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SUMMARY

Blended surveys have recently appeared in production environments. This underlines the need for
processing tools that will either process the recorded data directly or perform the separation into single
source data (deblending). An inversion technique for the separation of such data is described here. The
problem parameterization utilises the surface-related multiples in order to regularise the inversion. In this
way, the separation and surface-related multiple elimination are performed in one step. Also, the physical
meaning of the model space is exploited during the inversion by formulating the problem as a Basis
Pursuit Denoise problem. The method has been applied on a synthetic dataset and it produced promising
results.
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Introduction

Methods that allow more than one source to fire simultangdusle been deployed for long time in
land surveys. However, new success stories of great piioduicicrease due to blending, see Howe
et al. (2009), Pecholcst al. (2010) have captured the attention of the industry. In themaacase, the
concept of blending is not so widespread. Although the idaa pvoposed years ago, see Beastegl.
(1998), no blended production surveys have been reportedateo

A major decision to be taken regarding processing of blerdgd is whether they will be processed
directly or first separated and then processed. In the fisgt, @l processing tools need to be redesigned
in order to handle blended data. Such attempts aimed e.gvataping specialized least-squares mi-
gration schemes, see Verschuur and Berkhout (2011). Iretend case, an algorithm that will be able
to 'deblend” the data is required, i.e., separate the bl@mdeords into shot records that contain the
response of only one source. Then, a conventional progeieim can be applied to the data.

Deblending can be formulated as an inversion problem thanates the unknown unblended data.
Since this is an ill-posed problem, a regularization termeguired. Akerberget al. (2008) and Moore

et al.(2008) use a sparsity constraint in the Radon domain in dod@gularize the inversion. Similarly,
Lin and Herrmann (2009) use an inversion approach that @nstthe separated data to be sparse in
the curvelet domain. Mahdaat al. (2011) and Abmat al. (2010) exploit the coherency of seismic data
in order to constrain the inversion. van Groenestijn ands&feuur (2011) describe a sparse inversion
process in which surface multiples provide unigue infoforato the deblending process. However, their
parameterization, being spikes in the space-time domais,net adequate enough to provide noise-free
deblending results. Also in the current paper, a sparsasioreapproach is deployed to perform the
separation. In contrast to the aforementioned inversicthoas, sparsity is here promoted on an estimate
of the subsurface reflectivity. This parameterization goalsed in Kutscha and Verschuur (2010) for
interpolation purposes. In this way, the model domain oista physical meaning. This proves to be
crucial when it comes to extending this inversion techniuieclude other preprocessing steps as well,
e.g., integrating deblending and surface multiple eliriama

M ethod

The formulation of our inverse problem is based on the feekilmaodel, see Berkhout (1982). The
feedback model describes a mechanism for modelling sedatécwith surface-related multiples using
a systems’ theory approach. Animportant advantage of suobde! is abstraction, is the fact that com-
plex ideas can be expressed in an easy and comprehensive-aligwing Berkhout (1982), seismic
data (2D or 3D) can be arranged in the so-called data mB{rix, =), where the first depth index in-
dicates the depth level of the detectors and the second ¢hefdhne sources. Formulated in the temporal
frequency domain, each element®fz, z() is a complex-valued frequency component of a recorded
trace. The position of each element in Béz, zp) matrix reveals the spatial coordinates of the source
and receiver. The key advantage of this arrangement ratigheofact that many complex operations,
e.g., extrapolation, cross-correlation, etc., can béthvperformed as matrix multiplications.

Assuming that each point in the subsurface contributesetoetftected wavefield that reaches the surface
one should define a grid of points in the subsurface. The leelaicity and density can be used to
define a reflectivity operatdR"(z,,, z,,) for a certain depth level,,. This operator turns the incident
wavefield into a reflected wavefield. The incident wavefieldiépth levelz,, can then be computed
by extrapolating the wavefield at the surface towards thpthdievel by using a propagation operator
W (zn, z0). Similarly, the reflected wavefield can be extrapolated tdwahe surface using operator

W (20, zm). The total wavefield at the surface can be expressed as
M

P(z0,20) = Z (W (20, 2m) R (2m 2m )W (2m, 20)](S(20) + R (20, 20)P (20, 20)), 1)

m=1

where the summation takes place over the depth leveldRaidy, zo) denotes the surface reflectivity
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operator. An interesting interpretation of eq. 1 is thatdbarce wavefield that excites a free-surface
earth consists of the initial source wavefield plus the upgeiavefield that is reflected by the surface.
Note that no internal multiples or surface waves are coathin this model. However, the significance

of eq. (1) relies on the fact that it provides a reflectivityeated way to look at seismic data.

Source blending can be introduced to eq. (1) as multipboatiith a blending matriX'(zy). This matrix
contains the blending parameters in the form of amplitudk@rase terms applied to the source matrix
S(zp). In the current implementation we focus, without loss ofegality, on blending matrices that
contain only phase terms. For example, time delays in thegfiof the sources can be expressed as
linear phase terms of the fore#“™, whereas linear sweeps can be expressed as quadratic pims®t

the formei«5”. The feedback model for blended sources now becomes

M
P’ (20, 20) = [W (20, 2m) R (2m 2m )W (2m, 20)] (S(20)T'(20) + R (20, 20)P’ (20, 20)), (2)

m=1

whereP’(zg, z0) = P(20, 20)T'(20) denotes the blended up going wavefield. This equation hds dua
meaning; firstly, it provides a way to model the total up goivaye field for given subsurface reflectivity,
and secondly, given a proper inversion scheme, the recanoewing wavefield can be used to recover
reflectivity. However, the focus of this paper is not on matimg the exact reflectivity operators. Instead,
we wish to perform certain preprocessing steps: debleraiigsurface multiple elimination. For such
tasks it is not desired to aim at recovering reflectivity mies on a dense grid, since this can be very
computationally intensive, but rather do it for a few depmbels.

The term macro boundaries is introduced here to describarthive from recovering reflectivity coeffi-
cients on a dense grid to recovering it only for a few deptlelevEssentially, the subsurface is divided
into parts in the depth direction. It is crucial that eachhade parts contain some strategic boundaries,
meaning boundaries that contribute the most to the reflectedfield. It becomes obvious that the true
reflectivity is not recovered in this way. Instead, #féective reflectivityf{U(zk, 21 ), of amacro layer

i.e., area around a macro boundary, is recovered. This caadyeas the total impulse response of that
part of the subsurface, hence, it contains apart from réfiggtpropagation information as well. More-
over, the exact propagation operat®5(z, zp) can be replaced by approximate operatéié(,zk, 20)-

EqQ. 2 now becomes

-~

W (20, 2zx)R (zk, 21 )W (21, 21)](S(20)T(20) + R (20, 20)P' (20, 20)),  (3)

Mw

ZO’ ZO
k:l

where K << M. Interestingly, bottR" (z,,, z,) andR"(z, z,) matrices have few large values in the
x-tdomain. This property is used to regularize the inversiamplicitly, the surface-multiples-generating
mechanism also acts as a regularization of the inversiornreder, certain explicit constrains can be
applied to the physical domain tfiu(zk, z1) as in the case of the focal transform, see Berkhout and
Verschuur (2006). The focal transform is identical to the described here with the difference that no
assumptions were made on the surface multiples.

An inversion step has to be performed in order to retrieveffeetive reflectivity from observed data. In
this inversion problem, the effective reflectiviR” is the unknown and the up going wavefi@dzo, z;)

is the observation. Eqg. 3 describes theward modelof the problem, i.e., the process that gives an
estimate of the observation for given ind&¥ (2, z;,). Eq. 3 can be written in standard linear algebra
notation by transformindR" (=, z,) and P (2o, zo) to thex-t domain and arranging them as vectors
x andb respectively. MatrixA is a matrix implementation of the forward model of eq. (3)n¢e
Ax = b. The objective of the inversion is to find the solution to thistem of linear equations.
However, this problem is under-determined, meaning thatynsalutions satisfy the equations. In such
cases, an iterative scheme is usually deployed where a priormation about the solution is used to

74" EAGE Conference & Exhibition incorporating SPE EUROPEC201
Copenhagen, Denmark, 4 - 7 June 2012



/

Copenhagen 12

constrain the problem. Here, the solution sought is the attetive smallest1-norm, i.e., the sum of
the absolute values. This stems from our observation theivddrge values dominate in the effective
reflectivity matrix. Hence, the optimization problem savgecomes

minimize ||x||; subjectto|b — Ax||2 < 0. 4)

In the optimization community, this problem is often reéetto as thdasis pursuit denoisproblem.

In this problem we do not try to precisely fit the modelled ditahe observation, but rather keep
the residue within a certain limié. The SPGL1 solver of van den Berg and Friedlander (2008) was
designed to solve this problem. Deploying the solver yieldsestimate of the effective reflectivity.
The deblended primariéB(zo, zo) can then be obtained in a reconstruction approach by agptiie
following forward model to the estimatd@l" (z,,,, z ):

K
Po(20,20) = »_[W (20, 2)R" (20, 20) W (2, 20)]S (20). 5)
k=1
Please note that the same propagation operanrSzo, z1), that were used during the inversion, are
used in the reconstruction as well. This means that errotiseiroperators affect only the accuracy of
RY(z0, z0) but not the final result, in this case the deblended primatiethis way, two preprocessing
steps have been performed on the acquired blended datandéig and surface multiple removal.

Example

The inversion scheme is applied here to a numerical dataset.
The input data are produced by a layered model with three

reflectors. Figure 1 shows an unblended shot record of this Offset
-600 -400 -200 0 200 400 600

dataset. Five sources fire with small time delays for each®
blended shot record. Figure 2(a) shows a shot record of thts
blended dataset. Please note that no internal multiples we¥?
modelled, only surface-related multiples. 03

The first step for the estimation of the effective reflecyivit % 0k
to define the macro layers. For this example, the earth is,;ﬁ(i)_—6
vided into two macro layers. The first macro layer contains B
the first two reflectors whereas the second layer contains thé
third reflector. Next, the surface reflectiviB/ (zo, zo) was ~ *°
taken -1. This is not very far from reality in marine environ-°°
ments. The SPGL1 solver converged after about 100 itert
ations. The last stage includes computing the reconsttucte

deblended primaries. The forward model described in eq.
5 is deployed and a shot record of the output is displayed
in figure 2(b). The deblended primaries have been recon-

structed successfully with only some small artefacts raingiin the record.

Figure 1 Unblended shot record.

Conclusions

A sparse inversion approach to the separation of blendede®has been presented in this paper. The
unique features of this method are that 1) it uses surfacéipiesl as extra information to guide the
deblending process and that 2) the sparsifying domain isipally meaningful. This means that a priori
information can be introduced to help steering the inversaavards the correct solution. Furthermore,
the deblended output is also free of surface multiples. Plaese inversion process was performed by
the SPGL1 package, which was able to produce promisingtsfeulour simple numerical example.
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Figure 2 (a) Input: blended shot record, and (b) Output: deblendeat sicord with only primaries.
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