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Abstract
In this 3D fracture-based topology optimization framework, the author extended the 2D framework on
tailoring fracture resistance for brittle materials (Zhang et al., 2022) to 3D. In the optimization, the topol-
ogy is described by radial basis functions interpolated level set function, and the problem is solved by
the Interface-enriched Generalized Finite Element Method (IGFEM). Cracks are assumed to exist on
enriched nodes that are added on the boundary of the geometry to increase the accuracy of approxima-
tion. The first part of the work assumes cracks to be semi-circular with the crack plane perpendicular
to the boundary, and the crack opening direction to be either parallel to the 𝑋𝑍- or 𝑌𝑍-plane of the
global coordinates. An extended framework that assumes crack opening direction perpendicular to
the surface first principal stress is also developed at the end. The energy release rates (ERRs) of the
cracks are evaluated with the topological derivative method, which requires only a stress field of the
geometry and weight functions that relate the stress and stress intensity factors (SIFs). The weight
functions are found by a finite element analysis on a cuboid with a crack. This approach is computa-
tionally efficient because it eliminates the need of actually modeling and meshing the crack planes in
the geometry during optimization. Moreover, a 3D stress recovery technique (or stress improvement
procedure, SIP) is used to recover the nodal stress non-locally to improve the accuracy. The objective
function is then established with the 𝑝-mean aggregation of the ERRs. Finally, Numerical examples in
3D, including the famous L-bracket benchmark problem, are performed to prove the correctness and
capacity of the framework. In conclusion, this extended framework shows more flexibility and provides
more information to the optimized design than the 2D framework by considering an added dimension
both in analyzed geometry and crack shape, i.e., the effect of the anisotropy of cracks can be captured.

Keywords: topology optimization ⋅ 3D ⋅ level set ⋅ interface-enriched generalized finite element method
⋅ energy release rate ⋅ topological derivative
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1
Introduction

Flaws in structures may reduce their reliability and may also lead to catastrophic scenarios in brittle
structures-sudden brittle failure. A well-known example in the early 1940s is the failures of Liberty
ships, where brittle fractures were spotted on 1500 out of 2700 ships, and 12 of them were completely
broken in half. The primary reason for failures is a decrease in fracture toughness of the steel under low
temperature. Other than that, design flaws such as sharp corners, and flaws generated due to welding,
were spotted as origins of cracks (Zhang, 2016). Fracture-induced failures are still a concern even in
recent decades. Epp (2022) found that around 60% of 275 failure cases of bridges and buildings that
happened 1990-2019 are fracture-related. Therefore, enhancing reliability is also essential for modern
structures, besides chasing for larger sizes and lighter weights.

Both experimental and numerical methods are applied in structural development to enhance their
reliability. To give an example, nondestructive testing and examination analysis is often used to detect
material defects to anticipate fatigue life (Vukelić & Vizentin, 2017). However, these experiments require
test samples and human manipulation, which are costly and time-consuming. To avoid this, numerical
methods, especially the finite element method (FEM), are used to simulate structural behaviors. Various
parameters, such as displacement, stress, and stress-intensity factors, are employed to check the
reliability of designs. Though effective as they are, engineers have to check through multiple criteria
and iterate their designs, which is still inefficient. Therefore, despite verifying designs numerically, it
would be wise to also use numerical methods, such as topology optimization, to generate the initial
design. Failure-related parameters, including stress, damage, and fracture, can be included in the
topology optimization frameworks to increase the failure resistance of structures.

By embedding stress in topology optimization frameworks, it is possible to modify the structure
to control the stress limit. Yang and Chen (1996) were the first to perform peak von Mises stress
minimization in three-dimensional (3D) problems with density-based topology optimization. To include
more variety in the approach, Giraldo-Londoño and Paulino (2020) introduced a unified yield function
so that multiple criteria, including von Mises, Drucker-Prager, Tresca, Mohr Coulomb, Bresler-Pister,
and Willan-Warnke can be added to topology optimization formulation. Other than that, limiting the first
principal stress with the bi-directional evolutionary structural optimization method (BESO) in 3D is also
possible (Chen et al., 2021). One of the obstacles to the development of 3D stress-based topology
optimization is the high computational cost because stress is a local quantity that exists throughout the
computational domain (Yang & Chen, 1996). Therefore, Yang and Chen (1996) applied aggregation
functions Kreisselmeier-Steinhauser (KS) (Kreisselmeier & Steinhauser, 1980) and 𝑝-norm (Duysinx &
Sigmund, 1998) to aggregate all stress values to a single term in the topology optimization formulation.
Other than these methods, 𝑃-mean aggregation, which aggregates and average the total value by the
number of data points, is also available (Duysinx & Sigmund, 1998; Holmberg et al., 2013). However,
since these methods ”globalize” the stress and the maximum stress becomes dominant, they become
ineffective in capturing local quantities. To improve on this issue, Wang and Qian (2018) proposed
to aggregate Heaviside functions, which have value 0 or 1 determined by whether the material has
failed. On the contrary, Senhora et al. (2020) proved that it is possible in 3D topology optimization
to keep the locality of stress and evaluate them in the objective function by means of an augmented
Lagrangian approach instead of aggregation. Other than working on the formulations, Wang et al.
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2 1. Introduction

(2022) recently adopted a multi-resolution topology optimization scheme for 3D stress minimization,
which decouples the mesh and topology description model to decrease computational cost. Jeong et
al. (2013) provided an algorithm with perturbed structural displacement to calculate sensitivity to reduce
computational costs by not accessing the internal finite element information.

Damage-based topology optimization started with the work of Bendsøe and Kikuchi (1988), which
restricts the amount of damage in optimization with a continuum damage model. However, few 3D
optimizations have been carried out ever since. Amir and Sigmund (2013) performed 3D truss topology
optimization on concrete by modelling it with a gradient-enhanced strain-softening continuum damage
model. Chen et al. (2020) considered a fatigue damage constraint based on Palmgren/Miner linear
damage accumulation hypothesis.

Unlike stress and damage criteria, fracture criteria consider a joint effect of stress, flaw size, and
material fracture toughness. They are, therefore, more comprehensive in considering the existence
of flaws within the target structures (Anderson, 2017). This leads to the advantage of fracture-based
topology optimization-it can optimize structures while allowing cracks to nucleate and exist on the struc-
tures. There are three major strategies to define the cracks in the context of fracture-based topology
optimization, namely, stationary and usually pre-defined cracks, evolving cracks, and distributing cracks
throughout the geometry.

In the first strategy, cracks are usually placed on critical regions with stress concentration. Kang
et al. (2017) placed a crack directly into the mesh in a non-design region. They minimized an objective
function composed of the energy release rate (ERR) of the crack evaluated by the 𝐽-integral method
(Rice, 1968) and the compliance of the structure with the solid isotropic material with penalization
(SIMP) method. Klarbring et al. (2018) applied this idea to 3D adhesively bonded patches used for
repairing fractured structures to minimize the sum of ERRs of cracks. Both works used standard FEM,
which requires a fine adaptive mesh around the crack. As an improvement, Hu et al. (2019) used
XFEM and defined crack with a level set function to reduce the complexity of modelling and meshing.
Adding to this strategy, da Silva et al. (2022) proposed to include a breaking region in the design,
which would fail first under an overload condition, but the structure should not fail. However, they
provided their framework with stress criteria instead of fracture. Besides traditional gradient-based
topology optimization methods, Gu et al. (2016) and Gu et al. (2017) modified the strain energy of
cracked structures with a greedy algorithm to avoid complex math in sensitivity analysis and geometry
updates. Peridynamics-based topology optimization was used by Habibian et al. (2021), Kefal et al.
(2019), Lahe Motlagh and Kefal (2021), and Sohouli et al. (2020) to optimize cracked structures for
ease of including cracks in the peridynamics model. In general, the above methods are effective for
reducing the possibility of failure due to damage at particular regions. However, they hardly include
nature of crack nucleation and propagation, and cannot enhance fracture resistance over the entire
structure.

In the second strategy, the nature of fracturing processes is modelled, including crack initiation,
propagation, and complete failure of structures. In the context of brittle elastic materials, the phase-
field method (Francfort & Marigo, 1998; Miehe et al., 2010) is frequently used for modeling cracks. Xia
et al. (2018) maximized the mechanical work that a quasi-brittle composite structure (2D and 3D) can
undertake during fracturing processes by modifying the distribution of inclusion material with BESO.
This framework only takes the bulk brittle fracture into account, so they soon extended their framework
by taking into account the interfacial damage, which is the major cause of microcracks nucleation and
propagation (Da et al., 2018). They then further extended their framework by adding constraints over
unit cells periodically, so to optimize periodic quasi-brittle composites (Da & Yvonnet, 2020). Despite
using BESO, Russ and Waisman (2019) constrained fracture surface energy by combing SIMP with
phase-field. Li et al. (2021) also showed the possibility of changing their original framework (Da et al.,
2018) to SIMP-based topology optimization. Different from Russ and Waisman (2019), who optimized
single phase material, Li et al. (2021) optimized composites, and 3D designs. They found out that the
final outputs of SIMP and BESO are close, but SIMP can provide faster convergence for homogeneous
design (Li et al., 2021). To further diverse their frameworks and attain a final result with clear boundaries,
Wu et al. (2020) changed the framework of Da et al. (2018) to level set-based topology optimization,
and developed a new topological derivative that considers time-dependent gradient information about
displacement when updating the geometry. The same group then modified this framework by adding
time-dependent phase-field variables in the topological derivative so to improve the accuracy of sensi-
tivity (Wu et al., 2021). Besides, a 3D optimization on a dental bridge was provided. Desai et al. (2022)
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also worked on a level set-phase field framework, but added a constraint on compliance, and solve
the optimization problem with an adjoint Lagrangian equation. A major contribution is that they applied
PETSc scientific calculation tool (Balay et al., 2019) to parallelise their program to solve large-scale 3D
problems. However, even after parallelisation, they found the computational time of solving phase-field
method to be long.

Both strategies above can only allow cracks to nucleate and propagate from a critical region, which
neglects the possibility of cracks nucleating from elsewhere in the structure. However, the computa-
tional cost will be huge if applied the idea with the above methods. For example, modeling cracks
everywhere in the mesh require fine mesh throughout the domain, which will significantly increase the
solving time. Besides, 𝐽-integral has to be performed multiple times. Challis et al. (2008) avoided
this issue by considering crack propagation as a change in the energy-density of the boundary. They
applied the virtual crack extension technique on every boundary node to simulate crack propagation
inward to the geometry, but ERR defined under linear elastic fracture mechanics context was altered.

To solve the computational burden of meshing and evaluating 𝐽-integral, Silva et al. (2011) devel-
oped a topological derivative method, which can evaluate the ERR of a crack with the stress field of
the target structure, the weight functions relate the stress field and stress intensity factors (SIFs), and
crack parameters. The same group later applied this method to 2D shape optimization with a constraint
on maximum allowable ERRs on the shape boundary aggregated with both 𝑝-norm and KS functions,
respectively (Alidoost et al., 2022). As a more comprehensive framework, Zhang et al. (2022) applied
the topological derivative method on topology optimization. They used a level set function interpolated
by the radial basis functions (RBFs) (Wendland, 1995) to describe the topology. The level set-based
interface-enriched Generalized Finite Element Method (IGFEM) (Soghrati et al., 2012) was used to
solve the structural response to avoid remeshing during optimization and achieve an accurate dis-
placement field in the entire computational domain. Cracks were placed on all enriched nodes on the
solid-void interface (geometry boundary) and perpendicular to the interface. Then, 𝑝-mean aggrega-
tion was used to collect all ERRs into the objective function. Moreover, a non-local stress recovery
technique for 2D (or stress improvement procedure, SIP) is used to attain a more accurate stress
field than directly calculated stress from FEA (Payen & Bathe, 2012). Finally, the method of moving
asymptotes (MMA) is used to update the design variables. With the topological derivative method, the
computational cost of tailoring surface ERRs can be reduced roughly to the same magnitude of sur-
face stress optimization. However, this comparably computationally inexpensive framework has not
yet been applied to 3D problems.

This work extends the work of Zhang et al. (2022) to 3D topology optimization to further reveal
the capacity of the framework. We follow the same procedures in topology description, FEA, and
geometry update. Similar to Zhang et al. (2022), we assume cracks nucleate perpendicularly to the
solid-void interface, but are half-penny-shaped (semi-circular). Besides, in the first part of the work
(subsection 2.1.3-section 2.2), crack opening directions are parallel to the 𝑋𝑍- or 𝑌𝑍-plane of the global
coordinates for the sack of keeping acceptable simplicity and computational cost in the first stage of
the project. An extended method that assumes the crack openings to be perpendicular to the surface
first principal stress is developed in section 2.3. ERRs are evaluated at the deepest point of each crack
by a 3D topological derivative method (Alidoost et al., 2020) and aggregated with a 𝑝-mean function.
The weight functions used by the topological derivative method are evaluated with FEA on a cuboid
with a crack and stored as offline numerical functions. A 3D stress recovery technique (Sharma et al.,
2018) is used to evaluate the stress field. The framework is verified by finite difference analysis. A
shape optimization on a cube under triaxial load is tested under both initial and extended frameworks.
An optimal ellipsoidal and spherical hole with a uniformly distributed ERR field are found respectively.
The topology optimization of the 3D L-bracket benchmark problem with a sharp right angle corner with
high stress and ERR concentration was performed. The concentration was smoothed out by replacing
the right angle corner with a fillet.





2
An Interface-enriched Topology

Optimization for Mitigating the Effect of
Surface Flaws in 3D Brittle Structures

This chapter gives the major content of the thesis. First, a description of the static problem that has
to be solved during optimization and implementation of the Interface-enriched Generalized Finite Ele-
ment Method (IGFEM) are given. Then, formulation and numerical examples of topology optimization
framework with crack openings parallel to the 𝑋𝑍- and 𝑌𝑍-planes are given. This formulation is ex-
tended by allowing crack openings perpendicular to the surface first principal stress in the end. Finally,
a summary and conclusions to the work are provided.

2.1. Formulation
2.1.1. Static problem description
Define a computational domain Ω ⊂ ℝ3, which consists of solid domain 𝜔𝑠 and void domain Ω𝑣, such
that Ω = Ω𝑠 ∪ Ω𝑣 and Ω𝑠 ∩ Ω𝑣 = ∅. The domain has closure Ω = Ω𝑠 ∪ Ω𝑣. The Dirichlet boundary
condition is applied on the boundary of the computational domain 𝜕Ω ≡ Γ = Ω ⧵ Ω at region Γ𝑢 with
displacement �̄�𝑢𝑢. The Neumann boundary condition is applied on the boundary of the solid domain
𝜕Ω𝑠 ≡ Γ𝑠 = Ω𝑠 ⧵ Ω𝑠 at region Γ𝑡 with load �̄�𝑡𝑡. The solid domain consists of a linear elastic material with
Young’s modulus 𝐸1 and Poisson’s ratio 𝜈1. The Young’s modulus of the void material is 𝐸2 ≪ 𝐸1. The
Young’s modulus of the void material should be non-zero to avoid singular stiffness matrix, but is set
to a small value to minimize its effect on the problem.

In each iteration of optimization, a static problem in the following general form has to be solved to
find a displacement field 𝑢𝑢𝑢 that satisfies the equilibrium equation,

∇ ⋅ 𝜎𝜎𝜎 +𝑏𝑏𝑏 = 000 in Ω, (2.1)

and boundary conditions,

{𝑢𝑢𝑢 = �̄�𝑢𝑢 on Γ𝑢 ,
𝜎𝜎𝜎 ⋅ 𝑛𝑛𝑛 = �̄�𝑡𝑡 on Γ𝑡 , (2.2)

where ∇⋅, 𝜎𝜎𝜎, 𝑏𝑏𝑏, 𝑛𝑛𝑛 are the divergence operator, stress tensor, body force, and outward normal vector of
the solid boundary Γ𝑠, respectively.

This problem can also be written in a weak form: Find 𝑢𝑢𝑢 in an admissible displacement space 𝑈𝑈𝑈
such that:

B(𝑢𝑢𝑢,𝑤𝑤𝑤) = L (𝑤𝑤𝑤), ∀𝑤𝑤𝑤 ∈𝑊𝑊𝑊, (2.3)
where𝑊𝑊𝑊 is a test function space that satisfies the Dirichlet boundary condition. According to the virtual
work principle in elasticity, the bilinear and linear functions in the above equation are equivalent to

B(𝑢𝑢𝑢,𝑤𝑤𝑤) = ∫
Ω
𝜖𝜖𝜖(𝑤𝑤𝑤) ∶ 𝜎𝜎𝜎(𝑢𝑢𝑢)dΩ, (2.4)

5
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2. An Interface-enriched Topology Optimization for Mitigating the Effect of Surface Flaws in 3D Brittle

Structures

Figure 2.1: Computational domain Ω consists of solid domain Ω𝑠 and void material domain Ω𝑣. Dirichlet and Neumann boundary
conditions are applied on Γ𝑢 and Γ𝑡, respectively. The insertion shows a set of triangular elements that form a cube and are
cut by the material boundary (red solid lines). The solid and dashed lines indicate the element edges outside and inside the Ω𝑠.
The black lines and dots show original elements; the red lines and dots show the newly created edges of enriched elements and
enriched nodes, respectively.

and
L (𝑤𝑤𝑤) = ∫

Ω
𝑤𝑤𝑤 ⋅ 𝑏𝑏𝑏 dΩ +∫

Γ𝑡
𝑤𝑤𝑤 ⋅ �̄�𝑡𝑡A, (2.5)

respectively, where 𝜖𝜖𝜖(𝑤𝑤𝑤) = 1
2(∇𝑤𝑤𝑤 + ∇𝑢𝑢𝑢

⊺) is the small linearized strain tensor, and 𝜎𝜎𝜎(𝑢𝑢𝑢) = 𝐷𝐷𝐷 ∶ 𝜖𝜖𝜖(𝑢𝑢𝑢)
according to the generalized Hooke’s law, where 𝐷𝐷𝐷 is the constitutive tensor.

The domain Ω is then discretized as Ωℎ = ∪𝑗∈𝜄0𝑒𝑗 with finite elements, where 𝑒𝑗 is the 𝑗𝑡ℎ element
and 𝜄0 is the set of all original elements. Writing Equation 2.3 in discretized form:

∑
𝑗
∫
𝑒𝑗
𝜀𝜀𝜀(𝑤𝑤𝑤ℎ) ∶ 𝐷𝐷𝐷 ∶ 𝜀𝜀𝜀(𝑢𝑢𝑢ℎ)dΩ =∑

𝑗
∫
𝑒𝑗
𝑤𝑤𝑤ℎ ⋅ 𝑏𝑏𝑏 dΩ +∑

𝑗
∫
𝜕𝑒𝑗∩Γ𝑡

𝑤𝑤𝑤ℎ ⋅ �̄�𝑡𝑡 dΓ, ∀𝑤𝑤𝑤 ∈𝑊𝑊𝑊, (2.6)

where 𝑢𝑢𝑢ℎ ∈ 𝑈𝑈𝑈ℎ is the trial function and 𝑤𝑤𝑤ℎ ∈𝑊𝑊𝑊ℎ is the test function.
As shown in Figure 2.1, the Interface-Generalized Finite Element Method (IGFEM) does not nec-

essarily require a matching mesh. Enriched nodes are created at the intersections of element edges
and material interfaces. The cut elements are split into integration (enriched) elements for numerical
integration. The displacement field 𝑢𝑢𝑢ℎ is approximated by a function with a standard FEM term and
enrichment term:

𝑢𝑢𝑢ℎ = ∑
𝑖∈𝜄ℎ

𝑁𝑖(𝑥𝑥𝑥)𝑈𝑈𝑈𝑖
⏝⎵⎵⎵⏟⎵⎵⎵⏝
standard FEM

+ ∑
𝑖∈𝜄𝑤

𝜓𝑖(𝑥𝑥𝑥)𝛼𝛼𝛼𝑖
⏝⎵⎵⎵⏟⎵⎵⎵⏝

enrichment

, (2.7)

where 𝜄ℎ is the index set of all original mesh nodes in Ωℎ, 𝑁𝑖 is the Lagrangian shape function and 𝑈𝑈𝑈𝑖
is the degrees of freedoms (DOFs) of the 𝑖𝑡ℎ mesh node; 𝜄𝑤 is the index set of all enriched nodes, 𝜓𝑖
is the enrichment function associated with the enriched DOFs 𝛼𝛼𝛼𝑖.

An isoparametric procedure is followed to find the local stiffness matrix 𝑘𝑘𝑘𝑒 and force vector 𝑓𝑓𝑓𝑒 of
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the integration elements:

𝑘𝑘𝑘𝑒 = ∫
𝑒
𝐵𝐵𝐵⊺𝐷𝐷𝐷𝐵𝐵𝐵𝑗𝑒d𝜉𝜉𝜉, (2.8)

and

𝑓𝑓𝑓𝑒 = ∫
𝑒
[𝑁𝑁𝑁𝜓𝜓𝜓]𝑏𝑏𝑏𝑗𝑒d𝜉𝜉𝜉 + ∫𝜕𝑒∩Γ𝑡

[𝑁𝑁𝑁𝜓𝜓𝜓] �̄�𝑡𝑡𝑗𝑒d𝜕𝜉𝜉𝜉, (2.9)

where 𝐵𝐵𝐵 = [Δ⊺𝜉𝑁𝑁𝑁⊺𝐽𝐽𝐽−𝑇 Δ⊺𝜉𝜓𝜓𝜓⊺𝐽𝐽𝐽−𝑇𝑒 ] is the strain-displacement matrix, 𝜉𝜉𝜉 = (𝜉1, 𝜉2, 𝜉3) is the natural co-
ordinates, and 𝑁𝑁𝑁 and 𝜓𝜓𝜓 are the vectors of the standard and enrichment shape functions stack of the
element, respectively, 𝑗𝑒 is the determinant of Jacobian. 𝐽𝐽𝐽 and 𝐽𝐽𝐽𝑒 are the Jacobian of the isoparametric
mapping for the parent and integration elements. The differential operator Δ𝜉 is defined by

Δ𝜉 ≡
⎡
⎢
⎢
⎢
⎣

𝜕
𝜕𝜉1

0 0 𝜕
𝜕𝜉2

0 𝜕
𝜕𝜉3

0 𝜕
𝜕𝜉2

0 𝜕
𝜕𝜉1

𝜕
𝜕𝜉3

0
0 0 𝜕

𝜕𝜉3
0 𝜕

𝜕𝜉2
𝜕
𝜕𝜉1
.

⎤
⎥
⎥
⎥
⎦

⊺

(2.10)

The shape functions and procedures of finding 𝑘𝑘𝑘𝑒 and 𝑓𝑓𝑓𝑒 of non-cut elements are the same as in
standard FEM. The global stiffness matrix𝐾𝐾𝐾 and force vector𝐹𝐹𝐹 of all elements could therefore be given:

𝐾𝐾𝐾 = 𝔸
𝑗
𝑘𝑘𝑘𝑗 , 𝐹𝐹𝐹 = 𝔸

𝑗
𝑓𝑓𝑓𝑗 , (2.11)

where 𝔸 represents the finite element assembly operator.
One advantage of IGFEM over XFEM is that it keeps the physical meaning of DOFs on the original

mesh nodes as standard FEM (Soghrati et al., 2012). This enables prescribing the Dirichlet boundary
conditions on enriched nodes by solving a local problem (van den Boom et al., 2019)(Zhang et al.,
2022). Figure 2.2 shows a scenario that occurs in this work, an element 𝑒 which has Dirichlet boundary
condition applied on the shaded surface circumference by node 𝑥𝑥𝑥1, 𝑥𝑥𝑥2 and 𝑥𝑥𝑥3, but split by a material
interface marked in red. Enriched nodes 𝑥𝑥𝑥5, 𝑥𝑥𝑥6 and 𝑥𝑥𝑥7 are created. In order to apply the displacement
�̄�𝑢𝑢, a local problem is solved:

{𝛼𝛼𝛼5 = �̄�𝑢𝑢(𝑥𝑥𝑥5) − 𝑁1(𝑥𝑥𝑥5)𝑈𝑈𝑈1 − 𝑁2(𝑥𝑥𝑥5)𝑈𝑈𝑈2,𝛼𝛼𝛼6 = �̄�𝑢𝑢(𝑥𝑥𝑥6) − 𝑁2(𝑥𝑥𝑥6)𝑈𝑈𝑈2 − 𝑁3(𝑥𝑥𝑥6)𝑈𝑈𝑈3,
(2.12)

where 𝑈𝑈𝑈1 = �̄�𝑢𝑢(𝑥𝑥𝑥1) and 𝑈𝑈𝑈2 = �̄�𝑢𝑢(𝑥𝑥𝑥2).

Figure 2.2: An element cut by material interface and forms enriched nodes𝑥𝑥𝑥5, 𝑥𝑥𝑥6, and𝑥𝑥𝑥7. Dirichlet boundary condition is applied
on Γ𝑢 which is on the element surface enclosed by 𝑥𝑥𝑥1, 𝑥𝑥𝑥2, and 𝑥𝑥𝑥3.

As mentioned in Equation 2.9, tractions on the boundary Γ𝑡 can be assembled into 𝑓𝑓𝑓 with the same
elementwise procedure as in standard FEM. The scenario shown in Figure 2.3 is the case that appears
in this work, where the Neumann boundary condition is applied on the material interface within the cut
element. A 2D triangular surface element connecting 𝑥𝑥𝑥5, 𝑥𝑥𝑥6 and 𝑥𝑥𝑥7 is created to compute the traction
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numerically. However, the dimension of the surface element does not match with the space ℝ3 so the
inverse and determinant of its Jacobian matrix are not available. To cope with this problem, we employ
Devloo (1997)’s method to reform the Jacobian matrix, which has the form:

𝐽𝐽𝐽𝑒 = [
𝐽𝜉 𝑉𝑉𝑉1 ⋅ �̃�𝑉𝑉2𝐽𝜂
0 𝑉𝑉𝑉2 ⋅ �̃�𝑉𝑉2𝐽𝜂

] , (2.13)

where 𝐽𝜉, 𝐽𝜂, 𝑉𝑉𝑉1, 𝑉𝑉𝑉2 and �̃�𝑉𝑉2 are coefficients and vectors used to approximate the Jacobian matrix.
Detailed expression, explanation, and derivative of Devloo’s Jacobian can be found in Appendix E.

For more detailed explanations on IGFEM, please reference to Soghrati et al. (2012) and Aragón et al.
(2020).

Figure 2.3: A 2D triangular integration element enclosed by 𝑥𝑥𝑥5, 𝑥𝑥𝑥6 and 𝑥𝑥𝑥7 is created at the material interface (red shaded area).
Neumann boundary condition is applied on Γ𝑡 which is also the red shaded area.

2.1.2. Topology description
Level set function, first introduced by Sethian and Wiegmann (2000), is used to express the geometry
boundary Γ, which has the implicit form

{
𝜙(𝑥𝑥𝑥) = 0, if 𝑥𝑥𝑥 ∈ Γ𝑠 ,
𝜙(𝑥𝑥𝑥) < 0, if 𝑥𝑥𝑥 ∈ Ω𝑠 ,
𝜙(𝑥𝑥𝑥) > 0, if 𝑥𝑥𝑥 ∈ Ω𝑣 .

(2.14)

For example, the position of the enriched nodes 𝑥𝑥𝑥𝑛 can be defined by the linear interpolation of the
positions (𝑥𝑥𝑥𝑙 and 𝑥𝑥𝑥𝑚) and level-set values (𝜙(𝑥𝑥𝑥𝑙) and 𝜙(𝑥𝑥𝑥𝑚)) of the neighboring original nodes on the
same edge as

𝑥𝑥𝑥𝑛 = 𝑥𝑥𝑥𝑙 −
𝜙𝑙

𝜙𝑚 − 𝜙𝑙
(𝑥𝑥𝑥𝑚 −𝑥𝑥𝑥𝑙), (2.15)

where 𝜙𝑙,𝑚 = 𝜙(𝑥𝑥𝑥𝑙,𝑚). The relationship is illustrated in Figure 2.4.
In this work, compactly supported radial basis functions (RBFs) are used to interpolate the level set

function 𝜙(𝑥𝑥𝑥):

𝜙(𝑥𝑥𝑥) =
𝑁𝑟
∑
𝑖=1
𝜗𝑖(𝑥𝑥𝑥)𝑠𝑖 = ΘΘΘ⊺𝑠𝑠𝑠, (2.16)

where 𝑁𝑟 is the total number of RBFs, 𝑠𝑖 is the design variable, and 𝑠𝑠𝑠 = [𝑠1 𝑠2 ... 𝑠𝑁𝑟] is the stack of
all design variables. The compactly supported RBFs 𝜗𝑖 is defined by

𝜗𝑖(𝑥𝑥𝑥) = 𝑚𝑎𝑥(0, 1 − 𝑟𝑖)4(4𝑟𝑖 + 1), (2.17)

where radius 𝑟𝑖 is expressed as

𝑟𝑖(𝑥𝑥𝑥,𝑥𝑥𝑥𝑖) =
||𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑖||

𝑟𝑠
, (2.18)

and 𝑟𝑠 is the radius of the support. ΘΘΘ = [𝜗1(𝑥𝑥𝑥) 𝜗2(𝑥𝑥𝑥) ... 𝜗𝑖(𝑥𝑥𝑥)] is the stack of RBFs.
The compactly supported RBFs is chosen for three reasons (Wang & Wang, 2006):
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Figure 2.4: The coordinate of 𝑥𝑥𝑥𝑛 can be expressed with the coordinates and level-set values of 𝑥𝑥𝑥𝑙 and 𝑥𝑥𝑥𝑚

1. The dimension of the design space and the mesh size can be defined separately because the
RBF grid and finite element mesh are decoupled. This also helps to avoid the FEM approximation
being affected by the design space.

2. TheRBFs are smooth continuous functions and, therefore, can provide a smooth level set function
and act as a filter of the design domain.

3. The influence of each design variable can be extended across several elements by giving proper
support radius 𝑟𝑖. This helps the optimizer to modify the level set values more and therefore helps
increase the convergence rate.

2.1.3. Topology optimization formulation
The following topology optimization problem is structured:

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐽(s)
𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝐾𝐾𝐾𝑈𝑈𝑈 = 𝐹𝐹𝐹,

𝑉𝑠 ≤ 𝑉𝑐 ,
(2.19)

where 𝐽(s) is the objective function , s is design variable vectors, 𝑉𝑠 is the volume of the geometry, 𝑉𝑐 is
the maximum allowable volume. The objective function is a 𝑝-mean aggregation function of the energy
release rates:

𝐽 = ( 1𝑁

𝑁

∑
𝑖=1
𝐺𝑝𝑖 )

1
𝑝 , (2.20)

where 𝑁 is the number of cracks, which equals the number of enriched nodes on the tensioned bound-
aries; 𝐺𝑖 is the energy release rate of the crack on the 𝑖𝑡ℎ enriched node; 𝑝 is a constant integer.

Evaluation of energy release rate
Alidoost et al. (2020) provide an expression of evaluating energy release rate 𝐺 of half-penny-shaped
cracks with the topological derivative method:

𝐺 = 𝜋𝜖(�̄�
2
𝐼 + �̄�2𝐼𝐼
�̄� + �̄�

2
𝐼𝐼𝐼
2𝜈 ), (2.21)

where 𝜖 is the crack length, �̄� = 𝐸/(1 − 𝜈2), 𝐸 is the Young’s modulus. �̄�𝐼,𝐼𝐼,𝐼𝐼𝐼 are normalized stress
intensity factors of modes I, II and III evaluated with

[
�̄�𝐼
̄𝐾𝐼𝐼
̄𝐾𝐼𝐼𝐼
] = [

ℎ11 ℎ12 ℎ13
ℎ21 ℎ22 ℎ23
ℎ31 ℎ32 ℎ33

]
⏝⎵⎵⎵⎵⏟⎵⎵⎵⎵⏝

𝐻𝐻𝐻

[
𝜎𝜃𝜃
𝜎𝑟𝜃
𝜎𝑧𝜃
] , (2.22)
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X
Y

Z

Ω

γ
∂γ

γ
∂γ

Figure 2.5: Domain (Ω) with Cracks
(𝛾). Most cracks are assumed to be
parallel to the 𝑋𝑍-plane, but cracks on
a surface that parallel to the 𝑋𝑍-plane
are assumed to be parallel to the 𝑌𝑍-
plane.

Figure 2.6: Local coordinate system
defined according to crack plane 𝛾

φ

Figure 2.7: Cross-sectional view of a
crack. The crack plane is assumed to
be perpendicular to the geometry sur-
face

where 𝐻𝐻𝐻 is a matrix of weight functions. The weight functions are evaluated in a FEA with domain
integral and 𝑀1 integral as the method given by Nagai et al. (2013). Plots of all weight functions ℎ11-
ℎ33 are shown in Figure 2.8; detailed calculation processes are given in Appendix F.

The above formulations could further be modified to enable linear algebric operations:

𝐺 = 𝜋𝜖
2𝜇�̄�𝐾

′𝐾′𝐾′⊺𝐾′𝐾′𝐾′, (2.23)

where

𝐾′𝐾′𝐾′ = [
√2𝜇 0 0
0 √2𝜇 0
0 0 √�̄�

] [
�̄�𝐼
̄𝐾𝐼𝐼
̄𝐾𝐼𝐼𝐼
] = [

√2𝜇ℎ11 √2𝜇ℎ12 √2𝜇ℎ13
√2𝜇ℎ21 √2𝜇ℎ22 √2𝜇ℎ23
√�̄�ℎ31 √�̄�ℎ32 √�̄�ℎ33

]
⏝⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⏝

𝐻′𝐻′𝐻′

[
𝜎𝜃𝜃
𝜎𝑟𝜃
𝜎𝑧𝜃
] . (2.24)

The stress could be expressed in global coordinates by adding a transformation matrix:

[
𝜎𝜃𝜃
𝜎𝑟𝜃
𝜎𝑧𝜃
] = [

0 1 0
1 0 0
0 0 1

]
⏝⎵⎵⏟⎵⎵⏝

𝑀𝑀𝑀1

𝑅𝑅𝑅 [
𝜎𝑥𝑥 𝜎𝑥𝑦 𝜎𝑥𝑧
𝜎𝑦𝑥 𝜎𝑦𝑦 𝜎𝑦𝑧
𝜎𝑧𝑥 𝜎𝑧𝑦 𝜎𝑧𝑧

]
⏝⎵⎵⎵⎵⏟⎵⎵⎵⎵⏝

𝜎𝜎𝜎

𝑅𝑅𝑅⊺ [
0
1
0
]

⏟
𝑀𝑀𝑀2

, (2.25)

where stress transformation 𝑅𝑅𝑅 is given in Appendix A. To keep acceptable complexity in analytical ex-
pressions and computational cost, crack opening direction (direction of 𝑍′ axis in Figure 2.6) is assumed
to be either parallel to the 𝑋𝑍−plane or 𝑌𝑍−plane, 𝑅𝑅𝑅 = 𝑅𝑅𝑅𝑥𝑧 if the crack opening direction is defined
parallel to the 𝑋𝑍−plane, 𝑅𝑅𝑅 = 𝑅𝑅𝑅𝑦𝑧 if the crack opening direction is defined parallel to the 𝑌𝑍−plane.
Besides, as illustrated in Figure 2.7, all the cracks are assumed to initiate perpendicular to the surfaces
of the geometry (𝜑 = 90°).

According to Alidoost et al. (2020), for crack size less than 5% of the geometry, the error of the ERR
calculated by the topological derivative method is less than 3% for crack front position 5𝜋

18 ≤ 𝜃 ≤
13𝜋
18

and less than 8% for 𝜃 ≤ 2𝜋
9 and 𝜃 ≥ 7𝜋

9 than the boundary element method.
After introducing the linear algebraic formulation, equation (2.21) can be changed to

𝐺 = 𝜋𝜖
2𝜇�̄�𝑀𝑀𝑀

⊺
2𝑅𝑅𝑅𝜎𝜎𝜎⊺𝑅𝑅𝑅⊺𝑀𝑀𝑀⊺

1𝐻′𝐻′𝐻′⊺𝐻′𝐻′𝐻′𝑀𝑀𝑀1𝑅𝑅𝑅𝜎𝜎𝜎𝑅𝑅𝑅⊺𝑀𝑀𝑀2. (2.26)

This expression can be used in the 2D framework by replacing 𝑅𝑅𝑅, 𝜎𝜎𝜎 and 𝐻′𝐻′𝐻′ with the corresponding
expression in 2D. The expression will then be equivalent to the ERR evaluation expression given by
Zhang et al. (2022).
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Figure 2.8: Plot of weight functions in 𝐻𝐻𝐻

Note that we follow the hypothesis that cracks extend to the direction that is perpendicular to the
maximum tension direction in ideal brittle materials (Erdogan & Sih, 1963). Therefore, only the cracks
with positive mode-I SIF 𝐾𝐼 are considered in the calculation of energy release rates and aggregated
into Equation 2.20.

Evaluation of Stress
A stress recovery technique (or stress improvement procedure (SIP)) is used in this work to smoothen
the stress field and obtain faster convergence than directly calculated stress from FEA (Payen & Bathe,
2012; Sharma et al., 2018; Zhang et al., 2022). The 2D SIP formulation was first derived by Payen and
Bathe (2012) based on the Hu-Washizu principle (Chan, 1968), and Sharma et al. (2018) extended this
method to 3D.

To determine the recovered stress in each element, a patch of neighbouring elements is needed
as the calculation domain 𝜀. The stress is determined by first satisfying equilibrium in a weak sense in
the domain and then projecting the directly calculated stress from finite element analysis results to the
domain. Figure 2.9a gives an illustration of the process. A patch of elements in darker grey is used to
determine the recovered stress of the red element.

The recovered stress of elements is determined by 𝜎𝜎𝜎𝑒 = 𝐸𝐸𝐸𝜎�̂�𝜎𝜎, where �̂�𝜎𝜎 is a 60×1 stress coefficient
vector determined by

(∑{𝑒∈𝜖} [ ∫𝑒
�̄�𝐸𝐸⊺𝜎𝐸𝐸𝐸𝜎d𝑒

∫𝑒 𝐸𝐸𝐸⊺𝜁𝜕𝜕𝜕𝜎𝐸𝐸𝐸𝜎d𝑒
]) �̂�𝜎𝜎 = (∑{𝑒∈𝜖} [∫𝑒

�̄�𝐸𝐸⊺𝜎𝜎𝜎𝜎ℎ𝑒d𝑒
−∫𝑒 𝐸𝐸𝐸⊺𝜁𝑏𝑏𝑏d𝑒

]) , (2.27)
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where �̄�𝐸𝐸𝜎, 𝐸𝐸𝐸𝜎, 𝐸𝐸𝐸𝜁 are interpolation matrices, 𝜎𝜎𝜎ℎ𝑒 is the directly calculated stress of element 𝑒, 𝜕𝜕𝜕𝜎 is a
differential operator. Coefficients in Equation 2.27 are given in Appendix B.

As illustrated in Figure 2.9b, to determine the nodal stress 𝜎𝜎𝜎(𝑥𝑥𝑥𝑖), a patch of elements connected to
the node is needed as the calculation domain 𝜀𝑖. Nodal stress 𝜎𝜎𝜎(𝑥𝑥𝑥𝑖) can then be recovered by

𝜎𝜎𝜎(𝑥𝑖) =
∑𝑒∈𝜀𝑖 𝜎𝜎𝜎𝑒(𝑥𝑥𝑥𝑖)

𝑁𝑖
, (2.28)

where 𝜎𝜎𝜎𝑒(𝑥𝑥𝑥𝑖) = 𝐸𝐸𝐸𝜎(𝑥𝑥𝑥𝑖)�̂̂��̂�𝜎𝑒 is the elemental stress of element 𝑒 determined at node 𝑖, and 𝑁𝑖 is the
number of elements in the patch.

(a) (b)

Figure 2.9: (a):target element (red) and its element patch (gray) to calculate elemental stress; (b): surface node (black) and its
element patch to recover nodal stress

Sensitivity
An adjoint Lagrangian function 𝐿 = 𝐽+𝜆𝜆𝜆⊺(𝐾𝑈𝐾𝑈𝐾𝑈−𝐹𝐹𝐹) is established with the adjoint vector 𝜆𝜆𝜆. The sensitivity
of the objective function is then expressed as the derivative of 𝐿 with respect to the 𝑗th design variable
𝑠𝑗:

𝑑𝐿
𝑑𝑠𝑗

= 𝜕𝐽
𝜕𝑠𝑗

+ 𝜕𝐽
𝜕𝑈𝑈𝑈

𝜕𝑈𝑈𝑈
𝜕𝑠𝑗

+𝜆𝜆𝜆⊺(𝜕(𝐾
𝐾𝐾𝑈𝑈𝑈)
𝜕𝑠𝑗

− 𝜕𝐹𝐹𝐹
𝜕𝑠𝑗
)

= 𝜕𝐽
𝜕𝑠𝑗

+ ( 𝜕𝐽𝜕𝑈𝑈𝑈 +𝜆𝜆𝜆
⊺𝐾𝐾𝐾)𝜕𝑈

𝑈𝑈
𝜕𝑠𝑗

+𝜆𝜆𝜆⊺(𝜕𝐾
𝐾𝐾
𝜕𝑠𝑗
𝑈𝑈𝑈 − 𝐹𝐹𝐹

𝜕𝑠𝑗
).

(2.29)

The adjoint equation below has to be solved to determine the adjoint vector 𝜆𝜆𝜆:
𝜕𝐽
𝜕𝑈𝑈𝑈 +𝜆𝜆𝜆

⊺𝐾𝐾𝐾 = 0. (2.30)

The detailed processes of deriving 𝜕𝐽
𝜕𝑠𝑗

, 𝜕𝐽𝜕𝑈𝑈𝑈 ,
𝜕𝐾𝐾𝐾
𝜕𝑠𝑗

and 𝜕𝐹𝐹𝐹
𝜕𝑠𝑗

are given in Appendix C.

2.2. Numerical examples
One verification example and two optimization examples are carried out in this section. No units are
specified in this work, so any consistent unit system can be applied. The crack length should be less
than 1% of the domain size to keep the validity of the topological derivative method, so all cracks are
set to 0.01 in the examples. Power factor 𝑝 = 8 is used in all the objective functions. No hole nucleation
method is used during the optimization, so holes are placed into the initial design.

2.2.1. Sensitivity verification
The sensitivity of the topology optimization formulation given in section subsection 2.1.3 is verified
with finite difference analysis (van den Boom et al., 2021). The analytical expression of sensitivity d𝐿

d𝑠𝑗
is compared with the numerical calculated finite difference derivative 𝐽′𝑗, which is determined as the
relative differences:
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𝛿𝑗 =
𝐽′𝑗 −

d𝐿
d𝑠𝑗

d𝐿
d𝑠𝑗

. (2.31)

Figure 2.10-Figure 2.15 show the geometry used for sensitivity verification and plots of the results.
The geometry and mesh are shown in (a), where the solid part is marked with red and green lines. The
surfaces with crack openings parallel to the 𝑋𝑍-plane are marked in red, while the surfaces with crack
openings parallel to the 𝑌𝑍-plane are marked in green. The Young’s modulus of the solid and void
materials are 𝐸𝑠 = 1 and 𝐸𝑣 = 10−6. A distributed load 𝐹 = 1 is applied. The relative differences with
respect to different finite difference step size Δ𝑠𝑗 are shown in (b). The relative differences reach their
minimum values 𝛿𝑗,𝑚𝑖𝑛 ≈ 8 × 10−6 − 7 × 10−5 at step size around 10−7, which proves the correctness
of the analytical sensitivity.

X
Y

Z

(a)

10−9 10−8 10−7 10−6 10−5

0

1

2 ⋅10−3

Step size Δ𝑠𝑗

R
el
at
iv
e
di
ffe

re
nc
e
𝛿 𝑗

𝑥𝑥𝑥1 𝑥𝑥𝑥2
𝑥𝑥𝑥4 𝑥𝑥𝑥6
𝑥𝑥𝑥13 𝑥𝑥𝑥14
𝑥𝑥𝑥16 𝑥𝑥𝑥18

(b)

Figure 2.10: (a): Geometry uses for sensitivity verification in 𝑋-direction, where the solid part is marked in red. All crack openings
are parallel to the 𝑋𝑍-plane. (b): Relative difference 𝛿𝑗 with respect to step size Δ𝑠𝑗 on different design variables 𝑠𝑗.
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Figure 2.11: (a): Geometry uses for sensitivity verification in 𝑌-direction, where the solid part is marked in red, including surface
with crack openings parallel to the 𝑋𝑍-plane. Top surface with crack openings parallel to the 𝑌𝑍-plane is marked in green. (b):
Relative difference 𝛿𝑗 with respect to step size Δ𝑠𝑗 on different design variables 𝑠𝑗.



14
2. An Interface-enriched Topology Optimization for Mitigating the Effect of Surface Flaws in 3D Brittle

Structures

X
Y

Z

(a)

10−9 10−8 10−7 10−6 10−5

0

1

2 ⋅10−3

Step size Δ𝑠𝑗

R
el
at
iv
e
di
ffe

re
nc
e
𝛿 𝑗

𝑥𝑥𝑥8 𝑥𝑥𝑥9
𝑥𝑥𝑥10 𝑥𝑥𝑥11
𝑥𝑥𝑥16 𝑥𝑥𝑥17
𝑥𝑥𝑥20 𝑥𝑥𝑥21

(b)

Figure 2.12: (a):Geometry uses for sensitivity verification in 𝑍-direction, where the solid part is marked in red. All crack openings
are parallel to the 𝑋𝑍-plane. (b): Relative difference 𝛿𝑗 with respect to step size Δ𝑠𝑗 on different design variables 𝑠𝑗.

X
Y

Z

(a)

10−9 10−8 10−7 10−6 10−5

0

1

2 ⋅10−3

Step size Δ𝑠𝑗

R
el
at
iv
e
di
ffe

re
nc
e
𝛿 𝑗

𝑥𝑥𝑥1 𝑥𝑥𝑥2
𝑥𝑥𝑥4 𝑥𝑥𝑥6
𝑥𝑥𝑥13 𝑥𝑥𝑥14
𝑥𝑥𝑥16 𝑥𝑥𝑥18

(b)

Figure 2.13: (a):Geometry uses for sensitivity verification in 𝑋-direction, where the solid part is marked in green, including surface
with crack openings parallel to the 𝑌𝑍-plane. Right surface with crack openings parallel to the 𝑋𝑍-plane is marked in red. (b):
Relative difference 𝛿𝑗 with respect to step size Δ𝑠𝑗 on different design variables 𝑠𝑗.
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Figure 2.14: (a): Geometry uses for sensitivity verification in 𝑌-direction, where the solid part is marked in green. (b): Relative
difference 𝛿𝑗 with respect to step size Δ𝑠𝑗 on different design variables 𝑠𝑗.
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Figure 2.15: (a): Geometry uses for sensitivity verification in 𝑍-direction, where the solid part is marked in green. (b): Relative
difference 𝛿𝑗 with respect to step size Δ𝑠𝑗 on different design variables 𝑠𝑗

2.2.2. Cube with an ellipsoid
Cube with an ellipsoid is a triaxially tensioned shape optimization example. It is a 2×2×2 cube loaded
with with unit tractions 𝑡𝑡𝑡1, 𝑡𝑡𝑡2 and 𝑡𝑡𝑡3 on the surfaces as shown in Figure 2.16. As illustrated in Figure 2.17,
only 1/8 of the geometry is used by taking the advantage of symmetry conditions. The geometry is
immersed into a background computational domain of 1.1 × 1.1 × 1.1 discretized by 20 × 20 × 20 × 6
tetrahedral elements. The volume constraint of solid material is 𝑉𝑐 = 0.94; 140 iterations are used.

The solid part of the initial and final design and their energy release rate distributions of are shown
in Figure 2.18. The initial design has a tetrahedral hole in the middle, where the energy release rates
concentrate on the three corners and three edges of the hole. Due to the anisotropy of the assump-
tion of crack-opening directions, the bottom edge has higher energy release rates than the two other
edges. Figure 2.19 shows the convergence of objective function and volume constraint. The designs’
cross-section views at iterations 20, 60, and 120 are also shown. The optimization converges after
around 120 iterations. The energy release rates over the material interface are smoothed out during
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Figure 2.16: Isometric view of cube under triaxial tension
load

Y

X Z

Figure 2.17: 1/8 of the full geometry immersed in the com-
putational domain
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Figure 2.18: (a) Initial design with a tetrahedral hole, where concentration of energy release rates is spotted on three corners
and three edges; (b) Final design with 1/8 of a cube with an ellipsoid, where the energy release rates distribute uniformly over
the material interface

the optimization and the design comes to an end with 1/8 of an ellipsoidal hole with a larger radius in
𝑌-direction (hole radius: 𝑟𝑥 = 0.5011, 𝑟𝑦 = 0.5429, 𝑟𝑧 = 0.4998). As a common engineering sense,
a spherical hole has the best mechanical property in undertaking triaxial load. The hole converged to
an ellipsoid instead because the anisotropic assumption results in the hole having higher ERRs in the
lower region (the region closer to the 𝑋𝑍-plane) when the radius of the hole equals in three directions.
To smoothen the ERR field, the algorithm shrinks the radius in the lower part and therefore results in
an ellipsoid. This is a drawback of the current framework. However, it also shows that the anisotropy
of cracks can affect the optimization, which means a potentially different design is needed to have the
best fracture resistance property than optimizing the stress distribution.
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Figure 2.19: The objective function converges at about 120 iterations. Designs at iteration 20, 60, and 120 are shown

2.2.3. L-bracket
A 3D L-bracket is investigated to examine the capacity of the method on large-scale problems. The
dimensions of the L-bracket are given in figure Figure 2.20. The top surface of the L-bracket is fixed,
and a vertical downward load 𝐹𝐹𝐹 = −2.6 is applied at the red shaded region. Only half of the structure
was modelled by making use of the symmetry condition. The structure is immersed into a background
mesh of 40×40×8×6 as shown in Figure 2.21. Several holes are pre-seeded in the structure because
the no hole-seeding algorithm was applied in this work.

The initial design and optimized design are shown in Figure 2.22, and the optimization process is
shown in Figure 2.23. In the initial design, a high ERR concentration is spotted in the sharp corner of
the structure. The framework smoothed out the corner and replaced it with a fillet. Moreover, a smooth
surface transition is achieved throughout the final design. The framework reduced the volume fraction
to the set value 0.65 and the value of the objective function to 0.0581. The optimization approximates
convergence after around 150th iteration. However, oscillations still exist, which means the final con-
vergence is not reached. Smaller move limit and more iterations are needed to stabilize the process
and achieve a final convergence. The surface of the final design is not smooth, which indicates a larger
radius of the RBFs and a smaller mesh size is needed to improve the filtering effect of RBFs.

Huge computational demand is required in this example. The author ran the computation on a
processor with Intel Xeon CPUs (Gold 6150, 2.7 GHz) and the computational time for 200 iterations
is 221 hours. The long computational time is because all the parameters are calculated node- and
element-wise with 𝑓𝑜𝑟 loops in Python. Vectorization for this example is problematic because support
for multi-dimensional sparse matrix in Python is limited and the amount of data is too large to store in a
Numpy array. Hence, the time taken to write and read the data is significant. A practical solution is to
use the multi-processing, for example, with Python parallel computation libraries such as PETSc and
MPI4Py.
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Figure 2.20: 3D L-bracket fixed on the top surface and with a load 𝐹𝐹𝐹 applied on the right end

(a) View from front-right (b) Cross sectional view (c) Immersed view

Figure 2.21: 3D L-bracket views from different angles
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Figure 2.22: Initial design (left) has high ERR concentration at the sharp corner while the final design (right) smoothed it out
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Figure 2.23: Optimization process of L-bracket. Designs of the 20th, 40th, 60th, and 100th iterations are shown.

2.3. Extension: crack opening direction determined by surface prin-
cipal stress

The opening direction of cracks are assumed to be parallel to the 𝑋𝑍- and 𝑌𝑍-plane in section 2.1 and
section 2.2. However, this assumption bought anisotropic property into the structure, and is unrealistic
considering the natural growth of cracks. Therefore, to further extend our framework, a method to de-
termine the crack opening directions according to the surface first principal stress direction is developed
in this chapter.

2.3.1. Formulation
In Equation 2.25, we established a process to transform stress tensor expressed in global coordinates
system to local system determined by the crack plane and the 𝑋𝑍- and 𝑌𝑍-plane. To enable surface
principal stress determination, only one more transformation matrix needs to be added, and Equa-
tion 2.25 is extended to

[
𝜎𝜃𝜃
𝜎𝑟𝜃
𝜎𝑧𝜃
] = [

0 1 0
1 0 0
0 0 1

]
⏝⎵⎵⏟⎵⎵⏝

𝑀𝑀𝑀1

𝑅𝑅𝑅𝑡𝑅𝑅𝑅 [
𝜎𝑥𝑥 𝜎𝑥𝑦 𝜎𝑥𝑧
𝜎𝑦𝑥 𝜎𝑦𝑦 𝜎𝑦𝑧
𝜎𝑧𝑥 𝜎𝑧𝑦 𝜎𝑧𝑧

]
⏝⎵⎵⎵⎵⏟⎵⎵⎵⎵⏝

𝜎𝜎𝜎

𝑅𝑅𝑅⊺𝑅𝑅𝑅⊺𝑡 [
0
1
0
]

⏟
𝑀𝑀𝑀2

. (2.32)

Consider the coordinates system as shown in Figure 2.6 and Figure 2.24, the stress transformation
matrix 𝑅𝑅𝑅𝑡 has the form:

𝑅𝑅𝑅𝑡 = [
1 0 0
0 𝑐𝑜𝑠(𝜃𝑝) −𝑠𝑖𝑛(𝜃𝑝)
0 𝑠𝑖𝑛(𝜃𝑝) 𝑐𝑜𝑠(𝜃𝑝)

] , (2.33)

where 𝜃𝑝 is the angle between the direction of the surface 1st principal stress and the 𝑌′ axis. According
to Sun et al. (2009), it is evaluated by

𝜃𝑝 = ±
1
2 tan

−1(−
2𝜎𝑦′𝑧′

𝜎𝑧′𝑧′ − 𝜎𝑦′𝑦′
), (2.34)

where the sign ± is defined according to whether if the result leads to the 1st principal stress in that
direction, 𝜎𝑦′𝑧′ , 𝜎𝑦′𝑦′ , and 𝜎𝑧′𝑧′ are the surface stresses in the local coordinates.

Based on these stress transformation, the ERR evaluation expression Equation 2.26 is further ex-
tended to

𝐺 = 𝜋𝜖
2𝜇�̄�𝑀𝑀𝑀

⊺
2𝑅𝑅𝑅𝑡𝑅𝑅𝑅𝜎𝜎𝜎⊺𝑅𝑅𝑅⊺𝑅𝑅𝑅⊺𝑡𝑀𝑀𝑀⊺

1𝐻′𝐻′𝐻′⊺𝐻′𝐻′𝐻′𝑀𝑀𝑀1𝑅𝑅𝑅𝑡𝑅𝑅𝑅𝜎𝜎𝜎𝑅𝑅𝑅⊺𝑅𝑅𝑅⊺𝑡𝑀𝑀𝑀2. (2.35)
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Figure 2.24: Crack opening direction is perpendicular to the surface first principal stress 𝜎𝐼. The 𝑌′ and 𝑍′ are the original local
coordinate system and 𝑌″, 𝑍″ are the transformed coordinates system. The direction of 𝑋″ stays the same as 𝑋′.

The general topology optimization formulation and sensitivity stays the same as Equation 2.19,
Equation 2.20, Equation 2.29 and Equation 2.30. The extended sensitivity formulation for Equation 2.35
is given in Appendix G.

2.3.2. Sensitivity verification
The same method and model of finite difference analysis as in subsection 2.2.1 are used to verify the
analytical sensitivity of the extended framework. It is found that the relative differences can also reach
their minimum values 𝛿𝑗,𝑚𝑖𝑛 ≈ 8 × 10−6 − 7 × 10−5 at step size around 10−7.
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Figure 2.25: (a): Geometry uses for sensitivity verification in 𝑋-direction, where the solid part is marked in red. All crack openings
are perpendicular to the surface first principal stress. (b): Relative difference 𝛿𝑗 with respect to step size Δ𝑠𝑗 on different design
variables 𝑠𝑗.
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Figure 2.26: (a): Geometry uses for sensitivity verification in 𝑌-direction, where the solid part is marked in red. All crack openings
are perpendicular to the surface first principal stress. (b): Relative difference 𝛿𝑗 with respect to step size Δ𝑠𝑗 on different design
variables 𝑠𝑗.
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Figure 2.27: (a):Geometry uses for sensitivity verification in 𝑍-direction, where the solid part is marked in red. All crack openings
are parallel to the 𝑋𝑍-plane. (b): Relative difference 𝛿𝑗 with respect to step size Δ𝑠𝑗 on different design variables 𝑠𝑗.
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2.3.3. Numerical example: cube with a sphere
The same triaxially loaded cube with a hole optimization as in subsection 2.2.2 is performed to examine
the effectiveness of the extended framework. The solid part of the initial and final designs, and their
ERRs distributions are shown in Figure 2.28. Figure 2.29 shows the convergence of objective function
and volume constraint. The cross-sectional view of the design at iterations 10, 50, and 160 are also
shown. The optimization approaches convergence after around 100 iterations. The ERRs over the
material interface are smoothed out during the optimization, and the design comes to an end with 1/8
of a nearly perfect spherical hole. The hole radius of 𝑋, 𝑌, and 𝑍 directions are 𝑟𝑥 = 0.5179, 𝑟𝑦 = 0.5117,
and 𝑟𝑧 = 0.5103, respectively, so the average radius is 0.5133; the relative differences of radius in three
directions are 0.90%, −0.3%, and 0.58%, respectively, which is obviously better than the result of the
former framework. This happens because the surface first principal stress distributes evenly in three
directions, and the surface first principal stress has a dominant contribution to the calculation of ERRs,
so the ERR field also distributes evenly in three directions. This doesn’t mean that the anisotropic
property of cracks is disappeared, but it is counteracted and therefore provides an isotropic cube overall.

This example shows that the anisotropic problem of the former framework can be solved by assum-
ing crack openings perpendicular to the surface first principal stresses. This framework also fits the
hypothesis that crack planes extend to the direction perpendicular to the maximum tensile stress.
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Figure 2.28: (a) Initial design with a tetrahedral hole, where concentration of energy release rates is spotted on three corners
and three edges; (b) Final design with 1/8 of a cube with a sphere, where the energy release rates distribute uniformly over the
material interface
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Figure 2.29: The objective function approaches convergence after around 100 iterations. Designs at iteration 10, 50, and 160
are shown
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2.4. Summary and Conclusions
This work extended the fracture-based topology optimization framework that tailors the fracture resis-
tance of structures in 2D (Zhang et al., 2022) to 3D. The new 3D framework is based on IGFEM. The
design domain is immersed into a background mesh and expressed by a level set function interpolated
by the compactly supported radial basis functions. Cracks are assumed to nucleate on all the enriched
nodes on the geometry surface and perpendicular to the surface. The topological derivative method is
used to evaluate the energy release rates. This method is numerically efficient because it only requires
a single FEA to determine the ERRs through weight functions and the stress fields. It avoids the need
of modeling and meshing the crack planes in the geometry. The weight functions were evaluated with
FEA and stored as offline numerical expressions. A stress recovery technique in 3D is used to find a
more accurate stress field than directly calculated with FEA and to reduce the effect of the stress over-
estimation problem of enriched FEMs. 𝑃-mean aggregation function is used to collect the local ERRs
into a single term in the objective function to reduce computational cost. The analytical sensitivity of
objective function was derived and examined with the finite difference analysis.

Two numerical examples were given in the first framework of the thesis, in which crack openings
were assumed to be parallel to the 𝑋𝑍- and 𝑌𝑍-plane. In the first example, an octahedral void within a
triaxially loaded cube was modified to an ellipsoidal void. The ERRs distributed evenly throughout the
surface of the ellipsoidal void. The radius of the ellipsoid in the 𝑌-direction turned out to be larger. This
was caused by the anisotropy bought into the model by assuming all the crack openings parallel to the
𝑋𝑍-plane. Higher energy release rates were spotted in 𝑋- and 𝑍-directions than 𝑌-direction if the void
is spherical, so the algorithm extended the void in 𝑌-direction to smoothen the field. Even though this
anisotropy resulted in an ellipsoid, this demonstrates the capacity of this framework. It shows that both
stress and crack geometry can affect the optimized design.

L-bracket optimization was performed to examine the capacity of this framework in large-scale prob-
lems. The algorithm smoothed out the sharp rectangular corner with a high ERR concentration and
provided a final design with a smooth transition throughout the surfaces. However, a high computa-
tional cost was consumed.

An extended framework assumes the opening directions of cracks perpendicular to the surface first
principal stress was provided in the end. The same cube under triaxial load model was optimized. The
extended framework provided a better sphere compared to the first. The differences among the radii in
three axial directions are less than 1%. This proves that by assuming crack openings perpendicular to
the surface first principal stress, the anisotropy of cracks can be counteracted globally. This framework
is effective in optimizing ideal brittle structures, in which the hypothesis that crack planes extend to the
direction perpendicular to the maximum tensile stress is applicable.

Several final conclusions and prospective investigations were drawn:

1. The 3D framework is more versatile than the 2D because it can perform optimization with con-
siderations on crack radius and crack opening direction. As has been found in the cube with an
ellipsoid example, the anisotropy of cracks does have an effect on the design. Therefore, it is
recommended to investigate the influence of customizing the crack opening directions according
to different criteria. For example, since the 3D topological derivative method not only takes the
mode I fracture into consideration, but the mode II and III as well, it is possible to consider shear-
dominant criteria rather than tension-dominant. This helps to perform optimization on a variety of
materials.

2. This framework assumes the crack plane to be perpendicular to the geometry surface, crack
opening direction either parallel to certain planes or perpendicular to the surface first principal
stress, and evaluates ERR with the deepest point in the crack front. However, these assump-
tions do not necessarily represent the largest ERR on the evaluation point on the surface of the
geometry, which is the actual crack propagating direction. To cope with this, the critical plane
method should be applied to the framework.

3. In this work, the weight functions are stored numerically. However, analytical weight functions
would be more beneficial when the critical plane method is implemented, or multiple points in the
crack fronts are considered. This is because the critical method needs to solve a maximum value
problem, and this problem needs to be embedded into the topology optimization formulation and
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sensitivity. It will be more efficient to use analytical expressed weight functions to find sensitivity
than numerical ones.

4. Cracks were assumed to be semi-circular in this work, and the topological derivative method was
applied accordingly. This assumption holds with most smooth surfaces because the dimension of
cracks is significantly smaller than the surfaces. However, this assumption is violated when sharp
edges or corners appeare in the design. For example, on the edges of the octahedral void in the
cube example, the actual shape of the cracks should have an opening of 90° instead of semi-
circular. In order to improve and generalize the framework, the evaluation of energy release
rates of cracks in different shapes should be investigated. This also enables the possibility of
evaluating the cracks within the geometry, which in many cases are assumed to be circular or
elliptical.

5. Rather than placing cracks throughout the geometry surface and using the same radius for all
cracks, it is possible to only place cracks at certain regions, or use different crack radii at different
regions. This is meaningful when the damage in the structure is different. For example, if the
structure is partially exposed to a corrosive environment, it is important to enhance the fracture
resistance of that part.

6. Even though the stiffness of the void elements is set to a value significantly smaller than the
solid elements to avoid singular stiffness matrix, the void elements could have an influence on
the optimization because the void elements exert minor pressure and traction on the surface.
However, the method provided by van den Boom et al. (2019) to set the material properties of the
void elements to zero and delete the extra DOFs could be applied to this framework to solve the
problem. Furthermore, this method should also help to reduce the calculation cost to solve the
linear static problem because it reduces the size of the stiffness matrix.

7. The stress recovery technique used can help attain more accurate stress field than directly cal-
culated stress from FEA, but the large matrices and complex computation process used have a
higher computational demand. This is also one of the most time-consuming processes in this
framework. Parallel computing tools such as PETSc and MPI4Py could be utilized to distribute
the workload on the processors.

Surface fracture analysis is a problem the highly relies on the quality of the boundary. By combing
IGFEM with level set topology optimization, we were able to provide an accurately described boundary
for evaluating ERRs throughout the surface of the target geometry, and enhancing its fracture resistance
accordingly.



3
Reflection on Project

This graduation project worth 60 ECTS. The author spent 14 months (3.8.2021-20.10.2022, with a
month off) to finish. There were delays and unplanned tasks occurred. However, considering his
relatively low starting point, the duration is acceptable. This chapter discusses the roadmap and pro-
gramming challenges (vectorization & parallelisation) in the project.

3.1. Roadmap & Gantt-chart
This project consists of four modules: IGFEM, topology optimization, fracture mechanics, complex
Python programming. The author starts with a basic understanding of FEM, understanding of engi-
neering mechanics, basic skill in Python programming, and without any understanding of topology
optimization. The roadmap in Figure 3.1 shows his progress during the year.

Basic Python

Programming complex library
(Hybrida)

Vectorization

Parallel programming
(on hpc)

Engineering mechanics

Fracture mechanics
(evaluation of ERR and SIF)

IGFEM

Compliance-based
standard TO

Compliance-IGFEM-TO

Fracture-IGFEM-TO

Figure 3.1: Project roadmap. The first row is the staring point of the author. The topology optimization (TO) module starts from
zero understanding.

Page 27-28 shows the Gantt chart of the project. This Gantt chart is not the original one, but an
actual timeline of the execution of the project. The unplanned tasks occurred are marked in yellow. The
first unplanned task, develop 3D immersed Neumann boundary condition, happened because there
was no 3D immersed Neumann boundary condition available in the group. The second unplanned
task, vectorization, happened because the original code was too slowly. The other three unplanned
events, ERR evaluation by considering crack opening direction based on the surface first principal
stress, compliance constraint, and code parallelisation, are counted as extensions as they are out of
the original scope of the project.

Delays are marked in red. The major delays are due to overtime debugging. The unexpected de-
bugging time on evaluating weight functions costs 1 month, and debugging time on getting the right
TO code costs 2 months. The first delay happened due to a lack of understanding of discrete-element
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FEM (DEFEM) and the geometric engine of Hybrida, which is the enriched-FEM library that this project
is built on. The model made did not have a fine enough crack shape for accurate evaluation. The
author’s understanding of DEFEM and Hybrida developed over time but this task was not re-executed
because it is not the most important part of the project. The second delay happened because of un-
scientific ways in treating bugs and doing research. First, the author tried to verify the framework by
performing full-scale numerical examples instead of using the minimal model and finite difference anal-
ysis node-by-node and element-by-element. Second, he tried to speed up the code without verifying
the correctness of the code first. Third, the understanding towards the MeshPy library and FEM of the
author was not thorough, so that he tried to compare the results of different coarse meshes on the
same geometry, which produced unreliable analysis and wasted time. The delay of the L-bracket is
caused by long calculation time. Note that the event, weight functions evaluation with ANSYS, is a
solution to cope with the delay. It was considered at the start of the project and would be executed
when the evaluation of weight functions with DEFEM failed. Those events extend to the end of the
project, indicating that they are unable to be finished before graduation.

3.2. Computational challenges
Long computational time has been hindering the project since the beginning of coding. For example,
evaluation of weight function takes around 8 hours, the optimization of cube with sphere takes around
69 hours, and the optimization of L-bracket takes 221 hours at least. Therefore, to continue 3D large-
scale optimization, speeding up the code is the first thing.

The author has investigated vectorization method with Numpy and several parallel computation
packages for python, including Concurrent.futures, MPI4Py, DASK, and PETSc. Table 3.1 gives a
non-quantify comparison of the advantages and disadvantages of the packages based on the ease of
use on applying to Hybrida based on the author’s experience. In summary, for simple for-loops and on
single processor, process pool methods are the best because the automatic scheduler provided can
exploit the capacity of the processor. However, passing complex Python classes to the process pools
is difficult, which is the case for Hybrida. In this case, directly chunking the for-loops and sending a
certain number of loops to multiple processors is more recommended. Method on direct parallelisation
is referenced to Zaccone (2015). This requires minimal changes to the code, but it also has a barrier
in data transmission and storage. Therefore, a shared-storage parallelisation based on OpenMPI and
MPI4Py is worth investigating.

Method Numpy vectorization Direct parallelization with MPI4Py

Advantage Fast in calculation
1. Easy to implement
2. Can be applied on unlimited
number of processors

Disadvantage
1. Expensive in storing the data
2. Code needs to be re-written
3. Can only work on one processor

Non-automatic, may result in
waste of processor time

Method Process pool PETSc

Advantage Dynamic & automatic Good at solving algebraic
systems with MPI

Disadvantage 1. Difficult to pass complex arguments
2. Need to design objects that contain the loop

Need to use PETSc’s
data structure

Method DASK

Advantage 1. Scalable
2. DASK array can greatly reduce the size of matrices

Disadvantage 1. Difficult to pass complex arguments
2. Building process of complex nested for-loops is inefficient

Table 3.1: Comparison among different parallelisation methods/packages
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A
Coordinate Transformation Matrix

A.1. Normal vector of surface
Vector 𝑛𝑛𝑛 = (𝑢𝑥 , 𝑢𝑦 , 𝑢𝑧) is a unit vector normal to the geometry surface and pointing inward to it:

𝑛𝑛𝑛 =
∑𝑁𝑠𝑖=1𝑑𝑑𝑑𝑖
𝑁𝑠

, (A.1)

where 𝑁𝑠 is the number of surface elements sharing the node; 𝑑𝑑𝑑𝑖 = (𝑑𝑖𝑥 , 𝑑𝑖𝑦 , 𝑑𝑖𝑧) is the unit directional
vector of each surface element. 𝑑𝑑𝑑𝑖 is defined as follows:

𝑑𝑑𝑑𝑖 = 𝑠𝑖𝑔𝑛
𝑑𝑑𝑑01 ×𝑑𝑑𝑑02
|𝑑𝑑𝑑01 ×𝑑𝑑𝑑02|

, (A.2)

𝑠𝑖𝑔𝑛 = {−1, if 𝑑𝑑𝑑𝑖 is pointing inward to the geometry,
1, if 𝑑𝑑𝑑𝑖 is pointing outward to the geometry, (A.3)

where 𝑑𝑑𝑑01 = 𝑥𝑥𝑥1 − 𝑥𝑥𝑥0 and 𝑑𝑑𝑑02 = 𝑥𝑥𝑥2 − 𝑥𝑥𝑥0 are vectors connecting node 0, 1 and node 0, 2 of a surface
triangular element, respectively. 𝑥𝑥𝑥0, 𝑥𝑥𝑥1, 𝑥𝑥𝑥2 are the coordinates of the nodes.

Figure A.1: Triangular element with directional Vectors

A.2. Crack opening parallel to 𝑋𝑍-plane
Two definitions was made to define cracks parallel to 𝑋𝑍-plane. First, the deepest crack front direc-
tion 𝑋′ is align with the normal of the surface 𝑛𝑛𝑛. Second, the crack opening direction is parallel to
the 𝑋𝑍-plane, which indicates that the 𝑍′ axis of the local coordinates is parallel to the 𝑋𝑍-plane and
perpendicular to the unit normal vector of 𝑋𝑍-plane. These then define a system equation:

{
𝑛𝑧𝑛𝑧𝑛𝑧 ⋅ 𝑛𝑛𝑛 = 0,
𝑛𝑧𝑛𝑧𝑛𝑧 ⋅ (0, 1, 0) = 0,
|𝑛𝑧𝑛𝑧𝑛𝑧| = 1,

(A.4)

where 𝑛𝑛𝑛𝑧 is the unit directional vector of 𝑍′ axis, and was found as

𝑛𝑧𝑛𝑧𝑛𝑧 = (−
𝑢𝑧

√𝑢2𝑥 + 𝑢2𝑧
, 0, 𝑢𝑥

√𝑢2𝑥 + 𝑢2𝑧
) . (A.5)
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The unit directional vector of 𝑌′ is the cross product of the unit directional vector of 𝑋′ and 𝑍′,
𝑛𝑛𝑛𝑦 = −𝑛𝑛𝑛 ×𝑛𝑛𝑛𝑧, which leads to

𝑛𝑛𝑛𝑦 =
1

√𝑢2𝑥 + 𝑢2𝑧√𝑢2𝑥 + 𝑢2𝑦 + 𝑢2𝑧
(−𝑢𝑥𝑢𝑦 , 𝑢2𝑥 + 𝑢2𝑧 , −𝑢𝑦𝑢𝑧) . (A.6)

Assembling up the unit directional vectors, the transformation equation between global and local
coordinates can be set up:

𝑅𝑅𝑅

⎡
⎢
⎢
⎢
⎢
⎢
⎣

𝑢𝑥
−𝑢𝑥𝑢𝑦

√𝑢2𝑥+𝑢2𝑧√𝑢2𝑥+𝑢2𝑦+𝑢2𝑧
− 𝑢𝑧
√𝑢2𝑥+𝑢2𝑧

𝑢𝑦
𝑢2𝑥+𝑢2𝑧

√𝑢2𝑥+𝑢2𝑧√𝑢2𝑥+𝑢2𝑦+𝑢2𝑧
0

𝑢𝑧
−𝑢𝑦𝑢𝑧

√−𝑢𝑦𝑢𝑧√𝑢2𝑥+𝑢2𝑦+𝑢2𝑧

𝑢𝑥
√𝑢2𝑥+𝑢2𝑧

⎤
⎥
⎥
⎥
⎥
⎥
⎦

= [
1 0 0
0 1 0
0 0 1

] . (A.7)

By solving the above equation, the transformation matrix 𝑅𝑅𝑅 could be found:

𝑅𝑅𝑅 =

⎡
⎢
⎢
⎢
⎢
⎣

𝑢𝑥
𝑢2𝑥+𝑢2𝑦+𝑢2𝑧

𝑢𝑦
𝑢2𝑥+𝑢2𝑦+𝑢2𝑧

𝑢𝑧
𝑢2𝑥+𝑢2𝑦+𝑢2𝑧

−𝑢𝑥𝑢𝑦
√𝑢2𝑥+𝑢2𝑧√𝑢2𝑥+𝑢2𝑦+𝑢2𝑧

√𝑢2𝑥+𝑢2𝑧
√𝑢2𝑥+𝑢2𝑦+𝑢2𝑧

−𝑢𝑦𝑢𝑧
√𝑢2𝑥+𝑢2𝑧√𝑢2𝑥+𝑢2𝑦+𝑢2𝑧

− 𝑢𝑧
√𝑢2𝑥+𝑢2𝑧

0 𝑢𝑥
√𝑢2𝑥+𝑢2𝑧

⎤
⎥
⎥
⎥
⎥
⎦

. (A.8)

A.3. Crack Opening Parallel to 𝑌𝑍-plane
Two definitions was made to define cracks parallel to 𝑌𝑍-plane. First, the deepest crack front direction
𝑋′ is align with the normal of the geometry surface 𝑛𝑛𝑛. Second, the crack opening direction is parallel to
the 𝑌𝑍-plane, which indicates that the 𝑍′ axis of the crack is parallel to the 𝑌𝑍-plane and perpendicular
to the unit normal vector of 𝑌𝑍-plane. These then define a system equation:

{
𝑛𝑧𝑛𝑧𝑛𝑧 ⋅ 𝑛𝑛𝑛 = 0,
𝑛𝑧𝑛𝑧𝑛𝑧 ⋅ (1, 0, 0) = 0,
|𝑛𝑧𝑛𝑧𝑛𝑧| = 1,

(A.9)

where 𝑛𝑛𝑛𝑧 is the unit direction vector of 𝑍′ axis, and was found as:

𝑛𝑧𝑛𝑧𝑛𝑧 = ⎛

⎝

0, − 𝑢𝑧
√𝑢2𝑦 + 𝑢2𝑧

,
𝑢𝑦

√𝑢2𝑦 + 𝑢2𝑧
⎞

⎠

. (A.10)

The unit directional vector of 𝑌′ is the cross product of the unit directional vector of 𝑋′ and 𝑍′,
𝑛𝑛𝑛𝑦 = −𝑛𝑛𝑛 ×𝑛𝑛𝑛𝑧, which leads to

𝑛𝑦𝑛𝑦𝑛𝑦 =
1

√𝑢2𝑦 + 𝑢2𝑧√𝑢2𝑥 + 𝑢2𝑦 + 𝑢2𝑧
(− (𝑢2𝑦 + 𝑢2𝑧) , 𝑢𝑥𝑢𝑦 , 𝑢𝑥𝑢𝑧) (A.11)

Assembling up the unit directional vectors, the transformation equation between global and local
coordinates could be set up:

𝑅𝑅𝑅

⎡
⎢
⎢
⎢
⎢
⎢
⎣

𝑢𝑥
−𝑢2𝑦+𝑢2𝑧

√𝑢2𝑦+𝑢2𝑧√𝑢2𝑥+𝑢2𝑦+𝑢2𝑧
0

𝑢𝑦
𝑢𝑥𝑢𝑦

√𝑢2𝑦+𝑢2𝑧√𝑢2𝑥+𝑢2𝑦+𝑢2𝑧
− 𝑢𝑧
√𝑢2𝑦+𝑢2𝑧

𝑢𝑧
𝑢𝑥𝑢𝑧

√𝑢2𝑦+𝑢2𝑧√𝑢2𝑥+𝑢2𝑦+𝑢2𝑧

𝑢𝑦
√𝑢2𝑦+𝑢2𝑧

⎤
⎥
⎥
⎥
⎥
⎥
⎦

= [
1 0 0
0 1 0
0 0 1

] . (A.12)
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By solving the above equation, the transformation matrix 𝑅𝑅𝑅 could be found:

𝑅𝑅𝑅 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

𝑢𝑥
𝑢2𝑥+𝑢2𝑦+𝑢2𝑧

𝑢𝑦
𝑢2𝑥+𝑢2𝑦+𝑢2𝑧

𝑢𝑧
𝑢2𝑥+𝑢2𝑦+𝑢2𝑧

−
√𝑢2𝑦+𝑢2𝑧

√𝑢2𝑥+𝑢2𝑦+𝑢2𝑧

𝑢𝑥𝑢𝑦
√𝑢2𝑦+𝑢2𝑧√𝑢2𝑥+𝑢2𝑦+𝑢2𝑧

𝑢𝑥𝑢𝑧
√𝑢2𝑦+𝑢2𝑧√𝑢2𝑥+𝑢2𝑦+𝑢2𝑧

0 − 𝑢𝑧
√𝑢2𝑦+𝑢2𝑧

𝑢𝑦
√𝑢2𝑥+𝑢2𝑧

⎤
⎥
⎥
⎥
⎥
⎥
⎦

. (A.13)





B
3D Stress Recovery Technique

The interpolation matrices and differential operator of the stress recovery technique in Equation 2.27
are:

𝐸𝐸𝐸𝜎 =

⎡
⎢
⎢
⎢
⎢
⎣

𝑒𝑒𝑒𝜎
𝑒𝑒𝑒𝜎

𝑒𝑒𝑒𝜎
𝑒𝑒𝑒𝜎

𝑒𝑒𝑒𝜎
𝑒𝑒𝑒𝜎

⎤
⎥
⎥
⎥
⎥
⎦

, (B.1)

𝑒𝑒𝑒𝜎 = [1 𝑥 𝑦 𝑧 𝑥𝑦 𝑦𝑧 𝑧𝑥 𝑥2 𝑦2 𝑧2] , (B.2)

𝜕𝜎 =
⎡
⎢
⎢
⎢
⎣

𝜕
𝜕𝑥 0 0 𝜕

𝜕𝑦 0 𝜕
𝜕𝑧

0 𝜕
𝜕𝑦 0 𝜕

𝜕𝑥
𝜕
𝜕𝑧 0

0 0 𝜕
𝜕𝑧 0 𝜕

𝜕𝑦
𝜕
𝜕𝑥

⎤
⎥
⎥
⎥
⎦

, (B.3)

𝐸𝐸𝐸𝜁 = [
1 𝑥 𝑦 𝑧 0 0 0 0 0 0 0 0
0 0 0 0 1 𝑥 𝑦 𝑧 0 0 0 0
0 0 0 0 0 0 0 0 1 𝑥 𝑦 𝑧

] , (B.4)

33



34 B. 3D Stress Recovery Technique

�̄�𝐸𝐸⊺𝜎 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
𝑥 0 0 −𝑦 0 0
𝑦 0 0 0 0 0
𝑧 0 0 0 0 0
2𝑥𝑦 0 0 −𝑦2 0 0
𝑦𝑧 0 0 0 0 0
𝑥2 0 0 −𝑥𝑦 𝑦𝑧 −𝑥𝑧
0 𝑥 0 0 0 0
0 𝑦 0 0 −𝑧 0
0 𝑧 0 0 0 0
0 2𝑥𝑦 0 −𝑥2 0 0
0 2𝑦𝑧 0 0 −𝑧2 0
0 𝑥𝑧 0 0 0 0
0 𝑦2 0 −𝑥𝑦 −𝑦𝑧 𝑥𝑧
0 0 𝑥 0 0 0
0 0 𝑦 0 0 0
0 0 𝑧 0 −𝑦 0
0 0 𝑥𝑦 0 0 0
0 0 2𝑦𝑧 0 −𝑦2 0
0 0 2𝑥𝑧 0 0 −𝑥2
0 0 𝑧2 𝑥𝑦 −𝑦𝑧 −𝑥𝑧
0 𝑦 0 −𝑥 0 0
0 0 0 −𝑧 0 0
0 0 0 2𝑦𝑧 0 −𝑧2
0 0 0 2𝑥𝑧 −𝑧2 0
0 𝑥2 0 0 0 0
𝑦2 0 0 0 0 0
0 0 0 −𝑧2 0 0
0 0 0 0 −𝑥 0
0 0 0 0 2𝑥𝑦 −𝑥2
0 0 0 −𝑥2 2𝑥𝑧 0
0 0 0 0 −𝑥2 0
0 0 𝑦2 0 0 0
0 𝑧2 0 0 0 0
0 0 𝑧 0 0 −𝑥
0 0 0 0 0 −𝑦
𝑥 0 0 0 0 −𝑧
0 0 0 0 −𝑦2 2𝑥𝑦
0 0 0 −𝑦2 0 2𝑥𝑦
0 0 𝑥2 0 0 0
0 0 0 0 0 −𝑦2
𝑧2 0 0 0 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (B.5)



C
Sensitivity

This section is aiming at finding the derivative terms within the adjoint equation Equation 2.30.

C.1. 𝜕𝐽𝜕𝑠𝑗
The derivative of 𝐽 with respect to the design variable 𝑠𝑗 is given as

𝜕𝐽
𝜕𝑠𝑗

= ( 1
𝑁𝑛𝑜𝑑𝑒

)
1
𝑝 1
𝑝 (

𝑁𝑛𝑜𝑑𝑒
∑
𝑖=1

𝐺𝑝𝑖 )

1
𝑝−1

(
𝑁𝑛𝑜𝑑𝑒
∑
𝑖=1

𝑝𝐺𝑝−1𝑖
𝜕𝐺𝑖
𝜕𝑠𝑗

) , (C.1)

where

𝜕𝐺𝑖
𝜕𝑠𝑗

= 𝜋𝜖
𝜇�̄� (𝑀𝑀𝑀

⊺
2
𝜕𝑅𝑅𝑅
𝜕𝑠𝑗

𝜎𝜎𝜎⊺𝑅𝑅𝑅⊺𝑀𝑀𝑀⊺
1𝐻′𝐻′𝐻′⊺𝐻′𝐻′𝐻′𝑀𝑀𝑀1𝑅𝑅𝑅𝜎𝜎𝜎𝑅𝑅𝑅⊺𝑀𝑀𝑀2

+𝑀𝑀𝑀⊺
2𝑅𝑅𝑅
𝜕𝜎𝜎𝜎⊺
𝜕𝑠𝑗

𝑅𝑅𝑅⊺𝑀𝑀𝑀⊺
1𝐻′𝐻′𝐻′⊺𝐻′𝐻′𝐻′𝑀𝑀𝑀1𝑅𝑅𝑅𝜎𝜎𝜎𝑅𝑅𝑅⊺𝑀𝑀𝑀2

+ 𝑀𝑀𝑀⊺
2𝑅𝑅𝑅𝜎𝜎𝜎⊺

𝜕𝑅𝑅𝑅⊺
𝜕𝑠𝑗

𝑀𝑀𝑀⊺
1𝐻′𝐻′𝐻′⊺𝐻′𝐻′𝐻′𝑀𝑀𝑀1𝑅𝑅𝑅𝜎𝜎𝜎𝑅𝑅𝑅⊺𝑀𝑀𝑀2) .

(C.2)

According to Equation A.8 and Equation A.13, 𝜕𝑅𝑅𝑅𝜕𝑠𝑗 could be solved with

𝜕𝑅𝑅𝑅
𝜕𝑠𝑗

= 𝜕𝑅𝑅𝑅
𝜕𝑢𝑥

𝜕𝑢𝑥
𝜕𝑠𝑗

+ 𝜕𝑅𝑅𝑅
𝜕𝑢𝑦

𝜕𝑢𝑦
𝜕𝑠𝑗

+ 𝜕𝑅𝑅𝑅
𝜕𝑢𝑧

𝜕𝑢𝑧
𝜕𝑠𝑗

, (C.3)

where 𝑅𝑅𝑅 is equivalent to 𝑅𝑅𝑅𝑋𝑍 or 𝑅𝑅𝑅𝑌𝑍. For cracks with opening direction parallel to 𝑋𝑍-plane:

𝜕𝑅𝑅𝑅𝑋𝑍
𝜕𝑢𝑥

=

⎡
⎢
⎢
⎢
⎢
⎣

−𝑢2𝑥+𝑢2𝑦+𝑢2𝑧
(𝑢2𝑥+𝑢2𝑦+𝑢2𝑧)

2 − 2𝑢𝑥𝑢𝑦
(𝑢2𝑥+𝑢2𝑦+𝑢2𝑧)

2 − 2𝑢𝑥𝑢𝑧
(𝑢2𝑥+𝑢2𝑦+𝑢2𝑧)

2

𝑢𝑦(𝑢4𝑥−𝑢2𝑦𝑢2𝑧−𝑢4𝑧)

(𝑢2𝑥+𝑢2𝑧)
3
2 (𝑢2𝑥+𝑢2𝑦+𝑢2𝑧)

3
2

𝑢𝑥𝑢2𝑦

(𝑢2𝑥+𝑢2𝑧)
1
2 (𝑢2𝑥+𝑢2𝑦+𝑢2𝑧)

3
2

𝑢𝑥𝑢𝑦𝑢𝑧(2𝑢2𝑥+𝑢2𝑦+2𝑢2𝑧)

(𝑢2𝑥+𝑢2𝑧)
3
2 (𝑢2𝑥+𝑢2𝑦+𝑢2𝑧)

3
2

𝑢𝑥𝑢𝑧

(𝑢2𝑥+𝑢2𝑧)
3
2

0 𝑢2𝑧

(𝑢2𝑥+𝑢2𝑧)
3
2

⎤
⎥
⎥
⎥
⎥
⎦

, (C.4)

𝜕𝑅𝑅𝑅𝑋𝑍
𝜕𝑢𝑦

=
⎡
⎢
⎢
⎢
⎣

− 2𝑢𝑥𝑢𝑧
(𝑢2𝑥+𝑢2𝑦+𝑢2𝑧)

2
𝑢2𝑥−𝑢2𝑦+𝑢2𝑧
(𝑢2𝑥+𝑢2𝑦+𝑢2𝑧)

2 − 2𝑢𝑦𝑢𝑧
(𝑢2𝑥+𝑢2𝑦+𝑢2𝑧)

2

− 𝑢𝑥√𝑢2𝑥+𝑢2𝑧

(𝑢2𝑥+𝑢2𝑦+𝑢2𝑧)
3
2

− 𝑢𝑦√𝑢2𝑥+𝑢2𝑧

(𝑢2𝑥+𝑢2𝑦+𝑢2𝑧)
3
2

− 𝑢𝑧√𝑢2𝑥+𝑢2𝑧

(𝑢2𝑥+𝑢2𝑦+𝑢2𝑧)
3
2

0 0 0

⎤
⎥
⎥
⎥
⎦

, (C.5)
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𝜕𝑅𝑅𝑅𝑋𝑍
𝜕𝑢𝑧

=

⎡
⎢
⎢
⎢
⎢
⎣

− 2𝑢𝑥𝑢𝑧
(𝑢2𝑥+𝑢2𝑦+𝑢2𝑧)

2 − 2𝑢𝑦𝑢𝑧
(𝑢2𝑥+𝑢2𝑦+𝑢2𝑧)

2
𝑢2𝑥+𝑢2𝑦−𝑢2𝑧
(𝑢2𝑥+𝑢2𝑦+𝑢2𝑧)

2

𝑢𝑥𝑢𝑦𝑢𝑧(2𝑢2𝑥+𝑢2𝑦+2𝑢2𝑧)

(𝑢2𝑥+𝑢2𝑧)
3
2 (𝑢2𝑥+𝑢2𝑦+𝑢2𝑧)

3
2

𝑢2𝑦𝑢𝑧

(𝑢2𝑥+𝑢2𝑧)
1
2 (𝑢2𝑥+𝑢2𝑦+𝑢2𝑧)

3
2

− 𝑢𝑦(𝑢4𝑥+𝑢2𝑦𝑢2𝑧−𝑢4𝑧)

(𝑢2𝑥+𝑢2𝑧)
3
2 (𝑢2𝑥+𝑢2𝑦+𝑢2𝑧)

3
2

− 𝑢2𝑥

(𝑢2𝑥+𝑢2𝑧)
3
2

0 − 𝑢𝑥𝑢𝑧

(𝑢2𝑥+𝑢2𝑧)
3
2

⎤
⎥
⎥
⎥
⎥
⎦

. (C.6)

For cracks with opening direction parallel to 𝑌𝑍-plane:

𝜕𝑅𝑅𝑅𝑌𝑍
𝜕𝑢𝑥

=

⎡
⎢
⎢
⎢
⎢
⎣

−𝑢2𝑥+𝑢2𝑦+𝑢2𝑧
(𝑢2𝑥+𝑢2𝑦+𝑢2𝑧)

2 − 2𝑢𝑥𝑢𝑦
(𝑢2𝑥+𝑢2𝑦+𝑢2𝑧)

2 − 2𝑢𝑥𝑢𝑧
(𝑢2𝑥+𝑢2𝑦+𝑢2𝑧)

2

𝑢𝑥√𝑢2𝑦+𝑢2𝑧

(𝑢2𝑥+𝑢2𝑦+𝑢2𝑧)
3
2

𝑢𝑦√𝑢2𝑦+𝑢2𝑧

(𝑢2𝑥+𝑢2𝑦+𝑢2𝑧)
3
2

𝑢𝑧√𝑢2𝑦+𝑢2𝑧

(𝑢2𝑥+𝑢2𝑦+𝑢2𝑧)
3
2

0 0 0

⎤
⎥
⎥
⎥
⎥
⎦

, (C.7)

𝜕𝑅𝑅𝑅𝑌𝑍
𝜕𝑢𝑦

=

⎡
⎢
⎢
⎢
⎢
⎣

− 2𝑢𝑥𝑢𝑦
(𝑢2𝑥+𝑢2𝑦+𝑢2𝑧)

2
𝑢2𝑥−𝑢2𝑦+𝑢2𝑧
(𝑢2𝑥+𝑢2𝑦+𝑢2𝑧)

2 − 2𝑢𝑦𝑢𝑧
(𝑢2𝑥+𝑢2𝑦+𝑢2𝑧)

2

− 𝑢2𝑥𝑢𝑦

(𝑢2𝑥+𝑢2𝑧)
1
2 (𝑢2𝑥+𝑢2𝑦+𝑢2𝑧)

3
2

𝑢𝑥(𝑢2𝑥𝑢𝑧2−𝑢4𝑦+𝑢4𝑧)

(𝑢2𝑦+𝑢2𝑧)
3
2 (𝑢2𝑥+𝑢2𝑦+𝑢2𝑧)

3
2

− 𝑢𝑥𝑢𝑦𝑢𝑧(𝑢2𝑥+2𝑢2𝑦+2𝑢2𝑧)

(𝑢2𝑦+𝑢2𝑧)
3
2 (𝑢2𝑥+𝑢2𝑦+𝑢2𝑧)

3
2

0 𝑢𝑦𝑢𝑧

(𝑢2𝑦+𝑢2𝑧)
3
2

𝑢2𝑧

(𝑢2𝑦+𝑢2𝑧)
3
2

⎤
⎥
⎥
⎥
⎥
⎦

, (C.8)

𝜕𝑅𝑅𝑅𝑌𝑍
𝜕𝑢𝑧

=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

− 2𝑢𝑥𝑢𝑧
(𝑢2𝑥+𝑢2𝑦+𝑢2𝑧)

2 − 2𝑢𝑦𝑢𝑧
(𝑢2𝑥+𝑢2𝑦+𝑢2𝑧)

2
𝑢2𝑥+𝑢2𝑦−𝑢2𝑧
(𝑢2𝑥+𝑢2𝑦+𝑢2𝑧)

2

− 𝑢2𝑥𝑢𝑧

(𝑢2𝑥+𝑢2𝑧)
1
2 (𝑢2𝑥+𝑢2𝑦+𝑢2𝑧)

3
2

− 𝑢𝑥𝑢𝑦𝑢𝑧(𝑢2𝑥+2𝑢2𝑦+2𝑢2𝑧)

(𝑢2𝑦+𝑢2𝑧)
3
2 (𝑢2𝑥+𝑢2𝑦+𝑢2𝑧)

3
2

𝑢𝑥(𝑢2𝑥𝑢𝑦2+𝑢4𝑦−𝑢4𝑧)

(𝑢2𝑦+𝑢2𝑧)
3
2 (𝑢2𝑥+𝑢2𝑦+𝑢2𝑧)

3
2

0 − 𝑢2𝑦

(𝑢2𝑦+𝑢2𝑧)
3
2

− 𝑢𝑦𝑢𝑧

(𝑢2𝑦+𝑢2𝑧)
3
2

⎤
⎥
⎥
⎥
⎥
⎥
⎦

. (C.9)

𝜕𝑢𝑥
𝜕𝑠𝑗

, 𝜕𝑢𝑦𝜕𝑠𝑗
, 𝜕𝑢𝑧𝜕𝑠𝑗

could be further solved with

⎡
⎢
⎢
⎢
⎣

𝜕𝑢𝑥
𝜕𝑠𝑗
𝜕𝑢𝑦
𝜕𝑠𝑗
𝜕𝑢𝑧
𝜕𝑠𝑗

⎤
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢
⎣

∑ 𝜕𝑢𝑥
𝜕𝑑𝑖𝑥

𝜕𝑑𝑖𝑥
𝜕𝑠𝑗

+ ∑ 𝜕𝑢𝑥
𝜕𝑑𝑖𝑦

𝜕𝑑𝑖𝑦
𝜕𝑠𝑗

+ ∑ 𝜕𝑢𝑥
𝜕𝑑𝑖𝑧

𝜕𝑑𝑖𝑧
𝜕𝑠𝑗

∑ 𝜕𝑢𝑦
𝜕𝑑𝑖𝑥

𝜕𝑑𝑖𝑥
𝜕𝑠𝑗

+ ∑ 𝜕𝑢𝑦
𝜕𝑑𝑖𝑦

𝜕𝑑𝑖𝑦
𝜕𝑠𝑗

+ ∑ 𝜕𝑢𝑦
𝜕𝑑𝑖𝑧

𝜕𝑑𝑖𝑧
𝜕𝑠𝑗

∑ 𝜕𝑢𝑧
𝜕𝑑𝑖𝑥

𝜕𝑑𝑖𝑥
𝜕𝑠𝑗

+ ∑ 𝜕𝑢𝑧
𝜕𝑑𝑖𝑦

𝜕𝑑𝑖𝑦
𝜕𝑠𝑗

+ ∑ 𝜕𝑢𝑧
𝜕𝑑𝑖𝑧

𝜕𝑑𝑖𝑧
𝜕𝑠𝑗

⎤
⎥
⎥
⎥
⎦

, (C.10)

where
𝜕𝑢𝑥
𝜕𝑑𝑖𝑥

=
(∑𝑑𝑖𝑦)

2 + (∑𝑑𝑖𝑧)
2

𝑁[(∑𝑑𝑖𝑥)
2 + (∑𝑑𝑖𝑦)

2 + (∑𝑑𝑖𝑧)
2]

3
2
, (C.11)

𝜕𝑢𝑦
𝜕𝑑𝑖𝑦

=
(∑𝑑𝑖𝑥)

2 + (∑𝑑𝑖𝑧)
2

𝑁[(∑𝑑𝑖𝑥)
2 + (∑𝑑𝑖𝑦)

2 + (∑𝑑𝑖𝑧)
2]

3
2
, (C.12)

𝜕𝑢𝑧
𝜕𝑑𝑖𝑧

=
(∑𝑑𝑖𝑥)

2 + (∑𝑑𝑖𝑦)
2

𝑁[(∑𝑑𝑖𝑥)
2 + (∑𝑑𝑖𝑦)

2 + (∑𝑑𝑖𝑧)
2]

3
2
, (C.13)

𝜕𝑢𝑥
𝜕𝑑𝑖𝑦

=
𝜕𝑢𝑦
𝜕𝑑𝑖𝑥

= −
∑𝑑𝑖𝑥 ∑𝑑𝑖𝑦

𝑁[(∑𝑑𝑖𝑥)
2 + (∑𝑑𝑖𝑦)

2 + (∑𝑑𝑖𝑧)
2]

3
2
, (C.14)

𝜕𝑢𝑥
𝜕𝑑𝑖𝑧

= 𝜕𝑢𝑧
𝜕𝑑𝑖𝑥

= −
∑𝑑𝑖𝑥 ∑𝑑𝑖𝑧

𝑁[(∑𝑑𝑖𝑥)
2 + (∑𝑑𝑖𝑦)

2 + (∑𝑑𝑖𝑧)
2]

3
2
, (C.15)

𝜕𝑢𝑦
𝜕𝑑𝑖𝑧

= 𝜕𝑢𝑧
𝜕𝑑𝑖𝑦

= −
∑𝑑𝑖𝑦 ∑𝑑𝑖𝑧

𝑁[(∑𝑑𝑖𝑥)
2 + (∑𝑑𝑖𝑦)

2 + (∑𝑑𝑖𝑧)
2]

3
2
. (C.16)
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To solve 𝜕𝑑𝑖𝑥,𝑦,𝑧
𝜕𝑠𝑗

, let 𝐷𝐷𝐷 = 𝑑𝑑𝑑01 ×𝑑𝑑𝑑02. Therefore, equation A.2 becomes

𝑑𝑑𝑑𝑖 = 𝑠𝑖𝑔𝑛
𝐷𝐷𝐷
|𝐷𝐷𝐷| = 𝑠𝑖𝑔𝑛

1

√𝐷2𝑥 + 𝐷2𝑦 + 𝐷2𝑧
(𝐷𝑥 , 𝐷𝑦 , 𝐷𝑧) , (C.17)

and

⎡
⎢
⎢
⎢
⎣

𝜕𝑑𝑖𝑥
𝜕𝑠𝑗
𝜕𝑑𝑖𝑦
𝜕𝑠𝑗
𝜕𝑑𝑖𝑧
𝜕𝑠𝑗

⎤
⎥
⎥
⎥
⎦

= 𝑠𝑖𝑔𝑛
⎡
⎢
⎢
⎢
⎣

𝜕𝑑𝑖𝑥
𝜕𝐷𝑥

𝜕𝐷𝑥
𝜕𝑠𝑗

+ 𝜕𝑑𝑖𝑥
𝜕𝐷𝑦

𝜕𝐷𝑦
𝜕𝑠𝑗

+ 𝜕𝑑𝑖𝑥
𝜕𝐷𝑧

𝜕𝐷𝑧
𝜕𝑠𝑗

𝜕𝑑𝑖𝑦
𝜕𝐷𝑥

𝜕𝐷𝑥
𝜕𝑠𝑗

+ 𝜕𝑑𝑖𝑦
𝜕𝐷𝑦

𝜕𝐷𝑦
𝜕𝑠𝑗

+ 𝜕𝑑𝑖𝑦
𝜕𝐷𝑧

𝜕𝐷𝑧
𝜕𝑠𝑗

𝜕𝑑𝑖𝑧
𝜕𝐷𝑥

𝜕𝐷𝑥
𝜕𝑠𝑗

+ 𝜕𝑑𝑖𝑧
𝜕𝐷𝑦

𝜕𝐷𝑦
𝜕𝑠𝑗

+ 𝜕𝑑𝑖𝑧
𝜕𝐷𝑧

𝜕𝐷𝑧
𝜕𝑠𝑗

⎤
⎥
⎥
⎥
⎦

, (C.18)

where,
𝜕𝑑𝑖𝑥
𝜕𝐷𝑥

=
𝐷2𝑦 + 𝐷2𝑧

(𝐷2𝑥 + 𝐷2𝑦 + 𝐷2𝑧 )
3
2
, (C.19)

𝜕𝑑𝑖𝑦
𝜕𝐷𝑦

= 𝐷2𝑥 + 𝐷2𝑧
(𝐷2𝑥 + 𝐷2𝑦 + 𝐷2𝑧 )

3
2
, (C.20)

𝜕𝑑𝑖𝑧
𝜕𝐷𝑧

=
𝐷2𝑥 + 𝐷2𝑦

(𝐷2𝑥 + 𝐷2𝑦 + 𝐷2𝑧 )
3
2
, (C.21)

𝜕𝑑𝑖𝑥
𝜕𝐷𝑦

=
𝜕𝑑𝑖𝑦
𝜕𝐷𝑥

= −
𝐷𝑥𝐷𝑦

(𝐷2𝑥 + 𝐷2𝑦 + 𝐷2𝑧 )
3
2
, (C.22)

𝜕𝑑𝑖𝑥
𝜕𝐷𝑧

= 𝜕𝑑𝑖𝑧
𝜕𝐷𝑥

= − 𝐷𝑥𝐷𝑧
(𝐷2𝑥 + 𝐷2𝑦 + 𝐷2𝑧 )

3
2
, (C.23)

𝜕𝑑𝑖𝑦
𝜕𝐷𝑧

= 𝜕𝑑𝑖𝑧
𝜕𝐷𝑦

= −
𝐷𝑦𝐷𝑧

(𝐷2𝑥 + 𝐷2𝑦 + 𝐷2𝑧 )
3
2
, (C.24)

𝜕𝐷𝐷𝐷
𝜕𝑠𝑗

= 𝜕𝑑𝑑𝑑01
𝜕𝑠𝑗

×𝑑𝑑𝑑02 +𝑑𝑑𝑑01 ×
𝜕𝑑𝑑𝑑02
𝜕𝑠𝑗

, (C.25)

𝜕𝑑𝑑𝑑01
𝜕𝑠𝑗

= 𝜕𝑥𝑥𝑥1
𝜕𝑠𝑗

− 𝜕𝑥
𝑥𝑥0
𝜕𝑠𝑗

, (C.26)

𝜕𝑑𝑑𝑑02
𝜕𝑠𝑗

= 𝜕𝑥𝑥𝑥2
𝜕𝑠𝑗

− 𝜕𝑥
𝑥𝑥0
𝜕𝑠𝑗

. (C.27)

The derivative of nodal stress with respect to design variable 𝑠𝑗 is given by

𝜕𝜎𝜎𝜎 (𝑥𝑥𝑥𝑖)
𝜕𝑠𝑗

= 𝜕𝜎𝜎𝜎 (𝑥𝑥𝑥𝑖)
𝜕𝑥𝑥𝑥𝑛

𝜕𝑥𝑥𝑥𝑛
𝜕𝑠𝑗

= 1
𝑁𝑖
𝜕 (∑𝐸𝐸𝐸𝜎 (𝑥𝑥𝑥𝑖) �̂�𝜎𝜎𝑒)

𝜕𝑥𝑥𝑥𝑛
𝜕𝑥𝑥𝑥𝑛
𝜕𝑠𝑗

= 1
𝑁𝑖
∑(𝜕𝐸

𝐸𝐸𝜎 (𝑥𝑥𝑥𝑖)
𝜕𝑥𝑥𝑥𝑛

�̂�𝜎𝜎𝑒 +𝐸𝐸𝐸𝜎 (𝑥𝑥𝑥𝑖)
𝜕�̂�𝜎𝜎𝑒
𝜕𝑥𝑥𝑥𝑛

) 𝜕𝑥
𝑥𝑥𝑛
𝜕𝑠𝑗

. (C.28)

The derivatives of 𝐸𝐸𝐸𝜎 with respect to 𝑥𝑥𝑥𝑛 are given by

𝜕𝐸𝐸𝐸𝜎
𝜕𝑥𝑥𝑥𝑛

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝜕𝑒𝑒𝑒𝜎
𝜕𝑥𝑥𝑥𝑛 𝜕𝑒𝑒𝑒𝜎

𝜕𝑥𝑥𝑥𝑛 𝜕𝑒𝑒𝑒𝜎
𝜕𝑥𝑥𝑥𝑛 𝜕𝑒𝑒𝑒𝜎

𝜕𝑥𝑥𝑥𝑛 𝜕𝑒𝑒𝑒𝜎
𝜕𝑥𝑥𝑥𝑛 𝜕𝑒𝑒𝑒𝜎

𝜕𝑥𝑥𝑥𝑛

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (C.29)
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where 𝜕𝐸𝐸𝐸𝜎
𝜕𝑥𝑥𝑥𝑛

represents 𝜕𝐸𝐸𝐸𝜎
𝜕𝑥𝑛

, 𝜕𝐸𝐸𝐸𝜎𝜕𝑦𝑛
and 𝜕𝐸𝐸𝐸𝜎

𝜕𝑧𝑛
; 𝜕𝑒𝑒𝑒𝜎𝜕𝑥𝑥𝑥𝑛

represents 𝜕𝑒𝑒𝑒𝜎
𝜕𝑥𝑛

, 𝜕𝑒𝑒𝑒𝜎𝜕𝑦𝑛
and 𝜕𝑒𝑒𝑒𝜎

𝜕𝑧𝑛
. 𝜕𝑒𝑒𝑒𝜎𝜕𝑥𝑥𝑥𝑛

are given by

𝜕𝑒𝑒𝑒𝜎
𝜕𝑥𝑛

= [0 1 0 0 𝑦 0 𝑧 2𝑥 0 0] , (C.30)

𝜕𝑒𝑒𝑒𝜎
𝜕𝑦𝑛

= [0 0 1 0 𝑥 𝑧 0 0 2𝑦 0] , (C.31)

𝜕𝑒𝑒𝑒𝜎
𝜕𝑧𝑛

= [0 0 0 1 0 𝑦 𝑥 0 0 2𝑧] . (C.32)

To find 𝜕�̂�𝜎𝜎𝑒
𝜕𝑥𝑥𝑥𝑛

, derivative of Equation 2.27 need to be taken. For simplicity, let

𝐴𝐴𝐴𝑒 = [ ∫𝑒 �̄�𝐸𝐸
⊺
𝜎𝐸𝐸𝐸𝜎d𝑒

∫𝑒 𝐸𝐸𝐸⊺𝜁𝜕𝜕𝜕𝜎𝐸𝐸𝐸𝜎d𝑒
] , 𝐵𝐵𝐵𝑒1 = ∫

𝑒
�̄�𝐸𝐸⊺𝜎𝜎𝜎𝜎ℎ𝑒d𝑒, 𝐵𝐵𝐵𝑒2 = −∫

𝑒
𝐸𝐸𝐸⊺𝜁𝑏𝑏𝑏d𝑒. (C.33)

Therefore, the corresponding derivative of Equation 2.27 is expressed as

(∑
𝑒∈𝜀𝑖

𝜕𝐴𝐴𝐴𝑒
𝜕𝑥𝑥𝑥𝑛

)�̂�𝜎𝜎𝑒 + (∑
𝑒∈𝜀𝑖

𝐴𝐴𝐴𝑒)
𝜕�̂�𝜎𝜎𝑒
𝜕𝑥𝑥𝑥𝑛

= ∑
𝑒∈𝜀𝑖

[
𝜕𝐵𝐵𝐵𝑒1
𝜕𝑥𝑥𝑥𝑛𝜕𝐵𝐵𝐵𝑒2
𝜕𝑥𝑥𝑥𝑛

] . (C.34)

According to Equation C.34, the derivative of �̂�𝜎𝜎𝑒 with respect to 𝑥𝑥𝑥𝑛 is given by

𝜕�̂�𝜎𝜎𝑒
𝜕𝑥𝑥𝑥𝑛

= (∑
𝑒∈𝜀𝑖

𝐴𝐴𝐴𝑒)

−1

{∑
𝑒∈𝜀𝑖

[
𝜕𝐵𝐵𝐵𝑒1
𝜕𝑥𝑥𝑥𝑛𝜕𝐵𝐵𝐵𝑒2
𝜕𝑥𝑥𝑥𝑛

] − (∑
𝑒∈𝜀𝑖

𝜕𝐴𝐴𝐴𝑒
𝜕𝑥𝑥𝑥𝑛

)�̂�𝜎𝜎𝑒}, (C.35)

where ∑𝑒∈𝜀𝑖 𝐴𝐴𝐴𝑒, 𝐵𝐵𝐵𝑒1 and 𝐵𝐵𝐵𝑒2 can be found by substituting Appendix B into the expressions.
The last term, the derivative of 𝑥𝑥𝑥𝑛 with respect to the design variable 𝑠𝑗 is found by

𝜕𝑥𝑥𝑥𝑛
𝜕𝑠𝑗

= 𝜕𝑥𝑥𝑥𝑛
𝜕𝜙𝑙

𝜕𝜙𝑙
𝜕𝑠𝑗

+ 𝜕𝑥𝑥𝑥𝑛
𝜕𝜙𝑚

𝜕𝜙𝑚
𝜕𝑠𝑗

, (C.36)

where, by taking derivative of Equation 2.15,

𝜕𝑥𝑥𝑥𝑛
𝜕𝜙𝑙

= − 𝜙𝑚
(𝜙𝑚 − 𝜙𝑙)

2 (𝑥𝑥𝑥𝑚 −𝑥𝑥𝑥𝑙) , (C.37)

and
𝜕𝑥𝑥𝑥𝑛
𝜕𝜙𝑚

= − 𝜙𝑙
(𝜙𝑚 − 𝜙𝑙)

2 (𝑥𝑥𝑥𝑚 −𝑥𝑥𝑥𝑙) . (C.38)

According to Equation 2.16,
𝜕𝜙𝑙
𝜕𝑠𝑗

= 𝜗𝑗 (𝑥𝑥𝑥𝑙) , (C.39)

and
𝜕𝜙𝑚
𝜕𝑠𝑗

= 𝜗𝑗 (𝑥𝑥𝑥𝑚) . (C.40)

C.2. 𝜕𝐽𝜕𝑈𝑈𝑈
The derivative of 𝐽 with respect to displacement 𝑈𝑈𝑈 is

𝜕𝐽
𝜕𝑈𝑈𝑈 = (

1
𝑁𝑛𝑜𝑑𝑒

)
1
𝑝 1
𝑝 (

𝑁𝑛𝑜𝑑𝑒
∑
𝑖=1

𝐺𝑝𝑖 )

1
𝑝−1

(
𝑁𝑛𝑜𝑑𝑒
∑
𝑖=1

𝑝𝐺𝑝−1𝑖
𝜕𝐺𝑖
𝜕𝑈𝑈𝑈 ) , (C.41)



C.3. Derivative of stiffness matrix 39

where
𝜕𝐺𝑖
𝜕𝑈𝑈𝑈 = 𝜋𝜖

𝜇�̄� (𝑀𝑀𝑀
⊺
2𝑅𝑅𝑅
𝜕𝜎𝜎𝜎⊺
𝜕𝑈𝑈𝑈 𝑅𝑅𝑅

⊺𝑀𝑀𝑀⊺
1𝐻′𝐻′𝐻′𝑀𝑀𝑀1𝑅𝑅𝑅𝜎𝜎𝜎𝑅𝑅𝑅⊺𝑀𝑀𝑀2) . (C.42)

The derivative of nodal stress with respect to displacement 𝑈𝑈𝑈 is

𝜕𝜎𝜎𝜎 (𝑥𝑥𝑥𝑖)
𝜕𝑈𝑈𝑈 = 1

𝑁𝑖
𝜕 (∑𝐸𝐸𝐸𝜎 (𝑥𝑥𝑥𝑖) �̂�𝜎𝜎𝑒)

𝜕𝑈𝑈𝑈 = 𝐸𝐸𝐸𝜎 (𝑥𝑥𝑥𝑖)∑
̂𝜕𝜎𝜎𝜎𝑒
𝜕𝑈𝑈𝑈 , (C.43)

where

𝜕�̂�𝜎𝜎𝑒
𝜕𝑥𝑥𝑥𝑛

= (∑
𝑒∈𝜀𝑖

𝐴𝐴𝐴𝑒)

−1

{∑
𝑒∈𝜀𝑖

[
𝜕𝐵𝐵𝐵𝑒1
𝜕𝑈𝑈𝑈𝜕𝐵𝐵𝐵𝑒2
𝜕𝑈𝑈𝑈

] − (∑
𝑒∈𝜀𝑖

𝜕𝐴𝐴𝐴𝑒
𝜕𝑈𝑈𝑈 )�̂�𝜎𝜎𝑒} = (∑

𝑒∈𝜀𝑖

𝐴𝐴𝐴𝑒)

−1

∑
𝑒∈𝜀𝑖

[
𝜕𝐵𝐵𝐵𝑒1
𝜕𝑈𝑈𝑈𝜕𝐵𝐵𝐵𝑒2
𝜕𝑈𝑈𝑈

] . (C.44)

The second therm 𝜕𝐴𝐴𝐴𝑒
𝜕𝑈𝑈𝑈 is deleted because according to Equation C.33, 𝐴𝐴𝐴𝑒 is not related to 𝑈𝑈𝑈.

C.3. 𝜕𝐾𝐾𝐾𝜕𝑠𝑗
According to Equation 2.8, the derivative of element stiffness 𝑘𝑘𝑘𝑒 with respect to 𝑥𝑥𝑥𝑛 is

𝜕𝑘𝑘𝑘𝑒
𝜕𝑥𝑥𝑥𝑛

= ∫
𝑒
( 𝜕𝑗𝑒𝜕𝑥𝑥𝑥𝑛

𝐵𝐵𝐵⊺𝐷𝐷𝐷𝐵𝐵𝐵 + 𝑗𝑒
𝜕𝐵𝐵𝐵⊺
𝜕𝑥𝑥𝑥𝑛

𝐷𝐷𝐷𝐵𝐵𝐵 + 𝑗𝑒𝐵𝐵𝐵⊺𝐷𝐷𝐷
𝜕𝐵𝐵𝐵
𝜕𝑥𝑥𝑥𝑛

)d𝜉𝜉𝜉, (C.45)

where
𝜕𝐵𝐵𝐵
𝜕𝑥𝑥𝑥𝑛

= [𝜕Δ
⊺
𝜉𝜉𝜉𝑁𝑁𝑁⊺

𝜕𝑥𝑥𝑥𝑛
𝐽𝐽𝐽−𝑇 + Δ⊺𝜉𝜉𝜉𝑁𝑁𝑁⊺

𝜕𝐽𝐽𝐽−𝑇
𝜕𝑥𝑥𝑥𝑛

𝜕Δ⊺𝜉𝜉𝜉𝜓𝜓𝜓⊺

𝜕𝑥𝑥𝑥𝑛
𝐽𝐽𝐽−𝑇𝑒 + Δ⊺𝜉𝜉𝜉𝜓𝜓𝜓⊺

𝜕𝐽𝐽𝐽−𝑇𝑒
𝜕𝑥𝑥𝑥𝑛

] = [0 Δ⊺𝜉𝜉𝜉𝜓𝜓𝜓⊺
𝜕𝐽𝐽𝐽−𝑇𝑒
𝜕𝑥𝑥𝑥𝑛

] . (C.46)

The first element is eliminated because the derivative of the shape function derivatives of linear tetra-

hedral element
𝜕Δ⊺𝜉𝜉𝜉𝑁𝑁𝑁⊺

𝜕𝜉𝜉𝜉𝑝
= 0, which means

𝜕Δ⊺𝜉𝜉𝜉𝑁𝑁𝑁⊺

𝜕𝑥𝑥𝑥𝑛
=

𝜕Δ⊺𝜉𝜉𝜉𝑁𝑁𝑁⊺

𝜕𝜉𝜉𝜉𝑝
𝜕𝜉𝜉𝜉𝑝
𝜕𝑥𝑥𝑥

𝜕𝑥𝑥𝑥
𝜕𝑥𝑥𝑥𝑛

= 0, and the Jacobian of the parent

element is not related to the coordinates of enriched nodes so 𝜕𝐽𝐽𝐽
𝜕𝑥𝑥𝑥𝑛

= 0. 𝜉𝜉𝜉𝑝 represents the natural coor-
dinates of the mapped parent element. The first term of the second element is also eliminated because

the derivative of the enrichment derivatives is also zero (
𝜕Δ⊺𝜉𝜉𝜉𝜓𝜓𝜓⊺

𝜕𝜉𝜉𝜉𝑝
= 0) and

𝜕Δ⊺𝜉𝜉𝜉𝜓𝜓𝜓⊺

𝜕𝑥𝑥𝑥𝑛
=

𝜕Δ⊺𝜉𝜉𝜉𝜓𝜓𝜓⊺

𝜕𝜉𝜉𝜉𝑒
𝜕𝜉𝜉𝜉𝑒
𝜕𝑥𝑥𝑥

𝜕𝑥𝑥𝑥
𝜕𝑥𝑥𝑥𝑛

= 0,
where 𝜉𝜉𝜉𝑒 represents the natural coordinates of the mapped integration element.

In Equation C.45 and Equation C.46, the the derivative of the determinant and inverse of the Jaco-
bian matrix of the integration elements are needed. According to Magnus and Neudecker (2019), the
derivative of a determinant of a Jacobian matrix can be found by the trace of the multiplication of the
Jacobian’s adjugate (adj (𝐽𝐽𝐽𝑒) = 𝑗𝑒𝐽𝐽𝐽−𝑇𝑒 ) and the derivative of the Jacobian, which is

𝜕𝑗𝑒
𝜕𝑥𝑥𝑥𝑛

= tr(adj (𝐽𝐽𝐽𝑒)
𝜕𝐽𝐽𝐽𝑒
𝜕𝑥𝑥𝑥𝑒

) (C.47)

The derivative of the inverse Jacobian can be found by taking the derivative of 𝐽𝐽𝐽𝑒𝐽𝐽𝐽−1𝑒 = 𝐼𝐼𝐼:

𝜕𝐽𝐽𝐽𝑒𝐽𝐽𝐽−1𝑒
𝜕𝑥𝑥𝑥𝑛

= 𝜕𝐽𝐽𝐽𝑒
𝜕𝑥𝑥𝑥𝑛

𝐽𝐽𝐽−1𝑒 + 𝐽𝐽𝐽𝑒
𝜕𝐽𝐽𝐽−1𝑒
𝜕𝑥𝑥𝑥𝑛

= 𝜕𝐼𝐼𝐼
𝜕𝑥𝑥𝑥𝑛

= 0. (C.48)

Therefore, the derivative of the inverse Jacobian can also be expressed in terms of derivative of the
Jacobian:

𝜕𝐽𝐽𝐽−1𝑒
𝜕𝑥𝑥𝑥𝑛

= −𝐽𝐽𝐽−1𝑒
𝜕𝐽𝐽𝐽𝑒
𝜕𝑥𝑥𝑥𝑛

𝐽𝐽𝐽−1𝑒 , (C.49)

where 𝜕𝐽𝐽𝐽𝑒
𝜕𝑥𝑥𝑥𝑛

can be found in Appendix D.
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C.4. 𝜕𝑓𝑓𝑓𝑒𝜕𝑥𝑥𝑥𝑛
Taking derivative of Equation 2.9 with respect to 𝑥𝑥𝑥𝑛:

𝜕𝑓𝑓𝑓𝑒
𝜕𝑥𝑥𝑥𝑛

= ∫
𝑒
([

𝜕𝑁𝑁𝑁
𝜕𝑥𝑥𝑥𝑛
000
] 𝑗𝑒𝑏𝑏𝑏 + [

𝑁𝑁𝑁
𝜓𝜓𝜓]

𝜕𝑗𝑒
𝜕𝑥𝑥𝑥𝑛

𝑏𝑏𝑏)d𝜉𝜉𝜉 + ∫
𝜕𝑒∩Γ⊺

([
𝜕𝑁𝑁𝑁
𝜕𝑥𝑥𝑥𝑛
000
] 𝑗𝑒�̄�𝑡𝑡 + [

𝑁𝑁𝑁
𝜓𝜓𝜓]

𝜕𝑗𝑒
𝜕𝑥𝑥𝑥𝑛

�̄�𝑡𝑡)d𝜕𝜉𝜉𝜉. (C.50)

Because body force is neglected in this work, so further derivation of the first term will not be given.
𝜕𝑁𝑁𝑁
𝜕𝑥𝑥𝑥𝑛

is given in Appendix D; 𝜕𝜓𝜓𝜓
𝜕𝑥𝑥𝑥𝑛

= 0 because the enrichment functions in reference coordinates are
not affected by the position of the enriched nodes. The derivative of determinant of Jacabian is given
in Appendix E.



D
Isoparametric Mapping of integration

Elements and Normal Jacobian

In FEM, the functions evaluated on integration elements are done by numerical methods, so isopara-
metric mapping needs to be applied to map the integration element to the natural coordinates. The
global coordinate 𝑥𝑥𝑥 can be expressed with and natural coordinates of the integration and parent ele-
ments:

𝑥𝑥𝑥 = 𝑥𝑥𝑥⊺𝑒𝑁𝑁𝑁𝑒(𝜉𝜉𝜉𝑒) = 𝑥𝑥𝑥⊺𝑝𝑁𝑁𝑁(𝜉𝜉𝜉𝑝), (D.1)

where 𝑁𝑁𝑁𝑒 and 𝑁𝑁𝑁 are matrices consist of the linear Lagrangian shape functions of the integration and
parent elements separately; 𝑥𝑥𝑥𝑒 and 𝑥𝑥𝑥𝑝 are the global coordinates of the nodes in integration and global
elements.

The Jacobians of both both mappings are

𝐽𝐽𝐽𝑒 =
𝜕𝑥𝑥𝑥
𝜕𝜉𝑒𝜉𝑒𝜉𝑒

= 𝑥𝑥𝑥⊺𝑒
𝜕𝑁𝑁𝑁𝑒
𝜕𝜉𝜉𝜉𝑒

(D.2)

and

𝐽𝐽𝐽 = 𝜕𝑥𝑥𝑥
𝜕𝜉𝜉𝜉𝑝

= 𝑥𝑥𝑥⊺𝑝
𝜕𝑁𝑁𝑁
𝜕𝜉𝜉𝜉𝑝

, (D.3)

respectively.
The derivative of 𝐽𝐽𝐽𝑒 with respect to 𝑥𝑥𝑥𝑛 is

𝜕𝐽𝐽𝐽𝑒
𝜕𝑥𝑥𝑥𝑛

= 𝜕𝑥𝑥𝑥⊺𝑒
𝜕𝑥𝑥𝑥𝑛

𝜕𝑁𝑁𝑁𝑒
𝜕𝜉𝜉𝜉𝑒

+𝑥𝑥𝑥⊺𝑒
𝜕2𝑁𝑁𝑁𝑒
𝜕𝜉𝜉𝜉𝑒𝜕𝑥𝑥𝑥𝑛

= 𝜕𝑥𝑥𝑥⊺𝑒
𝜕𝑥𝑥𝑥𝑛

𝜕𝑁𝑁𝑁𝑒
𝜕𝜉𝜉𝜉𝑒

, (D.4)

where 𝜕𝑥𝑥𝑥𝑒
𝜕𝑥𝑥𝑥𝑛

is a matrix with one at the elements of enriched node 𝑛.

In Equation C.50, 𝜕𝑁𝑁𝑁
𝜕𝑥𝑥𝑥𝑛

is required and 𝜕𝑁𝑁𝑁
𝜕𝑥𝑥𝑥𝑛

can be further split by chain rule:

𝜕𝑁𝑁𝑁
𝜕𝑥𝑥𝑥𝑛

= 𝜕𝑁𝑁𝑁
𝜕𝜉𝜉𝜉𝑝

𝜕𝜉𝜉𝜉𝑝
𝜕𝑥𝑥𝑥

𝜕𝑥𝑥𝑥
𝜕𝑥𝑥𝑥𝑛

, (D.5)

where 𝜕𝜉𝜉𝜉𝑝
𝜕𝑥𝑥𝑥 can be found by the inverse mapping relationship in Equation D.1. For a parent tetrahedral
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element, Equation D.1 can be expanded as

𝑥𝑥𝑥 = [
𝑥𝑗,1 𝑥𝑘,1 𝑥𝑙,1 𝑥𝑚,1
𝑥𝑗,2 𝑥𝑘,2 𝑥𝑙,2 𝑥𝑚,2
𝑥𝑗,3 𝑥𝑘,3 𝑥𝑙,3 𝑥𝑚,3

]
⎡
⎢
⎢
⎣

1 − 𝜉1 − 𝜉2 − 𝜉3
𝜉1
𝜉2
𝜉3

⎤
⎥
⎥
⎦

= [
𝑥𝑗,1 + 𝜉1(𝑥𝑘,1 − 𝑥𝑗,1) + 𝜉2(𝑥𝑙,1 − 𝑥𝑗,1) + 𝜉3(𝑥𝑚,1 − 𝑥𝑗,1)
𝑥𝑗,2 + 𝜉1(𝑥𝑘,2 − 𝑥𝑗,2) + 𝜉2(𝑥𝑙,2 − 𝑥𝑗,2) + 𝜉3(𝑥𝑚,2 − 𝑥𝑗,2)
𝑥𝑗,3 + 𝜉1(𝑥𝑘,3 − 𝑥𝑗,3) + 𝜉2(𝑥𝑙,3 − 𝑥𝑗,3) + 𝜉3(𝑥𝑚,3 − 𝑥𝑗,3)

]

= [
𝑥𝑗,1
𝑥𝑗,2
𝑥𝑗,3
] + [

𝑥𝑘,1 − 𝑥𝑗,1 𝑥𝑙,1 − 𝑥𝑗,1 𝑥𝑚,1 − 𝑥𝑗,1
𝑥𝑘,2 − 𝑥𝑗,2 𝑥𝑙,2 − 𝑥𝑗,2 𝑥𝑚,2 − 𝑥𝑗,2
𝑥𝑘,3 − 𝑥𝑗,3 𝑥𝑙,3 − 𝑥𝑗,3 𝑥𝑚,3 − 𝑥𝑗,3

]
⏝⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏝

𝑀𝑀𝑀

[
𝜉1
𝜉2
𝜉3
] .

(D.6)

Therefore, the natural coordinates 𝜉𝜉𝜉𝑝 in parent element can be expressed by

𝜉𝜉𝜉𝑝 =𝑀𝑀𝑀−1𝑥𝑥𝑥 −𝑀𝑀𝑀−1 [
𝑥𝑗,1
𝑥𝑗,2
𝑥𝑗,3
] . (D.7)

Then, Equation D.5 can further be derived:

𝜕𝑁𝑁𝑁
𝜕𝑥𝑥𝑥𝑛

= 𝜕𝑁𝑁𝑁
𝜕𝜉𝜉𝜉𝑝

𝑀𝑀𝑀−1 𝜕𝑥𝑥𝑥𝑒
𝜕𝑥𝑥𝑥𝑛

𝑁𝑁𝑁𝑒 . (D.8)



E
Devloo’s Jacobian and its derivative

As has been explained in Section 2.1.1, a surface element is needed to integrate Equation 2.9. How-
ever, the Jacobian matrix of the element is a 3 × 2 matrix

𝐽𝐽𝐽𝑒 = 𝑥𝑥𝑥⊺𝑒
𝜕𝑁𝑁𝑁𝑒
𝜕𝜉𝜉𝜉𝑒

=
⎡
⎢
⎢
⎢
⎣

𝜕𝑥
𝜕𝜉

𝜕𝑥
𝜕𝜂

𝜕𝑦
𝜕𝜉

𝜕𝑦
𝜕𝜂

𝜕𝑧
𝜕𝜉

𝜕𝑧
𝜕𝜂

⎤
⎥
⎥
⎥
⎦

, (E.1)

which does not have a determinant nor inverse matrix.
Devloo (1997) provided a method for solving the issue:
For triangular elements in 3D spaces, defines:

𝐽𝜉 = √(
𝜕𝑥
𝜕𝜉 )

2 + (𝜕𝑦𝜕𝜉 )
2 + (𝜕𝑧𝜕𝜉 )

2, (E.2)

𝐽𝜂 = √(
𝜕𝑥
𝜕𝜂 )

2 + (𝜕𝑦𝜕𝜂 )
2 + (𝜕𝑧𝜕𝜂 )

2, (E.3)

𝑉𝑉𝑉1 =
1
𝐽𝜉
(𝜕𝑥𝜕𝜉 ,

𝜕𝑦
𝜕𝜉 ,

𝜕𝑧
𝜕𝜉 ), (E.4)

�̃�𝑉𝑉2 =
1
𝐽𝜂
(𝜕𝑥𝜕𝜂 ,

𝜕𝑦
𝜕𝜂 ,

𝜕𝑧
𝜕𝜂 ), (E.5)

𝑉𝑉𝑉2 =
�̃�𝑉𝑉2 − (�̃�𝑉𝑉2 ⋅ 𝑉𝑉𝑉1)𝑉𝑉𝑉1
||�̃�𝑉𝑉2 − (�̃�𝑉𝑉2 ⋅ 𝑉𝑉𝑉1)𝑉𝑉𝑉1||

, (E.6)

𝑉𝑉𝑉3 = 𝑉𝑉𝑉1 ×𝑉𝑉𝑉2. (E.7)

With the above definitions, the Jacobian matrix is transformed to

𝐽𝐽𝐽𝑒 = [
𝐽𝜉 𝑉𝑉𝑉1 ⋅ �̃�𝑉𝑉2𝐽𝜂
0 𝑉𝑉𝑉2 ⋅ �̃�𝑉𝑉2𝐽𝜂

] . (E.8)

Therefore, the Jacobian number is 𝑗𝑒 = 𝑑𝑒𝑡(𝐽𝐽𝐽𝑒) = 𝑉𝑉𝑉2 ⋅ �̃�𝑉𝑉2𝐽𝜉𝐽𝜂. Its derivative is calculated as follows:

𝜕𝑗𝑒
𝜕𝑥𝑥𝑥𝑛

= 𝜕𝑉𝑉𝑉2
𝜕𝑥𝑥𝑥𝑛

�̃�𝑉𝑉2𝐽𝜉𝐽𝜂 +𝑉𝑉𝑉2
𝜕�̃�𝑉𝑉2
𝜕𝑥𝑥𝑥𝑛

𝐽𝜉𝐽𝜂 +𝑉𝑉𝑉2�̃�𝑉𝑉2
𝜕𝐽𝜉
𝜕𝑥𝑥𝑥𝑛

𝐽𝜂 +𝑉𝑉𝑉2�̃�𝑉𝑉2𝐽𝜉
𝜕𝐽𝜂
𝜕𝑥𝑥𝑥𝑛

, (E.9)

where
𝜕𝐽𝜉
𝜕𝑥𝑥𝑥𝑛

= 1
𝐽𝜉
[𝜕𝑥𝜕𝜉

𝜕
𝜕𝑥𝑥𝑥𝑛

(𝜕𝑥𝜕𝜉 ) +
𝜕𝑦
𝜕𝜉

𝜕
𝜕𝑥𝑥𝑥𝑛

(𝜕𝑦𝜕𝜉 ) +
𝜕𝑧
𝜕𝜉

𝜕
𝜕𝑥𝑥𝑥𝑛

(𝜕𝑧𝜕𝜉 )], (E.10)
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𝜕𝐽𝜂
𝜕𝑥𝑥𝑥𝑛

= 1
𝐽𝜂
[𝜕𝑥𝜕𝜂

𝜕
𝜕𝑥𝑥𝑥𝑛

(𝜕𝑥𝜕𝜂 ) +
𝜕𝑦
𝜕𝜂

𝜕
𝜕𝑥𝑥𝑥𝑛

(𝜕𝑦𝜕𝜂 ) +
𝜕𝑧
𝜕𝜂

𝜕
𝜕𝑥𝑥𝑥𝑛

( 𝜕𝑧𝜕𝜂 )], (E.11)

𝜕�̃�𝑉𝑉2
𝜕𝑥𝑥𝑥𝑛

= − 1𝐽2𝜂
𝜕𝐽𝜂
𝜕𝑥𝑥𝑥𝑛

(𝜕𝑥𝜕𝜂 ,
𝜕𝑦
𝜕𝜂 ,

𝜕𝑧
𝜕𝜂 ) + 𝐽𝜉[

𝜕
𝜕𝑥𝑥𝑥𝑛

(𝜕𝑥𝜕𝜂 ) +
𝜕
𝜕𝑥𝑥𝑥𝑛

(𝜕𝑦𝜕𝜂 ) +
𝜕
𝜕𝑥𝑥𝑥𝑛

( 𝜕𝑧𝜕𝜂 )], (E.12)

𝜕𝑉𝑉𝑉2
𝜕𝑥𝑥𝑥𝑛

= ( 𝐼𝐼𝐼 −𝑉𝑉𝑉2 ⋅ 𝑉𝑉𝑉⊺2
||�̃�𝑉𝑉2 − (�̃�𝑉𝑉2 ⋅ 𝑉𝑉𝑉1)𝑉𝑉𝑉1||

)[𝜕�̃�
𝑉𝑉2
𝜕𝑥𝑥𝑥𝑛

− (𝜕�̃�
𝑉𝑉2
𝜕𝑥𝑥𝑥𝑛

⋅ 𝑉𝑉𝑉1 + �̃�𝑉𝑉2 ⋅
𝜕𝑉𝑉𝑉1
𝜕𝑥𝑥𝑥𝑛

)𝑉𝑉𝑉1 − (�̃�𝑉𝑉2 ⋅ 𝑉𝑉𝑉1)
𝜕𝑉𝑉𝑉1
𝜕𝑥𝑥𝑥𝑛

], (E.13)

𝜕𝑉𝑉𝑉1
𝜕𝑥𝑥𝑥𝑛

= − 1𝐽2𝜉
𝜕𝐽𝜉
𝜕𝑥𝑥𝑥𝑛

(𝜕𝑥𝜕𝜉 ,
𝜕𝑦
𝜕𝜉 ,

𝜕𝑧
𝜕𝜉 ) + 𝐽𝜉[

𝜕
𝜕𝑥𝑥𝑥𝑛

(𝜕𝑥𝜕𝜉 ) +
𝜕
𝜕𝑥𝑥𝑥𝑛

(𝜕𝑦𝜕𝜉 ) +
𝜕
𝜕𝑥𝑥𝑥𝑛

(𝜕𝑧𝜕𝜉 )], (E.14)

𝐼𝐼𝐼 = [1 0
0 1] . (E.15)



F
Weight Function Evaluation

In order to evaluate the weight functions a cuboid with a crack is modeled as shown in figure Figure F.1.
Three types of load (mode-I, II, and III) are applied to find the SIFs of the crack. An intact cuboid with
the same dimension and boundary conditions is also modeled to find the stress field. Weight functions
that relate the SIFs and the stress field can then be found.

(a) Mode I loading (b) Mode II loading (c) Mode III loading

Figure F.1: Test structure under mode-I, II, III loading

The domain integral method is used to evaluate the energy release rates and the𝑀1 integral method
(or ’interaction integral’) is used to extract SIFs (Nakamura & Parks, 1989)(Nagai et al., 2013)(Zhang et
al., 2019). An integration domain 𝑉(𝑠) for evaluating the fracture parameters at the crack front position
𝑠 is illustrated in Figure F.2. The domain has length 2𝜂 and radius 𝑟, and is enclosed by circular surface
at 𝑠 + 𝜂 and 𝑠 − 𝜂.

The local interaction energy release rate defined in terms of 𝑀1 integral:

𝐽(𝑠) =
∫𝑉(𝜎

(1)
𝑖𝑗

𝜕𝑢(2)𝑗
𝜕𝑥1

+ 𝜎(2)𝑖𝑗
𝜕𝑢(1)𝑗
𝜕𝑥1

− 𝜎(1)𝑗1 𝜖
(2)
𝑗1 𝛿1𝑖) ⋅

𝜕𝑞1
𝜕𝑥𝑖

d𝑉

∫𝑠+𝜂𝑠−𝜂 𝜇(𝑠)d𝑠
, (F.1)

where 𝜎, 𝜖, and 𝑢 represents stress, strain, and displacement separately; 𝑞1 is a test function continuous
in 𝑉(𝑠) and has zero value outside; 𝜇 is a function represents the virtual crack advance at point 𝑠 as
illustrated in Figure F.3; superscript (1) indicates actual field and (2) indicates auxiliary field.

The local interaction energy release rate can also be expressed in terms of the SIFs:

𝐽(𝑠) = 1 − 𝜈2
𝐸 (2𝐾(1)𝐼 𝐾(2)𝐼 + 2𝐾(1)𝐼𝐼 𝐾(2)𝐼𝐼 ) +

1 + 𝜈
𝐸 (2𝐾(1)𝐼𝐼𝐼 𝐾(2)𝐼𝐼𝐼 ). (F.2)
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Figure F.2: Integration domain at the crack front Figure F.3: Virtual crack advance function 𝜇

By setting the SIFs of the auxiliary fields as (𝑎) [𝐾(2)𝐼 = 1, 𝐾(2)𝐼𝐼 = 0, 𝐾(2)𝐼𝐼𝐼 = 0], (𝑏) [𝐾(2)𝐼 = 0, 𝐾(2)𝐼𝐼 =
1, 𝐾(2)𝐼𝐼𝐼 = 0], and (𝑐) [𝐾(2)𝐼 = 0, 𝐾(2)𝐼𝐼 = 0, 𝐾(2)𝐼𝐼𝐼 = 1], the SIFs can be found by

⎧

⎨
⎩

21−𝜈
2

𝐸 𝐾(1)𝐼 = 𝐽𝑎 ,
21−𝜈

2

𝐸 𝐾(1)𝐼𝐼 = 𝐽𝑏 ,
21+𝜈𝐸 𝐾

(1)
𝐼𝐼𝐼 = 𝐽𝑐 .

(F.3)

Under three different load modes, three sets of SIFs and stress fields can be found. The weight
functions in 𝐻𝐻𝐻 can then be solve by

1
√𝜋𝜖

[
𝐾(𝑖)𝐼 𝐾(𝑖𝑖)𝐼 𝐾(𝑖𝑖𝑖)𝐼
𝐾(𝑖)𝐼𝐼 𝐾(𝑖𝑖)𝐼𝐼 𝐾(𝑖𝑖𝑖)𝐼𝐼
𝐾(𝑖)𝐼𝐼𝐼 𝐾(𝑖𝑖)𝐼𝐼𝐼 𝐾(𝑖𝑖𝑖)𝐼𝐼𝐼

] = 𝐻𝐻𝐻 [
𝜎(𝑖)𝜃𝜃 𝜎(𝑖𝑖)𝜃𝜃 𝜎(𝑖𝑖𝑖)𝜃𝜃
𝜎(𝑖)𝑟𝜃 𝜎(𝑖𝑖)𝑟𝜃 𝜎(𝑖𝑖𝑖)𝑟𝜃
𝜎(𝑖)𝑧𝜃 𝜎(𝑖𝑖)𝑧𝜃 𝜎(𝑖𝑖𝑖)𝑧𝜃

] . (F.4)



G
Sensitivity for Extended Formulation

G.1. 𝜕𝐺𝑖𝜕𝑠𝑗
After adding the stress transformation matrix for the surface 1st principal stress, the sensitivity of ERR
is extended to

𝜕𝐺𝑖
𝜕𝑠𝑗

= 𝜋𝜖
𝜇�̄� (𝑀𝑀𝑀

⊺
2
𝜕𝑅𝑅𝑅𝑡
𝜕𝑠𝑗

𝑅𝑅𝑅𝜎𝜎𝜎⊺𝑅𝑅𝑅⊺𝑅𝑅𝑅⊺𝑡𝑀𝑀𝑀⊺
1𝐻′𝐻′𝐻′⊺𝐻′𝐻′𝐻′𝑀𝑀𝑀1𝑅𝑅𝑅𝑡𝑅𝑅𝑅𝜎𝜎𝜎𝑅𝑅𝑅⊺𝑅𝑅𝑅⊺𝑡𝑀𝑀𝑀2

+𝑀𝑀𝑀⊺
2𝑅𝑅𝑅𝑡

𝜕𝑅𝑅𝑅
𝜕𝑠𝑗

𝜎𝜎𝜎⊺𝑅𝑅𝑅⊺𝑅𝑅𝑅⊺𝑡𝑀𝑀𝑀⊺
1𝐻′𝐻′𝐻′⊺𝐻′𝐻′𝐻′𝑀𝑀𝑀1𝑅𝑅𝑅𝑡𝑅𝑅𝑅𝜎𝜎𝜎𝑅𝑅𝑅⊺𝑅𝑅𝑅⊺𝑡𝑀𝑀𝑀2

+𝑀𝑀𝑀⊺
2𝑅𝑅𝑅𝑡𝑅𝑅𝑅

𝜕𝜎𝜎𝜎⊺
𝜕𝑠𝑗

𝑅𝑅𝑅⊺𝑅𝑅𝑅⊺𝑡𝑀𝑀𝑀⊺
1𝐻′𝐻′𝐻′⊺𝐻′𝐻′𝐻′𝑀𝑀𝑀1𝑅𝑅𝑅𝑡𝑅𝑅𝑅𝜎𝜎𝜎𝑅𝑅𝑅⊺𝑅𝑅𝑅⊺𝑡𝑀𝑀𝑀2

+𝑀𝑀𝑀⊺
2𝑅𝑅𝑅𝑡𝑅𝑅𝑅𝜎𝜎𝜎⊺

𝜕𝑅𝑅𝑅⊺
𝜕𝑠𝑗

𝑅𝑅𝑅𝑡𝑀𝑀𝑀⊺
1𝐻′𝐻′𝐻′⊺𝐻′𝐻′𝐻′𝑀𝑀𝑀1𝑅𝑅𝑅𝑡𝑅𝑅𝑅𝜎𝜎𝜎𝑅𝑅𝑅⊺𝑅𝑅𝑅⊺𝑡𝑀𝑀𝑀2

+𝑀𝑀𝑀⊺
2𝑅𝑅𝑅𝑡𝑅𝑅𝑅𝜎𝜎𝜎⊺𝑅𝑅𝑅⊺

𝜕𝑅𝑅𝑅⊺𝑡
𝜕𝑠𝑗

𝑀𝑀𝑀⊺
1𝐻′𝐻′𝐻′⊺𝐻′𝐻′𝐻′𝑀𝑀𝑀1𝑅𝑅𝑅𝑡𝑅𝑅𝑅𝜎𝜎𝜎𝑅𝑅𝑅⊺𝑅𝑅𝑅⊺𝑡𝑀𝑀𝑀2) ,

(G.1)

where

𝜕𝑅𝑅𝑅𝑡
𝜕𝑠𝑗

= 𝜕𝑅𝑅𝑅𝑡
𝜕𝜃𝑝

(
𝜕𝜃𝑝
𝜕𝜎𝑦′𝑧′

𝜕𝜎𝑦′𝑧′
𝜕𝑠𝑗

+
𝜕𝜃𝑝
𝜕𝜎𝑦′𝑦′

𝜕𝜎𝑦′𝑦′
𝜕𝑠𝑗

+
𝜕𝜃𝑝
𝜕𝜎𝑧′𝑧′

𝜕𝜎𝑧′𝑧′
𝜕𝑠𝑗

)

= 𝜕𝑅𝑅𝑅𝑡
𝜕𝜃𝑝

⎛
⎜

⎝

[
𝜕𝜃𝑝
𝜕𝜎𝑦′𝑧′

𝜕𝜃𝑝
𝜕𝜎𝑦′𝑦′

𝜕𝜃𝑝
𝜕𝜎𝑧′𝑧′

]
⎡
⎢
⎢
⎢
⎣

𝜕𝜎𝑦′𝑧′
𝜕𝑠𝑗

𝜕𝜎𝑦′𝑦′
𝜕𝑠𝑗
𝜕𝜎𝑧′𝑧′
𝜕𝑠𝑗

⎤
⎥
⎥
⎥
⎦

⎞
⎟

⎠

.
(G.2)

In the above equation,
𝜕𝑅𝑅𝑅𝑡
𝜕𝜃𝑝

= [
0 0 0
0 − sin (𝜃𝑝) − cos (𝜃𝑝)
0 cos (𝜃𝑝) − sin (𝜃𝑝)

] , (G.3)

𝜕𝜃𝑝
𝜕𝜎𝑦′𝑧′

= ∓
𝜎𝑧′𝑧′ − 𝜎𝑦′𝑦′

(𝜎𝑧′𝑧′ − 𝜎𝑦′𝑦′)
2 + 4𝜎2𝑦′𝑧′

, (G.4)

𝜕𝜃𝑝
𝜕𝜎𝑦′𝑦′

= ∓
𝜎𝑦′𝑧′

(𝜎𝑧′𝑧′ − 𝜎𝑦′𝑦′)
2 + 4𝜎2𝑦′𝑧′

, (G.5)

𝜕𝜃𝑝
𝜕𝜎𝑦′𝑦′

= ±
𝜎𝑦′𝑧′

(𝜎𝑧′𝑧′ − 𝜎𝑦′𝑦′)
2 + 4𝜎2𝑦′𝑧′

. (G.6)
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48 G. Sensitivity for Extended Formulation

For the derivative of the local stresses in Equation G.2, first consider the derivation of the stresses
from the global stresses in an algebraic manner:

[
𝜎𝑦′𝑧′
𝜎𝑦′𝑦′
𝜎𝑧′𝑧′

] = [
0 0 1
0 1 0
0 0 0

]
⏝⎵⎵⏟⎵⎵⏝

𝑀𝑀𝑀3

𝑅𝑅𝑅𝜎𝜎𝜎𝑅𝑅𝑅⊺ [
0
1
0
]

⏟
𝑀𝑀𝑀2

+ [
0 0 0
0 0 0
0 0 1

]
⏝⎵⎵⏟⎵⎵⏝

𝑀𝑀𝑀4

𝑅𝑅𝑅𝜎𝜎𝜎𝑅𝑅𝑅⊺ [
0
0
1
]

⏟
𝑀𝑀𝑀5

. (G.7)

Therefore, the derivatives of the local stresses are evaluated by

⎡
⎢
⎢
⎢
⎣

𝜕𝜎𝑦′𝑧′
𝜕𝑠𝑗

𝜕𝜎𝑦′𝑦′
𝜕𝑠𝑗
𝜕𝜎𝑧′𝑧′
𝜕𝑠𝑗

⎤
⎥
⎥
⎥
⎦

=𝑀𝑀𝑀3
𝜕𝑅𝑅𝑅
𝜕𝑠𝑗
𝜎𝜎𝜎𝑅𝑅𝑅⊺𝑀𝑀𝑀2 +𝑀𝑀𝑀3𝑅𝑅𝑅

𝜕𝜎𝜎𝜎
𝜕𝑠𝑗
𝑅𝑅𝑅⊺𝑀𝑀𝑀2 +𝑀𝑀𝑀3𝑅𝑅𝑅𝜎𝜎𝜎

𝜕𝑅𝑅𝑅⊺
𝜕𝑠𝑗

𝑀𝑀𝑀2

+𝑀𝑀𝑀4
𝜕𝑅𝑅𝑅
𝜕𝑠𝑗
𝜎𝜎𝜎𝑅𝑅𝑅⊺𝑀𝑀𝑀5 +𝑀𝑀𝑀4𝑅𝑅𝑅

𝜕𝜎𝜎𝜎
𝜕𝑠𝑗
𝑅𝑅𝑅⊺𝑀𝑀𝑀5 +𝑀𝑀𝑀4𝑅𝑅𝑅𝜎𝜎𝜎

𝜕𝑅𝑅𝑅⊺
𝜕𝑠𝑗

𝑀𝑀𝑀5.

(G.8)

G.2. 𝜕𝐺𝑖𝜕𝑈
By adding the stress transformation matrix 𝑅𝑅𝑅𝑡, Equation C.42 is extended to

𝜕𝐺𝑖
𝜕𝑠𝑗

= 𝜋𝜖
𝜇�̄� (𝑀𝑀𝑀

⊺
2
𝜕𝑅𝑅𝑅𝑡
𝜕𝑈𝑈𝑈 𝑅𝑅𝑅𝜎𝜎𝜎

⊺𝑅𝑅𝑅⊺𝑅𝑅𝑅⊺𝑡𝑀𝑀𝑀⊺
1𝐻′𝐻′𝐻′𝑀𝑀𝑀1𝑅𝑅𝑅𝑡𝑅𝑅𝑅𝜎𝜎𝜎𝑅𝑅𝑅⊺𝑅𝑅𝑅⊺𝑡𝑀𝑀𝑀2

+𝑀𝑀𝑀⊺
2𝑅𝑅𝑅𝑡𝑅𝑅𝑅

𝜕𝜎𝜎𝜎⊺
𝜕𝑈𝑈𝑈 𝑅𝑅𝑅

⊺𝑅𝑅𝑅⊺𝑡𝑀𝑀𝑀⊺
1𝐻′𝐻′𝐻′𝑀𝑀𝑀1𝑅𝑅𝑅𝑡𝑅𝑅𝑅𝜎𝜎𝜎𝑅𝑅𝑅⊺𝑅𝑅𝑅⊺𝑡𝑀𝑀𝑀2

+ 𝑀𝑀𝑀⊺
2𝑅𝑅𝑅𝑡𝑈𝑈𝑈𝑅𝑅𝑅𝜎𝜎𝜎⊺𝑅𝑅𝑅⊺

𝜕𝑅𝑅𝑅⊺𝑡
𝜕𝑈𝑈𝑈 𝑀𝑀𝑀

⊺
1𝐻′𝐻′𝐻′𝑀𝑀𝑀1𝑅𝑅𝑅𝑡𝑅𝑅𝑅𝜎𝜎𝜎𝑅𝑅𝑅⊺𝑅𝑅𝑅⊺𝑡𝑀𝑀𝑀2) ,

(G.9)

where

𝜕𝑅𝑅𝑅𝑡
𝜕𝑈 = 𝜕𝑅𝑅𝑅𝑡

𝜕𝜃𝑝
⎛
⎜

⎝

[
𝜕𝜃𝑝
𝜕𝜎𝑦′𝑧′

𝜕𝜃𝑝
𝜕𝜎𝑦′𝑦′

𝜕𝜃𝑝
𝜕𝜎𝑧′𝑧′

]
⎡
⎢
⎢
⎢
⎣

𝜕𝜎𝑦′𝑧′
𝜕𝑈𝑈𝑈𝜕𝜎𝑦′𝑦′
𝜕𝑈𝑈𝑈𝜕𝜎𝑧′𝑧′
𝜕𝑈𝑈𝑈

⎤
⎥
⎥
⎥
⎦

⎞
⎟

⎠

, (G.10)

⎡
⎢
⎢
⎢
⎣

𝜕𝜎𝑦′𝑧′
𝜕𝑈𝑈𝑈𝜕𝜎𝑦′𝑦′
𝜕𝑈𝑈𝑈𝜕𝜎𝑧′𝑧′
𝜕𝑈𝑈𝑈

⎤
⎥
⎥
⎥
⎦

= 𝑀𝑀𝑀3𝑅𝑅𝑅
𝜕𝜎𝜎𝜎
𝜕𝑈𝑈𝑈𝑅𝑅𝑅

⊺𝑀𝑀𝑀2 +𝑀𝑀𝑀4𝑅𝑅𝑅
𝜕𝜎𝜎𝜎
𝜕𝑈𝑈𝑈𝑅𝑅𝑅

⊺𝑀𝑀𝑀5. (G.11)
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