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Abstract

In various applications, design problems involving structures and compliant mechanisms experience fluidic pressure loads.
During topology optimization of such design problems, these loads adapt their direction and location with the evolution
of the design, which poses various challenges. A new density-based topology optimization approach using Darcy’s law in
conjunction with a drainage term is presented to provide a continuous and consistent treatment of design-dependent fluidic
pressure loads. The porosity of each finite element and its drainage term are related to its density variable using a Heaviside
function, yielding a smooth transition between the solid and void phases. A design-dependent pressure field is established
using Darcy’s law and the associated PDE is solved using the finite element method. Further, the obtained pressure field
is used to determine the consistent nodal loads. The approach provides a computationally inexpensive evaluation of load
sensitivities using the adjoint-variable method. To show the efficacy and robustness of the proposed method, numerical
examples related to fluidic pressure-loaded stiff structures and small-deformation compliant mechanisms are solved. For
the structures, compliance is minimized, whereas for the mechanisms, a multi-criteria objective is minimized with given
resource constraints.

Keywords Topology optimization - Pressure loads - Darcy’s law - Stiff structures - Compliant mechanisms

1 Introduction

In the last three decades, various topology optimization
(TO) methods have been presented, and most have mean-
while attained a mature state. In addition, their popularity
as design tools for achieving solutions to a wide variety
of problems involving single/multi-physics is growing con-
sistently. Among these, design problems involving fluidic
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pressure loads' pose several unique challenges, e.g., (i)
identifying the structural boundary to apply such loads,
(ii) determining the relationship between the pressure loads
and the design variables, i.e., defining a design-dependent
and continuous pressure field, and (iii) efficient calcula-
tion of the pressure load sensitivities. Such problems can
be encountered in various applications (Hammer and Olhoff
2000) such as air-, water- and/or snow-loaded civil and
mechanical structures (aircraft, pumps, pressure contain-
ers, ships, turbomachinery), pneumatically or hydraulically
actuated soft robotics or compliant mechanisms and pres-
sure loaded mechanical metamaterials, e.g. (Zolfagharian
et al. 2016; Yap et al. 2016), to name a few. Note, the shape
or topology and performance of the optimized structures or
compliant mechanisms are directly related to the magnitude,
location, and direction of the pressure loads which vary with
the design. In this paper, a novel approach addressing the
aforementioned challenges to optimize and design pressure
loaded structures and mechanisms is presented. Hereby we
target a density-based TO framework.

"Henceforth, we write “pressure loads” instead of “fluidic pressure
loads” throughout the manuscript for simplicity.

@ Springer
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In line with the outlined applications, we are not only
interested in optimizing pressure-loaded stiff structures, but
also in generating pressure-actuated compliant mechanisms
(CMs). CMs are monolithic continua which transfer or
transform energy, force or motion into desired work.
Their performance relies on the motion obtained from the
deformation of their flexible branches. The use of such
mechanisms is on the rise in various applications as these
mechanisms provide many advantages (Frecker et al. 1997)
over their rigid-body counterparts. In addition, for a given
input actuation, the output characteristic of a compliant
mechanism can be customized, for instance, to achieve
either output displacement in a certain desired fashion,
e.g., path generation (Saxena and Ananthasuresh 2001;
Kumar et al. 2016), shape morphing (Lu and Kota 2003)
or maximum/minimum resulting (contact) force wherein
grasping of an object is desired (Saxena 2013). Martin and
Sigmund (2003) and Deepak et al. (2009) provide/mention
various TO methods to synthesize structures and compliant
mechanisms for the applications wherein input loads and
constraints are considered invariant during the optimization.
However, as mentioned above, a wide range of different
applications with pressure loads can be found. A schematic
diagram for a general problem with pressure loads is
depicted in Fig. la, whereas Fig. 1b is used to represent
a schematic solution to the design problem with different
optimized regions. A key problem characteristic is that
the pressure-loaded surface is not defined a priori, but
that it can be modified by the optimization process
(Fig. 1b) to maximize actuation or stiffness. Below, we
review the proposed TO methods that involve pressure-
loaded boundaries, for either structures or mechanism
designs.

T

0

P
Pressure loads

;
(a) A design problem with pressure loading

Fig. 1 a A schematic diagram of a general design optimization prob-
lem experiencing pressure loading (depicted via dash-dotted arrows)
on boundary I'p. b A representative solution to the problem in a.
Q, Qp (p =0), Qm(p =1), and 2y (p = 0) indicate design domain,

@ Springer

Hammer and Olhoff (2000) were first to present a
TO method involving pressure loads. Thereafter, several
approaches have been proposed to apply and provide a
proper treatment of such loads in TO settings, which can
be broadly classified into: (i) methods using boundary
identification schemes (Hammer and Olhoff 2000; Du and
Olhoff 2004; Zheng et al. 2009; Lee and Martins 2012;
Fuchs and Shemesh 2004; Li et al. 2018), (ii) level-set
method-based approaches (Gao et al. 2004; Xia et al.
2015; Li et al. 2010), and (iii) approaches involving special
methods, i.e. which avoid detecting the loading surface
(Chen and Kikuchi 2001; Bourdin and Chambolle 2003;
Sigmund and Clausen 2007; Zhang et al. 2008; Vasista and
Tong 2012; Panganiban et al. 2010).

Boundary identification techniques, in general, are
based on a priori chosen threshold density pr, i.e.,
iso-density curves/surfaces are identified. Hammer and
Olhoff (2000) used the iso-density approach to identify the
pressure loading facets I',, (Fig. 1b) which they further
interpolated via Bézier spline curves to apply the pressure
loading. However, as per Du and Olhoff (2004) this iso-
density (isolines) method may furnish isoline-islands and/or
separated isolines. Consequently, valid loading facets may
not be achieved. In addition, this method requires predefined
starting and ending points for I'p, (Hammer and Olhoff
2000). Du and Olhoff (2004) proposed a modified isolines
technique to circumvent abnormalities associated with the
isolines method. Refs. Hammer and Olhoff (2000) and
Du and Olhoff (2004) evaluated the sensitivities of the
pressure load with respect to design variables using an
efficient finite difference formulation. Lee and Martins
(2012) presented a method wherein one does not need
to define starting and ending points a priori. In addition,

(b) A representative solution to (a)

pressure (fluid) domain (void regions with pressurized boundary I'p, ),
mechanical design and void domain, respectively. Key: I'y,) — evolving
pressure boundary, I'p, — zero pressure boundary, I'y— boundary with
fixed displacements, p— material density
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they provided an analytical approach to calculate load
sensitivities. Moreover, these studies (Hammer and Olhoff
2000; Du and Olhoff 2004; Lee and Martins 2012)
considered sensitivities of the pressure loads, however they
are confined to only those elements which are exposed to
the pressure boundary loads I', .

Fuchs and Shemesh (2004) proposed a method wherein
the evolving pressure loading boundary I',, is predefined
using an additional set of variables, which are also
optimized along with the design variables. Zhang et al.
(2008) proposed an element-based search method to locate
the load surface. They used the actual boundary of the
finite elements (FEs) to construct the load surface and
thereafter, transferred pressure to corresponding element
nodes directly. Li et al. (2018) introduced an algorithm
based on digital image processing and regional contour
tracking to generate an appropriate pressure loading surface.
They transferred pressure directly to nodes of the FEs. The
methods presented in this paragraph do not account for load
sensitivities within their TO setting.

As per Hammer and Olhoff (2000), if the evolving
pressure-loaded boundary I'p, coincides with the edges of
the FEs then the load sensitivities with respect to design
variables vanish or can be disregarded. Consequently, I'p,
no longer remains sensitive to infinitesimal alterations in
the design variables (density fields) unless the threshold
value p7 is passed and thus, I'p, jumps directly to the
edges of a next set of FEs in the following TO iteration.
Note that load sensitivities however may critically affect
the optimal material layout of a given design problem,
especially those pertaining to compliant mechanisms, as
we will show in Section 4.5. Therefore, considering load
sensitivities in problems involving pressure loads is highly
desirable. In addition, ideally these sensitivities should be
straightforward to compute, implement and computationally
inexpensive.

In contrast to density-based TO, in level-set-based
approaches an implicit boundary description is available
that can be used to define the pressure load. On the other
hand, being based on boundary motion, level-set methods
tend to be more dependent on the initial design (van Dijk
et al. 2013). Gao et al. (2004) employed a level-set function
(LSF) to represent the structural topology and overcame
difficulties associated with the description of boundary
curves in an efficient and robust way. Xia et al. (2015)
employed two zero-level sets of two LSFs to represent
the free boundary and the pressure boundary separately.
Wang et al. (2016) employed the Distance Regularized
Level Set Evolution (DRLSE) (Li et al. 2010) to locate
the structural boundary. They used the zero-level contour
of an LSF to represent the loading boundary but did not
regard load sensitivities. Recently, Picelli et al. (2019)
proposed a method wherein Laplace’s equation is employed

to compute hydrostatic fluid pressure fields, in combination
with interface tracking based on a flood fill procedure.
Shape sensitivities in conjunction with Ersatz material
interpolation approach are used within their approach.

Given the difficulties of identifying a discrete bound-
ary within density-based TO and obtaining consistent
sensitivity information, various researchers have employed
special/alternative methods (without identifying pressure
loading surfaces directly) to design structures experienc-
ing pressure loading. Chen and Kikuchi (2001) presented
an approach based on applying a fictitious thermal loading
to solve pressure-loaded problems. Sigmund and Clausen
(2007) employed a mixed displacement-pressure formu-
lation based finite element method in association with
three-phase material (fluid/void/solid). Therein, an extra
(compressible) void phase is introduced in the given design
problem while limiting the volume fraction of the fluid
phase and also, the mixed finite element methods have to
fulfill the BB-condition which guarantees the stability of
the element formulation (Zienkiewicz and Taylor 2005).
Bourdin and Chambolle (2003) also used three-phase mate-
rial to solve such problems. Zheng et al. (2009) introduced
a pseudo electric potential to model evolving structural
boundaries. In their approach, pressure loads were directly
applied upon the edges of FEs and thus, they did not
account for load sensitivities. Additional physical fields or
phases are typically introduced in these methods to handle
the pressure loading. Our method follows a similar strat-
egy based on Darcy’s law, which has not been reported
before.

This paper presents a new approach to design both
structures and compliant mechanisms loaded by design-
dependent pressure loads using density-based topology
optimization. The presented approach uses Darcy’s law
in conjunction with a drainage term (Section 2.1.1) and
standard FEs, for modeling and providing a suitable treat-
ment of pressure loads. The drainage term is necessary
to prevent pressure loads on structural boundaries that are
not in contact with the pressure source, as explained in
Section 2.1.1. Darcy’s law is adapted herein in a manner
that the porosity of the FEs can be taken as design (density)
dependent (Section 2.1) using a smooth Heaviside function
facilitating smoothness and differentiability. Consequently,
prescribed pressure loads are transferred into a design-
dependent pressure field using a PDE (Section 2.2.1) which
is further solved using the finite element method. The deter-
mined pressure field is used to evaluate consistent nodal
forces using the FE method (Section 2.2.2). This two step
process offers a flexible and tunable method to apply the
pressure loads and also, provides distributed load sensitivi-
ties, especially in the early stage of optimization. The latter
is expected to enhance the exploratory characteristics of the
TO process.

@ Springer
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In addition, regarding applications most research on
topology optimization involving pressure loads has thus far
focused on compliance minimization problems and, a thor-
ough search yielded only two research articles for designing
pressure-actuated compliant mechanisms. Vasista and Tong
(2012) employed the three-phase method proposed in Sig-
mund and Clausen (2007) to generate such mechanisms
actuated via pressure loads whereas Panganiban et al. (2010)
also used the three-phase method but in association with
a displacement-based nonconforming FE method, which is
not a standard FE approach. Herein, using the presented
method, we not only design pressure-loaded structures
but also pressure-actuated compliant mechanisms, which
suggests the novel potentiality of the method.

In summary, we present the following new aspects:

— Darcy’s law is used with a drainage term to identify
evolving pressure loading boundary which is performed
by solving an associated PDE,

— the approach facilitates computationally inexpensive
evaluation of the load sensitivities with respect to design
variables using the adjoint-variable method,

— the load sensitivities are derived analytically and con-
sistently considered within the presented approach
while synthesizing structures and compliant mecha-
nisms experiencing pressure loading,

— the importance of load sensitivity contributions, espe-
cially in the case of compliant mechanisms, is demon-
strated,

— the method avoids explicit description of the pressure
loading boundary (which proves cumbersome to extend
to 3D),

— the robustness and efficacy of the approach is demon-
strated via various standard design problems related to
structures and compliant mechanisms,

— the method employs standard linear FEs, without the
need for special FE formulations.

The remainder of the paper is organized as follows:
Section 2 describes the modeling of pressure loading
via Darcy’s law with a drainage term. Evaluation of
consistent nodal forces from the obtained pressure field is
presented therein. In Section 3, the topology optimization
problem formulation for pressure-loaded structures and
small-deformation compliant mechanisms is presented
with the associated sensitivity analysis. In addition, the
presented method is verified using a pressure-loaded
structure problem on a coarse mesh. Section 4 presents the
solution of various benchmark design problems involving
pressure-loaded structures and small-deformation compliant
mechanisms. Lastly, conclusions are drawn in Section 5.

@ Springer

x 107

Flow Coefficient (K)
N o o
= o 50

o
o

0 0.2 Tk 0.6 0.8 1
Density (p)

Fig. 2 A smooth Heaviside function is used to represent the density-
dependent flow coefficient K (p.). For the plot, nx = 0.4 and Bx = 10
have been used. One notices that when nx > p., K (p.) = ky and when
Nk < Pes K(pe) = ks

2 Modeling of design-dependent loading

The material boundary of a given design domain 2 evolves
as the TO progresses while forming an optimum material
layout. Therefore, it is challenging especially in the initial
stage of the optimization to locate an appropriate loading
boundary I'p, for applying the pressure loads. In addition,
while designing especially pressure-actuated compliant
mechanisms, establishing a design-dependent and contin-
uous pressure field would aid to TO. Herein, Darcy’s
law in conjunction with the drainage term, a volumetric
material-dependent pressure loss, is employed to establish
the pressure field as a function of material density vector p.

2.1 Darcy’s law

Darcy’s law defines the ability of a fluid to flow through
porous media such as rock, soil or sandstone. It states that
fluid flow through a unit area is directly proportional to the
pressure drop per unit length V p and inversely proportional
to the resistance of the porous medium to the flow u
(Batchelor 2000). Mathematically,

g=-~Vp =-KVp, ()
I

where ¢, k, i, and, V p represent the flux (ms_l), perme-

ability (ms?), fluid viscosity (Nm~2s) and pressure gradient

(Nm™?), respectively. Further, K (m* N1 s71) is termed

herein as a flow coefficient?> which expresses the ability of

2K = ﬁ is termed ‘flow coefficient’ herein, noting the fact that this
terminology is however sometimes used in literature with a different
meaning.
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Fig.3 Behavior of a 1-D pressure field (thick dash-dotted lines/curves)
when using Darcy’s law with porous material (with 3FEs). a Pressure
drop over a single wall. b Undesirable condition wherein pressure drop
takes place over multiple walls. When an additional drainage term, i.e.

a fluid to flow through a porous medium. The flow coeffi-
cient of each FE is assumed to be related to element density
pe. In order to differentiate between void (p, = 0) and
solid (p, = 1) states of a FE, and at the same time ensur-
ing a smooth and differentiable transition, K (p,) is modeled
using a smooth Heaviside function as:

tanh (Bxni) + tanh (B (pe — 1K)
tanh (Bxnx) + tanh (B(1 — nK))

where kys = (ky — ks), ky and kg are the flow coefficients
for a void and solid FE, respectively. Further, 1 and By
are two adjustable parameters which control the position of
the step and the slope, respectively (Fig. 2). For sufficiently
high B, when nx > p., K(p.) = ky while when nx < p,,
K(pe) = ks. In view of the permeability of an impervious
material and viscosity of air, the flow coefficient of a solid
element is chosen to be kg = 10_10m4N_ls_1, whereas,
ky = 1073m*N~1s~! is taken to mimic a free flow with low
resistance through the void regions.

Our intent is to smoothly and continuously distribute
the pressure drop over a certain penetration depth of the
solid facing the pressure source. To examine the interaction
between structural features and applied pressure under
Darcy’s law, consider Fig. 3a. Darcy’s law renders a gradual
pressure drop from the inner pressure boundary I'p to
the outer pressure boundary I'p, (Fig. 3a). Consequently,
equivalent nodal forces appear within the material as
well as upon the associated boundaries. This penetrating
pressure, originating because of Darcy’s law, is a smeared-
out version of an applied pressure load on a sharp boundary
or interface.> Note that, summing up the contributions of
penetrating loads gives the resultant load. It is assumed that
local differences in the load application have no significant
effect on the global behavior of the structure, in line with
the Saint-Venant principle. The validity of this assumption
will be checked later in a numerical example (Section 3.4).

K (0e) = ky — kys

@

3used in the approaches based on boundary identification

(c) pressure drop over two boundaries
with drainage term

a volumetric density-dependent pressure loss, is considered then the
pressure drop over multiple walls takes the form shown in c. This is
the desired behavior for a TO setting. A is the cross section area of the
porous medium used in this 1D example

2.1.1 Drainage term

Application of Darcy’s law alone introduces an undesired
pressure distribution in the model when multiple walls are
encountered between 'y, (pin) and I'p, (pour). That is, the
pressure does not completely drop over the first boundary
as illustrated in Fig. 3b. To mitigate this issue, we introduce
a drainage term, which is a volumetric density-dependent
pressure loss, as

Qdrain = —H (pe) (P — pout), 3

where Qgrin denotes volumetric drainage per second in a
unit volume (s~1). H, P, Pout are drainage coefficient (m?
N—1 s~1), continuous pressure field (Nm~2), external pres-
sure* (Nm~2), respectively. Conceptually, this term should
drain/absorb the flow in the exterior structural boundary
layer exposed to the pressure source, so that negligible
flow (and pressure) acts on interior structural boundaries.

Similar to flow coefficient K (p.), the drainage coef-
ficient H(p,) is also modeled using a smooth Heaviside
function such that pressure drops to zero when p, = 1
(Fig. 3c). It is given by:

tanh (Bp7p) + tanh (Br(pe — 7))
* tanh (Bhnn) + tanh (Br(1 — nn))

where, By, and ny, are adjustable parameters similar to B and
nk. hs is the drainage coefficient of solid, which is used to
control the thickness of the pressure-penetration layer. This
formulation can effectively control the location and depth of
penetration of the applied pressure. Note, kg is related to kg
(Appendix A) as:

2
B — (ln—’) k. )

H(pe) =h “

As

where r is the ratio of input pressure at depth As, i.e.,
plas = rpin. Further, As is the penetration depth of
pressure, which can be set to the width or height of few FEs.

4in this work pout = 0

@ Springer
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Fig. 4 A Heaviside function is used to represent the drainage
coefficient H (p,) using the Heaviside parameters n, = 0.6 and B, =
10. Herein, r = 0.1, As = 2 mm and ks = 10710 m* N~! s7! are
considered to find 4, in (5), which is used in (4) for evaluating H (p.).
It can be seen that when ny, > p., H(p.) — 0 and when n, < p,
H(pe) = hs

Figure 4 depicts a plot for the drainage coefficient H (p,)
as a function of density. Note that the Heaviside parameters
used in this plot are the same as those employed in Fig. 2.

2.2 Finite element formulation

This section presents the FE formulation of the proposed
pressure load based on Darcy’s law, wherein the approach
employs the standard FE method (Zienkiewicz and Taylor
2005) to solve the associated boundary value problems to
determine the pressure and displacement fields. Standard
2D quadrilateral elements with bilinear shape functions are
employed to parameterize the design domain. First, in addi-
tion to the Darcy equation (1), the equation of state using
the law of conservation of mass in view of incompressible
fluid is derived. Thereafter, the consistent nodal loads are
determined from the derived pressure field.

2.2.1 State equation

Figure 5 shows in- and outflow through an infinitesimal
volume element €2.. Now, using the conservation of mass

gydzdx + (%Ly’dy)dzdx
!

erain
(]

gxdzdy —] dy — g dzdy + (%L;‘dx)dzdy
dx

|
qydzdx

Fig.5 In- and outflow of an infinitesimal element with volume, dV =
dxdydz. Qdrain is the volumetric drainage per second in a unit volume

@ Springer

for incompressible fluid one writes:

(Qxdy + gydx + eraindXdY) dz

0qx 36]),
= | gxdy + qydx + | —dx | dy + dy )dx)dz,
ax ay

0 a0
or, x + ﬂ — Qdrain=0,
ax ay
or, V- q — Qdrain=0. (6)

where g, and g, are the flux in x- and y-directions,
respectively. In view of (1), (6) becomes:

V- (KVp(x)) + Qdrain = 0. (N
Now, for the finite element formulation, we use the Galerkin

approach to seek an approximate solution p(x) such that:

Nelem

Z (/ V- (KVpx) wx)dV
Q2

e=1
+ / erainwde) o, ®)
Qe

for every w(x) constructed from the same basis functions
as those employed for p(x). The total number of elements
is indicated via neem. In the discrete setting, within each
Qele=1,2,3, -, nejem» W€ have

Pe = Nppe’ w = NpWes )

where N, = [Ni, N2, N3, N4] are the bilinear shape
functions and p. = [p1, p2, p3, p4]T is the nodal pressure.
Now, with integration by parts and Greens’ theorem, (8)
becomes on elemental level:

/ K (Vw(x)) - (Vp(x))dV +f Qdrainw (X)dV
Qe Q.

__ / WG A, (10)

where n, is the boundary normal on surface I', and therein,
q changes to gr. In view of (3) and (9), (10) gives:

/Q (K BIB, + H NINy ) dV p,

A,

=/ H NJ pout dV—/ N qr -n. dA, (11)
Q. T,

f

where B, = VN, and gr is the Darcy flux through the
boundary I',. In global sense, i.e., after assembly, (11) is
written as

Ap =f, 12)

where A is termed the global flow matrix, p and f are
the global pressure vector and loading vector, respectively.
Note, when poyy = 0 and gr = O then conveniently
f = 0 and therefore, the right hand side only contains the
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pdzdx + (32 dy)dzdx

dyy

dx

pdzdy pdzdy + (2 dx)dzdy

pdzdx

Fig. 6 An infinitesimal element with volume, dV = dxdydz. The
pressure loads are shown using uniformly placed arrows on the
boundary, are in equilibrium with the body force b

contribution from the prescribed pressure, which is the case
we have considered while solving design problems in this

paper.
2.2.2 Pressure field to consistent nodal loads

The force resulting from the pressure field is expressed as
an equivalent body force. Figure 6 depicts an infinitesimal
volume element with pressure loads acting on it, which is
used to relate the pressure field p(x) and body force b.
Writing the force equilibrium equations, one obtains:

_ (%

pdzdy — pdzdy (dx dx) dzdy b
pdzdx — pdzdx — (%’@) dzdx | = | b,
pdxdy — pdxdy — (%dz) dxdy b

dv, (13)

where, by, by, and b, are the components of the body force
in x, y, and z directions respectively. Equation (13) can be

written as:]
bdv = —VpdV. (14)
In the discretized setting, —VpdV = —Bpp.dV. In

general, the external elemental force originating from the
body force b and traction ¢ in a FE setting (Zienkiewicz and
Taylor 2005), can be written as:

F* =/F Nyt dA +/ Nybav, (15)

where Ny = [N, N2I, N3I, N4I] with I as the identity
matrix in R? herein. In this work, we consider ¢ = 0. Thus,
(15) gives the consistent nodal loads on elemental level as:

F° = —/Q Nl VpdV = —/Q N.B,dV p.. (16)

— ———
H,

Next, in the global form, the consistent nodal loads F can be
evaluated from the global pressure vector p (12) using the

5Tn 2D case, dz is the thickness ¢ and %” =0

global conversion matrix H obtained by assembling all such
H, as:

F = —Hp. (17)

Note that H is independent of the design, the design-
dependence of the loading enters through the pressure field
obtained through Darcy’s law (12).

3 Problem formulation

We follow the classical density-based TO formulation and
employ the modified SIMP (Solid Isotropic Material and
Penalization) approach (Sigmund 2007) to relate the ele-
ment stiffness matrix of each element to its design variable.
This is realized by defining the Young’s modulus of an
element as:

Ec(pe) = Emin + pg (Eo — Emin), pe €0, 11 (18)

where, Ey is the Young’s modulus of the actual material,
Emin is a significantly small Young’s modulus assigned
to the void regions, preventing the stiffness matrix from
becoming singular, and ¢ is a penalization parameter
(generally, ¢ = 3) which steers the TO towards “O-
1”’solutions. In the following subsections, we present the
optimization problem formulations for the structures and
CMs, discuss the sensitivity analysis for both type of
problems and present a numerical verification study of the
proposed Darcy-based pressure load formulation.

3.1 Stiff structures

The standard formulation, i.e., minimization of compliance
or strain energy is considered to design pressure-loaded
stiff structures (Martin and Sigmund 2003) wherein the
optimization problem is formulated as:

min fo, p) = "Ku = 2SE
)

such that (i) Ap =10

(ii) Ku=F = —Hp , (19)

(i) 42 <1

0<p=<1
where fg‘(u, p) is the compliance of the structure, K and
u are the global stiffness matrix and displacement vector,
respectively. A, H, F and p are the global flow matrix,
conversion matrix, nodal force vector and pressure vector,
respectively. Further, V (p) and V* are the material volume
and the upper bound of volume respectively. Note, all
mechanical equilibrium equations are satisfied under small
deformation assumption. A standard nested optimization
strategy is employed, wherein the boundary value problems
(i) and (ii) (19) are solved in each iteration in combination
with the respective boundary conditions.
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3.2 Compliant mechanisms

In general, while designing compliant mechanisms, an
objective stemming from a stiffness measure (e.g.,
compliance, strain energy) and a flexibility measure (e.g.
output deformation) of the mechanisms is formulated and
optimized (Saxena and Ananthasuresh 2000). The former
measure provides adequate stiffness under the actuating
loads while the latter one helps achieve the desired defor-
mation at the output port. Note, a spring with certain
stiffness kg representing the workpiece stiffness, is added
at the output location. The spring motivates the optimiza-
tion process to connect sufficient material to the output port/
location.

The flexibility-stiffness based multi-criteria formulation
(Frecker et al. 1997; Saxena and Ananthasuresh 2000) is
employed herein to design CMs. The proposed Darcy-based
pressure load formulation is also expected to work with
other CM formulations (Deepak et al. 2009) with required
modification e.g. (Panganiban et al. 2010) to render suitable
treatment for pressure loading cases, however this aspect has
not been studied and is considered beyond the scope of this
paper. As per Saxena and Ananthasuresh (2000), the output
deformation, measured in terms of mutual strain energy
(MSE), is maximized and the stored internal energy (SE)
is minimized. The optimization problem can be expressed
as:

mh A
such that (i) Ap=10
(iii) Kv=Fq
(iv) B2 <1
0<p=<1
where fOCM is the multi-criteria objective and MSE =

v Ku. Further, F4, the unit dummy force vector having the
same direction as that of the output deformation, is used to
evaluate v using (iii) (20). Other variables have the same
definition as defined in Section 3.1.

3.3 Sensitivity analysis

In a gradient-based topology optimization, it is essential
to determine sensitivities of the objective function and the
constraints with respect to the design variables. In general,
the formulated objective function depends upon both the
state variables® u, solution to the mechanical equilibrium
equations, and the design variables, the densities p.
The presented Darcy-based TO method facilitates use of
the adjoint-variable approach to determine the sensitivity

6In case of CM, state variables are u and v originated from input load
and dummy load at output port, respectively.
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wherein an augmented performance function ®(u, v, p)
can be defined using the objective function and the
mechanical state equations as:’

O(u,v, p) = fo(ll v, ) + A (Ku + Hp)
(Ap) + k (Kv — Fy). 21

The sensitivities are evaluated by differentiating (21) with
respect to the design vector as:

do a a
— = f0+)fK - f0+x1—u
dp o ap op op
Term 1
T T @ TaA
+(AH+2]A) M5
Term 2
LK) —+A 22
<av + )ap A 22)
Term 3

where A1, A» and A3 are the Lagrange multiplier vectors
which are selected such that Term 1, Term 2 and Term 3 in
(22) vanish, i.e.,

T dfo(u, v, p) yr-1

A‘l — _df lgu" K

AL = —A]HA’! . (23)
T _ _dfo,V, p) -1

A = —2hBRAK

Note, the evaluation of A, is nontrivial as degrees of
freedom of both the displacement and pressure field are
involved. Details of the evaluation of the multipliers are
provided in Appendix B. Now, (23) can be used in (22) to
determine the sensitivities as:

dfo _dfo 7K XT 0A

K
+A—u+ p+Al—v.

= 1 24)
dp op E)p ap ap

Note that vector p also includes the prescribed boundary
pressures.

3.3.1 Case I: designing structures

While designing structures, the state variable v does not
exist. In that case, one only needs to evaluate A; and A;
herein to determine the sensitivities. Now, using (19) and
(23) in (24) gives:

dafg K 0A
lﬁ:_J_ﬂHQJHAh—p (25)
dp op ap

Load sensitivities

The partial density derivative terms follow directly from the
interpolations defined earlier.

"Herein, a generic case of CM is considered.
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3.3.2 Case II: designing compliant mechanisms

To design CMs, all three adjoint variables A{, A> and A3
are needed to determine the sensitivities. Considering the
objective function (20), (23) yields:

T _(_1L T _ MSE ~. T
)‘1 - (25EV (255)22u )

T_ I T MSE A T a b

A == (o3pV - 25 ouT) HA (26)
T _ 1 T

A3 = Eu

Now, in view of (26), the sensitivities can be evaluated as:

dfOCMz MSE —uT§u n 1 UT%V
ap 2SE ap

dp  (2SE)?
MSE A 1
2u"HA' — — (—~"HA
t sy ( " P p>+ 2SE ( v

Load sensitivities

1A
8pp '

27)

The load sensitivities terms for the compliance and the
multi-criteria objectives are indicated in (25) and (27),
respectively. We use a density filter (Bruns and Tortorelli
2001; Bourdin 2001) with consistent sensitivities to control
the minimum length scale of structural features in the
topologically optimized pressure-loaded structures and
compliant mechanisms.

3.4 Verification of the formulation

To demonstrate that evaluation of the consistent nodal
loads (Section 2.2.2) from the obtained pressure field
(Section 2.2.1) produces physically correct results, a test
problem for pressure-loaded structures (Section 3.1) is
considered.

Ly=1m }

Ty |
Fro Ly=0.7m Too
~, =

Iy
T oo
| | I | | | I |
p = lbar

Fig.7 A design domain for verifying the presented formulation

Consider a design domain with dimensions Ly = 1 m
and Ly = 0.70 m in horizontal and vertical directions,
respectively (Fig. 7). The domain is fixed at locations
x = (0,03) mand x = (1, 0.3) m. To discretize the
domain, Nex = 10 and Ney = 7 quadrilateral bilinear
FEs are used in horizontal and vertical directions respec-
tively. This low resolution mesh is used here to better
illustrate the resulting pressure field and nodal forces, more
representative numerical examples with finer meshes follow
in the next section. A prescribed pressure p of 1 bar i.e.
1 x 10> N m~2 is applied to the bottom (Fig. 7). The out-
of-plane thickness is set to r = 0.01 m and a plane-stress
condition is used. Evidently (Fig. 7), prior to analysis, the
force contribution from the prescribed pressure appears only
in y—direction with magnitude p x t x Ly = 1000N.

A linear material model with Young’s modulus 3 x
10° N m~2 and Poisson’s ratio v = 0.4 is considered.
The other optimization parameters such as penalization
parameter ¢, minimum Young’s modulus En, and the
Darcy parameters are listed in Table 1 (Section 4). The filter
radius and volume fraction are set to 1.2 x min(je—c"x, Ie—cyy
and 0.45, respectively. The volume fraction is used to
initialize all density variables. Furthermore, the parameter
hg is evaluated using (5) with r = 0.1 and As = 2 X

max ( 16;, 1{;—;) The MMA optimizer (Svanberg 1987) is
used herein with default settings, except the move limit i.e.

Table 1 Various parameters used in the TO examples

Nomenclature Notation Value

Material parameters

Young’s Modulus E 3 x 10°Nm~2
Poisson’s ratio v 0.40
Optimization parameters
Penalization (18) ¢ 3
Minimum E Emin E x 107°Nm~2
Move limit Ap 0.1
Objective parameters
Input pressure load Din 1 x 10°Nm~2
Output spring stiffness kss 1 x 10*Nm™!
Darcy parameters
K (p) step location Nk 0.4
K (p) slope at step B 10
H (p) step location i 0.6
H(p) slope at step B 10
Conductivity in solid ks 1 x 107 10m4N—1s~!
Conductivity in void ky 1 x 1073 m*N~Ts~!
Drainage from solid hg <'2—f>2 ks
Remainder of input pressure at As r 0.1

Depth wherein the limit  reached  As 0.002 m
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B

(a) (b)

Fig. 8 a The final continuum. b The final continuum with pressure
field and nodal force distribution. The obtained resultant forces in
x— and y—directions are 0 N and 1000 N, respectively. The resultant
force at initial and final state has same direction (+y) and magnitude
(1000 N). The developed pressure field inside the given domain is
indicated in blue, and regions with pressure poy are indicated by
orange

change in density is set to 0.1 in each optimization iteration.
The results in Fig. 8 are depicted after 100 MMA optimizer
iterations.

Figure 8 depicts the final continuum, pressure field and
its nodal force distribution originating from the prescribed
pressure at the final state. The pressurized regions are
indicated in blue and the low pressure regions are repre-
sented by orange. Note that the used color scheme (Fig. 8b)
has been considered for all other numerical problems solved
in Section 4. It is found that the magnitude and direction
of the resultant force at final and initial state are the same.
In addition, they are same in all other instances of the opti-
mization (Fig. 9). This confirms that the pressure field is
correctly converted into consistent nodal loads using the
global conversion matrix H (Section 2.2.2). One can also

(c) (d)

Fig.9 Nodal force distribution at different instances of the TO process
(iterations). It is found that the resultant force at each instance is same
to that of the initial state. (a) Iteration 5 : F;, = 0.0N, Fry = 1000.0N,
(b) Iteration 10 : F;, = 0.0N, F; = 1000.0N, (c) Iteration 15 : F} =
0.0N, Fy = 1000.0N, and (d) Iteration 20 : F} = 0.0N, Fj, = 1000.0N.
Key: F— the resultant force in x—direction and Fj— the resultant
force in y—direction
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notice (Fig. 9), the present method results in spreading of
the nodal forces instead of confining them to a narrow
(imposed) boundary as considered in Ref. (Hammer and
Olhoff 2000; Du and Olhoff 2004; Lee and Martins 2012).
This may help the TO process to explore a larger part of
the design space and to find a better solution. As the design
converges to a 0/1 solution, the region over which the pres-
sure spreads reduces, and thus the loading approaches a
boundary load.

4 Numerical results and discussion

In this section, various (benchmark) design problems
involving pressure-loaded stiff structures and small defor-
mation compliant mechanisms are solved to show the effi-
cacy and robustness of the present method. Table 1 depicts
the nomenclature, notations and numerical values for dif-
ferent parameters used in the TO. Any change in the value
of considered parameters is reported within the definition
of the problem formulation. In all the examples presented
herein, one design variable per FE is used and topology
optimization is initialized using the given volume fraction.

4.1 Internally pressurized arch-structure

In this example that was introduced in Hammer and Olhoff
(2000), a structure subjected to a pressure load p = 1 bar
from the bottom is designed by minimizing its compliance
(19). The design domain is sketched in Fig. 10a. The dimen-
sions in x and y directions are Lx = 0.2mand Ly = 0.1 m,
respectively. The bottom part of left and right sides of the
domain is fixed as depicted in Fig. 10a. I'p, indicates
boundary with zero pressure.

Nex X Ney = 200 x 100 quad-elements are employed
to discretize the domain, where Nex and Ney are number of
quad-FEs in horizontal and vertical directions, respectively.
Out-of-plane thickness is set to t = 0.01 m with plane-stress
condition. The volume fraction is set to 0.25. The filter
radius is set to 2 x min(le—e’;, ;—eyy). The Young’s modulus

and Poission’s ratio are set to 3 x 10°Nm~™2 and 0.40
respectively. Other parameters such as material parameters,
optimization parameters and Darcy parameters are same as
mentioned in Table 1.

The final continuum after 100 MMA optimization itera-
tions is depicted in Fig. 10b, with the normalized objective
fo = 30.27 Nm. The topology of the result is similar to
that obtained in previous literature, e.g., Refs. (Hammer
and Olhoff 2000; Du and Olhoff 2004). The final contin-
uum with pressure field is shown in Fig. 10c. The color
scheme for the pressure field is as mentioned in Section 3.
The convergence history plot with evolving designs at some
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Fig. 10 a Design domain of size L,=02m
Ly x Ly = 0.2m x 0.1m for the ’

internally pressurized r
arch-structure. A pressure load 150
p = 1 bar is applied on

boundary I'y. The fixed Iy,
displacement boundary and zero

pressure boundary I'p, are also

depicted. Results of the r Ly

problem. b Optimized solution, 19 8 —f E

f§ = 30.27Nm. ¢ Optimized Tt Tt

solution with pressure field. boro b

d Convergence history with p = lbar

intermediate designs (a) The design domain (b)

(c)

instances of the TO is depicted in Fig. 10d. Smooth and
relatively rapid convergence is observed. It is noted that
from a relatively diffused initial interface, the boundary
exposed to pressure loading is gradually formed during the
optimization process.

4.2 Piston

The design with dimension Ly x Ly = 0.12 m x 0.04m
of a piston for a general mechanical application is shown in
Fig. 11a. The figure depicts the design specification, pres-
sure boundary loading, fixed boundary/location and a ver-
tical symmetry line. It is desired to find a stiffest optimum
continuum which can convey the applied pressure loads
on the upper boundary to the lower fixed support readily
(Fig. 11a). We exploit the symmetry present in the domain to
find the optimum solution. The problem was originally
introduced and solved in Bourdin and Chambolle (2003).

The symmetric half of the domain is parameterized using
Nex X Ney = 120 x 80 number of the standard quad-
elements. Volume fraction is set to V* = 0.25. The density
filter radius is 1.8 x min(ll\;—;, If,—eyy). The Young’s modulus,
Poission’s ratio, and out-of-plane thickness are kept same as
those of arch-structure design. nx, Pk, nn and Py are set to
0.20, 10, 0.30 and 10, respectively. Other required design
variables are same as mentioned in Table 1.

Normalized compliance

0 20 40 60 80 100
MMA iteration number

(d)

Figure 11 b depicts the optimum solution to the problem
after 100 iterations of the MMA optimizer. The normalized
compliance of the structure at this stage is equal to fj =
35.39 Nm. The obtained topology closely resembles those
found in Refs. (Lee and Martins 2012; Wang et al. 2016;
Picelli et al. 2019) for similar problems with different design
and optimization settings. The optimized continuum with
pressure field is shown in Fig. 11c. The convergence history
plot for symmetric half design is depicted in Fig. 11d.

4.3 Compliant crimper mechanism

In this example, a pressure-actuated small-deformation
compliant crimper is designed. The multi-objective criterion
(20) (Saxena and Ananthasuresh 2000) is used herein
with volume constraint to obtain the optimized compliant
crimper. It is desired that pressure acting on the boundary
I'p, should be transfered to the output port in a manner that
the symmetric half of the crimper experiences downward
movement at the output port (Fig. 12a). The design domain
for a symmetric half crimper is depicted in Fig. 12a with
associated loading, boundary conditions and other relevant
information. Length and width of the depicted domain are
Ly = 0.1 mand Ly = 0.05 m, respectively. t = 0.0l m
is taken as the out-of-plane thickness. Near the output, a
void region of area (% X %)m2 exists for gripping of
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P i
IR
Ly = 0.04m
1“Po

p = lbar
[ N N N E T T
R S Y vy vy
™
J
E/‘Symmetry line
i
Y:h 1—‘Po
Ly =0.12m

(a) The design domain

Fig. 11 a Design domain for piston design with pressure load
p = 1 bar on boundary I'p, fixed displacement boundary and zero
pressure boundary I'py. b Optimized solution, f; =

Fig. 12 a Half design domain
for crimper mechanism. The
figure shows the pressure
loading boundary I'y, with
pressure p = 1 bar, fixed
displacement boundary, zero
pressure boundary I'p,
symmetry line, output port and
the direction of the desired
deformation A. b Optimized
crimper mechanism. ¢
Optimized crimper mechanism
with pressure field. d
Convergence history of the
problem with some intermediate
designs at different instances of
the TO
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35.39 Nm. designs
\ Ly =0.1m
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(a) The symmetric half design domain
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(c) Solution with pressure field

60 80 100

MMA iteration number

¢ Optimized solution with pressure field and nodal forces in red
arrows. d Convergence history with symmetrically half intermediate

(b) f§M = —1013.6, A = 0.287 mm

100 200 300
MMA iteration number

(d) Convergence history
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a workpiece. However, the domain is parameterized using
Nex X Ney = 200 x 100 bilinear quad-elements considering
the domain of size Lx x Ly. The FEs present in the void
region are set as passive elements with density p = 0
throughout the simulation.

Herein, to design the crimper, the volume fraction V* is
taken to 0.20. A dummy load of magnitude 1 N is applied
in the direction of the desired deformation at the output
port (Fig. 12a) to evaluate the mutual strain energy (20).
An output spring of ks = 1 x 10*Nm~! is attached at the
output location, which represents the workpiece stiffness.

Filter radius rpj, = 3 x min( N /6_;) is considered. A
scaling factor of 10,000 is used for the objective (20).
Note that the sensitivity of the objective with respect to the
design variables is also scaled accordingly. Other design
parameters are as mentioned in Table 1.

The symmetric half compliant crimper is solved using
the appropriate symmetric condition. We use 300 MMA
iterations. The scaled objective of the mechanism at this
stage is fOCM = —1013.6 and the recorded output dis-
placement in the required direction is A = 0.287 mm.
The symmetric half solution is mirrored and combined to
get the full solution. Figure 12 b depicts the solution. The
result with pressure field is shown via Fig. 12c. Figure 12
d illustrates the convergence history plot with some inter-
mediate designs. Note that the shape of the interface region

Fig. 13 a Half design domain

for inverter mechanism. The

figure depicts the pressure -
loading boundary I'y, with
pressure p = 1 bar, fixed
displacement boundary, zero
pressure boundary I'p,
symmetric boundary condition
and output point. b Optimized -
inverter mechanism. ¢
Optimized inverter mechanism
with pressure field. d _
Convergence history plot of the
problem with some intermediate
designs

Ty

p = lbar

Symmetric boundary

EETEEEEEREEER]

(c) Solution with the pressure field

W\ Ly =0.15m

Ly =0.075m

where pressure is applied to the mechanism evolves during
the optimization process. A few gray elements are present
in the optimum result, especially near the flexure locations
which are relatively thinner (encircled in red, Fig. 12b)
where the deformation is expected to be relatively large.
The TO algorithm prefers flexures at those locations as
they allow for large displacement at the output point with
marginal strain energy. The robust formulation presented
in Wang et al. (2011) can be used to alleviate such flex-
ures. However, this is not implemented herein, as the
motive of the manuscript is to present a novel approach for
various pressure-loaded/actuated structure and mechanism
problems. The deformed profile of the pressure-actuated
compliant crimper mechanism is shown in Fig. 14a.

4.4 Compliant inverter mechanism

A compliant inverter mechanism is synthesized wherein
a desired deformation in the opposite direction of the
pressure loading is generated in response to the actuation
(Fig. 13a). The symmetric half design domain with
dimensions Ly = 0.15m and Ly = 0.075 m, is depicted in
Fig. 13a. The pressure boundary I',,, symmetry boundary,
output port and fixed boundary conditions are also indicated
via Fig. 13a. A pressure p = 1 bar is applied on the left
side of the design domain. A spring with ks = 5 x 10* Nm

I‘Po

l—‘Po

Output port

100

MSE
SE

-100

-200

-10000 x

-300

-400
0 50 100 150 200
MMA iteration number

(d) Convergence history plot
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representing the reaction force at the output location is taken
into account while simulating the problem. The mutual
strain energy (20) is calculated by applying a dummy unit
load in the direction of the desired output deformation.

To parametrize the symmetric half design domain, Nex X
Ney = 150 x 75 bilinear quad-elements are employed. The
volume fraction V* is set to 0.25. The step locations for
the flow K(p) and drainage H(p) coefficients are set to
nr = 0.30 and n, = 0.40 herein. Out-of-plane thickness ¢
with plane-stress and the objective scaling factor Ay are
same as that used for the compliant crimper mechanism

problem. The filter radius is set to 2 x min( 16; , ﬁ—eyy). Other
design parameters are equal to those mentioned in Table 1.

The symmetric half solution is obtained after 200 MMA
iterations wherein the scaled objective fOCM = —369.69 is
recorded. The output deformation in the desired direction
is noted to A = 0.221 mm. The full optimized continuum
and solution with the pressure field are depicted in Fig. 13
b and c, respectively. The convergence history plot with
some intermediate solutions is shown in Fig. 13d. Again
some thin sections/flexures (Fig. 13b) are observed in
the optimized design, which help achieve the desired
displacement at the output point. Figure 14 b depicts the
deformed profile of the compliant inverter mechanism.

Following the previous research articles, e.g., (Frecker
et al. 1997; Deepak et al. 2009; Wang et al. 2011; Vasista
and Tong 2012) and references therein, to design the
compliant crimper and inverter mechanisms, the available
symmetric conditions have been employed. However, note
that if these symmetric conditions are not used, the optimum
results may be different than those presented in Figs. 12b
and 13b due to mesh effects, numerical noise, etc.

4.5 Solutions without load sensitivities

In this section, we demonstrate the effect of the load sen-
sitivities (25 and 27) for designing the pressure-loaded
piston (Fig. 11) and pressure-actuated compliant crimper

Fig. 14 The respective actual
deformations of CMs are
magnified by 20 times to ease
visibility of the deformed
profiles

(a) Deformed Compliant Crimper Mechanism
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mechanism (Fig. 12). Figure 15 a and c¢ show their opti-
mized continua without using respective load sensitivities
(LS). One notices that the obtained continua in Fig. 15 a
and c are different than those obtained with the full sensi-
tivities shown in Figs. 11c and 12c respectively. In addition,
Fig. 15 b and d depict the magnitude of the LS for the
compliance (19) and the multi-critria (20) objectives respec-
tively. One can note, though the magnitude of the LS for
the former objective is negligible (Fig. 15b), it does have
influence on the final optimized piston design (Fig. 15a).
In case of pressure-actuated CM designs, the magnitude of
the LS is comparable to that of the multi-criteria objec-
tive (Fig. 15d) and hence, cannot be neglected. Therefore,
considering LS is essential while designing pressure-loaded
design problems, in particular for compliant mechanisms,
and the approach presented herein facilitates easy and com-
putationally inexpensive implementation of the LS within a
topology optimization setting.

4.6 Parameter study

The section presents the effect of the different parameters
on the obtained designs in several of the aforementioned
pressure-loaded design problems.

4.6.1 Volume fraction

Herein, a sweep of different volume fractions is performed
using the internally pressurized arch-structure problem
(Fig. 10a). It is well known in TO that different permitted
volume fractions can yield different results (Martin and
Sigmund 2003).

Solutions with volume fractions 0.075, 0.1 and 0.45, i.e.
both lower and higher values compared to Section 4.1, are
shown in Fig. 16 a, b and c, respectively. These figures
also depict the associated pressure fields. The convergence
history plot for the three cases is illustrated via Fig. 16d.
Evidently, the respective compliance increases with increase

(b) Deformed Compliant Inverter Mechanism
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Fig. 15 a Optimized piston
design without LS. b Plot of the
magnitude (L2-norm) of LS and
that of compliance sensitivities
without load sensitvities. ¢
Optimized compliant crimper
mechanism without LS. d Plot
for magnitude of the LS and that
of multi-criteria OSWLS. LS:
load sensitivities, OSWLS:
objective sensitivities without
load sensitivities
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in the volume fraction (Fig. 16a—c). Note that still good  4.6.2 Flow resistance and drainage parameters
results are obtained for fairly low volume fractions. A

lower volume fraction may be essential while designing
soft structures, single layer, and inflated kind of designs.

The pressure-loaded piston design problem is chosen to
illustrate the effect of different interpolation parameters,

The present method can be used with suitable boundary €8+ Bn. P 7n and 7y on the final solution. Volume fLraction
conditions for such design problems. V* = 0.25 and filter radius rpy;, = 1.8 x min(lé—:x, N_eyy) are

Fig. 16 Solutions to Example 1
obtained using volume fractions
0.075 (a), 0.01 (b) and 0.45 (c).
The optimum continua are
shown with respective pressure
fields. These solutions are
obtained after 100 iterations of
the MMA optimizer. d The
convergence history plot for the
considered volume fractions

a) f$=3.31Nm, V* = 0.075 (b) f§ =546 Nm, V* = 0.1
1000
3 "
g 800 - V* =0.075
= ﬂ ==V 2 0.1
£ 600 ——V =045
it i\
K i
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(¢) f§ =109.51Nm, V* = 0.45 (d) Convergence history
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NN
NN

Fig. 17 Solutions to pressure loaded piston design for different condi- d) B = 15, B = 15, m = 0.6, n = 0.6, f§ = 35.04Nm,
tions. (a) Br = 10, By = 10, qx = 0.4, n, = 0.3, f; = 35.13Nm, (e) B = 20, B = 20, nx = 0.6, np = 0.8, f§ = 35.11Nm, and
(b) fr = 10, B = 10, ;x = 04, n, = 0.6, f§ = 35.03Nm, ®) B =20, B, =20, gy =02, n;, = 0.3, f§ =36.91Nm

© Br = 10, By = 15, m = 04, np = 0.2, f§ = 34.79Nm,

taken. Note, B and g control the slopes of K (p) — p and  the drainage coefficient of the FEs with p > ny, is hg (solid
H(p) — p (Figs. 2 and 4) plots, respectively. For higher Bx,  elements). In elements where H(p) = 0, drainage will not
the FEs with p > 5y behave as solid. Likewise, at high By, be effective indicating void elements.

Fig. 18 Solution to pressure-
actuated inverter mechanism
problem with different output
spring stiffnesses. a Optimized
inverter mechanism with spring
stiffness kgs; = 5 x 10°Nm~!. b
Optimized inverter mechanism
with spring stiffness

ko =1 x 10°Nm~'. ¢
Optimized inverter mechanism
with spring stiffness

kes3 =1 x 10°Nm~'.d
Convergence history plot

a) fEM = —1038.89, A = 0.579 mm (b) f&™ = —253.35, A = 0.162mm
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Figure 17 shows the optimized continua with respective
pressure field for different § and 5 after 100 MMA iter-
ations, where all designs had stabilized. While there are
global similarities between all designs, it can be noticed
that the structural details generated by the proposed method
depend on the B and 5 parameters. In addition, one also
notices that leaking of the inner boundary occurs in Fig. 17
a, ¢, d and e. This leaking is enabled by a narrow pathway,
from the pressurized domain to the holes in the structure,
as seen in the figures. It does not have a significant effect
on performance, and this may be the reason why the opti-
mization process does not seem to counteract this tendency.
By increasing P and decreasing n, porous boundary regions
are smaller which helps to prevent leaks. This is the case
in Fig. 17f, which however also has the worst compli-
ance value. More moderate parameter settings result in a
smoother optimization problem and better performance, but
in this case with an possibility for further fluid penetration
into the structure. The results still easily permit interpreta-
tion as leaktight designs. In general, while choosing B and n
one needs a suitable trade-off between differentiability and
decisiveness in defining the boundary. By and large, as per
our experience, 1 close to the volume fraction and B in the
range of 10-20 provide the required trade-off.

4.6.3 Output spring stiffness

As aforementioned, the output spring stiffness drives the
TO algorithm to ensure a material connection between
the output port and the actuation location. Here, a study
with three different spring stiffnesses is presented on the
pressure-actuated inverter mechanism problem.

Figure 18 a, b and c depict the solution to compliant
inverter mechanism problem with kg1 = 5 % 10° Nm—!,
kep = 1 x 100 Nm~!, and k3 = 5 x 10° Nm™! spring
stiffness, respectively. The solutions obtained from symmet-
ric half design are suitably transformed into their respective
full continua. The pressure field is also shown for each
solution. As expected, as the spring stiffness increases the
output deformation decreases. In addition, comparatively
more distributed compliance members of the mechanism
are obtained for higher output stiffness, and fewer low-
stiffness flexures. Note that spring with significantly large
kss would give stiff structures. One notices that as spring
stiffness increases, area of penetration of pressure within the
design domain decreases, i.e., stiffness of the mechanisms
increase. With increase in spring stiffness, the correspond-
ing final objective value increases. It has been observed
before, that the use of different spring stiffnesses at out-
put port yield different topologies for regular compliant
mechanisms problem (Deepak et al. 2009). For pressure-
actuated compliant mechanisms, one can notice the same
trend, with the lower-stiffness design (Fig. 18) exploiting

a fundamentally different mechanism solution compared to
the higher-stiffness cases. The convergence history plots
with different spring stiffnesses are shown in Fig. 18d.

5 Conclusions

In this paper, a novel approach to perform topology opti-
mization of design problems involving both pressure-loaded
structures and pressure-actuated compliant mechanisms is
presented in a density-based setting. The approach permits
use of standard finite element formulation and does not
require explicit boudary description or tracking.

As pressure loads vary with the shape and location
of the exposed structural boundary, a main challenge in
such problems is to determine design-dependent pressure
field and its design sensitivity. In the proposed method,
Darcy’s law in conjunction with a drainage term is used
to define the design-dependent pressure field by solving an
associated PDE using the standard finite element method.
The porosity of each FE is related to its material density via
a smooth Heaviside function to ensure a smooth transition
between void and solid elements. The drainage coefficient
is also related to material density using a similar Heaviside
function. The determined pressure field is further used to
find the consistent nodal loads. In the early stage of the
optimization, the obtained nodal loads are spread out within
the design domain and thus, may enhance exploratory
characteristics of the formulation and thereby the ability of
the optimization process to find well-performing solutions.

The Darcy’s parameters, selected a priori to the
optimization, affect the topologies of the final continua, and
recommended values are provided based on the reported
numerical experiments. The method facilitates analytical
calculation of the load sensitivities with respect to the design
variables using the computationally inexpensive adjoint-
variable method. This availability of load sensitivities is
an important advantage over various earlier approaches to
handle pressure loads in topology optimization. In addition,
it is noticed that consideration of load sensitivities within
the approach does alter the final optimum designs, and
that the load sensitivity terms are particularly important
when designing compliant mechanisms. Moreover, in
contrast to methods that use explicit boundary tracking, the
proposed Darcy method offers the potential for relatively
straightforward extension to 3D problems.

The effectiveness and robustness of the proposed method
is verified by minimizing compliance and multi-criteria
objectives for designing pressure-loaded structures and
compliant mechanisms, respectively with given resource
constraints. The method allows relocation of the pressure-
loaded boundary during optimization, and smooth and
steady convergence is observed. Extension to 3D structures
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and large displacement problems are prime directions for =~ Thus,
future research. s
ps) = pne VE? (A.6)
. . With p|s=as) = "Pin, (A.6) yields:
6 Replication of results ¢ ) 9= T
In

N - . ho= () k. (A7)

To facilitate replication of the results presented in this paper, As

all parameter settings and implementation aspects have been
described in detail. In addition, upon request the MATLAB
code and associated data will be provided for research and
education purposes.
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Appendix 1. Relationship between drainage
and penetration depth

The ordinary differential equation (ODE) for 1D flow
problem using the Darcy flow model with a drainage term
can be written as:

2

d
K(padg—f = pH(pe), (A1)

where K, p, and H are the flow coefficient, the pressure and
the drainage coefficient, respectively. Since the behavior
of pressure field is simulated that penetrates the material,
p. = 1 is taken for the solution of (A.1). Now, in view of
(2) and (4), (A.1) can be written as:

d’*p
e
The motive herein is to express hg in terms of the
parameters like penetration depth As, the ratio r of the input

pressure pip and ks. The following boundary conditions are
considered:

k = phs. (A.2)

(l) Jim p = pou =0 _ (A3)
(ii) pls=0) = Pin

A trial solution of (A.2) can be chosen as:
p(s) = ae™ 4+ ce”, (A.4)

where e is Euler’s number and a, b, and ¢ are unknown
coefficients which are determined using the above boundary
conditions as:

hs

Boe=o. AS
ke c (A.5)

a = pin, b=

@ Springer

Appendix 2. Evaluating the Lagrange
multipliers

Here, the calculation procedure for the Lagrange multipliers
A1, A2 and A3 is presented. To clarify the process, we
partition the displacement and pressure vectors. Say,
subscripts u and 0 indicate the free and prescribed degrees
of freedom for the displacement vector u, and subscripts f
and p denote the free and prescribed degrees of freedom for
the pressure vector p. Therefore,

-[2] o]

Likewise, the global stiffness matrix K, the global
conversion matrix H and the the global flow matrix A can
also be partitioned as:

Ky, Ky H, H Ase Ag
K= uu ui|7H=|: u up:|’A=|: P
|:K0u Koo Hpu Hop Apt App

(B.2)

(B.1)

o 3
Note that the derivatives % = 0 and % = 0 as uy
and p, are prescribed and they do not depend upon the
design vector. Now, using these facts with the partitioned

descriptions of matrices (B.2), (22) can be rewritten as

dd a ou a K
92 _ (Yo Tk, ) By Moy XK,
dp oy ap op op
Term 1
+ (MTH+ 21 A 3 TP
Term 2
dfo T vy 1K
“— +A'K — 4+ Ay —V, B.3
+<8Vu+3 "“>ap+38pv B3
—
Term 3

where A7, lg and A5 are the Lagrange multiplier vectors
for free degrees of freedom corresponding to A1, A2 and A3
respectively, which are selected such that Term 1, Term 2
and Term 3 in (B.3) vanish, i.e.,

T _ _ 2oV, p) -1
A'lll = T I<uu

T
A = —ATH A (B.4)

ul _ _ dfo(w, v, p) xe-1
Ay =-— vy K
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The prescribed degrees of freedom of all multipliers are
zero, thus (24) holds without partitioning.
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