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  A cooperative strategy for optimizing vehicle relocations 
and staff movements in cities where several carsharing 

companies operate simultaneously 
 
Abstract 

Carsharing has become a popular travel mode owing to its convenience of use, 
easy parking, and low cost of using a car by those who only need it occasionally. 
However, because of the inadequate location of carsharing stations (station-based 
systems) or vehicles (free-floating systems), effectively requiring expensive and 
complex relocation strategies, a number of customers are lost, and some carsharing 
companies are facing bankruptcy. This study proposes a data-driven, dynamic, multi-
company relocation method, which aims to reduce relocation costs and increase profit 
in one-way carsharing station-based systems through cooperative strategies. The 
method starts from the prediction of carsharing inflows and outflows at each station 
throughout the day using a new deep learning algorithm designated as “the attention-
enhanced temporal graph convolutional network”. It adopts an encoder-decoder 
structure to simultaneously capture the temporal and spatial carsharing usage patterns. 
A two-phase integer programming model is proposed to optimize the process of vehicle 
relocation and staff rebalancing with cooperative relocation strategies: the sharing of 
relocation staff, the sharing of vehicles and stations among the different companies. An 
adaptive large neighborhood search based heuristic approach is implemented to solve 
the two-phase model. Based on the 5-month travel records from four carsharing 
companies operating simultaneously in Fuzhou, China, the proposed model and 
cooperative strategies are assessed. The results show that the total profit of the four 
carsharing companies can be increased by 25.49% with the cooperation of staff and 
vehicles. In addition, we prospect the future relocation with automated vehicles, 
whereby the profit can be increased by 46.69% without the need to employ the 
relocation staff. 

 
Keywords: one-way carsharing; multi-step demand forecasting; graph convolutional 
network; cooperative relocation; staff rebalancing. 
 
1. Introduction 

The rapid development of cities has caused a high travel demand for car usage 
(Wan et al., 2021). However, in big cities, the cost of car usage is increasing, coupled 
with parking problems, traffic congestion, and restrictions on private car usage such as 
the odd-even license plate rule (Shaheen, et al., 2015; Jian et al., 2020). Carsharing is 
an emerging travel mode that allows people who want to rent cars for short periods and 
pay for their usage based on the travel distance and duration. Carsharing is poised to 
meet people’s urban travel demand by sharing the same vehicle, which improves 
vehicle usage frequency and leads to reduced car ownership (Klincevicius et al., 2014). 



Currently, carsharing systems are growing in cities because they provide a cheaper 
alternative than buying a vehicle and are more flexible than public transport (Shaheen 
and Cohen, 2013; Sprei et al., 2019). Shared cars and stations (in station-based systems) 
are distributed around residential communities, commercial office areas, university 
towns, etc. to meet people’s daily travel demands. In China, carsharing services have 
sprung up and flourished. Till 2018, more than 500 carsharing companies were 
registered, with more than 100,000 vehicles offering the services (Sohu News, 2018). 
Modern carsharing systems use existing resources to achieve a higher matching 
efficiency between people and vehicles through advanced technologies, thereby 
reducing congestion, pollution, and parking spaces in cities. Chen and Kockelman 
(2016) illustrated that greenhouse gas emissions are reduced by approximately 51% 
when travelers adopt carsharing. 

Carsharing systems can be divided into round-trip systems and one-way systems 
(Jorge et al., 2014). In one-way carsharing systems, users can pick up shared cars at one 
station and return them to another. The one-way system enhances the service level for 
the users (Efthymiou et al., 2012). However, because of the imbalance in demand in 
both time and space, the problem of vehicle stock shortage or lack of parking space 
may occur at some stations throughout the day (Jian et al., 2016b; Yang et al., 2021). 
Therefore, in carsharing systems, especially in one-way carsharing systems, it is 
necessary to relocate vehicles between stations to meet users’ travel demands. Moreover, 
staff are employed to relocate vehicles between stations which means that their 
movements during the day cannot be ignored for overall system efficiency 
maximization (Santos and Correia, 2019). In the one-way carsharing system, there are 
two subtypes of systems: free-floating and station-based. The users are allowed to book 
the vehicles at any location within a specified area in free-floating systems, while in 
station-based systems, the user must pick up and return the shared car at a designated 
parking station. In this paper, we focus on station-based systems, although the methods 
that are going to be proposed could eventually be easily extended to a free-floating 
system. Notably, each staff is usually equipped with a folding bicycle or an electric 
scooter to move between the relocation tasks (Bruglieri et al., 2014; Bruglieri et al., 
2017; Bruglieri et al., 2018). The process of vehicle relocation in the station-based 
carsharing system can be briefly described as follows. When receiving the relocation 
tasks, the staff departs from one station (or depot) to the station where a shared car 
needs to be relocated using a folding bicycle or an electric scooter. Thereafter, the staff 
places the folding bicycle or the electric scooter in the shared car and drives the shared 
car to a target station to complete the relocation task. The staff then uses the folding 
bicycle or the electric scooter to move to the next station for another relocation task or 
return to the depot. Carsharing companies with more shared cars require fewer 
relocation operations between stations and therefore require fewer staff members 
(Weikl and Bogenberger, 2013; Nourinejad et al., 2015). However, the high cost of 
buying the shared vehicles and paying for the stations’ space usage limits the fleets that 
can be bought (Jorge et al., 2014). As the vehicles are relocated by staff, an imbalance 



of the relocation staff can also occur. Hence, relocations in carsharing systems involve 
both vehicle relocation and staff rebalancing operations. 

The users reserve shared cars via a mobile app and then pick them up at a specific 
location. They need to register as members and pay the registration fee in advance 
before the reservation process. Shared cars are usually billed by time, but some 
companies also use the “minute plus mileage” method. In station-based systems, each 
company sets up specific stations where users can pick up the shared cars. The shared 
cars from one company are not allowed to return to other companies’ stations, and each 
company employs staff to perform the relocation operations among its own stations. 
The boom of multiple carsharing companies in the city offers convenience to users. For 
example, the competition between companies may make carsharing trips less expensive. 
They also provide more vehicles and parking stations for users to choose from. 
However, because of the high registration fees, most users only choose one suitable 
carsharing company based on their travel needs, which restricts them to only using the 
shared cars of the companies that they have registered with. 

Carsharing companies are growing, yet they face a variety of problems (Sohu 
News, 2017). A single carsharing company often cannot purchase a large number of 
shared cars and set up many stations because of the high cost of buying and equipping 
vehicles, together with the cost of parking, maintenance, gas, and insurance for the 
vehicles. Too few vehicles or too few stations, and a mismatch between the number of 
vehicles and parking spaces can lead to a loss of customers. In addition, the tidal 
phenomenon of users’ travel demands has typically caused an imbalance in vehicle 
inventory, resulting in a shortage of vehicles at some stations, while others lack parking 
spaces. Therefore, carsharing companies need to employ sufficient staff to perform the 
relocation tasks. As travel demand varies significantly among different stations at 
different periods of the day, the staff will be busy during peak hours and idle during 
non-peak hours. Currently, most of the carsharing companies work separately in cities. 
Without effective relocation operations and cooperative strategies, the utilization rate 
of the shared vehicles may be lower than what could eventually be achieved if 
cooperation takes place. Owing to the blind expansion of carsharing companies, many 
of them have closed down and announced their withdrawal from the market. 

Accurate carsharing travel demand prediction helps the system pre-arrange the 
relocation routes to satisfy the dynamic needs of different stations (Santos and Correia, 
2019; Huo et al., 2020). However, carsharing travel demand prediction is dependent on 
the complex spatio-temporal relationships among stations and the external 
environmental factors such as the weather and land-use characteristics, which make the 
task challenging. In recent years, deep learning based data modeling algorithms have 
been supported by scholars for their powerful ability to learn the correlated feature 
representations (Ke et al., 2021). For the carsharing travel demand prediction tasks, 
existing studies usually use the long short-term memory (LSTM) neural network (Yu et 
al., 2020) and gated recurrent unit (GRU) (Vateekul et al., 2021) to capture the temporal 
characteristics. Although LSTM and GRU structures can adequately extract temporal 



dependencies from the historical data, they fail to effectively model the spatial relations. 
In carsharing systems, the stations are nodes in a network topology. The convolutional 
neural network (CNN) can extract the spatial dependence of the data with a grid-like 
structure. However, this fails to reflect the non-Euclidean structures. Graph 
convolutional network (GCN) is designed to model the complex topological structure 
of the relations between objects which fit carsharing station networks. Multi-step 
carsharing demand forecasts provide not only a prediction of the system state in the 
next time step but also information about long-term trends, which is more beneficial for 
relocation route planning. 

In this study, we present a data-driven, dynamic, and cooperative method for 
vehicle relocation and staff rebalancing in carsharing systems in the context of multiple 
carsharing companies operating in the same city. The main contributions of this study 
are highlighted as follows: 

 
 We propose a novel attention-enhanced temporal graph convolutional network 

(AE-TGCN) model for multi-step flow prediction in carsharing systems, which 
integrates the GCN layer, GRU layer, and the attention mechanism to extract the 
features from temporal and spatial variables collaboratively.  

 We establish a two-phase integer programming model to optimize the process of 
vehicle relocation and staff rebalancing.  

 The cooperative relocation strategies, including the sharing of relocation staff and 
the sharing of vehicles and stations among the different companies are proposed 
to increase the utilization rate of shared vehicles and relocation staff members. 

 We adopt a rolling horizon approach to work with real-time relocation demand. 
The Adaptive Large Neighborhood Search (ALNS) based heuristic approach is 
implemented to solve the model.  

 The effectiveness of our proposed model and cooperative relocation strategies are 
assessed based on the 5-month real-world travel records from four carsharing 
companies in the city of Fuzhou, China. 
 
The remainder of this paper is organized as follows. A review of the literature on 

demand forecasting and vehicle relocation in carsharing systems is provided in Section 
2. In Section 3, we describe the entire framework and the methodology. Section 4 
elaborates on the ALNS based heuristic solution method. Section 5 analyzes the 
spatiotemporal travel patterns of shared cars using real-world data in the city of Fuzhou, 
China. In Section 6, we apply the methodology to the case study city and analyze the 
main results. Finally, the conclusions are summarized in Section 7. 

 
2. Literature review 

2.1. Demand prediction in carsharing systems 

The travel demand for carsharing trips is influenced by many factors. To 



understand what factors affect the users’ behavior when selecting vehicles in the 
carsharing system, Jian et al. (2016a) proposed a spatial hazard-based model that 
investigates the users’ socio-demographic attributes, vehicle characteristics, and land 
use type of the trip origin on choice set formation. Jian et al. (2017) analyzed users’ 
vehicle choice behavior and utilization patterns in a carsharing system with the multiple 
discrete-continuous extreme value model. The results suggest that user age, income 
level, driving license country, insurance plan, membership plan, and origin location 
impact users’ vehicle utilization patterns. Jorge and Correia (2013) reviewed the 
advanced methods to study the demand estimation and planning issues of carsharing 
systems, suggesting that a significant effort must be made to develop more general and 
realistic models to accurately represent the characteristics of carsharing and apply them 
to solve one-way carsharing problems. Schmöller et al. (2015) studied the free-floating 
carsharing usage patterns and identified the factors that influence the demand. The 
temporal carsharing demand shows recurring patterns while high demand occurs on a 
few temporal peak hours. The spatial travel demand is concentrated on some hot 
spots correlated with the area functions. In addition, some external influences such as 
weather conditions and precipitation affect the usage of shared cars. For example, the 
travel demand is approximately 6% higher than the average on rainy days. In addition, 
carsharing usage depends on the user’s activity patterns, while these patterns are 
essentially changing (Kek et al., 2009; Hu et al., 2019). In residential areas, shared cars 
may be in short supply during morning peak hours, because more people use shared 
cars to commute during that time, whilst in commercial areas, shared cars may face 
parking space shortages.  

Accurate prediction of travel demand for carsharing is a prerequisite for 
successfully identifying the spatio-temporal imbalance among stations. An accurate 
flow prediction model helps system operators pre-allocate the cars to meet the user’s 
travel demand. Becker et al. (2017) modeled the carsharing use in Switzerland using 
spatial regression and conditional logit analysis. The results show that shared cars are 
usually used for discretionary trips and bridge gaps in the existing public transportation 
networks. Wang et al. (2020a) used multi-source data, including real-time user 
application log data, order data, and user characteristics to predict the real-time pickup 
demand with a multivariate linear regression model. According to the results, the 
dynamic demand prediction model can effectively guide the system to optimize vehicle 
relocation, which not only increases the profit of the carsharing system but also 
improves the quality of the service.  

Machine learning algorithms such as support vector regression (SVR) and 
ensemble decision trees, can handle large volumes of data and learn complex 
relationships for travel demand prediction. Boldrini et al. (2019) forecasted the 
carsharing demand in ten European cities with random forest (RF) and neural network 
(NN). The results show that more accurate predictions are obtained using machine 
learning methods compared with statistical models. Wang et al. (2020b) employed the 
gradient boosting regression trees (GBRT) model to predict station-level carsharing 



usage. The results indicate that the GBRT model predicts users’ travel demands with 
high accuracy, and time-varying variables are imperative for the prediction of 
carsharing usage. 

Despite the cited studies, employing deep learning methods for demand 
forecasting in one-way carsharing systems is still limited in capturing both spatial and 
temporal relations effectively. Zhang et al. (2019) modeled the hourly variation in 
carsharing systems including travel demand and travel distance based on the long short 
term memory recurrent neural network (LSTM-RNN). The results show a greater 
performance compared with the SVR and classic autoregressive integrated moving 
average (ARIMA) model. Yu et al. (2020) established an LSTM network structure for 
forecasting vehicle pick-up and drop-off over time in a station-based carsharing system, 
where the model captures multiple temporal features, including day of week, time of 
day, and weather conditions. Vateekul et al. (2021) used a bidirectional GRU to forecast 
the real demand in the carsharing system. These time-series modeling methods are often 
applied to predict the travel demand of a single station separately, ignoring the spatial 
relations among stations. To effectively capture the complex spatial relations, Zhu et al. 
(2019) proposed a multi-graph convolutional model, where the spatial distance 
characteristics and land use characteristics are extracted using the GCN. Therefore, new 
methods should be explored to simultaneously capture complex spatial relations and 
temporal dynamics, which can integrate not only historical travel demand 
characteristics but also the influence of external factors such as weather events. 

2.2. Vehicle relocations in carsharing systems 

Jorge and Correia (2013) identified vehicle relocations as an effective strategy for 
reducing the cost of one-way carsharing systems, which can be implemented with the 
user-based approach and the operator-based approach. User-based relocation is 
performed by the customer to modify their trips to help the system restore a balanced 
distribution of vehicles through various incentive mechanisms. Febbraro et al. (2019) 
established a user-based relocation method for maximizing the profit in carsharing 
systems, where the users are allowed to leave the car at different locations in exchange 
for fare discounts. The results show that the number of rejected reservations is reduced 
and the operator’s profit can be increased with the proposed strategy. Schiffer et al. 
(2021) adopted user-based relocation to increase the utilization rate in free-floating 
carsharing systems. They reformulated the problem as a k-disjoint shortest path 
problem and proposed an exact algorithm to solve large-size examples. Wang et al. 
(2021) developed a user-based multi-objective relocation model with the objectives of 
profit maximization and using failure rate minimization. User-based relocation 
techniques shift the burden of relocating vehicles to the users, which alleviates the 
relocation tasks of staff. However, most travelers care more about privacy and 
convenience instead of obtaining minor transport cost savings, especially during peak 
hours. With the operator-based approach, carsharing companies employ staff to relocate 
the vehicles from one station to another. Along with the vehicle relocation operations, 



there is an imbalance of staff. Therefore, staff should move between stations to perform 
vehicle relocation operations (Nourinejad et al. 2015; Yang et al., 2021). We summarize 
the scientific literature on operator-based carsharing relocations in Table 1 according to 
the relocation demand determination, modeling approach, objectives, solution 
algorithms, and whether staff rebalancing and collaborative relocation are considered 
or not.  

Simulation and mixed-integer programming (MIP) approaches are widely used for 
planning and managing operator-based vehicle relocation tasks (Illgen and Hoeck, 
2019). Weikl and Bogenberger (2013) proposed a two-step relocation model for 
carsharing systems, which consists of an offline demand clustering that allows for the 
demand prediction, and the online optimal vehicle reposition. Nourinejad et al. (2014)  
proposed a dynamic vehicle relocation model to reduce the vehicle imbalance in one-
way carsharing systems, which maximizes the total profit by considering the generated 
revenue and the cost of relocation. They concluded that the dynamic model was more 
practical and can build robust route decisions. Jorge et al. (2014) established a 
mathematical programming model to optimize the relocation operations that maximize 
the profit of a one-way carsharing company. A simulation model was combined to study 
different real-time relocation policies. Jian et al. (2016b) studied the dynamic vehicle 
relocation in a carsharing system for both one-way and round-trip services. They 
proposed an optimization model to determine the relocation routes by maximizing the 
profit for carshare operators. The results based on the real-world trip demand data 
indicate that the maximum profit occurs when the price of a one-way trip is 
approximately four times higher than that of a round trip. Xu and Meng (2019) 
formulated a set partitioning model to determine the vehicle fleet size for one-way 
carsharing services with an electric fleet. The proposed model is designed to maximize 
the profit of a carsharing operator, which considers the vehicle relocation operations 
and electric vehicle charging profiles. Carsharing travel demand is influenced by the 
supply of vehicles, and the demand further changes the vehicle availability in the 
system. Focusing on this problem, Jian et al. (2019) proposed an integrated supply-
demand approach to solve the vehicle relocation in a carsharing system, where a 
discrete choice model is incorporated within the optimization formulation. Huo et al. 
(2020) proposed a data-driven relocation model that considers the demand uncertainty 
of an electric carsharing system. They adopted discrete stochastic probabilities to 
express order uncertainty and used a rolling horizon approach to dynamically update 
the data. Wu et al. (2021) designed an integer linear programming model to address the 
joint design problem of carsharing systems, where all-day vehicle relocation and 
dynamic trip selection are considered. The results illustrate that the relocation operation 
plays an essential role in both profit maximization and demand satisfaction. 
Considering the demand uncertainty in the carsharing system, Huang et al. (2021) 
studied the demand-supply imbalance problem by combining a long-term pricing 
strategy and real-time vehicle relocations in a two-stage stochastic programming model. 
The application in Suzhou, China shows that adjusting the price of carsharing is 



effective in the long-term imbalance problem. Although the above studies have shown 
impressive results to solve the imbalance problem in the carsharing system, some 
studies assume that the staff is enough to do relocations and overlook the rebalancing 
of the relocation staff that determines how the staff should perform different vehicle 
relocation tasks. Besides, the relocation demand or user requests are often assumed to 
be known in advance. For example, Huo et al. (2020) assumed that the pick-ups and 
arrivals in each station follow a Poisson distribution. 

To jointly optimize the vehicle relocation and staff rebalancing process, Bruglieri 
et al. (2014) proposed the first Mixed Integer Linear Programming (MILP) formulation 
to restore a better distribution of the vehicles by workers in a one-way electric 
carsharing system. The performance of the MILP formulation was tested on instances 
built on the Milan road network. The economic sustainability of vehicle relocation was 
considered in Bruglieri et al. (2017), where a MILP formulation for the electric vehicle 
relocation problem was proposed with operators using folding bicycles to facilitate 
vehicle relocation. The model aimed to maximize the total profit between the revenue 
of the satisfied relocation requests and the cost of all the workers used. In addition, a 
ruin and recreate metaheuristic was designed to find better solutions within a shorter 
computational time. Bruglieri et al. (2018) adopted a two-phase optimization method 
for the multi-objective vehicle relocation problem that considers the minimization of 
the total number of workers employed, the maximization of customer satisfaction, and 
the minimization of the duration of the longest route. The proposed method not only 
reduced relocation costs and increased the service level, but also provided a fair 
distribution of the relocation requests among workers. Zhao et al. (2018) modeled the 
dispatching routes of shared electric vehicles and staff using a space-time network and 
formulated them into a MILP model. A Lagrangian relaxation-based solution approach 
was developed to solve this model more efficiently and accurately. Santos and Correia 
(2019) formulated the vehicle relocation and staff rebalancing problem in a MIP model, 
where the staff are rebalanced between zones with public transport. Based on the 
rolling-horizon approach, the activities of the staff including vehicle relocation and 
maintenance were planned to satisfy the real-time demand. Huang et al. (2020) 
compared the efficiencies of the operator-based and user-based relocation station-based 
electric carsharing systems. The optimization results show that both two methods can 
effectively alleviate the imbalance problem. Yang et al. (2021) adopted a time-space 
network approach to represent the double-balanced dynamic optimization of both 
vehicle relocation and staff scheduling. An integrated model was proposed to minimize 
the generalized daily operational cost, and two different time granularities were 
designed to obtain the optimized relocation tasks and the refined scheduling of the 
relocation staff. To avoid the imbalance of available vehicles at different car-sharing 
stations, Lu et al. (2021) focused on the vehicle relocation problem with operation 
teams. In contrast to previous relocation modes where workers ride a folding bicycle to 
travel between stations, the company uses operation teams to perform relocations. 



Table 1. Studies on the operator-based carsharing relocation problem in the literature. 

References Relocation demand Staff 
rebalancing 

Cooperative  
strategy Approach Objective Solution method 

Nourinejad et al. (2014) Given No No Binary integer 
programming Maximize the total profit of the system Branch and cut algorithm 

Jorge et al. (2014) Given in a simulation 
model No No MIP Maximize the profitability of a carsharing service Branch and cut algorithm 

Weikl and Bogenberger 
(2015) Predicted No No MIP Maximize the profit resulting from vehicle movements 

between zones. Branch and cut algorithm 

Nourinejad et al. (2015) Given Yes No MIP Minimize the total cost, including the cost of vehicle 
relocation and staff rebalance 

A heuristic with a decomposition 
method 

Boyacı et al. (2015) Given No No Multi-objective MIP Maximize the net revenue for the operator and the users’ net 
benefit Branch and bound algorithm 

Bruglieri et al. (2017) Given Yes No MILP Maximize the total profit between the revenue of the satisfied 
relocation requests and the cost of all the workers used A ruin and recreate metaheuristic 

Boyacı et al. (2017) Given Yes No Multi-objective MIP Maximize the number of trips served and minimize relocation 
cost 

Clustering algorithm and branchand-cut 
algorithm 

Bruglieri et al. (2018) Given Yes No Multi-objective MILP 
Minimize the total number of workers employed; 
Maximization the customers’ satisfaction; Minimize the 
duration of the longest route 

A two-phase heuristic algorithm 

Zhao et al. (2018)  Given  Yes No MILP; space-time 
network 

Minimize the total cost, including the vehicle and staff 
investment, and operation expenses. 

Lagrangian relaxation-based solution 
approach 

Gambella et al. (2018) Given Yes No MIP; rolling horizon Maximize the profit associated with the trips performed by 
users 

A model-based heuristics with 
removing relocation and rolling horizon 
approach  

Xu and Meng (2019) Randomly generated No No Set partitioning model Maximize the profit of a carsharing operator A tailored branch-and-price approach 

Repoux et al. (2019) Predicted by Markov 
chain  No No Rolling horizon 

optimization framework Maximize the number of accepted requests Solved iteratively via a rolling horizon 
framework 

Santos and Correia 
(2019) 

Forecasted using a 
homogeneous 
Poisson process 

Yes No MIP; rolling horizon 
Minimize the generalized cost, including the cost of the 
vehicle and staff relocation, the potential profit losses, and a 
penalty for maintenance requests not executed. 

Branch and cut algorithm 

Huo et al. (2020) Following the Poisson 
distribution No No 

Data-driven 
optimization model; 
linear programming 

Maximize the overall profit, including the expected income 
and dispatching cost Branch and cut algorithm 

Folkestad et al. (2020) Given Yes No MIP Minimize the cost of relocating and the costs of postponed 
charging. 

Hybrid genetic search with adaptive 
diversity control algorithm 

Yang et al. (2021) Given Yes No 
Integer linear 
programming; rolling 
horizon 

Minimize the generalized daily operational cost A customized decomposition algorithm. 

This study Predicted by AE-
TGCN Yes Yes 

Integer linear 
programming; rolling 
horizon 

Maximize the overall profit, including the expected 
income, vehicle relocation cost, and staff rebalancing cost 

An adaptive large neighborhood 
search based heuristic approach  



Cooperative strategies are used when two or more companies want to partner and 
work together to achieve common objectives. Cooperative planning has been applied 
to truck scheduling and planning in a seaport environment. Typically, a truck must 
return to the pick-up point after picking up or delivering a full container in a port. In 
this case, it does an empty move, which loses the carrier’s profit and may incur a surged 
congestion on roads as well. Caballini et al. (2016) proposed an optimization model for 
the cooperative planning of multiple truck carrier operations that serve the hinterland 
area of a port. They properly organized the trips belonging to the same carrier and 
introduced cooperative strategies to allow different carriers to share their needs and find 
the most suitable trip combination in a broader context. This ensures an increased profit 
in the real daily truck trip operations with respect to that without collaboration. Phan 
and Kim (2016) proposed an iterative collaborative model through which different truck 
companies and terminals can collaborate to determine more suitable truck schedules. 
The results show that the collaborative process can minimize the truck travel cost and 
truck waiting time under practical operating conditions. 

Previous studies have presented several breakthroughs and innovations in the 
methods for solving the carsharing relocation problem. However, there is still much to 
be investigated. (i) The relocation demand or user requests are most of the times 
assumed to be known in advance. New forecasting algorithms in deep learning can 
capture the fluctuating spatiotemporal characteristics of travel demand and better 
predict the future states of the stations, which play a vital role in dynamically relocating 
the shared cars. (ii) Some models in the literature assume that the staff is sufficient to 
relocate the vehicles. In practice, the available staff is limited and varies throughout the 
day, which should be better scheduled to perform the vehicle relocation tasks between 
stations. (iii) Previous studies have focused on carsharing relocations in a single 
carsharing company, without considering multi-company cooperation. Based on the 
current status of multi-company carsharing operations, timely vehicle relocation and 
staff rebalancing, as well as effective cooperation strategies, may provide new solutions 
to the problems of the low utilization rate of vehicles in current carsharing companies. 

 
3. Methodology 

In this study, we propose a data-driven, dynamic, and cooperative method for 
vehicle relocation and staff rebalancing in one-way carsharing systems. The entire 
framework includes a multi-step travel demand prediction, vehicle relocation and staff 
rebalancing optimization, and multi-company collaboration in shared resources (see 
Fig.1). The framework starts with the prediction of the number of shared cars at each 
station and ends with the vehicle relocation route and staff movement planning. The 
rolling-horizon approach is applied to dynamically plan the relocation activities, which 
allows the system to adapt to real-time demand. 



 

Fig. 1. An overview of the multi-company cooperative relocation framework. 

 

3.1. Multi-step travel demand prediction model 

In this section, we propose an attention-enhanced temporal graph convolutional 
network (AE-TGCN) model for multi-step flow prediction in a carsharing system. The 
undirected graph 𝒢𝒢 = (𝐼𝐼,𝐸𝐸)  is used to construct the topology of the carsharing 
network. We consider each station as a node in the network, where 𝐼𝐼 = {1,2, … ,𝑁𝑁} is 
the set of stations, and 𝐸𝐸 is the set of edges representing the relation between two 
stations. The historical travel demand is regarded as the attribute of nodes in the 
network, 𝑋𝑋 ∈ ℝ 𝑁𝑁×𝑃𝑃, where 𝑁𝑁 is the number of stations in the carsharing network and 
𝑃𝑃 is the length of the historical time series. In addition, the external attributes such as 
static land-use characteristics 𝐿𝐿 and dynamic weather conditions 𝑊𝑊 can be flexibly 
fused to build the feature matrix, ℱ𝑡𝑡 = [𝑋𝑋𝑡𝑡,𝑊𝑊𝑡𝑡, 𝐿𝐿] . Therefore, the multi-step travel 
demand prediction problem at shared car stations is to learn a function 𝑓𝑓 that can map 
travel demand in the previous 𝑃𝑃 time steps to that in the next 𝒯𝒯 time steps based on 
carsharing network topology 𝐺𝐺 and the feature matrix ℱ, in Eq. (1). 

[𝑋𝑋𝑡𝑡+1, … ,𝑋𝑋𝑡𝑡+𝒯𝒯] = 𝑓𝑓(𝐺𝐺; [ℱ𝑡𝑡−𝑃𝑃, . . ,ℱ𝑡𝑡 ]) (1) 
 
3.1.1 Spatial feature modeling 

The graph convolutional network (GCN) is used to capture the spatial relations 
among stations (Lin et al., 2018; Zhao et al., 2019). The connections between stations 
are described in a carsharing network by defining an adjacency matrix, 𝒜𝒜 ∈ ℝ𝑁𝑁×𝑁𝑁 . 
Given the adjacency matrix 𝒜𝒜 and the feature matrix ℱ𝑡𝑡 defined above, the GCN 
constructs a filter in the Fourier domain. The modeling process is represented in Eq. (2). 



𝐻𝐻(𝑙𝑙+1) = 𝜎𝜎(𝐷𝐷�−
1
2𝒜̃𝒜𝐷𝐷�−

1
2𝐻𝐻(𝑙𝑙)𝜃𝜃(𝑙𝑙)) (2) 

where 𝒜̃𝒜 = 𝒜𝒜 + 𝐼𝐼𝑁𝑁 is the adjacency matrix including self-connections, and 𝐼𝐼𝑁𝑁 
is the unit matrix. 𝐷𝐷� is the degree matrix of the carsharing network, 𝐷𝐷�  = ∑ 𝒜̃𝒜𝑖𝑖𝑖𝑖𝑗𝑗 . 𝜃𝜃(𝑙𝑙) 
is the training parameter of the l-th layer. 𝜎𝜎(·)  denotes the ReLU activation 
function. 𝐻𝐻(𝑙𝑙) is the output of the l-th layer. 

For example, given the feature matrix ℱ𝑡𝑡 and the adjacency matrix 𝒜𝒜, a 2-layer 
GCN model can be expressed as in Eq. (3). 

𝑔𝑔(ℱ𝑡𝑡,𝒜𝒜) = 𝜎𝜎(𝒜̂𝒜𝜎𝜎�𝒜̂𝒜ℱ𝑡𝑡𝜃𝜃(1)�𝜃𝜃(2)), 𝒜̂𝒜 = 𝐷𝐷�−
1
2𝒜̃𝒜𝐷𝐷�−

1
2 (3) 

where 𝜃𝜃(1) is the trainable weight matrix from the input layer to the hidden layer 
and 𝜃𝜃(2)  is the trainable weight matrix from the hidden layer to the output layer. 
𝑔𝑔(ℱ𝑡𝑡,𝒜𝒜) ∈ ℝ 𝑁𝑁×𝒯𝒯  represents the predicted carsharing demand for the next 𝒯𝒯  time 
steps. 

In this study, we define the adjacency matrix 𝒜𝒜  to quantify the relationship 
between stations based on the travel demand in Eq. (4).  

𝒟𝒟𝑖𝑖𝑖𝑖
′ = �

𝒟𝒟𝑖𝑖𝑖𝑖 + 𝒟𝒟𝑗𝑗𝑗𝑗             𝑖𝑖𝑖𝑖 𝑖𝑖 ≠ 𝑗𝑗
 𝒟𝒟𝑖𝑖𝑖𝑖                    𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  (4) 

where 𝒟𝒟𝑖𝑖𝑖𝑖  is the travel demand from station 𝑖𝑖  to station 𝑗𝑗 . If the daily travel 
demand 𝒟𝒟𝑖𝑖𝑖𝑖

′  is higher than a predefined threshold, we suppose that the two stations are 
connected with 𝒜̃𝒜𝑖𝑖𝑖𝑖 = 1 otherwise 𝒜̃𝒜𝑖𝑖𝑖𝑖 = 0. Shared cars from different companies 
can only be picked up and parked at the corresponding stations. Therefore, if two 
stations belong to two different companies, they will not be connected in the graph 
representation of the carsharing network. 

 
3.1.2. Temporal feature modeling 

The inflow and outflow travel demands at the carsharing stations are strongly time-
dependent. In deep learning theory, Recurrent Neural Network (RNN) is developed for 
time series data modeling, which takes historical information from prior inputs to 
influence the current input and output. However, the problems of vanishing gradient 
and exploding gradient exist with the long-sequence input. Gated recurrent unit (GRU) 
(Vateekul et al., 2021) network introduces memory cells to learn whether the previous 
hidden layer state needs to be forgotten or updated, which can control the information 
to be memorized with a shorter training time. The structure of the GRU network is 
shown in Fig. 2.  



 

Fig. 2. Structure of GRU network.    

In Eq. (5), the GCN outputs the station-level travel demand predictions in a vector 
𝑧𝑧𝑡𝑡 with the mapping function 𝑔𝑔(∙), which is the input of the GRU. 

 𝑧𝑧𝑡𝑡 = 𝑔𝑔(ℱ𝑡𝑡,𝒜𝒜) (5) 
Update gate:   
 𝑢𝑢𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑢𝑢 ∗ [𝑧𝑧𝑡𝑡,ℎ𝑡𝑡−1] + 𝑏𝑏𝑢𝑢) (6) 
Reset gate:   
 𝑟𝑟𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑟𝑟 ∗ [𝑧𝑧𝑡𝑡,ℎ𝑡𝑡−1] + 𝑏𝑏𝑟𝑟) (7) 
Cell state:   
 𝑐𝑐𝑡𝑡 = 𝑡𝑡𝑡𝑡𝑡𝑡ℎ (𝑊𝑊𝑐𝑐[𝑧𝑧𝑡𝑡, (𝑟𝑟𝑡𝑡 ∗ ℎ𝑡𝑡−1)] + 𝑏𝑏𝑐𝑐) (8) 
Output state:   
 ℎ𝑡𝑡 = 𝑢𝑢𝑡𝑡 ∗ ℎ𝑡𝑡−1 + (1 − 𝑢𝑢𝑡𝑡) ∗ 𝑐𝑐𝑡𝑡 (9) 

 
In Eq. (6)- (8), 𝑢𝑢𝑡𝑡, 𝑟𝑟𝑡𝑡, and 𝑐𝑐𝑡𝑡 are the update gate, reset gate, and memory cell 

state at time 𝑡𝑡. 𝑊𝑊𝑢𝑢, 𝑊𝑊𝑟𝑟, and 𝑊𝑊𝑐𝑐 are the corresponding weight update matrices; 𝑏𝑏𝑢𝑢, 
𝑏𝑏𝑟𝑟, and 𝑏𝑏𝑐𝑐 are the corresponding bias vectors. The update gate 𝑢𝑢𝑡𝑡 controls the state 
information at the previous time, which should be brought into the current state. The 
reset gate 𝑟𝑟𝑡𝑡  controls the degree to which the state information is ignored at the 
previous moment. The cell state 𝑐𝑐𝑡𝑡 combines the information at the previous moment 
and current memory to calculate the output state ℎ𝑡𝑡 , which captures the temporal 
variation trends of the carsharing travel demand.  

 
3.1.3. The attention mechanism 

The encoder-decoder architecture provides a standard approach using deep neural 
networks to deal with sequence-to-sequence prediction problems. In the traditional 
encoder-decoder architecture, the first process encodes the features into a fixed-length 
vector, and the second process decodes the fixed-length vector to obtain the multi-step 
outputs. However, the fixed-sized vector generated by the encoder fails to model long 
inputs (Hao et al., 2019). Therefore, in this study, we employ an attention mechanism 
to enhance the internal representation of the spatial and temporal characteristics of the 



carsharing network in a context vector 𝑐𝑐𝑡𝑡, as shown in Fig. 3.  
When making the predictions for output {𝑋𝑋𝑡𝑡+1, … ,𝑋𝑋𝑡𝑡+𝒯𝒯} , the attention score 

𝑎𝑎𝑡𝑡𝑡𝑡′  (𝑡𝑡′ = 𝑡𝑡 − 𝑃𝑃, … , 𝑡𝑡) specifies the amount of attention that the encoder hidden state 
{ℎ𝑡𝑡−𝑃𝑃, … , ℎ𝑡𝑡} should be paid to the decoder to make predictions at time 𝑡𝑡 in Eq. (10). 

 𝑐𝑐𝑡𝑡 = � 𝑎𝑎𝑡𝑡𝑡𝑡′ℎ𝑡𝑡′
𝑃𝑃

𝑡𝑡′=1

   (10) 

 𝑎𝑎𝑡𝑡𝑡𝑡′ =
𝑒𝑒𝑒𝑒𝑒𝑒 (𝑒𝑒𝑡𝑡𝑡𝑡′)

∑ 𝑒𝑒𝑒𝑒𝑒𝑒 (𝑒𝑒𝑡𝑡𝑡𝑡′)𝑃𝑃
𝑡𝑡′=1

 (11) 

 𝑒𝑒𝑡𝑡𝑡𝑡′ = 𝜁𝜁(𝑠𝑠𝑡𝑡−1,ℎ𝑡𝑡′) (12) 

 
The attention score 𝑎𝑎𝑡𝑡𝑡𝑡′ is calculated by an alignment model in Eq. (11). 𝜁𝜁 in 

Eq. (12) represents an operation of a fully connected feed-forward neural network to 
generate the scores of each time step state in the encoder network (Hao et al., 2019).  

 

Fig. 3. The structure of the AE-TGCN model. 

The entire framework of the AE-TGCN model is shown in Fig. 3. The encoder-
decoder architecture allows the model to predict the value of inflow and outflow of all 
carsharing stations in future time steps, termed as multi-step flow prediction. The loss 
function of the AE-TGCN model is given by Eq. (13). The first term is used to minimize 
the error between the actual travel demand 𝑌𝑌𝑖𝑖 and the predicted value 𝑌𝑌�𝑖𝑖. 𝑛𝑛 is the size 



of the sample set. The second term 𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟 is the 𝐿𝐿2 regularization term that helps avoid 
overfitting and 𝜆𝜆 is a hyperparameter (Zhao et al., 2019). 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = � |𝑌𝑌𝑖𝑖 − 𝑌𝑌�𝑖𝑖|
𝑛𝑛

𝑖𝑖=1

+ 𝜆𝜆𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟 (13) 

 

3.2. Two-phase vehicle relocation and staff rebalancing model 

The relocation of shared cars can lead to an imbalance of staff in a city. Therefore, 
relocation operations in one-way carsharing systems should address both the 
optimization of the vehicle relocation and the staff rebalancing. The system 
continuously updates the number of shared cars and staff activities at the stations to 
ensure that users’ travel needs are satisfied throughout the day. 

In this study, we use a space-time network to integrate physical carsharing 
networks with the time-dependent movements and activities of both vehicles and staff. 
The working time during the day is divided into 𝑀𝑀  time periods of duration 𝛿𝛿 . 
Thereafter the set of time intervals can be expressed as 𝑇𝑇 = {𝑡𝑡0, 𝑡𝑡0 + 𝛿𝛿, … , 𝑡𝑡0 + 𝑀𝑀𝑀𝑀}. 
The set of shared car stations is 𝐼𝐼 = {1, 2, … ,𝑁𝑁}. The set 𝑉𝑉 = {1𝑡𝑡0 , 1𝑡𝑡0+𝛿𝛿 , … ,𝑁𝑁𝑡𝑡0+𝑀𝑀𝑀𝑀} 
denotes the time-space network constituted by all the 𝑁𝑁 × 𝑀𝑀 vertices. The set of arcs 
between the vertices defined in 𝑉𝑉 is designated as 𝐴𝐴. Fig. 4 illustrates the process of 
optimal vehicle relocation (Phase 1) and the staff rebalancing process (Phase 2) for 10 
carsharing stations. Five user trips (e.g., the arc between 2 and 3, the arc between 4 and 
5, etc.) and vehicle relocation trips (e.g., the arc between 1 and 2, the arc between 3 and 
4, etc.) are represented in Phase 1. Two shared vehicles are relocated by the two staff to 
serve five customer trips in Phase 2.  

 

 
Fig. 4. Illustration of vehicle relocation and staff rebalancing. 

 
3.2.1. Phase 1: vehicle relocation optimization 

Phase 1 is a vehicle relocation optimization model based on the predicted 
inflow/outflow travel demand in a multi-company carsharing system. To solve this 
problem, the notations are presented in Table 2. 



Table 2. Notations in the vehicle relocation optimization model. 

Parameters 
𝑉𝑉 set of space-time vertices in the space-time network 
𝐴𝐴 set of space-time arcs in the space-time network 
𝑇𝑇 set of time intervals 
𝑘𝑘 index for carsharing company, 𝑘𝑘 = 1,2, . . . ,𝐾𝐾 
𝐼𝐼𝑘𝑘 set of parking stations of company 𝑘𝑘 
𝑖𝑖𝑘𝑘, 𝑗𝑗𝑘𝑘 indexes of carsharing parking stations of company 𝑘𝑘, 𝑖𝑖𝑘𝑘, 𝑗𝑗𝑘𝑘 ∈ 𝐼𝐼𝑘𝑘 
𝑡𝑡, 𝑠𝑠 indexes of different time intervals, 𝑡𝑡, 𝑠𝑠 ∈ 𝑇𝑇 

(𝑖𝑖𝑘𝑘, 𝑡𝑡), (𝑗𝑗𝑘𝑘, 𝑠𝑠) indexes of space-time vertices, (𝑖𝑖𝑘𝑘, 𝑡𝑡), (𝑗𝑗𝑘𝑘, 𝑠𝑠) ∈ 𝑉𝑉 
(𝑖𝑖𝑘𝑘, 𝑡𝑡, 𝑗𝑗𝑘𝑘, 𝑠𝑠) index of space-time arc, (𝑖𝑖𝑘𝑘, 𝑡𝑡, 𝑗𝑗𝑘𝑘, 𝑠𝑠) ∈ 𝐴𝐴 
𝑑𝑑(𝑖𝑖𝑘𝑘,𝑡𝑡) the predicted departure demand of station 𝑖𝑖𝑘𝑘  at time interval 𝑡𝑡 in 

number of customers 
𝑓𝑓(𝑖𝑖𝑘𝑘,𝑡𝑡) the predicted arrival demand of station 𝑖𝑖𝑘𝑘  at time interval 𝑡𝑡  in 

number of customers 
𝑝𝑝𝑝𝑝𝑖𝑖𝑘𝑘 number of parking spaces available at station 𝑖𝑖𝑘𝑘 
𝑤𝑤(𝑖𝑖𝑘𝑘,𝑡𝑡) average rental revenue per order for station 𝑖𝑖𝑘𝑘 at time interval 𝑡𝑡 
𝑠𝑠𝑖𝑖𝑘𝑘,𝑗𝑗𝑘𝑘 minimum travel distance between station 𝑖𝑖𝑘𝑘 and 𝑗𝑗𝑘𝑘 
𝛼𝛼 the vehicle relocation cost per kilometer  
𝛽𝛽 the penalty cost for not fulfilling or delaying one user’s request 

Auxiliary variables 
𝑖𝑖𝑖𝑖(𝑖𝑖𝑘𝑘,𝑡𝑡) the revenue of the station 𝑖𝑖𝑘𝑘 at time interval 𝑡𝑡 when the number of 

user demand is 𝑥𝑥(𝑖𝑖𝑘𝑘,𝑡𝑡) 
𝑐𝑐𝑐𝑐(𝑖𝑖𝑘𝑘,𝑡𝑡) the dispatching distance cost of station 𝑖𝑖𝑘𝑘 at time interval 𝑡𝑡 
𝑐𝑐𝑐𝑐(𝑖𝑖𝑘𝑘,𝑡𝑡) the penalty cost for not fulfilling customers’ requests at station 𝑖𝑖𝑘𝑘 at 

time interval 𝑡𝑡 
Decision variables 

𝑥𝑥(𝑖𝑖𝑘𝑘,𝑡𝑡) the number of vehicles departing with customers at station 𝑖𝑖𝑘𝑘 at time 
interval 𝑡𝑡 

𝑜𝑜(𝑖𝑖𝑘𝑘,𝑡𝑡) the number of vehicles available at station 𝑖𝑖𝑘𝑘 at time interval 𝑡𝑡 
𝑧𝑧(𝑖𝑖𝑘𝑘,𝑡𝑡,𝑗𝑗𝑘𝑘,𝑠𝑠) the number of vehicles moving from station 𝑖𝑖𝑘𝑘 at time interval 𝑡𝑡 to 

station 𝑗𝑗𝑘𝑘 at time interval 𝑠𝑠 
 

The objective function of the problem is: 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝛱𝛱1) =  � � (𝑖𝑖𝑖𝑖(𝑖𝑖𝑘𝑘,𝑡𝑡) −
(𝑖𝑖𝑘𝑘,𝑡𝑡)∈𝑉𝑉𝑘𝑘∈𝐾𝐾

 𝑐𝑐𝑐𝑐(𝑖𝑖𝑘𝑘,𝑡𝑡) − 𝑐𝑐𝑐𝑐(𝑖𝑖𝑘𝑘,𝑡𝑡))  (14) 

Subject to: 

𝑖𝑖𝑖𝑖(𝑖𝑖𝑘𝑘,𝑡𝑡) = 𝑤𝑤(𝑖𝑖𝑘𝑘,𝑡𝑡) ∙ 𝑥𝑥(𝑖𝑖𝑘𝑘,𝑡𝑡), ∀ (𝑖𝑖𝑘𝑘 , 𝑡𝑡) ∈ 𝑉𝑉 (15) 



𝑐𝑐𝑐𝑐(𝑖𝑖𝑘𝑘,𝑡𝑡) =  � 𝛼𝛼 ∙ 𝑠𝑠𝑖𝑖𝑘𝑘,𝑗𝑗𝑘𝑘 ∙ 𝑧𝑧(𝑖𝑖𝑘𝑘,𝑡𝑡,𝑗𝑗𝑘𝑘,𝑠𝑠), ∀
𝑗𝑗𝑘𝑘∈𝐼𝐼𝑘𝑘

𝑖𝑖𝑘𝑘 ∈ 𝐼𝐼𝑘𝑘 , (𝑖𝑖𝑘𝑘 , 𝑡𝑡, 𝑗𝑗𝑘𝑘 , 𝑠𝑠) ∈ 𝐴𝐴 (16) 

𝑐𝑐𝑐𝑐(𝑖𝑖𝑘𝑘,𝑡𝑡) = 𝛽𝛽 ∙ (𝑑𝑑(𝑖𝑖𝑘𝑘,𝑡𝑡) − 𝑥𝑥(𝑖𝑖𝑘𝑘,𝑡𝑡)), ∀  (𝑖𝑖𝑘𝑘, 𝑡𝑡) ∈ 𝑉𝑉 (17) 

𝑜𝑜(𝑖𝑖𝑘𝑘,𝑡𝑡) = 𝑜𝑜(𝑖𝑖𝑘𝑘,𝑡𝑡−1) + � 𝑧𝑧(𝑗𝑗𝑘𝑘,𝑠𝑠,𝑖𝑖𝑘𝑘,𝑡𝑡)
(𝑗𝑗𝑘𝑘,𝑠𝑠,𝑖𝑖𝑘𝑘,𝑡𝑡)∈𝐴𝐴

− � 𝑧𝑧(𝑖𝑖𝑘𝑘,𝑡𝑡,𝑗𝑗𝑘𝑘,𝑠𝑠)
(𝑖𝑖𝑘𝑘,𝑡𝑡,𝑗𝑗𝑘𝑘,𝑠𝑠)∈𝐴𝐴

+ 𝑓𝑓(𝑖𝑖𝑘𝑘,𝑡𝑡) − 𝑥𝑥(𝑖𝑖𝑘𝑘,𝑡𝑡), 

  ∀  (𝑖𝑖𝑘𝑘, 𝑡𝑡) ∈ 𝑉𝑉 

(18) 

0 ≤ 𝑜𝑜(𝑖𝑖𝑘𝑘,𝑡𝑡) ≤ 𝑝𝑝𝑝𝑝𝑖𝑖𝑘𝑘 ,      ∀ 𝑖𝑖𝑘𝑘 ∈ 𝐼𝐼𝑘𝑘 , 𝑡𝑡 ∈ 𝑇𝑇 (19) 

𝑥𝑥(𝑖𝑖𝑘𝑘,𝑡𝑡) ≤ 𝑜𝑜(𝑖𝑖𝑘𝑘,𝑡𝑡−1) + 𝑓𝑓(𝑖𝑖𝑘𝑘,𝑡𝑡) + � 𝑧𝑧(𝑗𝑗𝑘𝑘,𝑠𝑠,𝑖𝑖𝑘𝑘,𝑡𝑡),   
(𝑗𝑗𝑘𝑘,𝑠𝑠,𝑖𝑖𝑘𝑘,𝑡𝑡)∈𝐴𝐴

 ∀ (𝑖𝑖𝑘𝑘 , 𝑡𝑡) ∈ 𝑉𝑉 (20) 

𝑥𝑥(𝑖𝑖𝑘𝑘,𝑡𝑡) ≤ 𝑑𝑑(𝑖𝑖𝑘𝑘,𝑡𝑡), ∀ (𝑖𝑖𝑘𝑘, 𝑡𝑡) ∈ 𝑉𝑉 (21) 

𝑧𝑧(𝑖𝑖𝑘𝑘,𝑡𝑡,𝑗𝑗𝑘𝑘,𝑠𝑠) ∈  ℕ, ∀(𝑖𝑖𝑘𝑘, 𝑡𝑡, 𝑗𝑗𝑘𝑘 , 𝑠𝑠) ∈ 𝐴𝐴 (22) 

𝑥𝑥(𝑖𝑖𝑘𝑘,𝑡𝑡),  𝑜𝑜(𝑖𝑖𝑘𝑘,𝑡𝑡) ∈  ℕ, ∀ (𝑖𝑖𝑘𝑘, 𝑡𝑡) ∈ 𝑉𝑉 (23) 

The objective function (14) maximizes the profit of the multi-company carsharing 
system, which includes:  

- Expected revenue 𝑖𝑖𝑖𝑖(𝑖𝑖𝑘𝑘,𝑡𝑡). The calculation of the expected income of station 𝑖𝑖𝑘𝑘 
considers the number of satisfying users’ demand 𝑥𝑥(𝑖𝑖𝑘𝑘,𝑡𝑡)  and the average rental 
revenue 𝑤𝑤(𝑖𝑖𝑘𝑘,𝑡𝑡) in constraints (15). 𝑤𝑤(𝑖𝑖𝑘𝑘,𝑡𝑡) is the average rental revenue per order for 
station 𝑖𝑖𝑘𝑘  at time interval 𝑡𝑡 . Here we consider that the average rental income is 
changed at different time intervals, and we use the historical average method to 
calculate 𝑤𝑤(𝑖𝑖𝑘𝑘,𝑡𝑡).  

- Vehicle relocation cost 𝑐𝑐𝑐𝑐(𝑖𝑖𝑘𝑘,𝑡𝑡) . The vehicle relocation cost of Phase 1 is 
determined by the number of vehicles to be relocated from the station 𝑖𝑖𝑘𝑘, the distance 
traveled, 𝑠𝑠𝑖𝑖𝑘𝑘,𝑗𝑗𝑘𝑘, and the unit relocation cost 𝛼𝛼, as shown in constraints (16).  

- Penalty cost for not fulfilling the customers’ travel demands 𝑐𝑐𝑐𝑐(𝑖𝑖𝑘𝑘,𝑡𝑡). The unmet 
customer demand for station 𝑖𝑖𝑘𝑘  at time interval 𝑡𝑡 is 𝑑𝑑(𝑖𝑖𝑘𝑘,𝑡𝑡) − 𝑥𝑥(𝑖𝑖𝑘𝑘,𝑡𝑡)  in constraints 
(17), and  𝛽𝛽 is the unit penalty cost for not fulfilling a customer travel demand.   

Constraints (18) update the number of vehicles available at station 𝑖𝑖𝑘𝑘  at the 
beginning of time interval 𝑡𝑡, considering the shared vehicles used by customers and 
relocated by staff. Constraints (19) are the parking capacity constraints to ensure that 
the number of available vehicles at station 𝑖𝑖𝑘𝑘 should not exceed the number of parking 
spaces 𝑝𝑝𝑝𝑝𝑖𝑖𝑘𝑘. Constraints (20) set the upper bound of the number of shared vehicles that 
users can pick up from station 𝑖𝑖𝑘𝑘. Constraints (21) ensure that the met demand does 
not exceed the predicted actual demand. Constraints (22) and (23) set the domains of 



the variables 𝑧𝑧(𝑖𝑖𝑘𝑘,𝑡𝑡,𝑗𝑗𝑘𝑘,𝑠𝑠),  𝑥𝑥(𝑖𝑖𝑘𝑘,𝑡𝑡) and 𝑜𝑜(𝑖𝑖𝑘𝑘,𝑡𝑡). 
After solving the vehicle relocation optimization problem, the relocation tasks are 

be obtained, which are represented by discrete time intervals. To complete the 
relocation tasks, it is necessary to better organize the staff and design a suitable time 
window. We use 𝑝𝑝 to represent the vehicle relocation tasks (𝑖𝑖𝑘𝑘, 𝑡𝑡, 𝑗𝑗𝑘𝑘, 𝑠𝑠) ∈ 𝐴𝐴. The pick-
up station of task 𝑝𝑝 is station 𝑖𝑖𝑘𝑘, and the drop-off station of task 𝑝𝑝 is station 𝑗𝑗𝑘𝑘. The 
departure time interval is denoted by 𝑝𝑝𝑡𝑡, and the arrival time interval is denoted as 𝑝𝑝𝑠𝑠. 
The service time of this relocation task 𝑝𝑝  is denoted as 𝑝𝑝𝑡𝑡𝑡𝑡 = 𝛿𝛿 ∙ (𝑠𝑠 − 𝑡𝑡) . For the 
vehicle relocation task  𝑝𝑝, the departure time 𝑝𝑝𝜆𝜆 can be obtained using Eq. (24) - (25). 

�
𝑝𝑝𝜆𝜆

𝛿𝛿
� = 𝑝𝑝𝑡𝑡 (24) 

𝛿𝛿 ∙ (𝑝𝑝𝑡𝑡 − 1) ≤ 𝑝𝑝𝜆𝜆 ≤ 𝛿𝛿 ∙ 𝑝𝑝𝑡𝑡 (25) 

The departure time window for task 𝑝𝑝 can then be expressed by Eq. (26) - (27), 
where 𝑝𝑝𝑒𝑒 denotes the earliest departure time and 𝑝𝑝𝑓𝑓 denotes the latest departure time 
of task 𝑝𝑝. 

𝑝𝑝𝑒𝑒 = 𝛿𝛿 ∙ (𝑝𝑝𝑡𝑡 − 1) (26) 

𝑝𝑝𝑓𝑓 = 𝛿𝛿 ∙ 𝑝𝑝𝑡𝑡 (27) 

 
3.2.2. Phase 2: staff rebalancing optimization 

Based on the relocation tasks arranged in Phase 1, the staff should move between 
stations to perform the vehicle relocation tasks. Fig. 5 shows the staff rebalancing 
process. For each relocation task, the pick-up station is represented by a circle and the 
drop-off station is represented by a square. The vehicle relocation process from the 
pick-up station to the drop-off station is depicted by the red arcs. The staff should be 
relocated between the two vehicle relocation tasks, as depicted by the blue arcs. After 
the staff completed relocation Task 1, he/she moves to the pick-up station of Task 2 
using the folding bicycle or the electric scooter. Therefore, the staff rebalancing route 
is from the drop-off station of Task 1 to the pick-up station of Task 2. 

 

Fig. 5. Illustration of the staff rebalancing process. 



The staff rebalancing optimization problem is modeled in Phase 2, where the staff 
are reasonably scheduled to the appropriate stations to complete the vehicle relocation 
tasks. We assume that the staff moves between different tasks using the electric scooter. 
It should be noted that there may be multiple relocation tasks at a single carsharing 
station. If this happens, we create a set of dummy stations, 𝑉𝑉′, which ensures that there 
is only one vehicle relocation task at each dummy station. The notations used in the 
staff rebalancing model are listed in Table 3. 

Table 3. Notations in the staff rebalancing model. 
Parameters 

𝑉𝑉′ set of dummy stations (relocation tasks) 𝑉𝑉′ = {1,2, … , 𝑣𝑣′} 
Ω set of depots for multiple companies 𝛺𝛺 = {1,2, … ,𝜔𝜔} (typically there 

is one depot where the office of the company is located but there could 
be more) 

𝑝𝑝, 𝑞𝑞 indexes of dummy stations (relocation tasks),  𝑝𝑝, 𝑞𝑞 ∈ 𝑉𝑉′ 
𝐿𝐿𝑝𝑝 number of relocation staff at depot 𝑝𝑝, 𝑝𝑝 ∈ 𝛺𝛺 
𝑠𝑠𝑝𝑝𝑝𝑝′  staff movement distance between task 𝑝𝑝 and task 𝑞𝑞 
𝜈𝜈′ the driving speed of an electric scooter used by the staff  
𝜂𝜂𝑑𝑑𝑑𝑑 the cost of driving an electric scooter per kilometer 
𝜂𝜂𝑝𝑝𝑝𝑝 the penalty cost for not performing one relocation task 
𝑝𝑝𝑒𝑒 the earliest departure time of task 𝑝𝑝 
𝑝𝑝𝑓𝑓 the latest departure time of task 𝑝𝑝 
𝑝𝑝𝑡𝑡𝑡𝑡 the service time of the relocation task 𝑝𝑝 
ℳ a big number 

Decision variables 
𝑦𝑦𝑝𝑝𝑝𝑝 binary variable, 1 if a staff member moves from the drop-off station of 

task 𝑝𝑝 to the pickup station of task 𝑞𝑞. This denotes that the relocation 
staff performs both relocation tasks 𝑝𝑝 and 𝑞𝑞 

𝑝𝑝𝜆𝜆 the departure time of task 𝑝𝑝 
𝑢𝑢𝑝𝑝 binary variable, taking value 1, if task 𝑝𝑝 is performed 

 
The objective function of the Phase 2 model is: 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝛱𝛱2) =  𝜂𝜂𝑑𝑑𝑑𝑑 ∙ � � 𝑦𝑦𝑝𝑝𝑝𝑝 ∙  𝑠𝑠𝑝𝑝𝑝𝑝′
𝑞𝑞∈Ω∪𝑉𝑉′𝑝𝑝∈Ω∪𝑉𝑉′

+ 𝜂𝜂𝑝𝑝𝑝𝑝 ∙ � (1− 𝑢𝑢𝑝𝑝)
𝑝𝑝∈𝑉𝑉′

 (28) 

Subject to: 

� 𝑦𝑦𝑝𝑝𝑝𝑝 ≤ 𝐿𝐿𝑝𝑝
𝑞𝑞∈𝑉𝑉′

,   𝑝𝑝 ∈ Ω (29) 

� � 𝑦𝑦𝑝𝑝𝑝𝑝
𝑞𝑞∈𝑉𝑉′𝑝𝑝∈Ω

= � � 𝑦𝑦𝑞𝑞𝑞𝑞
𝑞𝑞∈𝑉𝑉′𝑝𝑝∈Ω

 (30) 



� 𝑦𝑦𝑝𝑝𝑝𝑝
𝑞𝑞∈𝑉𝑉′

− � 𝑦𝑦𝑞𝑞𝑞𝑞
𝑞𝑞∈𝑉𝑉′

= 0, 𝑝𝑝 ∈ 𝑉𝑉′ (31) 

� 𝑦𝑦𝑝𝑝𝑝𝑝
𝑞𝑞∈𝑉𝑉′

− 𝑢𝑢𝑝𝑝 = 0, 𝑝𝑝 ∈ 𝑉𝑉′ (32) 

𝑝𝑝𝜆𝜆 + 𝑝𝑝𝑡𝑡𝑡𝑡 + �
𝑠𝑠𝑝𝑝𝑝𝑝′

𝜈𝜈′
� ≤ ℳ�1− 𝑦𝑦𝑝𝑝𝑝𝑝�+ 𝑞𝑞𝜆𝜆, ∀𝑝𝑝, 𝑞𝑞 ∈ 𝑉𝑉′,𝑝𝑝 ≠ 𝑞𝑞 (33) 

𝑝𝑝𝑒𝑒 ≤ 𝑝𝑝𝜆𝜆 ≤ 𝑝𝑝𝑓𝑓 , ∀𝑝𝑝 ∈ 𝑉𝑉′ (34) 

𝑦𝑦𝑝𝑝𝑝𝑝 ∈ {0,1}, ∀ 𝑝𝑝, 𝑞𝑞 ∈ 𝑉𝑉′ (35) 

𝑢𝑢𝑝𝑝 ∈ {0,1}, ∀𝑝𝑝 ∈ 𝑉𝑉′ (36) 

The objective function (28) minimizes the rebalancing costs of the staff between 
tasks using the electric scooter and the penalty cost for not fulfilling the relocation tasks. 
Constraints (29) set the upper bound of the staff in each depot, which are available to 
perform the relocation tasks. Constraints (30) imply that each relocation staff starts at 
their initial depot and returns to the final depot at the end of the stage. Constraints (31) 
and (32) ensure that the relocation task has to be performed at most once during each 
stage. Constraints (33) establish the relationship of the staff departure time to serve 
tasks, and constraints (34) ensure that the solutions obey the time window constraints 
of each task. Constraints (35) and (36) set the domains of variables 𝑦𝑦𝑝𝑝𝑝𝑝 and 𝑢𝑢𝑝𝑝. 

 
3.3. Multi-company cooperative relocation 

Multi-company cooperative relocation considers that multiple carsharing 
companies can share vehicles, stations, and staff to increase shared vehicle usage and 
staff working efficiency with cooperative schemes. In Fig. 6, we present an example of 
a multi-company relocation strategy with three carsharing companies, named 𝑅𝑅,𝐺𝐺, 
and 𝑌𝑌. Three types of cooperative relocation strategies are considered.  

The first strategy is the shared vehicle relocation without cooperation (S1-SV), 
where neither the vehicles nor the staff are shared. Each company relocates the shared 
vehicles and rebalances the staff independently without cooperation. For example, in 
Fig. 6 (a), we suppose there are three stations in each company, e.g., 𝑅𝑅1,𝑅𝑅2,𝑅𝑅3 . 
Company 𝑅𝑅  has a vehicle relocation task from station 𝑅𝑅2  to station 𝑅𝑅3 . Similar 
relocation tasks should also be carried out from station 𝑌𝑌2  to station 𝑌𝑌3  at the 
company 𝑌𝑌 and from station 𝐺𝐺2 to station 𝐺𝐺3 at the company 𝐺𝐺. However, the staff 
of the three companies are located at the stations 𝑅𝑅1 , 𝑌𝑌1  and 𝐺𝐺1  respectively. 
Therefore, the staff at the station 𝑅𝑅1  must travel from 𝑅𝑅1  to 𝑅𝑅2  using an electric 
scooter to complete the vehicle relocation task from 𝑅𝑅2  to 𝑅𝑅3 . Staff from other 
companies perform similar tasks to ensure that shared cars are deployed between the 
corresponding stations.  



The second shared vehicle relocation strategy (S2-SV) considers staff cooperation. 
The relocation staff are shared, which means that they can perform the relocation tasks 
of different companies. With this strategy, the work efficiency of the staff is potentially 
increased, reducing the number of staff idling in the stations and waiting for the next 
relocation task. Although the staff can relocate vehicles from different companies, the 
shared vehicles from different companies should still be parked at the stations of the 
corresponding company. For example, in Fig. 6 (b), assuming that the relocation tasks 
are all completed within the time window, the shared staff (in purple) will first use the 
electric scooter to travel from station 𝑅𝑅1 to station 𝑅𝑅2, and then complete the vehicle 
relocation task from station 𝑅𝑅2  to station 𝑅𝑅3 . After completing the relocation task 
from company 𝑅𝑅, he/she uses an electric scooter to reach the adjacent station 𝑌𝑌2 and 
complete the relocation task from station 𝑌𝑌2 to station 𝑌𝑌3. Similarly, after completing 
the relocation task from company 𝑌𝑌 , he/she comes to the adjacent station 𝐺𝐺2  and 
completes the relocation task from station 𝐺𝐺2 to station 𝐺𝐺3. It can be seen that the 
strategy of staff sharing can effectively improve the staff work efficiency in the current 
carsharing system and reduce the total number of employed staff. 

 

Fig. 6. Illustration of the multi-company cooperative relocation. 

In the third shared vehicle relocation strategy (S3-SV), the staff and vehicles are 
shared. The vehicles can be parked at the stations of different carsharing companies, 
and the staff can perform the relocation tasks of different carsharing companies, as 
shown in Fig. 6 (c) and (d). Similar to the scenario settings in Fig. 6 (a) and (b), there 
are redundant vehicles at stations 𝑅𝑅2, 𝑌𝑌2, and 𝐺𝐺2 (grey), and stations 𝑅𝑅3, 𝑌𝑌3, and 𝐺𝐺3 
(white) need vehicles. Thus, the staff should perform the vehicle relocation tasks from 



stations 𝑅𝑅2 , 𝑌𝑌2 , and 𝐺𝐺2  to stations 𝑅𝑅3 , 𝑌𝑌3 , and 𝐺𝐺3 . Strategy 3 allows the vehicle 
relocation around nearby stations, even though they belong to different companies. 
Therefore, Fig. 6 (c) shows the optimal vehicle relocation routes based on our proposed 
Phase 1 model, where the optimized vehicle relocation routes are from station 𝑅𝑅2 to 
station 𝑅𝑅3 , from station 𝐺𝐺2  to station 𝑌𝑌3 , and from station 𝑌𝑌2  to station 𝐺𝐺3 . The 
Phase 2 model arranges the staff rebalancing routes. Initially, the staff of the three 
companies are located at stations 𝑅𝑅1, 𝑌𝑌1, and 𝐺𝐺1 respectively. In Fig. 6(d), the shared 
staff 1 travels from station 𝑅𝑅1 to station 𝑅𝑅2 using his/her electric scooter, completing 
the vehicle relocation task from station 𝑅𝑅2 to station 𝑅𝑅3. Thereafter, he/she uses the 
electric scooter to reach the adjacent station 𝑌𝑌2, completing the relocation task from 
station 𝑌𝑌2 to station 𝐺𝐺3. Another shared staff 2 starts from station 𝑌𝑌1 to station 𝐺𝐺2 to 
complete the vehicle relocation task from station 𝐺𝐺2 to station 𝑌𝑌3.  

 

4. Solution method 

4.1. Rolling horizon algorithm 

We adopt a rolling horizon approach to handle the time-varying demand of shared 
car trips during the day, which decomposes the relocation route for the entire service 
time horizon into smaller connected stages (Shui and Szeto, 2017). At each rolling 
horizon, the assignment of tasks is decided using the fore view regarding the forecasted 
demand (with the AE-TGCN model) and the updated available vehicles and staff 
members. Fig.7 shows the successive planning stages within the rolling horizon 
approach. Each stage covers a rolling period with a fixed duration and an overlapping 
period (except for the last stage with no overlapping period).  

 

Fig. 7. Successive stages planning with the rolling horizon approach. 



At the beginning of each stage, a set of historical travel records is first used to 
derive all statistics, such as the predicted outflow and inflow travel demand, the number 
of available vehicles and staff distributed among stations, etc., which are the inputs for 
the optimization model. Thereafter, the Phase 1 model determines the vehicle relocation 
tasks, and the Phase 2 model schedules the staff to perform these tasks. After solving 
the two-phase optimization model, the optimal vehicle relocation and staff rebalancing 
routes are planned, which will be used to update the initial inventory of vehicles and 
staff at each station for the next stage. The rolling horizon planning allows the new data 
from the current stage to join the historical dataset, and the nearest set of data will be 
used to derive new statistics, which will be the new inputs for the proposed model to 
search for the new optimal relocation strategy for the next stage (Huo et al., 2020). The 
outline of the solution procedure is provided as follows: 

Step 1: Obtain the predicted inflow/outflow demand and the available vehicles and 
staff at each station for each period of stage 𝑡𝑡.  

Step 2: Determine the vehicle relocation tasks and routes in the current stage 𝑡𝑡 
using the Phase 1 model with the branch-and-cut algorithm. 

Step 3: Arrange the staff to perform the relocation tasks in Step 2 and plan the staff 
rebalancing activities in the current stage 𝑡𝑡 using the Phase 2 model with the ALNS 
based heuristics. 

Step 4: Store the vehicle relocation routes and staff activities, and update the 
stations’ demand, available vehicles, and the number of staff at each station.  

Step 5: If the current stage is not the last stage, then 𝑡𝑡 = 𝑡𝑡 + 1 and go to Step 2. 
Otherwise, the algorithm stops and outputs the results. 

 
4.2. The ALNS based heuristic 

In the Phase 2 model, several relocation tasks may appear at the same carsharing 
station. Thus, many dummy stations are set up to ensure that each dummy station has 
only one vehicle relocation task. In addition, the staff start from different depots to 
perform the relocation tasks in real-world carsharing companies. Commercial solvers 
such as CPLEX may fail to solve large-scale instances within an acceptable time. 
Adaptive large neighborhood search (ALNS) is a meta-heuristic algorithm that has been 
successfully adopted to solve the complex routing and scheduling problems (Luo et al., 
2016; Sun et al., 2020). In this study, the ALNS based heuristic approach is 
implemented to solve the staff rebalancing model. 

The ALNS heuristic applies multiple destroy and repair operators during the 
neighborhood search process, which are chosen according to the adaptive mechanism. 
In each iteration, the destroy operators remove a part of the incumbent solution, and the 
repair operators construct a new solution. The removed part can be viewed as a 
parameter that controls the neighborhood size. Constructing a larger neighborhood 
increases the opportunity to find better solutions but requires more training time. In this 
study, three destroy operators are developed to ruin the current solution. The random 



destroy operator randomly removes relocation tasks from the current solution, which 
provides diversification to enlarge the search space. The idea of the worst-cost destroy 
operator is to remove the worst parts of the current solution, that is, those tasks that 
cause the high staff rebalancing costs, hoping that the great cost can be eliminated in 
the following repair process. To arrange for the staff to perform the vehicle relocation 
tasks within suitable time windows, the worst-time destroy operator removes the tasks 
with long waits or delayed service start times (Demir et al., 2012; Sun et al., 2020). 
Accordingly, three repair operators are constructed to repair the destroyed solutions. To 
diversify the search, the random repair operator inserts the unserved tasks into randomly 
selected positions of the route at each step. The greedy repair operator inserts the 
unserved tasks in the best possible position of the routes that can minimize the rebalance 
costs. The regret repair operator inserts the unserved tasks considering the regret value, 
which is the difference between the objective function values incurred by inserting the 
unserved task to its best position and its second-best position (Sun et al., 2020).  

The adaptive mechanism improves the probability of selecting a better-performing 
operator, which is based on a roulette wheel selection. When a higher-quality solution 
is obtained with an operator, a higher score is given to the promising operator to 
enhance the probability of being selected again while the selection probabilities of 
unpromising operators are reduced. Let 𝛹𝛹  and 𝛷𝛷  denote the sets of the destroy 
operators and repair operators, respectively, and let 𝜓𝜓 ∈ 𝛹𝛹 be the destroy operator and 
𝜑𝜑 ∈ 𝛷𝛷 be the repair operator. 𝜔𝜔𝜓𝜓

𝜅𝜅  and 𝜔𝜔𝜑𝜑𝜅𝜅  are the weights of the destroy and repair 
operators in the 𝜅𝜅 iteration, respectively, which are set equal to 1 at the beginning. We 
define 𝜋𝜋𝜓𝜓𝜅𝜅  as the total score collected by the destroy operator 𝜓𝜓 in the 𝜅𝜅 iteration, 
and 𝜋𝜋𝜑𝜑𝜅𝜅  as the total score collected by the repair operator 𝜑𝜑 in the 𝜅𝜅 iteration. The 
total scores 𝜋𝜋𝜓𝜓𝜅𝜅  and 𝜋𝜋𝜑𝜑𝜅𝜅  are adjusted based on the newly obtained solution, where the 
reward parameters 𝜚𝜚1, 𝜚𝜚2, and 𝜚𝜚3 (𝜚𝜚1 ≥ 𝜚𝜚2 ≥ 𝜚𝜚3) are introduced (Luo et al., 2016; 
Sun et al., 2020). 

 𝜚𝜚1: The new solution is the best one found so far. 
 𝜚𝜚2: The new solution is better than the current solution. 
 𝜚𝜚3: The new solution is worse than the current solution but is accepted. 
At the end of the 𝜅𝜅  iteration, 𝜔𝜔𝜓𝜓

𝜅𝜅   is updated using Eq. (37). 𝑢𝑢𝜓𝜓𝜅𝜅  denotes the 
number of times the destroy operator 𝜓𝜓 has been invoked during the iterations, and 
𝜌𝜌 ∈ [0,1] controls the influence of the operator’s historical performance. In addition, 
the repair operator 𝜔𝜔𝜑𝜑𝜅𝜅  follows a similar updating process with Eq. (38). 

𝜔𝜔𝜓𝜓
𝜅𝜅+1 = �

(1 − 𝜌𝜌) ∙ 𝜔𝜔𝜓𝜓
𝜅𝜅 + 𝜌𝜌 ∙

𝜋𝜋𝜓𝜓𝜅𝜅

𝑢𝑢𝜓𝜓𝜅𝜅
          𝑖𝑖𝑖𝑖  𝑢𝑢𝜓𝜓𝜅𝜅 > 0  

(1 − 𝜌𝜌) ∙ 𝜔𝜔𝜓𝜓
𝜅𝜅                            𝑖𝑖𝑖𝑖  𝑢𝑢𝜓𝜓𝜅𝜅 = 0

 (37) 



𝜔𝜔𝜑𝜑𝜅𝜅+1 = �
(1 − 𝜌𝜌) ∙ 𝜔𝜔𝜑𝜑𝜅𝜅 + 𝜌𝜌 ∙

𝜋𝜋𝜑𝜑𝜅𝜅

𝑢𝑢𝜑𝜑𝜅𝜅
          𝑖𝑖𝑖𝑖  𝑢𝑢𝜑𝜑𝜅𝜅 > 0  

(1 − 𝜌𝜌) ∙ 𝜔𝜔𝜑𝜑𝜅𝜅                            𝑖𝑖𝑖𝑖  𝑢𝑢𝜑𝜑𝜅𝜅 = 0
 (38) 

The simulated annealing (SA) algorithm is always combined in the ALNS 
heuristic framework. To jump out of the current local optimum, the SA can accept the 
worse solutions with probability 𝒫𝒫 , in Eq. (39). The acceptance probability 𝑃𝑃 
comprises two parameters 𝓉𝓉 and 𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥. 𝓉𝓉 is called the temperature, and it gradually 
decreases during the search. 𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥 is the difference in the objective function between 
the new solution and the current solution. In this study, an enhanced simulated 
annealing (ESA) algorithm is embedded ALNS heuristic framework, where the ESA 
uses a modified acceptance probability 𝒫𝒫(𝑟𝑟𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, 𝑟𝑟𝑛𝑛𝑛𝑛𝑛𝑛, 𝑟𝑟𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏, 𝓉𝓉) in Eq. (40) to obtain 
higher-quality solutions considering not only the gap to the current solution, 𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥, 
but also the gap to the optimal solution that has been reached, 𝛥𝛥𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐′.  

𝒫𝒫 = 𝑒𝑒𝑒𝑒𝑒𝑒 (−𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥/𝓉𝓉) (39) 

 𝒫𝒫(𝑟𝑟𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, 𝑟𝑟𝑛𝑛𝑛𝑛𝑛𝑛, 𝑟𝑟𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏, 𝓉𝓉) =
𝑒𝑒𝑒𝑒𝑒𝑒 (−𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥/𝓉𝓉)
𝑒𝑒𝑒𝑒𝑒𝑒 (−𝛥𝛥𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐′/𝓉𝓉) 

 (40) 

where 𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥 = 𝛱𝛱2(𝑟𝑟𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) − 𝛱𝛱2(𝑟𝑟𝑛𝑛𝑛𝑛𝑛𝑛) ;  𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥′ = 𝛱𝛱2(𝑟𝑟𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏) − 𝛱𝛱2(𝑟𝑟𝑛𝑛𝑛𝑛𝑛𝑛) ; 
𝑟𝑟𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 is the current solution; 𝑟𝑟𝑛𝑛𝑛𝑛𝑛𝑛 is the new neighborhood solution; 𝑟𝑟𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 is the 
current best solution, and 𝛱𝛱2(∙) is the objective function of the Phase 2 model.  

Algorithm 1. The framework of ALNS based heuristic, ALNS-ESA 
input: destroy operators 𝛹𝛹, repair operators 𝛷𝛷, initial temperature 𝓉𝓉𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖, cooling 
rate 𝜏𝜏  
Generate an initial solution by using the Clarke and Wright algorithm 𝑟𝑟𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 
Initialize probability for the destroy operators 𝛹𝛹 and repair operators 𝛷𝛷 
Let 𝑟𝑟𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑟𝑟𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖, 𝑟𝑟𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 =  𝑟𝑟𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖; the temperature 𝓉𝓉 = 𝓉𝓉𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 
while the time limit has not been reached do 

Select a destroy operator 𝜓𝜓 with probability 𝜔𝜔𝜓𝜓
𝜅𝜅  

Let 𝑟𝑟𝑛𝑛𝑛𝑛𝑛𝑛′   be the solution obtained by applying the destroy operator 𝜓𝜓  to 
𝑟𝑟𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 

Select a repair operator 𝜑𝜑 with probability 𝜔𝜔𝜑𝜑𝜅𝜅  
Let 𝑟𝑟𝑛𝑛𝑛𝑛𝑛𝑛 be the solution obtained by applying the repair operator 𝜑𝜑 to 𝑟𝑟𝑛𝑛𝑛𝑛𝑛𝑛′  
if 𝛱𝛱2(𝑟𝑟𝑛𝑛𝑛𝑛𝑛𝑛) < 𝛱𝛱2(𝑟𝑟𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) then 

𝑟𝑟𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑟𝑟𝑛𝑛𝑛𝑛𝑛𝑛 
𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥 = 𝛱𝛱2(𝑟𝑟𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) − 𝛱𝛱2(𝑟𝑟𝑛𝑛𝑛𝑛𝑛𝑛) 

   if 𝛱𝛱2(𝑟𝑟𝑛𝑛𝑛𝑛𝑛𝑛) <  𝛱𝛱2(𝑟𝑟𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏) then 
             𝑟𝑟𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 =  𝑟𝑟𝑛𝑛𝑛𝑛𝑛𝑛; 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 =  𝛱𝛱2(𝑟𝑟𝑛𝑛𝑛𝑛𝑛𝑛) 

  𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥′ = 𝛱𝛱2(𝑟𝑟𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏) − 𝛱𝛱2(𝑟𝑟𝑛𝑛𝑛𝑛𝑛𝑛)  
    else     



𝑟𝑟𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =  𝑟𝑟𝑛𝑛𝑛𝑛𝑛𝑛 with probability 𝜀𝜀 = 𝑒𝑒𝑒𝑒𝑒𝑒 (−𝛥𝛥𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐/𝑇𝑇)
𝑒𝑒𝑒𝑒𝑒𝑒 (−𝛥𝛥𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐′/𝑇𝑇) 

   

Update the temperature  𝓉𝓉 = 𝜏𝜏 ∙ 𝓉𝓉 
Update probabilities using the adaptive probability adjustment procedure 
end while 
return 𝑟𝑟𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏, 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 

The detailed process of the ALNS based heuristic, ALNS-ESA, is presented in 
Algorithm 1. The ALNS-ESA algorithm is numerically compared with the exact 
algorithm (using CPLEX 12.10) and other heuristics, such as SA (Wei et al., 2018), tabu 
search (Ho and Szeto, 2014), and ant colony optimization (Oliveira et al., 2021) with 
small-scale examples in Appendix A. Results show that the ALNS-ESA algorithm can 
obtain better solutions compared with the SA, tabu search and ant colony optimization 
algorithm in a reasonable time. 

 
5. Data description 

We collect 5-month carsharing travel records from January 1, 2018, to May 31, 
2018, in Fuzhou, which is the capital city of the Fujian Province in China. The travel 
records are from four carsharing companies, including the companies DTT, ZCL, BAS, 
and YT. The attributes of the data include the company name, the order number, vehicle 
ID, the user’s ID, pick-up time, return time, pick-up station, return station, travel time, 
travel distance, and travel costs. The distribution of the 67 stations from the four 
carsharing companies is shown in Fig. 8 (a). 

The point-of-interest (POI) data and the weather data for the corresponding days 
are collected from the web crawling framework developed using Python. The POI 
dataset provides information on land-use characteristics surrounding the selected 
stations. The categories can be divided into five types: catering services (CS), enterprise 
areas (EA), shopping services (SS), auto service (AS), and residential areas (RA). We 
crawl the POI within 500 meters of each station and tag the most frequent POI type 
around the stations as a land-use characteristic (Fig. 8(b)). The weather conditions are 
divided into five categories: sunny, cloudy, light rain, moderate rain, and heavy rain. 

   
   (a)                             (b) 

Fig. 8. The distribution of carsharing stations in Fuzhou city: (a) station 
locations; (b) land-use characteristics. 



5.1. Spatial and temporal carsharing trip patterns 

Fig. 9 analyzes the temporal characteristics of shared car trips. In general, during 
normal days, the number of shared car trips on weekends is slightly larger than that on 
weekdays. There are no morning and evening peak hours on weekdays because shared 
cars are not the main travel mode for commuting compared with public transportation, 
such as the subway and bus. The holiday travel patterns of shared cars can be reflected 
in the travel data. Fig. 9 (a) shows the weekly travel demand during the Spring Festival 
(February 16, 2018). During these days, people usually gather with their families, so 
the travel demand for shared cars will be significantly reduced. Fig. 9 (b) shows the 
carsharing travel demand during Labor Day (May 1, 2018). There is a 3-day holiday on 
International Labor Day, and people use these holidays for travel, and the number of 
trips greatly increases. The spatial distribution of carsharing travel demand during a 
normal day is shown in Fig. 10. It can be seen during the period 6:00-7:00, there are 
fewer carsharing trips. The carsharing demand gradually increases during 8:00-9:00, 
and the travel hotspots become obvious during the daytime. During 20:00-21:00, a 
considerable number of carsharing trips also exist. 

   
  (a)                              (b) 

Fig. 9. Temporal usage patterns of shared cars: (a) on normal days; (b) on holidays. 
 

 

  
(a)                          (b) 



  
  (c)                          (d)      

Fig. 10. The spatial and temporal distribution of carsharing travel demand during a 
normal day in Fuzhou: (a) 6:00-7:00; (b) 8:00-9:00; (c) 12:00-13:00 and (d) 20:00-

21:00. 
 

5.2. Vehicle usage patterns in different companies 

The user should first register as a member of the carsharing company before using 
the shared car. For example, at Company DTT, a deposit of $185 is required for 
registration, which makes most users only register as a member of one carsharing 
company. From the analysis of 5-month shared car travel data, there are 38,860 
registered users (each with a unique user ID), of which only 2,365 people have 
registered for two companies, accounting for a total of 6.08%. Only 95 users have 
registered in three or more companies at the same time, accounting for 0.24%. Fig. 11 
shows the usage frequency of shared cars in the four companies. The average usage 
frequencies of Company DTT, ZCL, YT, BAS are 155.82, 279.03, 82.93, and 300.25, 
respectively. Specifically, the shared cars in two companies, Company ZCL and 
Company BAS, have a high usage frequency, and 261 and 168 vehicles are used more 
than 300 times during the statistical period in Fig.11(b) and (d). However, the vehicles 
in Company YT are rarely used, and each vehicle is used less than 200 times, as shown 
in Fig.11(c). Owing to the lack of effective cooperation among these companies and 
effective relocation strategies, more shared vehicles are idling at some stations, 
resulting in low usage frequency. 

  
(a)                           (b) 



  
  (c)                        (d) 

Fig. 11. The usage frequency of shared car use in four companies: (a) Company DTT; 
(b) Company ZCL; (c) Company YT; (d) Company BAS. 

 

6. Case study 

6.1. Multi-step prediction performance of AE-TGCN 

In this section, we estimate the multi-step travel demand prediction model of AE-
TGCN using the real-world carsharing usage data. The carsharing network structure is 
represented by an adjacency matrix with 67 stations, which describes the spatial 
relationships among the stations. The shared car usage data is resampled every 30 min 
to describe the inflow and outflow travel demand at each station. The land-use 
characteristics and weather conditions are integrated to improve the model’s ability to 
perceive external factors. The proposed AE-TGCN model is compared with several 
benchmark methods, including the historical average (HA), autoregressive integrated 
moving average (ARIMA), support vector regression (SVR), GCN, and GRU. Deep 
learning models are developed using Python TensorFlow. The demand forecast model 
is evaluated by two evaluation indicators, the root mean square error (RMSE) and the 
mean absolute error (MAE), as shown in Eq. (41) - (42). 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �
1
𝑀𝑀𝑀𝑀

��(𝑦𝑦𝑖𝑖,𝑗𝑗 − 𝑦𝑦𝚤𝚤,𝚥𝚥� )2
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𝑖𝑖=1
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1
𝑀𝑀𝑀𝑀

�� |𝑦𝑦𝑖𝑖,𝑗𝑗 − 𝑦𝑦𝚤𝚤,𝚥𝚥� |
𝑁𝑁

𝑖𝑖=1

𝑀𝑀

𝑗𝑗=1

 (42) 

where 𝑦𝑦𝑖𝑖,𝑗𝑗 and 𝑦𝑦𝚤𝚤,𝚥𝚥�  represent the real travel demand and predicted travel demand 
of the 𝑗𝑗th time samples in the 𝑖𝑖th station. 𝑀𝑀 is the number of time samples; 𝑁𝑁 is 
the number of stations. 

Table 4 shows the multi-step prediction performance of the proposed model and 
benchmark algorithms for 30 min, 60 min, and 120 min ahead forecasting the inflow 
and outflow travel demands. For different prediction intervals, the performance of HA 



is invariant because it only depends on the historical data. The GRU model introduces 
the gating mechanism to control the temporal memory, which has better prediction 
precision than other baselines, such as the HA, ARIMA, SVR models. In addition, the 
GRU model outperforms the GCN model, verifying that the temporal features are 
important in short-term demand prediction tasks. The TGCN model captures the spatial 
and temporal features simultaneously with the GCN and GRU modules. For the 30 min 
inflow demand forecasting task, the RMSE errors of the TGCN model are reduced by 
approximately 8.22% and 6.43% compared with the GCN model and GRU models, 
respectively. Enhanced by the attention mechanism, the AE-TGCN model has the best 
prediction performance, and the prediction errors of both RMSE and MAE are smaller 
than those of the TGCN model. Under different prediction horizons, the ARIMA model 
performs the worst because of the error accumulation, while the error increase of the 
AE-TGCN model is small, which shows a certain degree of stability for multi-step 
prediction tasks. Fig. 12 illustrates the inflow prediction error of the 67 stations on a 30 
min horizon. The prediction error is large in some stations with the HA, SVR, and GCN 
models, while it decreases by capturing the spatiotemporal characteristics with the AE-
TGCN model.  

Table 4. Multi-step prediction performance comparison on different time steps. 

Model 
30 min (one step)  60 min (two steps)  120 min (four steps) 
RMSE MAE  RMSE MAE  RMSE MAE 

(a) inflow prediction 

HA 0.9835 0.5923  0.9835 0.5923  0.9835 0.5923 

ARIMA 1.0762 0.9750  1.1090 0.9758  1.2088 0.9852 

SVR 0.9374 0.5388  0.9415 0.5798  0.9572 0.5882 

GRU 0.9235 0.5192  0.9318 0.5631  0.9328 0.5774 

GCN 0.9415 0.5867  0.9636 0.6143  0.9828 0.6110 

TGCN 0.8641 0.5071  0.8736 0.5301  0.8714 0.5320 

AE-TGCN 0.8414 0.4743  0.8483 0.5102  0.8580 0.5252 

(b) outflow prediction 

HA 0.9615 0.5846  0.9615 0.5846  0.9615 0.5846 

ARIMA 1.0649 0.9573  1.0792 0.9589  1.1207 0.9765 

SVR 0.9314 0.5035  0.9391 0.5635  0.9418 0.5629 

GRU 0.9286 0.5155  0.9290 0.5641  0.9388 0.5608 

GCN 0.9581 0.5393  0.9686 0.5904  0.9714 0.6005 

TGCN 0.8571 0.5035  0.8708 0.5215  0.8636 0.5294 

AE-TGCN 0.8352 0.4878  0.8439 0.5045  0.8407 0.5019 
 



   
 (a)                                   (b) 

Fig. 12. Prediction performance of 67stations on 30 min horizon: (a) RMSE of inflow 
prediction; (b) MAE of inflow prediction. 

 

6.2. Relocation results with different cooperative strategies 

At each rolling horizon, based on the predicted inflow and outflow demand, we 
determine the vehicle relocation tasks and schedule the staff to perform these tasks 
using the proposed two-phase vehicle relocation and staff rebalancing model in Section 
3.2. We test our model and cooperative relocation strategies using the multi-company 
carsharing travel records in Fuzhou. Considering the large travel demand at night (e.g., 
in Fig. 10 (d)), the dynamic vehicle relocation and staff rebalancing operation during 
the day is set for the period 8:00 - 24:00. There are 67 stations from four carsharing 
companies, and each station has 10 parking spaces. We assume that each company 
employs 10 relocation staff to perform the relocation tasks during the day. The vehicle 
relocation cost 𝛼𝛼 in the Phase 1 model is set to $3/km. The penalty for not fulfilling 
one request 𝛽𝛽 is $20. The driving speed of the staff relocating a vehicle 𝜈𝜈 is set to 
30 𝑘𝑘𝑘𝑘/ℎ. In the Phase 2 model, the staff uses an electric scooter to move between 
various relocation tasks. The staff moving speed in those trips 𝜈𝜈′ is set to 20 km/h, 
and the staff moving cost 𝜂𝜂𝑑𝑑𝑑𝑑  is $2/km. The penalty cost for not performing one 
relocation task 𝜂𝜂𝑝𝑝𝑝𝑝 is $20. Based on the above parameter settings, we solve the two-
phase vehicle relocation and staff rebalancing model and obtain the following results. 

 
6.2.1. Result comparison of cooperative relocation strategies 

As described in Section 3.3, the vehicles, stations, and staff are allowed to be shared 
according to the cooperative relocation strategies that have been explained previously. 
Table 5 shows the results of the different relocation strategies on a working day 
(Tuesday, April 3, 2018). In general, during the day, the total fulfilled pick-up demand 
at 67 stations is 1,100, while the return demand is 1,178, resulting in a total revenue of 
$11,074.94. The vehicles are only allowed to be relocated between stations in the same 
company with S1-SV (the relocation strategy without cooperation) and S2-SV (the 
relocation strategy with only shared staff). Hence, in the results of the Phase 1 model 
with S1-SV and S2-SV, a total of 336 vehicle relocation tasks should be performed by 
the four companies to prevent situations in which there are no shared vehicles to use or 



no space for vehicle parking, with an average relocation distance of 1.72 km per task. 
However, the vehicles are allowed to be relocated between stations of different 
companies with cooperative strategy S3-SV (the relocation strategy with shared staff 
and vehicles). That is, relocation tasks can be performed in nearby stations, although 
they may belong to different companies. The total relocation tasks are 240, and the 
vehicle relocation distance is greatly reduced to an average of 0.99 km per task. 
Therefore, the vehicle relocation costs in the Phase 1 model are $1,730.34, $1,730.34, 
and $715.26, respectively, for the three relocation strategies. 

Table 5. Result comparison of different relocation strategies on working days (April 3, 
2018). 

Relocation strategies S1-SV S2-SV S3-SV 

Profit (dollars per day) 7062.10 7499.20 8862.32 

Total cost (dollars per day) 4012.84 3575.74 2212.62 

(a) Result of Phase 1 

Revenue (dollars per day) 11074.94 11074.94 11074.94 

Pickup demand (per day) 1178 1178 1178 

Return demand (per day) 1100 1100 1100 

Number of relocation tasks 336 336 240 

Vehicle relocation cost (dollars per day) 1730.34 1730.34 715.26 

Total relocation distance (km) 576.78 576.78 238.42 

Average relocation distance (km) 1.72 1.72 0.99 

(b) Result of Phase 2 

Staff movement cost (dollars per day) 2282.50 1845.40 1497.36 

Maximum number of required staff  15 9 8 

Total staff movement distance (km) 1141.25 922.70 748.68 

Total staff waiting time (min) 1802.43 1036.39 763.66 

The relocation tasks obtained by solving the Phase 1 model serve as input to arrange 
the staff rebalancing routes in the Phase 2 model, which ensures that these relocation 
tasks can be performed. The relocation tasks in each company can only be performed 
by their own staff with S1-SV. However, the staff from different companies are 
considered to cooperate in relocation strategies S2-SV and S3-SV. Therefore, the staff 
are arranged to move to the nearby stations to perform relocation tasks although they 
may belong to different companies. On the one hand, the multi-company cooperative 
relocation reduces the number of staff. From the results of the Phase 2 model in Table 
5, we compare the number of required staff to perform the vehicle relocation tasks for 
each stage during the day. For the non-cooperative strategy S1-SV, the maximum 
number of required staff is 15, which means that at least 15 staff should be employed 
for the daily vehicle relocation. The cooperative strategy S2-SV requires nine staff, 
while the cooperative strategy S3-SV requires eight staff to accomplish the vehicle 
relocation tasks. On the other hand, the cooperative strategies decrease the staff 
movement distance. With the non-cooperative strategy S1-SV, the total daily staff 



movement distance is 1,141.25 km. However, this distance is reduced by 19.15% with 
the cooperative strategy S2-SV and 34.39% with the cooperative strategy S3-SV. In 
our model, if the relocation staff arrives at the target station and he/she has not yet 
reached the start of service time, waiting is required. We compare the staff’s total 
waiting time with the three relocation strategies. The total waiting time during the day 
for non-cooperative strategy S1-SV is 1,802.43 minutes, while the total waiting time 
for cooperative strategy S2-SV and cooperative strategy S3-SV is 1,036.39 minutes and 
763.66 minutes, respectively. Therefore, the cooperative relocation strategies can 
effectively reduce the number of staff, decrease the staff movement distance between 
stations, and improve the work efficiency of staff, avoiding them idling at the stations 
with no tasks to perform. 

Table 6. Result comparison of different relocation strategies on holidays (May 1st, 
2018). 

Relocation strategies S1-SV S2-SV S3-SV 

Profit (dollars per day) 9127.17 9682.27 10933.77 

Total cost (dollars per day) 4043.06 3487.96 2236.46 

(a) Result of Phase 1 

Revenue (dollars per day) 13170.23 13170.23 13170.23 

Pickup demand (per day) 1294 1294 1294 

Return demand (per day) 1284 1284 1284 

Number of relocation tasks 431 431 342 

Vehicle relocation cost (dollars per day) 1731.32 1731.32 587.40 

Total relocation distance (km) 577.11 577.11 195.80 

Average relocation distance (km) 1.34 1.34 0.57 

(b) Result of Phase 2 

Staff movement cost (dollars per day) 2311.74 1756.64 1649.06 

Maximum number of required staff  18 13 10 

Total staff movement distance (km) 1155.87 878.32 824.53 

Total staff waiting time (min) 2061.15 1467.64 869.23 

In Table 6, we analyze relocation results with three relocation strategies during the 
holiday (May 1st, 2018, Labor Day), where the pick-up demand and return demand in 
the carsharing system have significantly increased. In the results of the Phase 1 model, 
the vehicle relocation tasks are 431 with relocation strategies S1-SV and S2-SV. The 
corresponding average vehicle relocation distance is 1.34 km. With the relocation 
strategy with shared staff and vehicles S3-SV, 342 vehicle relocation tasks need to be 
performed, and the average vehicle relocation distance is 0.57 km. In the results of the 
Phase 2 model, in order to complete the relocation tasks, the maximum number of 
required staff by the three relocation strategies are 18, 13, and 10 respectively. With the 
cooperative relocation strategies, S2-SV and S3-SV, the staff have more degrees of 
freedom to perform the relocation tasks temporally and spatially. For example, the staff 
are arranged to perform the nearby and suitable relocation tasks, which avoids the staff 



idling time in stations and decreases the waste of distance in the vehicle relocation 
process and staff movement process. The total revenue has increased because of the 
larger travel demand for carsharing trips on holidays. Compared with the non-
cooperative strategy S1-SV, the profit is increased by 6.08% with cooperative strategy 
S2-SV and is increased by 19.79% with cooperative strategy S3-SV. 

   

(a) (b) 

   

   (c)                               (d) 
Fig. 13. Result comparison of three relocation strategies at different time periods: (a) 

Travel demand variation; (b) Number of relocation tasks; (c) Number of required 
staff; (d) Staff movement distance. 

 
At different time periods of the day, the users’ pick-up demand and return demand 

in the carsharing system are imbalanced. At different stations, the inflow and outflow 
demands are quite diverse throughout the day. Fig. 13 shows the vehicle relocation and 
staff rebalance results with the three strategies at different time periods of the working 
day. In real-world stations, the total outflow demand is greater in the morning, whereas 
the total inflow demand in the afternoon is larger, as shown in Fig. 13(a), which is 
related to the land-use characteristics around these stations. Fig. 13(b) shows the 
relocation tasks required by solving the Phase1 model with three relocation strategies. 
More relocation tasks appear in the fourth period (14:00-16:00), which is caused by the 
gap accumulation of inflow and outflow demand. Fig. 13(c) shows the number of staff 
required to complete the relocation tasks. The improvement in the cooperation 
relocation is different during the day. For example, in the first period (8:00-10:00), 
adopting the cooperation relocation strategy S2-SV requires only nine staff. However, 
a total of 15 staff should be employed with the relocation strategy S1-SV. In the sixth 
period (18:00-20:00), the relocation strategy S2-SV requires five staff to complete the 



relocation tasks, which is the same as the relocation strategy S1-SV. The staff movement 
distance using the three relocation strategies is compared in Fig. 13(d). With the 
cooperation strategy, the staff will be arranged at the nearby stations to complete the 
vehicle relocation tasks. If the time window constraints are met, a small number of staff 
members will be used, and thus the total cost, including the vehicle relocation and staff 
movement can be effectively reduced. 

We perform the sensitivity experiments with different parameter settings on the 
rolling horizon method to assess the effect on the number of relocation tasks, vehicle 
relocation cost, and staff movement cost. Fig. 14 shows the result comparison of the 
three relocation strategies with the holiday data. Both the vehicle relocation cost and 
the staff movement cost are reduced when the stage length is set longer. For example, 
when the stage length is set as 2 h, according to the results of the Phase 1 model, 431 
relocation tasks should be completed and the total vehicle relocation cost during the 
day is $1,731.32 with relocation strategies S1-SV and S2-SV. When the stage length is 
set to 6 h, the number of relocation tasks is reduced to 269 and the vehicle relocation 
cost is $1,339.99. The rolling horizon approach can provide a better solution for vehicle 
relocation and staff rebalancing when more accurate travel demand predictions for the 
next time steps are available. The results of the rolling horizon method are suboptimal 
compared to considering the travel demand of the entire day, but calculating the optimal 
solution for an entire day is not a realistic objective because it is very difficult to 
accurately predict the travel demand for multiple time steps. 

   
(a)                   (b)                  (c) 

Fig. 14. Result comparison of three relocation strategies under different parameter 
settings on the rolling horizon method: (a) Number of relocation tasks; (b) Vehicle 

relocation cost; (c) Staff movement cost. 
 

6.2.2. Future relocation with automated vehicles 

In a scenario where shared automated vehicles (SAVs) are used, the cost of the 
entire system is only the vehicle relocation between stations. Using the model proposed 
in this study, we calculate the difference between the use of SAVs and current shared 
vehicles (SVs) in the carsharing system in terms of revenue and vehicle relocation cost 
on a working day. Table 7 shows the cooperative relocation strategies in the carsharing 
system, which includes the three aforementioned relocation strategies with current SVs 
and two relocation strategies with future SAVs. S1-SAV represents the relocation of 



SAVs without cooperative strategies, where vehicles from different companies can only 
be parked at the stations of specific companies. S2-SAV represents the cooperative 
relocation of multi-company SAVs, where the vehicles and parking stations of different 
companies are shared. As shown in Fig. 15 (a), under the same travel demand, the use 
of shared vehicles and shared staff can effectively increase the profit of the system, 
which focuses on reducing the vehicle relocation distance, the staff movement distance, 
and improving the work efficiency of staff. Compared with S1-SV, the profit increased 
by 6.19% and 25.49% with the cooperative relocation strategies S2-SV and S3-SV, 
respectively. In the SAV system, without the need for employing the relocation staff, 
the profits of S1-SAV and S2-SAV are $9,344.60 and $10,359.68, which is increased 
by 32.32% and 46.69% compared to the S1-SV in the current carsharing system. More 
detailed relocation results, such as vehicle relocation distance and staff movement 
distance for shared vehicles in the current SV system and the SAV system are shown in 
Fig. 15 (b) and (c). 

Table 7. The cooperative relocation strategies with the current SVs and future SAVs. 

Relocation strategies Description 
S1-SV the SV relocation without cooperation  
S2-SV the SV relocation with only shared staff 
S3-SV the SV relocation with shared staff and vehicles 

S1-SAV the SAV relocation without cooperation 
S2-SAV the SAV relocation with shared vehicles 

 

 
(a) 

  
(b)                                  (c) 

Fig. 15. Result comparison of different relocation strategies with SVs and SAVs: (a) 
Total cost and profit; (b) Vehicle relocation distance and (c) Staff movement distance. 

 
 



7. Conclusion and future studies 

Carsharing is an emerging travel mode with potentially positive outcomes for 
mobility management in urban areas. Many carsharing companies have been 
established worldwide in the last decade. However, due to the large investment in 
buying vehicles and setting up stations, companies cannot be very large. The added 
management complexities in the carsharing business lead to customer loss and low 
vehicle utilization. Therefore, many carsharing companies are currently facing 
bankruptcy.  

This study tackles the real-time vehicle relocation and staff rebalancing problem 
in the one-way carsharing systems with cooperative relocation strategies between 
different companies in a city. We propose a data-driven, dynamic, and cooperative 
method for vehicle relocation and staff rebalancing in one-way carsharing systems. The 
entire method starts from the multi-step travel demand prediction using deep learning 
algorithms, where the graph convolutional network (GCN) layer, gated recurrent unit 
(GRU) layer, and the attention mechanism are integrated to extract the features from 
temporal and spatial variables. With the predicted inflow and outflow demand, a two-
phase integer programming model has been proposed to optimize the process of vehicle 
relocations and staff movements. Subsequently, multi-company cooperative relocation 
strategies are designed with the sharing of vehicles and staff to reduce the vehicle 
relocation distance, the staff rebalancing distance, and improve the work efficiency of 
staff. The Adaptive Large Neighborhood Search (ALNS) based heuristic embedded in 
the rolling horizon solution framework is used to solve the proposed model. Based on 
the 5-month carsharing travel records in Fuzhou, China, the results show that the 
cooperative relocation strategies can effectively increase the profit of the carsharing 
system by 25.49% and 19.79% on weekdays and holidays, respectively. We also look 
forward to the future relocation of automated vehicles. Without the participation of staff, 
the one-day profit is increased by 46.69% compared to the current situation in the 
carsharing system. 

In this study, we assume that the companies are willing to participate in the 
cooperation, ignoring the reality of competitions and games among companies. For 
example, a larger carsharing company with more shared vehicles, stations, and staff 
may not be willing to cooperate with small companies. Companies on the verge of 
bankruptcy need to cooperate with large carsharing companies to increase the 
utilization of vehicles and stations. In addition, a fair revenue assignment mechanism 
is crucial for the cooperative relocation among different carsharing companies (Li et al., 
2014). Further studies should consider the fairness of benefits allocation from sharing 
resources so that it creates the right incentives for carsharing companies to collaborate. 
 
 
Appendix A. Performance evaluation of the ALNS based heuristic 

We design a set of illustrative numerical examples to evaluate the performance of 



the ALNS based heuristic (ALNS-ESA algorithm) in Table A1. The results are 
compared with the optimal result obtained using a high-performance commercial solver, 
i.e., CPLEX (12.10 Academic Version) and other heuristics, such as simulated 
annealing (SA), tabu search (TS), and ant colony optimization (ACO). The experiments 
have been conducted on a personal computer with Intel Core i7, 2.8 GHz CPU, and 8 
GB of memory. The parameters of the CPLEX solver are set to the default value and 
the maximum time for solving the model is limited to 3,600 s for all the examples. For 
the heuristics, each instance is run 10 times to calculate the average objective value and 
the best objective value within the same CPU time. We compared the improvement of 
the average objective value by the ALNS-ESA algorithm against the other three 
heuristic methods in percentage in Table A1. The parameters of the ALNS-ESA 
algorithm are set as follows: the reward parameters are 𝜚𝜚1 = 100, 𝜚𝜚2 = 30,  and 
 𝜚𝜚3 = 10 and the control parameter is 𝜌𝜌 = 0.6 . The algorithms use an initial 
temperature 𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 104, and a cooling rate of 𝜏𝜏 = 0.998. 

In Table A1, the tested instances are grouped according to the number of tasks that 
varied from 10 to 90, and each group has two different instances. All four heuristics can 
obtain the best route with small-scale instances, such as T10_1, T10_2, T20_1, and 
T20_2. With the expansion of the instance scale, the CPLEX solver and the heuristics 
take a longer time to obtain the optimal solutions. For example, on the T50_1 dataset, 
the average objective value obtained by the ALNS-ESA algorithm is improved by 
9.03%, 12.57 %, and 13.25 % compared with the SA, TS, and ACO algorithms, 
respectively, within the same computational time. For the large-scale instances, for 
example, T80_1, T80_2, T90_1, and T90_2, the CPLEX solver cannot obtain a feasible 
solution within the maximum computation time, whereas the ALNS-ESA algorithm can 
yield high-quality solutions, which perform better than the CPLEX and other heuristics. 
Fig. A1 shows that the average cost varies with the different number of tasks, where the 
error bars indicate the standard deviations of the objective values in the 10 running 
times. In small-scale instances, the heuristics can converge to the same optimal value. 
For large-scale instances, the fluctuations in multiple runs lead to larger standard 
deviations, while the proposed ALNS-ESA algorithm can still perform well. 

 
Fig. A1. Average cost comparison of different heuristics SA, TS, ACO, and 

ALNS-ESA 
 



Table A1. Results comparison of CPLEX and other heuristics. 

Number 
of tasks CPU/s Instance 

 SA  TS  ACO  ALNS-ESA  CPLEX 
 ALNS-ESA 

vs SA 
 ALNS-ESA  

vs TS 

 ALNS-ESA   

vs ACO 

 Best Mean  Best Mean  Best Mean  Best Mean  Best CPU/s  Improvement  Improvement  Improvement 

10 8 
T10_1  55.29 55.36  55.29 57.50  55.29 55.94  55.29 55.29  55.29 0.48  0.13 %  4.00 %   1.18 %  

T10_2  101.76 102.01  101.76 101.76  101.76 104.22  101.76 101.76  101.76 0.52  0.25 %  0.00 %   2.42 %  

20 20 
T20_1  123.64 126.55  128.68 132.02  125.85 131.02  123.64 123.64  123.64 3.89  2.35 %   6.78 %   5.97 %  

T20_2  124.61 126.30  127.06 129.96  124.61 129.66  124.61 125.73  124.61 4.58  0.45 %   3.36 %   3.13 %  

30 60 
T30_1  164.68 171.37  175.36 175.36  170.18 176.25  147.67 149.46  146.48 17.54  14.66 %   17.33 %   17.92 %  

T30_2  210.29 214.79  215.45 218.01  235.51 240.47  205.99 208.73  205.99 16.36  2.90 %   4.45 %   15.21 %  

40 100 
T40_1  228.29 242.45  249.71 251.56  271.79 275.02  231.65 234.93  227.87 46.52  3.20 %   7.08 %   17.06 %  

T40_2  225.78 234.83  231.80 237.07  256.38 263.87  219.12 220.96  218.15 64.63  6.28 %   7.29 %   19.42 %  

50 120 
T50_1  263.91 283.09  290.46 292.30  286.33 294.06  258.81 259.65  258.22 75.90  9.03 %   12.57 %   13.25 %  

T50_2  314.13 320.03  352.91 354.39  342.67 354.26  302.45 306.95  301.43 102.85  4.26 %   15.46 %   15.41 %  

60 180 
T60_1  344.72 355.72  362.06 374.09  376.00 385.89  326.27 328.94  323.31 223.06  8.14 %   13.73 %   17.31 %  

T60_2  423.13 443.74  428.02 430.06  470.32 483.64  406.28 408.03  404.62 338.65  8.75 %   5.40 %   18.53 %  

70 220 
T70_1  464.24 496.63  468.27 471.19  496.98 516.58  429.55 431.88  426.50 2483.62  14.99 %   9.10 %   19.61 %  

T70_2  479.78 504.63  461.58 463.26  534.8 553.87  427.34 432.60  425.83 2631.35  16.65 %   7.09 %   28.03 %  

80 250 
T80_1  530.38 554.20  510.86 525.75  562.97 570.12  472.92 477.29  - >3600  16.11 %   10.15 %   19.45 %  

T80_2  558.30 576.31  512.71 528.95  583.70 590.52  466.03 468.35  - >3600  23.05 %   12.94 %   26.09 %  

90 300 
T90_1  632.31 660.92  539.46 575.11  628.11 642.40  497.86 504.81  - >3600  30.92 %   13.93 %   27.26 %  

T90_2  654.37 705.74  598.03 623.17  675.93 691.43  532.40 538.93  - >3600  30.95 %   15.63 %   28.30 %  

 
 
 



  
(a)                             (b) 

Fig. A.2. The changes of generalized cost under different settings of parameters. (a) 
Unit penalty cost; (b) Number of relocation staff. 

 
In the Phase 2 model, because the limited number of staff may lead to situations 

where some relocation tasks cannot be completed. Thus, the penalty cost for not 
performing one relocation task 𝜂𝜂𝑝𝑝𝑐𝑐  is thus introduced. The generalized cost of the 
Phase 2 model includes the rebalancing distance cost between tasks and penalty cost 
for not fulfilling relocation tasks. We compare the generalized cost under different 
settings of the unit penalty cost 𝜂𝜂𝑝𝑝𝑐𝑐 with the T30_2 dataset in Fig. A.2 (a). The results 
demonstrate that more relocation tasks are performed with the setting of a larger unit 
penalty cost 𝜂𝜂𝑝𝑝𝑐𝑐. For example, when the unit penalty cost is 𝜂𝜂𝑝𝑝𝑐𝑐 = 12, all relocation 
tasks are performed and the generalized cost only includes the distance cost. However, 
not all the relocation needs are met when the penalty cost 𝜂𝜂𝑝𝑝𝑐𝑐 is set to a small value. 
In these cases, the distance cost is much higher than the penalty cost, and thus the staff 
will not choose to serve those tasks with long relocation distances. Fig. A.2 (b) shows 
the changes in distance cost with the different numbers of relocation staff using the 
T30_2 dataset. As the number of staff increases, more tasks are completed. When 
equipped with one staff member, 19 tasks cannot be completed, and penalty costs are 
incurred. When equipped with five staff members, all the 30 tasks can be performed. 
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