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ARTICLE OPEN

Deep learning enhanced individual nuclear-spin detection
Kyunghoon Jung1,5, M. H. Abobeih2,3,5, Jiwon Yun1, Gyeonghun Kim 1, Hyunseok Oh1, Ang Henry4, T. H. Taminiau 2,3✉ and
Dohun Kim 1✉

The detection of nuclear spins using individual electron spins has enabled diverse opportunities in quantum sensing and quantum
information processing. Proof-of-principle experiments have demonstrated atomic-scale imaging of nuclear-spin samples and
controlled multi-qubit registers. However, to image more complex samples and to realize larger-scale quantum processors,
computerized methods that efficiently and automatically characterize spin systems are required. Here, we realize a deep learning
model for automatic identification of nuclear spins using the electron spin of single nitrogen-vacancy (NV) centers in diamond as a
sensor. Based on neural network algorithms, we develop noise recovery procedures and training sequences for highly non-linear
spectra. We apply these methods to experimentally demonstrate the fast identification of 31 nuclear spins around a single NV
center and accurately determine the hyperfine parameters. Our methods can be extended to larger spin systems and are applicable
to a wide range of electron-nuclear interaction strengths. These results pave the way towards efficient imaging of complex spin
samples and automatic characterization of large spin-qubit registers.

npj Quantum Information            (2021) 7:41 ; https://doi.org/10.1038/s41534-021-00377-3

INTRODUCTION
Recent advances in the control of single electron spins associated
with defects in solids have enabled the sensing, imaging, and
control of individual nuclear spins1–16. From a quantum sensing
perspective, this has enabled the detection and imaging of
nuclear spins with atomic-scale resolution and single spin
sensitivity, in systems of up to 27 spins15–20. From a quantum
information perspective, controlling individual nuclear spins
provides quantum registers for quantum computation and
optically connected quantum networks7,21–24. Proof-of-principle
experiments have demonstrated quantum registers with 10+
qubits7,21–25, elementary quantum algorithms and error correction
protocols11,26–31, and key quantum network protocols such as
entanglement distillation32,33.
An important task in both these application fields is to detect

and identify the nuclear spins and to characterize the
electron–nuclear interaction. For imaging larger, more complex,
spin structures and for the realization of large-scale quantum
networks that consist of many multi-qubit devices, it is required to
develop objective and automated methods that can efficiently
identify signatures of nuclear spins and determine coupling
parameters from experimental spectroscopy.
In this work, we develop neural-network-based algorithms that

can efficiently and automatically detect nuclear spins by their
coupling to a single electron spin. Previously, machine learning
algorithms were applied, for example, to adaptively sense varying
magnetic field in real-time34 and to reconstruct two-dimensional
NMR spectroscopy from sparse sample data35. We focus on
Carr–Purcell–Meiboom–Gill (CPMG)-type dynamical decoupling
spectroscopy2,9,10,15,22,36,37, which is widely employed for single
nuclear spin detection and control9,38 and is a common starting
point for more advanced spectroscopy methods3,6,16,19. While our
methods are general, we exemplify them through experiments on
a single nitrogen-vacancy (NV) center in diamond with nearby
naturally abundant 13C nuclear spins9,11,22. We show that our deep

learning approach enables fast automatic nuclear spin detection
and hyperfine parameter estimation for 31 individual spins.

RESULTS
Theoretical modeling
Figure 1a shows a schematic of the electron-nuclear spin complex
considered in this work. The NV center, an impurity in the
diamond crystal lattice, acts as a sensitive probe for the
surrounding nuclear–spin environment. The ground state electron
spin of the NV center can be initialized and measured using spin-
dependent fluorescence and can be manipulated by micro-
waves39. In typical dynamical decoupling spectroscopy, for
example, based on CPMG pulse sequence22 shown in Fig. 1b,
the interaction of the electron with its nuclear spin environment
leads to sudden and periodic losses of coherence at specific pulse
timings. The magnitude and position of the dip in coherence
depends on the longitudinal (transverse) hyperfine coupling
parameter A (B). The CPMG signal is given by the probability Px
that the NV center’s spin state is preserved. In the absence of
nuclear–nuclear interactions this can be described as9,

Px ¼
1þ Qn

k¼1
Mk

2

(1)

Mk ¼ 1�m2
k;x

ð1� cos αkÞð1� cos βÞ
1þ cos αk cos β�mk;z sin αk sin β

sin2
Nϕk

2
(2)

cosϕk ¼ cos αk cos β�mk;z sin αk sin β (3)

where mk;z ¼ ðAk þ ωLÞ=~ωk , mk;x ¼ Bk=~ω, ~ωk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðAk þ ωLÞ2 þ B2k

q
,

αk ¼ ~ωkτ,β ¼ ωLτ, τ is half of the delay between π pulses, k
indicates kth nuclear spin, n is the total number of nuclear spins, ωL

is the Larmor frequency, and N is the repetition number of the unit
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CPMG pulse (see Fig. 1b). The CPMG signal is given by the
multiplication of all the Mk’s for n nuclear spins as depicted in
Eqs. (1, 2). This characteristic introduces an additional complexity
compared to conventional nuclear magnetic resonance (NMR)
signals40–42 and, along with the decoherence and environmental
noises, makes existing NMR peak decomposition packages43–48

ineffective for analyzing the signal.

Analysis procedure by deep learning models
The main task of our deep learning model is to efficiently encode
the features of each kth nuclear spin in Eq. (1). Once successfully
trained, the models can determine Ak and Bk of each nuclear spin
from the experimental spectroscopy data (see the bottom panel of
Fig. 1b for an example). Figure 1c shows the overall procedure to
achieve this task. First, the measurements of CPMG signals and the
implementations for generating datasets and training deep
learning models are conducted simultaneously. Generating
datasets for both hyperfine parameter classifier (HPC) models
and denoising models is performed using the theoretical model in
Eq. (1). Second, via the generated training datasets, denoising
models are trained to reduce noise and HPC models are trained to
identify whether specific hyperfine parameters exist in the data or
not. Third, to enhance the signal-to-noise ratio, the raw noisy
CPMG signal is pre-processed by the trained denoising model and
decoherence recovery process and is fed into the trained HPC
models. Fourth, using the outputs of the HPC models, an
additional deep learning-based regression model is adapted to
further restrict possible hyperfine parameter combinations. Lastly,
in the auto fine-tuning phase, the prediction of the regression
model is used as initial values of the hyperfine parameters, and
automatic numerical fitting is performed.

Data representation for nuclear spin detection
The qualitative features of a typical dynamical decoupling signal
are as follows. First, the coherence dip of kth nuclear spin is
periodic with approximate periodicity9 (local period)

TPk ¼ 2π=ð~ωk þ ωLÞ (4)

where ~ωk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðAk þ ωLÞ2 þ B2k

q
, and Ak and Bk are hyperfine

parameters of the ‘kth target’ local period (see Supplementary
Fig. 1 for detailed descriptions about TPk and corresponding (Ak,
Bk) values). Second, the envelope of the coherence dip amplitudes
as a function of τ is periodic essentially showing periodic quantum
entanglement evolution with the resonant nuclear spin13 (global
period). Third, each coherence dip can show additional fringes
depending on the hyperfine interaction strength. In the strong
coupling regime, for example when B/2π > 100 kHz, the CPMG
signal can exhibit multiple and large fringe oscillations9,11 (Eqs. (2, 3)).
While conventional numerical peak detection or Fourier transform
analysis is inefficient in the presence of these oscillating signals,
below we show that the deep learning approach offers an
excellent alternative route to solve the problem.
In principle, supervised learning algorithms can be applied

using the theoretical model given by Eqs. (1–3) for this nominally
multi-class classification problem49–53. The data preparation and
training, however, is challenging in that, (1) the number of nuclear
spins interacting with the central NV center is not known a priori
and (2) the number of possible (A, B) pair combinations for a given
number of surrounding nuclear spins is large. Brute force
generation of large datasets with the variable number of nuclear
spins is impractical and generally not reliable to represent possible
spin configurations unambiguously.

Fig. 1 General procedure for identifying hyperfine parameters of 13C nuclear spins. a Schematic diagram showing the configuration of an
electron spin within the nitrogen-vacancy (NV) center magnetic dipole field (blue oval curves) and 13C nuclear spins (green circles) interacting
with the NV center via hyperfine interaction. Bz is the external magnetic field strength, ωL is the Larmor frequency, ωh ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ B2

p
, and

~ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðAþ ωLÞ2 þ B2

q
where A (B) is the longitudinal (transverse) hyperfine interaction parameter. b Typical dynamical decoupling pulse

sequence (Carr-Purcell-Meiboom-Gill, CPMG) used for experimental nuclear spectroscopy. The bottom panel shows an example of
experimental CPMG data from which electron-nuclear hyperfine interaction is analyzed. c Pseudo-algorithm for training and hyperfine-
parameters-prediction sequences including hyperfine parameter classifier (HPC), denoise and signal recovery, regression-based fitting, and
fine-tuning models. The flow of experimental processes (computational processes) is on the red (gray) arrows.
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We convert the multi-class classification problem to that of a
single class by reorganizing the data so that the deep learning
model focuses on identifying a single target spin. Figure 2b shows
the general concept of this conversion. By cutting the CPMG signal
according to the TPk of a target spin and making a 2D image by
stacking multiple slices, the difference of the local periods
between two spins can be distinguished. The features of the
global period can be also analyzed by the distribution of pixel
values on the vertical axis. With this representation, the deep
learning model analyzes whether the target spin signal marked by
a vertical line exists in the 2D image. Moreover, non-linear
oscillations near the main coherence dip in the strong coupling
regime, which are difficult to address by hand-crafted coding,
generally appear as fringe patterns in this data representation. The
deep learning model shows a strong ability to classify target
signals in the presence of these interfering patterns through
image recognition54,55.

Deep learning model for classification
Focusing on the local period of a specific target spin signal, we
develop a set of deep learning models, coined HPC, each of which
classifies the existence of a specific period of hyperfine-induced
coherence dips in the data. Figure 2c illustrates a structure of the
HPC model and training datasets by exemplifying a case of
classifying three different classes (see a detailed implementation
of generating training datasets in Supplementary Note 1). The
input training data is prepared along with three output classes, as
shown in Fig. 2c. Class 1 corresponds to data that does not contain
a spin with the target period, class 2 is for one spin with the target
period existing in the data, and class 3 for two spins with slightly
dissimilar target periods in the data. The output data is denoted in
one-hot vector form; (1, 0, 0), (0, 1, 0), and (0, 0, 1) corresponding to
no, single, and double target periods, respectively. The model is
trained to estimate the confidence score of each element of the
three-dimensional vector according to the input image. The model
consists of stacked Dense layers, Batch Normalization layers56, and
LeakyRelu activation functions, as shown in Fig. 2c with employing
AdaBound optimizer57. The detailed procedure of the neural
network development is described in Supplementary Fig. 2 and
Supplementary Note 1.
Figure 2d shows the classification results using our HPC model.

The first panel is for the typical case that a single target period
exists without strong disturbance from other spins nor spin bath
signal and the model successfully outputs a vector close to (0, 1, 0).
The second panel shows the performance of the model for a
strongly coupled single target spin (A/2π, B/2π)= (381,275) (kHz)
in a spin group TPD21 in Supplementary Table 1, taken from
existing density functional theory (DFT) calculations58, used as an
example. As mentioned above, although the spin signal is
superposed with wide fringe patterns and oscillations, the model
successfully identifies the signature of the target period with the
output vector reaching (0.002, 0.99, 0). The third panel comes from
the same signal as in the second panel but cut by the different
target period of hyperfine parameters (A/2π, B/2π)= (48, 8) (kHz).
It shows that the model also successfully classifies the target
period even in the presence of another superposed strongly
coupled spin signal (A/2π, B/2π)= (381, 275) (kHz). Furthermore,
the fourth and the fifth panels give an example of the
performance for input datasets with a single spin, (A/2π, B/2π)=
(7.8, 20) (kHz) (fourth panel) and with two spins of similar local
period, (A/2π, B/2π)= (7.9, 10), (A/2π, B/2π)= (7.8, 20) (kHz), (fifth
panel). The model successfully distinguishes each case, showing
high selectivity of the nuclear spins. Therefore, these results show
that our deep learning model provides a promising approach to
detect individual nuclear spins with high precision, with high
selectivity, and for a wide range of hyperfine strengths.

Noise removal and decoherence effect recovery
Before evaluating the experimental CPMG signal by trained HPC
models, we first pre-process the raw experimental data by a
denoising model. Figure 3a shows the overall procedure. For the
noise removal process, Gaussian noise with the standard deviation
σ= 0.05 reflecting the experimental noise is added to the training
datasets (see Supplementary Fig. 3). The decoherence effect is
modeled by the approximate equation9,

Px ¼ 1
2
M � exp � τ

T

� �n
þ 1
2

(5)

where T accounts for dephasing of the electron spin, n is an
exponential power obtained by fitting the experimental data and τ
is half of the inter-pulse delay. We use an autoencoder
structure59,60, which is an established structure to learn the
representations of input data, to encode the features of the noisy
input data, and generate the denoised data. A one-dimensional
convolution neural network (1D CNN) layer61, which is widely used
to capture the features of one-dimensional data such as time-
series signal, is employed for building the denoising neural
network.
As shown in Fig. 3b, the signal recovery model effectively

removes the noises while retaining nuclear spin signatures of the
experimental data. This is highlighted with the capability of
recovering detailed oscillatory features of the data where the
amplitudes of signals are almost equivalent to the fluctuations due
to noise. Fig. 3c compares the visibility of the spin signal of the
raw (left panel) and the processed (right panel) data showing
effective removal of experimental noise and enhancement of
signal-to-noise ratio, leading to higher performance of prediction
by the HPC model. After denoising the raw experimental data, the
decoherence effect is recovered by applying Eq. (5) to the
denoised data (see more detail in Supplementary Note 1). We find
that the confidence scores by HPC models evaluating denoised
experimental data are, in general, a few percent higher than
evaluating raw data (compare (0.02, 0.94, 0) vs. (0, 0.99, 0) in
Fig. 3c) and in some cases false predictions of raw data are
corrected in denoised data (compare (0.17 0.71 0.1) vs (0.65 0.36
0.01) in Fig. 3c), successfully showing the efficiency of our pre-
processing model.

Regression-based model and auto fine-tuning
We now discuss the final stage of the deep learning protocol and
the application of the overall procedure to experimental
dynamical-decoupling spectroscopy signals as shown in Fig. 4a.
After the application of denoising and HPC models to predict
possible local periods, we further apply a deep learning-based
regression model to restrict the candidate hyperfine parameters
for a subsequent fine-tuning process. Since the period information
from the HPC model only provides one functional relation
between A and B given as Eq. (4), the purpose of the regression
model is to find specific (A, B) values that best explain the shape of
the coherence dips as a function of τ. We set a search region for
the value B/2π ranging from 10 to 80 kHz for N32 (from 2 to 20 kHz
for N256) and find the best fitted (A, B) pairs repetitively for all
predicted periods. Since these values are obtained by fitting
coherence dips stemming from only individual nuclear spin, we
use the whole deep learning-based fit results as initial guess
values and tune all (A, B) pairs again in the final step to
automatically search a collective list of best fitted (A, B) pairs. We
describe a pseudo-code of the fine-tuning method with using
particle swarm optimization algorithm62 in Supplementary Note 2.

Demonstration with experimental data
We demonstrate the performance of the developed procedures
with two experimental datasets with N= 32 and N= 256. These
data are collected following the methods described in the ref. 22

K. Jung et al.
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Fig. 2 Individual spin signature identification by hyperfine parameter classifier (HPC) deep learning model. a Simulated CPMG signal with
three spins of different (A, B) values showing general features of nuclear spectra including local and global periods (see text for definitions).
b Concept of the data conversion into 2D images by slicing and stacking the data fragments with specified target period TPk. In this 2D image,
the x-axis label ~τ represents evolution time modulo TPk. The 2D image reveals the signature of a target signal as a vertical line with vanishing
slope, which is generally superposed with other interfering nuclear spin signals. c Training datasets and architecture of the HPC model in a
case of classifying three classes (K= 3), where K is the number of nodes of the last layer. The input data consists of three different classes,
where each class corresponds to the number of existing nuclear spins with the target period, and the output data is one-hot vector form
assigned to each class. For example, Class 1 (Class 2) means that no (one) spin with the target period exists. d Example predictions of the HPC
model depending on hyperfine coupling strength (first to third panels) and proximity to similar period (fourth and fifth panels). For all cases,
the HPC model predicts correct spin signatures corresponding to input signals showing good consistency between the predicted vectors and
the output vectors. (for example, in the first panel, the predicted vector is (0.01 0.99 0) and the output vector is (0 1 0)). The color scale bar in
all 2D images ranges from 0 to 1.
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and in Supplementary Fig. 4. Figure 4b shows the comparisons of
the experimental data to the reproduced CPMG signal using
predicted hyperfine parameters by our deep learning protocol.
Panels in Fig. 4c show example cases of predicted spins along with
corresponding raw experimental data. The first panel highlights
the case where the model can capture the nuclear spin signal and
determine (A, B)/2π= (−213.19(5), 4.2(9)) (kHz) even with over-
lapping signals stemming from other spins. The second and third
panel show that the model can accurately distinguish spins with
similar periods and automatic fine-tuning successfully identifies
individual (A, B) pairs matching the experiments.
Our analysis returns a total of 48 nuclear spins that together

accurately describe the data. However, several of these spins yield
near-identical hyperfine parameters. It cannot be excluded that
those signals originate from a single spin with a broadened signal
due to dephasing and nuclear-nuclear spin interactions, which are
not included in the model used here (see Supplementary Note 1
and Supplementary Figs. 5–7 for details). We anticipate that
improved selectivity in this regime is possible by using other pulse
sequences, for example, non-equally spaced dynamical decou-
pling sequence38,63 or by taking nuclear-nuclear interactions into
account. Here, we chose to count groups of spins with nearly
identical parameters as a single spin. In that way, we identify 31
nuclear spins. We summarize the full list of detected nuclear spins
and the confidence levels in Supplementary Table 2.

DISCUSSION
We compare our results with those obtained by other methods on
the same sample. A manual analysis on a similar data set, taken
with the same measurement procedure, identified 7 spins22 with
parameters that match closely to 7 of the 31 spins identified here.
The large improvement in the number of identified spins from
equivalent experimental data highlights the advantage of our
deep learning approach. Additionally, we compare the results to a
recent multi-dimensional spectroscopy characterization19, a more
demanding experimental technique that accesses nuclear-nuclear
interactions. For 23 of the 31 spins, a good match is observed
(Supplementary Table 2). The other 8 spins were not previously
identified and are in a spectral range that was not accessed in

previous experiments. We corroborate the identification of these
spins through additional experiments with a different number of
decoupling pulses N= 96 and N= 128 (see Supplementary Fig. 8).
On the other hand, 4 spins detected in the previous result are
missing in the machine learning results due to the limited signal
to noise ratio and the intrinsic insensitivity to nuclear spins with
small B values of the CPMG sequence used here. Overall, these
results show the capability of our deep learning protocol to
automatically and accurately identify nuclear spins in complex
spin systems and characterize the coupling parameters from
dynamical decoupling spectroscopy.
We estimate a total computational time of ~3 h from generating

training datasets and training the HPC models to complete the
analysis on one set of experimental CPMG data (see details in
Supplementary Fig. 2). Once trained, each HPC model can identify
the most probable local periods of nuclear spins from the
experimental CPMG data almost instantaneously (<1 s) and obtain
the final fitted hyperfine parameters within ~50 s per spin
(detailed specifications of the computational power used is given
in Supplementary Note 1). This fast data analysis highlights the
potential of deep learning approaches to efficiently scale up the
sensing and characterization of large spin systems.
We find that examining dynamical decoupling spectroscopy

signals for various numbers of pulses N is important for the
following reasons. First, large N makes spins with small B values
visible and this is in general reflected in an increased number of
detected spins as shown, for example, in the fifth panel of Fig. 4c.
Second, we find that some spins near the Larmor frequency with
relatively high B/2π values (>10 kHz) are detectable only in N=
32 since for larger N too many spin signals are overlapped as
illustrated in the sixth panel of Fig. 4c. The current protocol does
not take nuclear–nuclear spin interactions into account. Therefore,
our model fails to detect some of the interacting nuclear spins for
N= 256, as for large N and long total evolution times, nuclear-
nuclear spin interactions are non-negligible and lead to a
deviating period in the signal (see Supplementary Fig. 9 and note
that part of the nuclear-nuclear interactions are known from
ref. 19). For N= 32, the data approximately follows a simple
electron-nuclear interaction model and nuclear-nuclear interac-
tions can be neglected. In that case, our protocol successfully

Fig. 3 Denoising and decoherence effect recovery procedure. a Architecture of the signal recovery model. The pure data is generated by
Eq. (1). The noisy data is generated by adding decoherence effects and noise to the pure data using Eq. (5). The model is trained to reproduce
denoised data from the noisy data and the decoherence effect is recovered using Eq. (5). b Raw experimental (green), pure (blue), and
recovered (orange) CPMG data showing successful recovery of the fringe patterns in the presence of noise with a comparable amplitude. The
figure also shows signal recovery performance in the long evolution time regime. c The comparison of the raw experimental data with the
noise recovered data in image representation used for the HPC model, showing an enhancement in signal-to-noise ratio and predictability.
The color scale bar in all 2D images ranges from 0 to 1.
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detects these spins as shown in the fourth panel of Fig. 4c. We
envision future improvement of the deep learning protocol by
building a unified model which covers all ranges of hyperfine
parameters, various N pulse sequences, and the nuclear–nuclear
interactions where the challenge lies in the efficient generation of
training datasets and the organization of datasets for effectively
and unambiguously embedding the signatures of possible
nuclear–nuclear pairs. At this current stage, discrepancies between
experimental data for different N, for example between N= 32

and N= 256, can be used as a signature of nuclear–nuclear
interaction.
In conclusion, we have proposed and demonstrated a deep

learning approach to automatically detect and characterize
individual nuclear spins based on dynamical decoupling spectro-
scopy with a single electron spin sensor. We have tested the
method on a single NV center in diamond and have identified 31
individual 13C nuclear spins with a wide range of hyperfine
parameters. Our method is able to distinguish spins with strong

Fig. 4 Multiple nuclear spin detection from experimental data. a Procedures for a regression model estimating hyperfine parameters from
predicted periods of HPC models. Training datasets of the regression model are generated using (A, B) pairs with the predicted periods by HPC
models. The regression model infers the single (A, B) pair that best fits with the features of the experimental data (reorganized as 2D image)
including coherence dip amplitudes, envelope function, and fringe patterns. b Multiple nuclear spin detection from the experimental CPMG
data for N= 32 (top panel) and N= 256 (bottom panel) using the same NV center. The panels show superimposed reproduced CPMG signal
(solid curves) and the experimental data (dotted curve). The spin numbers (C# or C#†) indicated in the figure corresponds to the full spin list
summarized in Supplementary Table 2. c Confirmation of detected hyperfine parameters for spins with a large number of interfering
signatures (1st panel), similar target periods (2nd and 3rd panels), weak local period signature (4th panel), small transverse hyperfine coupling
(5th panel), and small longitudinal hyperfine coupling (6th panel). We compare the obtained values to the results reported in ref. 19 (bottom
row, see main text). The panels also show examples of spins with small A that were not detected in ref. 19 (3rd, 5th, and 6th panels). The
uncertainty in the last digit is given in parentheses. The color scale bar in all 2D images ranges from 0 to 1.
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couplings to the NV center which are difficult to be handled
through conventional peak detection algorithms38,64. The pro-
posed models retain the general benefits of deep learning models;
it is easy to modify the training procedure or neural network
architectures for other types of experimental data such as
spectroscopy data of other defect centers, including in diamond.
Additionally, these results highlight the capacity of deep learning
algorithms to efficiently analyze the complex nonlinear signatures
in nano-scale and single-spin magnetic resonance and its
robustness against realistic distortions, such as experimental
decoherence and noise. Therefore, our methodology addresses
one of the main challenges for quantum sensing experiments on
complex spin structures and for large quantum registers and
quantum networks based on spin qubits.

METHODS
Measurement setup and sample preparation
Our experimental measurement of CPMG data is performed on a single,
naturally occurring, NV center in a high-purity chemical-vapor-deposition
homoexpitaxially grown diamond (type IIa) with a natural abundance of
13C (1.1%) and a <111> crystal orientation. To improve the photon-
collection efficiency, we fabricate a solid immersion lens on top of the NV
center and we use an aluminum-oxide anti-reflection coating layer (grown
by atomic-layer-deposition)65. We use on-chip lithographically-defined
strip lines to apply microwave fields for fast driving of the electron spin
transitions.
We apply a static magnetic field, Bz ≈ 403 G, along the NV-axis using a

permanent room-temperature neodymium magnet. This magnetic field
was chosen to ensure that ωL is larger than the perpendicular hyperfine
couplings B in order to reduce the oscillation fringes in the CPMG signal.
The electron spin Rabi frequency is 14.31(3) MHz. We use Hermite pulse
shapes to obtain effective MW pulses without initialization of the 14N
spin66. We alternate the phases of the π-pulses according to the XY-8
scheme67. Albeit the additional signals that can be caused by such
compensation sequences in combination with finite pulse durations68 are
negligible in this work, another scheme that randomizes the phases of the
pulses69 can be employed to suppress spurious responses and signal
distortions. We stabilize the magnet field strength to <3 mG19 and the
magnet is aligned to the NV-axis with uncertainty of 0.07° using thermal
echo sequences (see ref. 19 for details of the alignment procedure).
Our experiments are performed at a temperature of 3.7 K in a

commercial closed-cycle cryostat (Montana Cryostation). This enables us
to readout the NV electron spin state in a single shot with high fidelity
(94.5%), through spin-selective resonant excitation65 (see detailed pulse
sequence in Supplementary Fig. 4). The electron spin relaxation time is
T1 > 1 h22, the natural dephasing time is T�2 ¼ 4:9ð2Þ μs, the spin-echo
coherence time is T2= 1.182(5) ms, and the multipulse dynamical
decoupling coherence time is T2

DD > 1 s, for an optimized inter-pulse
delay 2τ22.

Configuration for HPC and regression models
Although a two-dimensional convolution neural network is generally
employed for image recognition, to boost computational speed while
retaining the accuracy, we use Dense layers for HPC and regression
models. The LeakyRelu activation shows slightly better performance for the
convergence to the lower validation loss than using ReLU activation. Batch
Normalization layer with epsilon= 1e-05, momentum= 0.1 (default values
in Pytorch 1.3.1) shows faster convergence to the minimum loss than
Dropout regularization. For the last layer, Sigmoid layer generally
converges to the higher accuracy than the Softmax layer for our datasets.

Configuration for the denoising model
We introduce the auto-encoder structure which is an established structure
to encode the distribution of the input data and generate the targeted
data. For both encoder and decoder parts, 1D CNN layer and 1D
transposed CNN layer are employed rather than RNN layers such as
LSTM70, GRU71 layers because 1D layers show lower validation errors and
faster convergence to the minimum loss. All the kernel size for both CNN
layers is 4. In the encoder part, Maxpooling1D layer with a kernel size of 2

is used after every single 1D CNN layer. A batch normalization layer with
the same parameters as the HPC model is used for all CNN layers.
In all models, Ada Bound57 is employed for the optimizer and the initial

learning rate is 0.00015 decayed at each epoch with customized rate
(0.5–0.25). For loss functions, binary cross entropy loss is used for HPC
model and mean square error loss is used for regression and denoising
models.

Usage of trained models and management of total
computational time
The denoising model can be reused for other experimental data if the
number of unit CPMG pulse sequences (N) and measurement time
resolution are kept the same. The classifier model can be reused if the
external magnetic field, N, measurement time resolution, and total
measurement time length remain the same.
All HPC and denoising models can be trained separately and generating

datasets can also be processed independently. Therefore, for example, to
reduce total computational time to one-third, three computers can be
used independently by dividing the training regions of all TPk into three
regions.
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