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Room Acoustical Parameter Estimation from Room
Impulse Responses Using Deep Neural Networks

Wangyang Yu, Student Member, IEEE, W. Bastiaan Kleijn, Fellow, IEEE

Abstract—We describe a new method to estimate the geom-
etry of a room and reflection coefficients given room impulse
responses. The method utilizes convolutional neural networks
to estimate the room geometry and multilayer perceptrons to
estimate the reflection coefficients. The mean square error is
used as the loss function. In contrast to existing methods,
we do not require the knowledge of the relative positions of
sources and receivers in the room. The method can be used
with only a single RIR between one source and one receiver.
For simulated environments, the proposed estimation method
can achieve an average of 0.04 m accuracy for each dimension
in room geometry estimation and 0.09 accuracy in reflection
coefficients. For real-world environments, the room geometry
estimation method achieves an accuracy of an average of 0.065
m for each dimension.

Index Terms—Room impulse response, room geometry, reflec-
tion coefficient, deep neural network.

I. INTRODUCTION

AUGMENTED reality (AR) is an immersive audio-visual
environment where artificial objects are added to a real-

world scenario, providing the user with an enhanced and
interactive experience [1]. Augmented reality will play an
increasingly important role in numerous contexts, such as
education, manufacturing, and archaeology. An accurate de-
scription of acoustic environments is essential for generating
perceptually acceptable sound in an AR system. Estimating
room acoustical parameters forms an important aspect of
modeling an acoustic environment accurately. In this paper, we
consider the estimation of the room geometry and reflection
coefficients from room impulse responses.

The room impulse response (RIR), the transfer function
between the sound source and the listener, characterizes the
acoustic environment of a room. It is composed of direct-
direction sound, early reflections, and late reverberation. An
RIR is affected by the position of the sound source and the
receiver, the room geometry, and the reflection coefficients. In
the context of this paper, we consider rectangular rooms and
define room geometry to be a three-dimensional vector, which
contains the length, width, and height of a room. The room
geometry and the reflection coefficients can be used to model
and analyze acoustic behavior inside a room via RIRs. We are
interested in the estimation of the room acoustical parameters
from RIRs.

In this paper, we use deep learning to solve this estimation
problem. In recent years, deep learning has seen a rapid
increase in usage as a result of the increased computational
power and the availability of large databases. Relevant deep
neural networks (DNNs) to our work are feedforward multi-
layer perceptrons (MLPs) and convolutional neural networks

(CNNs). MLPs [2] are composed of fully connected layers
and can approximate most mapping functions. This property
makes them applicable in various areas, such as ecology [3],
chemistry [4], and climate change [5]. CNNs contain a set of
generalized filters of different levels to extract features from
the signals. CNNs have been used for various applications
such as image classification [6]–[8], and speech recognition
[9]–[11].

We use CNNs for room geometry estimation and MLPs for
the estimation of reflection coefficients. CNNs can analyze
data with salient spatial structures [12] and we hypothesize that
the room geometry defines patterns in RIR signals. Reflection
coefficients influence the strength of reflective pulses, which
we hypothesize MLPs are able to learn from RIR signals. Due
to the limited amount of real-world measured RIRs, we first
train the neural network with artificial data. After that, we
use transfer learning to make the model work with real-world
measured RIRs.

The main contribution of this paper is the usage of deep
neural networks to estimate room acoustical parameters. In
contrast to state-of-the-art methods for estimating room acous-
tical parameters, our method only requires a random RIR
between a single sound source and a single receiver in the
room without any additional information. The new room
geometry estimation model performs well with real-world
measured RIRs.

This paper is organized as follows. We review the relevant
background knowledge in section II. In section III, we formu-
late the estimation problem of the room acoustical parameters.
We then describe the solutions of the room geometry estima-
tion problem and the reflection coefficient estimation problem
separately in section IV and section V. The experimental
results are discussed and analyzed in detail in section VI.
Finally, we conclude our paper in section VII.

II. BACKGROUND

In this section, we discuss relevant background knowledge
of our work. We first describe the image source method, which
we use to generate the RIR database to train our base method
of room geometry estimation as described in section IV and to
estimate reflection coefficients as described in section V. We
aim to use MLPs to estimate reflection coefficients and CNNs
to estimate room geometry. Consequently, we discuss room
acoustical parameters estimation, multilayer perceptrons, and
convolutional neural networks in this section.

© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
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A. The image source method

The image source method [13]–[16], which was first pro-
posed by Allen and Berkley [16] in 1979, is commonly
used to model RIRs in empty and rectangular rooms. It
assumes the sound only propagates along straight rays. The
method is computationally efficient, which makes it suitable
to generate a large scale database. In three-dimensional (3D)
space, we denote the position of the receiver as (xr, yr, zr)
and the position of the source as (xs, ys, zs). Implementing
the image source method [17], the image source position can
be represented as (qxs+2mxLx, jys+2myLy, kzs+2mzLz),
where (Lx, Ly, Lz) are the length, width and the height of
the room, respectively, and where each element in (q, j, k)
takes on values −1 or 1, indicating the direction of the
considered image sources in each dimension, and each element
in (mx,my,mz) takes on integers from −N to +N , indicating
reflection order with respect to each dimension with N the
predefined maximum reflection order. The path length for each
ray arriving at the receiver is the distance between the image
source position and the receiver position. The gain along each
path is calculated as the multiplication of its length and wall
reflection coefficients for all reflections.

B. Room acoustical parameters estimation

In this subsection, we first discuss the existing work on
estimating the room geometry vector. After that, we review a
closely related topic, room volume estimation. Finally, we re-
view the estimation of reflection coefficients and reverberation
time.

Room geometry is an important room acoustic parameter.
Existing algorithms to estimate room geometry from RIRs all
require prior information about the locations of the sources
and the microphones [18]–[22]. [21] uses single-channel RIRs
which are simulated by the image source method in a rectangu-
lar room, and a set of time of arrival (TOA) measurements of
reflections to estimate 2D room geometry. It assumes that the
TOA measurements are labeled with image sources and that
RIRs consist of direct sound and the first and second-order
reflections. [22] uses TOAs for 3D room geometry estimation
with the image-source method simulated RIRs and measured
RIRs. In contrast to [21], [22] obtains sets of TOAs from RIRs
by detecting and labeling peaks in RIRs. These TOAs are used
to estimate the source position and image source positions
with knowledge of the array geometry of receivers. Finally,
the room geometry can be inferred with estimated positions.

[18] proposes a method to estimate the 3D room shape from
real-measured RIRs by exploiting the properties of Euclidean
distance matrices and the first-order reflections. Although it
requires only a single source, it requires at least four receivers
and their pairwise distances. In addition, it may misclassify
higher-order reflections as first order reflections [19]. In [19],
the room geometry is estimated from simulated RIRs between
one sound source and five receivers by a two-step geometrical
method. The method first identifies the first-order image source
positions and estimates the room geometry based on the
image source positions. It requires knowledge of the pairwise
distances between receivers. This method can achieve 1 cm

estimation accuracy. [20] infers the room geometry efficiently
from simulated RIRs obtained with the image-source method
using a graph theoretical approach. The echo combinations
are modeled as nodes and the task is to find the maximum
independent set in the graph, which refers to a set of vertices
without direct interconnection. The image source positions can
be calculated when the echoes are correctly labeled. After that,
the room geometry can be inferred efficiently. It can achieve
an average of 2.4 cm accuracy with at least two sources and
five receivers.

A relaxation of room geometry estimation is the room
volume estimation problem. Room volume estimation was
formulated as a classification problem in [23], where room
volume is classified into six volume class values. Seven room
acoustical parameters are first extracted from a given RIR
and serve as the input of the model. With these parameters,
a statistical pattern recognition approach is used for room
volume classification. This method can achieve a 0.1% equal
error rate (EER) with simulated RIRs and a 19.1% EER with
real-measured RIRs and does not require source-to-receiver
distance. However, room volume is continuously distributed.
Recently, room volume estimation was formulated as a regres-
sion problem [24]. Room volume is estimated with CNNs from
noisy reverberant signal-channel speech signals that are split
into frames with a 25% overlap. After training, the estimated
volume is within approximately a factor of two to the true
volume value.

Reflection coefficients characterize room reverberation ef-
fects. However, they are difficult to estimate directly and we
are not aware of existing work on reflection coefficients esti-
mation. Since reverberation time also characterizes room rever-
beration effects and is closely related to reflection coefficients,
we briefly discuss work on reverberation time estimation. The
reverberation time, RT60, of a room is defined as the time
it takes for sound to decay 60 dB. Sabine-Franklin’s formula
[25] is commonly used to estimate the reverberation time:

RT60 =
24 ln 10

c20

V

Sa
≈ 0.1611sm−1

V

Sa
, (1)

where c20 is the speed of the sound in the room for 20 degrees
Celsius, V is the room volume, S is the total surface area of
the room and a is the average absorption coefficient of room
surfaces. From (1), we can conclude that reverberation time
is related to room geometry and reflection coefficients. Given
RIRs, the reverberation time can be directly estimated from
the calculated energy decay curve [26], [27].

C. Multilayer perceptron

MLPs refer to neural networks that are composed of mul-
tiple layers (perceptrons), where each unit in one layer is
connected to all units in the previous layer. The perceptron
concept was first proposed by Rosenblatt in 1958 [28]. With
each layer, an intermediate result is computed as the dot
product of the input and the weights and an added bias,
which is forwarded to the non-linear activation function. Each
perceptron can be written mathematically as

y = ϕ(wTx+ b), (2)
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where ϕ denotes the non-linear activation function, w and b
are the weights and bias, and x and y are the input and the
output of the perceptron.

[29] demonstrates that an MLP with only one hidden
layer and an arbitrary continuous sigmoidal nonlinearity can
uniformly approximate any continuous function. Although an
MLP with only one hidden layer can uniformly approximate
any continuous function, the number of neurons has to be
exponentially large. It has been proved that considering the
expressiveness of an MLP with ReLU activation, depth is more
important than width [30]. This motivates us to use MLPs with
more hidden layers instead of a wide shallow network. MLPs
are relatively straightforward to implement and widely used in
a variety of classification and regression problems, e.g., [3]–
[5], [31], [32].

D. Convolutional neural networks
CNNs show a good modeling ability in various applications.

CNNs capture spatial relationships of the input by means of
parameter sharing and sparse connection. CNNs were first
proposed by [33] for visual pattern recognition.

The layers of CNNs each perform a set of filtering op-
erations, each commonly referred to as a channel, with a
non-linear function operating on the biased filter output. The
resulting output is a set of feature maps, which generally
is reduced in dimensionality using a pooling layer. With
increasing depth the features extract signal patterns that are
increasingly position independent, as each kernel does not
change when it slides over the signal reduces resolution. The
parameters of the kernels are learned through the training
process.

Many variations of CNN architectures have been developed,
such as LeNet, AlexNet and VGGNet. LeNet, a classical
CNN, was first proposed in the 1990s for handwritten and
machine printed character recognition [34]. In 2012, AlexNet
was proposed for image classification problems and obtained
a considerably lower error rate than the previous state-of-art
[35]. This error rate was further reduced with VGGNet [36].
From these classical CNN architectures, we can learn how
to build a convolutional neural network. A CNN commonly
consists of several convolutional layers, each followed by
a pooling layer for downsampling, a few dropout layers to
prevent overfitting, and several fully connected layers at the
end.

CNNs have been used for various applications. CNNs
are primarily used in computer vision, for example, image
classification [6]–[8]. In addition to image data, CNNs can
also analyse videos [37]–[39]. Until recently, CNNs were not
widely used in acoustic signal processing. Recent applications
confirm that CNNs show a good modeling ability for acoustic
problems and can outperform state-of-the-art algorithms in
this context. Such applications include speech dereverberation
[40]–[42], speech enhancement [43]–[45].

III. PROBLEM FORMULATION

In this section, we formulate our problem, i.e., room
acoustical parameter estimation from RIRs, and discuss the
motivation for using deep neural networks to solve it.

We aim to use deep neural networks to estimate room
acoustic parameters separately and blindly from a single
RIR. Since the room acoustical parameters are described
by continuous variables, we formulate the room acoustical
parameter estimation problem as a regression problem. We
define the input and output pair of the neural network with
a random variable pair (X,Y ). Specifically, in our problem,
X is an RdX -valued random variable that represents RIRs
where dX denotes the length of each RIR signal vector, and
Y is an RdY -valued random variable that represents the room
acoustical parameters where dY denotes the length of each
room acoustical parameter vector.

We aim to learn a continuous deterministic function h to
predict y from x, where (x, y) is a realisation of the random
variable pair (X,Y ). Hence, we have ŷ = h(x) where ·̂
labels an estimate. To measure the generalisation ability of
the learned function h, we use a loss function l : ŷ×y → R+.
The risk R of the predictor can then be defined as:

R = E[l(h(x), y)], (3)

where the expectation E is calculated with respect to the
distribution fX(x) (recall y is a deterministic function of x).
As the neural network does not know the distribution fX(x)
of the input data during learning, we approximate the risk R
of the predictor with the empirical risk Remp on the training
set:

Remp =
1

m

m∑
i=1

l(h(xi), yi), (4)

where m denotes the size of training dataset and each (xi, yi)
pair is one copy of the realisation (x, y) ∈ RdX ×RdY in the
training dataset.

As we have mentioned above, the RIR is affected by both
room geometry and reflection coefficients. For a given room
geometry, reflection coefficients, and source and microphone
position, the corresponding RIR can be computed for an empty
box-shaped room. However, given an RIR in the real world, we
might be not able to determine a set of parameters due to the
existence of obstacles, a non-regular room shape, changes in
temperature, and measurement noise. As a result, we conclude
the relationship between the RIR and the room acoustical
parameter is probabilistic. It is difficult to use conventional
signal processing techniques to estimate room geometry and
the reflection coefficients since the RIR can not be formulated
as an analytical function of the room acoustical parameters.
This motivates us to use deep neural networks as a non-linear
mapping function to estimate room geometry and reflection
coefficients from RIRs.

When we consider the effect of room geometry on RIRs,
each geometry corresponds to a characteristic set of arrival
times for the pulses. We hypothesize that the kernels of CNNs
can extract the arrival-time patterns, where the room geometry
information lies. Hence we use CNNs to estimate the room
geometry from RIRs.

The effect of the reflection coefficients on RIRs is encoded
in the strength of each pulse in the RIRs. It is independent of
the time of arrival (TOA) of each pulse. With a multilayer per-
ceptron, these pulses can be treated as features. This motivates
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us to use MLPs when we estimate reflection coefficients since
we assume this information is mainly related to the feature
values.

IV. ROOM GEOMETRY ESTIMATION

In this section, we describe room geometry estimation based
on convolutional neural networks. We solve the problem first
for simulated data and then use transfer learning to solve the
problem for real-world data.

In convolutional neural networks (CNNs), the receptive field
of each neuron is processed with a set of kernels that do
not vary across the input data. For our geometry-estimation
problem, this corresponds to assuming that the RIR contains
similar structures with respect to room geometry across all
delays. In this section, we describe how we use convolutional
neural networks to estimate room acoustical parameters. We
first describe our base method and how we evaluate the preci-
sion of our model. We then propose two methods to improve
the accuracy of the base method. Finally, we generalize our
method to real-world RIRs.

A. Baseline method

As our base method, we use CNNs to estimate the room
geometry vector from RIRs blindly. We hypothesize room
geometry vectors can be estimated from a single random
RIR of a room without any additional information. To solve
the problem, our neural network has three output nodes for
the length, width, and height of a room. We use the time-
domain RIR as the input of our regression model without
any pre-processing. Since the ordering of the three lengths
of the geometry is arbitrary, we re-order the geometry vector
in ascending order as a pre-processing step.

We adopt a commonly used CNN architecture as a basis.
In this architecture, each convolutional layer is followed by
a batch normalization layer [46] and an activation function.
Since our input signal is a time-domain signal, we use one-
dimensional convolutional layers and one-dimensional batch
normalization layers. To keep a balance between the number
of parameters and the modeling ability of neural networks,
the neural network consists of eight one-dimensional convo-
lutional layers and three fully connected layers. The number
of channels (filters) in the convolutional layers increases with
depth while the output dimensionality of the convolutional
layers decreases.

In a regression problem, a quadratic loss is commonly used
to track the training process and measure the generalization
ability. Using this quadratic loss in (4), we define the mean
square error (MSE) as the empirical risk, which is used as
the objective function to train our CNN in order to minimize
the squared distance between the estimated room geometry
and the true room geometry. We chose the MSE loss since
it is relatively sensitive to outliers. The loss function is then
defined as

l(g, ĝ) =
1

m

m∑
i=1

‖ gi − ĝi ‖22, (5)

where ‖· ‖22 is the l2-norm, m denotes the size of training
dataset, g ∈ Rm×3 denotes the true room geometry and ĝ ∈
Rm×3 denotes the corresponding estimated room geometry.

To characterize the estimation performance of our method,
we evaluate bias and variance on the test data. Bias measures
the mean deviation of our estimates from the true value
and variance measures how much our estimates vary from
the mean estimated value. Minimizing the MSE results in
a balance between bias and variance since the relationship
between MSE, bias and variance can be described as

MSE = Bias2 + Variance. (6)

Since bias is also a parameter that a neural network tries
to learn during the training process, our CNN model should
in principle result in an unbiased estimator. For an unbiased
estimator, we can increase the precision by averaging over the
estimates.

B. Improved methods

Two methods can be used to improve the accuracy of our
baseline method, i.e., the averaging method and the semi-blind
estimation method. We describe both methods separately in
this subsection.

Multiple RIRs can be used to increase estimation precision
by averaging estimates. For each room, we select N random
independent RIRs. The method is to average over the N
estimates to calculate the final estimate for the room. The
variance of the estimator will decrease by averaging over N
independent estimates. Although the accuracy is limited by the
bias, the estimation precision can be increased.

In addition to the above mentioned averaging method, we
can also increase accuracy by adding restrictions when we
generate RIRs. When we estimate room geometry from RIRs,
the source/receiver position, and reflection coefficients can be
considered as nuisance factors. We want to reduce the effect
of nuisance factors in our problem to increase estimation accu-
racy. It requires more effort and more information to assume
knowledge of reflection coefficients or exact source/receiver
position. However, we can consider a setup where the relative
position between the source and the receiver is fixed without
the system knowing the distance or absolute position. We then
remove one nuisance factor in RIR generation. By adding such
a restriction, we hypothesize the estimation accuracy can be
increased compared to blind room geometry estimation.

C. Generalization to real-world room impulse responses

Our goal is to generalize our method to real-world RIRs.
On the one hand, since the amount of available real-world data
is insufficient for training, we augment our data by processing
our simulated RIRs to make our simulated RIRs close to real-
world data. On the other hand, due to the imbalanced amount
of simulated database and real database, transfer learning can
be applied to improve generalization performance. In this
subsection, we will first discuss how we use transfer learning.
After that, the data augmentation technique will be covered.
Finally, we describe how we apply our method to real-world
RIRs.
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Transfer learning [47] was proposed to improve the per-
formance of a new task based on prior knowledge from a
related trained task. Since we are able to generate a simulated
RIR database of sufficient size to cover a wide range of room
geometriesfor training, we can first train a neural network with
an RIR database generated with the image source method.
Then this trained neural network can be used as initialization
when we train the neural network with a real RIR database of
small size.

Instead of directly using transfer learning for real RIR
database from the pre-trained model, which is trained on
the ISM generated RIRs, we augment data as a transition
stage. Compared to real-world measured RIRs, RIRs that are
generated by the ISM lack some distortions, for example, ad-
ditive environmental noises. Consequently, the neural network,
which is trained by simulated RIRs, may adapt to certain
features that are obscured to a real-world database and may
fail to generalize well to a real RIR database. [48] proposed
a simple and computationally cheap method to augment data
for speech recognition, where they warp the features, mask
blocks of frequency channels, and blocks of time steps. With
this simple augmentation method, they could outperform prior
work and achieve state-of-art performance. Inspired by this
work, we can add some distortions to our simulated RIR as a
data augmentation policy. In the following several paragraphs,
we will introduce how we augment our data.

In the real world, it is almost impossible to obtain clean
RIRs. In rooms and concert halls, a signal to noise ratio (SNR)
of an RIR is commonly between 30 and 50 dB [27]. Hence, it
is reasonable to include additive noise with an SNR between
30 and 50 dB in the RIR.

Obstacles are quite common in the real world, but we are not
aware of an efficient method to simulate the effect of obstacles.
Since we want to apply our model to real-world data, we
have to mimic the effect of obstacles in our simulated RIR
database. In the context of this paper, we discuss two artificial
distortion types and one analytical method to simulate RIRs
with obstacles in rectangular rooms. We will discuss these
three methods separately.

The first type of artificial distortion to simulate the effect
of obstacles is computationally inexpensive although rudimen-
tary. The existence of obstacles will block some reflection
paths and add some extra reflection paths. As a consequence,
the first method is to randomly add and delete a random
number of pulses in each RIR generated by the ISM.

As the second method, we add patterns to the blocked
pulses due to the existence of obstacles. This method is
also computationally feasible for simulations. Since each RIR
can be viewed as a composition of a direct path between
each image source and the receiver, the reflective pulse is
blocked when the corresponding image source is blocked by
the obstacle. This method is not physically correct since it
only considers the blocked reflective pulses when their last
reflection segment is blocked by the obstacle. Our derived
pattern covers a subset of true blocked reflective patterns.
To avoid the occlusion effect, we consider 2D non-reflective
obstacles to simplify the problem. The blocked area, which is
extended to infinity, can be then be defined with the receiver as

the vertex and the obstacle as the base. When the shape of the
obstacle is a quadrilateral, the blocked area can be considered
as a pyramid that extends to infinity. Our task is to determine
whether the image source lies inside this extended pyramid. To
determine the position of the image source, we calculate the
dot product between the normal of each face and the vector
between the receiver and the image source position. If the dot
products are negative with respect to each face, then the image
source is inside this pyramid. The method can be generalized
to determine whether the reflective pulse is blocked when the
obstacle is any polygon.

As the third method of modeling obstacles, we use a method
based on adaptive rectangular decomposition (ARD) to simu-
late the sound propagation in 3D space with obstacles, which
was proposed to model sound propagation in 3D complex
environments [49]. This method utilizes the analytical solution
of the wave equation in a rectangular domains and an efficient
implementation of the discrete cosine transform (DCT) to
facilitate computation on a desktop computer. However, it
remains a challenge to generate an RIR database of sufficient
size to train a neural network with this ARD-based method.
As a result, this method is only used as a data augmentation
method in the context of this paper. The procedure can be
summarised as follows. We approximate each obstacle as a
cuboid. Adaptive rectangular decomposition is then utilized to
decompose the scene into rectangular partitions. After that,
sound propagation can be simulated in each partition with
the analytical solution to the wave equation on rectangular
domains based on the DCT [13]. For the absorbing bound-
ary, a perfectly matched layer absorber is employed [50]. A
finite-difference approximation is used for sound propagation
between two neighboring rectangular partitions. The RIRs that
are generated with this method provide a useful transitional
RIR between the RIRs generated with the image source
method and real measured RIRs.

Our ultimate goal is to make the model work with a real-
world RIR database. We first use transfer learning from the
ISM generated RIRs to the transitional RIR database, which
includes RIRs with noise, RIRs with obstacles generated with
the three different methods. We then use transfer learning
again from this transitional model with a real RIR database.
To make efficient use of the small number of real world RIRs
for our experiments, we use cross-validation [51] to train and
test room geometry estimation. That is, we first divide the
database into distinct parts. Each time, we select one subset
as the test dataset and mix the remaining subsets as the train
dataset. Finally, we average the test results over the folds of
the cross-validation method.

V. ROOM REFLECTION COEFFICIENTS ESTIMATION

We now describe room reflection coefficients estimation.
Since databases that contain both RIRs and reflection coeffi-
cients are not available, the method will be applied to simu-
lated data only. RIRs are composed of reflective pulses. The
strength of reflective pulses depends on reflection coefficients
and propagation path length. We hypothesize MLPs are able to
learn reflection coefficients from a RIR without any additional
information.
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We first describe the general estimation procedure and
discuss the effect of re-ordered reflection coefficients on
estimation accuracy. After that, we discuss the frequency
dependency of the reflection coefficients. Finally, we describe
how we link the reflection coefficients with the room geometry.

A. General reflection coefficients estimation

The reflection coefficient is a factor determining the RIR
and this factor is encoded in the strength of reflective pulses
in an RIR. We hypothesize there exists a continuous mapping
function from the RIR signal to the reflection coefficient. Since
MLPs can uniformly approximate any continuous function, we
use MLPs to estimate reflection coefficients from a random
RIR blindly. We use the time-domain RIR as the input of our
regression model without any transformation. Similarly to our
reflection coefficient estimation problem

In a real-world room, reflection coefficients are different on
different walls and can even be different in different areas of a
single wall. We will not cover different reflection coefficients
on a single wall. Thus, In a rectangular room, we assume there
are six reflection coefficients corresponding to the six walls.
We re-order the six reflection coefficients in ascending order
as a pre-processing step.

Similarly to the room geometry estimation problem, we use
the MSE as our objective function to train the model, which
is defined as

l(c, ĉ) =
1

m

m∑
i=1

‖ ci − ĉi ‖22, (7)

where c ∈ Rm×6 is the true reflection coefficient matrix and
the ĉ ∈ Rm×6 is the estimated output.

We then discuss the effect of ordered reflection coefficients.
We aim to verify that our neural network does learn the
reflection coefficients from the RIRs and does not just cor-
respond to an ordering of random outputs unrelated to the
reflection coefficients. We use X = [X1, ..., X6] to denote the
six reflection coefficients and Y = [Y1, ..., Y6] to denote the
target of our neural network, i.e., the six ordered reflection
coefficients. The real output of our neural network is denoted
by Ŷ = [Ŷ1, ..., Ŷ6]. In the following we assume that the
coefficients each have a uniform distribution, which we will
impose in our simulation experiments.

We use Ỹ = [Ỹ1, ..., Ỹ6] to denote a set of ordered but
unrelated random variables. Thus, distance measures between
Y and Ỹ form an upper bound on the expected error of
our neural network output: E[|Yi − Ŷi|2] < E[|Yi − Ỹi|2].
E[|Yi − Ŷi|2] will be computed experimentally for each i,
which corresponds to the MSE. Our objective here is to
compute E[|Yi − Ỹi|2] theoretically for each i.

We first need to compute the probability density function
of Yi and Ỹi. Since Yi and Ỹi are the i-th order statistic
of X1 · · · , X6 respectively, they are identically independent
distributed for each i. We assume X1, · · · , X6 are iid random
variables that follow a standard uniform distribution. We
can then compute the probability density function of Yi and
Ỹi respectively according to the order statistic [52]. That
is, Yi ∼ Beta(i, 7 − i) and Ỹi ∼ Beta(i, 7 − i), where

Beta(., .) denotes the beta distribution. The Beta distribution
is a continuous distribution defined on the range (0, 1) with
density

fY (y) =
1

B(i, 7− i)
yr−1(1− y)s−1, (8)

where B(., .) is the Beta function. The pdf of Ỹi, fỸ (y), is
identical to that of fY (y).

With the probability density function of Yi and Ỹi, our next
step is to compute the probability density function of Yi− Ỹi,
which is denoted as Di. Following Theorem 2.1 in [53], if Yi
and Ỹi are two independent random variables having support
in (0, 1), the pdf of Di = Yi − Ỹi is defined as

fDi(d) =

{∫ 1+d

0
fY (t)fỸ (t− d)dt −1 < d < 0∫ 1−d

0
fY (d+ t)fỸ (t)dt 0 < d < 1

. (9)

With this pdf, we can compute the second moment of Di,
which corresponds to the expected value of |Yi − Ỹi|2, as

E[D2
i ] =

∫ 1

−1
d2fDi(d)dd. (10)

With the above derivation, we are able to calculate
the expected value of |Yi − Ỹi|2 for each i. Taking
the square root of the expected values, we can compute
the expected upper bound of the root mean square error

(RMSE),
√
E[|Yi − Ỹi|2], which for the six dimensions is

[0.1750, 0.2259, 0.2474, 0.2474, 0.2259, 0.1750].

B. Frequency dependent reflection coefficients estimation

In this subsection, we discuss the frequency dependency
of the reflection coefficients. To define an appropriate model
for estimating frequency-dependent reflection coefficients, we
must know how reflection coefficients vary with frequency.
[54] lists several absorption coefficients in different frequen-
cies. For example, the absorption coefficients of a painted
concrete block change from 250 Hz (0.05) to 4000 Hz (0.08),
the absorption coefficients of a lightweight drapery change
from 125 Hz (0.03) to 250 Hz (0.04), and the absorption
coefficients of plaster on lath change 500 Hz (0.06) to 4000
Hz (0.03). As all these examples change only moderately over
frequency, we assume a simple model with piecewise constant
reflection coefficients.

With the piecewise constant reflection coefficient assump-
tion, we add a preprocessing step to divide the full-band RIR
into several frequency bands with bandpass filters so that
we can estimate reflection coefficients in different frequency
bands. Among different kinds of bandpass filters, Chebyshev
filters show a good computational speed although they are
not perfect on stop-band attenuation [55]. Consequently, we
choose Chebyshev type I filters [56] as our lowpass filter,
which can be transformed into a bandpass filter or highpass
filter as needed. With this pre-processing process, we will get
access to RIRs in different frequency bands. We can then
apply the previously discussed estimation methods for each
frequency band separately.
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C. Linking reflection coefficients with room geometry

Knowledge of six reflection coefficients only is generally
insufficient. In this subsection, we focus on how to link the
reflection coefficients with the room geometry. We assume that
we already know the room geometry that can be estimated as
described in Section IV. This linking problem can be solved
by two methods, a machine learning based method and a
conventional signal processing method.

With the machine learning based method, we build a CNN
that takes an RIR signal conditioned on the room geometry as
the input. The choice of CNN architecture is based on the logic
in Section IV, where the conditioning is the only difference.
The conditioning is fed into the network twice, at the input
layer and at a middle layer. The output is a combination of
the room geometry and the corresponding pairs of reflection
coefficients. Within each pair, since there does not exist an
order between two reflection coefficients, we re-order the two
reflection coefficients in ascending order.

With the conventional signal processing method, we use
RT60 as a bridge. On the one hand, ISO 3382 [57] shows
how to measure RT60 from the reverberation time T20 or
T30. We first need to calculate the energy decay curve from
the RIR signal. The energy decay curve EDC at time t is
defined as [26]

EDC(t) =

∫ ∞
t

h2(τ) dτ, (11)

where h(τ) is the room impulse response. The reverberation
time T20 (T30) is defined as the time that the energy decays
from −5 dB to −25 (−35) dB, which can be calculated from
the energy decay curve. With this, RT60 is three times T20
or twice T30. On the other hand, we can compute RT60
with Sabine-Franklin’s formula as in (1). As what we have
mentioned, we can estimate room geometry as in Section IV
and estimate reflection coefficients as in Section V-A. Different
combinations of room geometry and reflection coefficients
result in a different RT60. By performning an exhaustive
search, we are able to find a combination of room geometry
and reflection coefficients that is closest to the correct RT60.

VI. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, we present our experiments. In the first
subsection, we describe the setup of our experiments. We
describe experiments on room geometry estimation in the
second subsection. Finally, we present our experiments on the
estimaton of the reflection coefficients.

A. Experimental setup

In the following, we first discuss the database we used to
train and test our model. After that, we describe the configu-
ration of our neural networks and how we train and test them.
Finally, we introduce how we use bandpass filters for sub-
band RIRs in the frequency-dependent reflection coefficient
estimation problem.

TABLE I
DATABASE DESCRIPTION

Dataset # rooms # sources # receivers
Real-world RIRs 9 5 31

Clean RIRs of empty room 400000 1 1

RIRs with noises 200000 1 1

RIRs with the 1st artificial distortion type 200000 1 1

RIRs with the 2nd artificial distortion type 50000 1 1

RIRs generated with the ARD-based analytical method 144 1 1000

1) Database: As is discussed in Section IV-C, a large-scale
dataset of good quality is needed to train neural networks. An
overview of the database we use is shown in Table I.

We used [58] as our real-world RIR database because it
contains a relatively large number of real RIRs, several room
types are covered, and the room geometry was measured in
each room. This database contains nine distinct rectangular
rooms that are not empty. Since we aimed our work at moder-
ate or small rooms, we did not include three large rooms of the
database, i.e., one conference room (with geometry 28×11×3
m) and two lecture rooms (with geometry 20× 12× 5 m and
23 × 17 × 7 m). The selected six rooms include one hotel
room, one meeting room, three office rooms, and one enclosed
staircase. The geometry of these selected rooms varies between
4.4× 2.8× 2.2 m and 14.2× 6.9× 3.6 m. The corresponding
RT30, the time that it takes to decay 30 dB, varies between
0.59 s and 1.85 s. Within each room, an average of 155 RIRs
is given between five sources and 31 receivers.

To build an RIR dataset, we used the ISM to simulate
RIRs [17]. We refer to this dataset as a clean RIR dataset
of empty rooms. The shape of the rooms is rectangular and
the rooms are empty. The speed of sound was set to c = 340
m/s. The sampling frequency was set to 8000 Hz. The length
of each RIR was 4096 because an approximate 0.5 s RIR
contains at least the direct path signal and early reflections in
an indoor environment. Each dimension of the room geometry,
i.e., length × width × height, was assumed to be iid between
6 × 5 × 4 m and 10 × 8 × 6 m. The room geometry range
covers moderate and small rooms and is close to the real-world
RIR database described above. The reflection coefficients
of the walls were simulated as iid between 0 and 1. We
randomly placed one source and one receiver in each room and
generated the corresponding RIR. We labeled each RIR with
room geometry and reflection coefficients. In our experiments,
the number of the image-source method simulated RIRs was
400000, which was divided into a training dataset, a validation
dataset, and a test dataset with the ratio 7 : 2 : 1 for the
baseline method.

The clean RIR training dataset of empty rooms was ran-
domly divided into two equal parts for RIRs with noise and
the first artificial distortion type. With one part, an additive
Gaussian white noise was added to each RIR with an SNR
uniformly distributed between 30 dB and 50 dB.

With the first artificial distortion of the RIR as defined
in Section IV-C, a random number (this number was set to
be uniformly distributed between 10 and 100) of pulses was
added or deleted from the first 0.1 s of the clean RIRs. This
choice was motivated by the hypothesis that the early reflection
part of RIR provides more information for room geometry
estimation than late reverberation.
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With the second artificial obstacle pattern as defined in Sec-
tion IV-C, we generated an RIR database of 50000 rooms. For
each room, we randomly placed one rectangular obstacle of an
arbitrary size inside the room and generated the corresponding
RIR. This process was repeated nine times, i.e., there were
nine distinct distorted RIRs for each room in this database.

For the RIRs generated with the analytical method based
on ARD, due to the restriction of computational cost, we
simulated a scenario with one source and 1000 receivers in
each of 144 rooms. We randomly placed one to three obstacles
of a random size in each room. We changed the reflection
coefficients and geometry of the room. Each combination was
denoted as one configuration.

2) Neural network description: In this subsection, we de-
scribe how we train and test our neural networks. In addition,
we describe the configuration of our neural networks for
different objective functions. We did an ablation study on
network architecture and hyperparameter tuning with a grid
search as a preliminary experiment for each neural network.
The network architecture and hyperparameters below were
chosen based on this preliminary experiment with our target
database. If some properties of the target database change, we
always performed an ablation study on network architecture
and hyperparameter tuning with grid search.

We used a GPU node to train our neural network. The
output node is the room acoustical parameter of the given
room. The network was trained with the Adam optimizer [59],
to minimize the training loss. The learning rate of the Adam
optimizer was 0.001 and the coefficients used for computing
running averages of the gradient and its square were set to
be (0.9, 0.999). We iterated for 2000 epochs and recorded the
MSE loss for each epoch. To prevent overfitting, early stopping
is used as regularisation in our model [60]. Early stopping
is performed when the validation performance degrades in
100 successive epochs to guarantee the training performance
without overfitting and keep a balance on the computational
effort. In each epoch, we set the model on evaluation mode and
computed the validation error for early stopping. In addition,
mini-batch based training is used to increase computational
efficiency [61]. The batch size was set to be 50. After training,
we set the model to evaluation mode and computed the RMSE
per dimension in the test set.

For geometry estimation, our network architecture and the
corresponding parameters are shown in Table II, where b
denotes the batch size. First the layer size decreases as the
number of channels (feature maps) increases. The features are
finally mapped to the geometry with fully connected layers.
We use a leaky rectified linear unit (Leaky ReLU) [62] as the
activation function. After each convolutional layer, there are
always a batch normalization layer and a Leaky ReLU layer
[62], which we do not list in the Table II since the output
size does not change. The network contains 4577763 trainable
parameters in total.

To estimate six frequency-dependent reflection coefficients,
we use a multilayer perceptron regressor with nine hidden
layers. The size of each layer was halved with each layer,
from 2048 to 8. A rectified linear unit (ReLU) [63] was used
as an activation function after each hidden layer.

TABLE II
NETWORK ARCHITECTURE OF ROOM GEOMETRY ESTIMATION

Operation Kernel Size Stride # Channels Output Size
Input (b, 4096)

Reshape (b, 1, 4096)
Conv1D 4 4 32 (b, 32, 1024)
Conv1D 2 2 32 (b, 32, 512)
Conv1D 8 8 128 (b, 128, 64)
Conv1D 2 2 128 (b, 128, 32)
Conv1D 2 2 512 (b, 512, 16)
Conv1D 4 4 512 (b, 512, 4)
Conv1D 4 4 1024 (b, 1024, 1)
Conv1D 1 1 1024 (b, 1024, 1)
Reshape (b, 1024)

Fully connected (b, 160)
Fully connected (b, 64)
Fully connected (b, 3)

To link the reflection coefficients to the room geometry,
the network is described in Table III, where b denotes the
batch size and we omit the batch normalization layer and the
Leaky ReLU layer in the table. The conditioning, i.e., the room
geometry vector, is concatenated to the RIR at the input layer
and to the reshaped output vector before the fully connect
layers. Each output vector is reshaped to a 3×3 matrix, where
the first column is the room geometry vector, each row of the
second and the third columns is a pair of reflection coefficients
corresponding to that edge.

TABLE III
NETWORK ARCHITECTURE OF LINKING REFLECTION COEFFICIENTS TO

ROOM GEOMETRY

Operation Kernel Size Stride # filters Output Size
Input (b, 4099)

Reshape (b, 1, 4099)
Conv1D 3 3 32 (b, 32, 1366)
Conv1D 5 5 32 (b, 32, 273)
Conv1D 3 3 128 (b, 128, 91)
Conv1D 5 5 128 (b, 128, 18)
Conv1D 4 4 512 (b, 512, 4)
Conv1D 4 4 512 (b, 512, 1)
Conv1D 1 1 1024 (b, 1024, 1)
Conv1D 1 1 1024 (b, 1024, 1)
Reshape (b, 1024)

Fully connected (b, 160)
Fully connected (b, 64)
Fully connected (b, 9)

3) Sub-band RIRs: When we take frequency dependency
into account, we assumed the reflection coefficients are piece-
wise constant. The order of the Chebyshev type I filter was set
to be 10 for a relatively short transition band. The maximum
ripple factor was set to be 1 dB. Each full-band RIR was
transformed into three signals, a lowpass RIR (0 − 1000
Hz), a bandpass RIR (1000 − 2000 Hz), and a highpass RIR
(2000−4000 Hz). With this transformation, we were available
to four sets of sub-band RIR data. The training and test
process, and the network configuration are the same as for
the full band RIRs.

B. Experiments on room geometry estimation

In this subsection, we present experiments on room ge-
ometry estimation. We first compare the baseline method
and the proposed semi-blind estimation method for simulated
data. After that, we discuss experiments for the proposed
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TABLE IV
COMPARISON OF BASE ROOM GEOMETRY ESTIMATION METHOD AND

SEMI-BLIND ROOM GEOMETRY ESTIMATION.

Method Baseline method Semi-blind method
RMSE (m) [0.0497, 0.0398, 0.0249] [0.0180, 0.0181, 0.0167]
Bias (m) [0.0048,−0.0032,−0.0013] [0.0012,−0.0003,−0.0014]

Variance (m2) [0.0024, 0.0016, 0.0006] [0.0003, 0.0003, 0.0003]

averaging method. We then compare our proposed method
with a reference signal processing based method. Finally, we
describe how we generalize our method to real-world RIRs.

As the first experiment of room geometry estimation, we set
up the experiments of our baseline method and the proposed
semi-blind estimation method for simulated data. For the
semi-blind room geometry estimation, we pre-set a random
source-receiver relative position relationship and generated the
corresponding RIR dataset, whose only difference with respect
to our original RIR dataset was the receiver-source relative
position. We compared the performance of these two cases in
terms of RMSE, bias, median, and variance per dimension in
the test set. We used the mean estimation error to approximate
bias. In addition, we plot the error distribution of both methods
in Figure 1, where the error here refers to the MSE of each
room geometry estimation.

0.00 0.05 0.10 0.15 0.20 0.25
MSE (m2)

Base method
Semi-blind method

Fig. 1. MSE distribution of room geometry estimation.

We list the RMSE, bias, variance, and median of the base
method and the semi-blind method in Table IV. A positive
sign indicates our prediction is larger than the true geometry
value. The RMSE, bias, and variance show different values
with respect to length, width, and height because the range
on these three elements is different and they are independent
of each other. We also performed an experiment with our
baseline method to compare the estimation accuracy between
rectangular rooms and cube rooms. The RMSE of cube
rooms is [0.0534, 0.0374, 0.0243] m, which does not show
a difference from rectangular rooms. This confirms that the
estimation of length, width, and height are independent of
each other. As shown in Table IV, the small bias vector
confirms that our CNN model is not significantly biased after
training and the small variance confirms that most estimation
errors are relatively small and they do not vary much. The
error distribution in the test set of both methods is shown in
Figure 1. Observing the error distribution in Figure 1, the error
follows a long-tailed distribution, which confirms that most

TABLE V
ROOT MEAN SQUARED ERROR AND VARIANCE OF AVERAGING METHOD.

# RIRs RMSE (m) Variance (m2)
1 [0.049, 0.039, 0.045] [0.0024, 0.0015, 0.0020]
4 [0.027, 0.033, 0.042] [0.0007, 0.0011, 0.0018]
8 [0.022, 0.032, 0.040] [0.0005, 0.0010, 0.0016]
16 [0.018, 0.031, 0.025] [0.0003, 0.0009, 0.0006]

estimation errors are relatively small, which is consistent with
the small variance in the test set. Comparing the experimental
results of the baseline method and the semi-blind method, the
semi-blind method outperforms the baseline method in terms
of accuracy. To conclude, by the addition of a restriction on the
relative source-receiver position relationship, the estimation
accuracy of room geometry estimation is increased.

The second experiment of room geometry estimation was
related to the proposed averaging method to increase the
estimation accuracy. We aim to investigate the effect of the
number of available RIRs in each room. For this experiment
only, we generated a dataset with 16 RIRs per room to do
the experiments and the RIRs in this dataset were distinct
from those in the training dataset. In each room, 16 RIRs
were generated independently, i.e., they correspond to 16
different randomly placed sources and 16 different randomly
placed receivers. These RIRs were then use for inference
with averaging. We ordered the estimates by the true room
geometry and grouped the estimates to one, four, eight, and 16
estimates per room to perform the averaging method. Finally,
we computed the RMSE, bias, and variance of the average
method.

Next we describe the experimental result for
the averaging method. The bias of the estimate is
[0.0045,−0.0027,−0.0015] m, which does not change
by averaging over N estimates. The RMSE, median, and
variance under different numbers of RIRs are listed in Table
V. The method with one RIR corresponds to our baseline
method. The RMSE, bias, and variance are slightly different
from the results in Table IV because the test database is not
the same. From Table V, we can conclude that, as expected,
averaging leads to improved performance. The variance
decreases with averaging but does not decrease by a factor of
N since there exist nuisance factors, reflection coefficients,
and source/receiver positions, which imply that the RIRs
in each room are not independently conditioned on room
geometry. To conclude, the performance is better when more
RIRs are used for averaging although our estimation is still
biased.

As the third experiment, we compared our proposed method
with the signal processing method proposed in [20] in terms of
system requirements, estimation error, and average run time.
The experiments are both based on the RIRs generated by the
ISM method. For calculating the run time, the experiments
were averaged over 600 experiments. The result is shown
in Table VI. The method in [20] uses five sources and five
receivers and a 96000 Hz sampling frequency while the
proposed method only requires sixteen random RIRs and an
8000 Hz sampling frequency. From the experimental results,
our proposed method achieves approximately the same ac-
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TABLE VI
COMPARISON OF PROPOSED METHOD AND STATE-OF-ART METHOD.

Proposed method Method in [20]
Average error (m) 0.0247 0.0235

Average run time (s) 3.22× 10−4 2.43

TABLE VII
ROOM GEOMETRY ESTIMATION WITH REAL-WORLD MEASURED RIRS.

Room RMSE (m) RMSE after averaging (m)
Hotel room [0.1516, 0.1276, 0.2615] [0.1046, 0.0505, 0.1169]

Meeting room [0.1083, 0.0639, 0.1508] [0.0916, 0.0220, 0.0440]
Office 1 [0.0508, 0.0532, 0.1023] [0.0056, 0.0249, 0.0384]
Office 2 [0.0803, 0.0757, 0.2240] [0.0390, 0.0207, 0.0938]

Enclosed staircase [0.1790, 0.0998, 0.0970] [0.1696, 0.0923, 0.0825]
Office 3 [0.1516, 0.0365, 0.1305] [0.1432, 0.0081, 0.0112]

curacy while requiring approximate 104 less computational
effort after training. To conclude, our CNN based room
geometry estimation method is computationally efficient with
approximately the same estimation error and, in contrast to
the conventional signal processing based method, does not
require prior knowledge or knowledge of the measurement
configuration. Moreover, if lower accuracy is required, our
method allows the usage of fewer measurements.

Our last experiment on room geometry estimation was
the generalization to real-world RIRs with transfer learning.
Before feeding the real-world RIRs into the neural network,
we first resampled the real-world RIRs to 8000 Hz and then
used the first 4096 samples of the resampled RIR as the input.
With transfer learning, the base method model was adopted as
initialization and the learning rate of the optimizer was set to
be one-tenth of the original learning rate. This generalization
was split into two steps. We trained 500 epochs for each step
to prevent overfitting. We describe the two steps in detail in
the next two paragraphs.

The first step was the transfer learning from the base
model with additive noise, randomly deleted and added pulses,
derived approximate distorted RIRs due to obstacles, and
the RIR genereated with the RD-based analytical method for
obstacles. These distorted RIRs were mixed as the training
dataset for transfer learning in the first step. The model after
the first step was saved as an initialization for the second step.

In the second step, we used transfer learning with real-
world RIRs [58]. Cross-validation was used for the six selected
rooms in the database. In each test set, we computed the
RMSE per dimension to evaluate the generalization perfor-
mance. Since there were multiple RIRs per room, the proposed
averaging method was performed in each test set to increase
accuracy.

The experimental results for room geometry estimation with
real-world measured RIRs are shown in Table VII. Before
averaging over multiple estimates from multiple RIRs, the
minimal RMSE on a single dimension is 0.05 m and the
maximum error is 0.26 m. The 0.26 m RMSE appears in the
hotel room with two beds and other furniture inside, which is
a room with relative many obstacles, but this error reduces to
0.12 m after averaging. After averaging, the minimal RMSE
is 0.01 m and the maximal is 0.17 m. The 0.17 m RMSE after
averaging method appears in the enclosed staircase, which

TABLE VIII
EVALUATION OF THE IMPORTANCE OF FOUR DATA AUGMENTATION

METHODS.

The left out data augmentation method Average RMSE difference (m)
RIRs with noises 0.0310

RIRs with the 1st artificial distortion type 0.0570
RIRs with the 2nd artificial distortion type 0.0648

RIRs generated with the ARD-based analytical method 0.1210

is relatively difficult to handle because of the stairs. The
difference between RMSE with and without averaging method
does not consistently follow the results shown in Table V.
This is because the real measured 151 RIRs in each room
are from five sources and 31 receivers, which indicates the
measurements are not independent from each other.

We did an additional experiment to evaluate the importance
of these four augmentation methods, where we left one data
augmentation method out each time and repeated the two steps
in the previous experiment. We computed the RMSE after
averaging and compared it with Table VII. We computed the
average RMSE difference, where the positive sign indicates an
increase in the RMSE when one data augmentation method is
left out.

The average RMSE in Table VII after averaging is 0.0644m.
The leave-one-out experimental result is shown in Table VIII.
Observing the result, when one data augmentation method is
left out, the corresponding RMSE increases. This shows all
four data augmentation methods are all necessary and make a
contribution to the estimation accuracy. In addition, comparing
the increased RMSE (m), we can conclude that RIRs generated
with the ARD-based analytical method is the most important
among these four methods. This is likely because this method
simulates the effect of obstacles on real-world RIRs most
accurately.

C. Experiments on the estimation of reflection coefficients

In this subsection, we describe our experiments that relate
to the reflection coefficients. We first describe the experiments
on estimating only reflection coefficients from RIRs, where
we cover the frequency-independent case and the frequency-
dependent case. Next, we describe the experiment on linking
the reflection coefficients to room geometry.

We performed the reflection coefficient estimation exper-
iments under the assumption of six distinct reflection coef-
ficients, one for each wall. We divide this into two cases
according to their frequency dependency. For the frequency-
independent reflection coefficients, we estimate the reflection
coefficients from the corresponding full-band RIR. With re-
spect to the frequency-dependent reflection coefficients, we
estimate the reflection coefficients from the sub-band RIRs
independently. We compared the estimation error of the sub-
band RIRs and the full-band RIRs to explore the effect of
frequency bands on reflection coefficient estimation accuracy.

The experimental results of estimating six distinct reflection
coefficients in a rectangular room are shown in Table IX. With
the full band RIRs, the average RMSE per dimension is 0.09.
With the sub-band RIRs, part of the information of the RIRs is
lost. Consequently, the RMSE of the sub-band RIRs is larger.
In addition, the RMSE of the low pass RIR is smaller than



xi

TABLE IX
RMSE OF MULTIPLE REFLECTION COEFFICIENTS ESTIMATION.

Signals RMSE
Full band RIRs [0.0872, 0.0954, 0.0984, 0.0929, 0.0826, 0.0837]
Low pass RIRs [0.0904, 0.0979, 0.1001, 0.0971, 0.0903, 0.0873]
Band pass RIRs [0.1098, 0.1213, 0.1124, 0.0978, 0.0906, 0.0884]
High pass RIRs [0.1108, 0.1241, 0.1146, 0.0981, 0.0927, 0.0923]

that of the bandpass RIR and the high pass RIR. This is likely
because the relation between the RIR and the coefficients
is smoother for low pass signals and it is easier to learn a
smoother function by a neural network. In addition, when
observing the RMSE for each reflection coefficient, the RMSE
in the middle position is relatively large. This is consistent
with the upper bound in Section V-A and results from having
ordered reflection coefficients in the interval [0, 1].

Comparing the experimental results in Table IX and the
upper bound derived in Section V-A, each RMSE in Table
IX are substantially smaller than the upper bound derived in
Section V-A. This indicates our neural network does learn
reflection coefficients from RIRs instead of simply generating
a set of ordered random numbers.

In the remainder of this subsection, we describe the ex-
periments on linking the reflection coefficients to the room
geometry as outlined in Section V-C. We start with the
machine learning based method. With the machine learning
based method, we computed the RMSE for the reflection
coefficients to evaluate the estimation accuracy. Since the
room geometry serves as conditioning, the RMSE for the
room geometry is negligible and not recorded here. Based the
estimated reflection coefficients, which are linked to the room
geometry, we computed the RT60 with the Sabine-Franklin
formula, which is compared with the RT60 calculated from
the energy decay curve to compute the RMSE. After that, we
took the six reflection coefficients from each output, re-ordered
them, and computed the RMSE for each reflection coefficient
again to compare the accuracy with the previous reflection
coefficients only estimation experiment.

The experimental result of linking reflection coefficients
to room geometry using machine learning based method is
shown in Table X. Each row of the second and the third
columns is the RMSE for the pair of reflection coefficients
corresponding to that edge. The RMSE for the paired re-
flection coefficients is slightly worse than for the previous
experiment but the model can still link a pair of reflection
coefficients to the room geometry. The corresponding RMSE
for the RT60 based on these estimates is 0.0220 s. When we
reordered the six estimated reflection coefficients, the RMSE
is [0.0795, 0.0742, 0.0809, 0.0854, 0.0854, 0.0915], which is
approximately the same as the result in Table IX. This result
proves that the estimation accuracy of the reflection coeffi-
cients does not decrease but the linking operation decreases
the accuracy a little.

In addition to the machine learning based method, we can
also link the reflection coefficients to the room geometry
using the conventional signal processing method. Since we use
estimated room geometry and reflection coefficients, we only
recorded the RMSE for RT60. We computed RT60 with the

TABLE X
RMSE OF LINKING REFLECTION COEFFICIENTS TO ROOM GEOMETRY.

Room geometry Reflection coefficients
Edge 1 0.1017 0.1391
Edge 2 0.1058 0.1435
Edge 3 0.1117 0.1427

estimated room acoustical parameters using Sabine-Franklin’s
formula. We then compared it with the RT60 calculated from
the energy decay curve, and recorded the RMSE.

Computing the RT60 using the conventional signal pro-
cessing method, the corresponding RMSE is 0.0083 s, which
is smaller compared to the machine learning based method.
Since the difference in the RMSEs for estimates of the
room geometry is negligible, the difference in the RMSEs
for the RT60 is due to the linking process of the reflection
coefficients.

VII. CONCLUSION

We showed that it is possible to estimate the geometry of a
shoebox-shaped room and also the reflection coefficients of its
walls from RIRs using deep neural networks. We formulated
the problem as a regression problem with the MSE as a loss
function. In contrast to conventional methods, the proposed
methods only requires a single RIR between a source and
a receiver and do not require knowledge of their positions
or relative distance. For the room geometry estimation task,
we used convolutional neural networks. We first trained the
neural network with artificial data. Then transfer learning
was used to make the method work for real-world RIRs. We
achieved an average of 0.065 m testing accuracy for real-
world data. We used multilayer perceptrons to estimate the
wall reflection coefficients from simulated RIRs. We obtained
an RMSE of approximately 0.09 for each reflection coefficient
when the reflection coefficients are different for the six walls.
This value increased slightly if we require pairs of reflection
coefficients to be associated with an estimated room geometry.
In addition, we were able to estimate frequency-dependent
reflection coefficients and achieved similar accuracy.
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