting seeds is one of the first steps in the whole

chain of growing plants and selling them.

In a presentation [2], given by Rĳk Zwaan at their headquarters in de Lier, Netherlands, it was explained

that the current method of disinfecting seeds is to dip the seeds in a hot water bath. In this way,

the pathogens are being activated and eventually killed because of the heat of the water. However,

this method has two serious drawbacks. Firstly, drying the seeds after the process requires a lot of

energy. Hence, it decreases the total efficiency and commercial feasibility. Secondly, the seeds can

undergo partial or complete degradation due to the thermal stress. This has a significant impact on the

downstream supply chain. Thirdly, this process is time-consuming, which makes it undesirable.

Due to complications that arise with the conventional hot water treatment, enterprises such as Rĳk

Zwaan have started to invest in alternative disinfection techniques. The use of Ultraviolet (UV) light is

one of such techniques [3].

1.1. Project Objective
Although, the traditional UV light tubes are potential candidates for this application. However, these

contain the toxic element mercury. That is why, with the rise of UV light-emitting diodes (LEDs),

research has been launched in the form of an Electrical Engineering Graduation Project. The main

objective is to provide a proof-of-concept (PoC) of disinfecting seeds using UV LEDs. It was opted

to make the device as a product that could be further developed into a device that may be used

commercially. During the duration of this project, it remained in an experimental phase. It was decided

with Rĳk Zwaan and the supervisors that the species that would be disinfected is cabbage seed (Brassica
oleracea capitata) and that the pathogen species that would be focussed on is Alternaria, a fungus. This is

a common fungus, but also one of the hardest fungi to inactivate [2]. Being able to disinfect the cabbage

1

1.2. State-of-the-Art Analysis 2

seeds from this fungus increases the probability of disinfecting other pathogens.

To properly distribute the tasks, the group of six students split up into three subgroups. The LED

Driving and Sensing group [4] is responsible for designing the system that provides the UV light to

the seeds and ensures that the relevant parameters are being monitored with the use of sensors. The

Mechanics subgroup [5] provides the whole system with power and designs the mechanical side of the

system. Finally, the last subgroup is covered in the thesis: the design of the Control Unit.

1.2. State-of-the-Art Analysis
To properly approach this research, it must be explained first what UV light is. Also, its disinfecting

properties must also be explained.

1.2.1. Ultraviolet light in the light spectrum
UV light originates from the electromagnetic radiation (EMR) that is emitted by the sun. This radiation

contains several wavelengths, ranging from shorter wavelengths that are high in energy to long-

wavelength that are low in energy. Ultraviolet radiation (UVR) waves range from 200 nm to 400 nm.

UVR can be further divided into four different classes. Firstly, there is UVA, ranging from 320 nm to

400 nm. Secondly, UVB ranging from 290 nm to 320 nm. Thirdly, the class with the most energy, UVC

ranging from 200 nm to 290 nm. This class however does not penetrate into the atmosphere due to the

ozone layer. Finally, the last class is UV Vacuum, which ranges from 100 nm to 200 nm [6]–[8]. The EMR

and UVR spectrum are illustrated in detail in Figure 1.1.

Figure 1.1: This figure illustrates the electromagnetic radiation spectrum with the UVR in detail. [8]

1.2.2. Germicidal properties of Ultraviolet light
Pathogens have not developed resistance against UVC waves, as the ozone layer provides protection

against UVR [9]. This resulted in a phenomenon called ultraviolet germicidal irradiation (UVGI), which

is defined as the germicidal effectiveness of UV. UVC is dangerous for the pathogens, as it damages

proteins, ribonucleic acid (RNA), and deoxyribonucleic acid (DNA) [10]. Furthermore, it has been

proven before that UVGI is an effective method for inactivating Alternaria on for example tomatoes [11].

This indicates that the proposed method of using UVC LEDs has a high chance of succeeding.

As Alternaria is a fungus, the most sensitive target is its DNA. DNA has adenine, cytosine, gua-

nine, and thymine as its bases [12]. UVC radiation can inactivate pathogens by creating cross-links

between nucleic acids. These cross-links are called intrastrand cyclobutyl-pyrimidine dimers and are

the causes of cell death or mutations. The first dimers formed are the thymine dimers and secondly the

cytosine dimers. Furthermore, UVR can also cause photohydration reactions, where cytosine and uracil

can bond with elements of water molecules. This phenomenon is independent of the UV wavelength.

Figure 1.2 illustrates the formation of thymine dimers between two thymine nucleotides that are adjacent

to each other, this is called a thymine doublet. Thymine dimers have a stronger cohesion than hydrogen

bonds that normally exist in DNA helices [10].

1.2. State-of-the-Art Analysis 3

Figure 1.2: Thymine dimers are created by the absorption of UVC radiations in adjacent thymine nucleotides [10].

UV Absorption Spectrum of proteins, DNA and RNA
The absorption spectrum describes the absorptivity of certain molecules over the EMR spectrum.

Whenever UV is absorbed by a molecule, it enters an excited state. The probability of a molecule entering

the excited state is strictly related to the intensity of the absorption band and the probability of a photon

of the right energy being present. The spectra of molecules can be found by beaming light through a

solution containing the molecules of interest and comparing it to a clean solution (no molecules). The

transmittance 𝑇 follows from this measurement and is defined as [10]:

𝑇 =
𝐼

𝐼0
(1.1)

where

𝐼 = irradiance of light exiting the solution, 𝑊/𝑚2

𝐼0 = irradiance of light entering the solution, 𝑊/𝑚2

From this, Beer’s law constitutes a relationship between the transmittance (Equation (1.1)) and the

absorbance, 𝐴 [10]:

𝑇 =
𝐼

𝐼0
= 10

−𝐴
(1.2)

Absorbance is defined as 𝐴 = 𝜀𝑙𝑐, where

𝜀 = molar absorptivity, liters/mole-cm

𝑙 = thickness of the solution, cm

𝑐 = concentration of solute, moles/liter

For the absorbance spectra of the four nucleotides and a normalized absorbance spectra of proteins,

DNA and RNA refer to Figure 1.3. It can be seen that the peak of the absorbance spectrum of DNA is

around 260 nm, with the absorbance of thymine peaking at 265 nm.

(a) Absorbance spectrum of proteins, DNA and RNA [9]. Note that the

y-axis is given in normalized intensity (normalized absorbance) (b) Absorbance spectrum of the four nucleotides [10].

Figure 1.3: A side by side illustration of the absorption spectra of the four main nucleotides and proteins, DNA and RNA.

1.2.3. Comparison of mercury UV lamps and UV LEDs
Around 85% of the optical output of low-pressure mercury lamps is near 254 nm, which is close to the

peak mentioned in Section 1.2.2 and they have an optical power efficiency of 60% [9], defined as:

𝜂
𝐻𝑔

𝑒 𝑓 𝑓
=

𝑃𝑜𝑝𝑡

𝑃𝑖𝑛
(1.3)

1.2. State-of-the-Art Analysis 4

where

𝑃𝑜𝑝𝑡 = optical power emitted from the source, 𝑊

𝑃𝑖𝑛 = total power dissipated by the source, 𝑊

For UVC LEDs, a key parameter in defining the efficiency is the wall-plug efficiency (WPE). It is defined

as the optical output power (𝑃𝑜𝑝𝑡) divided by the electrical input power (𝑉𝐼):

𝑊𝑃𝐸 =
𝑃𝑜𝑝𝑡

𝑉𝐼
(1.4)

The WPE of LEDs oriented around the peak absorbance wavelength is around 1-4%, which is much

lower than the mercury lamps. However, a lot of research is happening in the field of chip-scale UVC

technologies, so it is expected that it will rise to 10% in 2025 [9].

Although mercury lamps exhibit a higher efficiency, due to its toxic properties to humans and

environmental danger there is a decrease in their production and uses [9]. Furthermore, the mercury

lamps need to warm up before being effective in the disinfection process, which is a waste of energy,

thus not sustainable [2], [9]. The size of mercury lamps is also quite big, making them hard to package in

tight devices or systems. Hereby increasing the distance from optical output power source to receiving

sample [2].

1.2.4. Safety considerations of UV on humans
Despite its germicidal capabilities and other benefits, UVR can be harmful to humans when they are

exposed to it too much [13]. One of the effect it can have is sunburn, but it can also lead to skin

cancer eventually. Furthermore, human eyes also have some transmission for UVR, which can cause

complications to the eyes such as photokeratitis, erythema of the eyelid, cataracts, solar retinopathy, and

retinal damage [14]. Furthermore, another risk that comes with UV disinfection, is the generation of

ozone in the process [13]. Ozone can cause damage to the respiratory system of the human body. The

allowed maximum ozone concentration is 0.1 ppm

[
200 g/m

3

]
[15].

Dangers to the skin
UV can penetrate the epidermis and damage keratinocytes and melanocytes, with both of them causing

different kinds of skin cancer. Melanocytes is the cause of malignant melanoma of the skin, which is the

most harmful type of skin cancer. UVB can cause sunburn by creating a cascade of cytokines, vasoactive

and neuroactive mediators [16].

Dangers to the eye
UV light can induce a cataract, which is an opacity of the lens. Cataracts are created when the tissue

that makes up the lens of the eye gets damaged. Especially UVB is associated with an increased risk in

inducing a cataract. This can cause the vision of a person to become hazy or even develop blind spots

[14]. Furthermore, exposure to UV can also cause retina degeneration, which can lead to the death

of retinal photoreceptors such as rods and cones. This loss of photoreceptors and the loss of vision

impacts the daily life of subjects that experience retina degeneration as they can lose the ability of not

recognizing faces, read and find objects [14], [17].

Preventive measures
Literature ([14], [18]) states that there are measures that can be taken into account to prevent UV from

damaging the skin and eyes. Clothes with a lower transmission of UV can prevent UV from penetrating

through it and eventually stop UV from penetrating the epidermis. Furthermore, if a person is working

hands-on with UV light sources, hand gloves can prevent from UV getting in direct contact with the

hands. Furthermore, the use of AS1067 rated sunglasses can provide adequate protection to the eyes.

The UV window of tinted sunglasses is very important because of pupillary dilation, thus increasing

the exposure of the retina to UV. Plastic glasses can provide enough protection to protect from UVB

radiation.

1.3. Thesis Layout 5

1.3. Thesis Layout
This thesis will guide the reader through the research done to properly select key parameters for

disinfecting the cabbage seed, the process of designing hardware and software, related to the controlling

of the system and monitoring the status of the system. Chapter 2 provides the programme of

requirements (PoR) on which the design will be based. Chapter 3 covers the optimization of the

radiation pattern. Chapter 4 explains how the Control Unit ensures that the system is safe to be switched

on. In Chapter 5, the design of the user interface is described, both concerning software and hardware.

Chapter 6 details how said data is conveyed to the other modules using the custom-built communication

protocol. Chapter 7 explains the overall design and implementation of the Control Unit prototype.

The prototype is tested, and the results are analyzed in Chapter 8. Lastly, the project is concluded in

Chapter 9, followed by recommendations and future work.

2
Programme of Requirements

The programme of requirements (PoR) acts as the main leading factor in the design and development of

the device. There are certain functionalities that the device must have and some functionalities that

are there to make the final product more appealing to the end users. These can be distinguished as

mandatory requirements (MR) and trade-off requirements (ToR), respectively. The PoR also acts as a method

of assessing the performance of the project. It must be noted that the PoR has been constructed for an

experimental environment and must be reviewed when upgrading to a commercial environment, as

described in Section 1.1.

Requirements that fall under the category mandatory requirements are the constraints of the de-

sign. Whether the design is a success or not is based on these requirements primarily. Therefore, one

should always aim to satisfy each entry of the MR.

Trade-off requirements are requirements that the system or submodule do not necessarily have

to satisfy to assess the performance of the project. However, some of these requirements might make it

more appealing. The requirements shall experience a trade-off, mainly consisting of time versus project

progress gain, thus how much time will it take to satisfy these requirements and how does this result in

coming closer to successfully finish the project [19].

Furthermore, the requirements are divided into two different system levels. First, the PoR for the device

as a whole is presented and these are general requirements which define what the device has to do.

Secondly, a PoR for the Control Unit module is shown, wherein the requirements for the submodule

that is described in this thesis will be shown.

2.1. System Requirements
2.1.1. Mandatory Requirements

[SM.1] The system must make use of UVC LEDs.

[SM.2] The system must inactivate Alternaria on cabbage seed.

[SM.3] The system must irradiate all seeds via a uniform radiation pattern

[SM.3.1] The seeds must be irradiated on all sides

[SM.3.2] The irradiation density must be uniform on all locations

[SM.4] All modules of the system must be powered from the same voltage source.

[SM.5] All modules of the system must be able to communicate with the Control Unit.

[SM.6] The system must have appropriate error detection.

[SM.7] The system must only be enabled when there is no error detected.

[SM.7.1] The system must turn off when the UVC LEDs go beyond their optimum operating

temperature.

6

2.2. Control Unit Requirements 7

[SM.7.2] The system must turn off when the ambient temperature of the seeds puts the

germination chance of the seeds at risk.

[SM.7.3] The system must turn off when the ozone concentration in the radiation enclosure

exceeds the allowed maximum concentration of 0.1 ppm

[
200 g/m

3

]
) [15].

[SM.7.4] The system must turn off when the total current draw exceeds that of the lowest

maximum current rating of any component that experiences that exact amount of current

flow.

[SM.7.5] The system must turn off when one of the modules experiences a current draw

exceeding that of the lowest maximum current rating of any component in that path.

[SM.8] The system must be externally controllable.

[SM.8.1] The radiation parameters must be adjustable.

[SM.8.1.1] The intensity of the present wavelengths in the radiation pattern must be adjustable.

[SM.8.1.2] The duration of radiation must be adjustable.

[SM.8.1.3] The intensity of the radiation must be adjustable.

[SM.8.2] The system must be able to be turned off with a single switch.

[SM.9] The state of the system must be monitored at all times.

[SM.9.1] The temperature of the UVC LEDs must be monitored.

[SM.9.2] The temperature of the seeds must be monitored.

[SM.9.3] The ozone levels in the radiation enclosure must be monitored.

[SM.9.4] The current draw of the system must be monitored.

[SM.9.5] The current draw of each module must be monitored.

2.1.2. Trade-off Requirements
[ST.1] The system will be in a closed casing to prevent UV leakage.

[ST.2] The system will have an easy-access mechanism for the adding/removing the seeds.

[ST.2.1] The system will have an automated seed transportation mechanism.

[ST.3] The system will be able to inactivate more pathogens than Alternaria.

[ST.4] The system will be able to disinfect more seeds than cabbage seed.

[ST.5] Independent error detection will be implemented for finding which module triggered a

system error.

[ST.6] The system can only turn on when the enclosure is completely sealed or closed.

2.2. Control Unit Requirements
Below is a list of the mandatory module requirements (MM) for the Control Unit:

2.2.1. Mandatory Requirements
[MM.1] The Control Unit must control the behaviour of the other modules in the system.

[MM.2] The Control Unit must communicate with all other modules of the system.

[MM.3] The Control Unit must check for errors.

[MM.4] The Control Unit must only enable the system when no errors are present.

[MM.4.1] The Control Unit must only be able to reset the error states with human interaction.

[MM.4.2] The error states must be independent signals.

[MM.5] The Control Unit must have a User Interface.

[MM.5.1] The User Interface must be able to display real-time data.

[MM.5.2] The User Interface must be designed as such that radiation parameters can be adjusted.

[MM.5.3] The Control Unit must forward the user-specified parameters to the other modules.

[MM.5.4] The Control Unit must display the state of the system.

[MM.6] The Control Unit must have data logging capabilities.

2.2. Control Unit Requirements 8

[MM.6.1] The user must have easy access to the data.

[MM.7] The Control Unit must be programmable via USB.

[MM.8] The Control Unit must be designed as such that debugging the system is easy.

[MM.9] The Control Unit must be able to reset other modules.

2.2.2. Trade-off Requirements
[MT.1] The Control Unit can preferably save presets of radiation parameters for sterilization of

different pathogens or disinfecting different seeds.

[MT.2] The User Interface can be easily accessible when integrated with the entire system.

[MT.3] The data storage can be easily accessible when integrated with the entire system.

[MT.4] The User Interface can be equipped with a touchscreen display.

[MT.5] The Control Unit can be accessible via internet.

[MT.5.1] Data can be accessed via internet.

[MT.5.2] Radiation parameters can be adjusted via internet.

[MT.6] The Control Unit is preferably designed to be modular.

3
Optimization of the Radiation Pattern

3.1. Introduction
Figure 1.3 illustrates that the absorbance of different nucleotides changes per wavelength, and that

protein has a much different absorption spectrum than DNA/RNA. In Section 1.2.2, it was explained

how UVC radiation causes the creation of intrastrand cyclobutyl-pyrimidine dimers. These mostly

exist in the form of thymine. However, when a high enough dosage is applied, other nucleotides can

form these dimers [10]. Furthermore, due to the fact that lower wavelengths penetrate less deep into

substances than higher wavelengths [20], a broad spectrum of UVC radiation might be beneficial to

effectively inactivate the Alternaria on the cabbage seed. Furthermore, the seeds must be stationed on

top of some surface. The transmission of the material of this surface is a parameter that is useful for

optimal radiation of the seeds. Material choice of the environment can be taken into consideration to

reflect as much of the UVR on the seeds and not lose optical energy to the materials. Altering the pattern

in which the LEDs are placed, could result in a more uniform irradiation. Furthermore, applying some

kind of force to the plate of the seeds might cause the seeds to move around and enable uniform irradiance.

This chapter provides the analysis of the parameters mentioned above and demonstrates simula-

tions and graphs illustrating properties of materials and technologies. The following list provides all

parameters of interest in this chapter:

• Wavelength of the UVC LEDs

• Transmission of the surface where the seeds are placed

• Reflection of UVR

• Placement of the LEDs for uniform irradiance

• Moving of the seeds on the plate for uniform irradiance

3.2. Wavelength selection of the UVC LEDs
Due to the different absorbances of the molecules present in pathogens, such as Alternaria [10], it should

be analyzed which wavelength would be the most effective for inactivating them. The selection of

wavelengths is important because that is where the microbes actually absorb the most UVC. Radiating

around the peak wavelength results in the creation of more dimers and thus inactivating more pathogens.

From the literature it was found that the absorption spectra peak at around 260 nm [8]–[10], [13], [21].

Although lots of literature has been found stating that the peak is around 260 nm to 265 nm [8]–

[10], [13], [21], others present some other wavelengths. These inactivate for example viruses with 280 nm

UVC. Table 3.1 shows this.

9

3.3. Analysis of the transmission of the plating 10

Literature Application Wavelength
[22] Indoor Environment Sanitization 265nm

[23] Sars-Cov-2 265nm or 275-280nm

[24] Apiaceae spices 254nm

[25] Spoilage fungi 254nm

[26] Development of a method for testing UVC LEDs UVA-UVB-UVC

[27] Different species of viruses 260nm or 280nm

Table 3.1: A table illustrating which wavelengths were used by different references.

Noteworthy, is that a combination of 260 nm and 280 nm UVC LEDs was used in the research of virus

disinfection [27], however it did not appear to have the same efficacy as the individual LEDs. A difference

from their research and this thesis is that this thesis is intended to inactivate Alternaria, a fungus, and

not a virus. Thus, the outcome of a combined LED unit might be different. Furthermore, there is little to

be found about the radiation pattern and irradiance in that research. With a design that makes it pos-

sible to control all wavelengths individually, one could always have the option to only use one wavelength.

Further research [27] also demonstrates that a combination of UVA and UVC might improve the

effectiveness of the disinfection process. It is stated that applying UVA to a solution for a longer period

of time and then adding UVC to the equation increases the reduction of microbes.

The LED panel was designed in such a way that a combination of LEDs will be implemented. These are

LEDs of the following wavelengths: 255 nm, 275 nm and a LED with a spectrum containing peaks at

285 nm and 395 nm. The latter is chosen such that it can be researched if the UVA (395 nm) can activate

the fungus and the UVC (285 nm) can inactivate the fungus spores more easily. The implementation of

these three LEDs means that it is possible to control every wavelength independently. Then, the optimal

power spectral density (PSD) can experimentally be found for Alternaria. In addition to this, it is

possible to add the PSDs of the individual LEDs to gain a total PSD with peaks in different wavelengths

as well. Thus covering a large part of the total UVC spectrum [4].

3.3. Analysis of the transmission of the plating
The seeds have to be placed on a plate. As per [SM.3.1], the seeds must be irradiated on all sides. This

implies that a lot could be gained by selecting a material for the plate that has a high transmission for

UVC. By doing this, the UVC can penetrate from underneath the seeds. The absorbance of certain

materials is defined by the Beer-Lambert Law of exponential decay [28]:

𝐼 = 𝐼0𝑒
−𝛼𝐿

(3.1)

where

𝐼 = irradiance of light passing through the material, 𝑊/𝑚𝑚2

𝐼0 = irradiance of light entering the material, 𝑊/𝑚𝑚2

𝛼 = absorption coefficient per unit length, 𝑚𝑚−1

𝐿 = total thickness of the material, 𝑚𝑚

From Equation (3.1), it can be derived that thicker materials cause more attenuation of light. This means

that the trade-off for choosing the thickness of the plate is between the decrease of transmission and the

strength of the plate. From Figure 3.1, it can be concluded that quartz has high transmission for UVC.

The other options presented in [28] are either too expensive or cause complications in the supply chain.

For these reasons, the plate will be made out of quartz.

3.4. Adding reflectors for optimal radiation 11

Figure 3.1: The transmission spectrum for different grades of Fused Silica: Suprasil, Infrasil, Ultrasil, Optosil 1 and Quartz crystal

[28]. Note that the x-axis is given in angstroms (1000 angstroms = 100 nm)

The transmission of quartz for 260 nm is 80% [29] with a quartz plate of 1 mm. Using Equation (3.1)

and Equation (1.2) and solving for 𝛼 yields:

𝛼 =
− ln (𝑇)

𝐿
=

− ln (0.8)
1

≈ 0.223 [mm
−1

] (3.2)

The MATLAB script in Appendix D.1 uses Equations (3.1) and (3.2) to find the transmission of quartz

for 260 nm over a range of plate thicknesses. The results are presented in Figure 3.2.

0 1 2 3 4 5 6 7 8 9 10

L [mm]

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
 [

%
]

Transmission plot of 260 nm UVC light through different thickness of quartz material

Figure 3.2: The transmission for quartz of 260 nm given over a range of plate thickness.

From Figure 3.2, it can be concluded that a quartz plate with a thickness of 2 mm has a transmission of

around 65%. Due to concerns with using a thinner quartz plate being more fragile, it was opted to use a

2 mm thick quartz plate. This way, it is possible to expose the seeds from the top and bottom to UVC

radiation.

3.4. Adding reflectors for optimal radiation
The total irradiation could increase by adding UVC reflecting materials in the enclosure, where the

seeds will be irradiated. Figure 3.3 is the reflectance spectrum of different materials. There it can be

seen that aluminum (Al) has the highest reflectance for UVC [30]. This means that aluminum parts can

be used to increase the irradiation. This has been designed by [4] by integrating aluminum inside the

enclosure where UVR is present.

3.5. LED placement for uniform irradiance 12

Figure 3.3: The reflectance spectrum of different metals [30].

3.5. LED placement for uniform irradiance
By placing the LEDs in a specific way, optimal uniform irradiance can be achieved. This depends on the

amount of LEDs, but also the shape in which the LEDs are placed. Simulations ran by [5] demonstrate

the difference in irradiance for a square shape and a circular shape for the plate (Figure 3.4).

(a) Relative irradiance distribution of 12 255nm LEDs on a square plate,

diagonally placed [5].

-50 0 50

x [mm]

-50

-40

-30

-20

-10

0

10

20

30

40

y
 [

m
m

]

Irradiance of 12 UV LEDs per wavelength @ 30mm distance [mW/cm
2
]

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

(b) Intensity distribution of 12 255nm LEDs on a circular plate, with 2

rings with respective radii [15,40] cm and [3,9] LEDs per ring [5].

Figure 3.4: A side by side illustration of the irradiance of square and circular shapes

Figure 3.4 clearly shows that a circular shaped design provides a more uniform irradiance than the

square shaped design. However, it is still not completely uniform. An optimization script has been

implemented [4] which runs an algorithm multiple times finding the optimal placement of the LEDs.

This results in the irradiance pattern found in Figure 3.5.

Figure 3.5: Intensity distribution of 12 255nm UVC LEDs on a circular plate, with 2 rings with respective radii [15,40] cm and [3,9]

LEDs per ring, and a reflection coefficient of 0.75 [4], [5].

3.6. Moving the seeds for uniform irradiance 13

As mentioned in Section 3.2, there are a total of three LEDs that need to be packaged onto this panel.

This can be done by making use of Equation (3.3) [4]:

𝜃𝑖𝑛𝑛𝑒𝑟 =
2

3
𝜋 · 𝑘𝑖𝑛𝑛𝑒𝑟 + 2

9
𝜋 · 𝑙𝑖𝑛𝑛𝑒𝑟 𝑘𝑖𝑛𝑛𝑒𝑟 = [0, 1, 2], 𝑙𝑖𝑛𝑛𝑒𝑟 = [0, 1, 2]

𝜃𝑜𝑢𝑡𝑒𝑟 = (𝜋 + 2

9
𝜋) · 𝑘𝑜𝑢𝑡𝑒𝑟 𝑘𝑜𝑢𝑡𝑒𝑟 = [0, 1, ..., 7, 8] (3.3)

Equation (3.3) calculates the coordinates of the LEDs in each ring for each wavelength by taking into

account that the LEDs must not clash with each other once placed onto the PCB. This results in the final

placement design, as can be seen in Figure 3.6. Here it can be seen that there is a uniform irradiation on

all places of the circular plate. Furthermore, there are two major problems of disinfecting Alternaria

with UVC LEDs as described by [31]. Firstly, the construction of a dense area of LEDs. Secondly,

achieving uniform irradiation over the area that needs to be decontaminated. The solution presented in

this section has a big chance of solving this problem.

Figure 3.6: Intensity distribution of 36 UVC LEDs on a circular plate, with 2 rings with respective radii [15,40] cm and [3,9] LEDs

per ring, and a reflection coefficient of 0.75 [4], [5].

3.6. Moving the seeds for uniform irradiance
One of the main requirements is Requirement [SM.3.1], where it is stated that the seeds must be

irradiated on all sides. If the seeds are stationary, only the top and bottom will be irradiated. This

means that some sort of mechanism must be implemented which makes the seeds rotate. This problem

has been solved by [5] by implementing a motor that is connected to the circular quartz plate, with a

mass imbalance attached to its shaft. Due to this imbalance, the motor will create vibrations [32]. This

vibrational force that is induced by the motor is transferred to the quartz plate via four load carrying

rods. This force will cause the seeds to rotate. This satisfies Requirement [SM.3.1], as in this way all

sides will be irradiated.

3.7. Overview of the radiation design
All the design parameters in Sections 3.2, 3.3, 3.5 and 3.6 are implemented in one design, which can be

seen in Figure 3.7. The LED panel (1) and the aluminum panel (2) can be attached onto each other. The

quartz plate is placed in the middle. The stack of these two panels is also placed on the bottom side. At

the bottom, the motor (4) can be found, with the imbalance mass connected to the rotary shaft. Through

the attachment arms, the motor is connected to the casing of the quartz plate and induces vibrations to

the seeds.

3.7. Overview of the radiation design 14

Figure 3.7: A breakdown of components of the radiation element of the device.

4
System Enabling

4.1. Introduction
According to Requirements [SM.7] and [MM.4], the Control Unit must only enable the system when

the system is error-free. This requires the Control Unit to have an error detection protocol in either

hardware logic or software. Due to the robustness of hardware logic and the fact that error detection

is a critical part of a system that wants to operate reliably and safely, it was decided that a hardware

error detection logic circuit should be designed on the Control Unit. This error detection circuit will

also function as an enabling circuit such that if all checks have passed this circuit, only then can the

other modules be activated. However, in case the hardware circuits fails, a software error detection

functionality is also designed Sections 4.2.3 and 7.2.5

The other modules are equipped with adequate sensors to monitor temperature and currents for

example. These are compared to a threshold value and exceeding that threshold, will trigger an error.

The output of these comparators are called error flags. Figure 4.1 presents a block-diagram of this

interface.

15

4.2. Hardware error detection logic 16

Figure 4.1: This overview illustrates how the other modules check for threshold violations and how the error detection hardware

enables the modules.

4.2. Hardware error detection logic
4.2.1. Requirements
As mentioned before, this circuit is created mainly because of Requirements [SM.7] and [MM.4].
These requirements imply that all errors state should be inactive and must be compared. Thus the

enable output signal should only be send to the other modules when there is no error. Considering

the subrequirement [MM.4.1] it is stated that the error states can only be externally reset and not

automatically by the Control Unit. This implies that a latching mechanism must be included in the

circuit, that can be reset via an externally reset input.

4.2.2. Design of the logic circuit
This circuit must check all values of the error flags and if and only if all flags are in no error mode. A

simple way to integrate this in a hardware design is with the using of simple logic gates, such as AND

gates. The Boolean expression for an AND gate is 𝑌 = 𝐴𝐵, meaning that the output Y shall only be high

(1) when both inputs A and B are high (1). Any of the two being low (0) means that the output Y is

always low (0).

In total there are five error flags that the Control Unit receives as an input:

• LED Driver Overcurrent Flag (OC_LED_FLAG); when the current draw by the LEDs is higher

than the allowed maximum.

• LED Driver Overozone Flag (OO_LED_FLAG); when the ozone level exceeds the value defined by

[SM.7.3].
• LED Driver Overtemperature Flag (OT_LED_FLAG); when the temperature of the LEDs exceeds

their maximum allowed operating temperature.

• Motor Controller Overcurrent Flag (OC_MC_FLAG); when the current draw by the motor exceeds

the maximum allowed current threshold.

• Power Supply Unit (OC_PS_FLAG); when the total current draw of the system exceeds the

maximum allowed current threshold.

4.2. Hardware error detection logic 17

A simple way to solve this is to AND every single flag with each other. This means that it is required

that the flags are active low, meaning that their value is a zero (0) when the threshold is exceeded. This

way the output of the AND gates can be directly used to enable the other modules with an active high

enable signal. A schematic of the circuit is displayed in Figure 4.2.

Figure 4.2: A schematic drawing of the error detection hardware logic.

A Boolean expression of this total circuit is given as:

𝐸𝑛𝑎𝑏𝑙𝑒 = 𝑂𝑂_𝐿𝐸𝐷_𝐹𝐿𝐴𝐺 ·𝑂𝑇_𝐿𝐸𝐷_𝐹𝐿𝐴𝐺 ·𝑂𝐶_𝐿𝐸𝐷_𝐹𝐿𝐴𝐺 ·𝑂𝐶_𝑀𝐶_𝐹𝐿𝐴𝐺 ·𝑂𝐶_𝑃𝑆_𝐹𝐿𝐴𝐺 (4.1)

As it is required that the error states are resettable, some sort of latching must be applied. A latching

mechanism that is equipped with a reset is a SR-latch [33]. Thus, before entering the circuit of the AND

gates, the flags pass through SR-latches (NAND configuration) that latch their values.

To take preventive measures in case the latches did not work as intended, 0Ω do-not-place resis-

tors have been placed between the input and output of the SR-latches. These can be placed during

debugging of the system, in case the latches are preventing further progression in testing or integration.

4.2.3. Software bypass
In case that the hardware circuit has problems that could have happened during CAD or manufacturing,

a back-up software error detection protocol can be implemented. This can be seen as a software bypass.

This can be implemented by retrieving these error flags from the other modules via the commu-

nication protocol. Furthermore, a command can be created that executes the above mentioned Boolean

expression (Equation (4.1)). Commanding the microcontroller to pull one of the GPIO pins high

whenever the output of Equation (4.1) is true (1) creates a +3.3V signal that can be labelled as Enable_SW,

which is the software enable. With the addition of this software enable, the hardware must implement a

feature that makes it possible for the software signal to bypass the circuit given in Figure 4.2. Stating that

either the hardware enable or software enable has to be high (1), for the enable signal to activate requires

the implementation of an OR gate. This can be seen in Figure 4.3. A schematic of the implementation in

the PCB design can be seen in Appendix A.

4.2. Hardware error detection logic 18

Figure 4.3: A schematic drawing of the error detection hardware logic with the software enable bypass implemented.

The Boolean expression in Equation (4.1) can be adapted to the following with the addition of the

bypass:

𝐸𝑛𝑎𝑏𝑙𝑒 = 𝐸𝑛𝑎𝑏𝑙𝑒_𝐻𝑊 + 𝐸𝑛𝑎𝑏𝑙𝑒_𝑆𝑊 (4.2)

5
Implementation of a User Interface

5.1. Introduction
The Control Unit requires a User Interface (UI) to be able to display measurement data and to change the

radiation pattern, as per Requirement [MM.5] (and thereby [SM.8.1] and [SM.9]). The requirement of

the ability to change parameters ([MM.5.2]) exists due to clashing literature, as explained in Section 3.2.

The flexibility of the device parameters allows for testing of multiple setups to determine the optimal

radiation pattern. Displaying real-time data must be implemented for user feedback from the system

([MM.5.1]). In addition to this, the UI can also be used to raise errors ([MM.5.4]), and to solve said

errors ([MM.4.1]).

5.2. Displaying on Screen using GUISlice
The screen implemented is a thin-film-transistor (TFT) liquid-crystal display (LCD). It is 3.5 inches

(8.89 cm) and 480 by 320 pixels. Therefore, the design of the menu must fit within those boundaries.

A library called GUISlice [35] and its development environment GUISLiceBuilder [36] are used. The

following menu screens are created: a setup screen and a monitor screen. These can be seen in Figure 5.1.

On these menus, values are presented to the user. However, refreshing the screen often results in

flickering. To resolve this issue, only the elements that have changed get redrawn. To import the menus

into the software Listing E.1 was developed.

(a) The preview of the Setup Menu Screen (b) The preview of the Monitoring Screen

Figure 5.1: The two default screens the system switches between.

5.2.1. Setup Screen
Figure 5.1(a) displays the setup menu for the device. The design is kept simple so that it is easy and

intuitive for the user. The elements that can be changed are the relative intensities for every wavelength,

the duration and the motor speed. Therefore, fulfilling Requirements [SM.8.1.1] through [SM.8.1.3].

19

5.2. Displaying on Screen using GUISlice 20

On the right there is an array for the dose. This dose is the expected one per wavelength, which is

calculated based on an estimation of the relative intensity multiplied by the duration. On the bottom

right, there is a start button to commence the disinfection procedure.

5.2.2. Monitor Screen
When the system is in the process of disinfecting, Figure 5.1(b) is shown on the display. The current

measurements per wavelength are shown. In addition to this, there is only one UV intensity measurement.

Merely one UV sensor is installed, which measures a spectrum of wavelengths. As a consequence,

the intensity can only be measured as a combination of the individual wavelengths. To compensate,

the current measurements of every wavelength are shown, in order to indicate the relative intensity.

The total absorbed dose is also calculated as a summation of the intensities over time. Lastly, the

temperatures, ozone concentration and the remaining duration are visible.

5.2.3. Error Popup Screen
Should something go wrong with the system, it of course must shut down. In that case, the user must be

notified. Therefore, an Error Popup Screen is created as shown in Figure 5.2. The default error messages

can be replaced by a more descriptive indication using the received errors (Section 6.4.2). The continue

button is there to ensure user interaction, as specified in [MM.5.4]. Were this requirement not in place,

the Control Unit could reset itself without the need of a human. If done incorrectly, it could lead to

enabling the defect system, ultimately damaging the device and risking the safety of its environment.

Figure 5.2: The default error message screen

5.2.4. Physical User Input
The physical user input consists of a rotary encoder with button functionality and two additional

stand-alone buttons (Figure 5.3). Simplicity is key, both for user experience and implementation difficulty.

This design is inspired by an oscilloscope, which is (probably) familiar to the user. It also saves pins on

the microcontroller by as little buttons as possible. The rotary encoder acts as a turning knob. This

results in a total of one turning knob and three buttons. This is enough for an “up”, “down”, and “enter”

button (the rotary button) and a knob.

The rotary encoder resembles a potentiometer in shape, but behaves differently. It consists of a disc

with sectors and probes at two stationary points. When rotating the encoder, the direction can be

determined by examining the order in which the probes make contact with the sectors. The software

implementation of the buttons and rotary encoder are done by the Button2 [37] and ESP Rotary [38]

libraries.

Figure 5.3: Representation of the layout of the User Interface. This schematic is not to scale.

From left to right: the screen, the rotary encoder and the up and down buttons.

5.3. LED Display 21

5.2.5. Visual feedback of the User Input
The user needs to be informed which element is currently selected, or whether the user is editing a

value. The user can move the cursor using the up and down buttons. The cursor is displayed using a

box (Figure 5.4(a)). If the user presses the “enter” button, the value can be edited using the rotary knob.

When editing, the background color changes and the text becomes white (Figure 5.4(b)). This high

contrast alerts the user. This decision is based upon everyday examples. When placing your mouse

cursor, it also becomes a line. When selecting something, the mouse highlights the text, as in this design.

(a) The box surrounding an element indicates that the element is

selected.

(b) To indicate that the user is currently editing an element, its

background color and text color change for a bigger contrast.

Figure 5.4: Visual feedback of the User Input

5.3. LED Display
There is a LED display implemented onto the PCB, which are basically some LEDs that turn on or off

depending on the state of the signal driving the LED. For example, for the error flags, red LEDs are

used that turn on when an error is detected. The presence of voltage is also indicated by green LEDs

that turn on when power is on. Furthermore, three yellow LEDs turn on whenever a reset signal is sent

to the other modules. Finally, a green LED turns on whenever the error detection hardware detects no

error. This LED is connected to the enable signal via N-Channel MOSFET. A schematic of this display

can be found in Appendix A.

6
Communication Protocol

6.1. Introduction
The system consists of multiple modules, with the Control Unit in charge. In order to control the

modules ([SM.7], [MM.1]) and request information ([SM.9], [MM.5]), there must be communication

between the modules ([SM.5] and [MM.2]). This chapter explains the considerations and workings of

the developed communication protocol. Using the developed communication protocol, sensor values

can be requested and drivers can be set.

The communication protocol is built on top of an already existing communication protocol. In

the remainder of this thesis, the already existing protocol is referred to as the base protocol. The

communication protocol developed for the system is referred to as the communication protocol. In base

protocols for communication, there is often a module which initiates, and one that responds. The prior

is referred to as the controller. The latter is called the target. In order to avoid confusion, whenever

the report mentions a controller, a controller in communication is meant. The Control Unit is always

written out fully.

6.2. Selection of Base Protocol
There are multiple base protocols available for communication between different modules. Common

options are I
2
C (Inter-Integrated Circuit) [39], SPI (Serial Peripheral Interface) [40] and UART (Universal

Asynchronous Receiver/Transmitter) [41]. However, each protocol has its own strengths and weaknesses.

Table 6.1 shows a list of relevant properties.

Properties I2C [39] SPI [40] UART [41]
Number of controllers 1 or more 1 2*

Number of targets 1 or more 1 or more 2*

Maximal number of targets 128 As many chip select pins as you have available -

Minimal number of wires 2 3 + 1 Chip Select 2

Maximum number of wires 2 3 + 1 per target 2

Typical Data Rate 100 kbits/s 50 Mbit/s 9600 bit/s

Table 6.1: I
2
C is best used for communication in a complex system with multiple controllers and targets. SPI is best used for

connecting interfaces. *UART can only be implemented between two modules, where both function as controller and target.

6.2.1. UART
UART can only be used for connecting two modules together. As the Control Unit requires communica-

tion with three other modules, this protocol is not suitable. If implemented, UART would require the

Control Unit PCB to have three UART chips. This is cost inefficient and illogical to do, as this protocol is

22

6.3. Class Implementation 23

simply not designed for this specific implementation.

6.2.2. SPI
SPI has a lot of advantages. It allows for high data rates and can implement as many targets as needed.

However, the cost of every target is another chip select connection. Due to the limited number of pins on

the microcontroller, it is unwise to dedicate so many pins to communication. In addition, the protocol

supports only one controller. Therefore, no modules can initialize communication except the Control

Unit. Since it is plausible that the other modules could also want to request or send information from or

to the Control Unit, SPI is not suited for this use.

6.2.3. I2C
I
2
C , as the name suggests, is best used between multiple different ICs. Due to its expandability for

both the number of controllers and the number of targets, it is chosen as the basis for the overall

inter-module communication design. Every module can both initialize communication with the Control

Unit and respond to requests from the Control Unit. The fixed number of connections needed, allows

for additional use cases of the microcontroller pins and the connectors.

6.3. Class Implementation
In the code, the Wire library [42] handles I

2
C communication. Every system module initializes this

library with their respective I
2
C address (as listed in Listing E.7), hereby becoming part of the I

2
C

bus. In order to abstract the library functions, a light-weight wrapper class with methods to connect

to the I
2
C bus is created, called I2CInterface (Listings E.8 and E.26). This class is used inside the

CommunicationInterface class (Listings E.9 and E.27), as shown in Figure 6.1. The Communication

Interface calls functions from the I
2
C Interface and receives answers. The rest of the software uses the

CommunicationInterface class and does not know about the I
2
C interface. This implementation has

two big advantages. Firstly, the CommunicationInterface class does not directly handle the library

functions. Should a different library be used, a new wrapper class can be created. The I2CInterface
can then easily be swapped out, without having to rewrite the more complex CommunicationInterface
class. The second advantage is reusability. The I2CInterface class can be used for the other module

software as well.

I²C InterfaceCommunication
Interface I²C bus

Figure 6.1: The I
2
C protocol is wrapped inside I2CInterface and communicates with the I

2
C bus. The

CommunicationInterface is connected to the rest of the code.

6.4. Template of Protocol Messages
In order to structure the communication with other modules, a general outline for transmission is created

(Figure 6.2). Every transmission consists of three parts: sending the command via a data package, a

request and receiving the response. Splitting the command into multiple parts, the communication

protocol becomes very flexible and expandable. A lot of different commands can be implemented this

way. The software implementation of the communication protocol can be found in Listing E.7.

6.4. Template of Protocol Messages 24

Request
Sensor Data

Sensor Value
(4 bytes)

ResponsePackage type Target (optional) value

Set Driver
Intensity Intensity Ack/Nack

Set Variable
Resistor Value Ack/Nack

Error Ack/Nack

Message type sent to the Control Unit

Message types sent by the Control Unit

General Communication Event
Data Package

Performed by the
controller Sent by the target

All Message Types

 Request

 Request

 Request

 Request

 Request

Value
Request

Acknowledge

Legend

Figure 6.2: Blue, red, yellow, and green blocks respectively indicate identifiers, values, requests, and acknowledgements. Each

block represents one byte.

6.4.1. Tokens
Every block in Figure 6.2 represents a token, a part of the message consisting of one byte. In the code,

tokens are implemented using a unsigned char. Defining such a type in software, increases readability

of the code. Every time a token is mentioned, it can be understood that communication is involved. In

addition to this, tokens ease the effort needed to implement behavior. Because every package is split up

into tokens, and because every token specifies one part of the instruction, the instruction can be decoded

without the need of a long lookup table.

There are three types of tokens: identifier, value and acknowledgement tokens. (The reason “Request”

is not a token is explained in Section 6.4.3.) Identifiers are there to describe what to do or who to target,

acknowledgements give feedback to the controller and values convey information.

Certain special tokens are also defined in the communication protocol: the acknowledge (ACK), not

acknowledge (NACK) and invalid (INVALID) tokens. The acknowledge and not acknowledge tokens ought

to be received as a confirmation that the target has executed his command. For example, the Control Unit

wishes to turn on the top LED driver. It could check if it worked by requesting sensor data, but a simple

acknowledge is easier. The mindful reader might still wonder why it is necessary to implement such a

system: I
2
C already has built-in acknowledgements. That is correct. However, using that information, it

can only be derived whether the target has successfully received the message. If the target is unable to

execute the command, the controller is not informed. The other special token is the invalid token. All

data should be initialized to the invalid token. If the invalid token is read, the controller or target knows

that something has gone wrong in communication and can act accordingly. No other token is allowed

to have this value, except for tokens which represent a value (red in Figure 6.2).

All Token definitions can be found in Appendix C.

6.4.2. Sending the Command
The command data package consists of two essential parts: the package identifier token and the target

identifier token. The package token displays the type of the command. Currently, there are four package

type tokens implemented, as can be seen in Figure 6.3. These are: request sensor data, set driver

intensity, set variable resistor and error.

The need for the “Request Sensor Data” and “Set Driver Intensity” tokens is self-explanatory. With the

former, sensor data can be requested for data logging. With the latter, the individual led drivers and the

motor driver can be controlled. The third token is created because the LED driver has variable resistors

[4]. Some of these digital resistors are part of feedback loops in the sensors. So the ability to set the

values of the resistors, permits the implementation of user specified sensitivities per sensor. The last

package type, the “Error” package, is received by the Control Unit. Since the error flags are not present

at the input of the microcontroller (Section 4.2.3), they are to be transferred via I
2
C . The Control Unit

can act accordingly when receiving an error.

Then the target identifier is specified: which sensor data should be read out? What driver intensity

should be altered? Every system module has a list of its possible targets. By specifying a list per possible

6.4. Template of Protocol Messages 25

Request
Sensor Data

Sensor Value
(4 bytes)

ResponsePackage type Target (optional) value

Set Driver
Intensity Intensity Ack/Nack

Set Variable
Resistor Value Ack/Nack

Error Ack/Nack

Message type sent to the Control Unit

Message types sent by the Control Unit

General Communication Event
Data Package

Performed by the
controller Sent by the target

All Message Types

 Request

 Request

 Request

 Request

 Request

Value
Request

Acknowledge

Legend

Figure 6.3: A schematic overview of all message types.

package token, up to 255 targets can be implemented for every command! In the case of an “Error”

package, the identifier is the I
2
C address of the controller1. Sending merely the sensor identifier is not

sufficient, as identifier tokens are not unique to one system module. For example, CURRENTSENSOR_255nm
and CURRENTSENSOR_MOTOR have the same value. Should the Control Unit receive such an error message,

it would be unable to derive where the error originated. This is more likely to occur if more sensors are

implemented.

The last token of the data package is dependent per command. It can be a value (“Set Driver Intensity”

and “Set Variable Resistor”) or another identifier (“Error”). This is specified as per the protocol.

6.4.3. Request
The request is not realized explicitly through a token which is sent. In fact, it is part of the Wire library

[42] as Wire.requestFrom. Here, the number of bytes requested can be specified, depending on what

is expected. As of now, only “Request Sensor Data” requests 4 bytes, which form a float. The other

commands require an acknowledgement token, so just one byte. The target of the communication

determines in the function Wire.onRequest what should be responded, using every previously sent

tokens to build towards the response.

6.4.4. Receiving the Response
This functionality can easily be implemented using the Wire.requestFrom function. The return value is

the number of bytes which have been returned. Then, that number of bytes can be read from the I
2
C

buffer. The Communication Interface can then pass these values to whoever requested them.

1Reminder: controller means controller in communication, not the Control Unit.

7
Prototype Design and Implementation

7.1. Introduction
This chapter presents the integration of the designs presented in Chapters 3 to 6 into one design. This

will be the Control Unit Prototype Design. Furthermore, other design choices that were selected for

making the PCB design of the Control Unit functional are also explained in short detail, along with some

minor software applications. Afterwards, the implementation of the Control Unit into the system will

be presented. This is important as wrong interfacing with the rest of the modules will cause problems

when integrating everything.

7.2. Prototype Design
Before being able to start designing the functionalities of the Control Unit concretely, the overall system

overview of the Control Unit must be constructed, thinking about the following problems:

• Input voltage conversion to usable voltage for ICs

• Programming the microcontroller via USB

• Microcontroller must be able to write and read data

• Microcontroller must be resettable

• Due to Requirement [MM.8] the microcontroller shall be an ESP32-WROOVER (from now on

referred to as ESP32)

• The Control Unit sends reset signals to the other modules [MM.9]
Now that these problems are also stated, the total overview of the Control Unit hardware can be

presented along with the designs given in Chapters 3 to 6. This overview can be seen in Figure 7.1

Figure 7.1: A block diagram presenting the system overview of the Control Unit.

26

7.2. Prototype Design 27

7.2.1. General Software Information
The software is developed in C++1z (or also known as C++17) using the g++ compiler [43]. The ESP32

Arduino Core framework [44] is used, which is based on Arduino [45]. Therefore, the code for the

Control Unit can be tested using Arduino UNOs, which are not based on the ESP32-WROVER [46].

The reason for this choice of language and framework, is because the Arduino framework is built for

embedded applications and very easy to use. While C++11 is the default version, C++1z was chosen

because of the introduction of the inline keyword. This allowed for easier implementation of the

sensor structs in Listings E.10 and E.24. Now, the sensors can be defined in the header files without

having to initialize them using a function.

7.2.2. External Connections
As can be seen in Figure 7.1, there are a total of five types of in-/outputs (External Environment in
Figure 7.1). These are the error flags as described in Chapter 4, the communication via I

2
C as per

Chapter 6, receiving the input voltage from the power supply unit and independent reset signals for the

LED drivers and motor controller. This requires the addition of connectors to the Control Unit. This

problem has solved by implementing RJ45 headers [47] on the PCB such that Ethernet cables can be used

for external communication and connections. The main reason for using this type of interconnecting

is that it is easy to implement and does not require production of wires, because they can be bought

off-the-shelf. Another benefit of implementing Ethernet cables is that separate cables or wires for data

lines and power lines is not necessary. Being able to use only one cable, total packaging becomes an

easier process. In total four headers need to be included in the design, one for each module: Top LED

Driver, Bottom LED Driver, Motor Controller and the Power Supply Unit. A schematic can be found in

Appendix A.

7.2.3. Power Conversion
The input voltage received from the power supply unit is 24 V, which is a voltage level that can not

directly power most of the ICs. This voltage needs to be converted to lower voltages that fall in the

range of the allowed input voltage of common ICs, which are 3.3 V and 5 V. These conversions are done

by using two different voltage regulators ([48] for 5 V conversion and [49] for 3.3 V conversion). These

regulators only require the addition of an input decoupling capacitor and output stabilizing capacitor,

as per the datasheets [48], [49].

To make the Control Unit also receive power from the PC and not solely from the supply, a cir-

cuit was implemented which connects the USB BUS voltage (5 V) to the general 5 V line. The circuit and

how it works is are both presented in Figure 7.2. The schematic design of the power conversion is given

in Appendix A.

Figure 7.2: The comparator checks if the power supply is connected by comparing the 3.3 V threshold to the node voltage of the

voltage divider. If the power supply is connected, the output of this comparator will be high, causing the P-Channel MOSFET

(Q2) to be in a not conducting, thus not connecting VBUS to 5 V. This way, no current path from the power supply to the PC is

formed. If the power supply is not connected, the gate of the MOSFET will be low, thus the MOSFET will be in conducting and

powering the device via the PC.

7.2.4. USB Programmable
The ESP32 needs to be able to be programmable via USB. As the device itself is not directly a USB device

[46], an interface needs to be implemented that the PC can recognize as an USB device and which can

7.2. Prototype Design 28

conduct serial communication with the ESP32. Such an interface can be implemented via a simple

USB-to-UART interface, such as the CP2102N-A02-GQFN28R [50]. By following the datasheets [46], [50],

the signals and ports that need to be connected to get a properly functioning USB-to-UART interface can

be made. This interface now makes it possible to program the ESP32 via USB, satisfying [MM.7]. A

schematic of the interface and ESP32 is given in Appendix A.

7.2.5. Software Safety Measures
In addition to the hardware safety features, a software safety component has also been designed. When

an error message is received by the communication interface (Chapter 6), the safety component will

turn the enable signal off. Hereby disabling all modules. The error is decoded by determining from

which module and sensor it was sent, using the communication protocol in Listing E.7. This error will

then be displayed on the screen.

7.2.6. System State
In the software, the state of the system is stored in the system state (Listing E.6). The SystemState is a

struct containing important information about the current state of the system. This list includes but is

not limited to: the radiation parameters, the time the system has been running, and whether the system

is running. But it will most definitely be expanded if the software receives an update.

7.2.7. Data Logging
The data logging has been designed such that it satisfies Requirement [MM.6]. A very simple and easy

implementable way to store data is by using a SD card. This can be integrated onto the PCB by placing a

SD cardholder. The SD card is connected to the ESP32 using SPI [40]. Luckily, the Arduino framework

has a built-in SD card library [51]. This library carries out the creation of files and reading and writing

to said files. A wrapper class can be designed in the same way that the I2CInterface is implemented,

as explained in Section 6.3. The only concern of the implementation is ensuring that the chip select for

the SD card is enabled and that the screen chip select is disabled.

7.2.8. Buttons
Buttons have been implemented for several functionalities. There are buttons to control the screen as

mentioned in Chapter 5 but also to reset the Control Unit and the other modules. These are generic

buttons that pull a signal high or low, depending on the configuration. The screen buttons and rotary

encoder pull the signal high when pushed, and the reset buttons pull the signal low when pushed. Due

to the renowned bouncing that happens in the voltage, a filter for debouncing [34] must be implemented.

This can be done by placing a capacitor with a capacitance of 100 nF parallel to the button signal path.

The design of the buttons can be found in Appendix A.

7.2.9. Voltage step-up
Most of the signals on the Control Unit have a high voltage level of 3.3 V, because that is the I/O voltage

of the ESP32 [46]. However, the other modules operate on 5 V, meaning that a voltage step-up has to be

implemented. The circuit and its explanation are presented in Figure 7.3.

Figure 7.3: This circuit elevates the voltage level of a signal to a higher voltage. Whenever the signal at the source of the MOSFET

is high, the N-Channel MOSFET will not conduct, thus the drain is being pulled high to a higher voltage. If the signal at the

source is low, the MOSFET will conduct due to 𝑉𝑔𝑠 > 𝑉𝑇ℎ , thus pulling the signal at the drain low. So one gets:

𝑉𝑠 = 3.3𝑉 ⇒ 𝑉𝑔𝑠 < 𝑉𝑇ℎ ⇒ 𝑉𝑑 = 5𝑉 or 𝑉𝑠 = 0𝑉 ⇒ 𝑉𝑔𝑠 > 𝑉𝑇ℎ ⇒ 𝑉𝑑 = 0𝑉

7.3. Complete System Implementation 29

7.2.10. Design for debugging and testing
Due to the Control Unit being a prototype and the short duration of the project, the Control Unit is

designed in such a way that some features can easily be bypassed or that signals can be altered using

pull-down, pull-up, 0 Ω and do-not-place resistors. For example, in case the hardware error detection

does not work, and the software bypass also fails, the error flags can be manually pulled high via pull-up

resistors. In this way, some systems not behaving as desired does not delay the total progress of the

system. However, not all systems can be designed like thus, such as the USB-to-UART interface. This

design philosophy satisfies Requirement [MM.8].

7.2.11. Final PCB Design for Control Unit
The final PCB model for the Control Unit is given in Figure 7.4. Schematics of the PCB can be examined

in Appendix A.

Figure 7.4: A capture of the final design of the Control Unit PCB.

7.2.12. Final Software Design for Control Unit
The overview of the software design for the Control Unit is given in Figure 7.5. Chapters 5 and 6 explain

the User Interface and Communication in more detail.

Figure 7.5: The simplified overview of the software modules.

7.3. Complete System Implementation
All other modules [4], [5] have also gone through the design process and the complete designed system

is presented in Figure 7.6, along with a short elaboration on the interfaces. An assembled prototype can

be seen in Figure 7.7, the PCBs are blank as these were inserted for fitting of the system and not for

integration.

7.3. Complete System Implementation 30

Figure 7.6: A complete overview of the system. The Control Unit communicates with the other modules via I
2
C . The error flags

are outputs of the sensory electronics located on the other modules and act as inputs for the error detection hardware. The

Control Unit sends resets to the other systems to reset them. Enable is the output of the error detection hardware and enables the

system, if no error is detected.

Figure 7.7: An assembled prototype of the complete system. PCBs are not assembled as this was built for fitting and not final

integration.

8
Prototype Validation and Discussion

of the Results

8.1. Powering up the PCB
The PCB has to be able to receive power from both the PC and from the power supply. This can be tested

by plugging the PCB to either of the two. When plugging in the PCB to the computer via a USB cable,

the PCB indeed powers up as all the power indicator LEDs turned on and the voltages were measured

and all were correct. When using the power supply all voltages were measured and everything was

fine. This means that the PCB can power up and that the power conversion circuits work as desired.

However, when connecting the power supply, the LED for VBUS (power from USB) also turned on,

which means the PC/Supply isolating circuit given in Figure 7.2 was faulty. During debugging it was

noticed that the footprint of the PMOS was incorrect, meaning that it was always conducting. This can

be fixed by soldering wires from the correct signal to the correct pins of the MOSFET, but was not done

because this could for now be neglected. The fault does not cause problems downstream. However, it

does result in a voltage drop of around 0.7 V, resulting in the 5 V line dropping to 4.3 V. This is only a

problem when only using the power via USB.

8.2. Uploading to the PCB
For flashing the ESP32, the USB-to-UART circuit has to be tested first. This is a straightforward

test as plugging in the USB cable onto the PCB would cause the VBUS LED to turn on, meaning

that power was being received by the PCB. Furthermore, the PC could recognize the device as an

USB device and allocated a COM port to the Control Unit. This meant that USB connection was succesful.

However, when trying to flash the code, no serial connection could be formed with the ESP32.

After going through the schematics in Appendix A, it could be quickly detected that the TX and RX

signals where not connected properly. The TX signal of the USB-to-UART IC should be connected to the

RX pin of the ESP32 and vice versa. But the TX ports of both where connected to each other, which

means there is no transmitter/receiver communication present. This was fixed by cutting the copper

traces in the PCB and soldering wires to the correct ports.

This did, however, not solve all issues. It was found that the data terminal ready (DTR) port of

the USB-to-UART was not connected to the DTR port of the ESP32. This was fixed by soldering a thin

copper wire between the two.

After implementing these fixes to the PCB, it was possible to flash the ESP32 with code. How-

ever, this could only be done once, because after attempting to flash a later moment it did not work

anymore. The error was that the serial data contained noise or corruption. This is a quite reason-

able error as serial data lines are prone to interference, especially if they are fixed in such a fragile

manner. If the PCB had a second iteration with the fixes mentioned in this section, this circuit would

31

8.3. Testing of the User Inputs 32

work without problems. A picture of the setup where the uploading is attempted can be seen in Figure B.1.

This issue was resolved by adding another PCB, that was not designed during this project. The

microcontroller on that PCB is also an ESP32 and this means that it was possible to upload software on

that PCB. This means that this issue is solved in the final system.

8.3. Testing of the User Inputs
8.3.1. Push buttons
Firstly, the analog outputs of the buttons and rotary encoder were tested. That can be done by powering

the PCB and using an oscilloscope. The oscilloscope ground should be connected to PCB ground and

the signal probe. For the buttons that trigger an active state when going high, one would expect that the

voltage level of the signal would jump to 3.3 V from 0 V and back. The buttons that have active low

states, should do the opposite. The different buttons are: User Interface buttons (active high), reset

buttons (active low), rotary push button (active high). The measurement results are shown in Figure 8.1.

4 2 0 2 4
Time [s]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Vo
lta

ge
 [V

]

User Interface button measurement

(a) The measurement of the User Interface

buttons, it can be seen that a discharge pattern

can be recognized, because no pull-down resistor

is implemented that causes a quick discharge.

0 100 200 300 400 500
Time [ms]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Vo
lta

ge
 [V

]

Reset button measurement

(b) The measurement of the reset buttons,

normal voltage level switching behaviour can be

recognized. The reset button is active low. The

peak voltage is around 4V, this is caused by the

faulty footprint of the PMOS as mentioned in

Section 8.1.

0 50 100 150 200 250 300 350 400
Time [ms]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Vo
lta

ge
 [V

]

Rotary Encoder button measurement

(c) The measurement of the rotary encoder push

button, which demonstrates normal behaviour.

The rotary encoder button is active high.

Figure 8.1: The measurements of the push buttons located on the Control Unit PCB.

In Figure 8.1(a), it can be seen that the User Interface buttons jump to 3.3 V, but slowly discharge back to

0 V. This can be related to the exponential discharge given by:

𝑉(𝑡) = 𝑉0 exp

(
−𝑡
𝑅𝐶

)
(8.1)

where

𝑉(𝑡) = voltage of the signal path, V

𝑉0 = initial voltage of the signal path, V

𝑡 = time, s

𝑅 = resistance, Ω

8.4. Testing the Error Detection Hardware 33

𝐶 = capacitance, F

Looking at the schematics Appendix A, it can be seen that there is no pull-down resistor from the signal

line to ground, which means that the debounce capacitor gets charged, but has no quick discharge path

which explains this behaviour. With the addition of a pull-down resistor, this behaviour can be solved.

Although, this behaviour is present when pushing the button, it is not likely that it will cause problems

when integrated with the User Interface.

The measurements for the reset buttons and rotary push button, given in Figure 8.1(b) and Figure 8.1(c),

are as expected for buttons and can be confirmed to be functional.

8.3.2. Rotary encoder
The rotary encoder was also tested by probing the signal path with respect to ground using a oscilloscope.

One would expect a behaviour as described in Section 5.2.4. At first the results were not correct. This

was due to a pull-up resistor always pulling the signal path high and with an active high set-up this

would not work. After changing the pull-up resistor to a pull-down resistor, the following results were

obtained as illustrated in Figure 8.2. These are correct results. If one pin rises before another, a rotation

in a certain direction can be derived.

0 2 4 6 8 10 12 14 16
Time [ms]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Vo
lta

ge
 [V

]

Rotary Encoder turning clockwise
Pin A
Pin B

(a) The voltage on pin A rises before pin B, indicating a clockwise

turn.

0 2 4 6 8 10 12 14 16
Time [ms]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Vo
lta

ge
 [V

]
Rotary Encoder turning counter clockwise

Pin A
Pin B

(b) The voltage on pin B rises before pin A, indicating a counter

clockwise turn.

Figure 8.2: Measurements of the rotary encoder

8.4. Testing the Error Detection Hardware
To test the error detection hardware, one must be able to reproduce two situations:

1. Being able to pull Enable high

2. Being able to pull Enable low

By applying an external voltage to each of the error flags (either a high voltage or a low voltage), these

two situations can be reproduced. Firstly, by pulling all the flags high, the Enable LED indeed did

turn on, indicating that Enable is high, which means that the system could be enabled as no error

is detected. Pulling any of the flags to ground, triggered the error detection hardware and an error

flag LED turned on and the Enable LED turned off, thus being able to disable the system. When

applying a voltage to the exact same flag that previously had no voltage, still caused the error LED

to be on and the Enable LED was still off. This indicated that the latching circuit is functioning as expected.

Although, the circuit works as expected, it can not be integrated in the system. The interface with the

other modules had flaws. The other modules used active high for indicating an error, but the Control

Unit uses active low. This means that this circuit can not work and the software must use the designed

bypass function.

8.5. Testing the I2C communication 34

8.5. Testing the I2C communication
I
2
C is implemented in the software as per Chapter 6. The testing was done as presented in Figure B.3.

This setup is representative of the entire system. The Arduino UNO makes use of the ATMega328p [52].

The same chip employed for the other module designs [4], [5]. An ESP32 is integrated in the Control

Unit. However, the code can easily be compiled for this chip by altering some compile flags. This can be

done by selecting a different environment in Listing E.2. For more information about the compilation,

see Section 7.2.1. In the test setup, the code behaves as expected. Nonetheless, it remains unsure whether

this is also the case for the Control Unit PCB. This has not been tested due to the uploading errors. In

addition to this, the testing of the communication can only be performed when all PCBs are functioning.

8.6. Testing the Screen
Rik Imbens, one of our colleagues, has worked on a project including the same screen and an ESP32. This

setup has been used to develop the screen functionality of the Control Unit. Figure B.2 demonstrates

the working setup. A laptop is connected to the test setup via USB. It can be seen that the setup screen

is correctly displayed on the test setup.

However, since the ESP32 was enclosed in the test setup, and the PCB was not working yet, the button

functionalities could not be tested. Using code to simulate the buttons, it did show that the selecting

and editing works. The screen can also display the parameters in the right place.

Figure B.1 shows the test setup for integrating the screen with the Control Unit PCB. This setup is not

functional due to the uploading problems. When uploading works, this will be the setup to integrate

the screen with the module.

The screen was not turning on completely, when powered by the Control Unit. Quickly, it was discovered

that the footprint of the BJT-transistor that enables the screen was incorrect. Soldering some wires to

the correct signals also did not fix the issue. The mistake there is expected to be a bad solder joint or a

broken transistor due to the reworking process. By connecting this signal to ground via a 5.6 Ω, this

issue can be fixed. This fix would mean that the screen would power up, without being regulated by the

ESP32. Applying power to the Control Unit, also powers the screen immediately this way. However,

after some more testing, it was found that the supply voltage and ground pins on the connector for the

screen were flipped. This meant that the connector had to be fixed such that these two pins were now

connected to the correct signals. After fixing this and using the external PCB for uploading software,

the screen is ready to be used.

Furthermore, the implementation of the buttons and the user interface was also tested. Rotating

the buttons and pressing the buttons did initiate an action on the screen. The user can select different

parameters and adjust their values and start a process.

8.7. Testing the entire software
While developing, the code had to be rewritten to GUISlice (Section 5.2). Therefore, a lot of time was lost

developing and debugging code that eventually did not get used. As explained in Section 8.2, there were

problems with uploading. But there was no out-of-the-box ready hardware to act as a surrogate for the

PCB to design the software on. In the end, only hardware was acquired to develop the screen and I
2
C

software on. The combination of reworking a lot of code and little hardware to test on, resulted in the

safety, debug, and data logging components which only have been designed, but not yet implemented

in software nor tested.

9
Conclusions, Recommendations, and

Future Work

9.1. Conclusions
To conclude, a PCB and software for the Control Unit Module is designed and tested. The PCB is

designed to communicate with the other system modules, interact with the user via buttons and a

screen, store data and have safety systems in the form of error latches. The error latches, buttons and

flashing to the PCB have been tested. However, due to difficulties regarding uploading code to the PCB,

the other functionalities could not be verified, since those require software to work.

A communication protocol via I
2
C , its implementation and the Graphical User Interface is designed in

software. These functionalities have been verified in testing environments, but not on the PCB due to

problems with uploading.

The PCB has been completely debugged and all design mistakes and flaws were recovered. Nonetheless,

it was possible to fix the problems to get the user interface to function as it should.

The evaluations of the Programme of Requirement (Chapter 2) are shown in Tables 9.1 and 9.2. A dash

indicates that the requirement is not discussed anywhere. If a requirement is denoted as “tested”, the

results are discussed Chapter 8.

The conclusion of disinfecting seeds can be found in the Test Report, which is included in Appendix F.

In the end, all the modules together managed to build a device that is capable of exposing seeds to

high amounts of Ultraviolet C radiation. The doses of the radiation can be externally specified by

the user. The seeds get radiated from both sides and due to the vibrations induced by the motor, all

sides will be radiated. The safety of the system is guaranteed by the error detection hardware. The

development of such a device opens the door for lots of research and testing in the field of sustainable

seed disinfection. The hypothesis that seeds can be disinfected using UVC has not yet been proven in

this thesis Appendix F.

35

9.2. Recommendations 36

Table 9.1: Evaluation of the System Requirements

Requirement Discussed where Achieved

[SM.1] Section 1.1 Designed and tested

[SM.2] Section 1.1 Designed, tested but inconclusive results Appendix F.

[SM.3] Chapter 3 Designed, but not tested

[SM.4] Chapter 7, [4], [5] Designed and tested

[SM.5] Chapter 6,[4], [5] Designed, but not tested as a whole

[SM.6] Chapter 4 Designed and tested

[SM.7] Chapter 4 Designed and tested

[SM.8] Chapter 5 Designed and tested

[SM.9] Chapters 5 and 6 Designed, but communication not yet tested between the modules

[ST.1] [5] Designed, but not measured

[ST.2] [5] Yes

[ST.3] - No

[ST.4] - No

[ST.5] Chapters 4 and 6 Designed, but communication not tested between the modules

[ST.6] - No

Table 9.2: Evaluation of the Module Requirements

Requirement Discussed where Achieved

[MM.1] Chapter 7 Designed and tested with motor controller

[MM.2] Chapter 6 Designed and tested, but not on the PCB

[MM.3] Chapter 4 Designed and tested

[MM.4] Chapter 4 Designed and tested

[MM.5] Chapter 5 Designed and tested

[MM.6] Chapter 7 Designed, not yet implemented nor tested

[MM.7] Chapter 7 Designed and tested, fixed with external PCB

[MM.8] Chapter 7 Designed and experienced

[MM.9] Chapter 7 Designed and tested

[MT.1] - No

[MT.2] Section 7.2.12 Debatable, buttons are reachable by user, but uncomfortable.

[MT.3] Chapter 7 Designed, not yet implemented nor tested

[MT.4] - No

[MT.5] - No

[MT.6] Chapter 7 Implementation of Ethernet ports and Screen connector

9.2. Recommendations
As a suggestion for the hardware, crucial signals and circuits should be verified by another person

than the designer. Crucial here refers to elements which cannot be bypassed with 0 Ω or DNP resistors.

This way, mistakes such as incorrectly wiring the RX and TX lines would not have happened. In addi-

tion to this, should time allow it, a second version of the PCB should be made in order to correct mistakes.

For the software, it is strongly recommended to buy pre-existing hardware modules. These modules

with tested behavior can be used to develop all software components. Then the development becomes

far more efficient. It eliminates the dependency of software and hardware. Secondly, a detailed software

layout should be created first. If all functionalities and dependencies are determined beforehand, big

overhauls of the code layout are less likely to occur. When creating this layout, it is advisable to look for

libraries which implement the functionalities you require.

Lastly, a more general proposal when creating such a design. The thesis can be written in parallel with

the development. Less time has to be spent in the end, if every week a chapter is written for the thesis.

9.3. Future Work 37

9.3. Future Work
In the future, more types of pathogen and seed can be studied experimented with in the machine.

The strength of the machine is its scale of settings that can be changed. Since the machine is built for

flexibility, it could be optimized a lot by omitting redundant components. Then, if the device is fully

tested, it can be commercialized and enter the market. However, it should comply with existing safety

regulations. To make it a fully cultivated stand-alone product, touchscreen, parameter presets and

automatic seed loading and unloading should be installed.

Literature

[1] Rĳk Zwaan Zaadteelt en Zaadhandel B.V. “Rĳk Zwaan company website.” (), [Online]. Available:

https://www.rijkzwaan.nl/.

[2] G. Lenssen, Welkom bĳ rĳk zwaan, Company Visit, 2023.

[3] H. van Zeĳl, Ultraviolet sterilization: Uvc seeds bacteria inactivation, Graduation Project Proposal,

2023.

[4] R. Imbens and L. Klootwĳk, “UVC LED driving and sensing unit, UVC Sterilisation,” Thesis, 2023,

p. 50.

[5] D. Schat and M. Mazurovs, “UVC Sterilization, Mechanics Group, EE3L11: Bachelor End Project,”

Thesis, 2023, p. 50.

[6] S. J. Balk, the Council on Environmental Health, and S. on Dermatology, “Ultraviolet Radiation: A

Hazard to Children and Adolescents,” Pediatrics, vol. 127, no. 3, e791–e817, Mar. 2011, issn: 0031-

4005. doi: 10.1542/peds.2010-3502. eprint: https://publications.aap.org/pediatrics/
article-pdf/127/3/e791/907919/zpe0031100e791.pdf. [Online]. Available: https://doi.
org/10.1542/peds.2010-3502.

[7] Canadian Centre for Occupational Health and Safety. “Ultraviolet radiation.” (2022), [Online].

Available: https://www.ccohs.ca/oshanswers/phys_agents/ultravioletradiation.html.

[8] UV Resources. “Why UV-C Cannot Produce Ozone.” (2022), [Online]. Available: https://www.
uvresources.com/the-ultraviolet-germicidal-irradiation-uv-c-wavelength/.

[9] V. Sharma and H. Demir, “Bright Future of Deep-Ultraviolet Photonics: Emerging UVC Chip-

Scale Light-Source Technology Platforms, Benchmarking, Challenges, and Outlook for UV

Disinfection,” ACS Photonics, vol. 9, no. 5, pp. 1513–1521, Apr. 2022. doi: https://doi.org/
10.1021/acsphotonics.2c00041. [Online]. Available: https://pubs.acs.org/doi/10.1021/
acsphotonics.2c00041.

[10] W. Kowalski, Ultraviolet Germicidal Irradiation Handbook, 1st ed. Berlin: Springer Berlin, Heidelberg,

2014. doi: https://doi.org/10.1007/978-3-642-01999-9.

[11] N. Jiang, Z. Li, L. Wang, et al., “Effects of ultraviolet-c treatment on growth and mycotoxin produc-

tion by alternaria strains isolated from tomato fruits,” International Journal of Food Microbiology,

vol. 311, p. 108 333, 2019, issn: 0168-1605. doi: https://doi.org/10.1016/j.ijfoodmicro.
2019.108333. [Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0168160519302636.

[12] S. Bates. “DEOXYRIBONUCLEIC ACID (DNA),” National Human Genome Research Institute. (Jun.

2023), [Online]. Available: https://www.genome.gov/genetics-glossary/Deoxyribonucleic-
Acid (visited on 06/16/2023).

[13] M. Raeiszadeh and B. Adeli, “A Critical Review on Ultraviolet Disinfection Systems against

COVID-19 Outbreak: Applicability, Validation, and Safety Considerations,” ACS Photonics, vol. 7,

no. 11, pp. 2941–2951, Sep. 2020. doi: https://doi.org/10.1021/acsphotonics.0c01245.

[Online]. Available: https://pubs.acs.org/doi/full/10.1021/acsphotonics.0c01245.

[14] “Effects of Ultraviolet Light on the Eye: Role of Protective Glasses,” Environmental Health Perspectives,
vol. 96, pp. 177–184, Dec. 1991. doi: https://doi.org/10.1289/ehp.9196177. [Online]. Available:

https://ehp.niehs.nih.gov/doi/epdf/10.1289/ehp.9196177.

[15] Global Light Association, “UV-C SAFETY GUIDELINES,” Global Lighting Association, 2020. [Online].

Available: https://www.globallightingassociation.org/images/files/publications/
GLA_UV-C_Safety_Position_Statement.pdf.

38

https://www.rijkzwaan.nl/
https://doi.org/10.1542/peds.2010-3502
https://publications.aap.org/pediatrics/article-pdf/127/3/e791/907919/zpe0031100e791.pdf
https://publications.aap.org/pediatrics/article-pdf/127/3/e791/907919/zpe0031100e791.pdf
https://doi.org/10.1542/peds.2010-3502
https://doi.org/10.1542/peds.2010-3502
https://www.ccohs.ca/oshanswers/phys_agents/ultravioletradiation.html
https://www.uvresources.com/the-ultraviolet-germicidal-irradiation-uv-c-wavelength/
https://www.uvresources.com/the-ultraviolet-germicidal-irradiation-uv-c-wavelength/
https://doi.org/https://doi.org/10.1021/acsphotonics.2c00041
https://doi.org/https://doi.org/10.1021/acsphotonics.2c00041
https://pubs.acs.org/doi/10.1021/acsphotonics.2c00041
https://pubs.acs.org/doi/10.1021/acsphotonics.2c00041
https://doi.org/https://doi.org/10.1007/978-3-642-01999-9
https://doi.org/https://doi.org/10.1016/j.ijfoodmicro.2019.108333
https://doi.org/https://doi.org/10.1016/j.ijfoodmicro.2019.108333
https://www.sciencedirect.com/science/article/pii/S0168160519302636
https://www.sciencedirect.com/science/article/pii/S0168160519302636
https://www.genome.gov/genetics-glossary/Deoxyribonucleic-Acid
https://www.genome.gov/genetics-glossary/Deoxyribonucleic-Acid
https://doi.org/https://doi.org/10.1021/acsphotonics.0c01245
https://pubs.acs.org/doi/full/10.1021/acsphotonics.0c01245
https://doi.org/https://doi.org/10.1289/ehp.9196177
https://ehp.niehs.nih.gov/doi/epdf/10.1289/ehp.9196177
https://www.globallightingassociation.org/images/files/publications/GLA_UV-C_Safety_Position_Statement.pdf
https://www.globallightingassociation.org/images/files/publications/GLA_UV-C_Safety_Position_Statement.pdf

Literature 39

[16] J. D’Orazio, S. Jarrett, A. Amaro-Ortiz, and T. Scott, “UV Radiation and the Skin,” Radiation Toxicity
in Cells, vol. 14, no. 6, pp. 12 222–12 248, Jun. 2013. doi: https://doi.org/10.3390/ijms140612222.

[Online]. Available: https://www.mdpi.com/1422-0067/14/6/12222.

[17] A. Bhattacharyya, “The detrimental effects of progression of retinal degeneration in the visual

cortex.,” Frontiers in cellular neuroscience, vol. 16, Jul. 2022. doi: 10.3389/fncel.2022.904175.

[Online]. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9372284/#:~:
text=During%20retinal%20degeneration%20(RD)%20the,faces%2C%20read%20and%20find%
20objects..

[18] P. H. Gies, C. R. Roy, S. Toomey, and A. McLennan, “Protection against solar ultraviolet radiation,”

Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, vol. 422, no. 1, pp. 15–22,

1998, issn: 0027-5107. doi: https://doi.org/10.1016/S0027-5107(98)00181-X. [Online].

Available: https://www.sciencedirect.com/science/article/pii/S002751079800181X.

[19] I. Lager, V. Scholten, E. Bol, C. Richie, and S. Izadkhast, Bachelor graduation project, Bachelor

Graduation Project Electrical Engineering, 2023.

[20] N. Okamoto, J. Hidema, and A. Higashitani, “222 nm far-UVC efficiently introduces nerve damage

in Caenorhabditis elegans,” Plos One, Jan. 2023. doi: https://doi.org/10.1371/journal.pone.
0281162. [Online]. Available: https://journals.plos.org/plosone/article?id=10.1371/
journal.pone.0281162.

[21] C. Green and P. Scarpino, “The use of ultraviolet germicidal irradiation (UVGI) in disinfection

of airborne bacteria.,” Environmental Engineering and Policy, vol. 3, pp. 101–107, Dec. 2001. doi:

https://doi.org/10.1007/s100220100046. [Online]. Available: https://link.springer.com/
article/10.1007/s100220100046#citeas.

[22] F. Palma, G. Baldelli, G. Schiavano, G. Amagliani, M. Aliano, and G. Brandi, “Use of Eco-Friendly

UV-C LEDs for Indoor Environment Sanitization: A Narrative Review,” Atmosphere, vol. 13,

no. 9, p. 1411, Jul. 2022. doi: https://doi.org/10.3390/atmos13091411. [Online]. Available:

https://www.mdpi.com/2073-4433/13/9/1411.

[23] C. Ortiz-Mateos, “Best wavelengths for disinfection in the age of Sars-CoV-2 (corona-virus),” Article,

Jul. 2020, p. 9. [Online]. Available: https://phoseon.com/wp-content/uploads/2020/07/Best-
UV-wavelengths-for-disinfection-in-the-age-of-coronavirus-final.pdf.

[24] R. Kamel, M. El-kholy, N. Tolba, A. Amer, A. Eltarawy, and L. Ali, “Influence of germicidal

ultraviolet radiation UV-C on the quality of Apiaceae spices seeds,” Chem. Biol. Technol. Agric.,
vol. 9, p. 89, 2022. [Online]. Available: https://link.springer.com/article/10.1186/s40538-
022-00358-4#citeas.

[25] M. Begum, A. D. Hocking, and D. Miskelly, “Inactivation of food spoilage fungi by ultra violet

(UVC) irradiation,” International Journal of Food Microbiology, vol. 129, no. 1, pp. 74–77, 2009, issn:

0168-1605. doi: https://doi.org/10.1016/j.ijfoodmicro.2008.11.020. [Online]. Available:

https://www.sciencedirect.com/science/article/pii/S0168160508006144.

[26] A. Kheyrandish, M. Mohseni, and F. Taghipour, “Development of a method for the characterization

and operation of uv-led for water treatment,” Water Research, vol. 122, pp. 570–579, 2017, issn:

0043-1354. doi: https://doi.org/10.1016/j.watres.2017.06.015. [Online]. Available:

https://www.sciencedirect.com/science/article/pii/S0043135417304906.

[27] K. Song, F. Taghipour, and M. Mohseni, “Microorganisms inactivation by wavelength combinations

of ultraviolet light-emitting diodes (uv-leds),” Science of The Total Environment, vol. 665, pp. 1103–

1110, 2019, issn: 0048-9697. doi: https://doi.org/10.1016/j.scitotenv.2019.02.041. [Online].

Available: https://www.sciencedirect.com/science/article/pii/S0048969719305212.

[28] J. Johnson. “Selection of materials for uv optics.” (Dec. 2008), [Online]. Available: https://wp.
optics.arizona.edu/optomech/wp-content/uploads/sites/53/2016/10/Tutorial1_james-
Johnson.pdf (visited on 06/13/2023).

[29] A. Schreiber, E. Arnold, B. Kuehn, and F. Schilling, “Radiation resistance of quartz glass for

vuv discharge lamps,” Jul. 2004. doi: 10.13140/RG.2.1.1516.3605. [Online]. Available: https:
//www.researchgate.net/publication/282867046_Radiation_Resistance_of_Quartz_
Glass_for_VUV_Discharge_Lamps.

https://doi.org/https://doi.org/10.3390/ijms140612222
https://www.mdpi.com/1422-0067/14/6/12222
https://doi.org/10.3389/fncel.2022.904175
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9372284/#:~:text=During%20retinal%20degeneration%20(RD)%20the,faces%2C%20read%20and%20find%20objects.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9372284/#:~:text=During%20retinal%20degeneration%20(RD)%20the,faces%2C%20read%20and%20find%20objects.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9372284/#:~:text=During%20retinal%20degeneration%20(RD)%20the,faces%2C%20read%20and%20find%20objects.
https://doi.org/https://doi.org/10.1016/S0027-5107(98)00181-X
https://www.sciencedirect.com/science/article/pii/S002751079800181X
https://doi.org/https://doi.org/10.1371/journal.pone.0281162
https://doi.org/https://doi.org/10.1371/journal.pone.0281162
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0281162
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0281162
https://doi.org/https://doi.org/10.1007/s100220100046
https://link.springer.com/article/10.1007/s100220100046#citeas
https://link.springer.com/article/10.1007/s100220100046#citeas
https://doi.org/https://doi.org/10.3390/atmos13091411
https://www.mdpi.com/2073-4433/13/9/1411
https://phoseon.com/wp-content/uploads/2020/07/Best-UV-wavelengths-for-disinfection-in-the-age-of-coronavirus-final.pdf
https://phoseon.com/wp-content/uploads/2020/07/Best-UV-wavelengths-for-disinfection-in-the-age-of-coronavirus-final.pdf
https://link.springer.com/article/10.1186/s40538-022-00358-4#citeas
https://link.springer.com/article/10.1186/s40538-022-00358-4#citeas
https://doi.org/https://doi.org/10.1016/j.ijfoodmicro.2008.11.020
https://www.sciencedirect.com/science/article/pii/S0168160508006144
https://doi.org/https://doi.org/10.1016/j.watres.2017.06.015
https://www.sciencedirect.com/science/article/pii/S0043135417304906
https://doi.org/https://doi.org/10.1016/j.scitotenv.2019.02.041
https://www.sciencedirect.com/science/article/pii/S0048969719305212
https://wp.optics.arizona.edu/optomech/wp-content/uploads/sites/53/2016/10/Tutorial1_james-Johnson.pdf
https://wp.optics.arizona.edu/optomech/wp-content/uploads/sites/53/2016/10/Tutorial1_james-Johnson.pdf
https://wp.optics.arizona.edu/optomech/wp-content/uploads/sites/53/2016/10/Tutorial1_james-Johnson.pdf
https://doi.org/10.13140/RG.2.1.1516.3605
https://www.researchgate.net/publication/282867046_Radiation_Resistance_of_Quartz_Glass_for_VUV_Discharge_Lamps
https://www.researchgate.net/publication/282867046_Radiation_Resistance_of_Quartz_Glass_for_VUV_Discharge_Lamps
https://www.researchgate.net/publication/282867046_Radiation_Resistance_of_Quartz_Glass_for_VUV_Discharge_Lamps

Literature 40

[30] M. Quazi, F. M. A., A. S. M. A. Haseeb, F. Yusof, H. Masjuki, and A. Ahmed, “Laser-based surface

modifications of aluminum and its alloys,” Critical Reviews in Solid State and Materials Sciences,
vol. 41, pp. 1–26, Oct. 2015. doi: 10.1080/10408436.2015.1076716.

[31] M. Belloli, M. Cigarini, G. Milesi, P. Mutti, and E. Berni, “Effectiveness of two uv-c light-

emitting diodes (led) systems in inactivating fungal conidia on polyethylene terephthalate,”

Innovative Food Science Emerging Technologies, vol. 79, p. 103 050, 2022, issn: 1466-8564. doi: https:
//doi.org/10.1016/j.ifset.2022.103050. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S1466856422001357.

[32] K. Ágoston, “Studying and measuring system for motor base unbalance,” Procedia Manufacturing,

vol. 46, pp. 391–396, 2020, 13th International Conference Interdisciplinarity in Engineering, INTER-

ENG 2019, 3–4 October 2019, Targu Mures, Romania, issn: 2351-9789. doi: https://doi.org/10.
1016/j.promfg.2020.03.057. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S2351978920309355.

[33] R. Nave. “NAND-gate Latch.” (), [Online]. Available: http://hyperphysics.phy-astr.gsu.
edu/hbase/Electronic/nandlatch.html (visited on 06/12/2023).

[34] G. Wright. “DEFINITION debouncing.” (), [Online]. Available: https://www.techtarget.com/
whatis/definition/debouncing (visited on 06/15/2023).

https://doi.org/10.1080/10408436.2015.1076716
https://doi.org/https://doi.org/10.1016/j.ifset.2022.103050
https://doi.org/https://doi.org/10.1016/j.ifset.2022.103050
https://www.sciencedirect.com/science/article/pii/S1466856422001357
https://www.sciencedirect.com/science/article/pii/S1466856422001357
https://doi.org/https://doi.org/10.1016/j.promfg.2020.03.057
https://doi.org/https://doi.org/10.1016/j.promfg.2020.03.057
https://www.sciencedirect.com/science/article/pii/S2351978920309355
https://www.sciencedirect.com/science/article/pii/S2351978920309355
http://hyperphysics.phy-astr.gsu.edu/hbase/Electronic/nandlatch.html
http://hyperphysics.phy-astr.gsu.edu/hbase/Electronic/nandlatch.html
https://www.techtarget.com/whatis/definition/debouncing
https://www.techtarget.com/whatis/definition/debouncing

Datasheets

[35] C. Hass, GUISlice, version 0.17.0, 2020. [Online]. Available: https://github.com/ImpulseAdvent
ure/GUIslice.

[36] P. Conti, GUISlice, version 0.17.b24, 2022. [Online]. Available: https://github.com/ImpulseAdv
enture/GUIslice-Builder.

[37] L. Hennigs, Button2, version 2.2.2, 2022. [Online]. Available: https://github.com/LennartHenni
gs/Button2/.

[38] L. Hennigs, ESP Rotary, version 2.1.1, 2023. [Online]. Available: https://github.com/LennartHe
nnigs/ESPRotary.

[39] NXP, I2C-bus specification and user manual, UM10204, Rev. 7.0, Oct. 2021. [Online]. Available:

https://www.nxp.com/docs/en/user-guide/UM10204.pdf.

[40] Texas Instruments, KeyStone Architecture Serial Peripheral Interface (SPI), SPRUGP2A, Mar. 2012.

[Online]. Available: https://www.ti.com/lit/ug/sprugp2a/sprugp2a.pdf?ts=168641069282
0&ref_url=https%5C%253A%5C%252F%5C%252Fwww.google.com%5C%252F.

[41] Texas Instruments, KeyStone Architecture Universal Asynchronous Receiver/Transmitter (UART),
SPRUGP1, Nov. 2010. [Online]. Available: https://www.ti.com/lit/ug/sprugp1/sprugp1.pdf?
ts=1686421391467&ref_url=https%5C%253A%5C%252F%5C%252Fwww.google.com%5C%252F.

[42] Arduino, Wire, version 2.0.0, 2017. [Online]. Available: https://reference.arduino.cc/
reference/en/language/functions/communication/wire/.

[43] P. Carlini, P. Edwards, D. Gregor, et al., The GNU C++ Library Manual, version 2017 (gnu++1z),

2017. [Online]. Available: https://gcc.gnu.org/onlinedocs/libstdc++/manual/index.html.

[44] Espressif, ESP32 Arduino Core, version 2.0.9, 2023. [Online]. Available: https://docs.espressif.
com/projects/arduino-esp32/en/latest/.

[45] Arduino, Arduino, 2023. [Online]. Available: https://docs.arduino.cc/.

[46] ESP32-WROVER-B & ESP-32-WROVER-IB Datasheet, 5, Rev. A, MORNSUN Guangzhou Science &

Technology Co., Ltd., 2022. [Online]. Available: https://www.mornsun-power.com/html/pdf/
K7805-1000R3L.html.

[47] Rj45-8p/8c, Rev. A, Ckmtw(Shenzhen Cankemeng), 2019. [Online]. Available: https://datasheet.
lcsc.com/lcsc/1912111437_Ckmtw-Shenzhen-Cankemeng-R-RJ45R08P-C000_C386757.pdf.

[48] DC/DC Converter. K78xx-1000R3(L) Series. Wide Input voltage Non-Isolated and regulated single output,
1, Rev. 7, Espressif Systems, 2021. [Online]. Available: https://nl.mouser.com/datasheet/2/
891/esp32_wrover_b_datasheet_en-1384674.pdf.

[49] AMS1117 1A LOW DROPOUT VOLTAGE REGULATOR, Advanced Monolithic Systems. [Online].

Available: https://datasheet.lcsc.com/lcsc/2304140030_Advanced-Monolithic-Systems-
AMS1117-3-3_C6186.pdf.

[50] USBXpress Family CP2102N Datasheet, 1, Rev. 5, Silicon Labs, 2020. [Online]. Available: https:
//nl.mouser.com/datasheet/2/368/cp2102n_datasheet-1634912.pdf.

[51] Arduino, SD, version 1.2.4, 2019. [Online]. Available: https://github.com/arduino-libraries/
SD.

[52] megaAVR Datasheet, Microchip Technology Inc., 2020. [Online]. Available: https://ww1.mic
rochip.com/downloads/aemDocuments/documents/MCU08/ProductDocuments/DataSheets/
ATmega48A-PA-88A-PA-168A-PA-328-P-DS-DS40002061B.pdf.

41

https://github.com/ImpulseAdventure/GUIslice
https://github.com/ImpulseAdventure/GUIslice
https://github.com/ImpulseAdventure/GUIslice-Builder
https://github.com/ImpulseAdventure/GUIslice-Builder
https://github.com/LennartHennigs/Button2/
https://github.com/LennartHennigs/Button2/
https://github.com/LennartHennigs/ESPRotary
https://github.com/LennartHennigs/ESPRotary
https://www.nxp.com/docs/en/user-guide/UM10204.pdf
https://www.ti.com/lit/ug/sprugp2a/sprugp2a.pdf?ts=1686410692820&ref_url=https%5C%253A%5C%252F%5C%252Fwww.google.com%5C%252F
https://www.ti.com/lit/ug/sprugp2a/sprugp2a.pdf?ts=1686410692820&ref_url=https%5C%253A%5C%252F%5C%252Fwww.google.com%5C%252F
https://www.ti.com/lit/ug/sprugp1/sprugp1.pdf?ts=1686421391467&ref_url=https%5C%253A%5C%252F%5C%252Fwww.google.com%5C%252F
https://www.ti.com/lit/ug/sprugp1/sprugp1.pdf?ts=1686421391467&ref_url=https%5C%253A%5C%252F%5C%252Fwww.google.com%5C%252F
https://reference.arduino.cc/reference/en/language/functions/communication/wire/
https://reference.arduino.cc/reference/en/language/functions/communication/wire/
https://gcc.gnu.org/onlinedocs/libstdc++/manual/index.html
https://docs.espressif.com/projects/arduino-esp32/en/latest/
https://docs.espressif.com/projects/arduino-esp32/en/latest/
https://docs.arduino.cc/
https://www.mornsun-power.com/html/pdf/K7805-1000R3L.html
https://www.mornsun-power.com/html/pdf/K7805-1000R3L.html
https://datasheet.lcsc.com/lcsc/1912111437_Ckmtw-Shenzhen-Cankemeng-R-RJ45R08P-C000_C386757.pdf
https://datasheet.lcsc.com/lcsc/1912111437_Ckmtw-Shenzhen-Cankemeng-R-RJ45R08P-C000_C386757.pdf
https://nl.mouser.com/datasheet/2/891/esp32_wrover_b_datasheet_en-1384674.pdf
https://nl.mouser.com/datasheet/2/891/esp32_wrover_b_datasheet_en-1384674.pdf
https://datasheet.lcsc.com/lcsc/2304140030_Advanced-Monolithic-Systems-AMS1117-3-3_C6186.pdf
https://datasheet.lcsc.com/lcsc/2304140030_Advanced-Monolithic-Systems-AMS1117-3-3_C6186.pdf
https://nl.mouser.com/datasheet/2/368/cp2102n_datasheet-1634912.pdf
https://nl.mouser.com/datasheet/2/368/cp2102n_datasheet-1634912.pdf
https://github.com/arduino-libraries/SD
https://github.com/arduino-libraries/SD
https://ww1.microchip.com/downloads/aemDocuments/documents/MCU08/ProductDocuments/DataSheets/ATmega48A-PA-88A-PA-168A-PA-328-P-DS-DS40002061B.pdf
https://ww1.microchip.com/downloads/aemDocuments/documents/MCU08/ProductDocuments/DataSheets/ATmega48A-PA-88A-PA-168A-PA-328-P-DS-DS40002061B.pdf
https://ww1.microchip.com/downloads/aemDocuments/documents/MCU08/ProductDocuments/DataSheets/ATmega48A-PA-88A-PA-168A-PA-328-P-DS-DS40002061B.pdf

A
CAD design of the Control Unit

42

11

22

33

44

D
D

C
C

B
B

A
A

1

S
ch

ie
w

eg
 1

5
26

27
 A

N
 D

el
ft

Th
e

N
et

he
rla

nd
s

fs
te

am
de

lft
.n

l
7

To
pl

ev
el

16
-5

-2
02

3
18

:2
5:

16
To

pl
ev

el
.S

ch
D

oc

Sh
ee

t:

D
at

e:
Fi

le
:

Te
am

 Y
ea

r:

Sh
ee

t
of

Ti
m

e:

En
gi

ne
er

:
U

V
O

 -
C

on
tr

ol
 U

ni
t.P

rj
Pc

b
P

ro
je

ct
:

PW
R_

EN SC
L

SD
A

ER
R

O
RS

EN
A

BL
E

R
ES

ET

E
xt

er
na

l C
on

ne
ct

io
ns

Ex
te

rn
al

C
on

ne
ct

io
ns

.S
ch

D
oc

SC
L

SD
A

ENABLE_SW

PW
R_

EN

R
ES

ET

U
SE

R
B

U
TT

O
N

S

C
on

tr
ol

le
r

C
on

tro
lle

r.S
ch

D
oc

SR
_E

R
R

O
RS

PW
R_

EN

EN
A

BL
E

R
ES

ET

U
SE

R
B

U
TT

O
N

S

U
se

r I
nt

er
fa

ce
U

I.S
ch

D
oc

SR
_E

R
R

O
RS

EN
A

BL
E

ENABLE_SW

ER
R

O
RS

R
ES

ET

E
na

bl
er

En
ab

le
r.S

ch
D

oc

Po
w

er
Po

w
er

.S
ch

D
oc

N
PT

H
1

N
PT

H
 M

3

N
PT

H
2

N
PT

H
 M

3

N
PT

H
3

N
PT

H
 M

3

CO
NP
TH
1

CO
NP

TH
2

CO
NP
TH
3

11

22

33

44

D
D

C
C

B
B

A
A

2

* * * *
7

16
-5

-2
02

3
18

:2
5:

16
P

ow
er

.S
ch

D
oc

Sh
ee

t:

D
at

e:
Fi

le
:

Te
am

 Y
ea

r:

Sh
ee

t
of

Ti
m

e:

En
gi

ne
er

:
U

V
O

 -
C

on
tr

ol
 U

ni
t.P

rj
Pc

b
P

ro
je

ct
:

*

1

2
3

Q
1

D
M

P3
05

6L
-7

1 2

D
1

B
ZT

52
C3

6V
1 2

C
5

V
EJ

-1
01

M
1H

TR
-0

81
0

G
N

D
G

N
D

G
N

D

24
V

VIN 1
GND/VO- 2
+VO/GND 3

U
1

K7805-1000R3L

VI
N

3
V

O
U

T
2

V
O

U
T

4

G
ro

un
d

1

U
2

A
M

S1
11

7-
3.

3

C
1

10
U

/5
0V

C
2

22
U

/2
5V

G
N

D
G

N
D

G
N

D

24
V

5V

G
N

D
G

N
D

G
N

D

5V
3V

3

IN
PU

T
PR

O
TE

C
TI

O
N

 A
N

D
 F

IL
T

E
R

IN
G

5V
 G

EN
ER

A
TI

O
N

 @
 1

00
0m

A

3V
3

G
EN

ER
A

TI
O

N
 @

 1
00

0m
A

2

31

5

4

U
3

TL
33

1I
D

BV
R

3V
3

R
2

10
K

R
1

38
K

3

G
N

D

C
6

10
0N

/5
0V

5V G
N

D

24
V

1

2
3

Q
2

FD
N

34
0

V
BU

S
5V

BU
S

/ S
U

PP
LY

 P
O

W
E

R
 C

H
E

C
K

R
3

D
N

P

G
N

D

C
3

10
U

/5
0V

C
4

10
U

/5
0V

24
V

ps

PIC101 PIC102
COC

1
PIC201 PIC202

COC
2

PIC301 PIC302
COC

3
PIC401 PIC402

COC
4

PIC501 PIC502

COC
5

PIC601 PIC602
COC

6

PID101 PID102

COD
1

PIQ101 P
I
Q
1
0
2

P
I
Q
1
0
3
 COQ
1

PIQ201
P
I
Q
2
0
2

P
I
Q
2
0
3

COQ
2

PIR101 PIR102 COR
1

PIR201 PIR202 COR
2

PIR301 PIR302 COR
3

PIU101 PIU1
02 PIU103

COU
1

P
I
U
2
0
1

P
I
U
2
0
2

P
I
U
2
0
3

P
I
U
2
0
4

COU
2

P
I
U
3
0
1

PIU302

P
I
U
3
0
3

P
I
U
3
0
4

PIU305

COU
3

PIC401
P
I
U
2
0
2

P
I
U
2
0
4

P
I
U
3
0
3

PIC201
PIC301

PIC601

P
I
Q
2
0
3

PIU103
P
I
U
2
0
3

PIU302

PIC101
PIC501

PID101
P
I
Q
1
0
2

PIR102

PIU101
P
I
Q
1
0
3

PIC102
PIC202

PIC302
PIC402

PIC502

PIC602

PID102

PIQ101

PIR201

PIR301

PIU102

P
I
U
2
0
1

PIU305
PIQ201

PIR302
P
I
U
3
0
4

PIR101 PIR202
P
I
U
3
0
1

P
I
Q
2
0
2

11

22

33

44

55

66

77

88

D
D

C
C

B
B

A
A

3

* * * *
7

16
-5

-2
02

3
18

:2
5:

16
E

xt
er

na
lC

on
ne

ct
io

ns
.S

ch
D

oc

Sh
ee

t:

D
at

e:
Fi

le
:

Te
am

 Y
ea

r:

Sh
ee

t
of

Ti
m

e:

En
gi

ne
er

:
U

V
O

 -
C

on
tr

ol
 U

ni
t.P

rj
Pc

b
P

ro
je

ct
:

*

SC
L

SD
A

EN
A

BL
E

ER
R

O
RS

R1
0

4K
7 SD

A

SC
L

G
N

D

PW
R_

EN

C
O

N
N

EC
TI

O
N

S
TO

 P
O

W
ER

 S
U

PP
LY

1
1

2
2

3
3

4
4

5
5

6
6

7
7

8
8

LE
D

-R
_A

9

LE
D

-R
_K

10

LE
D

-L
_A

11

LE
D

-L
_K

12

M
H

3
M

H
3

M
H

4
M

H
4

J1 R
-R

J4
5R

08
P-

C0
00

C
O

N
N

EC
TI

O
N

S
TO

 L
ED

 D
R

IV
ER

 T
O

P

SC
L_

LE
D

SD
A

_L
ED

EN
A

BL
E

EN
A

BL
E

G
N

D

G
N

D

O
C

_L
ED

_F
LA

G
O

T_
LE

D
_F

LA
G

O
O

_L
ED

_F
LA

G

C
O

N
N

EC
TI

O
N

S
TO

 M
O

TO
R

C
O

N
T

R
O

L
L

E
R

G
N

D

SC
L_

M
C

SD
A

_M
C

EN
A

BL
E

O
C

_M
C

_F
LA

G

nR
ES

ET
_L

ED

nR
ES

ET
_M

C

G
N

DO
C

_P
S_

FL
A

G

G
N

D

G
N

D
G

N
D

G
N

D

O
C

_M
C

_F
LA

G

O
C

_L
ED

_F
LA

G
O

T_
LE

D
_F

LA
G

O
O

_L
ED

_F
LA

G

G
N

D

PW
R_

EN
PW

R_
EN

PU
LL

-U
P/

D
O

W
N

 F
O

R
 F

L
A

G
S

R
8

0R
SC

L_
M

C

SC
L_

LE
D

SD
A

_M
C

SD
A

_L
ED

O
C

_P
S_

FL
A

G

O
C

_M
C

_F
LA

G

O
C

_L
ED

_F
LA

G

O
T_

LE
D

_F
LA

G

O
O

_L
ED

_F
LA

G

ER
R

O
R

 F
LA

G
S

O
C

_P
S_

FL
A

G

O
C

_M
C

_F
LA

G

O
C

_L
ED

_F
LA

G

O
T_

LE
D

_F
LA

G

O
O

_L
ED

_F
LA

G

C
O

N
N

EC
TI

O
N

S
TO

 L
E

D
 D

R
IV

E
R

 B
O

T

SC
L_

LE
D

SD
A

_L
ED

EN
A

BL
E

G
N

D

O
C

_L
ED

_F
LA

G
O

T_
LE

D
_F

LA
G

O
O

_L
ED

_F
LA

G
nR

ES
ET

_L
ED

PU
LL

-U
P/

D
O

W
N

 F
O

R
 E

N
A

B
L

E
S

G
N

D

nR
ES

ET
_M

C

G
N

D

nR
ES

ET
_L

ED

PU
LL

-U
P/

D
O

W
N

 F
O

R
 R

E
SE

T
S

R
JL

ED
_S

D
A

_L
ED

_A

R
JL

ED
_S

CL
_L

ED
_A

R
JL

ED
_S

D
A

_M
C_

A

R
JL

ED
_S

CL
_M

C_
A

R
JL

ED
_S

D
A

_L
ED

_K

R
JL

ED
_S

CL
_L

ED
_K

R
JL

ED
_S

D
A

_M
C_

K

R
JL

ED
_S

CL
_M

C_
K

5V

R
JL

ED
_S

D
A

_L
ED

_A

R
JL

ED
_S

D
A

_L
ED

_K

G
N

D

SD
A

_L
ED

R1
2

1K
2

5V 3

1

2

Q
3

2N
70

02
,2

15

G
N

D

SC
L_

LE
D

R
JL

ED
_S

CL
_L

ED
_A

R
JL

ED
_S

CL
_L

ED
_K

R
J4

5
L

E
D

S
FO

R
 L

E
D

 D
R

IV
E

R
 I2

C

5V G
N

D

5V G
N

D

R
J4

5
LE

D
S

FO
R

 M
O

TO
R

C
O

N
TR

O
LL

ER
 I2

C

G
N

D G
N

D

SC
L_

M
C

SD
A

_M
C

R
JL

ED
_S

D
A

_M
C_

A

R
JL

ED
_S

D
A

_M
C_

K

R
JL

ED
_S

CL
_M

C_
A

R
JL

ED
_S

CL
_M

C_
K

R
4

10
K

R
6

10
K

R
5

10
K

R
7

10
K

R1
8

10
K

R2
1

10
K

R1
9

10
K

R2
2

10
K

R2
4

10
K

R2
9

10
K

R2
5

10
K

R3
0

10
K

R2
6

10
K

R3
1

10
K

R3
4

10
K

R3
7

10
K

R3
6

10
K

R3
9

10
K

1
1

2
2

3
3

4
4

5
5

6
6

7
7

8
8

LE
D

-R
_A

9

LE
D

-R
_K

10

LE
D

-L
_A

11

LE
D

-L
_K

12

M
H

3
M

H
3

M
H

4
M

H
4

J2 R
-R

J4
5R

08
P-

C0
00

1
1

2
2

3
3

4
4

5
5

6
6

7
7

8
8

LE
D

-R
_A

9

LE
D

-R
_K

10

LE
D

-L
_A

11

LE
D

-L
_K

12

M
H

3
M

H
3

M
H

4
M

H
4

J3 R
-R

J4
5R

08
P-

C0
00

1
1

2
2

3
3

4
4

5
5

6
6

7
7

8
8

LE
D

-R
_A

9

LE
D

-R
_K

10

LE
D

-L
_A

11

LE
D

-L
_K

12

M
H

3
M

H
3

M
H

4
M

H
4

J4 R
-R

J4
5R

08
P-

C0
00

3

1

2

Q
4

2N
70

02
,2

15

3

1

2

Q
5

2N
70

02
,2

15

3

1

2

Q
6

2N
70

02
,2

15

R1
1

0R

R1
4

0R

R1
5

0R

R
9

4K
7

R1
3

1K
2

R2
7

1K
2

R2
8

1K
2

nR
ES

ET
_L

ED
nR

ES
ET

_M
C

nR
ES

ET
_S

W

R
ES

ET

R
ES

ET

nR
ES

ET
_L

ED
nR

ES
ET

_M
C

nR
ES

ET
_S

Y
S

G
N

DR3
5

10
K

R3
8

10
KnR

ES
ET

_S
Y

S

5V
5V

5V

5V
5V

5V 5V

5V 5V
5V

5V
5V

R1
6

5K
6

R1
7

5K
6 R3

2
5K

6
R3

3
5K

6

24
V

psO
C

_P
S_

FL
A

G

P
I
J
1
0
1

P
I
J
1
0
2

P
I
J
1
0
3

P
I
J
1
0
4

P
I
J
1
0
5

P
I
J
1
0
6

P
I
J
1
0
7

P
I
J
1
0
8

P
I
J
1
0
9

P
I
J
1
0
1
0

P
I
J
1
0
1
1

P
I
J
1
0
1
2

P
I
J
1
0
M
H
3

P
I
J
1
0
M
H
4

COJ
1

P
I
J
2
0
1

P
I
J
2
0
2

P
I
J
2
0
3

P
I
J
2
0
4

P
I
J
2
0
5

P
I
J
2
0
6

P
I
J
2
0
7

P
I
J
2
0
8

P
I
J
2
0
9

P
I
J
2
0
1
0

P
I
J
2
0
1
1

P
I
J
2
0
1
2

P
I
J
2
0
M
H
3

P
I
J
2
0
M
H
4

COJ
2

P
I
J
3
0
1

P
I
J
3
0
2

P
I
J
3
0
3

P
I
J
3
0
4

P
I
J
3
0
5

P
I
J
3
0
6

P
I
J
3
0
7

P
I
J
3
0
8

P
I
J
3
0
9

P
I
J
3
0
1
0

P
I
J
3
0
1
1

P
I
J
3
0
1
2

P
I
J
3
0
M
H
3

P
I
J
3
0
M
H
4

COJ
3

P
I
J
4
0
1

P
I
J
4
0
2

P
I
J
4
0
3

P
I
J
4
0
4

P
I
J
4
0
5

P
I
J
4
0
6

P
I
J
4
0
7

P
I
J
4
0
8

P
I
J
4
0
9

P
I
J
4
0
1
0

P
I
J
4
0
1
1

P
I
J
4
0
1
2

P
I
J
4
0
M
H
3

P
I
J
4
0
M
H
4

COJ
4

P
I
Q
3
0
1

PIQ302 PIQ303
COQ

3
P
I
Q
4
0
1

PIQ402 PIQ403
COQ

4

P
I
Q
5
0
1

PIQ502 PIQ503
COQ

5
P
I
Q
6
0
1

PIQ602 PIQ603
COQ

6

PIR401 PIR402 COR
4

PIR501 PIR502 COR5

PIR601 PIR602 COR
6

PIR701 PIR702 COR
7

P
I
R
8
0
1

P
I
R
8
0
2

COR
8

PIR901 PIR902 COR
9

PIR1001 PIR1002 COR
10

PI
R1

10
1

PI
R1

10
2

COR
11

PIR1201 PIR1202 COR
12

PIR1301 PIR1302 COR
13

PI
R1

40
1

PI
R1

40
2

COR
14

PI
R1

50
1

PI
R1

50
2

COR
15

PIR1601 PIR1602 COR
16

PIR1701 PIR1702 COR
17

PIR1801 PIR1802 COR
18

PIR1901 PIR1902 COR
19

PIR2101 PIR2102 COR
21

PIR2201 PIR2202 COR
22

PIR2401 PIR2402 COR
24

PIR2501 PIR2502 COR
25

PIR2601 PIR2602 COR
26

PIR2701 PIR2702 COR
27

PIR2801 PIR2802 COR
28

PIR2901 PIR2902 COR
29

PIR3001 PIR3002 COR
30

PIR3101 PIR3102 COR
31

PIR3201 PIR3202 COR
32

PIR3301 PIR3302 COR
33

PIR3401 PIR3402 COR
34

PIR3501 PIR3502 COR
35

PIR3601 PIR3602 COR
36

PIR3701 PIR3702 COR
37

PIR3801 PIR3802 COR
38

PIR3901 PIR3902 COR
39

PIR402
PIR502

PIR902
PIR1002

PIR1202
PIR1302

PIR1802
PIR1902

PIR2402
PIR2502

PIR2602

PIR2702
PIR2802

PIR3402
PIR3502

PIR3602

P
I
J
4
0
7

P
I
J
1
0
7

P
I
J
2
0
7

P
I
J
3
0
7

PIR401 PIR602 NL
EN
AB
LE

P
O
E
N
A
B
L
E

P
I
J
1
0
8

P
I
J
1
0
M
H
3

P
I
J
1
0
M
H
4

P
I
J
2
0
8

P
I
J
2
0
M
H
3

P
I
J
2
0
M
H
4

P
I
J
3
0
4

P
I
J
3
0
6

P
I
J
3
0
8

P
I
J
3
0
M
H
3

P
I
J
3
0
M
H
4

P
I
J
4
0
1

P
I
J
4
0
2

P
I
J
4
0
5

P
I
J
4
0
6

P
I
J
4
0
8

P
I
J
4
0
M
H
3

P
I
J
4
0
M
H
4

PIQ302
PIQ402

PIQ502
PIQ602

PIR601
PIR701

PIR2101
PIR2201

PIR2901
PIR3001

PIR3101

PIR3701
PIR3801

PIR3901

P
I
J
2
0
9

P
I
J
2
0
1
0

P
I
J
2
0
1
1

P
I
J
2
0
1
2

P
I
J
4
0
9

P
I
J
4
0
1
0

P
I
J
4
0
1
1

P
I
J
4
0
1
2

P
I
Q
3
0
1

PIR1701
P
I
Q
4
0
1

PIR1601

P
I
Q
5
0
1

PIR3201
P
I
Q
6
0
1

PIR3301

P
I
J
1
0
6

P
I
J
2
0
6

PIR3401 PIR3702

NL
nR
ES
ET
0L
ED

P
O
R
E
S
E
T

P
I
J
3
0
5

PIR3601 PIR3902

NL
nR

ES
ET

0M
C

P
O
R
E
S
E
T

PIR3501 PIR3802

NL
nR
ES
ET
0S
YS

P
O
R
E
S
E
T

P
I
J
1
0
3

P
I
J
2
0
3

PIR2401 PIR2902

NL
OC
0L
ED
0F
LA
G

P
O
E
R
R
O
R
S

P
I
J
3
0
3

PIR1901 PIR2202
NL
OC
0M
C0
FL
AG

P
O
E
R
R
O
R
S

P
I
J
4
0
3

PIR1801 PIR2102
NL

OC
0P

S0
FL

AG

P
O
E
R
R
O
R
S

P
I
J
1
0
5

P
I
J
2
0
5

PIR2601 PIR3102

NL
OO
0L
ED
0F
LA
G

P
O
E
R
R
O
R
S

P
I
J
1
0
4

P
I
J
2
0
4

PIR2501 PIR3002

NL
OT
0L
ED
0F
LA
G

P
O
E
R
R
O
R
S

P
I
J
4
0
4

PIR501 PIR702 NL
PW

R0
EN

P
O
P
W
R
0
E
N

P
I
J
1
0
1
1

PIR1201

NL
RJ
LE
D0
SC
L0
LE
D0
A

P
I
J
1
0
1
2

PIQ303

NL
RJ
LE
D0
SC
L0
LE
D0
K

P
I
J
3
0
1
1

PIR2701
NL

RJ
LE

D0
SC

L0
MC

0A

P
I
J
3
0
1
2

PIQ503

NL
RJ

LE
D0

SC
L0

MC
0K

P
I
J
1
0
9

PIR1301

NL
RJ
LE
D0
SD
A0
LE
D0
A

P
I
J
1
0
1
0

PIQ403

NL
RJ
LE
D0
SD
A0
LE
D0
K

P
I
J
3
0
9

PIR2801

NL
RJ

LE
D0

SD
A0

MC
0A

P
I
J
3
0
1
0

PIQ603

NL
RJ

LE
D0

SD
A0

MC
0K

P
I
R
8
0
1

PIR1001
PI

R1
10

1
NLS

CL
P
O
S
C
L

P
I
J
1
0
1

P
I
J
2
0
1

PI
R1

10
2

PIR1702

NL
SC

L0
LE

D

P
I
J
3
0
1

P
I
R
8
0
2

PIR3202

NL
SC

L0
MC

PIR901

PI
R1

40
1

PI
R1

50
1

NLS
DA

P
O
S
D
A

P
I
J
1
0
2

P
I
J
2
0
2

PI
R1

40
2

PIR1602

NL
SD

A0
LE

D

P
I
J
3
0
2

PI
R1

50
2

PIR3302

NL
SD

A0
MC

P
O
E
N
A
B
L
E

P
O
E
R
R
O
R
S

POE
RRO

RS0
OC0

LED
0FL

AG
PO
ER
RO
RS
0O
C0
MC
0F
LA
G

PO
ER
RO
RS
0O
C0
PS
0F
LA
G

POE
RRO

RS0
OO0

LED
0FL

AG
POE

RRO
RS0

OT0
LED

0FL
AG

P
O
P
W
R
0
E
N

P
O
R
E
S
E
T

PO
RE
SE
T0
nR
ES
ET
0L
ED

PO
RE

SE
T0

nR
ES

ET
0M

C
PO

RE
SE

T0
nR

ES
ET

0S
W

P
O
S
C
L

P
O
S
D
A

11

22

33

44

55

66

77

88

D
D

C
C

B
B

A
A

4

* * * *
7

16
-5

-2
02

3
18

:2
5:

17
C

on
tro

lle
r.S

ch
D

oc

Sh
ee

t:

D
at

e:
Fi

le
:

Te
am

 Y
ea

r:

Sh
ee

t
of

Ti
m

e:

En
gi

ne
er

:
U

V
O

 -
C

on
tr

ol
 U

ni
t.P

rj
Pc

b
P

ro
je

ct
:

*

EN
A

BL
E_

SW

PW
R_

EN

G
N

D
_1

1

V
D

D
33

2

EN
3

S
E

N
S

O
R

_V
P

4

S
E

N
S

O
R

_V
N

5

IO
34

6

IO
35

7

IO
32

8

IO
33

9

IO
25

10

IO
26

11

IO
27

12

IO
14

13

IO
12

14

G
N

D
_2

15

IO
13

16

SD
2

17

SD
3

18

C
M

D
19

C
LK

20

SD
0

21

SD
1

22

IO
15

23

IO
2

24

IO
0

25

IO
4

26

N
C

_1
27

N
C

_2
28

IO
5

29

IO
18

30

IO
19

31

N
C

_3
32

IO
21

33

R
XD

0
34

TX
D

0
35

IO
22

36

IO
23

37

G
N

D
_3

38

G
N

D
_4

39

G
N

D
_5

40

G
N

D
_6

41

G
N

D
_7

42

G
N

D
_8

43

G
N

D
_9

44

G
N

D
_1

0
45

G
N

D
_1

1
46

G
N

D
_1

2
47

U
5

ES
P3

2-
W

R
O

V
ER

 (8
M

B)

G
N

D

G
N

D

V
D

D
6

C
H

R0
15

C
H

R1
14

G
PI

O
.0

/T
X

T
19

G
PI

O
.1

/R
X

T
18

G
PI

O
.2

/R
S4

85
17

G
PI

O
.3

/W
A

K
EU

P
16

G
PI

O
.4

22

G
PI

O
.5

21

G
PI

O
.6

20

R
I/C

LK
2

R
ST

9

SU
SP

EN
D

11

C
H

RE
N

13

C
TS

23

D
+

4

D
-

5

D
CD

1

D
SR

27

D
TR

28

N
C

10
RT

S
24

RX
D

25

SU
SP

EN
D

12

TX
D

26
V

BU
S

8

V
R

EG
IN

7

G
N

D
3

G
N

D
29

U
4

C
P2

10
2N

-A
02

-G
Q

FN
28

R

G
N

D

D
2

1N
58

19
V

BU
S

U
SB

_N
U

SB
_P

U
SB

_P
U

SB
_N

G
N

D

G
N

D

nS
U

SP
EN

D

V
BU

S C1
2

4U
7/

50
V

G
N

D
G

N
D

3V
3

G
N

D
G

N
D

G
N

DnR
ST

RT
S

RX
D

TX
D

R5
3

47
0R

TX
D

_E
SP

IN

D
4

ES
D

5Z
3.

3T
1G

G
N

D
G

N
D

RT
S

1
2

FB
1

M
PZ

16
08

S2
21

AT
A

00
3V

3

G
N

D
G

N
D

G
N

D
TX

D
_E

SP
IN

RX
D

D
TR

SC
LK

SP
I_

M
IS

O

SP
I_

M
O

SI

SP
I_

C
S_

D
IS

PL
AY

G
N

D

D
IS

PL
A

Y
_R

S(
D

T)

B
A

C
K

LI
T

SC
L3

.3

SD
A

3.
3

SC
R

EE
N

_R
ST

SP
I_

C
S_

X
PT

PW
R_

EN

EN
A

BL
E_

SW

SP
I_

C
S_

SD

R
ES

ET
nR

ES
ET

_L
ED

nR
ES

ET
_M

C
nR

ES
ET

_S
W

R
ES

ET

nR
ES

ET
_L

ED
nR

ES
ET

_M
C

nR
ES

ET
_L

ED
_S

W
3.

3

nR
ES

ET
_M

C
_S

W
3.

3

G
N

D

nR
ES

ET
_L

ED
nR

ES
ET

_L
ED

_S
W

G
N

D

nR
ES

ET
_M

C_
SW

nR
ES

ET
_M

C

G
N

D

G
N

D

D
AT

3

CM
D

V
D

D
C

LK
V

SS
D

A
T0

D
A

T1

D
A

T2
C

D
/

S
D

 C
A
R
D

C
D

_A
C

D
_B

SH
LD

SH
LD

SH
LD

SH
LD

SD
1

50
33

98
-1

89
2

VB
U

S
1

D
-

2

D
+

3

ID
4

G
N

D
5

M
H

1
M

H
1

M
H

2
M

H
2

M
P1

M
P1

M
P2

M
P2

M
P4

M
P4

M
P3

M
P3

J5 10
51

64
-0

00
1

G
N

D
G

N
D

SC
LK

SP
I_

C
S_

SD
SP

I_
M

O
SI

3V
3

SP
I_

M
IS

O

C
8

10
U

/5
0V

C
9

10
U

/5
0V

C1
6

22
U

/2
5V

C1
7

10
0N

/5
0V

C
7

10
0N

/5
0V

C1
3

10
0N

/5
0V

C1
4

10
0N

/5
0V

C1
5

10
0N

/5
0V

C2
0

10
0N

/5
0V

R5
0

10
K

R4
0

10
K

4P
/5

0V
C1

8

D
3

R5
5

0R

R5
9

0R

1 2
34

SW
2

B
3F

S-
10

15
P

1 2
34

SW
3

B
3F

S-
10

15
P

R5
7

10
K

R5
8

10
K

3V
3

3V
3

R6
0

10
K

3V
3

VC
C

1

VB
AT

7

V
R

EF
9

IO
VD

D
10

X
P

2

Y
P

3

XN
4

YN
5

D
C

LK
16

/C
S

15

D
IN

14

D
O

U
T

12

B
U

SY
13

/P
EN

IR
Q

11

AU
X

8

G
N

D
6

U
6

X
PT

20
46

C1
9

10
0N

/5
0V

G
N

D
G

N
D

X
P

Y
P

X
N

Y
N

SC
LK

SP
I_

C
S_

X
PT

SP
I_

M
O

SI
SP

I_
M

IS
O

R6
1

10
K

nP
EN

IR
Q

3V
3

X
N

Y
P

X
P

Y
N

3V
3

SP
I_

C
S_

D
IS

PL
AY

D
IS

PL
A

Y
_R

S(
D

T)
SC

LK
SP

I_
M

O
SI

SP
I_

M
IS

O
SC

R
EE

N
_R

ST

G
N

D

B
A

C
K

LI
T_

LE
D

_K
3V

3

Q
12

S8
05

0
R5

6

1K
B

A
C

K
LI

T

G
N

DR5
4

5R
6

B
A

C
K

LI
T_

LE
D

_KU
SB

 A
D

A
PT

ER
 C

O
N

N
EC

TI
O

N
 A

N
D

 U
SB

 T
O

 T
TL

 IN
TE

R
FA

C
E

R
ES

ET
 H

W
 A

N
D

 S
W

 IN
T

E
R

C
O

N
N

E
C

T

SD
 M

EM
O

R
Y

 S
TO

R
A

G
E

/ D
A

TA
 L

O
G

D
IS

PL
A

Y
 IN

TE
R

FA
C

E
A

N
D

 T
O

U
C

H
SC

R
EE

N
 IN

TE
R

FA
C

E

E
SP

32
 -

M
IC

R
O

C
O

N
T

R
O

L
L

E
R

nR
ES

ET
_S

W
3.

3

nR
ES

ET
_S

Y
S

1 2
34

SW
1

B
3F

S-
10

15
P

G
N

D

C1
0

10
0N

/5
0VR4

5
0R

G
N

D

nR
ES

ET
_S

W
nR

ES
ET

_S
Y

S

3

1

2

Q
7

2N
70

02
,2

15

SC
L

SD
A

R4
1

10
K

R4
2

10
K

3

1

2

Q
8

2N
70

02
,2

15

R4
3

10
K

R4
4

10
K

3

1

2

Q
10 2N

70
02

,2
15

R4
8

10
K

R4
9

10
K

3

1

2

Q
9

2N
70

02
,2

15

R4
6

10
K

R4
7

10
K

3

1

2

Q
11

2N
70

02
,2

15

R5
1

10
K

R5
2

10
K

3V
3

3V
3

3V
3

3V
3

3V
3

5V
5V

5V
5V

5V

SD
A

3.
3

SC
L3

.3

nR
ES

ET
_L

ED
_S

W
3.

3
nR

ES
ET

_L
ED

_S
W

nR
ES

ET
_S

W
3.

3
nR

ES
ET

_S
W

nR
ES

ET
_M

C
_S

W
3.

3
nR

ES
ET

_M
C_

SW

V
O

LT
A

G
E

ST
EP

U
P

FR
O

M
 3

V
3

TO
 5

V

U
SE

R
B

U
TT

O
N

S

C
H

_A
_F

C
H

_B
_F

PU
SH

_S
EL

_F
PU

SH
_D

O
W

N
PU

SH
_U

P

U
SE

R
B

U
TT

O
N

S

PU
SH

_S
EL

_F
C

H
_B

_F
C

H
_A

_F

PU
SH

_D
O

W
N

PU
SH

_U
P

C
H

_A
_F

C
H

_B
_F

PU
SH

_S
EL

_F

PU
SH

_D
O

W
N

PU
SH

_U
P

ES
P3

V
3

1 2 3 4 5 6 7 8 9 10 11 12 13 14

J6 X
65

11
FR

S-
14

-C
85

D
30

PIC701 PIC702
COC

7
PIC801 PIC802

COC
8

PIC901 PIC902
COC

9

PIC1001 PIC1002
COC

10

PIC1201 PIC1202
COC

12
PIC1301 PIC1302

COC
13

PIC1401 PIC1402
COC

14

PIC1501 PIC1502
COC

15
PIC1601 PIC1602

COC
16

PIC1701 PIC1702
COC

17
PIC1801 PIC1802

COC
18

PIC1901 PIC1902
COC

19

PIC2001 PIC2002
COC

20

P
I
D
2
0
1

P
I
D
2
0
2

COD
2

PID301 PID302
COD

3
PID401 PID402

COD
4

P
I
F
B
1
0
1

P
I
F
B
1
0
2

COF
B1

P
I
J
5
0
1

P
I
J
5
0
2

P
I
J
5
0
3

P
I
J
5
0
4

P
I
J
5
0
5

P
I
J
5
0
M
H
1

P
I
J
5
0
M
H
2

P
I
J
5
0
M
P
1

P
I
J
5
0
M
P
2

P
I
J
5
0
M
P
3

P
I
J
5
0
M
P
4

COJ
5

PIJ
601

PIJ
602

PIJ
603

PIJ
604

PIJ
605

PIJ
606

PIJ
607

PIJ
608

PIJ
609

PIJ
601

0

PIJ
601

1

PIJ
601

2

PIJ
601

3

PIJ
601

4 COJ
6

PIQ701
P
I
Q
7
0
2

P
I
Q
7
0
3

COQ
7

PIQ801
P
I
Q
8
0
2

P
I
Q
8
0
3

COQ
8

PIQ901
P
I
Q
9
0
2

P
I
Q
9
0
3

COQ
9

PIQ1001
P
I
Q
1
0
0
2

P
I
Q
1
0
0
3

COQ
10

PIQ1101
P
I
Q
1
1
0
2

P
I
Q
1
1
0
3

COQ
11

P
I
Q
1
2
0
1

PIQ1202 PIQ1203 COQ
12

PI
R4

00
1

PI
R4

00
2 COR

40

PIR4101 PIR4102 COR
41

PIR4201 PIR4202 COR
42

PIR4301 PIR4302 COR
43

PIR4401 PIR4402 COR
44

PI
R4

50
1

PI
R4

50
2

COR
45

PIR4601 PIR4602 COR
46

PIR4701 PIR4702 COR
47

PIR4801 PIR4802 COR
48

PIR4901 PIR4902 COR
49

PIR5001 PIR5002 COR
50

PIR5101 PIR5102 COR
51

PIR5201 PIR5202 COR
52

PI
R5

30
1

PI
R5

30
2

COR
53

PIR5401 PIR5402 COR
54

PI
R5

50
1

PI
R5

50
2

COR
55

PI
R5

60
1

PI
R5

60
2

COR
56

PIR5701 PIR5702 COR
57

PIR5801 PIR5802 COR
58

PI
R5

90
1

PI
R5

90
2

COR
59

PIR6001 PIR6002 COR
60

PI
R6

10
1

PI
R6

10
2

COR
61

P
I
S
D
1
0
1

P
I
S
D
1
0
2

P
I
S
D
1
0
3

P
I
S
D
1
0
4

P
I
S
D
1
0
5

P
I
S
D
1
0
6

P
I
S
D
1
0
7

P
I
S
D
1
0
8

P
I
S
D
1
0
9

P
I
S
D
1
0
1
0

P
I
S
D
1
0
1
1

P
I
S
D
1
0
1
2

P
I
S
D
1
0
1
3

P
I
S
D
1
0
1
4

COS
D1

P
I
S
W
1
0
1

P
I
S
W
1
0
2

P
I
S
W
1
0
3

P
I
S
W
1
0
4

COS
W1

P
I
S
W
2
0
1

P
I
S
W
2
0
2

P
I
S
W
2
0
3

P
I
S
W
2
0
4

COS
W2

P
I
S
W
3
0
1

P
I
S
W
3
0
2

P
I
S
W
3
0
3

P
I
S
W
3
0
4

COS
W3

P
I
U
4
0
1

P
I
U
4
0
2

P
I
U
4
0
3

P
I
U
4
0
4

P
I
U
4
0
5

P
I
U
4
0
6

P
I
U
4
0
7

P
I
U
4
0
8

P
I
U
4
0
9

P
I
U
4
0
1
0

P
I
U
4
0
1
1

P
I
U
4
0
1
2

P
I
U
4
0
1
3

P
I
U
4
0
1
4

P
I
U
4
0
1
5

P
I
U
4
0
1
6

P
I
U
4
0
1
7

P
I
U
4
0
1
8

P
I
U
4
0
1
9

P
I
U
4
0
2
0

P
I
U
4
0
2
1

P
I
U
4
0
2
2

P
I
U
4
0
2
3

P
I
U
4
0
2
4

P
I
U
4
0
2
5

P
I
U
4
0
2
6

P
I
U
4
0
2
7

P
I
U
4
0
2
8

P
I
U
4
0
2
9

COU
4

P
I
U
5
0
1

P
I
U
5
0
2

P
I
U
5
0
3

P
I
U
5
0
4

P
I
U
5
0
5

P
I
U
5
0
6

P
I
U
5
0
7

P
I
U
5
0
8

P
I
U
5
0
9

P
I
U
5
0
1
0

P
I
U
5
0
1
1

P
I
U
5
0
1
2

P
I
U
5
0
1
3

P
I
U
5
0
1
4

P
I
U
5
0
1
5

P
I
U
5
0
1
6

P
I
U
5
0
1
7

P
I
U
5
0
1
8

P
I
U
5
0
1
9

P
I
U
5
0
2
0

P
I
U
5
0
2
1

P
I
U
5
0
2
2

P
I
U
5
0
2
3

P
I
U
5
0
2
4

P
I
U
5
0
2
5

P
I
U
5
0
2
6

P
I
U
5
0
2
7

P
I
U
5
0
2
8

P
I
U
5
0
2
9

P
I
U
5
0
3
0

P
I
U
5
0
3
1

P
I
U
5
0
3
2

P
I
U
5
0
3
3

P
I
U
5
0
3
4

P
I
U
5
0
3
5

P
I
U
5
0
3
6

P
I
U
5
0
3
7

P
I
U
5
0
3
8

P
I
U
5
0
3
9

P
I
U
5
0
4
0

P
I
U
5
0
4
1

P
I
U
5
0
4
2

P
I
U
5
0
4
3

P
I
U
5
0
4
4

P
I
U
5
0
4
5

P
I
U
5
0
4
6

P
I
U
5
0
4
7

COU
5

P
I
U
6
0
1

P
I
U
6
0
2

P
I
U
6
0
3

P
I
U
6
0
4

P
I
U
6
0
5

P
I
U
6
0
6

P
I
U
6
0
7

P
I
U
6
0
8

P
I
U
6
0
9

PI
U6

01
0

P
I
U
6
0
1
1

PI
U6

01
2

PI
U6

01
3

PI
U6

01
4

PI
U6

01
5

P
I
U
6
0
1
6

COU
6

PIC701
PIC801

PIC1901

PIC2001

P
I
F
B
1
0
1

PIJ
605

PIJ
601

4

PIQ701
PIQ801

PIQ901
PIQ1001

PIQ1101

PI
R4

00
2

PIR4102
PIR4302

PIR4602
PIR4802

PIR5102

PIR5702
PIR5802

PIR6002

PI
R6

10
1

P
I
S
D
1
0
4

P
I
U
4
0
6

P
I
U
4
0
7

P
I
U
6
0
1

P
I
U
6
0
9

PI
U6

01
0

PIR4202
PIR4402

PIR4702
PIR4902

PIR5202

PI
R5

60
1

P
I
U
5
0
1
4

NL
BA
CK
LI
T

PIJ
601

3

PIR5402 NL
BA
CK
LI
T0
LE
D0
K

P
I
U
5
0
4

NL
CH
0A
0F

P
O
U
S
E
R

B
U
T
T
O
N
S

P
I
U
5
0
5

NL
CH
0B
0F

P
O
U
S
E
R

B
U
T
T
O
N
S

PIJ
608

P
I
U
5
0
2
4

NL
DI
SP
LA
Y0
RS
(D
T)

P
I
U
5
0
2
5

NLD
TR

P
I
U
5
0
3
6

NL
EN

AB
LE

0S
W

P
O
E
N
A
B
L
E
0
S
W

PIC1601
PIC1701

PIC1802

P
I
F
B
1
0
2

P
I
U
5
0
2

NL
ES
P3
V3

PIC702
PIC802

PIC902

PIC1002

PIC1202
PIC1302

PIC1402 PIC1502
PIC1602

PIC1702
PIC1801

PIC1902

PIC2002

PID302
PID402

P
I
J
5
0
5

P
I
J
5
0
M
H
1

P
I
J
5
0
M
H
2

P
I
J
5
0
M
P
1

P
I
J
5
0
M
P
2

P
I
J
5
0
M
P
3

P
I
J
5
0
M
P
4

PIJ
606

PIQ1202

PIR5001

P
I
S
D
1
0
6

P
I
S
D
1
0
1
1

P
I
S
D
1
0
1
2

P
I
S
D
1
0
1
3

P
I
S
D
1
0
1
4

P
I
S
W
1
0
1

P
I
S
W
1
0
2

P
I
S
W
2
0
1

P
I
S
W
2
0
2

P
I
S
W
3
0
1

P
I
S
W
3
0
2
 P
I
U
4
0
3

P
I
U
4
0
2
9

P
I
U
5
0
1

P
I
U
5
0
1
5

P
I
U
5
0
3
8

P
I
U
5
0
3
9

P
I
U
5
0
4
0

P
I
U
5
0
4
1

P
I
U
5
0
4
2

P
I
U
5
0
4
3

P
I
U
5
0
4
4

P
I
U
5
0
4
5

P
I
U
5
0
4
6

P
I
U
5
0
4
7

P
I
U
6
0
6

P
I
U
6
0
7

P
I
U
6
0
8

P
I
D
2
0
1

P
I
J
5
0
1

P
I
J
5
0
4

P
I
Q
7
0
3

PIR4201
P
O
S
D
A

P
I
Q
8
0
3

PIR4401
P
O
S
C
L

P
I
Q
1
2
0
1

PI
R5

60
2

PIQ1203 PIR5401

P
I
S
D
1
0
1

P
I
S
D
1
0
8

P
I
S
D
1
0
9

P
I
S
D
1
0
1
0

P
I
U
4
0
1

P
I
U
4
0
2

P
I
U
4
0
1
0

P
I
U
4
0
1
2

P
I
U
4
0
1
3

P
I
U
4
0
1
4

P
I
U
4
0
1
5

P
I
U
4
0
1
6

P
I
U
4
0
1
7

P
I
U
4
0
1
8

P
I
U
4
0
1
9

P
I
U
4
0
2
0

P
I
U
4
0
2
1

P
I
U
4
0
2
2

P
I
U
4
0
2
3

P
I
U
4
0
2
7

P
I
U
4
0
2
8

P
I
U
5
0
1
7

P
I
U
5
0
1
8

P
I
U
5
0
1
9

P
I
U
5
0
2
0

P
I
U
5
0
2
1

P
I
U
5
0
2
2

P
I
U
5
0
2
7

P
I
U
5
0
2
8

P
I
U
5
0
3
2

PI
U6

01
3

PI
R6

10
2

P
I
U
6
0
1
1

NL
nP
EN
IR
Q

PIC1401
PI

R5
50

1

P
I
S
W
2
0
3

P
I
S
W
2
0
4

NL
nR

ES
ET

0L
ED

P
O
R
E
S
E
T

P
I
Q
9
0
3

PIR4701

PI
R5

50
2
NL
nR
ES
ET
0L
ED
0S
W

P
I
Q
9
0
2

PIR4601

P
I
U
5
0
1
6

NL
nR

ES
ET

0L
ED

0S
W3

03

PIC1501
PI

R5
90

1

P
I
S
W
3
0
3

P
I
S
W
3
0
4

NL
nR

ES
ET

0M
C

P
O
R
E
S
E
T

P
I
Q
1
1
0
3

PIR5201

PI
R5

90
2
NL

nR
ES

ET
0M

C0
SW

P
I
Q
1
1
0
2

PIR5101

P
I
U
5
0
2
3

NL
nR

ES
ET

0M
C0

SW
30

3

P
I
Q
1
0
0
3

PI
R4

50
2

PIR4901

NL
nR

ES
ET

0S
W

P
I
Q
1
0
0
2

PIR4801

P
I
U
5
0
1
0

NL
nR

ES
ET

0S
W3

03

PIC1001
PI

R4
50

1

P
I
S
W
1
0
3

P
I
S
W
1
0
4

NL

nR
ES

ET
0S

YS

P
O
R
E
S
E
T

PIC901

PI
R4

00
1

P
I
U
4
0
9

NL
nR

ST

PIR5002
P
I
U
4
0
1
1

NL
nS

US
PE

ND

P
I
U
5
0
7

NL
PU
SH
0D
OW
N

P
O
U
S
E
R

B
U
T
T
O
N
S

P
I
U
5
0
1
2

NL
PU

SH
0S

EL
0F

P
O
U
S
E
R

B
U
T
T
O
N
S

P
I
U
5
0
6

NL
PU

SH
0U

P

P
O
U
S
E
R

B
U
T
T
O
N
S

P
I
U
5
0
3
3

NL
PW
R0
EN

P
O
P
W
R
0
E
N

P
I
U
4
0
2
4

P
I
U
5
0
3

NLR
TS

P
I
U
4
0
2
5

P
I
U
5
0
3
4

NLR
XD

P
I
Q
8
0
2

PIR4301

P
I
U
5
0
1
3

NL
SC
L3
03

PIJ
609

P
I
S
D
1
0
5

P
I
U
5
0
3
0

P
I
U
6
0
1
6

NLS
CLK

PIJ
601

2

P
I
U
5
0
8

NL
SC

RE
EN

0R
ST

P
I
Q
7
0
2

PIR4101

P
I
U
5
0
1
1

NL
SD
A3
03

PIJ
607

PIR5701

P
I
U
5
0
2
6

NL
SP
I0
CS
0D
IS
PL
AY

PIR5801

P
I
S
D
1
0
2

P
I
U
5
0
2
9

NL
SP

I0
CS

0S
D

PIR6001
P
I
U
5
0
9

PI
U6

01
5

NL
SP

I0
CS

0X
PT

PIJ
601

1

P
I
S
D
1
0
7

P
I
U
5
0
3
1

PI
U6

01
2

NL
SP

I0
MI

SO

PIJ
601

0

P
I
S
D
1
0
3

P
I
U
5
0
3
7

PI
U6

01
4

NL
SP

I0
MO

SI

PI
R5

30
1

P
I
U
4
0
2
6

NLT
XD

PI
R5

30
2

P
I
U
5
0
3
5

NL
TX

D0
ES

PI
N

PID401
P
I
J
5
0
2

P
I
U
4
0
5

NL
US

B0
N

PID301
P
I
J
5
0
3

P
I
U
4
0
4

NL
US

B0
P

PIC1201
PIC1301

P
I
D
2
0
2

P
I
U
4
0
8

PIJ
601

P
I
U
6
0
4

NLX
N

PIJ
603

P
I
U
6
0
2

NLX
P

PIJ
604

P
I
U
6
0
5

NLY
N

PIJ
602

P
I
U
6
0
3

NLY
P

P
O
E
N
A
B
L
E
0
S
W

P
O
P
W
R
0
E
N

P
O
R
E
S
E
T

PO
RE

SE
T0

nR
ES

ET
0L

ED

PO
RE
SE
T0
nR
ES
ET
0M
C

PO
RE
SE
T0
nR
ES
ET
0S
W

P
O
S
C
L

P
O
S
D
A

P
O
U
S
E
R

B
U
T
T
O
N
S

PO
US
ER
 B
UT
TO
NS
0C
H0
A0
F

PO
US
ER
 B
UT
TO
NS
0C
H0
B0
F

PO
US

ER
 B

UT
TO

NS
0P

US
H0

DO
WN

PO

US
ER

 B
UT

TO
NS

0P
US

H0
SE

L0
F

PO
US

ER
 B

UT
TO

NS
0P

US
H0

UP

11

22

33

44

D
D

C
C

B
B

A
A

5

* * * *
7

16
-5

-2
02

3
18

:2
5:

17
En

ab
le

r.S
ch

D
oc

Sh
ee

t:

D
at

e:
Fi

le
:

Te
am

 Y
ea

r:

Sh
ee

t
of

Ti
m

e:

En
gi

ne
er

:
U

V
O

 -
C

on
tr

ol
 U

ni
t.P

rj
Pc

b
P

ro
je

ct
:

*

SR
_E

R
R

O
RS

EN
A

BL
E

EN
A

BL
E_

SW

ER
R

O
RS

O
C

_P
S_

FL
A

G

O
C

_M
C

_F
LA

G

O
C

_L
ED

_F
LA

G

O
T_

LE
D

_F
LA

G

O
O

_L
ED

_F
LA

G

ER
R

O
R

 F
LA

G
S

O
C

_P
S_

FL
A

G

O
C

_M
C

_F
LA

G

O
C

_L
ED

_F
LA

G

O
T_

LE
D

_F
LA

G

O
O

_L
ED

_F
LA

G

4Q
1

1Q
2

1R
3

1S
4

O
E

5

2S
6

2R
7

V
S

S
8

2Q
9

3Q
10

3R
11

3S
12

N
.C

.
13

4S
14

4R
15

VD
D

16
U

10

H
EF

40
43

BT
,6

53

G
N

D

5V

4Q
1

1Q
2

1R
3

1S
4

O
E

5

2S
6

2R
7

V
S

S
8

2Q
9

3Q
10

3R
11

3S
12

N
.C

.
13

4S
14

4R
15

VD
D

16
U

11

H
EF

40
43

BT
,6

53

G
N

D

5V

nR
ES

ET
_L

ED
nR

ES
ET

_M
C

nR
ES

ET
_S

W

R
ES

ET

R
ES

ET

nR
ES

ET
_L

ED
nR

ES
ET

_M
C

nR
ES

ET
_S

Y
S

O
C

_P
S_

FL
A

G

O
C

_M
C

_F
LA

G

O
C

_L
ED

_F
LA

G

O
T_

LE
D

_F
LA

G
O

O
_L

ED
_F

LA
G

nR
ES

ET
_S

Y
S

5V 5V

C2
5

1N
/5

0V

G
N

D

O
C

_P
S_

SR

O
C

_M
C

_S
R

O
C

_L
ED

_S
R

O
T_

LE
D

_S
R

O
O

_L
ED

_S
R

O
C

_P
S_

SR

O
C

_M
C

_S
R

O
O

_L
ED

_S
R

O
T_

LE
D

_S
R

O
C

_L
ED

_S
R

7
1 2

U
7A

SN
74

LV
C

2G
08

D
CU

R

3
5 6

U
7B

SN
74

LV
C

2G
08

D
CU

R

VC
C

8
G

N
D

4
U

7C

SN
74

LV
C

2G
08

D
CU

R

7
1 2

U
8A

SN
74

LV
C

2G
08

D
CU

R

3
5 6

U
8B

SN
74

LV
C

2G
08

D
CU

R

VC
C

8
G

N
D

4
U

8C

SN
74

LV
C

2G
08

D
CU

R

M
S_

PS
_A

N
D

Y

O
C

_L
ED

_S
R

O
C

_E
R

R
O

R_
A

N
D

YG
N

D

5V

C2
1

10
0N

/5
0V

C2
6

10
0N

/5
0V

C2
4

10
0N

/5
0V

G
N

D

G
N

D

C2
2

10
0N

/5
0V

G
N

D

5V

O
T_

O
O

_A
N

D
Y

EN
A

BL
E_

H
W

3

1

2

Q
13

2N
70

02
,2

15

R6
7

10
K

R6
8

10
K

3V
3

5V

EN
A

BL
E_

SW
5

4
1 2U

9A

SN
74

A
H

C
T1

G
32

D
CK

R

VC
C

5
G

N
D

3
U

9B

SN
74

A
H

C
T1

G
32

D
CK

R

G
N

D

5V

C2
3

10
0N

/5
0V

O
C

_P
S_

SR

O
C

_M
C

_S
R

O
C

_L
ED

_S
R

O
T_

LE
D

_S
R

O
O

_L
ED

_S
R

LA
TC

H
ED

 E
R

R
O

R
S

A
N

D
 a

nd
 O

R
 G

A
T

E
 P

O
W

E
R

 D
E

C
O

U
PL

IN
G

LA
TC

H
 B

Y
PA

SS

ER
R

O
R

 L
A

TC
H

IN
G

 A
N

D
 S

Y
ST

EM
 E

N
A

B
L

E
 L

O
G

IC

R6
2

D
N

P

R6
3

D
N

P

R6
4

D
N

P

R6
5

D
N

P

R6
6

D
N

P

PI
C2

10
1

PI
C2

10
2

COC
21

PI
C2

20
1

PI
C2
20
2

COC
22

PI
C2

30
1

PI
C2
30
2

COC
23

PIC2401 PIC2402
COC

24

PIC2501 PIC2502
COC

25

PI
C2

60
1

PI
C2
60
2

COC
26

PIQ1301
P
I
Q
1
3
0
2

P
I
Q
1
3
0
3

COQ
13

PI
R6

20
1

PI
R6

20
2

COR
62

PI
R6

30
1

PI
R6

30
2

COR
63

PI
R6

40
1

PI
R6

40
2

COR
64

P
I
R
6
5
0
1

P
I
R
6
5
0
2

COR
65

PI
R6

60
1

PI
R6

60
2

COR
66

PIR6701 PIR6702 COR
67

PIR6801 PIR6802 COR
68

P
I
U
7
0
1

P
I
U
7
0
2

P
I
U
7
0
7

COU7
A

P
I
U
7
0
3

P
I
U
7
0
5

P
I
U
7
0
6

COU7
B

P
I
U
7
0
4

P
I
U
7
0
8

COU7
C

P
I
U
8
0
1

P
I
U
8
0
2

P
I
U
8
0
7

COU8
A

P
I
U
8
0
3

P
I
U
8
0
5

P
I
U
8
0
6

COU8
B

P
I
U
8
0
4

P
I
U
8
0
8

COU8
C

P
I
U
9
0
1

P
I
U
9
0
2

P
I
U
9
0
4

COU9
A

P
I
U
9
0
3

P
I
U
9
0
5

COU9
B

P
I
U
1
0
0
1

P
I
U
1
0
0
2

P
I
U
1
0
0
3

P
I
U
1
0
0
4

P
I
U
1
0
0
5

P
I
U
1
0
0
6

P
I
U
1
0
0
7

P
I
U
1
0
0
8

P
I
U
1
0
0
9

P
I
U
1
0
0
1
0

P
I
U
1
0
0
1
1

P
I
U
1
0
0
1
2

P
I
U
1
0
0
1
3

P
I
U
1
0
0
1
4

P
I
U
1
0
0
1
5

P
I
U
1
0
0
1
6

COU
10

P
I
U
1
1
0
1

P
I
U
1
1
0
2

P
I
U
1
1
0
3

P
I
U
1
1
0
4

P
I
U
1
1
0
5

P
I
U
1
1
0
6

P
I
U
1
1
0
7

P
I
U
1
1
0
8

P
I
U
1
1
0
9

P
I
U
1
1
0
1
0

P
I
U
1
1
0
1
1

P
I
U
1
1
0
1
2

P
I
U
1
1
0
1
3

P
I
U
1
1
0
1
4

P
I
U
1
1
0
1
5

P
I
U
1
1
0
1
6

COU
11

PIQ1301
PIR6702

PI
C2

10
1

PI
C2

20
1

PI
C2

30
1

PIC2402

PI
C2

60
1

PIR6802

P
I
U
7
0
8

P
I
U
8
0
8

P
I
U
9
0
5

P
I
U
1
0
0
5

P
I
U
1
0
0
1
6

P
I
U
1
1
0
5

P
I
U
1
1
0
1
6

P
I
U
8
0
3

P
I
U
9
0
2

NL
EN
AB
LE
0H
W

P
I
Q
1
3
0
3

PIR6801

P
I
U
9
0
1

NL
EN

AB
LE

0S
W5

PI
C2

10
2

PI
C2
20
2

PI
C2
30
2

PIC2401

PIC2502

PI
C2
60
2

P
I
U
7
0
4

P
I
U
8
0
4

P
I
U
9
0
3

P
I
U
1
0
0
8

P
I
U
1
1
0
8

P
I
U
7
0
6

P
I
U
7
0
7
 NL
MS

0P
S0

AN
DY

P
I
Q
1
3
0
2

PIR6701
P
O
E
N
A
B
L
E
0
S
W

P
I
U
9
0
4

P
O
E
N
A
B
L
E

P
I
U
1
0
0
1

P
I
U
1
0
0
1
0

P
I
U
1
0
0
1
1

P
I
U
1
0
0
1
2

P
I
U
1
0
0
1
3

P
I
U
1
0
0
1
4

P
I
U
1
0
0
1
5

P
I
U
1
1
0
1

P
I
U
1
1
0
1
3

P
I
U
1
1
0
1
4

P
I
U
1
1
0
1
5

NL
nR

ES
ET

0L
ED

P
O
R
E
S
E
T

NL
nR
ES
ET
0M
C

P
O
R
E
S
E
T
 PIC2501

P
I
U
1
0
0
3

P
I
U
1
0
0
7

P
I
U
1
1
0
3

P
I
U
1
1
0
7

P
I
U
1
1
0
1
1

NL
nR

ES
ET

0S
YS

P
O
R
E
S
E
T

P
I
U
7
0
3

P
I
U
8
0
5

NL
OC
0E
RR
OR
0A
ND
Y

PI
R6

40
1

P
I
U
1
1
0
4

NL
OC
0L
ED
0F
LA
G

P
O
E
R
R
O
R
S

PI
R6

40
2

P
I
U
7
0
5

P
I
U
1
1
0
2

NL
OC
0L
ED
0S
R

P
O
S
R
0
E
R
R
O
R
S

PI
R6

30
1

P
I
U
1
0
0
6

NL
OC

0M
C0

FL
AG

P
O
E
R
R
O
R
S

PI
R6

30
2

P
I
U
7
0
1

P
I
U
1
0
0
9

NL
OC

0M
C0

SR

P
O
S
R
0
E
R
R
O
R
S

PI
R6

20
1

P
I
U
1
0
0
4

NL
OC

0P
S0

FL
AG

P
O
E
R
R
O
R
S

PI
R6

20
2

P
I
U
7
0
2

P
I
U
1
0
0
2

NL
OC

0P
S0

SR

P
O
S
R
0
E
R
R
O
R
S

PI
R6

60
1

P
I
U
1
1
0
1
2

NL
OO
0L
ED
0F
LA
G

P
O
E
R
R
O
R
S

PI
R6

60
2

P
I
U
8
0
1

P
I
U
1
1
0
1
0

NL
OO
0L
ED
0S
R

P
O
S
R
0
E
R
R
O
R
S

P
I
R
6
5
0
1

P
I
U
1
1
0
6

NL
OT
0L
ED
0F
LA
G

P
O
E
R
R
O
R
S

P
I
R
6
5
0
2

P
I
U
8
0
2

P
I
U
1
1
0
9

NL
OT
0L
ED
0S
R

P
O
S
R
0
E
R
R
O
R
S

P
I
U
8
0
6

P
I
U
8
0
7
 NL
OT

0O
O0

AN
DY

P
O
E
N
A
B
L
E

P
O
E
N
A
B
L
E
0
S
W

P
O
E
R
R
O
R
S

PO
ER

RO
RS

0O
C0

LE
D0

FL
AG

PO

ER
RO

RS
0O

C0
MC

0F
LA

G
PO

ER
RO

RS
0O

C0
PS

0F
LA

G
PO

ER
RO

RS
0O

O0
LE

D0
FL

AG

PO
ER

RO
RS

0O
T0

LE
D0

FL
AG

P
O
R
E
S
E
T

PO
RE

SE
T0

nR
ES

ET
0L

ED

PO
RE

SE
T0

nR
ES

ET
0M

C
PO

RE
SE

T0
nR

ES
ET

0S
W

P
O
S
R
0
E
R
R
O
R
S

PO
SR
0E
RR
OR
S0
OC
0L
ED
0S
R

PO
SR
0E
RR
OR
S0
OC
0M
C0
SR

PO
SR
0E
RR
OR
S0
OC
0P
S0
SR

PO
SR
0E
RR
OR
S0
OO
0L
ED
0S
R

PO
SR
0E
RR
OR
S0
OT
0L
ED
0S
R

11

22

33

44

55

66

77

88

D
D

C
C

B
B

A
A

6

* * * *
7

16
-5

-2
02

3
18

:2
5:

17
U

I.S
ch

D
oc

Sh
ee

t:

D
at

e:
Fi

le
:

Te
am

 Y
ea

r:

Sh
ee

t
of

Ti
m

e:

En
gi

ne
er

:
U

V
O

 -
C

on
tr

ol
 U

ni
t.P

rj
Pc

b
P

ro
je

ct
:

*

PW
R_

EN

EN
A

BL
E

U
SE

R
B

U
TT

O
N

S

SR
_E

R
R

O
RS

O
C

_P
S_

SR

O
C

_M
C

_S
R

O
O

_L
ED

_S
R

O
T_

LE
D

_S
R

O
C

_L
ED

_S
R

O
C

_P
S_

SR

O
C

_M
C

_S
R

O
C

_L
ED

_S
R

O
T_

LE
D

_S
R

O
O

_L
ED

_S
R

LA
TC

H
ED

 E
R

R
O

R
S

5V

D
10

15
01

20
RS

75
00

0

5V

D
11

15
01

20
RS

75
00

0

R7
7

1K
R7

8
1K

5V

D
12

15
01

20
RS

75
00

0

5V

D
13

15
01

20
RS

75
00

0

R7
9

1K

R8
2

1K

5V

D
14

15
01

20
RS

75
00

0

R8
3

1K

O
C

_P
S_

SR
O

C
_M

C
_S

R
O

C
_L

ED
_S

R

O
T_

LE
D

_S
R

O
O

_L
ED

_S
R

R
ES

ET
nR

ES
ET

_L
ED

nR
ES

ET
_M

C
nR

ES
ET

_S
W

R
ES

ET

nR
ES

ET
_L

ED
nR

ES
ET

_M
C

nR
ES

ET
_S

Y
S

D
15

15
01

20
Y

S7
50

00

5V

R8
4

1K

D
17

15
01

20
Y

S7
50

00

5V

R8
7

1K

D
18

15
01

20
Y

S7
50

00

5V

R8
8

1K

nR
ES

ET
_L

ED

nR
ES

ET
_M

C
nR

ES
ET

_S
Y

S

D
9

15
01

20
G

S7
50

00

5V

R7
5

1K

D
16

15
01

20
G

S7
50

00

5V

R8
5

1K

3

1

2

Q
14

2N
70

02
,2

15

3

1

2

Q
15

2N
70

02
,2

15

G
N

D

G
N

D

1
2

3
4

SW
4

3-
18

25
91

0-
1

1
2

3
4

SW
5

3-
18

25
91

0-
1

PU
SH

_U
P

PU
SH

_D
O

W
N

3V
3

3V
3

1 2

M
N

T
1

3

M
N

T
2

4

C
H

A
N

N
EL

 A
A

C
H

A
N

N
EL

 B
B

C
O

M
M

O
N

C

EN
C1

PE
C1

1R
-4

21
5F

-S
00

24

R
_G

N
D

1D
N

P

R
_3

V
3

D
N

P

G
N

D

3V
3

3V
3

PU
SH

_S
EL

_U
F

C
H

_A
_U

F

C
H

_B
_U

F

C2
8

10
0N

/5
0V

C2
9

10
0N

/5
0V

G
N

D
G

N
D

C2
7

10
N

/5
0V

R6
9

10
K

R7
4

10
K

R_
1

D
N

P

G
N

D

3V
3

G
N

D

C3
1

10
N

/5
0V

R8
1

10
K

R8
6

10
K

R_
4

D
N

P

G
N

D

3V
3

G
N

D

C3
0

10
N

/5
0V

R7
6

10
K

R8
0

10
K

R_
2

D
N

P

G
N

D

3V
3

G
N

D

C
H

_A
_U

F
C

H
_A

_F

C
H

_B
_U

F
C

H
_B

_F

PU
SH

_S
EL

_U
F

PU
SH

_S
EL

_F

C
H

_A
_F

C
H

_B
_F

PU
SH

_S
EL

_F
PU

SH
_D

O
W

N
PU

SH
_U

P

U
SE

R
B

U
TT

O
N

S

PU
SH

_S
EL

_F

C
H

_B
_F

C
H

_B
_F

C
H

_A
_F

PU
SH

_D
O

W
N

PU
SH

_U
P

U
P

A
N

D
 D

O
W

N
 M

EN
U

 S
C

R
EE

N
 B

U
TT

O
N

S

R
O

TA
R

Y
 P

U
SH

 E
N

C
O

D
ER

 F
O

R
 M

EN
U

R
O

TA
R

Y
 E

N
C

O
D

ER
 F

IL
T

E
R

IN
G

24
V

5V
3V

3
V

BU
S

R7
2

1K
R7

1
1K

R7
3

1K

D
5

D
6

D
7

D
8

G
N

D
G

N
D

G
N

D
G

N
DR7

0
1K

2

SY
ST

EM
 S

TA
TU

S
LE

D
 IN

D
IC

A
TO

R
S

PIC2701 PIC2702
COC

27

PIC2801 PIC2802
COC

28
PIC2901 PIC2902

COC
29

PIC3001 PIC3002
COC

30

PIC3101 PIC3102
COC

31

PID50A PID50K
COD

5
PID60A PID60K

COD
6

PID70A PID70K
COD7

PID80A PID80K

COD
8

PID90A PID90K
COD

9

PID100A PID100K
COD

10
PID110A PID110K

COD
11

PID120A PID120K
COD

12

PID130A PID130K
COD

13
PID140A PID140K

COD
14

PID150A PID150K
COD

15
PID160A PID160K

COD
16

PID170A PID170K
COD

17
PID180A PID180K

COD
18

P
I
E
N
C
1
0
1

P
I
E
N
C
1
0
2

P
I
E
N
C
1
0
3

P
I
E
N
C
1
0
4

P
I
E
N
C
1
0
A

P
I
E
N
C
1
0
B

P
I
E
N
C
1
0
C

COE
NC1

P
I
Q
1
4
0
1

PIQ1402 PIQ1403
COQ

14

P
I
Q
1
5
0
1

PIQ1502 PIQ1503
COQ

15

PIR6901 PIR6902 COR
69

PIR7001 PIR7002 COR
70

PIR7101 PIR7102 COR
71

PIR7201 PIR7202 COR
72

PIR7301 PIR7302 COR
73

PI
R7
40
1

PI
R7
40
2 COR

74

PIR7501 PIR7502 COR
75

PIR7601 PIR7602 COR
76

PIR7701 PIR7702 COR
77

PIR7801 PIR7802 COR
78

PIR7901 PIR7902 COR
79

PI
R8
00
1

PI
R8
00
2 COR

80

PIR8101 PIR8102 COR
81

PIR8201 PIR8202 COR
82

PIR8301 PIR8302 COR
83

PIR8401 PIR8402 COR
84

PIR8501 PIR8502 COR
85

PI
R8
60
1

PI
R8
60
2 COR

86

PIR8701 PIR8702 COR
87

PIR8801 PIR8802 COR
88

PIR0101 PIR0102 COR
01

PIR0201 PIR0202 COR
02

PI
R0

3V
30

1
PI

R0
3V

30
2 CO
R0
3V
3

PIR0401 PIR0402 COR
04

PI
R0

GN
D1

01

PI
R0

GN
D1

02
 CO
R0

GN
D1

P
I
S
W
4
0
1

P
I
S
W
4
0
2

P
I
S
W
4
0
3

P
I
S
W
4
0
4

COS
W4

P
I
S
W
5
0
1

P
I
S
W
5
0
2

P
I
S
W
5
0
3

P
I
S
W
5
0
4

COS
W5

P
I
E
N
C
1
0
1

PIR6902
PIR7202

PIR7602 PIR8102

PI
R0

3V
30

1

P
I
S
W
4
0
3

P
I
S
W
4
0
4

P
I
S
W
5
0
3

P
I
S
W
5
0
4

PIR7102

PIR7502

PIR7702
PIR7802

PIR7902

PIR8202
PIR8302

PIR8402
PIR8502

PIR8702
PIR8802

PIR7002

PIC3001
PI
R8
00
1

NL
CH

0A
0F

P
O
U
S
E
R

B
U
T
T
O
N
S

P
I
E
N
C
1
0
A

PIR7601
PI
R8
00
2

PIR0201

NL
CH

0A
0U

F

PIC2701
PI
R7
40
1

NL
CH

0B
0F

P
O
U
S
E
R

B
U
T
T
O
N
S

P
I
E
N
C
1
0
B

PIR6901
PI
R7
40
2

PIR0101

NL
CH

0B
0U

F

PIC2702

PIC2802
PIC2902

PIC3002 PIC3102

PID50K
PID60K

PID70K
PID80K

PIQ1402 PIQ1502

PIR0102 PIR0202 PIR0402
PI

R0
GN

D1
01

PID50A PIR7001

PID60A PIR7101

PID70A PIR7201

PID80A PIR7301

PID90A PIR7501 PID90K PIQ1403

PID100A PIR7701

PID110A PIR7801

PID120A PIR7901

PID130A PIR8201

PID140A PIR8301

PID150A PIR8401

PID160A PIR8501 PID160K PIQ1503

PID170A PIR8701

PID180A PIR8801

P
I
E
N
C
1
0
3

P
I
E
N
C
1
0
4

P
I
E
N
C
1
0
C

PI
R0

3V
30

2

PI
R0

GN
D1

02

P
I
Q
1
4
0
1

P
O
E
N
A
B
L
E

P
I
Q
1
5
0
1

P
O
P
W
R
0
E
N

PID150K

NL
nR
ES
ET
0L
ED

P
O
R
E
S
E
T

PID170K

NL
nR

ES
ET

0M
C

P
O
R
E
S
E
T

PID180K

NL
nR
ES
ET
0S
YS

P
O
R
E
S
E
T

PID120K

NL
OC

0L
ED

0S
R

P
O
S
R
0
E
R
R
O
R
S

PID110K

NL
OC
0M
C0
SR

P
O
S
R
0
E
R
R
O
R
S

PID100K

NL
OC
0P
S0
SR

P
O
S
R
0
E
R
R
O
R
S

PID140K

NL
OO

0L
ED

0S
R

P
O
S
R
0
E
R
R
O
R
S

PID130K

NL
OT

0L
ED

0S
R

P
O
S
R
0
E
R
R
O
R
S

PIC2801
P
I
S
W
4
0
1

P
I
S
W
4
0
2

NL
PU

SH
0D

OW
N

P
O
U
S
E
R

B
U
T
T
O
N
S

PIC3101
PI
R8
60
1

NL
PU
SH
0S
EL
0F

P
O
U
S
E
R

B
U
T
T
O
N
S

P
I
E
N
C
1
0
2

PIR8101
PI
R8
60
2

PIR0401
NL
PU
SH
0S
EL
0U
F

PIC2901
P
I
S
W
5
0
1

P
I
S
W
5
0
2

NL
PU

SH
0U

P

P
O
U
S
E
R

B
U
T
T
O
N
S

PIR7302

P
O
E
N
A
B
L
E

P
O
P
W
R
0
E
N

P
O
R
E
S
E
T

PO
RE
SE
T0
nR
ES
ET
0L
ED

PO
RE

SE
T0

nR
ES

ET
0M

C
PO

RE
SE

T0
nR

ES
ET

0S
W

P
O
S
R
0
E
R
R
O
R
S

PO
SR

0E
RR

OR
S0

OC
0L

ED
0S

R
PO
SR
0E
RR
OR
S0
OC
0M
C0
SR

PO
SR
0E
RR
OR
S0
OC
0P
S0
SR

PO
SR

0E
RR

OR
S0

OO
0L

ED
0S

R
PO

SR
0E

RR
OR

S0
OT

0L
ED

0S
R

P
O
U
S
E
R

B
U
T
T
O
N
S

PO
US

ER
 B

UT
TO

NS
0C

H0
A0

F
PO

US
ER

 B
UT

TO
NS

0C
H0

B0
F

PO
US
ER
 B
UT
TO
NS
0P
US
H0
DO
WN

PO
US

ER
 B

UT
TO

NS
0P

US
H0

SE
L0

F
PO

US
ER

 B
UT

TO
NS

0P
US

H0
UP

49

Figure A.1: Top layer of the PCB routing design

50

Figure A.2: Ground layer of the PCB routing design

51

Figure A.3: Power layer of the PCB routing design

52

Figure A.4: Bottom layer of the PCB routing design

B
Test Setups

Figure B.1: On the left, the Control Unit is connected to the laptop using USB. On the right, it is connected to the screen. This

would be the test setup if uploading to the Control Unit would have worked.

Figure B.2: The UI screen functionality was developed using a test setup created by our colleague Rik Imbens. The laptop is

connected via USB to the test setup. The circuit used in the Control Unit is the same as that from the test setup

53

54

Figure B.3: Two Arduinos (one Uno and one Nano) are connected to eachother at pins A4, A5 and GND. This setup is

representative for the final setup, as the arduinos employ the same code, only the compilation differs.

C
Communication Protocol

C.1. General Tokens
Table C.1: Package Type Tokens Definitions

Package Type Tokens Value

REQUEST_SENSOR_DATA S

SET_DRIVER_INTENSITY D

SET_VARIABLE_RESISTOR R

SEND_ERROR_FLAG E

Table C.2: General Address and Token Definitions

General Definitions Decimal Value

Control Unit I
2
C Address 40

Top LED Controller I
2
C Address 60

Bottom LED Controller I
2
C Address 61

Motor Controller I
2
C Address 80

Acknowledge Token 2

Not Acknowledge Token 4

Invalid Token 255

55

C.2. LED Driver Tokens 56

C.2. LED Driver Tokens
All the tokens are the same for the bottom and top LED driver. That way, the same software can be used

for the top and bottom units, only initialized with different I
2
C addresses.

Table C.3: The Sensor Tokens of the LED Driver

Sensor Tokens Decimal Value

CURRENTSENSOR_255nm 1

CURRENTSENSOR_275nm 2

CURRENTSENSOR_285nm 4

CURRENTSENSOR_395nm 8

SEED_TEMPERATURE_SENSOR 16

ULTRAVIOLET_INTENSITY_SENSOR 32

OZONE_SENSOR 64

LEDS_TEMPERATURE_SENSOR 128

Table C.4: Driver tokens of the LED Driver

Driver Tokens Decimal Value

PWM_255nm 1

PWM_265nm 2

PWM_275nm 4

PWM_395nm 8

Table C.5: Variable Resistor Tokens of the LED Driver

Variable Resistor Tokens Decimal Value

CURRENTSENSOR_285nm 1

CURRENTSENSOR_275nm 2

CURRENTSENSOR_255nm 4

CURRENTSENSOR_395nm 8

BOOSTCONVERTER_255nm 3

BOOSTCONVERTER_275nm 6

BOOSTCONVERTER_285nm_395nm 12

ULTRAVIOLETSENSOR 7

OZONSENSOR 14

SEEDTEMPERATURESENSOR 28

C.3. Motor Controller 57

C.3. Motor Controller
Table C.6: Sensor Tokens of the Motor Controller

Sensor Tokens Decimal Value

CURRENTSENSOR_MOTOR 1

Table C.7: Driver Tokens of the Motor Controller

Driver Tokens Decimal Value

PWM_MOTOR 1

D
MATLAB Code

D.1. Plotting transmission against quartz plate thickness for 260nm
1 % SCRIPT TO GENERATE TRANSMISSION PERCENTAGES FOR A RANGE OF PLATE THICKNESSES FOR A GIVEN

WAVELENGTH (260NM)
2 % Author = M. Mazurovs & E. Ergul
3 %
4 %
5 % Generate L values
6 L = linspace(0, 10, 100); % Adjust the range and number of points as needed
7

8 alfa = -ln(0.8); %Calculate absorption factor given transmission percentage for 260nm for a 1
mm thick quartz plate

9

10

11 % Calculate I/I_0 values
12 I0 = 1; % Initial intensity
13 I = I0 * exp(-alfa * L);
14

15 % Plot the results
16 plot(L, I/I0, ’b-’, ’LineWidth’, 2);
17 xlabel(’L␣[mm]’);
18 ylabel(’T␣[%]’);
19 title(’Transmission␣plot␣of␣260␣nm␣UVC␣light␣through␣different␣thickness␣of␣quartz␣material’)

;
20 grid on;

58

E
C++ code

Using the PlatformIO extension (PIO Core 6.1.7, PIO Home 3.4.4) in Visual Studio Code. C++ compiler

and standard gnu++1z.

The entire code as submitted in the thesis can be found in

https://github.com/Magmoc/UVO_ControlUnit/tree/version-thesis-submission.

The version of the thesis defense can be found in

https://github.com/Magmoc/UVO_ControlUnit/tree/Thesis-Defense-code.

Dependency List of Libraries
1 Dependency Graph
2 |-- TFT_eSPI @ 2.5.30
3 |-- GUIslice @ 0.17.0
4 |-- Chrono @ 1.2.0
5 |-- ESP Rotary @ 2.1.1
6 |-- Button2 @ 2.2.2
7 |-- Wire @ 2.0.0
8 |-- SPI @ 2.0.0
9 |-- FS @ 2.0.0

10 |-- SPIFFS @ 2.0.0

Project Structure
1 C:.
2 | INSTALL
3 | platformio.ini
4 | README.md
5 | TODO
6 +---include
7 | | logger.hpp
8 | | main.hpp
9 | |

10 | +---components
11 | | | sd_interface.hpp
12 | | | settings.hpp
13 | | |
14 | | +---communication
15 | | | communication_protocol.hpp
16 | | | I2C_interface.hpp
17 | | | main_controller_communication_interface.hpp
18 | | | sensor.hpp
19 | | |
20 | | \---GUI
21 | | button.hpp
22 | | color_schemes.hpp
23 | | GUISliceBuilder_GSLC.hpp

59

https://github.com/Magmoc/UVO_ControlUnit/tree/version-thesis-submission
https://github.com/Magmoc/UVO_ControlUnit/tree/Thesis-Defense-code

60

24 | | GUISlice_references_content.hpp
25 | | GUISlice_screen.hpp
26 | | rotary_encoder.hpp
27 | | screen.hpp
28 | | Seven_Segment16pt7b.h
29 | |
30 | \---modules
31 | \---control_module
32 | main_controller.hpp
33 | main_controller_defines.hpp
34 |
35 +---src
36 | | logger.cpp
37 | | main.cpp
38 | |
39 | +---communication_test
40 | | I2C_communication_test.cpp
41 | | I2C_communication_test.hpp
42 | |
43 | +---components
44 | | | sd_interface.cpp
45 | | | sensor.cpp
46 | | | settings.cpp
47 | | |
48 | | +---communication
49 | | | I2C_interface.cpp
50 | | | main_controller_communication_interface.cpp
51 | | |
52 | | \---GUI
53 | | button.cpp
54 | | GUISlice_screen.cpp
55 | | screen.cpp
56 | |
57 | \---modules
58 | main_controller.cpp
59 |
60 \---test
61 README

import_GUISliceMenu.py
1 # **
2 # EE3L11: Bachelor Graduation Project
3 # GROUP M: UVC SEED STERILIZATION
4 # SUBGROUP: SOFTWARE AND CONTROL
5 # MEMBERS: Erman E r g l , Erik van Weelderen
6 #
7 # BY ERIK VAN WEELDEREN
8 # DATE: 16-6-2023
9 # **

10

11 import os, shutil
12

13 DIRNAME = os.path.dirname(__file__)
14 GUI_SLICE_BUILDER_FILE = None
15

16 headers = list()
17

18 for file in os.listdir(DIRNAME):
19 if file.endswith(".h"):
20 if "GSLC" in file:
21 GUI_SLICE_BUILDER_FILE = file
22 else:
23 headers.append(file)

61

24

25 if not GUI_SLICE_BUILDER_FILE:
26 raise Exception("Please generate new code within GUISLiceBuilder")
27

28 GUI_SLICE_BUILDER_FILEPATH = os.path.join(DIRNAME, GUI_SLICE_BUILDER_FILE)
29

30 with open(GUI_SLICE_BUILDER_FILEPATH) as f:
31 contents = f.read()
32

33

34 os.remove(GUI_SLICE_BUILDER_FILEPATH)
35 print(f"Removed {GUI_SLICE_BUILDER_FILE}")
36

37 # Replace function
38 FUNC_DEF = "void InitGUIslice_gen()"
39 FUNC_REDEF = "inline " + FUNC_DEF
40

41 contents = contents.replace(FUNC_DEF, FUNC_REDEF)
42

43 # replace the defines in the definitions part
44 DEFINES_START = """// --
45 // Create element storage
46 // --"""
47

48 DEFINES_END = """// --
49 // Program Globals
50 // --
51 """
52

53 DEFINES_IDENTIFIER = "gslc_ts"
54 DEFINES_REDEF = "inline " + DEFINES_IDENTIFIER
55

56 defines_start_idx = contents.find(DEFINES_START)
57 defines_end_idx = contents.find(DEFINES_END)
58

59 part_in_which_to_replace = contents[defines_start_idx:defines_end_idx]
60 replaced_parts = part_in_which_to_replace.replace(DEFINES_IDENTIFIER ,

DEFINES_REDEF)
61 contents = contents.replace(part_in_which_to_replace , replaced_parts)
62

63 GSLC_output_filename = GUI_SLICE_BUILDER_FILE.replace(".h", ".hpp")
64

65 GSLC_outpath = os.path.join(DIRNAME, GSLC_output_filename)
66 with open(GSLC_outpath , "w+") as f:
67 f.write(contents)
68

69

70

71

72 ###
73 #
74 # IMPORT INO FILE
75 #
76 ###
77

78 REFERENCES_START = """// --

62

79 // Program Globals
80 // --
81 """
82 REFERENCES_END = "//<Tick Callback !End!>"
83

84 for file in os.listdir(DIRNAME):
85 if file.endswith(".ino"):
86 GUI_SLICE_BUILDER_INO = file
87

88

89 GUI_SLICE_BUILDER_INO_FILEPATH = os.path.join(DIRNAME,
GUI_SLICE_BUILDER_INO)

90

91 with open(GUI_SLICE_BUILDER_INO_FILEPATH) as f:
92 contents = f.read()
93

94 os.remove(GUI_SLICE_BUILDER_INO_FILEPATH)
95 print(f"Removed {GUI_SLICE_BUILDER_INO}")
96

97

98

99 references_start_idx = contents.find(REFERENCES_START)
100 references_end_idx = contents.find(REFERENCES_END)
101

102 references_content = contents[references_start_idx:references_end_idx]
103

104 REFERENCES_HEADER_FILENAME = "GUISlice_references_content.hpp"
105 REFERENCES_HEADER_PATH = os.path.join(DIRNAME, REFERENCES_HEADER_FILENAME)
106

107 HEADER_GUARD_START_TEXT = """#ifndef _GUISLICE_REFERENCES_CONTENT_HPP
108 #define _GUISLICE_REFERENCES_CONTENT_HPP
109 """
110

111 HEADER_GUARD_END_TEXT = """
112 #endif"""
113

114 with open(REFERENCES_HEADER_PATH , "w+") as f:
115 f.write(HEADER_GUARD_START_TEXT)
116 f.write(references_content)
117 f.write(HEADER_GUARD_END_TEXT)
118

119 def find(name, path):
120 for root, dirs, files in os.walk(path):
121 if name in files:
122 return os.path.join(root, name)
123

124

125 INCLUDE_DIR = "include"
126 INCLUDE_DIR_PATH = os.path.abspath(os.path.join(DIRNAME, os.pardir,

INCLUDE_DIR))
127

128 def replace(filename , search_directory):
129 file_to_replace = find(filename, search_directory)
130 try:
131 outpath = os.path.join(DIRNAME, filename)
132 os.replace(outpath, file_to_replace)

63

133 print(f"Succesfully replaced {outpath}!")
134 except:
135 print(f"Failed to replace {outpath}!")
136

137 replace(GSLC_output_filename , INCLUDE_DIR_PATH)
138

139 replace(REFERENCES_HEADER_FILENAME , INCLUDE_DIR_PATH)
140

141 for header in headers:
142 replace(header, INCLUDE_DIR_PATH)
143

144 # TODO Export everything with same _SETUP_ into cpp array with said name

Listing E.1: import_GUISliceMenu.py

platformio.ini
1 ; PlatformIO Project Configuration File
2 ;
3 ; Build options: build flags, source filter
4 ; Upload options: custom upload port, speed and extra flags
5 ; Library options: dependencies , extra library storages
6 ; Advanced options: extra scripting
7 ;
8 ; Please visit documentation for the other options and examples
9 ; https://docs.platformio.org/page/projectconf.html

10

11 [env]
12 build_flags =
13 -std=gnu++1z
14 -Os
15

16 -ffunction -sections
17 -fdata-sections
18 -Wl,--gc-sections
19 upload_speed = 921600
20 lib_ldf_mode = deep+
21 build_unflags = -std=gnu++11
22

23 [env:main-controller]
24 framework = arduino
25 platform = espressif32
26 board = esp-wrover-kit
27 monitor_speed = 9600
28 lib_deps =
29 bodmer/TFT_eSPI@^2.5.30
30 impulseadventure/GUIslice@^0.17.0
31 thomasfredericks/Chrono@^1.2.0
32 lennarthennigs/ESP Rotary@^2.1.1
33 lennarthennigs/Button2@^2.2.2
34 build_unflags = ${env.build_unflags}
35 build_flags =
36 ${env.build_flags}
37 -D MAIN_CONTROLLER_MODULE
38

39 ; Options: USE_SCREEN , USE_BUTTONS , USE_COMMUNICATION_INTERFACE
40 -D USE_SCREEN

64

41 -D DEBUG_MODE
42

43 -D BOARD_HAS_PSRAM
44 -mfix-esp32-psram-cache-issue
45

46 -D USER_SETUP_LOADED=1
47

48 -D ST7796_DRIVER=1
49

50 -D TFT_RST=32
51 -D TFT_MISO=19
52 -D TFT_MOSI=23
53 -D TFT_SCLK=18
54 -D TFT_CS=4
55 -D TOUCH_CS=33
56

57

58 -D TFT_DC=2
59 -D LOAD_GLCD=1
60 -D LOAD_FONT2=1
61 -D LOAD_FONT4=1
62 -D LOAD_FONT6=1
63 -D LOAD_FONT7=1
64 -D LOAD_FONT8=1
65 -D LOAD_GFXFF=1
66 -D SMOOTH_FONT=1
67 -D SPI_FREQUENCY=27000000
68

69 [env:arduino]
70 framework = arduino
71 platform = atmelavr
72 board = uno
73 lib_ldf_mode = chain+
74 lib_ignore = bodmer/TFT_eSPI@^2.5.30
75 build_unflags = ${env.build_unflags}
76 build_flags =
77 ${env.build_flags}
78

79 -D DEBUG_MODE
80 -D SLAVE_TEST
81 monitor_speed = 9600
82 lib_deps =
83 impulseadventure/GUIslice@^0.17.0
84 adafruit/Adafruit GFX Library@^1.11.5
85 thomasfredericks/Chrono@^1.2.0
86 lennarthennigs/ESP Rotary@^2.1.1
87 lennarthennigs/Button2@^2.2.2

Listing E.2: platformio.ini

include
logger.hpp

1 // **
2 // EE3L11: Bachelor Graduation Project
3 // GROUP M: UVC SEED STERILIZATION
4 // SUBGROUP: SOFTWARE AND CONTROL

65

5 // MEMBERS: Erman E r g l , Erik van Weelderen
6 //
7 // BY ERIK VAN WEELDEREN
8 // DATE: 16-6-2023
9 // **

10

11 #ifndef _LOGGER_HPP
12 #define _LOGGER_HPP
13

14 #endif

Listing E.3: include/logger.hpp

main.hpp
1 // **
2 // EE3L11: Bachelor Graduation Project
3 // GROUP M: UVC SEED STERILIZATION
4 // SUBGROUP: SOFTWARE AND CONTROL
5 // MEMBERS: Erman E r g l , Erik van Weelderen
6 //
7 // BY ERIK VAN WEELDEREN
8 // DATE: 16-6-2023
9 // **

10

11 #ifndef _MAIN_HPP
12 #define _MAIN_HPP
13

14 #include <Arduino.h>
15

16 void setup();
17 void loop();
18

19 #if defined(MAIN_CONTROLLER_MODULE)
20 #include "modules/control_module/main_controller.hpp"
21 UVO_MainController::MainController Controller;
22 #else
23 #error "Define a module: MAIN_CONTROLLER_MODULE"
24 #endif
25

26 #endif

Listing E.4: include/main.hpp

include/components
sd_interface.hpp

1 // **
2 // EE3L11: Bachelor Graduation Project
3 // GROUP M: UVC SEED STERILIZATION
4 // SUBGROUP: SOFTWARE AND CONTROL
5 // MEMBERS: Erman E r g l , Erik van Weelderen
6 //
7 // BY ERIK VAN WEELDEREN
8 // DATE: 16-6-2023
9 // **

10

11 #ifndef _SD_INTERFACE_HPP

66

12 #define _SD_INTERFACE_HPP
13

14 #endif

Listing E.5: include/components/sd_interface.hpp

settings.hpp
1 // **
2 // EE3L11: Bachelor Graduation Project
3 // GROUP M: UVC SEED STERILIZATION
4 // SUBGROUP: SOFTWARE AND CONTROL
5 // MEMBERS: Erman E r g l , Erik van Weelderen
6 //
7 // BY ERIK VAN WEELDEREN
8 // DATE: 16-6-2023
9 // **

10

11 #ifndef _SETTINGS_HPP
12 #define _SETTINGS_HPP
13

14 #include <stdint.h>
15 #include <limits.h>
16 #include <time.h>
17

18 namespace UVO_Components {
19

20 struct s_setupSettings
21 {
22 bool isUpdated = false;
23

24 uint8_t LED_intensity_255nm = 0;
25 uint8_t LED_intensity_275nm = 0;
26 uint8_t LED_intensity_285nm = 0;
27 uint8_t LED_intensity_395nm = 0;
28

29 uint8_t motor_intensity = 0;
30

31 time_t targetExposureTime = 0;
32

33 int globalSampleFrequencyHz = 10;
34

35 void addSeconds(int seconds){
36 // Must be ulong type.
37 ulong new_time = targetExposureTime + seconds;
38

39 //clamp
40 time_t maxTime = ULONG_MAX;
41 time_t minTime = 0;
42 new_time = (new_time > maxTime) ? maxTime : new_time;
43 new_time = (new_time < minTime) ? minTime : new_time;
44

45 targetExposureTime = new_time;
46 }
47

48 void addMinutes(int minutes){
49 addSeconds(60*minutes);
50 }

67

51

52 void addHours(int hours){
53 addMinutes(60*hours);
54 }
55 };
56

57 struct s_systemState {
58 s_setupSettings SetupSettings;
59 volatile bool isUpdated = false;
60 long int elapsedExposureTime = 0;
61

62 };
63

64 }
65

66 #endif

Listing E.6: include/components/settings.hpp

include/components/communication
communication_protocol.hpp

1 // **
2 // EE3L11: Bachelor Graduation Project
3 // GROUP M: UVC SEED STERILIZATION
4 // SUBGROUP: SOFTWARE AND CONTROL
5 // MEMBERS: Erman E r g l , Erik van Weelderen
6 //
7 // BY ERIK VAN WEELDEREN
8 // DATE: 16-6-2023
9 // **

10

11 #ifndef _COMMUNICATION_PROTOCOL_HPP
12 #define _COMMUNICATION_PROTOCOL_HPP
13

14

15 namespace UVO_CommunicationProtocol {
16 // https://stackoverflow.com/questions/112433/should-i-use-define-enum-

or-const
17

18 // Sent from Control Unit
19 // [REQUEST_SENSOR_DATA] [SENSOR_TOKEN] REQUEST [value (double) (4 bytes

)]
20 // [SET_DRIVER_INTENSITY] [DRIVER_TOKEN] [uint_8 intensity (0-255)]

REQUEST [ack (byte)]
21 // [SET_VARIABLE_RESISTOR] [RESISTOR_TOKEN] [uint_8 intensity (0-255)]

REQUEST [ack (byte)]
22

23 // Sent to Control Unit
24 // [SEND_ERROR_FLAG] [YOUR OWN I2C ADDRESS] [SENSOR_TOKEN] REQUEST [ack

(byte)]
25

26 const int MAIN_CONTROLLER_ADDRESS = 40;
27 const int TOP_LED_CONTROLLER_ADDRESS = 60;
28 const int BOTTOM_LED_CONTROLLER_ADDRESS = 61;
29 const int MOTOR_CONTROLLER_ADDRESS = 80;
30

68

31 typedef unsigned char TToken;
32 typedef TToken TPackageTypeToken;
33 typedef TToken TSensorToken;
34 typedef TToken TDriverToken;
35 typedef TToken TVariableResistorToken;
36

37 const TToken ACK = 2;
38 const TToken NACK = 4;
39

40 const TToken INVALID = 255;
41

42 namespace PackageTypeToken {
43 const TPackageTypeToken REQUEST_SENSOR_DATA = ’S’;
44 const TPackageTypeToken SET_DRIVER_INTENSITY = ’D’;
45 const TPackageTypeToken SET_VARIABLE_RESISTOR = ’R’;
46 const TPackageTypeToken SEND_ERROR_FLAG = ’E’;
47 }
48

49 namespace LEDDriverToken {
50 //TODO What do we measure at every sensor? What are the conversions
51

52 namespace SensorToken {
53 const TSensorToken CURRENTSENSOR_255nm = 1;
54 const TSensorToken CURRENTSENSOR_275nm = 2;
55 const TSensorToken CURRENTSENSOR_285nm = 4;
56 const TSensorToken CURRENTSENSOR_395nm = 8;
57

58 const TSensorToken SEED_TEMPERATURE_SENSOR = 16;
59 const TSensorToken ULTRAVIOLET_INTENSITY_SENSOR = 32;
60 // TODO: RENAME TO OZONE
61 const TSensorToken OZON_SENSOR = 64;
62 const TSensorToken LEDS_TEMPERATURE_SENSOR = 128;
63 }
64

65 namespace DriverToken {
66 const TDriverToken PWM_255nm = 1;
67 const TDriverToken PWM_265nm = 2;
68 const TDriverToken PWM_275nm = 4;
69 const TDriverToken PWM_395nm = 8;
70 }
71

72 namespace VariableResistorToken {
73 const TVariableResistorToken CURRENTSENSOR_285nm = 1; // CS1 (

Current Sensor X)
74 const TVariableResistorToken CURRENTSENSOR_275nm = 2; // CS2
75 const TVariableResistorToken CURRENTSENSOR_255nm = 4; // CS3
76 const TVariableResistorToken CURRENTSENSOR_395nm = 8; // CS4
77

78 const TVariableResistorToken BOOSTCONVERTER_255nm = 3; // BC1 (
Boost Converter X)

79 const TVariableResistorToken BOOSTCONVERTER_275nm = 6; // BC2
80 const TVariableResistorToken BOOSTCONVERTER_285nm_395nm = 12; //

BC3
81

82 const TVariableResistorToken ULTRAVIOLETSENSOR = 7; // UVS
83 const TVariableResistorToken OZONSENSOR = 14; // OS (Ozone Sensor)

69

84 const TVariableResistorToken SEEDTEMPERATURESENSOR = 28; // TS (
Temperature Sensor)

85 }
86 }
87

88 namespace MotorControlToken {
89 //TODO What do we measure at every sensor? What are the conversions
90

91 namespace SensorToken {
92 const TSensorToken CURRENTSENSOR_MOTOR = 1;
93 }
94

95 namespace DriverToken {
96 const TDriverToken PWM_MOTOR = 1;
97 }
98 }
99

100

101

102 }
103

104 #endif

Listing E.7: include/components/communication/communication_protocol.hpp

I2C_interface.hpp
1 // **
2 // EE3L11: Bachelor Graduation Project
3 // GROUP M: UVC SEED STERILIZATION
4 // SUBGROUP: SOFTWARE AND CONTROL
5 // MEMBERS: Erman E r g l , Erik van Weelderen
6 //
7 // BY ERIK VAN WEELDEREN
8 // DATE: 16-6-2023
9 // **

10

11 #ifndef _I2C_INTERFACE_HPP
12 #define _I2C_INTERFACE_HPP
13

14 #include <Wire.h>
15 #include <Arduino.h>
16 #include <SPI.h>
17

18 //TODO MOVE TO SOMEWHERE ELSE
19 #define MAX_MESSAGE_LENGTH 10
20

21 namespace UVO_Components {
22

23 //TODO make I2C interface subclass of TwoWire
24 class I2CInterface
25 {
26 private:
27 int m_SDA_pin;
28 int m_SCL_pin;
29 int m_I2C_address;
30 public:
31 I2CInterface(int t_I2C_address);

70

32 // I2CInterface(int t_I2C_address , int t_SDA_pin , int t_SCL_pin);
33 ~I2CInterface();
34

35 void sendMessages(int address, byte* message, int message_length);
36 int requestAndReadAnswer(int I2C_address , byte* receive_message , int

bytes_requested);
37

38 void onRequest(void (*t_function)(void));
39 void onReceive(void (*t_function)(int));
40 };
41

42 }
43

44 #endif

Listing E.8: include/components/communication/I2C_interface.hpp

main_controller_communication_interface.hpp
1 // **
2 // EE3L11: Bachelor Graduation Project
3 // GROUP M: UVC SEED STERILIZATION
4 // SUBGROUP: SOFTWARE AND CONTROL
5 // MEMBERS: Erman E r g l , Erik van Weelderen
6 //
7 // BY ERIK VAN WEELDEREN
8 // DATE: 16-6-2023
9 // **

10

11 #ifndef _MAIN_CONTROLLER_COMMUNICATION_INTERFACE_H
12 #define _MAIN_CONTROLLER_COMMUNICATION_INTERFACE_H
13

14 #include <Wire.h>
15 #include <Arduino.h>
16 #include "components/communication/communication_protocol.hpp"
17 #include "components/communication/I2C_interface.hpp"
18 #include "components/communication/sensor.hpp"
19

20 namespace UVO_MainController {
21

22 class MainCommunicationInterface{
23 private:
24 UVO_Components::I2CInterface m_I2C_Interface;
25 int sendMessageAndReadResponse(int t_I2C_slave_address , byte* t_message ,

int t_message_length , int t_bytes_requested , byte* t_response_data);
26

27 public:
28 MainCommunicationInterface(int t_I2C_address);
29 ~MainCommunicationInterface();
30

31 // TODO IMPLEMENT IF NEEDED
32 // void MainCommunicationInterface::setSDA(int SDA_pin);
33 // void MainCommunicationInterface::setSCL(int SCL_pin);
34

35 void init(void);
36 void update(void);
37 double requestSensorData(UVO_CommunicationProtocol::Sensor t_sensor);
38

71

39 };
40

41 }
42

43 #endif

Listing E.9: include/components/communication/main_controller_communication_interface.hpp

sensor.hpp
1 // **
2 // EE3L11: Bachelor Graduation Project
3 // GROUP M: UVC SEED STERILIZATION
4 // SUBGROUP: SOFTWARE AND CONTROL
5 // MEMBERS: Erman E r g l , Erik van Weelderen
6 //
7 // BY ERIK VAN WEELDEREN
8 // DATE: 16-6-2023
9 // **

10

11 #ifndef _SENSOR_HPP
12 #define _SENSOR_HPP
13

14 #include "components/communication/communication_protocol.hpp"
15

16 namespace UVO_CommunicationProtocol {
17

18 struct Sensor {
19 int module_address_I2C;
20 UVO_CommunicationProtocol::TSensorToken sensorToken;
21 };
22

23 // https://stackoverflow.com/questions/14425262/why-include-guards-do-not-
prevent-multiple-function-definitions/14425299#14425299

24 // Therefore using the inline keyword
25 namespace sensors {
26 namespace TOP_LEDDriver {
27 inline const Sensor current_sensor_255nm = {
28 .module_address_I2C = UVO_CommunicationProtocol::

TOP_LED_CONTROLLER_ADDRESS ,
29 .sensorToken = UVO_CommunicationProtocol::LEDDriverToken::

SensorToken::CURRENTSENSOR_255nm ,
30 };
31

32 inline const Sensor current_sensor_275nm = {
33 .module_address_I2C = UVO_CommunicationProtocol::

TOP_LED_CONTROLLER_ADDRESS ,
34 .sensorToken = UVO_CommunicationProtocol::LEDDriverToken::

SensorToken::CURRENTSENSOR_275nm ,
35 };
36

37 inline const Sensor current_sensor_285nm = {
38 .module_address_I2C = UVO_CommunicationProtocol::

TOP_LED_CONTROLLER_ADDRESS ,
39 .sensorToken = UVO_CommunicationProtocol::LEDDriverToken::

SensorToken::CURRENTSENSOR_285nm ,
40 };
41

72

42 inline const Sensor current_sensor_395nm = {
43 .module_address_I2C = UVO_CommunicationProtocol::

TOP_LED_CONTROLLER_ADDRESS ,
44 .sensorToken = UVO_CommunicationProtocol::LEDDriverToken::

SensorToken::CURRENTSENSOR_395nm ,
45 };
46

47 inline const Sensor seed_temperature_sensor = {
48 .module_address_I2C = UVO_CommunicationProtocol::

TOP_LED_CONTROLLER_ADDRESS ,
49 .sensorToken = UVO_CommunicationProtocol::LEDDriverToken::

SensorToken::SEED_TEMPERATURE_SENSOR ,
50 };
51

52 inline const Sensor ultraviolet_intensity_sensor = {
53 .module_address_I2C = UVO_CommunicationProtocol::

TOP_LED_CONTROLLER_ADDRESS ,
54 .sensorToken = UVO_CommunicationProtocol::LEDDriverToken::

SensorToken::ULTRAVIOLET_INTENSITY_SENSOR ,
55 };
56

57 inline const Sensor ozon_sensor = {
58 .module_address_I2C = UVO_CommunicationProtocol::

TOP_LED_CONTROLLER_ADDRESS ,
59 .sensorToken = UVO_CommunicationProtocol::LEDDriverToken::

SensorToken::OZON_SENSOR ,
60 };
61

62 inline const Sensor LEDs_temperature_sensor = {
63 .module_address_I2C = UVO_CommunicationProtocol::

TOP_LED_CONTROLLER_ADDRESS ,
64 .sensorToken = UVO_CommunicationProtocol::LEDDriverToken::

SensorToken::LEDS_TEMPERATURE_SENSOR ,
65 };
66 }
67

68 namespace BOTTOM_LEDDriver {
69 inline const Sensor current_sensor_255nm = {
70 .module_address_I2C = UVO_CommunicationProtocol::

BOTTOM_LED_CONTROLLER_ADDRESS ,
71 .sensorToken = UVO_CommunicationProtocol::LEDDriverToken::

SensorToken::CURRENTSENSOR_255nm ,
72 };
73

74 inline const Sensor current_sensor_275nm = {
75 .module_address_I2C = UVO_CommunicationProtocol::

BOTTOM_LED_CONTROLLER_ADDRESS ,
76 .sensorToken = UVO_CommunicationProtocol::LEDDriverToken::

SensorToken::CURRENTSENSOR_275nm ,
77 };
78

79 inline const Sensor current_sensor_285nm = {
80 .module_address_I2C = UVO_CommunicationProtocol::

BOTTOM_LED_CONTROLLER_ADDRESS ,
81 .sensorToken = UVO_CommunicationProtocol::LEDDriverToken::

SensorToken::CURRENTSENSOR_285nm ,

73

82 };
83

84 inline const Sensor current_sensor_395nm = {
85 .module_address_I2C = UVO_CommunicationProtocol::

BOTTOM_LED_CONTROLLER_ADDRESS ,
86 .sensorToken = UVO_CommunicationProtocol::LEDDriverToken::

SensorToken::CURRENTSENSOR_395nm ,
87 };
88

89 inline const Sensor seed_temperature_sensor = {
90 .module_address_I2C = UVO_CommunicationProtocol::

BOTTOM_LED_CONTROLLER_ADDRESS ,
91 .sensorToken = UVO_CommunicationProtocol::LEDDriverToken::

SensorToken::SEED_TEMPERATURE_SENSOR ,
92 };
93

94 inline const Sensor ultraviolet_intensity_sensor = {
95 .module_address_I2C = UVO_CommunicationProtocol::

BOTTOM_LED_CONTROLLER_ADDRESS ,
96 .sensorToken = UVO_CommunicationProtocol::LEDDriverToken::

SensorToken::ULTRAVIOLET_INTENSITY_SENSOR ,
97 };
98

99 inline const Sensor ozon_sensor = {
100 .module_address_I2C = UVO_CommunicationProtocol::

BOTTOM_LED_CONTROLLER_ADDRESS ,
101 .sensorToken = UVO_CommunicationProtocol::LEDDriverToken::

SensorToken::OZON_SENSOR ,
102 };
103

104 inline const Sensor LEDs_temperature_sensor = {
105 .module_address_I2C = UVO_CommunicationProtocol::

BOTTOM_LED_CONTROLLER_ADDRESS ,
106 .sensorToken = UVO_CommunicationProtocol::LEDDriverToken::

SensorToken::LEDS_TEMPERATURE_SENSOR ,
107 };
108

109 }
110

111 namespace motor_controller{
112 inline const Sensor current_sensor_motor = {
113 .module_address_I2C = UVO_CommunicationProtocol::

MOTOR_CONTROLLER_ADDRESS ,
114 .sensorToken = UVO_CommunicationProtocol::MotorControlToken::

SensorToken::CURRENTSENSOR_MOTOR ,
115 };
116 }
117 };
118

119 }
120

121 #endif

Listing E.10: include/components/communication/sensor.hpp

74

include/components/GUI
button.hpp

1 // **
2 // EE3L11: Bachelor Graduation Project
3 // GROUP M: UVC SEED STERILIZATION
4 // SUBGROUP: SOFTWARE AND CONTROL
5 // MEMBERS: Erman E r g l , Erik van Weelderen
6 //
7 // BY ERIK VAN WEELDEREN
8 // DATE: 16-6-2023
9 // **

10

11 #ifndef _BUTTON_HPP
12 #define _BUTTON_HPP
13

14 #include <Button2.h>
15

16 #endif

Listing E.11: include/components/GUI/button.hpp

color_schemes.hpp
1 // **
2 // EE3L11: Bachelor Graduation Project
3 // GROUP M: UVC SEED STERILIZATION
4 // SUBGROUP: SOFTWARE AND CONTROL
5 // MEMBERS: Erman E r g l , Erik van Weelderen
6 //
7 // BY ERIK VAN WEELDEREN
8 // DATE: 16-6-2023
9 // **

10

11

12 #ifndef _COLOR_SCHEMES_HPP
13 #define _COLOR_SCHEMES_HPP
14

15 //TODO Can be used to implement color schemes for the code.
16 // such as determining what the selected colors should be.
17

18 #endif

Listing E.12: include/components/GUI/color_schemes.hpp

GUISlice_references_content.hpp
1 #ifndef _GUISLICE_REFERENCES_CONTENT_HPP
2 #define _GUISLICE_REFERENCES_CONTENT_HPP
3 // --
4 // Program Globals
5 // --
6

7 // Save some element references for direct access
8 //<Save_References !Start!>
9 gslc_tsElemRef* m_pElem_ERROR_Error1= NULL;

10 gslc_tsElemRef* m_pElem_ERROR_Error2= NULL;
11 gslc_tsElemRef* m_pElem_ERROR_Error3= NULL;
12 gslc_tsElemRef* m_pElem_ERROR_Error4= NULL;

75

13 gslc_tsElemRef* m_pElem_MONITOR_Current_255nm= NULL;
14 gslc_tsElemRef* m_pElem_MONITOR_Current_275nm= NULL;
15 gslc_tsElemRef* m_pElem_MONITOR_Current_285nm= NULL;
16 gslc_tsElemRef* m_pElem_MONITOR_Current_395nm= NULL;
17 gslc_tsElemRef* m_pElem_MONITOR_Dosis= NULL;
18 gslc_tsElemRef* m_pElem_MONITOR_Hours= NULL;
19 gslc_tsElemRef* m_pElem_MONITOR_Intensity= NULL;
20 gslc_tsElemRef* m_pElem_MONITOR_Intensity127= NULL;
21 gslc_tsElemRef* m_pElem_MONITOR_Minutes= NULL;
22 gslc_tsElemRef* m_pElem_MONITOR_Pause= NULL;
23 gslc_tsElemRef* m_pElem_MONITOR_Seconds= NULL;
24 gslc_tsElemRef* m_pElem_MONITOR_Stop= NULL;
25 gslc_tsElemRef* m_pElem_MONITOR_Stop136= NULL;
26 gslc_tsElemRef* m_pElem_MONITOR_Temperature_LED_Bottom= NULL;
27 gslc_tsElemRef* m_pElem_MONITOR_Temperature_LED_Top= NULL;
28 gslc_tsElemRef* m_pElem_MONITOR_Temperature_Seed= NULL;
29 gslc_tsElemRef* m_pElem_SETUP_Dosis_255nm= NULL;
30 gslc_tsElemRef* m_pElem_SETUP_Dosis_275nm= NULL;
31 gslc_tsElemRef* m_pElem_SETUP_Dosis_285nm= NULL;
32 gslc_tsElemRef* m_pElem_SETUP_Dosis_395nm= NULL;
33 gslc_tsElemRef* m_pElem_SETUP_Hours= NULL;
34 gslc_tsElemRef* m_pElem_SETUP_Intensity_255nm= NULL;
35 gslc_tsElemRef* m_pElem_SETUP_Intensity_275nm= NULL;
36 gslc_tsElemRef* m_pElem_SETUP_Intensity_285nm= NULL;
37 gslc_tsElemRef* m_pElem_SETUP_Intensity_395nm= NULL;
38 gslc_tsElemRef* m_pElem_SETUP_Minutes= NULL;
39 gslc_tsElemRef* m_pElem_SETUP_MotorIntensity= NULL;
40 gslc_tsElemRef* m_pElem_SETUP_Seconds= NULL;
41 gslc_tsElemRef* m_pElem_SETUP_Start= NULL;
42 //<Save_References !End!>
43

44 // Define debug message function
45 static int16_t DebugOut(char ch) { if (ch == (char)’\n’) Serial.println(""

); else Serial.write(ch); return 0; }
46

47 // --
48 // Callback Methods
49 // --
50 //<Button Callback !Start!>
51 //<Button Callback !End!>
52 //<Checkbox Callback !Start!>
53 //<Checkbox Callback !End!>
54 //<Keypad Callback !Start!>
55 //<Keypad Callback !End!>
56 //<Spinner Callback !Start!>
57 //<Spinner Callback !End!>
58 //<Listbox Callback !Start!>
59 //<Listbox Callback !End!>
60

61 // Scanner drawing callback function
62 // - This is called when E_ELEM_SCAN is being rendered
63 bool CbDrawScanner(void* pvGui,void* pvElemRef ,gslc_teRedrawType eRedraw)
64 {
65 int nInd;
66

67 // Typecast the parameters to match the GUI and element types

76

68 gslc_tsGui* pGui = (gslc_tsGui*)(pvGui);
69 gslc_tsElemRef* pElemRef = (gslc_tsElemRef*)(pvElemRef);
70 gslc_tsElem* pElem = gslc_GetElemFromRef(pGui,pElemRef);
71

72 // Create shorthand variables for the origin
73 int16_t nX = pElem->rElem.x;
74 int16_t nY = pElem->rElem.y;
75

76 // Draw the background
77 gslc_tsRect rInside = pElem->rElem;
78 rInside = gslc_ExpandRect(rInside ,-1,-1);
79 gslc_DrawFillRect(pGui,rInside,pElem->colElemFill);
80

81 // Enable localized clipping
82 gslc_SetClipRect(pGui,&rInside);
83

84 //TODO - Add your drawing graphic primitives
85

86 // Disable clipping region
87 gslc_SetClipRect(pGui,NULL);
88

89 // Draw the frame
90 gslc_DrawFrameRect(pGui,pElem->rElem,pElem->colElemFrame);
91

92 // Clear the redraw flag
93 gslc_ElemSetRedraw(&m_gui,pElemRef ,GSLC_REDRAW_NONE);
94

95 return true;
96 }
97 //<Slider Callback !Start!>
98 //<Slider Callback !End!>
99 //<Tick Callback !Start!>

100

101 #endif

Listing E.13: include/components/GUI/GUISlice_references_content.hpp

GUISlice_screen.hpp
1 // **
2 // EE3L11: Bachelor Graduation Project
3 // GROUP M: UVC SEED STERILIZATION
4 // SUBGROUP: SOFTWARE AND CONTROL
5 // MEMBERS: Erman E r g l , Erik van Weelderen
6 //
7 // BY ERIK VAN WEELDEREN
8 // DATE: 16-6-2023
9 // **

10

11 #ifndef _GUISLICE_SCREEN_HPP
12 #define _GUISLICE_SCREEN_HPP
13

14 #include <SPI.h>
15 #include <TFT_eSPI.h> // Hardware -specific library
16 #include <string.h>
17 #include "components/settings.hpp"
18

19 namespace UVO_Components {

77

20 #define BACKLIGHT_PIN 12
21

22 namespace GUISlice {
23 #include "components/GUI/GUISliceBuilder_GSLC.hpp"
24

25 //TODO make screenstate into a class
26 //TODO MAKE STRUCT WITH elem id, whether it is editable , and pointer to

what it changes, and which function to use for changing the value
27 struct s_screenState {
28

29 #define SETUP_PAGE_SELECTABLE_ITEMS_NUM 8
30 const int SETUP_page_selectable_items_size =

SETUP_PAGE_SELECTABLE_ITEMS_NUM;
31 gslc_tsElemRef* SETUP_page_selectable_items[

SETUP_PAGE_SELECTABLE_ITEMS_NUM];
32

33 // Must call this after initializing GSLC
34 void init_SETUP_sel_array(void){
35 SETUP_page_selectable_items[0] = m_pElem_SETUP_Intensity_255nm;
36 SETUP_page_selectable_items[1] = m_pElem_SETUP_Intensity_275nm;
37 SETUP_page_selectable_items[2] = m_pElem_SETUP_Intensity_285nm;
38 SETUP_page_selectable_items[3] = m_pElem_SETUP_Intensity_395nm;
39 SETUP_page_selectable_items[4] = m_pElem_SETUP_Hours;
40 SETUP_page_selectable_items[5] = m_pElem_SETUP_Minutes;
41 SETUP_page_selectable_items[6] = m_pElem_SETUP_Seconds;
42 SETUP_page_selectable_items[7] = m_pElem_SETUP_MotorIntensity;
43 }
44

45 gslc_tsElemRef** page_vec[1] = {SETUP_page_selectable_items};
46 int page_vec_array_sizes[1] = {SETUP_PAGE_SELECTABLE_ITEMS_NUM};
47

48 int current_page_idx = 0;
49 bool update_current_page = false;
50

51 int current_elem_idx = 0;
52

53 //TODO better name
54 bool elem_is_editing = false;
55

56

57 gslc_tsElemRef* getCurrentlySelectedElem(void){
58 return page_vec[current_page_idx][current_elem_idx];
59 }
60

61 uint16_t getCurrentlySelectedElemID(void){
62 return page_vec[current_page_idx][current_elem_idx]->pElem->nId;
63 }
64

65 };
66

67 class Screen{
68 public:
69 Screen(s_setupSettings* t_Settings);
70 Screen(void);
71 ~Screen();
72

78

73 // Both with and without setupSettings so that you can restart the
module without having to change the settings

74 void init(void);
75 void init(s_setupSettings* t_initSettings);
76

77 void update(void);
78 void setSetupSettings(s_setupSettings* t_Settings);
79

80 void selectPreviousElem(void);
81 void selectNextElem(void);
82 void beginEditSelectedElem(void);
83 void endEditSelectedElem(void);
84 void toggleEditSelectedElem(void);
85

86 bool isEditingElement(void);
87 uint16_t getCurrentElementID(void);
88

89 private:
90 s_setupSettings* m_referenceSetupSettingsPointer;
91 s_setupSettings m_currentlyDisplayedSetupSettings;
92

93 s_screenState m_screenState;
94

95 const gslc_tsColor UVO_BLACK = {0, 0, 5};
96 const gslc_tsColor UVO_DARK_BLUE = {59, 51, 85};
97 const gslc_tsColor UVO_PURPLE = {93, 93, 129};
98 const gslc_tsColor UVO_LIGHT_BLUE = {191, 205, 224};
99 const gslc_tsColor UVO_WHITE = {254, 252, 253};

100

101 const int m_TFT_WIDTH = 480;
102 const int m_TFT_HEIGHT = 320;
103

104 // Need to swap the width and height due to the rotation of the tft
screen

105 // Probably a bug in the system, or because I did something wrong
106 const int m_SPRITE_WIDTH = m_TFT_HEIGHT;
107 const int m_SPRITE_HEIGHT = m_TFT_WIDTH;
108

109 bool m_updateFrame;
110 u_int8_t m_Count = 0;
111

112 void writeFrame(void);
113

114 void setBackground(TFT_eSprite& sprite);
115 void setBackgroundText(TFT_eSPI& sprite);
116 void test(void);
117

118 void GUISliceInit(void);
119

120 void setColorFrame(gslc_tsElemRef* t_pElem, gslc_tsColor t_colFrame);
121 void setColorFill(gslc_tsElemRef* t_pElem, gslc_tsColor t_colFill);
122

123

124 //TODO better name
125 void resetElemOptions(gslc_tsElemRef* t_pElem);
126

79

127

128 // TODO rename the setSelected and updatedSelected. It is quite
unclear.

129 void setSelectedElem(gslc_tsElemRef* t_pElem);
130 void setSelectedElem(int t_index);
131 void updateSelectedElem(int t_newSelectedIdx);
132

133 void displayAsSelected(gslc_tsElemRef* t_pElem);
134 void displayAsEditing(gslc_tsElemRef* t_pElem);
135

136 bool hasFillEnabled(gslc_tsElemRef* t_pElem);
137

138

139 void displayInteger(gslc_tsElemRef* t_pElem, uint8_t t_value);
140

141

142 void displaySetupSettings(s_setupSettings* t_new);
143 void displayIntensity(gslc_tsElemRef* t_pElem, uint8_t intensity);
144 void displayTime(gslc_tsElemRef* t_hour, gslc_tsElemRef* t_minutes ,

gslc_tsElemRef* t_seconds , time_t t_displayTime);
145

146 int uint8_to_percentage(uint8_t value);
147 template <typename T> std::optional <int> getIndex(T* t_vec, int t_size,

T t_elem);
148 };
149 }
150 }
151 #endif

Listing E.14: include/components/GUI/GUISlice_screen.hpp

rotary_encoder.hpp
1 // **
2 // EE3L11: Bachelor Graduation Project
3 // GROUP M: UVC SEED STERILIZATION
4 // SUBGROUP: SOFTWARE AND CONTROL
5 // MEMBERS: Erman E r g l , Erik van Weelderen
6 //
7 // BY ERIK VAN WEELDEREN
8 // DATE: 16-6-2023
9 // **

10

11 #ifndef _ROTARY_ENCODER_HPP
12 #define _ROTARY_ENCODER_HPP
13

14 #include <ESPRotary.h>
15

16 #endif

Listing E.15: include/components/GUI/rotary_encoder.hpp

screen.hpp
1 // **
2 // EE3L11: Bachelor Graduation Project
3 // GROUP M: UVC SEED STERILIZATION
4 // SUBGROUP: SOFTWARE AND CONTROL
5 // MEMBERS: Erman E r g l , Erik van Weelderen

80

6 //
7 // BY ERIK VAN WEELDEREN
8 // DATE: 16-6-2023
9 // **

10

11 #ifndef _SCREEN_HPP
12 #define _SCREEN_HPP
13

14 #include <SPI.h>
15 #include <TFT_eSPI.h> // Hardware -specific library
16 #include <string.h>
17

18 #define BACKLIGHT_PIN 12
19

20 namespace UVO_Components {
21 namespace Screen {
22

23 class Screen{
24 private:
25 TFT_eSPI m_tft = TFT_eSPI();
26 TFT_eSprite m_screen = TFT_eSprite(&m_tft);
27 // TFT_eSprite m_popupSprite = TFT_eSprite(&m_tft);
28

29 const uint16_t UVO_BLACK = m_tft.color565(0, 0, 5);
30 const uint16_t UVO_DARK_BLUE = m_tft.color565(59, 51, 85);
31 const uint16_t UVO_PURPLE = m_tft.color565(93, 93, 129);
32 const uint16_t UVO_LIGHT_BLUE = m_tft.color565(191, 205, 224);
33 const uint16_t UVO_WHITE = m_tft.color565(254, 252, 253);
34

35 const int m_TFT_WIDTH = 480;
36 const int m_TFT_HEIGHT = 320;
37

38 // Need to swap the width and height due to the rotation of the tft
screen

39 // Probably a bug in the system, or because I did something wrong
40 const int m_SPRITE_WIDTH = m_TFT_HEIGHT;
41 const int m_SPRITE_HEIGHT = m_TFT_WIDTH;
42

43 bool m_updateFrame;
44

45 void writeFrame(void);
46

47 void setBackground(TFT_eSprite& sprite);
48 void setBackgroundText(TFT_eSPI& sprite);
49 void test(void);
50

51 public:
52 Screen(void);
53 ~Screen();
54 void init(void);
55 void update(void);
56

57 };
58 }
59 }

81

60 #endif

Listing E.16: include/components/GUI/screen.hpp

include/modules/control_module
main_controller.hpp

1 // **
2 // EE3L11: Bachelor Graduation Project
3 // GROUP M: UVC SEED STERILIZATION
4 // SUBGROUP: SOFTWARE AND CONTROL
5 // MEMBERS: Erman E r g l , Erik van Weelderen
6 //
7 // BY ERIK VAN WEELDEREN
8 // DATE: 16-6-2023
9 // **

10

11 #ifndef _MAIN_CONTROLLER_HPP
12 #define _MAIN_CONTROLLER_HPP
13

14 #include "main_controller_defines.hpp"
15

16 #ifdef USE_NORMAL_SCREEN
17 #include "components/GUI/screen.hpp"
18 #else
19 #include "components/GUI/GUISlice_screen.hpp"
20 #endif
21

22 #include "components/settings.hpp"
23 #include "components/communication/main_controller_communication_interface

.hpp"
24 #include "components/GUI/button.hpp"
25 #include "components/GUI/rotary_encoder.hpp"
26

27 namespace UVO_MainController {
28

29 #ifdef USE_BUTTONS
30 enum UIEvent {UIbuttonUpPressed , UIbuttonDownPressed ,

UIbuttonRotaryPressed , UIrotaryRight , UIrotaryLeft , UInoEvent};
31 extern volatile UIEvent last_ui_event;
32

33 void onButtonUpPressISR(Button2& t_button);
34 void onButtonDownPressISR(Button2& t_button);
35 void onButtonRotaryPressISR(Button2& t_button);
36 void onRotaryRightISR(ESPRotary& t_rotary);
37 void onRotaryLeftISR(ESPRotary& t_rotary);
38 #endif
39

40

41 class MainController{
42 private:
43 UVO_Components::s_systemState m_systemState;
44 UVO_Components::s_setupSettings m_setupSettings;
45

46 #ifdef USE_BUTTONS
47 Button2 m_upButton;
48 Button2 m_downButton;

82

49 Button2 m_rotaryButton;
50 ESPRotary m_rotaryEncoder;
51 #endif
52

53 #ifdef USE_SCREEN
54 #ifdef USE_NORMAL_SCREEN
55 #error "THE USE OF THE NORMAL SCREEN IS CURRENTLY NOT IMPLEMENTED ,

PLEASE USE THE GUISLICE CODE"
56 UVO_Components::Screen::Screen m_screen;
57 #else
58 UVO_Components::GUISlice::Screen m_screen;
59 #endif
60 #endif
61

62 #ifdef USE_COMMUNICATION_INTERFACE
63 UVO_MainController::MainCommunicationInterface

m_communication_interface{UVO_CommunicationProtocol::
MAIN_CONTROLLER_ADDRESS};

64 #endif
65

66 #ifdef USE_BUTTONS
67 void initUI(void);
68 void processUI(void);
69

70 void onButtonUpPress(Button2& t_button);
71 void onButtonDownPress(Button2& t_button);
72 void onEnterButtonPress(Button2& t_button);
73 void onRotaryRight(ESPRotary& t_rotary);
74 void onRotaryLeft(ESPRotary& t_rotary);
75 void changeSettingElement(int t_amount);
76 #endif
77

78 public:
79 MainController();
80 ~MainController();
81 void init(void);
82 void update(void);
83 };
84

85 }
86

87 #endif

Listing E.17: include/modules/control_module/main_controller.hpp

main_controller_defines.hpp
1 // **
2 // EE3L11: Bachelor Graduation Project
3 // GROUP M: UVC SEED STERILIZATION
4 // SUBGROUP: SOFTWARE AND CONTROL
5 // MEMBERS: Erman E r g l , Erik van Weelderen
6 //
7 // BY ERIK VAN WEELDEREN
8 // DATE: 16-6-2023
9 // **

10

11 #ifndef _MAIN_CONTROLLER_DEFINES_HPP

83

12 #define _MAIN_CONTROLLER_DEFINES_HPP
13

14

15

16 // ***
17 //
18 // TFT SCREEN DEFINES
19 //
20 // ***
21

22 #ifdef USE_SCREEN
23

24 // These values are defined in the platformio.ini, otherwise the code does
not function, however, here is a list of the pin defines.

25

26 // #define USER_SETUP_LOADED
27 // #define ST7796_DRIVER
28

29 // #define TFT_RST 32
30 // #define TFT_MISO 19
31 // #define TFT_MOSI 23
32 // #define TFT_SCLK 18
33 // #define TFT_CS 4
34 // #define TFT_DC 2
35

36 // #define LOAD_GLCD
37 // #define LOAD_FONT2
38 // #define LOAD_FONT4
39 // #define LOAD_FONT6
40 // #define LOAD_FONT7
41 // #define LOAD_FONT8
42 // #define LOAD_GFXFF
43 // #define SMOOTH_FONT
44 // #define SPI_FREQUENCY 27000000
45

46 #endif
47

48

49 #define DTR_PIN 0
50 #define SPI_CS_SD 5
51 #define POWER_ENABLE_PIN 21
52

53 //TODO
54 // #define MOSI?
55 // #define MISO?
56 // #define SPI_CS_DISPLAY
57 // #define SCREEN_RST
58 // #define BACKLIT 12
59

60 #define ENABLE_SWITCH_PIN 22
61

62

63

64 // ***
65 //
66 // BUTTONS AND ROTARY ENCODER DEFINES

84

67 //
68 // ***
69

70 // https://www.esp32.com/viewtopic.php?t=3206
71 #define SENSOR_VP 36
72 #define SENSOR_VN 39
73

74 #define ROTARY_ENCODER_A_PIN SENSOR_VP
75 #define ROTARY_ENCODER_B_PIN SENSOR_VN
76 #define ROTARY_ENCODER_PUSH_PIN 27
77

78 #define BUTTON_UP_PIN 34
79 #define BUTTON_DOWN_PIN 35
80

81

82

83 #define SPI_CS_XPT 33
84

85 #define nRESET_SWITCH_PIN 25
86 #define nRESET_LED_SWITCH_PIN 13
87 #define nRESET_MC_SWITCH 15
88

89 #define SDA_PIN 26
90 #define SCL_PIN 14
91

92

93

94 #endif

Listing E.18: include/modules/control_module/main_controller_defines.hpp

src
logger.cpp

1 // **
2 // EE3L11: Bachelor Graduation Project
3 // GROUP M: UVC SEED STERILIZATION
4 // SUBGROUP: SOFTWARE AND CONTROL
5 // MEMBERS: Erman E r g l , Erik van Weelderen
6 //
7 // BY ERIK VAN WEELDEREN
8 // DATE: 16-6-2023
9 // **

10

11

12 //TODO
13 // log errors when a flag gets set high
14 //

Listing E.19: src/logger.cpp

main.cpp
1 // **
2 // EE3L11: Bachelor Graduation Project
3 // GROUP M: UVC SEED STERILIZATION
4 // SUBGROUP: SOFTWARE AND CONTROL
5 // MEMBERS: Erman E r g l , Erik van Weelderen

85

6 //
7 // BY ERIK VAN WEELDEREN
8 // DATE: 16-6-2023
9 // **

10

11 #include "main.hpp"
12

13 void setup() {
14 Serial.begin(9600);
15 Controller.init();
16 }
17

18

19 void loop(void) {
20 Controller.update();
21 }

Listing E.20: src/main.cpp

src/communication_test
I2C_communication_test.cpp

1 // **
2 // EE3L11: Bachelor Graduation Project
3 // GROUP M: UVC SEED STERILIZATION
4 // SUBGROUP: SOFTWARE AND CONTROL
5 // MEMBERS: Erman E r g l , Erik van Weelderen
6 //
7 // BY ERIK VAN WEELDEREN
8 // DATE: 16-6-2023
9 // **

10

11 #include "I2C_communication_test.hpp"
12 #include "components/communication/communication_protocol.hpp"
13

14 namespace UVO_UNIT_TESTS {
15 void receive(int);
16 void request(void);
17

18 UNOTransceiver::UNOTransceiver(OperationMode t_operationMode , int
t_I2C_address){

19 m_operationMode = t_operationMode;
20 m_I2C_address = t_I2C_address;
21 }
22

23 void UNOTransceiver::init(){
24 slaveInit();
25 Wire.begin(m_I2C_address);
26 Serial.begin(9600); // start serial for output
27 }
28

29 void UNOTransceiver::slaveInit(){
30 // Wire.onRequest(requestEvent);
31 Wire.onReceive(receive);
32 Wire.onRequest(request);
33 }
34

86

35

36 void UNOTransceiver::update(){
37 slaveUpdate();
38 }
39

40 void receive(int){
41 UVO_CommunicationProtocol::TPackageTypeToken packageType;
42 packageType = (UVO_CommunicationProtocol::TPackageTypeToken) Wire.read

();
43 Serial.println(packageType);
44

45 while(Wire.available()){
46 Serial.println(Wire.read());
47 }
48 }
49

50 void request(void){
51 double test = 1.5f;
52 byte* tp = (byte*) &test;
53 Wire.write(tp, sizeof(test));
54 }
55

56 void UNOTransceiver::slaveUpdate(void){
57 delay(100);
58 }
59 }

Listing E.21: src/communication_test/I2C_communication_test.cpp

I2C_communication_test.hpp
1 // **
2 // EE3L11: Bachelor Graduation Project
3 // GROUP M: UVC SEED STERILIZATION
4 // SUBGROUP: SOFTWARE AND CONTROL
5 // MEMBERS: Erman E r g l , Erik van Weelderen
6 //
7 // BY ERIK VAN WEELDEREN
8 // DATE: 16-6-2023
9 // **

10

11 #ifndef _UNO_CONTROLLERS_HPP
12 #define _UNO_CONTROLLERS_HPP
13

14 #include "components/communication/I2C_interface.hpp"
15 #include "components/communication/main_controller_communication_interface

.hpp"
16 #include "components/communication/communication_protocol.hpp"
17 // #include <random.h>
18

19

20 namespace UVO_UNIT_TESTS {
21 const int MASTER_ADDRESS = 40;
22 const int SLAVE_ADDRESS = 50;
23

24 enum OperationMode {SLAVE_OPERATION_MODE , MASTER_OPERATION_MODE};
25

26 class UNOTransceiver

87

27 {
28 private:
29 OperationMode m_operationMode;
30 int m_I2C_address;
31 void masterInit(void);
32 void slaveInit(void);
33

34 void masterUpdate(void);
35 void slaveUpdate(void);
36

37 public:
38 UNOTransceiver(OperationMode t_operationMode , int t_I2C_address);
39 void init();
40 void update();
41 };
42

43 void requestEvent(void);
44

45 }
46

47 #endif

Listing E.22: src/communication_test/I2C_communication_test.hpp

src/components
sd_interface.cpp

1 // **
2 // EE3L11: Bachelor Graduation Project
3 // GROUP M: UVC SEED STERILIZATION
4 // SUBGROUP: SOFTWARE AND CONTROL
5 // MEMBERS: Erman E r g l , Erik van Weelderen
6 //
7 // BY ERIK VAN WEELDEREN
8 // DATE: 16-6-2023
9 // **

10

11 class SDInterface
12 {
13 private:
14 /* data */
15 public:
16 SDInterface(/* args */);
17 ~SDInterface();
18 };
19

20 SDInterface::SDInterface(/* args */)
21 {
22 }
23

24 SDInterface::~SDInterface()
25 {
26 }

Listing E.23: src/components/sd_interface.cpp

sensor.cpp

88

1 // **
2 // EE3L11: Bachelor Graduation Project
3 // GROUP M: UVC SEED STERILIZATION
4 // SUBGROUP: SOFTWARE AND CONTROL
5 // MEMBERS: Erman E r g l , Erik van Weelderen
6 //
7 // BY ERIK VAN WEELDEREN
8 // DATE: 16-6-2023
9 // **

10

11 #include "components/communication/sensor.hpp"
12 #include <stdio.h>
13

14 namespace UVO_Components{
15

16 namespace sensors {
17

18

19 }
20 }

Listing E.24: src/components/sensor.cpp

settings.cpp
1 // **
2 // EE3L11: Bachelor Graduation Project
3 // GROUP M: UVC SEED STERILIZATION
4 // SUBGROUP: SOFTWARE AND CONTROL
5 // MEMBERS: Erman E r g l , Erik van Weelderen
6 //
7 // BY ERIK VAN WEELDEREN
8 // DATE: 16-6-2023
9 // **

10

11 #include "components/settings.hpp"

Listing E.25: src/components/settings.cpp

src/components/communication
I2C_interface.cpp

1 // **
2 // EE3L11: Bachelor Graduation Project
3 // GROUP M: UVC SEED STERILIZATION
4 // SUBGROUP: SOFTWARE AND CONTROL
5 // MEMBERS: Erman E r g l , Erik van Weelderen
6 //
7 // BY ERIK VAN WEELDEREN
8 // DATE: 16-6-2023
9 // **

10

11 #include "components/communication/I2C_interface.hpp"
12

13 // https://www.gammon.com.au/i2c
14

15

16 namespace UVO_Components {

89

17

18 I2CInterface::I2CInterface(int t_I2C_address){
19 m_I2C_address = t_I2C_address;
20

21 Wire.begin(m_I2C_address);
22 }
23

24 // I2CInterface::I2CInterface(int t_I2C_address , int t_SDA_pin , int
t_SCL_pin){

25 // m_SDA_pin = t_SDA_pin;
26 // m_SCL_pin = t_SCL_pin;
27 // m_I2C_address = t_I2C_address;
28

29 // // Wire.begin(m_SDA_pin , m_SCL_pin , m_I2C_address);
30 // }
31

32

33 I2CInterface::~I2CInterface(){
34 Wire.end();
35 }
36

37 void I2CInterface::sendMessages(int address, byte* message, int
message_length){

38 Wire.beginTransmission(address);
39 Wire.write(message, (size_t) message_length);
40 Wire.endTransmission();
41

42 //TODO fix error checking
43 // return true;
44 }
45

46 int I2CInterface::requestAndReadAnswer(int I2C_address , byte*
receive_message , int bytes_requested){

47 //TODO CHECK OUT IF requestFrom can also be implemented using restart=
false

48 int num_bytes_received = Wire.requestFrom(I2C_address , bytes_requested);
49

50 //TODO MULTILPE CHECKS
51 if(Wire.available()){
52 Wire.readBytes(receive_message , num_bytes_received);
53 }
54

55 //TODO RETURN OPTIONAL VALUE IF ERROR FOR EXAMPLE
56 return num_bytes_received;
57 }
58

59 void I2CInterface::onRequest(void (*t_function)(void)){
60 Wire.onRequest(t_function);
61 }
62

63 void I2CInterface::onReceive(void (*t_function)(int)){
64 Wire.onReceive(t_function);
65 }
66

67 }

Listing E.26: src/components/communication/I2C_interface.cpp

90

main_controller_communication_interface.cpp
1 // **
2 // EE3L11: Bachelor Graduation Project
3 // GROUP M: UVC SEED STERILIZATION
4 // SUBGROUP: SOFTWARE AND CONTROL
5 // MEMBERS: Erman E r g l , Erik van Weelderen
6 //
7 // BY ERIK VAN WEELDEREN
8 // DATE: 16-6-2023
9 // **

10

11 #include "components/communication/main_controller_communication_interface
.hpp"

12

13 namespace UVO_MainController {
14

15 MainCommunicationInterface::MainCommunicationInterface(int t_I2C_address)
16 : m_I2C_Interface(t_I2C_address)
17 {
18

19 }
20

21 MainCommunicationInterface::~MainCommunicationInterface(){
22

23 }
24

25 void MainCommunicationInterface::init(void){
26

27 }
28

29

30 // TODO: IMPLEMENT https://forum.arduino.cc/t/how-to-properly -use-wire-
onreceive/891195/2

31 void MainCommunicationInterface::update(void){
32 //TODO Implement good update function
33 double received_data;
34

35 received_data = requestSensorData(UVO_CommunicationProtocol::sensors::
TOP_LEDDriver::current_sensor_255nm);

36

37 Serial.println(received_data);
38

39 delay(1000);
40 }
41

42 int MainCommunicationInterface::sendMessageAndReadResponse(int
t_I2C_slave_address , byte* t_message , int t_message_length , int
t_bytes_requested , byte* t_response_data){

43 int response_length;
44

45 m_I2C_Interface.sendMessages(t_I2C_slave_address , t_message ,
t_message_length);

46

47 response_length = m_I2C_Interface.requestAndReadAnswer(
t_I2C_slave_address , t_response_data , t_bytes_requested);

48

91

49 if (response_length != t_bytes_requested){
50 //TODO Add log here.
51 }
52

53 return response_length;
54 }
55

56 double MainCommunicationInterface::requestSensorData(
UVO_CommunicationProtocol::Sensor t_sensor){

57

58 double response = 0;
59 int bytes_requested = sizeof(response);
60 byte* response_pointer = (byte*) &response;
61

62 int received_length = 0;
63

64 int I2C_address = t_sensor.module_address_I2C;
65

66 byte message[] = {UVO_CommunicationProtocol::PackageTypeToken::
REQUEST_SENSOR_DATA , t_sensor.sensorToken};

67 int message_length = sizeof(message) / sizeof(message[0]);
68

69 received_length = sendMessageAndReadResponse(I2C_address , message,
message_length , bytes_requested , response_pointer);

70

71 if (received_length != bytes_requested){
72 // TODO LOG SOMETHING IS WRONG
73 }
74

75

76 return response;
77 }
78

79 //bool MainCommunicationInterface::setPWMDutyCycle(Driver driver, int pwm)
{

80

81 // }
82

83 }

Listing E.27: src/components/communication/main_controller_communication_interface.cpp

src/components/GUI
button.cpp

1 // **
2 // EE3L11: Bachelor Graduation Project
3 // GROUP M: UVC SEED STERILIZATION
4 // SUBGROUP: SOFTWARE AND CONTROL
5 // MEMBERS: Erman E r g l , Erik van Weelderen
6 //
7 // BY ERIK VAN WEELDEREN
8 // DATE: 16-6-2023
9 // **

10

11 #include "components/GUI/button.hpp"

Listing E.28: src/components/GUI/button.cpp

92

GUISlice_screen.cpp
1 // **
2 // EE3L11: Bachelor Graduation Project
3 // GROUP M: UVC SEED STERILIZATION
4 // SUBGROUP: SOFTWARE AND CONTROL
5 // MEMBERS: Erman E r g l , Erik van Weelderen
6 //
7 // BY ERIK VAN WEELDEREN
8 // DATE: 16-6-2023
9 // **

10

11 #include "components/GUI/GUISlice_screen.hpp"
12

13 namespace UVO_Components {
14 namespace GUISlice {
15

16 //TODO include logo onto screen
17

18 #include "components/GUI/GUISlice_references_content.hpp"
19

20 Screen::Screen(s_setupSettings* t_initSettings){
21 init(t_initSettings);
22 }
23

24 Screen::Screen(void){
25 init();
26 }
27

28 Screen::~Screen(){
29

30 }
31

32 void Screen::GUISliceInit(void){
33 gslc_InitDebug(&DebugOut);
34

35 InitGUIslice_gen();
36 m_screenState.init_SETUP_sel_array();
37 }
38

39 void Screen::init(void){
40 pinMode(BACKLIGHT_PIN , OUTPUT);
41 digitalWrite(BACKLIGHT_PIN , HIGH);
42

43 m_screenState.elem_is_editing = false;
44 m_screenState.current_elem_idx = 0;
45 m_screenState.current_page_idx = 0;
46

47 GUISliceInit();
48 }
49

50 void Screen::init(s_setupSettings* t_initSettings){
51 setSetupSettings(t_initSettings);
52 init();
53 }
54

55 void Screen::setSetupSettings(s_setupSettings* t_Settings){

93

56 m_referenceSetupSettingsPointer = t_Settings;
57 displaySetupSettings(m_referenceSetupSettingsPointer);
58 gslc_Update(&m_gui);
59 }
60

61

62 void Screen::update(void){
63 if (m_referenceSetupSettingsPointer ->isUpdated){
64 displaySetupSettings(m_referenceSetupSettingsPointer);
65 m_referenceSetupSettingsPointer ->isUpdated = false;
66 }
67

68 gslc_Update(&m_gui);
69 }
70

71

72

73 void Screen::displaySetupSettings(s_setupSettings* t_new){
74 //TODO write this more elligible
75

76 //TODO IMPLEMENT SWITCH STATEMENT FOR WHICH PAGE YOU ARE ON
77

78 if (m_currentlyDisplayedSetupSettings.LED_intensity_255nm != t_new->
LED_intensity_255nm){

79 m_currentlyDisplayedSetupSettings.LED_intensity_255nm = t_new->
LED_intensity_255nm;

80 displayIntensity(m_pElem_SETUP_Intensity_255nm ,
m_currentlyDisplayedSetupSettings.LED_intensity_255nm);

81 }
82

83 if (m_currentlyDisplayedSetupSettings.LED_intensity_275nm != t_new->
LED_intensity_275nm){

84 m_currentlyDisplayedSetupSettings.LED_intensity_275nm = t_new->
LED_intensity_275nm;

85 displayIntensity(m_pElem_SETUP_Intensity_275nm ,
m_currentlyDisplayedSetupSettings.LED_intensity_275nm);

86 }
87

88 if (m_currentlyDisplayedSetupSettings.LED_intensity_285nm != t_new->
LED_intensity_285nm){

89 m_currentlyDisplayedSetupSettings.LED_intensity_285nm = t_new->
LED_intensity_285nm;

90 displayIntensity(m_pElem_SETUP_Intensity_285nm ,
m_currentlyDisplayedSetupSettings.LED_intensity_285nm);

91 }
92

93 if (m_currentlyDisplayedSetupSettings.LED_intensity_395nm != t_new->
LED_intensity_395nm){

94 m_currentlyDisplayedSetupSettings.LED_intensity_395nm = t_new->
LED_intensity_395nm;

95 displayIntensity(m_pElem_SETUP_Intensity_395nm ,
m_currentlyDisplayedSetupSettings.LED_intensity_395nm);

96 }
97

98 if (m_currentlyDisplayedSetupSettings.motor_intensity != t_new->
motor_intensity){

94

99 m_currentlyDisplayedSetupSettings.motor_intensity = t_new->
motor_intensity;

100 displayIntensity(m_pElem_SETUP_MotorIntensity ,
m_currentlyDisplayedSetupSettings.motor_intensity);

101 }
102

103 if (m_currentlyDisplayedSetupSettings.targetExposureTime != t_new->
targetExposureTime){

104 m_currentlyDisplayedSetupSettings.targetExposureTime = t_new->
targetExposureTime;

105 displayTime(m_pElem_SETUP_Hours , m_pElem_SETUP_Minutes ,
m_pElem_SETUP_Seconds , m_currentlyDisplayedSetupSettings.
targetExposureTime);

106 }
107

108 }
109

110 void Screen::displayInteger(gslc_tsElemRef* t_pElem, uint8_t t_value){
111 char txt[4];
112 snprintf(txt, 4, "%02d", t_value);
113 gslc_ElemSetTxtStr(&m_gui, t_pElem, txt);
114 }
115

116 void Screen::displayIntensity(gslc_tsElemRef* t_pElem, uint8_t t_intensity
){

117 int intensity_percentage = uint8_to_percentage(t_intensity);
118 displayInteger(t_pElem, intensity_percentage);
119 }
120

121 void Screen::displayTime(gslc_tsElemRef* t_pElem_hour , gslc_tsElemRef*
t_pElem_minutes , gslc_tsElemRef* t_pElem_seconds , time_t t_displayTime)
{

122 char hours_txt[3] = {0};
123 char minutes_txt[3] = {0};
124 char seconds_txt[3] = {0};
125 tm* curr_tm = localtime(&t_displayTime);
126 strftime(hours_txt , sizeof(hours_txt), "%HH", curr_tm);
127 strftime(minutes_txt , sizeof(minutes_txt), "%MM", curr_tm);
128 strftime(seconds_txt , sizeof(seconds_txt), "%SS", curr_tm);
129

130 gslc_ElemSetTxtStr(&m_gui, t_pElem_hour , hours_txt);
131 gslc_ElemSetTxtStr(&m_gui, t_pElem_minutes , minutes_txt);
132 gslc_ElemSetTxtStr(&m_gui, t_pElem_seconds , seconds_txt);
133 }
134

135

136 void Screen::selectPreviousElem(void){
137 int previous_idx = m_screenState.current_elem_idx - 1;
138 int min_idx = 0;
139

140 previous_idx = (previous_idx < min_idx) ? min_idx : previous_idx;
141

142 setSelectedElem(previous_idx);
143 }
144

145 void Screen::selectNextElem(void){

95

146 gslc_tsElemRef** current_elem_array = m_screenState.page_vec[
m_screenState.current_page_idx];

147 int max_idx = m_screenState.page_vec_array_sizes[m_screenState.
current_page_idx] - 1;

148

149 int next_idx = m_screenState.current_elem_idx + 1;
150 next_idx = (next_idx > max_idx) ? max_idx : next_idx;
151

152 setSelectedElem(next_idx);
153 }
154

155 void Screen::endEditSelectedElem(void){
156 m_screenState.elem_is_editing = false;
157 gslc_tsElemRef* current_elem = m_screenState.getCurrentlySelectedElem();
158 displayAsSelected(current_elem);
159 }
160

161 void Screen::beginEditSelectedElem(void){
162 m_screenState.elem_is_editing = true;
163 gslc_tsElemRef* current_elem = m_screenState.getCurrentlySelectedElem();
164 displayAsEditing(current_elem);
165 }
166

167 void Screen::toggleEditSelectedElem(void){
168 if (m_screenState.elem_is_editing){
169 endEditSelectedElem();
170 }
171 else{
172 beginEditSelectedElem();
173 }
174 }
175

176 bool Screen::isEditingElement(void){
177 return m_screenState.elem_is_editing;
178 }
179

180 uint16_t Screen::getCurrentElementID(void){
181 return m_screenState.getCurrentlySelectedElemID();
182 }
183

184

185 void Screen::setSelectedElem(gslc_tsElemRef* t_pElem){
186 std::optional<int> index = getIndex(m_screenState.

SETUP_page_selectable_items , m_screenState.
SETUP_page_selectable_items_size , t_pElem);

187

188 if (!index){
189 //TODO FIX WITH CUSTOM DEBUGGING FUNCTION
190 throw "Element not in array";
191 }
192

193 updateSelectedElem(index.value());
194 }
195

196 void Screen::setSelectedElem(int t_index){
197 updateSelectedElem(t_index);

96

198 }
199

200 void Screen::updateSelectedElem(int t_newSelectedIdx){
201 m_screenState.elem_is_editing = false;
202 int current_elem_idx = m_screenState.current_elem_idx;
203

204 if (t_newSelectedIdx != current_elem_idx){
205 gslc_tsElemRef* selectedElem = m_screenState.getCurrentlySelectedElem

();
206 resetElemOptions(selectedElem);
207

208 m_screenState.current_elem_idx = t_newSelectedIdx;
209

210 selectedElem = m_screenState.getCurrentlySelectedElem();
211 displayAsSelected(selectedElem);
212 }
213

214 }
215

216 void Screen::setColorFrame(gslc_tsElemRef* t_pElem, gslc_tsColor
t_colFrame){

217 gslc_tsColor current_colFill = t_pElem->pElem->colElemFill;
218 gslc_tsColor current_colFillGlow = t_pElem->pElem->colElemFillGlow;
219 gslc_ElemSetCol(&m_gui, t_pElem, t_colFrame , current_colFill ,

current_colFillGlow);
220 }
221

222 void Screen::setColorFill(gslc_tsElemRef* t_pElem, gslc_tsColor t_colFill)
{

223 gslc_tsColor current_colFrame = t_pElem->pElem->colElemFrame;
224 gslc_tsColor current_colFillGlow = t_pElem->pElem->colElemFillGlow;
225

226 gslc_ElemSetCol(&m_gui, t_pElem, current_colFrame , t_colFill ,
current_colFillGlow);

227 }
228

229 void Screen::resetElemOptions(gslc_tsElemRef* t_pElem){
230 gslc_ElemSetFrameEn(&m_gui, t_pElem, false);
231 gslc_ElemSetFillEn(&m_gui, t_pElem, false);
232 gslc_ElemSetTxtCol(&m_gui, t_pElem, UVO_BLACK);
233 }
234

235

236

237 void Screen::displayAsSelected(gslc_tsElemRef* t_pElem){
238 resetElemOptions(t_pElem);
239 gslc_ElemSetFrameEn(&m_gui, t_pElem, true);
240 }
241

242 void Screen::displayAsEditing(gslc_tsElemRef* t_pElem){
243 resetElemOptions(t_pElem);
244

245 gslc_ElemSetFrameEn(&m_gui, t_pElem, true);
246 gslc_ElemSetFillEn(&m_gui, t_pElem, true);
247 gslc_ElemSetTxtCol(&m_gui, t_pElem, UVO_WHITE);
248 }

97

249

250

251 bool Screen::hasFillEnabled(gslc_tsElemRef* t_pElem){
252 return t_pElem->pElem->nFeatures & (1 << GSLC_ELEM_FEA_FILL_EN);
253 }
254

255

256 //TODO MOVE TO OTHER FILE
257 int Screen::uint8_to_percentage(uint8_t value){
258 return value * 100.0/255;
259 }
260

261 //TODO MOVE TO OTHER FILE
262 template <typename T>
263 std::optional<int> Screen::getIndex(T* t_vec, int t_size, T t_elem){
264 for (int i = 0; i < t_size; i++){
265 if (t_vec[i] == t_elem){
266 return i;
267 }
268 }
269

270 return std::nullopt;
271 }
272

273 // int Screen::clip(int t_val, int t_min, int t_max){
274 // // int idx = (t_index > max_idx) ? max_idx : t_index;
275 // // idx = (idx < 0) ? 0 : idx;
276

277 // }
278

279 }
280 }

Listing E.29: src/components/GUI/GUISlice_screen.cpp

screen.cpp
1 // **
2 // EE3L11: Bachelor Graduation Project
3 // GROUP M: UVC SEED STERILIZATION
4 // SUBGROUP: SOFTWARE AND CONTROL
5 // MEMBERS: Erman E r g l , Erik van Weelderen
6 //
7 // BY ERIK VAN WEELDEREN
8 // DATE: 16-6-2023
9 // **

10

11 #include "components/GUI/screen.hpp"
12

13 // #include <stdio.h>
14 // #include <iostream >
15

16 namespace UVO_Components {
17 namespace Screen {
18

19 Screen::Screen(void) {
20 init();
21 }

98

22

23 Screen::~Screen(){
24

25 }
26

27 void Screen::init(void){
28 m_tft.init();
29 m_tft.setRotation(1);
30

31 pinMode(BACKLIGHT_PIN , OUTPUT);
32 digitalWrite(BACKLIGHT_PIN , HIGH);
33

34 m_tft.setSwapBytes(true); // swap the byte order
for pushImage() - corrects endianness

35 m_tft.fillScreen(TFT_SKYBLUE);
36 m_updateFrame = true;
37 }
38

39 void Screen::update(void){
40 if (m_updateFrame){
41 m_updateFrame = false;
42 test();
43 }
44 }
45

46

47 void Screen::test(void){
48 m_tft.fillScreen(UVO_DARK_BLUE);
49

50 m_screen.createSprite(m_SPRITE_WIDTH , m_SPRITE_HEIGHT);
51 m_screen.fillScreen(TFT_TRANSPARENT);
52

53 m_screen.fillRect(0, 0, 300, 100, TFT_GREEN);
54

55 setBackground(m_screen);
56

57 m_screen.setCursor(100, 300);
58 m_screen.setTextColor(TFT_BLACK , TFT_TRANSPARENT);
59 m_screen.setTextSize(3);
60 m_screen.println("Hello\n");
61

62 m_screen.pushSprite(0,0, TFT_TRANSPARENT);
63 m_screen.deleteSprite();
64 }
65

66 void Screen::setBackground(TFT_eSprite& sprite){
67 sprite.fillCircle(m_TFT_WIDTH/3, m_TFT_HEIGHT/2, 40, TFT_GREENYELLOW);
68 sprite.fillCircle(m_TFT_WIDTH/3, m_TFT_HEIGHT/2, 40, TFT_GREENYELLOW);
69 }
70

71 void Screen::setBackgroundText(TFT_eSPI& sprite){
72 sprite.setTextColor(TFT_BLACK);
73 sprite.setTextSize(3);
74

75 sprite.setCursor(20, 30);
76 sprite.println("Intensity (255nm):");

99

77

78 sprite.setCursor(20, 60);
79 sprite.println("Intensity (275nm):");
80

81 sprite.setCursor(20, 90);
82 sprite.println("Intensity (285nm):");
83

84 sprite.setCursor(20, 120);
85 sprite.println("Intensity (395nm):");
86 }
87

88 void Screen::writeFrame(void){
89 // m_tft.drawBitmap(0, 0, image, 100, 100, TFT_WHITE , TFT_BLACK);
90

91 m_tft.fillScreen(TFT_BLACK);
92

93 // m_tft.setRotation(3);
94 // m_tft.fillScreen (TFT_GREEN);
95 m_tft.fillScreen(TFT_BLUE);
96 // m_tft.fillRect(0,0, (int) (width*0.5), (int) (height*0.9), TFT_GREEN)

;
97

98 TFT_eSprite test = TFT_eSprite(&m_tft);
99

100 // test.createSprite(100, 100);
101 m_screen.createSprite(160, 160);
102 m_screen.setSwapBytes(true); // swap the byte order

for pushImage() - corrects endianness
103

104 // Useful to debug
105 if (m_screen.created()){
106 m_tft.fillRect(0,0,50,50, TFT_GREEN);
107 }
108 else{
109 m_tft.fillRect(0,0,50,50, TFT_RED);
110 }
111

112 // m_screen.pushSprite(300,100);
113 }
114

115 }
116 }

Listing E.30: src/components/GUI/screen.cpp

src/modules
main_controller.cpp

1 // **
2 // EE3L11: Bachelor Graduation Project
3 // GROUP M: UVC SEED STERILIZATION
4 // SUBGROUP: SOFTWARE AND CONTROL
5 // MEMBERS: Erman E r g l , Erik van Weelderen
6 //
7 // BY ERIK VAN WEELDEREN
8 // DATE: 16-6-2023
9 // **

100

10

11 #include "modules/control_module/main_controller.hpp"
12

13 namespace UVO_MainController {
14 #ifdef USE_BUTTONS
15 volatile UIEvent last_ui_event = UInoEvent;
16 #endif
17

18 MainController::MainController(){
19

20 }
21

22 MainController::~MainController(){
23

24 }
25

26 void MainController::init(void){
27 #ifdef USE_SCREEN
28 m_screen.init(&m_setupSettings);
29 #endif
30

31 #ifdef USE_COMMUNICATION_INTERFACE
32 m_communication_interface.init();
33 #endif
34

35 // initUI();
36 }
37

38 void MainController::update(void){
39 if (!m_setupSettings.isUpdated){
40 delay(1000);
41 m_setupSettings.addSeconds(1);
42

43 m_setupSettings.isUpdated = true;
44

45 m_screen.toggleEditSelectedElem();
46 }
47

48 #ifdef USE_BUTTONS
49 if (last_ui_event != UInoEvent){
50 processUI();
51 }
52 #endif
53

54 #ifdef USE_SCREEN
55 m_screen.update();
56 #endif
57

58 #ifdef USE_COMMUNICATION_INTERFACE
59 m_communication_interface.update();
60 #endif
61

62 }
63

64 #ifdef USE_BUTTONS
65 void MainController::initUI(void){

101

66 //TODO CHECK IF 5U is correct
67 m_upButton.begin(BUTTON_UP_PIN , 5U, false);
68 m_downButton.begin(BUTTON_DOWN_PIN , 5U, false);
69 m_rotaryButton.begin(ROTARY_ENCODER_PUSH_PIN , 5U, false);
70 //TODO FIND STEPS PER INC
71 m_rotaryEncoder.begin(ROTARY_ENCODER_A_PIN , ROTARY_ENCODER_B_PIN);
72

73 m_upButton.setClickHandler(onButtonUpPressISR);
74 m_downButton.setClickHandler(onButtonDownPressISR);
75 m_rotaryButton.setClickHandler(onButtonRotaryPressISR);
76

77 m_rotaryEncoder.setRightRotationHandler(onRotaryRightISR);
78 m_rotaryEncoder.setLeftRotationHandler(onRotaryLeftISR);
79 }
80

81 void MainController::processUI(void){
82 switch (last_ui_event){
83 case UIbuttonUpPressed:
84 onButtonUpPress(m_upButton);
85 break;
86 case UIbuttonDownPressed:
87 onButtonDownPress(m_downButton);
88 break;
89 case UIbuttonRotaryPressed:
90 onButtonRotaryPressISR(m_rotaryButton);
91 break;
92 case UIrotaryLeft:
93 onRotaryLeft(m_rotaryEncoder);
94 break;
95 case UIrotaryRight:
96 onRotaryRight(m_rotaryEncoder);
97 break;
98

99 default:
100 break;
101 }
102

103 last_ui_event = UInoEvent;
104 }
105

106 void onButtonUpPressISR(Button2& t_button){
107 last_ui_event=UIbuttonUpPressed;
108 }
109 void onButtonDownPressISR(Button2& t_button){
110 last_ui_event=UIbuttonDownPressed;
111 }
112 void onButtonRotaryPressISR(Button2& t_button){
113 last_ui_event=UIbuttonRotaryPressed;
114 }
115 void onRotaryRightISR(ESPRotary& t_rotary){
116 last_ui_event=UIrotaryRight;
117 }
118 void onRotaryLeftISR(ESPRotary& t_rotary){
119 last_ui_event=UIrotaryLeft;
120 }
121

102

122 void MainController::onButtonUpPress(Button2& t_button){
123 if(!m_screen.isEditingElement()){
124 m_screen.selectPreviousElem();
125 }
126 }
127

128 void MainController::onButtonDownPress(Button2& t_button){
129 if(!m_screen.isEditingElement()){
130 m_screen.selectNextElem();
131 }
132 }
133

134 void MainController::onEnterButtonPress(Button2& t_button){
135 if(!m_screen.isEditingElement()){
136 m_screen.beginEditSelectedElem();
137 }
138 else{
139

140 }
141

142

143 }
144

145 void MainController::onRotaryRight(ESPRotary& t_rotary){
146 if(m_screen.isEditingElement()){
147 changeSettingElement(1);
148 }
149 else{
150 m_screen.selectNextElem();
151 }
152 }
153

154 void MainController::onRotaryLeft(ESPRotary& t_rotary){
155 if(m_screen.isEditingElement()){
156 changeSettingElement(-1);
157 }
158 else{
159 m_screen.selectPreviousElem();
160 }
161

162 }
163

164

165 void MainController::changeSettingElement(int t_amount){
166 int16_t elem_id = m_screen.getCurrentElementID();
167

168 switch(elem_id)
169 {
170 case UVO_Components::GUISlice::E_ELEM_SETUP_Intensity_255nm:
171 m_setupSettings ->LED_intensity_255nm += t_amount;
172 break;
173 case UVO_Components::GUISlice::E_ELEM_SETUP_Intensity_275nm:
174 m_setupSettings ->LED_intensity_275nm += t_amount;
175 break;
176 case UVO_Components::GUISlice::E_ELEM_SETUP_Intensity_285nm:
177 m_setupSettings ->LED_intensity_285nm += t_amount;

103

178 break;
179 case UVO_Components::GUISlice::E_ELEM_SETUP_Intensity_395nm:
180 m_setupSettings ->LED_intensity_395nm += t_amount;
181 break;
182 case UVO_Components::GUISlice::E_ELEM_SETUP_Hours:
183 m_setupSettings ->addHours(t_amount);
184 break;
185 case UVO_Components::GUISlice::E_ELEM_SETUP_Minutes:
186 m_setupSettings ->addMinutes(t_amount);
187 break;
188 case UVO_Components::GUISlice::E_ELEM_SETUP_Seconds:
189 m_setupSettings ->addSeconds(t_amount);
190 break;
191 case UVO_Components::GUISlice::E_ELEM_SETUP_MotorIntensity:
192 m_setupSettings ->motor_intensity += t_amount;
193 break;
194 default:
195 break;
196 }
197 }
198 #endif
199

200 }

Listing E.31: src/modules/main_controller.cpp

F
Testing Report

104

D
el

ft
U

ni
ve

rs
it

y
of

Te
ch

no
lo

gy

UV-C LED Seed
Disinfection
Test results

EE3L11: Bachelor Graduation Project
E. Ergül
R.W.L. Imbens
L.C. Klootwijk
M. Mazurovs
D.O. Schat
E.H. van Weelderen

Preface & acknowledgement

This report presents the experiments of the research project aimed at the validation of the custom-built
UV-C LED disinfection device, targeted to disinfect fungi from seed. The project represents a collab-
orative effort by the team of students that set out to develop this device. Drawing upon the team’s
collective expertise in Electrical Engineering, there is designed and constructed a specialized UV-C
LED device capable of irradiating seed with far-ultraviolet light, known to be capable of disinfection.
The objective of this study was to evaluate the device’s performance in seed disinfection and to test
different setups in terms of wavelength to obtain meaningful results in hopefully eradicating pathogens,
thereby enhancing seed quality.

Throughout the project, the testing protocol was implemented to assess the device’s ability to disinfect
cabbage seed. The team prepared and conducted controlled experiments, in which multiple variables
such as exposure time, the wavelength of the UV-C light, and the intensity of UV-C radiation could be
controlled.

We express our deepest gratitude to all those who contributed to this endeavour, including our team
members, advisers, and the support of Rijk Zwaan who provided resources and guidance. It is our
hope that this report will not only advance scientific knowledge but also inspire further exploration and
adoption of UV-C using LED.

E. Ergül
R.W.L. Imbens
L.C. Klootwijk
M. Mazurovs
D.O. Schat

E.H. van Weelderen
Delft, June 2023

ii

Abstract

This report gives the results of using UV-C LED light for disinfecting plant seeds. This study focuses
on destroying Alternaria fungi on rape seeds. The machine used for the tests is a custom developed
UV-C radiating device which is enclosed in a safe casing for user-safety and features an integrated
control unit for easy selection of variables and parameters. Parameters that can be set are wavelength,
intensity and dose. Also, there is a vibration motor built into the seed bed so that seeds can be turned
around during testing to ensure an even radiation. The method used for testing is the PCR-method.
The results of the tests on the seeds does not give a significant difference, so conclusions can not
be determined yet. Other methods are needed to determine the effectiveness of the tests. Based
on integration testing of the machine and the literature, the machine has the potential to successfully
disinfect the seeds, so doing the recommended future work can be very interesting.

iii

Nomenclature

Abbreviations

Abbreviation Definition

LED Light Emitting Diode
UVC & UV-C Lowest range UV light (100 - 280 nm)
PSU Power Supply Unit
CU Control Unit
MCU & MC Motor Control Unit
LDS LED Driving & Sensing module
PCB Printed Circuit board
IC Integrated-Circuit, usually referring to a chip or mod-

ule
PoR programme of requirements
MR Mandatory requirements
ToR trade-off requirements

Symbols

Symbol Definition Unit

P Power [W]
D Dose [mJ/cm2]
t Time [s]
λ Wavelength [nm]

iv

Contents

Preface ii

Summary iii

Nomenclature iv

1 Introduction 1
1.1 Problem definition . 1
1.2 Hypothesis . 2

2 Testing setup 3

3 Methodology 5
3.1 Testing parameters for PCR tests . 5

3.1.1 Selecting proper dose . 5
3.1.2 Parameter selection . 6

3.2 Testing parameters for silicon tests . 7
3.2.1 Selecting proper dose . 7

3.3 Testing yeast . 7
3.4 Testing protocol . 8

4 Results 9
4.1 PCR test results . 9
4.2 Silicon wafer test results . 11
4.3 Yeast test results . 11

5 Discussion 12

6 Conclusion 13

References 14

v

1
Introduction

As the world population increases and food production should be more and more efficient and sustain-
able, improvements and offering more sustainable technologies in the agricultural sector become more
and more important. Seed disinfection plays a critical role in ensuring the quality and health of crops.
Contamination by pathogenic microorganisms, such as Alternaria, can significantly impact seed quality
and crop yield. In the pursuit of effective seed disinfection methods, our research team has conducted
a study to evaluate the efficacy of an in-house built UV-C device hopefully capable of eliminating mi-
crobial contaminants from seeds.

This technical report presents the findings of the disinfection from this UV-C device and an analysis
of some key parameters. With the use of the far-ultraviolet irradiation principles, the device offers a
promising alternative to conventional warm seed bathing or even chemical treatments by effectively
inactivating fungi.

The primary objective of our research was to assess the performance of the UV-C device in disinfecting
cabbage seeds. We aimed to determine the device’s impact on seed quality in terms of reduction in
Alternaria. By varying exposure time, wavelength, and intensity of UV-C radiation, we sought to identify
optimal disinfection parameters that balance effective pathogen elimination.

To achieve accurate and reliable results, the testing procedures adhered to standardised protocols for
all tests. We performed multiple replicates of each experiment to ensure robustness and consistency
in the data. Moreover, we employed appropriate control groups and reference samples to establish a
baseline for comparison and validate the efficacy of the UV-C device.

In the subsequent sections of this report, we will present a detailed description of our methodology,
including the setup of the UV-C device and experimental procedures. We will then provide an analysis
of the results obtained. Additionally, we will discuss the limitations encountered during the testing pro-
cess and offer recommendations for further research and potential applications of the UV-C device in
seed disinfection practices.

1.1. Problem definition
The disinfection of seeds is a critical process in the seed breeding industry to ensure optimal quality and
therefore crop yield. However, traditional seed disinfection methods often rely on inefficient treatments.
UV-C might be the next step in industry-leading disinfection methods.

In light of this objective, our research focuses on evaluating the efficacy of our custom-built UV-C de-
vice for seed disinfection. The primary objective addressed in this technical report is to determine the
performance of this UV-C device in eliminating the fungus Alternaria on cabbage seed. By assessing
the effectiveness of the UV-C device, we aim to address the following key questions:

• Can the UV-C device effectively inactivate (Alternaria) fungi on the seed?

1

1.2. Hypothesis 2

• What are the optimal parameters, such as exposure time, the wavelength of UV-C, and the inten-
sity of UV-C radiation for effective seed disinfection without compromising seed viability?

• What are the potential practical applications of the UV-C device in seed disinfection practices,
and how does it contribute to sustainable and environmentally friendly agricultural practices?

• How does the UV-C device compare to the conventional warm water bathing method in terms of
microbial reduction and overall seed quality?

The testing of Alternaria residue will be performed by Rijk Zwaan, located in De Lier, one of the world
leaders in seed breeding. Rijk Zwaan will make use of PCR testing to determine the seed disinfection.

By providing answers to these questions, this technical report aims to contribute to the development and
adoption of advanced seed disinfection technologies that offer efficient and more sustainable pathogen
elimination while maintaining seed quality.

1.2. Hypothesis
Based on the literature, the hypothesis is that UVC-LED light can be used to disinfect the seeds. The
Alternaria fungi can be eliminated by destroying the DNA and RNA structures by using a wavelength
of 255nm and the protein structures can be destroyed by using a combination of 275nm and 285nm.

2
Testing setup

Firstly the test setup will be explained. The test setup consists of a seed bed surrounded by two LED
panels, which radiate UV-C light onto the seeds. A vibration motor will move and turn all seeds so that
the seed surface is radiated as evenly as possible. Figure 2.1 provides an overview of the test setup.

Figure 2.1: Seed distribution on a circular plate with 10cm diameter assuming 2.75 mm seed thickness.

The seedbed is a circular quartz plate with a diameter of 10 centimetres. The surface of the radiated
area can then be calculated according to Equation 2.1.

ASeedBed = π · r2 = π ·
(
d

2

)2

= π ·
(
10

2

)2

= 78.5 cm2 (2.1)

Assuming a rapeseed diameter of 2 mm on average with an additional 0.75 mm margin per seed for
stacking and placing seeds, the number of seeds that can be tested in one batch on the plate can be
simulated. This can be observed in Figure 2.2.

3

4

Figure 2.2: Seed distribution on a circular plate with 10cm diameter assuming 2.75 mm seed thickness.

The LEDs used in the setup and the specs are shown in Table 2.1. The optical output power is
an essential parameter since the radiation time is dependent on this if a certain dose is desired to be
radiated.

Wavelength Typical Forward
Voltage

Typical Forward
Current

Dissipated
Power

Optical Output
Power

255 7.5V 100mA 0.75W 3.5mW
275 6.0V 85mA 0.51W 11.5mW
285 6.5V 90mA 0.585W 10mW
395 3.2V 75mA 0.24W 11.5mW

Table 2.1: Specifications of the LEDs used in the machine.

Radiation dose can be calculated using Equation 2.2. Each LED panel consists of 12 LEDs. Radiating
is done from both sides, so the amount of LEDs and radiations surface is doubled.

Dose =
Ptotal · t

2 ·ASeedBed
=

2 · 12 · Poptical · t
ASeedBed

(2.2)

Rewriting this equation to get the radiation time gives:

t =
ASeedBed ·Dose

2 · 12 · Poptical
(2.3)

3
Methodology

In order to achieve meaningful results, Rijk Zwaan has provided PCR testing to determine the residue
of Alternaria and cabbage seed to disinfect. Unfortunately, time and test size constraints will limit the
extensiveness of this research. Because of this, ten individual tests with different parameters can be
performed, each of which will have a similar test as the control.

Before testing the actual cabbage seed, a pre-test is used to evaluate the radiation pattern of the
UV-C LED disinfecting device. A silicon wafer is placed as a substitution for the quartz plate, which
will act as a target. The silicon wafer, known for its light absorption characteristics, will be examined
after exposure to UV-C. This pre-test aimed to visualize and analyze the distribution of UV-C radiation
emitted by the device.’

Extending tests may be possible by the use of yeast. Irradiating yeast in its powder form commonly
found in grocery stores can be an indicator of disinfection when added to sugar water. When the yeast
is irradiated and killed, it should not create any bubbles in the sugar water.

3.1. Testing parameters for PCR tests
PCR tests can indicate the residue of genetic material, in this case Alternaria, on the seeds and can
therefore be used to determine if the device works. Because of the limitations in test size of 10, some
meaningful test setups with different parameters should be explored. Table 3.1 gives the chosen pa-
rameters for each individual test.
The following parameters can be set and researched; wavelength, motor speed, time and dose. The
dose is related to the time and intensity of certain LEDs. It should be noted wavelength 3, λ395, is not
in the UV-C spectrum, but is UV-A. Literature suggested that pre-treatment with longer wavelengths of
ultraviolet light can activate the pathogens and therefore make them weaker than in their ”sleep”.

3.1.1. Selecting proper dose
The dose is proportional to the exposure time and intensity of the LEDs. Choosing a useful exposure
time is crucial for optimal test results. Based on literature, Alternaria can be eliminated by radiating
with a dose of around 5kJm−2 [1, 2]. To investigate the relation of doses versus pathogen presence,
seeds will be radiated by different radiation doses. The expected relation is a logarithmic curve. The
doses which are chosen for different radiation levels are the following:

• 0.25 kJ/m2

• 1 kJ/m2

• 5 kJ/m2

According to Equation 2.3, the efficiencies from Table 2.1, and the area from Equation 2.1, the radiation
time can now be calculated for each LED.

5

3.1. Testing parameters for PCR tests 6

tλ255nm(0.25kJm−2) =
78.5 · 10−4 · 0.25 · 103

2 · 12 · 3.5 · 10−3
= 23.2s

tλ255nm(1kJm−2) =
78.5 · 10−4 · 1 · 103
2 · 12 · 3.5 · 10−3

= 92.9s

tλ255nm(5kJm−2) =
78.5 · 10−4 · 5 · 103
2 · 12 · 3.5 · 10−3

= 464.3s

tλ275nm(0.25kJm−2) =
78.5 · 10−4 · 0.25 · 103
2 · 12 · 11.5 · 10−3

= 7.07s

tλ275nm(1kJm−2) =
78.5 · 10−4 · 1 · 103
2 · 12 · 11.5 · 10−3

= 28.3s

tλ275nm(5kJm−2) =
78.5 · 10−4 · 5 · 103
2 · 12 · 11.5 · 10−3

= 142.2s

tλ395nm(0.25kJm−2) =
78.5 · 10−4 · 0.25 · 103
2 · 12 · 11.5 · 10−3

= 7.07s

tλ395nm(1kJm−2) =
78.5 · 10−4 · 1 · 103
2 · 12 · 11.5 · 10−3

= 28.3s

tλ395nm(5kJm−2) =
78.5 · 10−4 · 5 · 103
2 · 12 · 11.5 · 10−3

= 142.2s

3.1.2. Parameter selection

Test plan Motor Hot air [°C] λ255nm λ275nm λ395nm time [s] Dose [kJ/m2]
Test 1, control off - - - - - -
Test 2 off - 100% - - 92.9 1
Test 3 on 40 100% - - 92.9 1
Test 4 on - 100% - - 23.2 0.25
Test 5 on - 100% - - 464.3 5
Test 6 on - 100% - - 92.9 1
Test 7 on - - 100% - 7.07 0.25
Test 8 on - - 100% - 28.3 1
Test 9 on - - 100% - 142.2 5
Test 10 on - 100% - 100% 92.9 λ255nm, 28.3 λ395nm 1+1

Table 3.1: Tested parameters

The tests setups in table 3.1 explained:
• Test 1 will be a control without UV treatment, motor vibration and hot air pre-treatment.
• Test 2 tests the effectiveness of the motor.
• Test 3 tests the effectiveness of a hot air pre-treatment. By comparing tests 1, 2, 3 and 6 the
effectiveness of the motor and the hot air-pre-treatment can be determined.

• Test 4 tests the effectiveness of λ255 with a dose of 0.25 [kJ/m2].
• Test 5 tests the effectiveness of λ255 with a dose of 5 [kJ/m2].
• Test 6 tests the effectiveness of λ255 with a dose of 1 [kJ/m2].
• Test 7 tests the effectiveness of λ275 with a dose of 0.25 [kJ/m2].
• Test 8 tests the effectiveness of λ275 with a dose of 1 [kJ/m2].
• Test 9 tests the effectiveness of λ275 with a dose of 5 [kJ/m2].
• Test 10 tests the effectiveness of pre-treatment with a longer wavelength, in UV-A, λ395 in com-
bination with λ255. Each wavelength will deliver a dose of 1 [kJ/m2], making the total 2 [kJ/m2].
To be compared with test 6.

Please note that test 10 actually delivers a total dose of 2 [kJ/m2]. This is not expected to spoil the
result because UV-A is not known for strong germicidal and disinfecting capabilities.

3.2. Testing parameters for silicon tests 7

3.2. Testing parameters for silicon tests
3.2.1. Selecting proper dose
Silicon wafers are photoreactive for wavelengths between 300nm and 500nm. The silicon wafers can
give an indication about the irradiation pattern and uniformity of radiation on the plate.

The proper dosage of UV-C radiation in which results would be visible is about 40mJ/cm2. As stated
earlier, the LEDs have an optical power output of:

• 3.5 mW for a 255 nm LED
• 11.5 mW for a 275 nm LED
• 10 mW for a 285 nm LED
• 11.5 mW for a 395 nm LED

As stated earlier, the 285 nm LEDs don’t work properly and therefore cannot be tested. the area of
the plate is 78.5 cm2. There are 12 LEDs for each LED type. As the wafer is only photo reactive from
the top, only the top PCB will be turned and used for irradiation. Note silicon is mostly reactive in the
300-500 nm region, so the 395 nm LEDs are expected to yield the most promising results.

Parea,255nm =
3.5 · 12
78.5

= 0.53mW/cm2

Parea,275nm =
11.5 · 12
78.5

= 1.75mW/cm2

Parea,395nm =
11.5 · 12
78.5

= 1.75mW/cm2

Meaning, for 40mJ/cm2 the device should be turned on for a total of 74.8 seconds for the 255 nm LEDs
and 22.8 seconds for the 395 and 275 nm LEDs. Some meaningful parameter testing is given in Table
3.2.

Parameter selection
Test plan Reflector Scanner λ395nm time [s] Dose

[mJ/cm2]
Test 1 no no 100% 22.8 40
Test 2 no no 100% 45.6 80
Test 3 yes no 100% 22.8 40
Test 4 yes no 100% 45.6 80
Test 5 no yes 100% 22.8 40
Test 6 yes yes 100% 45.6 80
Test 7 yes yes 100% 22.8 40
Test 8 no yes 100% 45.6 80

Table 3.2: Tested parameters

The following tests are conducted:

• Test 1 tests the radiation pattern of the 395 nm LEDs at the suggested dose.
• Test 2 tests the radiation pattern of the 395 nm LEDs at double the suggested dose.
• Test 3 and 4 tests the same parameters with the reflector put onto the sides of the seed bed.
• Test 5 till 8 tests the same parameters again so that the test set is doubled and on of the sets can
be used to directly see results after scanning it.

3.3. Testing yeast
To get an indication of the radiation needed to destroy fungi and to verify the calculations and effec-
tiveness of the tests above the machine can be tested by loading yeast into the seed bed. To test the
viability of yeast a sugar solution in water can be used. Testing this requires a similar concentration of

3.4. Testing protocol 8

sugar to test normal yeast and yeast radiated with UV-C light. Testing was done by filling up a translu-
cent glass of water with 200mL of water and mixing 30 grams of sugar. One of the glasses can be used
as a control test by monitoring the carbon dioxide (CO2) production. This can be compared with the
production of carbon dioxide from the yeast radiated with the light in the machine. Radiation is done
by a dose of 0.5 kJ/m2.

3.4. Testing protocol
To ensure accuracy and reliability in the evaluation of the UV-C device’s performance for seed disinfec-
tion, a standardized testing procedure was implemented. The procedure aimed to minimize potential
errors and inconsistencies, thereby providing consistent, reliable, and comparable results throughout
the testing process.

First, a controlled testing environment was established. This environment maintained similar condi-
tions as the tested seeds in terms of temperature, humidity, and lighting conditions to eliminate any
external factors that could influence the test outcomes.

The seed-disinfection device created by our team was employed for each trial to ensure reproducibility.
The seeds used in the tests were sourced from the same batch and were of uniform size and quality.
To guarantee consistency, a specific number of seeds were selected for each trial, namely 500, and
they have been evenly distributed across the test area.

The distance between the UV-C device and the seeds was kept constant throughout the testing pro-
cess. This distance and LED placement were determined based on prior research and optimization.

To further minimize errors, the exposure time was standardized for each test. Two predetermined
durations were chosen based on literature studies for effective seed disinfection of fungi (Alternaria).
This ensured that the seeds received the same UV-C dosage during each trial, allowing for an accurate
comparison of the disinfection outcomes.

In between tests, the quartz plate, which holds the seed, is thoroughly disinfected by radiation with-
out seeds in order to assure no pathogens are carried over to the next test batches.

Finally, when placing and removing the seeds from the quartz testing plate, no physical contact with
hands or non-sterile equipment is permitted. The seeds are placed in sterilized bags outside the device
in order to assure safe and sterile transport to Rijk Zwaan.

4
Results

4.1. PCR test results
The test results following from the PCR tests performed by Rijk Zwaan are given in Table 4.1. The
subsequent graphs are given in Figures 4.1, 4.2, and 4.3.

Sample FAM (A.brassicicola) VIC (A.brassicicola) Cy5
(A. brassicae)

TxR
(IAC Acat) Uitslag

S

1.1 20,98 24,80 N/A 19,48 A.brassicicola
2.1 21,00 24,63 37,74 19,36 A.brassicicola
3.1 20,21 24,04 N/A 19,49 A.brassicicola
4.1 21,31 25,14 N/A 19,40 A.brassicicola
5.1 21,78 25,40 N/A 19,46 A.brassicicola
6.1 21,14 25,04 N/A 19,49 A.brassicicola
7.1 20,88 24,48 N/A 19,67 A.brassicicola
8.1 21,17 25,16 N/A 20,41 A.brassicicola
9.1 20,70 24,54 N/A 19,62 A.brassicicola
10.1 21,58 25,42 N/A 19,47 A.brassicicola
1.2 21,10 25,06 N/A 19,55 A.brassicicola
2.2 20,75 24,43 38,81 19,68 A.brassicicola
3.2 21,37 25,27 36,79 19,81 A.brassicicola
4.2 21,11 24,79 N/A 19,69 A.brassicicola
5.2 21,81 25,55 N/A 19,76 A.brassicicola
6.2 22,67 26,38 N/A 20,62 A.brassicicola
7.2 21,05 24,82 N/A 19,75 A.brassicicola
8.2 21,05 24,86 N/A 19,45 A.brassicicola
9.2 21,20 25,04 N/A 19,49 A.brassicicola
10.2 21,12 25,11 N/A 19,72 A.brassicicola

C

QC_NTC N/A N/A N/A N/A Oke
QC_NPC N/A N/A N/A 21,57 Oke
QC_NAC N/A N/A N/A 23,20 Oke
QC_PC 19,69 18,03 19,39 N/A Oke

Table 4.1: PCR test results from Rijk Zwaan. The S indicates the samples, the C indicates the PCR-control tests.

9

4.1. PCR test results 10

Figure 4.1: The PCR Test tested with FAM.

Figure 4.2: The PCR Test tested with VIC.

Figure 4.3: The PCR Test tested with TxR.

4.2. Silicon wafer test results 11

4.2. Silicon wafer test results
The results for the silicon wafer test will mostly be visual comparison and therefore the data is qualitative.
The results are given in Figure 4.4.

(a) The silicon wafer radiated with a dose of 0.4 kJ/m2. (b) The silicon wafer radiated with a dose of 0.8 kJ/m2.

Figure 4.4: Silicon wafer radiated with UV-C light.

The silicon wafers are developed in a basic solution so that the exposed parts are dissolved and
the radiation pattern becomes visible.

4.3. Yeast test results
Yeast was tested in two glasses of water. Results are that the yeast from the control test was actively
producing CO2 and the radiated yeast was notably less active. The foam head as a result of the
production of carbon dioxide was way thinner than the control test.

5
Discussion

It is important to note that even with strict adherence to standardised procedures, it is possible for some
degree of variability to exist due to biological variations among seeds but also slight human errors. How-
ever, by implementing controls and consistent testing practices, the impact of such variations can be
minimised, ensuring reliable and valuable data for the evaluation of the UV-C device’s performance in
seed disinfection.

Also, the test results of the PCR tests measure how much DNA or RNA there is still left for a cer-
tain test string after the tests have been executed. In the case of these test results, test strings of the
pathogen A. brassicicola were used as a reference. From this, it could be investigated how much of
these pathogen material is still left in the samples. However, the PCR results do not point out whether
these structures are viable or not. Seeds can be disinfected while still detecting their structures. If
those structures are not viable anymore, they are not harmful to the plants, which is the desired result.
To summarize, the PCR method is not a good method to conclude whether seeds are disinfected, but
only to detect if DNA or RNA structures are still present.

Actually, this was not yet known at the beginning of the project, but this is a possible declaration for the
test results, which do not show any significant results. For future work, the ELIZA method is probably
a better method to test the effectiveness of the machine.

Figure 5.1: Cabbage seed
plated onto a semi-selective

agar medium to detect
Alternaria brassicicola [3]

This method does not test the DNA or RNA structures, but it tests the
protein structures. Detecting proteins with enzymes is a much more spe-
cific process, so the viability of the pathogens can be determined more
reliably.

Another method which would probably work better than the PCR
method is the blotter or malt agar method used by the Interna-
tional Seed Health Association [4]. In short how it works: treated
seeds get placed on a petridish on a medium, filter/blotter paper
or malt agar. After, the seeds get incubated and then freezed.
In the end, the seeds germinate and Alternaria grows too if it is
present on the seeds. This takes a bit more time than the PCR
method, however, less time than planting the seeds and examining the
leaves.

The results of the silicon wafer test can be used to verify the dose of the LEDs. The radiation pat-
tern cannot be determined reliably because the wafers are developed by hand which is much less
accurate than doing it automatically by a machine.

12

6
Conclusion

From the results in chapter 4, it can be seen that there are no significant differences in the results.
Although it cannot be concluded that the machine can successfully disinfect seeds, the PCR method
is not the best method to verify this. As explained in the Discussion section, future work is needed to
show if the machine can disinfect seeds. This conclusion is colourable since the yeast test results show
that UV-C light can eliminate fungi. The integration of the machine is successful. All submodules are
tested individually to ensure reliability and safety for both the electronic and user side. The integration
is also tested and the machine can select the user input and set the settings into the machine for reliable
testing. The verification of the dose of the LEDs is done by studying the colour pattern. It turns out the
dose is correctly radiated onto the seed bed. The machine has the potential to show the effectiveness
of the UV-C light and future work can be interesting to execute.

13

References

[1] Nan Jiang et al. “Effects of ultraviolet-c treatment on growth andmycotoxin production by Alternaria
strains isolated from tomato fruits”. In: International Journal of Food Microbiology 311 (2019),
p. 108333. ISSN: 0168-1605. DOI: https://doi.org/10.1016/j.ijfoodmicro.2019.108333.
URL: https://www.sciencedirect.com/science/article/pii/S0168160519302636.

[2] Dongqi Guo, Lixia Zhu, and Xujie Hou. “Combination of UV-C Treatment and Metschnikowia pul-
cherrimas for Controlling Alternaria Rot in Postharvest Winter Jujube Fruit”. In: Journal of Food
Science 80.1 (2015), pp. M137–M141. DOI: https://doi.org/10.1111/1750- 3841.12724.
eprint: https://ift.onlinelibrary.wiley.com/doi/pdf/10.1111/1750-3841.12724. URL:
https://ift.onlinelibrary.wiley.com/doi/abs/10.1111/1750-3841.12724.

[3] Lindsey du Toit. Cabbage seed plated onto a semi-selective agar medium to detect Alternaria
brassicicola. https://mtvernon.wsu.edu/path_team/cabbage.htm#alternariablackspot.
2023.

[4] International Seed Health Association. “International Rules for Seed Testing 2022: Validated Seed
Health Testing Methods”. In: 2023.Number 1 (2023), i-7–6(6).

14

	Abstract
	Preface
	List of Figures
	List of Tables
	Nomenclature
	Introduction
	Project Objective
	State-of-the-Art Analysis
	Ultraviolet light in the light spectrum
	Germicidal properties of Ultraviolet light
	Comparison of mercury UV lamps and UV LEDs
	Safety considerations of UV on humans

	Thesis Layout

	Programme of Requirements
	System Requirements
	Mandatory Requirements
	Trade-off Requirements

	Control Unit Requirements
	Mandatory Requirements
	Trade-off Requirements

	Optimization of the Radiation Pattern
	Introduction
	Wavelength selection of the UVC LEDs
	Analysis of the transmission of the plating
	Adding reflectors for optimal radiation
	LED placement for uniform irradiance
	Moving the seeds for uniform irradiance
	Overview of the radiation design

	System Enabling
	Introduction
	Hardware error detection logic
	Requirements
	Design of the logic circuit
	Software bypass

	Implementation of a User Interface
	Introduction
	Displaying on Screen using GUISlice
	Setup Screen
	Monitor Screen
	Error Popup Screen
	Physical User Input
	Visual feedback of the User Input

	LED Display

	Communication Protocol
	Introduction
	Selection of Base Protocol
	UART
	SPI
	I2C

	Class Implementation
	Template of Protocol Messages
	Tokens
	Sending the Command
	Request
	Receiving the Response

	Prototype Design and Implementation
	Introduction
	Prototype Design
	General Software Information
	External Connections
	Power Conversion
	USB Programmable
	Software Safety Measures
	System State
	Data Logging
	Buttons
	Voltage step-up
	Design for debugging and testing
	Final PCB Design for Control Unit
	Final Software Design for Control Unit

	Complete System Implementation

	Prototype Validation and Discussion of the Results
	Powering up the PCB
	Uploading to the PCB
	Testing of the User Inputs
	Push buttons
	Rotary encoder

	Testing the Error Detection Hardware
	Testing the I2C communication
	Testing the Screen
	Testing the entire software

	Conclusions, Recommendations, and Future Work
	Conclusions
	Recommendations
	Future Work

	CAD design of the Control Unit
	Test Setups
	Communication Protocol
	General Tokens
	LED Driver Tokens
	Motor Controller

	MATLAB Code
	Plotting transmission against quartz plate thickness for 260nm

	C++ code
	Testing Report

