

Delft University of Technology

Application of Taylor-Series Integration to Reentry Problems with Wind

Bergsma, Michiel; Mooij, Erwin

DOI
10.2514/1.G000378
Publication date
2016
Document Version
Accepted author manuscript
Published in
Journal of Guidance, Control, and Dynamics: devoted to the technology of dynamics and control

Citation (APA)
Bergsma, M., & Mooij, E. (2016). Application of Taylor-Series Integration to Reentry Problems with Wind.
Journal of Guidance, Control, and Dynamics: devoted to the technology of dynamics and control, 39, 2324-
2335. https://doi.org/10.2514/1.G000378

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.2514/1.G000378
https://doi.org/10.2514/1.G000378

Application of Taylor Series Integration to Reentry

Problems With Wind

M.C.W. Bergsma1 and E. Mooij2

Delft University of Technology, Faculty of Aerospace Engineering,

Kluyverweg 1, 2629 HS Delft, The Netherlands

Taylor Series Integration is a numerical integration technique that computes the

Taylor series of state variables using recurrence relations and uses this series to propa-

gate the state in time. A Taylor Series Integration reentry integrator was developed and

compared with the fifth-order Runge-Kutta-Fehlberg integrator to determine whether

Taylor Series Integration is faster than traditional integration methods for reentry ap-

plications. By comparing the CPU times of the integrators, Taylor Series Integration

was indeed found to be faster for integration without wind and slower with wind, unless

the error tolerance was 10−8 or lower. Furthermore, it was found that reducing step

sizes to prevent integration over discontinuities is not only needed for Taylor Series

Integration to obtain maximum accuracy, but also for Runge-Kutta-Fehlberg methods.

In that case, the Runge-Kutta-Fehlberg integrator does become several times slower

than Taylor Series Integration.

I. Introduction

According to Barrio, Taylor Series Integration (TSI) dates back to the time of Newton (late 17th

or early 18th century), who used recursive computation of Taylor series for the solution of ordinary

differential equations (ODEs) [1]. Among the first to use TSI in the 20th century was Moore, who,

for some time, has been the main promoter of TSI as replacement for the, in his opinion, less efficient

1 MSc. Graduate, section Astrodynamics and Space Missions.
2 Assistant Professor, section Astrodynamics and Space Missions, e.mooij@tudelft.nl, Associate Fellow AIAA.

1

This is an Accepted Manuscript of an article published in:
JOURNAL OF GUIDANCE,CONTROL, AND DYNAMICS Vol. 39, No. 10, October 2016
Available online: https://arc.aiaa.org/doi/10.2514/1.G000378

traditional numerical integrators. He argued that the main objection to TSI, namely the need to

evaluate derivatives up to a high order, is overrated, as a computer can do this recursively, and

Runge-Kutta integrators of the same order require more arithmetic operations than TSI [2].

The conclusion of Hull et al. was that TSI fares better than Runga-Kutta and variable-order

Adams methods when the accuracy requirements are more stringent [3]. Irvine and Savageau found

that TSI can, in fact, be up to 20 times faster for high accuracy, i.e., about 16 significant digits [4].

In a more recent comparison, Jorba and Zou found that TSI is capable of achieving higher levels of

accuracy then other integrators and that TSI is about 1.5 to 5 times faster for a given achieved level

of accuracy [5]. The results of Barrio also show that TSI is capable of greater levels of accuracy and

that it is faster for an accuracy of 10−8 or lower [1].

From the 1970s onwards, TSI has been analyzed thoroughly, especially by Chang and Corliss,

focusing on elements such as step-size control, and expanding the range of problems that TSI could

be applied to [6–10]. In the 1990s it was first used as a method to solve differential algebraic

equations [9, 11]. TSI was recently found to be a particularly fast method for integrating celestial

mechanics, yielding on average 16.6 times lower CPU times than the Runge-Kutta-Fehlberg (RKF)

integrators that are typically used for this type of problems [12].

Reentry trajectory propagation is typically done using numerical integrators, such as the meth-

ods of Runge-Kutta, Adams-Bashforth, or Adams-Moulton. The strength of TSI is that its step

size and order can be changed with little computational (and programming) effort, allowing it, in

theory, to solve any problem with the highest efficiency. As a result TSI can have both a higher

order and larger step sizes than its competitors. Therefore, TSI is best applied to problems, where

the step sizes are not kept artificially small by guidance, navigation or control systems. For such

problems, the RKF5(6) integrator [13] was found to be the fastest integration method for reentry

applications for a given level of accuracy.

If TSI can outperform RKF5(6) in terms of CPU time, whilst yielding the same results, then it

can also replace the traditional methods in applications, such as trajectory optimization (without

wind) and Monte Carlo analysis (with or without wind), which require the integration of a large

number of trajectories, potentially yielding large reductions in the total CPU time. A TSI integra-

2

tion program was developed, and its speed and results were compared with those of an RKF5(6)

integrator to determine whether TSI is faster. The integration program builds on the models de-

veloped in [14], where an extensive performance analysis was done for gliding reentry trajectories

without wind. In this paper, the TSI framework is extended with a generic wind model, and the

effects of wind are subsequently analyzed.

The remainder of the paper is organized as follows. In Sec. II, a brief overview of the basics and

the step-size and order selection of TSI will be given. The reference vehicle, reentry equations, en-

vironment models, controls and constraints are given Sec. III. Section IV will explain methods used

to deal with discontinuities in the equations of motion. In Sec. V, the results of the determination

of the optimal step-size and order controllers for TSI, and the comparison of CPU time and results

of the two integrators will be given. Section VI concludes the paper with some final remarks.

II. Taylor Series Integration

Here, the basics of TSI are discussed, together with its application to ODEs and the methods

for step-size and order control.

A. Basics

Consider the following initial value problem:

ẋ(t) = f(t,x(t)), x(t0) = x0 (1)

where x(t) is a vector containing the values of state variables. The Taylor-series expansion of x(t)

at tn can be used to propagate it to tn+1:

x(tn+1) =

∞∑
k=0

x(k)(tn)

k!
hkn (2)

where x(k) are the kth derivatives of x, and hn is the step size from tn to tn+1. The Taylor-series

expansion can be rewritten in terms of Taylor coefficients, defined as [2]:

(xn)k =
x(k)(tn)

k!
(3)

3

In a practical application, it is not possible to compute an infinite number of terms, so the Taylor

series is truncated at order K:

x(tn+1) =

K∑
k=0

(xn)kh
k
n +O(hK+1

n) (4)

where O(hK+1
n) marks the truncation error. Thus, to propagate the state to tn+1, one has to

determine its Taylor coefficients (xn)k. From Eq. (3), (xn)0 = x(tn). The higher-order coefficients

are obtained from the differential equation f(t,x(t)) by rewriting it in terms of recurrence relations.

The recurrence relations of a number of basic mathematical operations on two arbitrary analytical

functions y(t) and z(t) are (for k ≥ 1) [2]:

(y ± z)k = (y)k ± (z)k (5)

(yz)k =

k∑
j=0

(y)j(z)k−j (6)

(y/z)k =
1

(z)0

(y)k −
k∑
j=1

(z)j(y/z)k−j

 (7)

(yα)k =
1

(y)0

k∑
j=1

(
j

k
(α+ 1)− 1

)
(y)j(y

α)k−j (8)

(ey)k =
1

k

k∑
j=1

j(y)j(e
y)k−j (9)

(sin y)k =
1

k

k∑
j=1

j(y)j(cos y)k−j (10)

(cos y)k = −1

k

k∑
j=1

j(y)j(sin y)k−j (11)

Equation (10) can be reordered to obtain the recurrence relation for an angle θ using the coefficients

of its sine and cosine:

(θ)k =
1

(cos θ)0

(sin θ)k −
1

k

k−1∑
j=1

j(θ)j(cos θ)k−j

 (12)

4

B. Application to Ordinary Differential Equations

As an example of the application of TSI, consider the following ODE:

ẋ =
x2 + 1

cosx
(13)

To obtain the recurrence relation for ẋ, its expression is decomposed into auxiliary variables. In

that way no nested multiplications appear in the expression of any variable. In this case, the first

two auxiliary variables are the numerator and denominator of Eq. (13). Furthermore, according to

Eq. (11), the recurrence relation of cosx requires the Taylor coefficients of sinx, so that will be the

third variable.

f1 = x2 + 1 (14)

f2 = cosx (15)

f3 = sinx (16)

Next, the recurrence relations are computed. For the recurrence relation of f1, note that the 1 is a

constant, so (1)k = 0 for k ≥ 1.

(f1)k =

k∑
j=0

(x)j(x)k−j (17)

(f2)k = −1

k

k∑
j=1

j(x)j(f3)k−j (18)

(f3)k =
1

k

k∑
j=1

j(x)j(f2)k−j (19)

(ẋ)k = (f1/f2)k =
1

(f2)0

(f1)k −
k∑
j=1

(f2)j(ẋ)k−j

 (20)

The Taylor coefficient (x)k+1 can then be determined from (ẋ)k [2]:

(x)k+1 = (k + 1)−1(ẋ)k (21)

and this formula can be used to obtain the order k+1 Taylor coefficients of the other variables. Once

the Taylor coefficients up to order K are computed, one can determine the step size and propagate

x to the next step.

5

C. Step-Size and Order Control

The goal of step-size control is to set the step sizes hn as large as possible without violating

error tolerances εn. If εabs and εrel are the user-set absolute and relative error tolerances, then εn

is given by:

εn = max {εrel|xn|, εabs} (22)

To determine the step size, the truncation error of a Taylor-series expansion is written as a Lagrange

remainder, R:

RK,n+1 =
x(K+1)(tn + ξ)

(K + 1)!
hK+1 (23)

with ξ ∈ [0, h]. To obtain an error approximation, which uses the last two terms of the Taylor series,

the Lagrange remainder of order K − 2 is used [1]:

RK−2,n+1=
x(K−1)(tn + ξ)

(K − 1)!
hK−1

=
hK−1

(K − 1)!

[
x(K−1)(tn) + x(K)(tn)ξ + · · ·+ x(K−1+i)(tn)

i!
(ξ)i + · · ·

]

Taking only the first two terms of this expansion and approximating ξ by h gives:

RK−2,n+1 ≈
x(K−1)(tn)

(K − 1)!
hK−1 +

x(K)(tn)

(K − 1)!
hK (24)

This approximation should be smaller than or equal to the error tolerances. Writing Eq. (24) in

terms of Taylor coefficients gives the following error-tolerance formula:

|(xn)K−1|hK−1 +K|(xn)K |hK ≤ εn (25)

From this formula, an exponential fixed-point iteration scheme was derived which converges close

enough to the root of Eq. (25) in one iteration [12]:

hn = η exp

[
1

K − 1
ln

(
min

{
εn

|(xn)K−1|+K|(xn)K |hn,0

})]
(26)

where η is a safety factor, set equal to 0.95. The term hn,0 in Eq. (26) is found by ignoring the

term K(xn)Kh
K in Eq. (25), which results in:

hn,0 =

(
min

{
εn

|(xn)K−1|

})1/(K−1)

(27)

6

With the errors handled by the step-size control, the order K can be selected to minimize the

CPU time of the integration. For the order control, it was found in Ref. [14] that using a variable

order does not yield significantly better results for reentry integration than using fixed orders. Hence,

in Sec. V, different orders will be compared for CPU time.

III. The Reentry Problem

This section will introduce the reentry vehicle used for the simulations, HORUS, and will briefly

explain its reference mission and aerodynamics, the environment models, controls, trajectory con-

straints and equations of motion. The recurrence relations for the equations of this section will be

given in the appendix.

In this section, groundspeed, i.e., the velocity with respect to the rotating planet, is indicated

by VG and airspeed, i.e., the velocity with respect to the atmosphere, by VA. Furthermore, all angles

based on the groundspeed have the subscript G, and those based on the airspeed have the subscript

A. When wind is absent, the groundspeed-based variables equal the airspeed-based ones.

A. HORUS

HORUS is a manned, Space-Shuttle-like reentry vehicle. The original purpose of HORUS was

to serve as a reusable second stage to the Ariane-5 launcher. HORUS was later redesigned as the

second stage of Sänger II, a two-stage-to-orbit concept, for which HORUS would be fitted with a

rocket engine to bring it up to orbit. Both projects were canceled for budgetary reasons, but a

complete aerodynamic database of HORUS (the version without rocket engine) is available [15],

making it possible to be used as a reference vehicle for reentry simulations.

The relevant mission details of HORUS are shown in Table 1. HORUS’ entry flight starts above

the Pacific Ocean, and it ends at the runway at Kourou, French Guiana. The trajectory is split into

two parts, the hypersonic entry phase and the Terminal Area Energy Management (TAEM) phase

before landing. In this case, only the hypersonic phase is of interest, and it ends when the vehicle

reaches a distance along the surface of the Earth of 0.75◦ to the target point, which is located 12

7

km north of the runway. This angular distance, d, is given by:

d = arccos
(

sin δ sin δT + cos δ cos δT cos(τ − τT)
)

(28)

The altitude-velocity profile and control profile of the reference mission are shown in Fig. 1. HORUS

flies an equilibrium-glide trajectory, i.e., its flight-path angle changes only very little over time. Its

angle of attack is set to the maximal value (40◦) for most of the time to limit the maximum heat

flux. Since the large angle of attack implies a high lift force, the vehicle requires a large bank angle

to prevent it from skipping and to keep it flying an equilibrium-glide trajectory. To remain flying

towards the target, HORUS performs a number of bank reversals, during which the sign of the bank

angle is instantaneously flipped.

0 1000 2000 3000 4000 5000 6000 7000 8000
20

40

60

80

100

120

140

Velocity [m/s]

A
lti

tu
de

 [k
m

]

entry

TAEM interface

#4
#3

#2

bank reversal #1

(a) Altitude versus velocity

0 200 400 600 800 1000 1200 1400
-80

-40

0

40

80

Time [s]

Co
nt

ro
l a

ng
le

 [d
eg

]

bank reversal #1

angle of attack
bank angle

#2

#3

#4

(b) Controls

Fig. 1 Reference trajectory and control profile for HORUS.

B. Environment Models

Here, the models for the shape, gravity field and atmosphere of the Earth are listed. Only

analytical functions can be transformed into recurrence relations, so all data tables will be fit with

analytical functions.

Planet Shape

The shape of the Earth is approximated by an ellipsoid, flattened at the poles. To determine the

altitude, H, exactly above such a shape, an iterative process is required. Here, an approximation is

used, given by:

H ≈ r −RE

√
1− e2

1− e2 cos2 δ
(29)

8

Table 1 Main characteristics of HORUS’ reference mission [16].

Property Value

Wing area (Sref) [m2] 110

Reentry mass [kg] 26029

Nose Radius [m] 0.8

Initial altitude [km] 122

Initial longitude [◦] -106.7

Initial latitude [◦] -22.3

Initial velocity [m/s] 7435.5

Initial flight-path angle [◦] -1.43

Initial heading [◦] 70.75

Maximum dynamic pressure [N/m2] 1×104

Maximum heat flux [kW/m2] 530

Maximum g-load [-] 2.5

Terminal altitude [km] 24.86

Terminal Mach number [-] 2.5

Terminal distance [◦] 0.75

Runway longitude [◦] -53.0

Runway latitude [◦] 5.0

where r is distance to the center of the planet, δ is the latitude, andRE and e are the equatorial radius

and eccentricity of the Earth, which are equal to 6378.137 km and 0.081819190842, respectively,

according to the World Geodetic System, 1984 [17].

Gravity Field

The gravity field of the Earth can be expressed in terms of spherical harmonics. Here, the

spherical harmonics are truncated at degree 2 and order 0, retaining only the central gravity and J2

terms. The downward and northward gravity accelerations are in that case equal to, respectively

[18]:

gdown =
µE
r2

[
1− 3

2
J2

(
RE
r

)2 (
3 sin2 δ − 1

)]
(30)

9

gnorth = −3J2
µE
r2

(
RE
r

)2

sin δ cos δ (31)

with µE and J2 equal to 3.986004415×1014 m3/s2 and 1.0826357×10−3, respectively [19].

Atmosphere

For the atmosphere modeling, the United States Standard Atmosphere 1976 (US76) [20] is used.

The outputs of interest of this model are the air density, ρ, and speed of sound, a. For altitudes

above 86 km, data tables are used to determine ρ. In this case, the table for ρ is fitted using

exponential polynomials, given by:

ρ = exp

(
p∑
i=0

aρ,iH
i

)
(32)

The coefficients aρ,i are given in Ref. [14].

The computation of the speed of sound requires the molecular mass, MM , which, above 86 km,

also has to be obtained from tables. Here, these tables were fit up to 125 km by:

MM = aM,0 + aM,1 sin(bM,0H) + aM,2 cos(bM,0H) + aM,3 sin(bM,1H) + aM,4 cos(bM,1H) (33)

with the coefficients aM,i and bM,i also given in Ref. [14].

Wind Model

For the wind model, the Earth Global Reference Atmosphere model 1999 (GRAM99) was used

for the raw wind data. The input of this model consists of position and time, from which the model

can generate the wind-velocity components in the vertical reference frame:

VW =

(
VW,north VW,east VW,down

)T
(34)

GRAM99 is set to generate random wind velocities. It is sampled with the unperturbed trajectory

at a rate of once every 2 km of altitude to obtain a wind profile as a function of only altitude. These

profiles were then smoothed using a 5-point moving average scheme and interpolated with a cubic

spline. The cubic polynomials defining the spline segments then form the analytical expressions

needed for the recurrence relations. This process is repeated multiple times to obtain different

random wind profiles. The result is shown in Fig. 2 for an arbitrary profile.

10

-50 0 50 100 150 200
20

40

60

80

100

120

Wind velocity [m/s]

A
lti

tu
de

 [k
m

]

Raw GRAM99 data
Smoothed spline

Fig. 2 Sampling and processing of the wind profile.

C. Aerodynamics

The aerodynamics database of HORUS gives the lift, drag and pitch-moment coefficients as

function of angle of attack αA, angle of side-slip βA, Mach number M , and deflection of its body

flap and elevons [15]. Here, it is assumed that the onboard guidance system keeps βA and βG at

values close to zero, also due to the large flight velocity. Therefore, the vehicle experiences only a

very small aerodynamic side-force that is successively ignored. HORUS is then pitch-trimmed for

each of the data points in the range of Mach 2.5 to 20. The resulting data tables of CD,trim and

CL,trim are fitted with analytical equations for the αA range of 15◦ to 40◦. The resulting fits are:

CD,trim = aD,0 + aD,1αA + aD,2α
2
A + aD,3α

3
A + aD,4M + aD,5M

2

+aD,6αAM + aD,7
αA
M

+ aD,8
α2
A

M
+ aD,9

αA
M2

(35)

CL,trim = aL,0 + aL,1M +
aL,2

M + aL,3
+

(
aL,4 +

aL,5
M + aL,6

)
sin

(
aL,7αA +

aL,8αA
M + aL,9

)
+

(
aL,10 + aL,11M +

aL,12
M + aL,13

)
cos

(
aL,7αA +

aL,8αA
M + aL,9

)
(36)

The coefficients aD,i and aL,i are given in Ref. [14]. Finally, the aerodynamic drag, side-force and

lift accelerations are: 
fD

fS

fL

 = −


CD,trim

0

CL,trim


ρV 2

ASref
2m

(37)

11

D. Controls

The reentry vehicle is modeled as a point mass, so rotational dynamics are not taken into

account. The attitude of the vehicle is defined by the (commanded) angle of attack, αG and bank

angle, σG, which in turn are defined by a control profile. These profiles are given as a set of nodes,

each defined for a certain amount of specific energy E:

E = g0H +
1

2
V 2
G (38)

where g0 is the gravitational acceleration at sea level, 9.81 m/s2. The control profile is then created

by interpolating the nodes with a Hermite spline, in a similar fashion as the pchip-function of Matlab

[21]. Here, all control profiles are given by 6 nodes, of which two are fixed at the initial and terminal

energy levels of HORUS, 2.884×107 J/kg and 5.219×105 J/kg, respectively.

For the control profiles, αG ∈ [15◦, 40◦] and σG ∈ [0◦, 90◦]. The magnitude of σG is then

determined by the control profile, and the sign is controlled by performing a bank reversal each

time the heading error, χe, exceeds a predefined dead band, χdb. A bank reversal should only be

executed if the sign of σG is not correct already, which can be expressed in mathematical terms as:

− χe sign(σG) > χdb (39)

with χe defined as χG − χT , where χG is the (groundspeed-based) heading, and χT is the heading

to target, given by [16]:

χT = atan2 (sin(τT − τ), tan δT cos δ − cos(τT − τ) sin δ) (40)

where τ is the latitude, and τT and δT are the longitude and latitude of the target. The definition

of the dead band for HORUS is given in Ref. [16].

E. The Inclusion of Wind

In this section, it is explained how the wind velocities of Eq. (34) impact the aerodynamic accel-

erations computed with Eq. (37). The first step is to compute the groundspeed vector components

in the vertical frame:

VG =

(
VG cosχG cos γG VG sinχG cos γG −VG sin γG

)T
(41)

12

where γG is the (groundspeed-based) flight-path angle. The airspeed vector is computed by sub-

tracting the wind-velocity vector:

VA = VG − VW (42)

From the components of the airspeed, one can obtain the airspeed-based angles γA and χA. The

next step is to compute the transformation matrix CB,TA, i.e., the matrix for the transformation

from the airspeed-based trajectory frame (subscript TA) to the body frame (subscript B), assuming

that βG is zero:

CB,TA = Cy(αG)Cx(−σG)Cy(γG)Cz(χG − χA)Cy(−γA) (43)

with Ci(θ) being a unit-axis transformation matrix of an angle θ about axis i. An explanation of

transformation matrices and the reference frames used is given by Mooij [18].

CB,TA can also be computed using the angles αA, βA and σA:

CB,TA =


cαAcβA (sαAsσA − cαAsβAcσA) (cαAsβAsσA − sαAcσA)

sβA cβAcσA −cβAsσA

sαAcβA (cαAsσA − sαAsβAcσA) (cαAcσA + sαAsβAsσA)

 (44)

where s and c indicate the sine and cosine of each angle. From Eq. (44), one can obtain expressions

for the angles αA, βA and σA:

sinαA =
CB,TA(3,1)

cosβA
cosαA =

CB,TA(1,1)

cosβA
(45)

sinβA = CB,TA(2,1) cosβA =
√
CB,TA(2,2)2 +CB,TA(2,3)2 (46)

sinσA = −CB,TA(2,3)

cosβA
cosσA =

CB,TA(2,2)

cosβA
(47)

where the matrix coefficients on the right-hand side are provided by Eq. (43). αA can be used

to calculate the aerodynamic accelerations. Note that these accelerations are given in an airspeed

based reference frame, whereas the equations of motion, which are given in the next section, are

defined in the groundspeed-based trajectory frame (subscript TG). So the final step is to transform

13

the aerodynamic accelerations to this frame:
fD,TG

fS,TG

fL,TG

 = Cy(γG)Cz(χG − χA)Cy(−γA)Cx(σA)


fD

fS

fL

 (48)

Without wind, the groundspeed-based and airspeed-based angles are equal, simplifying this trans-

formation to: 
fD,TG

fS,TG

fL,TG

 = Cx(σG)


fD

fS

fL

 (49)

F. Equations of Motion

For the translational motion, different state-variable sets have been compared for the average

CPU time when integrating with TSI, including Cartesian and spherical state variables, and the

combination of spherical position with Cartesian velocity. The outcome of this comparison was that

spherical state variables are the fastest for TSI. The equations of motion for this set are [18]:

ṙ = VG sin γG (50)

τ̇ =
VG sinχG cos γG

r cos δ
(51)

δ̇ =
VG cosχG cos γG

r
(52)

V̇G = fD,TG−gdown sin γG+gnorth cos γG cosχG+ω2
Er cos δ (sin γG cos δ − cos γG sin δ cosχG) (53)

VGγ̇G = −fL,TG − gdown cos γG − gnorth sin γG cosχG + 2ωEVG cos δ sinχG

+
V 2
G

r
cos γG + ω2

Er cos δ (cos δ cos γG + sin γG sin δ cosχG) (54)

VG cos γGχ̇G = fS,TG − gnorth sinχG + 2ωEVG (sin δ cos γG − cos δ sin γG cosχG)

+
V 2
G

r
cos2 γG tan δ sinχG + ω2

Er cos δ sin δ sinχG (55)

The reader is referred to the appendix for the complete formulation of the TSI model with recurrence

relations.

14

G. Trajectory Constraints

In this research, three different trajectory constraints are considered. The first is the convective

heat flux, q̇c, given by [16]

q̇c =
C1√
RN

√
ρV 3.15

A ≤ 5.3×105 W/m
2 (56)

with RN and C1 equal to 0.8 m and 5.28137×10−5 Js2.15/kg0.5/m2.15, respectively. The other two

constraints are the load factor, ng and the dynamic pressure, q̄:

ng =

√
f2D + f2L
g0

≤ 2.5 (57)

q̄ =
1

2
ρV 2

A ≤ 104 N/m
2 (58)

In Ref. [14], it is explained how to incorporate constraint-violation penalties in TSI. This

explanation includes a mechanism for finding constraint violations, even when the constraint is only

violated briefly during a time step and the violation cannot be detected by only checking the values

of the constraint variables at the start and end of a step.

IV. Discontinuities

A Taylor-series expansion before a discontinuity contains no information on the new equation set

after the discontinuity. Thus TSI will likely accumulate errors if there is a discontinuity somewhere

during a time step. The solution is to reduce the step size such that the step ends at the discontinuity,

and the next step can be performed with the new set of equations. This practice will here be called

the G-stop procedure.

The reentry equations of the previous section contains six types of discontinuities: i) the atmo-

sphere layers of US76, which are determined by the current altitude, ii) the spline segments with

which the wind profiles are defined for each 2 km of altitude, iii) the control profile, which is a

piecewise function of E, iv) the regression fits of the aerodynamics, which are only defined in the

range of Mach 2.5 to 20, v) bank reversals, and vi) reaching the terminal distance. The G-stop

procedure then involves finding the root of a function g, for instance, for a US76 layer change at

altitude Hlayer:

g = H −Hlayer (59)

15

A. Altitude, Mach Number and Energy

Of the variables H, M and E, the Taylor coefficients are available at the end of an integration

step, as they are needed to propagate the state. To find the root of function g, the Taylor series

of its reciprocal 1/g is computed. The poles of this function are the roots of g, so an estimate

of the radius of convergence of 1/g is also an approximation of the nearest root of g. The Taylor

coefficients of 1/g can be computed with Eq. (7), and the radius of convergence r is then found

using the ratio test [8]:

r =
(1/g)K−1
(1/g)K

(60)

The procedure for finding a root in the search space [tn, tn + h] is as follows [8]:

1. Initially, the expansion point texp is equal to tn, and multiplication factor ηstep is equal to 0.8.

2. Generate the Taylor coefficients of 1/g at texp and compute its radius of convergence r. Set

hstep equal to ηstepr.

3. If r < 0, the nearest root lies before the expansion point. In that case, set hstep equal to

0.6(h− texp) to force the method to look for a root within the search space, and skip step 4.

If r > h− texp (which, during simulation, only happened when a root was very close to h), set

hstep equal to 0.95(h− texp) and skip step 4.

4. The estimate of the root is equal to t0 + r, so the method has converged if |g(t0 + r)| ≤ εabs.

5. While t0 + hstep is located behind the root, reduce the size of hstep by a factor 0.25.

6. Re-expand the Taylor series of g at t0 + hstep and set t0 equal to t0 + hstep. Set ηstep equal to

√
ηstep and go to step 2.

It was found that for H, M and E, one should not aim for the root, but rather slightly beyond it, to

avoid cases where the root-finding method is triggered again or the integrator ends up in an infinite

loop. The values of these “safety distances” for H, M and E are 10−9 m, M×εrel and E×εrel,

respectively.

16

B. Bank Reversals

For bank reversals, the function g of which the root is to be found is obtained from Eq. (39):

g = −sign(σ)χe − χdb (61)

Since the Taylor coefficients of χe and χdb are not needed for the rest of the integration process,

the Muller method [22] is used to find the roots. For this method, one needs to sample g at three

points t0,i, t1,i and t2,i and then fit a line through these points, given by:

ĝi(h) = aih
2 + bih+ f0,i (62)

with h being the step size measured from t0,i. bi and ai are the first and second derivatives of the

line at t0,i, respectively. They are given by:

ai =
1

t2,i − t1,i

(
f2,i − f0,i
t2,i − t0,i

− f1,i − f0,i
t1,i − t0,i

)
(63)

bi =
f1,i − f0,i
t1,i − t0,i

− ai(t1,i − t0,i) (64)

Of ĝ, only the positive root is needed, as a bank reversal is only needed when g is larger than zero,

in which case the left values are always negative, and the right are always positive. The positive

root is:

tnew = t0,i +
−bi +

√
b2i + 4aif0,i
2ai

(65)

To find the value for g for a particular value of h, one first computes the state at t0,i + h, using its

Taylor coefficients, and one then computes g. The root-finding procedure for bank reversals is:

1. Initially, the value at the start of a time step and at the end are used, so t0,0 = tn and

t2,0 = tn + hn. The middle point is found using the false position method [22] with the two

outer points.

2. Using Eq. (65), a new estimate for the root, tnew, can be found.

3. The method has converged if |f(tnew)| ≤ εabs.

4. tnew will become the new middle point, t1,i+1, so if it is larger than t1,i, t0,i+1 = t1,i, else

t2,i+1 = t1,i. Go to step 2.

17

The sign of σ is flipped when the root-finding is done, which means that Eq. (39) is no longer

satisfied and the root-finding will not be triggered for this particular bank reversal again, and the

integrator cannot end up in an infinite loop. Therefore, the root-finding for bank reversals is allowed

to target the root precisely, i.e., there is no safety distance needed.

C. Terminal Distance

The integration of a trajectory can be stopped when the terminal distance to target is reached,

but also when the vehicle misses the target. To find both cases and distinguish between them,

Newton’s method [22] is used:

hi+1 = hi −
d(hi)− dterminal

ḋ(hi)
(66)

This method is used because the distance to target for trajectories that miss the TAEM interface

first decreases asymptotically, then increases asymptotically, as is shown in Fig. 3. In this figure, one

iteration of Newton’s method for trajectory 1 stays on the left of the minimum, but for trajectory

2, the method eventually (in this case in one iteration) ends up on the right of the minimum. One

can determine whether the method ends up on the left or the right by evaluating the sign of the

first derivative of the distance, given by:

ḋ =

(
δ̇ sin δ cos(τT − τ)− τ̇ sin(τT − τ) cos δ

)
cos δT − δ̇ cos δ sin δT

sin d
(67)

To compute the values of d and ḋ, one first computes the state, just like for the bank reversals.

1
5

6

7

lon [deg]

la
t [

de
g]

-55 -54 -53 -52 -51

2

(a) Longitude versus latitude

0 10 20 30 40 50 60 70 80 900.5

1

1.5

2

2.5

time [s]

di
st

an
ce

 [d
eg

] 1

2

(b) Distance to target

Fig. 3 Two high-speed trajectories and their distance to target.

18

V. Simulation Results

In this section, the results of simulations with TSI and RKF5(6) are presented. Both integrators

were developed in C++, and the simulations were performed on a HP R© EliteBook 8540w, with an

Intel R© CoreTM i7 clocked at 1.60 GHz. First the optimal orders for TSI are determined, followed

by a comparison of the integration results of TSI and RKF5(6). Finally, the CPU times of the

two integrators are compared. For all simulations, the relative and absolute error tolerances have

identical values. It is noted that the RKF integrator has been optimized as much as possible for

this problem, i.e., the most optimal state-variable set has been selected for this integrator and the

integrator has been programmed as efficiently as possible, so no general-purpose integration package

has been used.

A. Optimal Order Control

To determine the optimal fixed orders for integrating reentry trajectories, TSI was timed for

batches of 5,000 random trajectories with orders varying from 5 to 25 and error tolerances ranging

from 10−5 to 10−14. The random trajectories were created by randomizing the controls and wind

profiles. The optimal orders and their respective times for each error tolerance are given in Table

2. As can be seen, the optimal order mostly increases as the tolerance decreases. Furthermore, the

CPU times are higher for integration with wind, and the optimal orders are lower, mostly because

the wind profiles are defined by spline segments for every 2 km of altitude. As a result the integration

has a discontinuity every 2 km of altitude, which both decreases the step sizes the integrator can

take and increases the number of times root-finding has to be used to locate each discontinuity.

B. Comparison of Integration Results

Here, the results of the two integrators are compared to establish that the integrators indeed

yield results with small relative differences when they are applied to the same reentry problem. The

integrators were set to ε = 10−14 and the comparison was performed for a single trajectory, which

was the result of an optimization of the flight to the TAEM interface and had the lowest heat load.

19

Table 2 Optimal orders and their average time to integrate 5,000 trajectories.

without wind with wind

ε order CPU time [s] order CPU time [s]

10−5 8 1.491 6 5.358

10−6 8 1.785 6 5.976

10−7 10 2.187 8 6.656

10−8 10 2.596 8 7.309

10−10 12 3.463 10 9.157

10−12 16 4.527 11 12.010

10−14 18 5.891 13 15.821

The integrated heat load Q is:

Q =

∫ tf

0

q̇cdt (68)

The relative differences between a number of parameters at the end of flight for the two inte-

grators are shown in Table 3 (relative difference here means (V alueRKF − V alueTSI)/V alueTSI)

for four different wind profiles. As can be seen, some of the differences have an order of magnitude

of 10−5, which is large compared to the error tolerance.

Table 3 Relative differences between the final conditions found with TSI and RKF5(6).

Trajectory H [-] τ [-] δ [-] VG [-] Q [-]

1 -2.242×10−5 -5.157×10−7 -5.431×10−6 -7.031×10−5 4.197×10−7

2 5.387×10−6 -6.160×10−8 -1.033×10−6 8.524×10−6 -1.860×10−7

3 -6.280×10−6 3.763×10−8 5.505×10−7 -1.283×10−5 2.753×10−8

4 -3.808×10−6 -2.370×10−7 -2.908×10−6 -1.122×10−5 4.059×10−8

To show the main cause for the large differences in Table 3, the unperturbed trajectory is

integrated with integrators set to ε = 10−15. The relative differences in altitude and velocity are

shown by the dashed and solid lines in Fig. 4. The most noticeable features of these lines are

the jumps in the solid line and certain points at which both lines suddenly increase. As has been

marked in the graph, these events coincide with discontinuities such as US76 layer changes and bank

20

reversals. These jumps are removed when a G-stop facility is also build into RKF5(6), which was in

this case done using the Muller method that was described in Sec. IVB. The result is shown by the

dotted line in Fig. 4; the difference in velocity is now less than 10−12 at the end of the trajectory.

Finally, the differences of Table 3 were recomputed with the G-stop procedure for RKF5(6), the

results of which are shown in Table 4. As can be seen, the differences are now of magnitude 10−11

or smaller, from which it can be concluded that the two integrators yield very similar results. Thus,

when computing reentry trajectories with high accuracy, a G-stop facility should also be added to

RKF5(6).

0 200 400 600 800 1000 1200 1400
10-16

10-15

10-14

10-13

10-12

10-11

10-10

10-9

10-8

10-7

10-6

Time [s]

Re
la

tiv
e

D
i

er
en

ce

US76
Mach number < 20

bank reversal

Altitude
Velocity
Velocity, with
root-�nding RKF5(6)

Fig. 4 Differences in H and V between integrations with RKF5(6) and TSI set to ε = 10−15.

Table 4 Relative differences between the final conditions found with TSI and RKF5(6) with

G-stop facility.

Trajectory H [-] τ [-] δ [-] VG [-] Q [-]

1 -4.384×10−12 6.456×10−14 5.805×10−13 -1.143×10−11 -9.198×10−14

2 -7.266×10−12 5.481×10−14 7.861×10−13 -1.229×10−11 -1.764×10−14

3 -6.305×10−12 6.350×10−14 7.624×10−13 -1.192×10−11 -5.129×10−14

4 -3.016×10−12 1.532×10−14 2.041×10−13 -6.114×10−12 2.085×10−14

21

C. Comparison of Integration Speed

Finally, the CPU times of the two integrators are compared. The state variable sets used for

RKF5(6) are Cartesian for integration without wind and spherical for integration with wind, as these

settings yielded the highest performance for this integrator. RKF5(6) was also timed for batches

of 5,000 random trajectories and the results are shown in Table 5. As can be concluded from this

table, integration with wind does not cause a large increase in CPU times for RKF5(6), as it does

not take into account the discontinuities. As a result it is almost as fast as TSI for integration with

wind and an error tolerance of 10−8 and faster for higher tolerances.

The CPU times when discontinuities are taken into account can be seen in Table 6. The Muller

method was used for root-finding for RKF5(6), the reason being that it always converged in about

4 steps, which is considered to be close to optimal. As can be seen in Table 6, RKF5(6) is especially

penalized for high tolerances, whereas for low tolerances without wind, root-finding is faster, because

the integrator no longer has to check in the state-derivative function in which atmosphere layer it

is and whether it should execute a bank reversal. Furthermore, bank reversals tend to cause the

integrator to reject the step size a few times, because of the large discontinuity in derivatives. In

the case of wind, there are many discontinuities, adding 50 to 60 seconds to the integration time.

Overall, including a G-stop facility in RKF5(6) makes it several times slower than TSI.

Table 5 CPU times of RKF5(6) for 5,000 trajectories.

without wind with wind

ε
CPU time CPU time CPU time CPU time

RKF [s] ratio RKF
TSI RKF [s] ratio RKF

TSI

10−5 3.276 2.20 3.603 0.67

10−6 4.228 2.37 4.817 0.81

10−7 5.819 2.66 6.374 0.96

10−8 8.034 3.09 8.596 1.18

10−10 16.21 4.68 17.33 1.89

10−12 32.93 7.27 35.97 3.00

10−14 70.57 11.98 75.72 4.79

22

Table 6 CPU times of RKF5(6) for 5,000 trajectories with G-stop facility.

without wind with wind

ε
CPU time CPU time CPU time CPU time

RKF [s] ratio RKF
TSI RKF [s] ratio RKF

TSI

10−5 6.162 4.13 56.03 10.46

10−6 7.119 3.99 59.72 9.99

10−7 8.299 3.79 61.42 9.23

10−8 9.927 3.82 63.94 8.75

10−10 15.46 4.46 69.96 7.64

10−12 28.41 6.28 95.89 7.98

10−14 57.54 9.77 139.2 8.80

VI. Conclusion

A Taylor Series Integration (TSI) reentry simulator was developed to determine whether TSI

is faster than traditional integration methods for reentry applications with wind. Discrete data

tables of environment and aerodynamic models were fitted with regression lines to obtain analytical

approximations, as TSI can only handle analytical expressions. To cope with discontinuites in the

equations of motion, time steps were shortened whenever TSI integrates over a discontinuity, so

that TSI does not accumulate errors by integrating a function that is no longer valid after the

discontinuity. To optimize the CPU times for TSI, the optimal integration orders were determined

for different error tolerances.

TSI was compared with the fifth-order Runge-Kutta-Fehlberg (RKF) for CPU times and was

found to be between 2.20 and 11.98 times faster for integration without wind, and between 0.67

and 4.79 times faster for integration with wind. The lesser performance for the cases with wind is

mostly due to the fact that the way the wind profiles are defined drastically increases the number

of discontinuities and TSI has to adapt its step sizes for each of these discontinuities, whereas

the RKF method does not. However, when comparing the results of the integrators for low error

tolerances, it was found that RKF methods can also accumulate significant errors when integrating

over discontinuities. Thus a G-stop facility is also need for RKF methods when integrating reentry

23

trajectories with high accuracy, albeit that this is not common practice. In that case, TSI is 3.79

to 9.77 times faster for integration without wind and 7.64 to 10.46 times faster for integration with

wind.

The use of TSI is advised for reentry applications such as integration, optimization and sen-

sitivity analysis, as long as the application does not involve a guidance/navigation/control system

that limits the step sizes to very small values. Otherwise, TSI cannot use a high order and large

step sizes, which are the main reasons it can outperform other numerical integrators.

Appendix: Reentry Recurrence Relations

In the appendix of Ref. [14], the recurrence relations for the reentry equations of motion

without wind were given. With these relations one could create his own TSI reentry simulator.

In this appendix, the relations for the inclusion of wind are added. Similar to the process in Sec.

II B, the equations of interest are first decomposed into auxiliary variables and then the recurrence

relations for these variables are given. Sines and cosines are here denoted by s and c, respectively.

Auxiliary Variables

The appendix of Ref. [14] starts with the computation of the sines and cosines of δ, γG and χG,

which are the first auxiliary variables. Next, the variables for the gravity field model, planet shape

and atmosphere model are listed, followed by those for the controls (αG and σG).

Now, before computing the aerodynamic accelerations, the variables for the inclusion of wind

are computed. To distinguish these variables from those in Ref. [14], the auxiliary variables here

are labeled with the numbers 40 to 62.

f40 = VGcγG − VW,northcχG − VW,eastsχG (69)

f41 = VW,northsχG − VW,eastcχG (70)

f42 = −VGsγG − VW,down (71)

f43 = f240 + f241 f44 =
√
f43 (72)

24

f45 = f43 + f242 VA =
√
f45 (73)

f46 = −f41
f44

f47 =
f40
f44

sγA = −f42
VA

cγA =
f44
VA

(74)

f48 = sγGsγA (75)

f49 = sγGcγA (76)

f50 = cγGcγA (77)

f51 = cγGsγA (78)

f52 = f47f49 − f51 (79)

f53 = −f46cγA (80)

f54 = f46sγG (81)

f55 = f48 + f47f50 (82)

f56 = f50 + f47f48 (83)

f57 = −f46sγA (84)

f58 = f52cσG + f53sσG (85)

sβA = f53cσG − f52sσG (86)

cβA =
√

1− (sβA)2 (87)

sαA =
f55sαG + f58cαG

cβA
(88)

25

cαA =
√

1− (sαA)2 (89)

sσA =
f56sσG − f57cσG

cβA
(90)

cσA =
f47cσG + f54sσG

cβA
(91)

αA = arcsin(sαA) (92)

Now that αA is known, fD and fL can then be computed as is done in the section “Aerody-

namic Accelerations” of the appendix of Ref. [14], but using αA instead of α. Next, the aerody-

namic accelerations are transformed to the groundspeed-based trajectory frame before computing

the translational equations of motion.

f59 = cγGf46 (93)

f60 = f52f47 − f49 (94)

f61 = fLsσA (95)

f62 = fLcσA (96)

fD,TG = fDf55 + f61f53 + f62f52 (97)

fS,TG = fDf59 + f61f47 + f62f54 (98)

fL,TG = fDf60 − f61f57 + f62f56 (99)

The equations for the translational equations of motion are the same as in the appendix of Ref.

[14], safe for those of f34, f35 and V̇G, which are now a function of fD,TG, fS,TG and fL,TG:

f34 =
−fL,TG − gdowncγG − gnorthf30 + f29f32

VG
(100)

f35 =
fS,TG + f33sχG

VG
(101)

V̇G = fD,TG − gdownsγG + gnorthf28 + f29f31 (102)

26

Recurrence Relations

(f40)k =

k∑
j=0

(VG)j(cγG)k−j − (VW,north)j(cχG)k−j − (VW,east)j(sχG)k−j (103)

(f41)k =

k∑
j=0

(VW,north)j(sχG)k−j − (VW,east)j(cχG)k−j (104)

(f42)k = −(VW,down)k −
k∑
j=0

(VG)j(sγG)k−j (105)

(f43)k =

k∑
j=0

(f40)j(f40)k−j + (f41)j(f41)k−j (106)

(f44)k =
1

2(f44)0

(f43)k −
k−1∑
j=1

(f44)j(f44)k−j

 (107)

(f45)k = (f43)k +

k∑
j=0

(f42)j(f42)k−j (108)

(VA)k =
1

2(VA)0

(f45)k −
k−1∑
j=1

(VA)j(VA)k−j

 (109)

(f46)k =
−1

(f44)0

(f41)k +

k∑
j=1

(f44)j(f46)k−j

 (110)

(f47)k =
1

(f44)0

(f40)k −
k∑
j=1

(f44)j(cχA)k−j

 (111)

(sγA)k = − 1

(VA)0

(f42)k +

k∑
j=1

(VA)j(sγA)k−j

 (112)

(cγA)k =
1

(VA)0

(f44)k −
k∑
j=1

(VA)j(cγA)k−j

 (113)

(f48)k =

k∑
j=0

(sγG)j(sγA)k−j (114)

27

(f49)k =

k∑
j=0

(sγG)j(cγA)k−j (115)

(f50)k =

k∑
j=0

(cγG)j(cγA)k−j (116)

(f51)k =

k∑
j=0

(cγG)j(sγA)k−j (117)

(f52)k =

k∑
j=0

(f47)j(f49)k−j − (f51)k (118)

(f53)k = −
k∑
j=0

(f46)j(cγA)k−j (119)

(f54)k =

k∑
j=0

(f46)j(sγG)k−j (120)

(f55)k = f48 +

k∑
j=0

(f47)j(f50)k−j (121)

(f56)k = f50 +

k∑
j=0

(f47)j(f48)k−j (122)

(f57)k = −
k∑
j=0

(f46)j(sγA)k−j (123)

(f58)k =

k∑
j=0

(f52)j(cσG)k−j + (f53)j(sσG)k−j (124)

(sβA)k =

k∑
j=0

(f53)j(cσG)k−j + (f52)j(sσG)k−j (125)

(cβA)k =
−1

2(cβA)0

 k∑
j=0

(sβA)j(sβA)k−j +

k−1∑
j=1

(cβA)j(cβA)k−j

 (126)

(sαA)k =
1

(cβA)0


k∑
j=0

[
(f55)j(sαG)k−j − (f58)j(cαG)k−j

]
−

k∑
j=1

(cβA)j(sαA)k−j

 (127)

28

(cαA)k =
−1

2(cαA)0

 k∑
j=0

(sαA)j(sαA)k−j +

k−1∑
j=1

(cαA)j(cαA)k−j

 (128)

(sσA)k =
1

(cβA)0


k∑
j=0

[
(f56)j(sσG)k−j − (f57)j(cσG)k−j

]
−

k∑
j=1

(cβA)j(sσA)k−j

 (129)

(cσA)k =
1

(cβA)0


k∑
j=0

[
(f47)j(cσG)k−j − (f54)j(sσG)k−j

]
−

k∑
j=1

(cβA)j(sσA)k−j

 (130)

(αA)k =
1

(cαA)0

(sαA)k −
1

k

k∑
j=1

j(αA)j(cαA)k−j

 (131)

(f59)k =

k∑
j=0

(cγG)j(f40)k−j (132)

(f60)k = −(f49)k +

k∑
j=0

(f52)j(f47)k−j (133)

(f61)k =

k∑
j=0

(fL)j(sσA)k−j (134)

(f62)k =

k∑
j=0

(fL)j(cσA)k−j (135)

(fD,TG)k =

k∑
j=0

(fD)j(f55)k−j + (f61)j(f53)k−j + (f62)j(f52)k−j (136)

(fS,TG)k =

k∑
j=0

(fD)j(f59)k−j + (f61)j(f47)k−j + (f62)j(f54)k−j (137)

(fL,TG)k =

k∑
j=0

(fD)j(f60)k−j − (f61)j(f57)k−j + (f62)j(f56)k−j (138)

(f34)k =
−1

(VG)0

(fL,TG)k +

k∑
j=0

[
(gdown)j(cγG)k−j + (gnorth)j(f30)k−j − (f29)j(f32)k−j

]
+

k∑
j=1

(VG)j(f34)k−j


(139)

(f35)k =
1

(VG)0

(fS,TG)k +

k∑
j=0

(f33)j(sχG)k−j −
k∑
j=1

(VG)j(f35)k−j

 (140)

(V̇G)k = (fD,TG)k +

k∑
j=0

[
− (gdown)j(sγG)k−j + (gnorth)j(f28)k−j + (f29)j(f31)k−j

]
(141)

29

References

[1] Barrio, R., “Performance of the Taylor Series Method for ODEs/DAEs,” Applied Mathematics and

Computation, Vol. 163, 2005, pp. 525–545.

[2] Moore, R.E., Interval Analysis, Prentice-Hall, Englewod Cliffs, N.J., 1966.

[3] Hull, T.E., Enright, W.H., Fellen, B.M. and Sedgwick, A.E., “Comparing Numerical Methods for

Ordinary Differential Equations,” SIAM Journal on Numerical Analysis, Vol. 9:4, 1972, pp. 603–637.

[4] Irvine, D.H. and Savageau, M.A., “Efficient Solution of Nonlinear Ordinary Differential Equations Ex-

pressed in S-System Canonical Form,” SIAM Journal on Numerical Analysis, Vol. 27:3, 1990, pp. 704–

735.

[5] Jorba, A. and Zou, M., “A Software Package for the Numerical Integration of ODEs by Means of

High-Order Taylor Methods,” Experimental Mathematics, Vol. 14:1, 2005, pp. 99–117.

[6] Corliss, G.F. and Chang, Y.F., “Ratio-Like and Recurrence Relation Tests for Convergence of Series,”

IMA Journal of Applied Mathematics, Vol. 25:4, 1980, pp. 349–359.

[7] Corliss, G.F. and Chang, Y.F., “Solving Ordinary Differential Equations Using Taylor Series,” ACM

Transactions on Mathematical Software, Vol. 8:2, 1982, pp. 114–144.

[8] Corliss, G.F. and Chang, Y.F., “G-Stop Facility in ATOMFT, a Taylor Series Ordinary Differential

Equation Solver,” Computational Ordinary Differential Equations, edited by Fatunla, S.O., University

Press, Champaign, Ill., 1992, pp. 37–77.

[9] Corliss, G.F. and Chang, Y.F., “ATOMFT: Solving ODEs and DAEs Using Taylor Series,” Computers

& Mathematics with Applications, Vol. 28:10, 1994, pp. 209–233.

[10] Corliss, G.F. et al., “High-order Stiff ODE Solvers via Automatic Differentiation and Rational Predic-

tion,” Lecture Notes in Computational Science, Vol. 1196, Springer, Berlin, 1997, pp. 114–125.

[11] Pryce, J.D., “Solving High-index DAEs by Taylor Series,” Numerical Algorithms, Vol. 19, 1998, pp. 195–

211.

[12] Scott, J.R. and Martini, M.C., “High Speed Solution of Spacecraft Trajectory Problems Using Taylor

Series Integration,” Journal of Spacecraft and Rockets, Vol. 47:1, 2010, pp. 199–202.

[13] Fehlberg, E., “Classical Fifth-, Sixth-, Seventh-, and Eight-Order Runge-Kutta Formulas with Stepsize

Control,” Tech. Rep. NASA-TR-R-287, NASA, Washington, D.C., 1968.

[14] Bergsma, M.C.W. and Mooij, E., “Application of Taylor Series Integration to Reentry Problems,” AIAA

SciTech 2016 , No. AIAA-2016–0024, AIAA, 2016.

[15] Mooij, E., “The HORUS-2B Reference Vehicle,” Delft University of Technology, Memorandum M-682,

1995.

30

[16] Mooij, E., Aerospace-Plane Flight Dynamics: Analysis of Guidance and Control Concepts, Ph.D. thesis,

Delft University of Technology, 1998.

[17] NIMA, “World Geodetic System 1984: Its Definition and Relationships with Local Geodetic Systems,”

Tech. rep., NIMA, 2000.

[18] Mooij, E., The Motion of a Vehicle in a Planetary Atmosphere, Delft University Press, Delft, 1997.

[19] Tapley, B. et al., “GGM02 - An improved Earth gravity field model from GRACE,” Journal of Geodesy ,

Vol. 79:8, 2005, pp. 467–478.

[20] NOAA, NASA, and USAF, U.S. Standard Atmosphere, 1976 , Washington, D.C., 1976.

[21] Moler, C., Numerical Computing with MATLAB , SIAM, Philadelphia, 2004.

[22] Press, W.H. et al., Numerical Recipes in C , Cambridge University Press, Cambridge, 1992.

31

View publication statsView publication stats

https://www.researchgate.net/publication/306020951

	Pages from JGCD - Application of Taylor-Series Integration to Reentry Problems with Wind
	PaperTSI2.pdf
	Introduction
	Taylor Series Integration
	Basics
	Application to Ordinary Differential Equations
	Step-Size and Order Control

	The Reentry Problem
	HORUS
	Environment Models
	Planet Shape
	Gravity Field
	Atmosphere
	Wind Model

	Aerodynamics
	Controls
	The Inclusion of Wind
	Equations of Motion
	Trajectory Constraints

	Discontinuities
	Altitude, Mach Number and Energy
	Bank Reversals
	Terminal Distance

	Simulation Results
	Optimal Order Control
	Comparison of Integration Results
	Comparison of Integration Speed

	Conclusion
	Appendix: Reentry Recurrence Relations
	Auxiliary Variables
	Recurrence Relations

	References

