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SUMMARY
Blended surveys have recently appeared in production environments. This underlines the need for
processing tools that will either process the recorded data directly or perform the separation into single
source data (deblending). An inversion technique for the separation of such data is described here. The
problem parameterization utilises the surface-related multiples in order to regularise the inversion. In this
way, the separation and surface-related multiple elimination are performed in one step. Also, the physical
meaning of the model space is exploited during the inversion by formulating the problem as a Basis
Pursuit Denoise problem. The method has been applied on a synthetic dataset and it produced promising
results.



Introduction

Methods that allow more than one source to fire simultaneously have been deployed for long time in
land surveys. However, new success stories of great production increase due to blending, see Howe
et al. (2009), Pecholcset al. (2010) have captured the attention of the industry. In the marine case, the
concept of blending is not so widespread. Although the idea was proposed years ago, see Beasleyet al.
(1998), no blended production surveys have been reported todate.

A major decision to be taken regarding processing of blendeddata is whether they will be processed
directly or first separated and then processed. In the first case, all processing tools need to be redesigned
in order to handle blended data. Such attempts aimed e.g. at developing specialized least-squares mi-
gration schemes, see Verschuur and Berkhout (2011). In the second case, an algorithm that will be able
to ’deblend” the data is required, i.e., separate the blended records into shot records that contain the
response of only one source. Then, a conventional processing flow can be applied to the data.

Deblending can be formulated as an inversion problem that estimates the unknown unblended data.
Since this is an ill-posed problem, a regularization term isrequired. Akerberget al. (2008) and Moore
et al.(2008) use a sparsity constraint in the Radon domain in orderto regularize the inversion. Similarly,
Lin and Herrmann (2009) use an inversion approach that constrains the separated data to be sparse in
the curvelet domain. Mahdadet al. (2011) and Abmaet al. (2010) exploit the coherency of seismic data
in order to constrain the inversion. van Groenestijn and Verschuur (2011) describe a sparse inversion
process in which surface multiples provide unique information to the deblending process. However, their
parameterization, being spikes in the space-time domain, was not adequate enough to provide noise-free
deblending results. Also in the current paper, a sparse inversion approach is deployed to perform the
separation. In contrast to the aforementioned inversion methods, sparsity is here promoted on an estimate
of the subsurface reflectivity. This parameterization is also used in Kutscha and Verschuur (2010) for
interpolation purposes. In this way, the model domain obtains a physical meaning. This proves to be
crucial when it comes to extending this inversion techniqueto include other preprocessing steps as well,
e.g., integrating deblending and surface multiple elimination.

Method

The formulation of our inverse problem is based on the feedback model, see Berkhout (1982). The
feedback model describes a mechanism for modelling seismicdata with surface-related multiples using
a systems’ theory approach. An important advantage of such amodel is abstraction, is the fact that com-
plex ideas can be expressed in an easy and comprehensive way.Following Berkhout (1982), seismic
data (2D or 3D) can be arranged in the so-called data matrixP(z0, z0), where the first depth indexz0 in-
dicates the depth level of the detectors and the second the one of the sources. Formulated in the temporal
frequency domain, each element ofP(z0, z0) is a complex-valued frequency component of a recorded
trace. The position of each element in theP(z0, z0) matrix reveals the spatial coordinates of the source
and receiver. The key advantage of this arrangement relies on the fact that many complex operations,
e.g., extrapolation, cross-correlation, etc., can be trivially performed as matrix multiplications.

Assuming that each point in the subsurface contributes to the reflected wavefield that reaches the surface
one should define a grid of points in the subsurface. The localvelocity and density can be used to
define a reflectivity operatorR∪(zm, zm) for a certain depth levelzm. This operator turns the incident
wavefield into a reflected wavefield. The incident wavefield todepth levelzm can then be computed
by extrapolating the wavefield at the surface towards that depth level by using a propagation operator
W(zm, z0). Similarly, the reflected wavefield can be extrapolated towards the surface using operator
W(z0, zm). The total wavefield at the surface can be expressed as

P(z0, z0) =

M∑

m=1

[W(z0, zm)R∪(zm, zm)W(zm, z0)](S(z0) +R
∩(z0, z0)P(z0, z0)), (1)

where the summation takes place over the depth levels andR
∩(z0, z0) denotes the surface reflectivity
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operator. An interesting interpretation of eq. 1 is that thesource wavefield that excites a free-surface
earth consists of the initial source wavefield plus the up going wavefield that is reflected by the surface.
Note that no internal multiples or surface waves are contained in this model. However, the significance
of eq. (1) relies on the fact that it provides a reflectivity-oriented way to look at seismic data.

Source blending can be introduced to eq. (1) as multiplication with a blending matrixΓ(z0). This matrix
contains the blending parameters in the form of amplitude and phase terms applied to the source matrix
S(z0). In the current implementation we focus, without loss of generality, on blending matrices that
contain only phase terms. For example, time delays in the firing of the sources can be expressed as
linear phase terms of the formejωτ , whereas linear sweeps can be expressed as quadratic phase terms of
the formejωβ

2

. The feedback model for blended sources now becomes

P
′(z0, z0) =

M∑

m=1

[W(z0, zm)R∪(zm, zm)W(zm, z0)](S(z0)Γ(z0) +R
∩(z0, z0)P

′(z0, z0)), (2)

whereP′(z0, z0) = P(z0, z0)Γ(z0) denotes the blended up going wavefield. This equation has dual
meaning; firstly, it provides a way to model the total up goingwave field for given subsurface reflectivity,
and secondly, given a proper inversion scheme, the recordedup going wavefield can be used to recover
reflectivity. However, the focus of this paper is not on retrieving the exact reflectivity operators. Instead,
we wish to perform certain preprocessing steps: deblendingand surface multiple elimination. For such
tasks it is not desired to aim at recovering reflectivity properties on a dense grid, since this can be very
computationally intensive, but rather do it for a few depth levels.

The term macro boundaries is introduced here to describe this move from recovering reflectivity coeffi-
cients on a dense grid to recovering it only for a few depth levels. Essentially, the subsurface is divided
into parts in the depth direction. It is crucial that each of these parts contain some strategic boundaries,
meaning boundaries that contribute the most to the reflectedwavefield. It becomes obvious that the true
reflectivity is not recovered in this way. Instead, theeffective reflectivity, R̂∪(zk, zk), of amacro layer,
i.e., area around a macro boundary, is recovered. This can beseen as the total impulse response of that
part of the subsurface, hence, it contains apart from reflectivity, propagation information as well. More-
over, the exact propagation operatorsW(zk, z0) can be replaced by approximate operators,Ŵ(zk, z0).
Eq. 2 now becomes

P
′(z0, z0) =

K∑

k=1

[Ŵ(z0, zk)R̂
∪(zk, zk)Ŵ(zk, zk)](S(z0)Γ(z0) +R

∩(z0, z0)P
′(z0, z0)), (3)

whereK << M . Interestingly, bothR∪(zm, zm) andR̂∪(zk, zk) matrices have few large values in the
x-t domain. This property is used to regularize the inversion. Implicitly, the surface-multiples-generating
mechanism also acts as a regularization of the inversion. Moreover, certain explicit constrains can be
applied to the physical domain of̂R∪(zk, zk) as in the case of the focal transform, see Berkhout and
Verschuur (2006). The focal transform is identical to the one described here with the difference that no
assumptions were made on the surface multiples.

An inversion step has to be performed in order to retrieve theeffective reflectivity from observed data. In
this inversion problem, the effective reflectivitŷR∪ is the unknown and the up going wavefieldP(z0, z0)
is the observation. Eq. 3 describes theforward modelof the problem, i.e., the process that gives an
estimate of the observation for given inputR̂

∪(zk, zk). Eq. 3 can be written in standard linear algebra
notation by transforminĝR∪(zk, zk) andP(z0, z0) to the x-t domain and arranging them as vectors
x andb respectively. MatrixA is a matrix implementation of the forward model of eq. (3), hence,
Ax = b. The objective of the inversion is to find the solution to thissystem of linear equations.
However, this problem is under-determined, meaning that many solutions satisfy the equations. In such
cases, an iterative scheme is usually deployed where a priori information about the solution is used to
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constrain the problem. Here, the solution sought is the one with the smallestl1-norm, i.e., the sum of
the absolute values. This stems from our observation that a few large values dominate in the effective
reflectivity matrix. Hence, the optimization problem solved becomes

minimize ‖x‖1 subject to‖b−Ax‖2 ≤ σ. (4)

In the optimization community, this problem is often referred to as thebasis pursuit denoiseproblem.
In this problem we do not try to precisely fit the modelled datato the observation, but rather keep
the residue within a certain limitσ. The SPGL1 solver of van den Berg and Friedlander (2008) was
designed to solve this problem. Deploying the solver yieldsan estimate of the effective reflectivity.
The deblended primariesP0(z0, z0) can then be obtained in a reconstruction approach by applying the
following forward model to the estimated̂R∪(zm, zm):

P0(z0, z0) =

K∑

k=1

[Ŵ(z0, zk)R̂
∪(z0, z0)Ŵ(zk, z0)]S(z0). (5)

Please note that the same propagation operators,Ŵ(z0, zk), that were used during the inversion, are
used in the reconstruction as well. This means that errors inthe operators affect only the accuracy of
R̂

∪(z0, z0) but not the final result, in this case the deblended primaries. In this way, two preprocessing
steps have been performed on the acquired blended data: deblending and surface multiple removal.

Example
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Figure 1 Unblended shot record.

The inversion scheme is applied here to a numerical dataset.
The input data are produced by a layered model with three
reflectors. Figure 1 shows an unblended shot record of this
dataset. Five sources fire with small time delays for each
blended shot record. Figure 2(a) shows a shot record of this
blended dataset. Please note that no internal multiples were
modelled, only surface-related multiples.

The first step for the estimation of the effective reflectivity is
to define the macro layers. For this example, the earth is di-
vided into two macro layers. The first macro layer contains
the first two reflectors whereas the second layer contains the
third reflector. Next, the surface reflectivityR∩(z0, z0) was
taken -1. This is not very far from reality in marine environ-
ments. The SPGL1 solver converged after about 100 iter-
ations. The last stage includes computing the reconstructed
deblended primaries. The forward model described in eq.
5 is deployed and a shot record of the output is displayed
in figure 2(b). The deblended primaries have been recon-
structed successfully with only some small artefacts remaining in the record.

Conclusions

A sparse inversion approach to the separation of blended sources has been presented in this paper. The
unique features of this method are that 1) it uses surface multiples as extra information to guide the
deblending process and that 2) the sparsifying domain is physically meaningful. This means that a priori
information can be introduced to help steering the inversion towards the correct solution. Furthermore,
the deblended output is also free of surface multiples. The sparse inversion process was performed by
the SPGL1 package, which was able to produce promising results for our simple numerical example.
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Figure 2 (a) Input: blended shot record, and (b) Output: deblended shot record with only primaries.
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