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ABSTRACT: Spaceborne microwave radiometers represent an important component of the Global Precipitation Mea-
surement (GPM) mission due to their frequent sampling of rain systems. Microwave radiometers measure microwave radi-
ation (brightness temperatures Tb), which can be converted into precipitation estimates with appropriate assumptions.
However, detecting shallow precipitation systems using spaceborne radiometers is challenging, especially over land, as their
weak signals are hard to differentiate from those associated with dry conditions. This study uses a random forest (RF)
model to classify microwave radiometer observations as dry, shallow, or nonshallow over the Netherlands}a region with
varying surface conditions and frequent occurrence of shallow precipitation. The RF model is trained on five years of data
(2016–20) and tested with two independent years (2015 and 2021). The observations are classified using ground-based
weather radar echo top heights. Various RF models are assessed, such as using only GPM Microwave Imager (GMI) Tb
values as input features or including spatially aligned ERA5 2-m temperature and freezing level reanalysis and/or Dual-
Frequency Precipitation Radar (DPR) observations. Independent of the input features, the model performs best in sum-
mer and worst in winter. The model classifies observations from high-frequency channels ($85 GHz) with lower Tb values
as nonshallow, higher values as dry, and those in between as shallow. Misclassified footprints exhibit radiometric character-
istics corresponding to their assigned class. Case studies reveal dry observations misclassified as shallow are associated with
lower Tb values, likely resulting from the presence of ice particles in nonprecipitating clouds. Shallow footprints misclassi-
fied as dry are likely related to the absence of ice particles.

SIGNIFICANCE STATEMENT: Published research concerning rainfall retrieval algorithms from microwave radio-
meters is often focused on the accuracy of these algorithms. While shallow precipitation over land is often characterized
as problematic in these studies, little progress has been made with these systems. In particular, precipitation formed by
shallow clouds, where shallow refers to the clouds being close to Earth’s surface, is often missed. This study is focused
on detecting shallow precipitation and its physical characteristics to further improve its detection from spaceborne sen-
sors. As such, it contributes to understanding which shallow precipitation scenes are challenging to detect from micro-
wave radiometers, suggesting possible ways for algorithm improvement.

KEYWORDS: Precipitation; Satellite observations; Machine learning

1. Introduction

The intensification of the water cycle due to global warming
(Held and Soden 2006; Huntington 2006) is expected to in-
crease the frequency of droughts and extreme rainfall events
(IPCC 2021). The consequences can be reduced through

adaptation and mitigation measures, but these require long-term
forecast models, which in turn require accurate observations of
precipitation on a global scale. Unfortunately, coverage from
ground-based precipitation measurements is limited (Lorenz and
Kunstmann 2012; Saltikoff et al. 2019) in locations where the
impact of the intensified water cycle is expected to be large
(Nath and Behera 2011; Winsemius et al. 2018; IPCC 2022). Pre-
cipitation estimates derived from spaceborne sensors with global
coverage can complement ground-based sensors. However, pre-
cipitation estimates derived from space-based sensors are not of
the same quality as those from ground-based sensors (Chen and
Li 2016; Shen et al. 2020; Tang et al. 2020; Maggioni et al. 2022).
Understanding the origins of this reduced quality for each sensor
type is crucial to improving satellite-based estimates.

Many studies have focused on improving estimates retrieved
from spaceborne microwave radiometers (e.g., Petty and Li 2013;
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Shige et al. 2013; Klotz and Uhlhorn 2014; Yamamoto et al.
2017; Petković et al. 2018, 2019). Compared to better-performing
spaceborne radars, microwave radiometers are often the pre-
ferred sensor for precipitation because they are less costly
and their swath is typically wider (for instance, shown in
Fig. 2 from Hou et al. 2014), resulting in better coverage of
Earth’s surface. Both radars and microwave radiometers are
only available on low-Earth-orbiting satellites that, due to
their swaths, have gaps between adjacent observations. While
visible (VIS) and infrared (IR) channels with good spatial
resolution are available on both low-Earth-orbiting and geo-
stationary satellites, only the latter provides frequent and
regular temporal sampling.

Sensors with VIS and IR channels only observe cloud top
properties that are used to indirectly estimate surface pre-
cipitation intensities (e.g., Levizzani et al. 2001; Behrangi
et al. 2009; Kidd and Levizzani 2011). Hence, the uncer-
tainty and inaccuracy of spaceborne precipitation estimates
derived from VIS/IR observations are larger than those de-
rived from spaceborne radar and microwave radiometer ob-
servations (Lee et al. 2015; Iwabuchi et al. 2016; Maggioni
et al. 2022).

Radiometers measure the microwave radiation emitted by
Earth’s surface and other natural sources such as clouds and
precipitation particles (Kummerow and Giglio 1994; Maggioni
et al. 2016; Kummerow 2020; Kidd et al. 2021). Water drops
absorb and emit this radiation at their own thermal tempe-
rature, often increasing the observed microwave radiation
(expressed as brightness temperatures Tb) compared to the
same situation without rainfall. This interaction between
radiation and raindrops is exploited over areas with a constant
and radiatively cold temperature (hence low emissivity), such
as oceans (Wilheit et al. 1977; Spencer 1986; Kummerow and
Giglio 1994). Over land, the background surface emissivity is
higher, and detecting emissions due to water drops is more
challenging due to the greater variability in the background
caused by changes in the surface type and water content.
Variation in surface type mostly affects the observations of
the lower-frequency channels. Retrieval schemes over land
are therefore often based on the higher-frequency channels
($85 GHz), which rely on temperature depressions due to
the scattering of upwelling radiation caused by ice particles
often present during precipitation (Wilheit et al. 1982;
Kummerow and Giglio 1994; McCollum et al. 2002; Kummerow
2020).

However, microwave radiometers measure radiation from
the surface and along the vertical column of the intervening
atmosphere. Consequently, radiometers cannot identify the
height of the radiation source. In addition, a combination of
Tb values retrieved from various channels could yield multi-
ple solutions when converting these Tb values into precipita-
tion intensities (Anagnostou 2004; Kummerow et al. 2011;
Kidd et al. 2018; Kummerow 2020). Some precipitation re-
gimes, such as warm rain, have a limited scattering signal due
to the absence of ice (Liu and Zipser 2009; Adhikari et al.
2019), resulting in a weak radiometric signature from light or
shallow precipitation close to Earth’s surface (Lin and Hou
2012; You et al. 2020; Hayden and Liu 2021). As a consequence,

warm, light, and shallow precipitation are often missed by micro-
wave radiometers (Behrangi et al. 2014; Adhikari and Behrangi
2022) over land surfaces.

A recent effort to improve the detection and accuracy of light
and shallow precipitation estimates observed by spaceborne mi-
crowave radiometers is the Global Precipitation Measurement
(GPM) mission (Hou et al. 2014; Skofronick-Jackson et al. 2018).
GPM consists of a constellation of satellites with radiometers
aboard and a core-satellite carrying both a radiometer [the GPM
Microwave Imager (GMI)] and a radar [the Dual-Frequency
Precipitation Radar (DPR)]. The combination of simultaneous
radiometer and radar observations provides the opportunity to
study coupled Tb and vertical precipitation structures to better
constrain the retrieval schemes that convert Tb values to precipi-
tation estimates (e.g., Kummerow et al. 2015; Panegrossi et al.
2020; Tiberia et al. 2021; D’Adderio et al. 2022).

Despite the capabilities of the DPR, it has limited capabi-
lities to detect shallow and light precipitation and, if detected,
to accurately measure the intensity (Arulraj and Barros 2017;
Casella et al. 2017; Watters et al. 2018; Liao and Meneghini
2019; Bogerd et al. 2024). Due to surface clutter, the DPR
cannot retrieve near-surface precipitation below about 1000 m
at the nadir, increasing to about 1500 m at the outer scans of
the DPR due to the slanted angle of observation (Awaka et al.
2016; Hirose et al. 2021). The lack of these observations inevita-
bly results in missing some shallow precipitation. Coupling a
high-quality ground-based reference is a better way to increase
our understanding of the behavior of Tb values during shallow
precipitation events. Furthermore, exploiting the GMI’s entire
swath instead of only the scans matched with the DPR increases
the extent of the region covered.

Here, we implement a random forest (RF) model to deter-
mine the extent to which nonrainy conditions (referred to as
dry in the remainder of this paper) and shallow and nonshal-
low precipitation can be classified from microwave radiometer
observations and to gain an understanding of the characteris-
tics of misclassified observations. The focus of this study is to
understand observations associated with shallow precipitation
and not necessarily to improve their precipitation estimates.
Each footprint is classified using a high-quality echo top height
(ETH) dataset based on two radars located in the Nether-
lands. This country is a highly suitable research area due to the
frequent occurrence of shallow and light precipitation events,
both of which are difficult to detect with spaceborne sensors.
Five years of data (2016–20) are used to train the RF model,
and data from two independent years (2015 and 2021) are
used as test data. Additionally, ERA5 reanalysis data and
some DPR products are used to study whether additional in-
put features improve the RF model.

2. Measurement and methods

a. Study area: The Netherlands

The Netherlands (50.788–53.688N, 3.388–7.388E; ;45000 km2)
is a small country with low relief. Two ground-based C-band
weather radars cover the entire country due to its small size, and
beam blockage related to orography is virtually absent. Germany
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borders the Netherlands on the east, Belgium on the south, and
the North Sea on the west and north. In total, the length of
the Dutch coastline is 523 km. The coast hampers radiometer-
based precipitation retrieval as the varying background (both
land and sea within one footprint) makes the surface emission
very difficult to quantify. Additionally, shallow and light pre-
cipitation frequently occur over northern locations such as the
Netherlands. These two characteristics in combination with
high-quality reference data make the Netherlands an ideal
location for this research.

1) CLIMATOLOGICAL CHARACTERISTICS

The Netherlands has a temperate maritime climate and ex-
periences a pronounced annual cycle. While the total amount
of precipitation is generally distributed evenly throughout the
year, precipitation intensity and occurrence vary with season.
Winter (DJF) experiences the highest occurrence of shallow
and light precipitation, with occasional snowfall. In spring
(MAM), precipitation is mostly liquid, and the higher land
surface temperatures enable higher precipitation intensities.
The high surface temperatures during summer (JJA) result in
a larger temperature difference with the colder upper levels
of the atmosphere, which in combination with the presence of
moist air promote the development of convective systems.
Summer has the lowest occurrence of light and shallow rain-
fall. In fall (SON), both temperatures and rainfall intensities
decrease. More information on the Dutch climate can be
found in Daniels et al. (2014) and Overeem et al. (2009b). Ad-
ditionally, Bogerd et al. (2021) analyzed precipitation data
(both spaceborne and ground-based) in the Netherlands from
2015 to 2019, overlapping with the current research period.

2) HYDROLOGICAL EXTREMES DURING THE

RESEARCH PERIOD

An RF model requires representative training data. Hence,
we provide a brief overview of the characteristics of the input
data (1 January 2015–31 December 2021). The driest June
and July since the start of the Dutch meteorological records
occurred in 2018. Spring 2020 (in particular April and May)
and December 2016 were exceptionally dry. June 2016,
February 2020, and March 2019 were three exceptionally
wet months, and November 2015 was wetter than average.
Snow occurred in April 2016, February and December 2017,
February 2018, January 2019, and January, February, and
April 2021. The years 2015 and 2021 were chosen as both
experienced a small number of exceptionally wet or dry
months, and we are interested in knowing the performance of
the model in a “normal” year. The summaries of the weather
during all months, seasons, and years can be found at https://
www.knmi.nl/nederland-nu/klimatologie/gegevens/mow (in
Dutch).

b. Data

1) SATELLITE-BASED DATA

Observations from both the microwave radiometer and
radar aboard the GPM core-satellite were selected, and their

spatial variables were used as input features. The GPM core-
satellite was launched in 2014 and has an orbit between 658S
and 658N (Hou et al. 2014). The satellite revisits the Nether-
lands at least once per day.

(i) GPM Microwave Imager

GMI is a radiometer equipped with 13 channels at eight
different frequencies. Five frequencies, 10.6, 18.7, 37, 89, and
166 GHz, are horizontally (H) and vertically (V) polarized
channels, while the frequencies 23.8, 183 6 3, and 183 6 7 GHz
are vertically polarized channels. Polarization differences
(V 2 H) can provide information about the radiation source.
Large differences are often associated with ocean surfaces,
while small differences are often associated with land or hydro-
meteors (i.e., liquid cloud and precipitation) (Kidd 1998; Cecil
and Chronis 2018). In general, the 10.6-, 18.7-, and 23-GHz
channels are sensitive to heavy and moderate precipitation; the
37- and 89-GHz channels are sensitive to precipitation mixtures
(liquid, ice, and snow); and the 166, 183 6 3, and 183 6 7 GHz
channels are sensitive to light rain and snowfall. More informa-
tion about the GMI can be found in Hou et al. (2014), Draper
et al. (2015), and Petty and Bennartz (2017).

Tb values from lower-frequency channels were subtracted
from those observed by higher-frequency channels to form
input parameters of differences in brightness temperatures.
Subsequently, the lower-frequency channels were excluded as
independent parameters to reduce the number of input para-
meters. Hence, the lower-frequency observations are indirectly
included in all models, while the observations from low-
frequency channels are only explicitly included in the “all fre-
quencies (ALL)”model.

In this study, brightness temperatures Tb retrieved from all
13 channels were used as input for the RF model. One GMI
scan consists of 221 pixels, but the seven outer pixels of the
GMI swath (thus 14 pixels per scan) were removed since the
outer pixels are not sampled at the higher frequencies, yield-
ing 207 pixels for each scan line. Higher-frequency channels
($85 GHz) are emphasized due to the focus on retrievals
over land. In addition to the single channels and polarization
differences, the differences between three high-frequency
(89V, 166V, and 1836 7 GHz) and two low-frequency (23.8V
and 18.7V) channels were used since combining higher- and
lower-frequency channels provides information on both the
scattering and emission properties (Wilheit et al. 1994). More
combinations were tested but were, due to their limited im-
portance, not included for further analysis.

(ii) GPM DPR

The second instrument aboard the GPM core-satellite is
the DPR. This dual-frequency radar operates with a Ku band
(13.6 GHz, suitable for heavier rain) and a Ka band (35.5 GHz,
suitable for lighter rain and snow). Combining the two bands
allows the retrieval of more information regarding the micro-
physical properties, such as the melting layer and precipitation
type (Iguchi et al. 2022). This study used level 2 DPR products,
which are either attenuation-corrected reflectivity observations
or precipitation characteristics derived from raw observations
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(level 1). More information about the DPR and associated algo-
rithms to convert DPR’s raw observation data to precipitation
products or corrected reflectivity profiles can be found in
Toyoshima et al. (2015), Iguchi (2020), and Masaki et al.
(2020).

The following 2D-DPR products were used as input features:
surface precipitation rate (precipRateNearSurface), bright band
flag (flagBB), height bright band (heightBB), shallow precipitation
flag (flagShallowRain), and storm top height (heightStormTop).
DPR’s vertical attenuation-corrected reflectivity observations
from both the Ka and Ku bands were used to analyze vertical
reflectivity profiles. Although DPR’s performance is limited for
shallow and light precipitation, as mentioned in section 1, its
reflectivity observations can yield additional information about
(in)correctly classified footprints.

2) REANALYSIS DATA: ERA5 MOISTURE AND

TEMPERATURE DATA

Two-meter temperature and freezing level height ERA5
reanalysis data (hourly, 0.258 3 0.258) were included as addi-
tional input features. ERA5 combines real observations (e.g.,
from radiosondes, aircraft, and satellites) with physics-based
model data to generate a global analysis field. More informa-
tion about ERA5 and the models it employs can be found in
Hoffmann et al. (2019), Hersbach et al. (2020), and Muñoz-
Sabater et al. (2021). ERA5 is used as it is also implemented
in GPROF’s scheme that generates precipitation estimates
from the GPM Tb values (Randel et al. 2020).

3) GROUND-BASED DATA: ETHS AND PRECIPITATION

INTENSITIES

The ground-based radars mentioned in section 2a and their
products are operated by the Royal Netherlands Meteorological
Institute (KNMI). The ETH (1 km 3 1 km, 5 min) dataset was
used to classify the footprints into shallow, nonshallow, or dry.
ETH is based on a composite of the two C-band radars retrieved
from 15 vertical elevation scans (ranging from 0.38 to 25.08).
ETH is defined as the maximum height where a predefined
reflectivity threshold is exceeded. The KNMI uses a low de-
tection threshold of 7 dBZ that, together with residual clutter,
might result in unrealistically low (i.e., too close to the surface)
or high ETH. Consequently, individual extremely low (below
0.5 km) and high (above 16 km) ETH pixels or those associated
with precipitation intensities below 0.1 mm h21 were removed
before further analysis. To assess the model’s sensitivity to
these thresholds, two thresholds for both precipitation intensity

(0.075 and 0.1 mm h21) and ETH (0.5 or 1 km) were tested.
More information about the ETH product and its quality can
be found in Holleman (2008) and Aberson (2011).

The same radars combined with gauges served as an indi-
cation for the precipitation intensity (1 km 3 1 km, 5 min).
These measurements were only used to filter marginal cases
as mentioned in the previous paragraph and to investigate
the relation between precipitation intensity and misclassified
footprints. A summary of the dataset can be found in Bogerd
et al. (2021), while more detailed information is available in
Overeem et al. (2009a,b, 2011).

c. Spatiotemporal matching and classification procedure

The ground-based ETH dataset was used to classify the data
while both the GMI Tb values and the 2D-DPR variables were
used as feature data. The DPR, KNMI, and ERA5 datasets
were matched with the GMI’s resolution at 89 GHz. Each GMI
footprint was matched to the closest ERA5 grid box or DPR
footprint. The ETH observations (1 km 3 1 km) that exceeded
the thresholds defined in section 2b(3) were averaged using
Gaussian weights over the 89-GHz-channel footprint dimen-
sions (along-scan 4.4 km and along-track 7.2 km). The effect of
sampling ETH values over various footprint dimensions using
different weights is evaluated in Bogerd et al. (2024).

The averaged value is used to classify a footprint as dry
(rainfall, 0.1 mm h21), shallow (ETH# 3 km), or nonshallow
(ETH . 3 km). This implies not all native ETH pixels within
a GMI footprint necessarily have the same classification, which
is especially the case for convective events. For instance, a con-
vective event that only covers 35% of the total footprint would
still be included if the averaged amount of rainfall exceeds the
0.1 mm h21 threshold. The sensitivity of the model to the per-
centage of pixels that exceeded the threshold at their native res-
olution was also assessed.

d. Random forest

An RF ensemble scheme was used to classify the micro-
wave radiometer observations. The RF model employs multi-
ple decision trees during training and merges their predictions
through bootstrapping and majority voting, thereby address-
ing individual trees’ limitations (such as overfitting) and in-
creasing the robustness of the results (Breiman 2001; Segal
2004; Hastie et al. 2009). The use of decision trees results in a
relatively interpretable classification procedure, which gener-
ates the possibility of understanding why a footprint is allo-
cated to a certain class. Furthermore, the RF model can

TABLE 1. The five RF models evaluated in this study. The “basic” model was evaluated twice: BASIC and IM-BASIC. The other
models were only evaluated on a balanced dataset. Henceforth, the models are denoted by their respective abbreviations.

Name Model Input features

BASIC Basic All frequency channels $ 85 GHz
IM-BASIC Imbalanced basic BASIC but tested on an imbalanced dataset
ALL All frequencies All frequency channels (10–183 GHz)
ERA Basic 1 ERA5 Basic plus ERA5 (freezing level, temperature)
ERA 1 DPR Basic 1 ERA5 1 DPR ERA5 plus DPR (flagBB, heightBB, flagShallowRain, precipRateNearSurface)
STORMTOP Basic 1 ERA5 1 DPR 1 storm top ERA5 1 DPR plus DPR retrieved storm top height

J OURNAL OF HYDROMETEOROLOGY VOLUME 25884

Brought to you by TU DELFT | Unauthenticated | Downloaded 07/02/24 10:40 AM UTC



retrieve the importance of each feature for the final decision,
referred to as “permutation importance.”

The permutation importance is calculated by randomly per-
turbing one feature and calculating its impact on the model’s
performance. The higher the score of a feature, the higher the

model’s dependency on this feature. However, these outcomes
are only representative of the evaluated RF model. Additionally,
correlated features may receive low scores as the model can
access them through each other (Gregorutti et al. 2017).
Therefore, the permutation importance is only used as an

FIG. 1. The number of observations including (triangles) or excluding (circles) DPR observations. The y axis is
logarithmic. The colors indicate the classification according to the majority of the individual reference pixels within
a footprint (dry, shallow, and nonshallow). Changing the threshold from the majority of native pixels to either
50% (plusses) or 80% (crosses) reduces the number of observations. The left panel considers all observations, while
the right panel excludes those located within 20 km of the coast. The markers on the left of the vertical lines refer to
the number of observations when including only GMI, while the markers on the right correspond to the number of
observations when the DPR is included as well.
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indication. More information about the RF model and its imple-
mentation in weather-related studies can be found in the afore-
mentioned references and Biau and Scornet (2016), Herman
and Schumacher (2018), andWolfensberger et al. (2021).

1) MODEL SETTINGS

This section elaborates on the training and validation pro-
cedure of the RF model, based on five years of data (2016–20).
The results discussed in section 3 are based on the indepen-
dent test data (2015 and 2021).

The RandomizedSearchCV from scikit-learn (Pedregosa
et al. 2011) was used to find the best values of the following
four hyperparameters: number of decision trees, maximum
depth of each tree, minimal number of samples required to split
a node (“decision point”), and minimum number of samples
required to create a “leaf” node (final node determining
the classification). Instead of examining all combinations,
RandomizedSearchCV randomly samples hyperparameter
combinations within a specified range to advance the tuning
process. The training data are split into multiple subsets during
the cross-validation. Subsequently, the RF model is trained
(training) with a set of hyperparameters on one data subset,
while its performance is evaluated (validated) on another subset.

The choice of parameter settings had a smaller impact on
the performance than other choices. These choices involved:
coast inclusion, exclusion of single lower-frequency channels
(,85 GHz), percentage of ETH observations at their native
resolution that could deviate from the footprint classification
(section 2c), inclusion of ancillary information (DPR and/or
ERA5), and combinations of these choices. All models were
optimized using RandomizedSearchCV. The abbreviation of
the models as used in this manuscript and the input features
are specified in Table 1.

The Netherlands experiences rainfall on average 7% of the
time, with approximately 93% of the studied footprints being
dry according to the reference dataset (not shown). As a con-
sequence, the dataset is highly imbalanced when considering
the three targeted classes (dry, shallow, and nonshallow). To
prevent any category occurrence bias, the model is trained on
a balanced dataset. The number of dry observations was re-
duced to match the number of the shallow category using ran-
dom sampling. The test dataset was also balanced to give a
more accurate overview of the model performance. However,
data will be imbalanced in operational applications. Hence,
the model is also tested on an imbalanced dataset (i.e., using
all observations of 2015 and 2021) to show how balancing af-
fects the model’s score, referred to as IM-BASIC (Table 1).

As mentioned in section 2a(1), the seasonal cycle influences
precipitation characteristics (also shown in Fig. 1). Addition-
ally, the seasonal cycle can affect both background radiation
and characteristics, such as temperature differences between
land and sea. Consequently, the model was trained and tested
on seasonal datasets (winter: DJF; spring: MAM; summer:
JJA; and fall: SON).

Figure 1 shows the number of observations within each
class for the (imbalanced) test dataset using different input
features and seasons. As expected, the summer season has the

lowest occurrence of shallow precipitation, while the occur-
rence is highest in winter. Furthermore, Fig. 1 indicates the
number of observations remaining after: 1) excluding the
coast, 2) including DPR observations (smaller swath com-
pared to GMI), and 3) increasing the threshold for classifying
a certain footprint as shallow, nonshallow, or dry from major-
ity to 50% (thin pluses) or 80% (crosses) of valid native ETH
pixels (section 2c; footprints not exceeding the majority
threshold are not included in further analysis).

2) MODEL EVALUATION

While accuracy is a common metric to assess machine
learning models, it is more suitable for balanced datasets. As
an imbalanced test dataset was included as well (IM-BASIC),
all models were evaluated using the less intuitive F1 score,
which is suitable for both balanced and imbalanced datasets.
The F1 score is defined as

F1 score 5
2 3 precision 3 recall

precision 1 recall
, (1)

with precision defined as

precision 5
true positives

true positives 1 false positives
, (2)

and recall (also called sensitivity) as

FIG. 2. The F1 scores for the RF model grouped by input fea-
tures as specified in Table 1. The colors represent the different sea-
sons. The upper panel considers all observations over land, and the
lower panel considers only those at least 20 km from the coast.
Similar to Fig. 1, the effect of changing the threshold from the ma-
jority of native pixels to either 50% (plusses) or 80% (crosses) is
also included.
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recall 5
true positives

true positives 1 false negatives
: (3)

The F1 score varies between 0 and 1, where 1 indicates the
model is perfect.

Furthermore, confusion matrices were used to assess the
model. A confusion matrix presents the model predictions by
sorting them into categories, such as true positives or true
negatives, and is closely related to precision and recall. Hence, a

confusion matrix gives insight into the model’s performance per
class (dry, shallow, and nonshallow), resulting in a 3 3 3 matrix
for this study.

In addition to these evaluations, which all focus on the RF
model, the characteristics of the classified footprints were
analyzed. Three groups were generated: correctly classified
footprints, footprints misclassified as class 1, and footprints
misclassified as class 2. For instance, if the correct class
is “dry,” class 1 would be “shallow,” and class 2 would be

FIG. 3. The confusion matrices for (left) winter and (right) summer for (top) BASIC and (bottom) STORMTOP.
The x axis shows the predicted class according to the RF model; the y axis shows the class according to the reference.
Hence, the diagonal from the top left to the bottom right shows the correctly classified footprints. Each row adds up
to 100%, i.e., the percentage indicates how many footprints of class 1 are classified correctly, wrongly as class 2, and
wrongly as class 3. Note that the lower panel is based on a reduced number of observations (Fig. 1).

TABLE 2. Most important input features according to the permutation importance, distinguished by season and input of the
RF model (as defined in Table 1). “Minimal differences” are mentioned when the highest permutation importance is below 0.025.
166V 2 23V GHz represents subtracting 23.7V observations from 166V observations; 183 6 72 23 GHz represents subtracting 23.7V
observations from 183 6 7 observations. Note that the ALL and BASIC models have the same important parameters. The last row
represents the model trained and tested on all seasons.

BASIC and ALL ERA ERA 1 DPR STORMTOP

DJF 183 6 7, 166V 2 23V 183 6 7, 89V-H (166V 2 23V excl. coast) Minimal differences heightStormTop
MAM 166V 2 23V, 183 6 7 183 6 7, 166V 2 23V (166H excl. coast) 166V, 166H heightStormTop, 166V
JJA 166V 2 23V, 166H 166H, 166V 2 23V Minimal differences heightStormTop
SON 166V 2 23V, 183 6 7 166V, 166H (166V 2 23V excl. coast) 166V, heightBB heightStormTop
All seas 166V 2 23V, 183 6 7–23 166V 2 23V, T2M (166H excl. coast) Minimal differences heightStormTop
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“nonshallow.” Cumulative distribution functions (CDFs) and
the 25th, 50th, and 75th percentiles were used to identify the
characteristics of each group. Furthermore, three overpasses
were examined as case studies, to unravel the performance of
the model.

3. Results

The F1 score (Fig. 2) is lowest during winter (between 0.65
and 0.82) and highest during summer (between 0.81 and 0.95).
Excluding the coast (lower panel) only slightly increases the
F1 score. Testing on an imbalanced dataset [section 2d(2)]
increases the performance in all seasons, with the smallest

increase in summer. The increased F1 score when the test
dataset is imbalanced is most likely related to the correct clas-
sification of the majority class, which are dry footprints. In-
creasing the threshold to 80% (crosses) of the native pixels
that should belong to one class improves the F1 score, as
those cases fill (almost) the entire footprint and are associated
with stronger radiometric signals. This increase in threshold
increases the performance of the model in all seasons, with
the most notable improvements in summer and the smallest
in winter. However, note that the number of observations is lim-
ited, especially during summer (Fig. 1). The scores for BASIC,
ALL, and ERA, are comparable, except for ERA during spring
over the entire land surface (upper panel). This indicates that the

FIG. 4. CDFs of the Tb observed by the high-frequency channels. Note that not all were
marked as important according to the permutation importance (Table 2). Each panel represents
one channel, except for the bottom panel, which shows 166V2 23V GHz values that were often
marked as important. The darker colors represent the true and correctly classified footprints
(blue shallow, green nonshallow, and purple dry). The lighter colors represent the wrongly classi-
fied footprints (light-blue is dry classified as shallow, light-green is shallow classified as nonshal-
low, and salmon is shallow classified as dry). Only the winter season is considered. The classifica-
tion is retrieved using BASIC.
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addition of the single low frequencies and ERA parameters has a
limited positive impact. Including all 2D-DPR variables (thick
plusses) improves the model during all seasons, but this effect is
reducedwhen excluding the stormtopheight parameter (stars).

The confusion matrices provide insight into the model’s
performance per class (Fig. 3). The upper panel of Fig. 3
shows the matrices using BASIC input features, and the lower
panel of Fig. 3 shows the matrices using STORMTOP. Distin-
guishing between dry and shallow is more difficult in winter
(left panels) compared to summer (right panels). In summer,
however, almost half of the shallow footprints are misclassi-
fied as nonshallow (upper-right panel). Including ERA5 and
DPR improves the correct classification of dry and shallow in
winter from 50.7% to 58.8% but only slightly improves the
correct detection of nonshallow footprints in both seasons
(0.8% in winter and 4.3% in summer) and shallow in summer
(1.3%). Furthermore, including the STORMTOP increases
the “misses” of shallow observations (lower panel), especially
in winter.

The results of the permutation importance [section 2d(2)]
are summarized in Table 2. The scores remained 0.11 or
lower, suggesting limited dependency on individual input fea-
tures likely caused by cross correlation between the input fea-
tures. In general, the 166-GHz channel (either horizontal,
vertical, or in relation to a lower-frequency channel) is found
to be important. The polarization difference between the
89-GHz channels is prominent in winter; the polarization dif-
ference between the 166V 2 23V GHz channels is prominent
during all seasons; and the polarization difference between
the 183 6 7 GHz channels is prominent in spring, winter, and
one time in fall. Excluding the storm top (ERA 1 DPR)
shows the importance of the other 2D-DPR products is lim-
ited, as the differences are either minimal or Tb channels are
the most important, except for fall (heightBB).

Figures 4–6 focus on winter, the season with the most
frequent shallow precipitation (Fig. 1), and aim to identify
shared characteristics among the three classes. The top four
panels of Fig. 4 illustrate the Tb distribution obtained from
individual high-frequency channels (the other seasons are
shown in Figs. S1–S3 in the online supplemental material).
The bottom panel shows the combination of a high-frequency
channel (166V, representing the interaction with precipitation
particles) and a low-frequency channel (23.8V, representing
the background emissions). Although the value range of the
three classes often overlaps, nonshallow footprints are typically
characterized by lower Tb values, dry footprints by higher Tb
values, and shallow in between. This result is expected, as ice
decreases Tb values observed by higher-frequency channels
and nonshallow precipitation is associated with more ice
than shallow precipitation. The distributions of accurately
classified footprints and those that are misclassified to the
same class are similar, especially in the upper three rows.
For instance, the distribution of Tb associated with dry foot-
prints classified as shallow is similar to the distribution of
“true” shallow footprints.

The distributions of the reference data are shown (Fig. 5)
to analyze whether the misclassified observations are associated
with values near the boundary of two classes. Precipitation

intensity and ETH of footprints wrongly classified as non-
shallow (dry) are higher (slightly lower) compared to those
correctly classified as shallow.

Figure 6 shows the attenuation-corrected vertical profiles
retrieved from the DPR associated with GMI footprints. The
higher sensitivity of the Ka band makes it more susceptible to
attenuation, reducing the number of valid observations (the
number of observations is shown in the legend). The reflectiv-
ity values of the nonshallow events in winter are higher than
those associated with shallow footprints (both correctly and
most of the incorrectly classified). Shallow footprints wrongly
classified as dry were not detected by the DPR, indicating a
weak reflectivity signal observed by spaceborne sensors.
These results are in agreement with those shown in Fig. 4:
adding DPR observations does not increase the RF’s capabil-
ity to detect shallow precipitation wrongly classified as dry.
Additionally, less than half of the shallow footprints are cap-
tured by the Ku band, and only a third of them are captured
by the Ka band, indicating that shallow events are often
missed by the DPR.

Shallow footprints classified as dry are associated with rela-
tively high Tb values (Fig. 4) and are not detected by the
DPR (Fig. 5), indicating weak signatures or associated cloud

FIG. 5. CDFs of the (top) precipitation intensity and (bottom) ETH
in winter. The settings are similar to Fig. 4. Note that this infor-
mation is not provided to the RF model as it involves reference
characteristics. Additionally, note that only wet footprints were
included.
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height is below 1 km (or 1.5 km at the edges of the DPR swath).
Conversely, dry footprints misclassified as shallow are associated
with lower Tb values. Two cases are selected to further unravel
why those footprints are allocated to another class.

Case studies are used to gain some additional insight. The
first case (Fig. 7) is relatively well classified although dry foot-
prints at the precipitation system border are wrongly labeled
as shallow. Footprints associated with nonshallow precipitation
correspond to relatively low Tb values observed by the 166H
and 183.31 6 7 GHz (especially at the northern and western
edges) channels compared to the Tb values associated with
correctly classified dry footprints. As shown in Fig. 4, observations

associated with Tb values in between nonshallow and dry are
classified as shallow. “Dry footprints” that are incorrectly clas-
sified as shallow show values similar to those correctly classi-
fied as shallow, especially at the northern and southern edges
of the precipitation system.

As previously explained, precipitating clouds are often asso-
ciated with ice particles, which lower the Tb values measured at
higher frequencies. However, ice could also be present in non-
precipitating clouds. Geostationary satellite observations from
Meteosat Second Generation (MSG)-SEVIRI (third panel,
Fig. 7) indeed suggest the presence of ice particles over the
Netherlands, except north of 538N where the RF model

FIG. 6. The 25th and 75th percentiles (dashed) and mean (solid) of the vertical reflectivity profiles corresponding to
GMI footprints in winter. The horizontally polarized radar reflectivity factor values are retrieved from matched DPR
observations. The number of observations retrieved by the Ka band is lower than those retrieved from the Ku band.
The number of observations above 3000 m for shallow footprints wrongly classified as nonshallow is limited. The
classification was retrieved using STORMTOP. Note that this information is not provided to the RF model.
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correctly classified the observations as dry. The presence of ice
is indicated by the cyan color in the data obtained from chan-
nels associated with the visible spectrum (upper-right panel,
Fig. 7) and by the reddish color indicated by the microphysics
algorithm (middle-right panel, Fig. 7). More information about
the two algorithms can be found at EUMETRAIN (2024b,d)
and references therein.

The second case involves an overpass almost completely
classified as shallow instead of dry (middle panels, Fig. 8).
Similar to the previous case, the values observed by the two
high-frequency channels are in the value range associated
with shallow precipitation (Fig. 4). In agreement with the pre-
vious case, clouds with ice particles are present according to
the MSG-SEVIRI observations (right panels, Fig. 8).

A third case study involves a narrow band of shallow
precipitation with a limited scattering signal (lower panel,
Fig. 9). Right of the IJsselmeer (approximately 42.58N, 6.08E),
the narrow band of shallow precipitation is only partly classi-
fied correctly, while left of the IJsselmeer (approximately
42.758N, 5.758E), the footprints are classified as dry. Both al-
gorithms based on the MSG-SEVIRI data indicate the pres-
ence of mixed-phase clouds (upper-right panel, Fig. 9), which
might confuse the algorithm as a result of a limited decrease
in Tb values (lower panel, Fig. 9).

4. Discussion

This study is the first to classify microwave radiometer ob-
servations as dry, shallow, or nonshallow using a random for-
est model over such a northern location. We tested the
model’s sensitivity to input features and the implemented
thresholds on the reference data. Adjusting the thresholds, as
specified in section 2b(3), only slightly affected the F1 scores
(maximum 6 0.1), independent of the input features, and did
not significantly affect the important features according to the
permutation difference (not shown). Although other models
might yield better results, such as a neural network, the RF
model was chosen for reasons given in section 1.

The GMI sensor is equipped with high-frequency channels
to improve the detection of light-intensity events in comparison
to its predecessor that served during the Tropical Rainfall
Measuring Mission (TRMM), the TRMM Microwave Imager
(TMI). As shallow precipitation over the Netherlands is often
associated with light precipitation, we also hypothesized these
channels to be important for the RF model. The higher-
frequency channels were indeed important for the RF model,
but it remained difficult to accurately separate dry and shallow
events. Various explanations are discussed below.

First, the algorithm might be overly sensitive. This sensitivity
is likely induced by the relatively weak scattering signal

FIG. 7. Case study 1: 19 Jan 2021. The left two upper panels show the reference values at the native resolution (1 km 3 1 km); the two
left middle panels show the classification according to the reference (left) or the RF model (middle); and the two lower-left panels show
the Tb values for two of GMI’s high-frequency channels. Footprints are not classified if the reference precipitation and ETH observations
did not exceed the thresholds as defined in section 2c or if one of the GMI frequency channels lacked observations. The right panel shows
two images of the geostationary MSG-SEVIRI satellite, which are provided by EUMETView (EUMETRAIN 2024c). The upper-right
panel makes use of three solar channels: NIR1.6, VIS0.8, and VIS0.6. The lower-right panel shows the results of the microphysics algo-
rithm based on three channels: VIS0.8, IR3.9, and IR10.8.
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associated with (stratiform) shallow events (Weng and Grody
2000; Kida et al. 2009, 2018). As a consequence, the random
forest model learns to identify even the smallest decreases in
brightness temperatures as shallow precipitation. However, as
a drawback of this sensitivity, slight decreases in brightness
temperatures related to nonprecipitating ice clouds, such as
thick cirrus clouds or multilayered clouds, are also subjective
to be classified as shallow, as shown in the two case studies
(Figs. 7 and 8).

Second, as expected, the presence of ice particles seems to
be a condition for the RF model to detect (shallow) precipita-
tion. However, due to the limited vertical extent associated
with shallow precipitation, the cloud top might be located be-
low the freezing level. As a consequence, scattering related to
ice particles is absent, and only the emission of liquid water
can be detected (Lebsock et al. 2011). These “warm” rain
processes over land surfaces are hard to distinguish from non-
precipitating clouds by spaceborne microwave radiometers
(Stephens and Kummerow 2007). Another source resulting
in a limited scattering signal is the presence of liquid water
above the freezing level (Matrosov and Turner 2018). Both
the absence of and limited scattering signal related to ice par-
ticles might result in shallow footprints being classified as dry
(Fig. 9).

The difference in results with, for instance, the overview
paper of Turk et al. (2021) might be related to our regional
approach and focus on distinguishing dry, shallow, and

nonshallow footprints instead of characterizing background
surfaces. Our focus enhances the relative importance of higher-
frequency channels due to the interaction with water vapor and
scattering of ice particles. However, including observations
from low-frequency channels through subtraction from high-
frequency channels demonstrated a slightly higher F1 score,
ranging from 0.1 to 0.3 higher depending on the season,
compared to when low frequencies were included separately
(not shown).

Another hypothesis that has been discussed is the possibility
that lower Tb values are the product of wet surface conditions,
which the RF model misinterprets as colder clouds. We found
consistently lower Tb values measured by the 18.7-GHz channel
over water-saturated areas such as rivers and low-laying land
(not shown). However, these areas did not overlap with the
locations of dry footprints wrongly classified as shallow. Addi-
tionally, higher-frequency channels did not observe lower
values over these areas (Figs. 7 and 8, lower panels). Further-
more, the sky was often cloudy when dry footprints were classi-
fied as shallow (Figs. 7 and 8, right panels). In general, our
algorithm seems less affected by background radiation due to
the limited importance of lower-frequency channels. This lim-
ited role of the lower-frequency channels and the relatively
small footprint size of the GMI could also explain the limited
influence of the coast, which contrasts with the results of previ-
ous research (Bennartz 1999; Munchak and Skofronick-Jackson
2013).

FIG. 8. Case study 2: 6 Jan 2021. Dry footprints classified as shallow. The settings are similar to Fig. 7, except for the color scale of the
upper panel. The reference labels cover a larger area than the model labels due to the absence of high-frequency observations at the edges
of the GMI swath.
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Unfortunately, at least three cases with numerous shallow
footprints classified as dry occurred during nighttime when
geostationary VIS observations are unavailable. Although
algorithms solely based on IR observations can also deduce
cloud-phase information, their accuracy is lower than those
including VIS observations (Costa et al. 2007; Iwabuchi
et al. 2016; Escrig et al. 2013). Additionally, interpreting IR
images is more complex than those based on IR/VIS observa-
tions and is considered out of scope for the current analysis.
We also exploredmatched observations withAdvanced Technol-
ogy Microwave Sounder (ATMS), SSMIS, and Time-Resolved
Observations of Precipitation structure and storm Intensity with a
Constellation of Smallsats (TROPICS) (radiometers equipped
with higher-frequency channels), but the number of matched
footprints withGMIwas limited.

The performance of geostationary cloud-phase retrieval al-
gorithms that combine IR/VIS observations is only qualitative
and may not work well over snow-covered surfaces or low so-
lar zenith angles (Lensky and Rosenfeld 2008; EUMETRAIN
2024a), but the impact of these limitations is expected to be
limited as there was no snow cover during the considered case
studies. Since the areas flagged as (thick) ice clouds by both
algorithms considered in this study appear to correlate well
with errors in the RF algorithm (Figs. 7 and 8, right panels), it
seems beneficial to include the geostationary satellites to sep-
arate between dry, shallow, and nonshallow footprints.

The authors are aware that the spatial coverage of the cur-
rent study could be extended globally if DPR observations

were used as a reference. However, as mentioned in section 1
and confirmed in the results of this study (section 3), the per-
formance of DPR regarding shallow precipitation is limited. This
result again amplifies the need for reliable calibration and valida-
tion data. At the same time, our results suggest that DPR obser-
vations could improve the classification between shallow and
nonshallow precipitation systems.

The frequent occurrence of convective events in summer re-
sults in an overrepresentation of nonshallow footprints (Fig. 3).
This overrepresentation is reduced when using the ALL model
(Fig. 10). Although this improves the classification between dry
and rainy footprints (i.e., shallow and nonshallow) in summer, the
ALL model showed a decreased performance in classifying dry
and rainy footprints in winter whenmost shallow events occur.

The F1 scores corresponding to the ALL model distin-
guished by season and various input parameters are shown in
Fig. 11. Compared to the seasonal models (Fig. 2), the F1
scores of the ALL, BASIC, and ERA models decreased for
all seasons (Fig. 11). These results again confirm the limited
importance of ERA parameters, even when applying a more
general model in the time aspect. In contrast, Fig. 11 also
demonstrates the added value of DPR observations despite
DPR’s limitations in detecting shallow precipitation.

The limited importance of ERA5 parameters, which is con-
trary to findings in prior studies, is attributed to the regional
focus. Seasons implicitly provide environmental information,
for instance, due to the clustering of temperature. Table 2
demonstrates that ERA5 temperature is more important when

FIG. 9. Case study 3: 13 Jan 2021. A narrow precipitation event that is partly correctly detected and partly missed (left of the IJsselmeer).
The settings are similar to Fig. 8, except for the color scale of the upper panel.
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training the model in all seasons. Additionally, we included
ERA5 moisture data to mitigate the impact of varying moisture
levels (above the cloud top) on Tb values retrieved from higher-
frequency channels. However, we found a limited impact of at-
mospheric moisture on the model’s performance, likely due to
relatively modest moisture levels over the Netherlands.

More accurate input could in principle be retrieved using
3D data. However, this study aimed to find more general rela-
tions through the use of a longer period. The amount of data
when considering 3D observations would be prohibitive over
such a time frame. Instead, we would aim to study 3D radar
fields (i.e., coupling microwave radiometer observations to
ground-based radars) in relation to case studies, preferably
from a vertically pointing rain radar, to unravel the vertical
structure of the atmosphere and to confirm our earlier hy-
potheses related to the presence/absence of ice particles.

Sections 3 and 4 both focus on the wrongly classified shal-
low and dry footprints, while only little attention is paid to the
nonshallow footprints. As previously stated, this study aims to
improve the detection of (shallow) precipitation with radio-
meters. Nonshallow precipitation is almost always detected:
even if wrongly classified, nonshallow footprints are almost
never classified as dry (Figs. 3 and 10). The reason to still in-
clude the separation between shallow and nonshallow was to
point out that missed precipitation mostly involved shallow
precipitation.

5. Conclusions

The retrieval of light and/or shallow precipitation estimates
from spaceborne microwave radiometer observations is chal-
lenging, especially over land. This study implemented a random
forest (RF) model that used microwave radiometer observations
from the Global Precipitation Measurement (GPM) mission as
input to distinguish dry, shallow, and nonshallow footprints over
a high-latitude region. The RF model, trained on five years of
data and tested on two independent years, performed worst in
winter (F1 score ranging from 0.68 to 0.75) and best in summer
(F1 score ranging from 0.81 to 0.92), independent of the input
features. The model had difficulties distinguishing shallow and
nonshallow in both seasons, but more in summer (48.2% of the
shallow events classified as nonshallow) than in winter (36.8%).
In contrast, distinguishing between shallow and dry footprints
was more challenging in winter when 12.5% of shallow foot-
prints were wrongly classified as dry and 15.3% of the dry foot-
prints were wrongly classified as shallow. Shallow footprints
associated with a limited scattering signal were wrongly classi-
fied as dry, while dry footprints associated with relatively low
brightness temperatures observed by higher-frequency chan-
nels ($85 GHz) were wrongly classified as shallow.

This study confirmed the importance of high-frequency
channels for spaceborne precipitation retrieval over land,
while at the same time, the added value, when combining these

FIG. 10. As in Fig. 3, but applying the model based on the entire year on (left) DJF and (right) JJA. The upper panel
does not include the DPR; the lower panel includes the DPR. The tested dataset was balanced.
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observations with those retrieved from low-frequency channels,
was demonstrated. Furthermore, the implementation of the RF
model and analysis of the wrongly identified footprints improved
our understanding of the difficulties associated with distinguish-
ing between shallow and dry footprints in a moderate maritime
climate. This method could be extended to other regions as well
to further unravel the difficulties associated with precipitation
retrieval from spaceborne microwave radiometers. This study
also indicated the potential to improve spaceborne precipita-
tion detection by merging observations retrieved from both
geostationary and low-Earth-orbiting satellites. For future
studies concerning spaceborne precipitation retrieval over
northern latitudes, we recommend using vertically pointing ra-
dars to study the microphysics associated with shallow events.
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F. Porcù, 2020: Heavy precipitation systems in the Mediterra-
nean area: The role of GPM. Satellite Precipitation Measure-
ment: Volume 2, V. Levizzani et al., Eds., Advances in Global
Change Research, Vol. 69, Springer International Publishing,
819–841, https://doi.org/10.1007/978-3-030-35798-6_18.

Pedregosa, F., and Coauthors, 2011: Scikit-learn: Machine learning
in Python. J. Mach. Learn. Res., 12, 2825–2830.
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