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Abstract
Clustering is a commonly used method in data analysis. It is a complex problem that can be very time
consuming, especially when clustering large datasets with many features. Most clustering algorithms
scale exponentially in time when increasing the dataset size, making it infeasible to use them for large
datasets. Streaming algorithms do not have this problem as they will scale linearly. Evolving Local
Means (ELM) is a streaming clustering algorithm based on Mean Shift.

The ELM algorithm iterates over all data samples in a single iteration, updating an internal structure
of clusters with each sample being added. Similar to Mean Shift, ELM requires only one parameter
to be provided by the user: the initial radius of a cluster. In ELM, each sample can either be added
to the nearest cluster or turned into a new cluster, depending on the distance to the nearest cluster.
Clusters that come too close to each other will be merged to form a single cluster. There is one issue
with this approach: the decisions are based on an intermediate state that is constantly evolving. This
might cause incorrect clustering results when ELM merges clusters together prematurely.

This research introduces ELM Decision Branching (ELMDB) which extends ELM with decision
branching. ELMDB aims to reduce the chance of a premature merge by postponing important deci
sions. Instead of making a decision directly, it will branch and continue all possible options until the
decision can be made. ELMDB is able to improve clustering performance with only a small increase
in runtime and produce consistent results for a larger range of radius settings than ELM.

iii





Preface
My graduation period has been a long journey. After several delays and setbacks in my research, my
initial thesis topic on SS7 fraud eventually became infeasible. With some effort, I managed to find a
new topic and started over in the direction of streaming clustering. On a personal level it has also been
a difficult period. I have lost my beloved stepmother after a long fight against cancer. I miss her and
know that she would be proud of me for how far I have come. Despite all, I have pushed through and
completed my research from which the thesis now lies in front of you.

I would like to thank everyone who has been involved in my research or has supported me in any
way. First, I would like to thank my supervisor Sicco Verwer for his support with valuable insights into
machine learning and useful feedback during the final phase of my thesis project. I would also like
to thank my previous supervisor Christian Doerr, who has supported me during the start of my thesis
project, for all the opportunities, enthusiastic meetings and helping me find a new thesis project when
my initial research on SS7 fraud became infeasible to complete. Furthermore, I would like to thank my
thesis committee members Inald Lagendijk and Joana Gonçalves for being part of my committee and
attending my presentation.

Although my research has gone in a different direction than anticipated, I would still like to thank
everyone from KPN who has supported me during my thesis project. I would like to thank my intern
supervisor Daan Planqué for his support and guidance at KPN. I would also like to thank Philippe
Allemandou for all his support and invaluable insights into the SS7 data structure. Furthermore, I
would like to thank Jaya Baloo for the opportunity to join the CISO team as intern and experience cyber
security in practice.

Finally, I would like to thank my family and friends for there support during this period. I would like
to thank all the people that were there for me when I needed them the most. I especially would like to
thank my girlfriend Natasja van Heerden, who has always been there for me during this difficult period.
I could not have done this without her.

J. Moree
Delft, June 2021

v





Contents

1 Introduction 1
1.1 Research question . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Outline thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Background and related work 5
2.1 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Mean Shift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Evolving Local Means (ELM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Improving ELM with decision branching 11
3.1 Decision branching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 Scoring metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2.1 Silhouette coefficient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2.2 Streaming approximation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.3 Multiple states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4 Performance of the algorithm 23
4.1 Analysing performance using C implementations. . . . . . . . . . . . . . . . . . . . . . . 23
4.2 Number of parallel states. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.3 Parallel calculation on a commodity graphics card . . . . . . . . . . . . . . . . . . . . . . 25
4.4 Practical performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5 Conclusion and discussion 29
5.1 Answering the research questions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.2 Discussion and future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Bibliography 33

vii





1
Introduction

Clustering is a well known method for data analysis that is used for grouping similar data points in a
dataset. There are many applications where clustering is being used. For example pattern recognition
or detection of fraudulent behaviour in network data. Datasets can be noisy and can havemany different
features that need to be taken into consideration during the clustering process. This makes clustering
a complex problem that can be very time consuming, especially for large datasets.

Figure 1.1: Comparison of clustering methods from Scikit Learn [17] using six different datasets.

There are many different clustering methods available, each with their own strengths and weak
nesses. Figure 1.1 shows a comparison from Scikit Learn [17] of different clustering methods. They
have applied these clustering methods on six generated datasets to visualize some of the differences
between these methods.

The choice for a clustering method depends on the use case. Do you want to find many small
clusters or only a few large ones? Should the clusters be equal in size? Should the clustering method
be able to detect clusters with different shapes? All clustering methods also require some parameters
to perform the clustering. Kmeans and spectral clustering for example, requires the number of clusters
to be known.
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A commonly used cluster method is Mean Shift. It requires only one parameter to be known: the
bandwidth. This parameter gives the algorithm an indication to the expected size of a cluster. There
are also methods that can give an estimation of the bandwidth for a data set. This makes it easy to use
Mean Shift when analysing a new data set.

A limitation of Mean Shift is its scalability. Increasing the dataset size will increase the required
runtime for the algorithm exponentially. This limits the usability of these clustering algorithms to small
datasets, as large datasets would take way too long to process. However, the amount of data we
are collecting increases every day, and so are the size of the datasets we would like to analyse with
clustering.

A solution could be in the concept of streaming algorithms. In streaming algorithms, the input is
defined as a stream of items where each item is usually processed at most a few times. This means
that the items do not have to be kept in memory, thus limiting the required memory. They can also have
a limitation in maximum processing time for each item, resulting in a linearly scaling runtime. Linear
algorithms may be more complex and therefore slower on small datasets than comparable exponential
algorithms. For large enough datasets, the linear algorithm will become the most efficient option as it
maintains a constant time per sample. While an exponential algorithm will require more time for each
additional sample. Not all algorithms can be easily converted into streaming algorithms. Usually, some
sacrifices have to be made in order to create a streaming approach of an algorithm. An streaming
algorithm can for example only give an approximate result or might have some constraints on the input
data.

Baruah and Angelov [2] have proposed a streaming solution for Mean Shift, called Evolving Local
Means (ELM). This algorithm enables clustering of large datasets with a streaming approach that is
based on Mean Shift. ELM will maintain a structure of clusters and updates this structure each time a
sample is added. Each cluster in ELM is defined by a centre and an average norm of the samples as a
radius. These parameters are updated with each added sample. When a new sample is near a cluster,
it will be added to the nearest cluster. Otherwise, a new cluster is created. Clusters that become too
close too each other will be merged into a single cluster.

This method requires the samples to be in clearly separated subsets. ELM is evolving its structure
of clusters with each additional sample. This means that the first samples in a cluster will have a large
influence on the position and radius of the cluster.

The first samples of a cluster could be fairly apart, but just close enough to be added to the cluster.
This would result in cluster with a large radius and possibly even get close enough to another cluster to
merge together into one large cluster. Even when the next samples show a clear distinction between
the clusters, they can only be added to the large cluster in this region. This premature merge, is due
to the fact that a merge decision had to be made with insufficient data available.

ELM requires a clear spacing between clusters in order to function correctly and prevent these
premature merges. However, datasets used in practice often contain noise and can have clusters that
are close to each other. This limits the usefulness of ELM to datasets with low noise and clearly spaced
clusters.

1.1. Research question
My focus will be to modify ELM so that it postpones these difficult decisions until there is more data
available, with the use of decision branching. This means that with difficult decisions, all cases will
be calculated in parallel until a good decision can be made. This method will result in a significant
increase in runtime, as multiple branches need to be calculated. These branches might benefit from
parallel calculation on a commodity graphics card to counteract the increase in runtime. In this thesis
I am going to answer the following research question:

Can streaming cluster analysiswithEvolvingLocalMeansbe improvedusing
decision branching?
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I have divided this question into the three subquestions below. Each subquestion will be discussed
in a separate chapter.

• Question 1: What is decision branching and can it be used to improve the cluster quality
of Evolving Local Means? In chapter 3, I will discuss the concept of decision branching. What
is decision branching and how does it work? Why can this be a useful tool in ELM and how should
it be integrated into ELM?

• Question 2: What is GPU acceleration and can it be used to improve the performance of
decision branching on Evolving Local Means? What is GPU calculation and can it be useful
in this application? This will be discussed in chapter 4.

• Question 3: What is the practical performance of Evolving Local Means with decision
branching compared to the original Evolving LocalMeans algorithmandMeanShift? Chap
ter 4 will also discuss the performance of my method in practice. I will compare the performance
of my method with both ELM and Mean Shift. This comparison will be performed with the use of
different realworld data sets.

With these questions, I am going to research the effect of decision branching on the cluster quality
and runtime performance of Evolving Local Means.

1.2. Outline thesis
This thesis will start in chapter 2 with a review of related work that has been performed in the field. In
this chapter, I will also explain the clustering methods Mean Shift and Evolving Local Means into more
detail as background information for the next chapters.

The next chapters will be focussed on answering the subquestions as described above. This starts
with improvement of the clustering accuracy of ELM with the use of decision branching in chapter 3. In
this chapter I will discuss how I am going to integrate decision branching into ELM and what effect it will
have on the clustering accuracy. In chapter 4, I will focus on the runtime performance of my algorithm.
I will compare the accuracy and performance of my algorithm with ELM with the use of both synthetic
and real life datasets. I will also discuss the performance impact of decision branching and discuss
whether parallel calculation using a commodity graphics card can be used to improve performance.
The thesis will be concluded with a conclusion and discussion in chapter 5.





2
Background and related work

In this chapter I will discuss scientific work that is related to this research. I will start with work that
has been done on streaming clustering. Next, I will discuss some cluster methods that use commodity
graphics cards to improve performance. Furthermore, I will discuss some clustering methods that apply
both the streaming concept and the GPU acceleration. After this overview of the related work, I will
explain two clustering methods into more detail as background for my research. The first clustering
method is Mean Shift, as this forms a basis for the method I am going to extend upon. The second
method is Evolving Local Means. This is a streaming clustering algorithm that is based on Mean Shift.
In this thesis I will be extending upon the work on Evolving Local Means.

2.1. Related work
Different streaming clustering algorithms have been proposed to allow the clustering of huge datasets,
containing millions or even billions of samples. WSTREAM [24] is a streaming extension on kernel den
sity clustering. Online DivisiveAgglomerative Clustering (ODAC) [18] and the work from Tu et al. [25]
show streaming methods for agglomerative clustering. Streaming approximations for Kmeans have
been proposed in the work from Ailon et al. [1] and Braverman et al. [3]. Evolving Local Means (ELM)
[2] is a streaming algorithm that has been based on Mean Shift. CODAS [13], extended by CEDAS
[14], continues this work with clustering of arbitrary shaped clusters. These methods show different
concepts for streaming clustering. In this thesis I will extend the work on Evolving Local Means. Sec
tion 2.3 will discuss this method into more detail as background for this thesis.

The intrinsic parallelism in most cluster algorithms allows the use of commodity graphics cards to
accelerate the computational intensive clustering tasks. The work from Farivar et al. [9], Shalom et al.
[22] and Hongtao et al. [12] propose the use of GPUs to accelerate KMeans clustering. The use of
GPUs to accelerate Hierarchical Agglomerative Clustering has been proposed in the work from Shalom
and Dash [20, 21]. GPU acceleration has also been used to improve Mean Shift, as can be seen in
the work from Men et al. [16] and Sirotkovic et al. [23]. These methods use GPUs to accelerate par
allel aspects of cluster algorithms. I am going to use a commodity graphics card to process different
branches in parallel.

Some methods have been proposed where streaming clustering is combined with the acceleration
from commodity graphics cards. The work from Cao et al. [5] propose a GPUbased streaming cluster
algorithm based on KMeans. GBIRCH [7] extends the streaming clustering algorithm BIRCH [27] using
parallel calculation onGPU. The streamingmethod DenStream [4] has been extended byGDenStream
[11] using GPU acceleration. These methods show that the performance of some streaming clustering
algorithms can be improved with GPU acceleration. In this thesis I am going to discuss whether GPU
acceleration can be a meaningful addition to improve runtime performance in my algorithm.

5
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2.2. Mean Shift
Mean Shift [10, 26] is a well known clustering algorithm that is often used in data analysis. It works by
calculating the mean of all samples within a radius of a point. The point is then shifted to this mean
value, and the process is repeated. This process continues until the point converges at a local maxima.
Mean Shift is based on the concept that most samples in a cluster will be close to the centre. In other
words, a cluster will have the highest density in the centre. Mean Shift will shift a points towards denser
areas to find a local maxima, the centre of a cluster. Samples that shift to the same local maxima will
be grouped as a cluster.

Figure 2.1: Example of Mean Shift, showing the iterative approach on dataset DS1 with the current mean 𝑥 and radius 𝑟 around
it. Samples inside range 𝑟 are used to calculate the new mean value 𝑥 ← 𝑚(𝑥)).

I have visualized this concept with an example in fig. 2.1. This example shows the clustering process
on a synthetic dataset DS1. This dataset is generated with 20 samples following a Gaussian distribution
around two centres. The example starts with a sample in the lower left corner, marked with an x. This
point is used as the starting point fro the mean value 𝑥 of the Mean Shift algorithm. It will then look for
samples within a radius 𝑟, in this case 𝑟 = 1.7. Mean Shift will then calculate the mean of all samples
within radius 𝑟. The point 𝑥 is then shifted to this mean value (𝑥 ← 𝑚(𝑥)) as can be seen in the
second iteration. This process is repeated until the point converges in the 7th iteration. This process
is performed for all samples in the data set.

𝑚(𝑥) =
∑
𝑠∈𝑆
𝐾(𝑠 − 𝑥)𝑠

∑
𝑠∈𝑆
𝐾(𝑠 − 𝑥) (2.1)

The mean 𝑚(𝑥) of samples in the dataset 𝑆 that are near a point 𝑥, is calculated according to
eq. (2.1). Point 𝑥 is then moved to the value of 𝑚(𝑥). This movement is done for all samples simulta
neously and repeated until point 𝑥 converges. The difference between 𝑚(𝑥) and 𝑥 is called Mean Shift
and the repeated movement is called the Mean Shift algorithm in Fukunaga and Hostetler [10].

𝐾(𝑥) = {1, if ‖𝑥‖ ≤ 𝜆
0, if ‖𝑥‖ > 𝜆 (2.2)

Mean Shift uses a kernel, like the flat kernel in eq. (2.2), to calculate the average value from the
samples nearby. The flat kernel is used to give an equal weight to all samples within a 𝜆 radius. All other
samples are given a weight of 0, and are thus effectively ignored. It is possible to use other kernels
in Mean Shift that use a weighted average like the Gaussian kernel. Although, in this thesis I will only
refer to Mean Shift with a flat kernel as it has the closest resemblance to Evolving Local Means.

Only one parameter is required to run Mean Shift, the radius. This parameter is also called the
bandwidth. The radius parameter is used to select the samples that are going to be used in the calcu
lation of the mean of nearby samples. The influence of the radius parameter on the cluster result can
be seen in fig. 2.2. It is clearly visible that a too low radius setting results in a large amount of clusters.
This is because the radius is so small that there are often no other samples within the radius of a point.
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This limits the shifting of a point, resulting in many separate clusters. A too large value for the radius is
also not good. When the radius is large, most of the samples will be within the 𝜆 radius of a point, and
thus will be included in the mean calculation. This would shift the point towards the mean of the whole
dataset. As all points will shift to the same place, a single cluster is created, containing all the samples.

Figure 2.2: Mean Shift comparison of different radius settings using the six datasets from Scikit Learn [17], showing an increase
in number of clusters found for a smaller radius.

As described before, Mean Shift uses an iterative approach to calculate the mean values and shift
the points repeatedly. This results in a runtime complexity of 𝒪(𝑖𝑑𝑛2) [6], for a dataset of size 𝑛 with 𝑑
dimensions and using 𝑖 iterations. The memory complexity will be 𝒪(𝑑𝑛), as all samples are repeatedly
used in the algorithm. The runtime complexity shows that Mean Shift scales exponentially on the size
of the dataset. Each additional sample in the dataset will result in a larger penalty on the execution
time, making the algorithm infeasible for use on large datasets. For large datasets it would be desirable
to use an algorithm with a runtime that scales linearly with the size of the dataset. Besides the runtime
complexity of generic clustering algorithms, it is also important to have a limit on the required memory.
This can be achieved with the concept of streaming algorithms. Streaming algorithms processes all
data samples one by one and does this in one, or at most a few passes. This makes streaming algo
rithms linearly scalable in terms of runtime complexity. Transformation of an algorithm to a streaming
version can be a complex problem. Streaming algorithms are often only able to give an approximation
or might only be usable for a limited subset of cases.

2.3. Evolving Local Means (ELM)
Evolving Local Means (ELM) is a streaming clustering algorithm that has been proposed by Baruah
and Angelov [2]. It is based on the same concepts as Mean Shift and requires only one pass over the
data set to determine the position and size of the clusters. A second pass can be used to label each
sample based on the nearest cluster. Unlike Mean Shift, where each point is moved repeatedly, ELM
is using a noniterative approach. Each sample is directly added to the nearest cluster. If a sample is
not near a cluster, it will be turned into a new cluster.
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Like Mean Shift, the ELM algorithm requires only one user defined parameter, the radius 𝑟. This
radius defines the minimum size of a cluster. The actual size of a cluster, determined by a distance
parameter 𝜎, is based on the location of the samples in the cluster. ELM requires the samples in a
dataset to be divided into convex subsets that are a distance greater than 𝑟 apart.

Figure 2.3: A flowchart of the Evolving Local Means algorithm, iteratively processing all samples.

A flowchart of the ELM algorithm is provided in fig. 2.3. The first sample processed by ELM will be
used to create the first cluster. The new cluster will then be defined with the location of the sample as
its centre. For each following sample 𝑥𝑖, ELM will determine the distance to the closest cluster centre.
If the sample is close enough to the nearest cluster 𝑝, according to eq. (2.3), it will add the sample to
this cluster. If a sample is not near a cluster, the sample will be turned into a new cluster.

𝑑𝑖𝑝 < (max(𝜎𝑖 , 𝑟) + 𝑟) (2.3)
When a cluster 𝑝 is updated by the addition of a new sample, ELM will search for the nearest

neighbouring cluster 𝑗. If these clusters are getting too close together, they will be merged into a single
cluster. This decision is determined with the condition shown in eq. (2.4).

𝑑𝑝𝑗 < (max(𝜎𝑝, 𝑟) + (max(𝜎𝑗 , 𝑟)) (2.4)
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The steps above are repeated for each sample until all samples have been processed. This process
will let the clusters evolve as more samples are being added. ELM has a runtime complexity of 𝒪(𝑐𝑑𝑛),
with 𝑛 as the number of samples in a dataset with 𝑑 dimensions and 𝑐 as the number of clusters. The
memory complexity is 𝒪(𝑐𝑑), making it independent to the size of the dataset. The number of clusters
𝑐 depends on the range of the input data and the radius 𝑟, as all clusters need to be separated by at
least 2𝑟. Clusters cannot be closer together without being merged together. The runtime complexity
shows that the runtime of ELM scales linearly with the size of the dataset.

Figure 2.4: Example of ELM, showing different iterations on dataset DS1, with the radius 𝑟 and distance parameter 𝜎𝑖 around
each cluster centre 𝜇𝑖. The next sample to be processed (𝑥𝑖) is shown in red, together with the radius 𝑟 around it.

Figure 2.4 shows the clustering process using dataset DS1 with a radius 𝑟 = 1.7. Iteration 2 shows
the first two samples have been added to the blue cluster. The next sample, shown in red, is also close
enough to be added to the blue cluster. The parameters of this cluster, such as the centre, are updated
as can be seen in iteration 3. The fourth sample is further away and will therefore be turned into a new
cluster. After processing all samples, ELM returns a cluster result with two clearly separated clusters.

The ELM algorithm can start from scratch, with no prior knowledge of the dataset, as described
above. It is also possible to start ELM with an existing structure of clusters that has been created by a
different cluster method.

As ELM is a streaming algorithm, it will not store the individual samples in the clusters. Instead, it will
store a sum of the samples in a cluster and a sum of squared samples in a cluster. These are labelled
as 𝛼𝑖 and 𝛽𝑖 respectively, for a cluster 𝑖. These parameters, together with the number of samples in
a cluster, allows the algorithm to determine the cluster centre 𝜇𝑖 and a distance parameter 𝜎𝑖 at each
moment. These parameters are updated for each cluster as the cluster evolves. This approach limits
the required memory for each cluster, making it independent of the number of samples in a cluster.





3
Improving ELM with decision branching

My research will be extending the Evolving Local Means (ELM) algorithm. For this research, I will
implement the ELM algorithm as described in the appendix of the publication [2]. This implementation
of ELM will be used as a basis for my algorithm, called ELM Decision Branching (ELMDB). It will also
be used as a baseline to compare the cluster quality and runtime performance. For this implementation
I will be using Python as it is a high level language that is easy to write and has many useful libraries like
numpy and sklearn. This allows me to easily implement and modify the algorithm for experiments.
In this chapter will focus on improving cluster quality by extending the ELM algorithm with decision
branching.

3.1. Decision branching
Decision branching is a method that is useful when an algorithm does not yet have enough information
available to make a good decision. Instead of trying to make a potentially bad decision, it will delay the
decision by branching to the different options and continue the calculation for each option in parallel
until a better decision can bemade. Decision branching can result in many parallel branches, especially
when used repeatedly. This can have a large impact on the runtime performance of the algorithm, as
each branch needs to be calculated. Unnecessary calculation of branches should therefore be avoided
whenever possible, to reduce the amount of calculations.

How can decision branching be used to improve clustering in ELM? ELM will merge clusters that
are close to each other. In some occasions, this decision is made with insufficient information, resulting
in a premature merge. This merge decision is based on the location and size of the clusters. However,
the location and size of a cluster will change each time a new sample is added to the cluster. This is
especially relevant for new clusters that only contain a few samples, as the addition of a sample will
have a relatively large influence on the location and size of the cluster. An unfavourable sample order
might initially move two clusters towards each other or temporarily increase the distance parameter 𝜎
of a cluster. When the clusters become too close to each other ELM will merge the clusters together
in to a single cluster, an action that cannot be undone in ELM. However, it might be better to keep the
clusters separate if they eventually would move away from each other.

I will explain this premature merge problem with an example. For this example I have reordered
the samples in dataset DS1, which is clustered correctly by ELM, to create a new dataset DS2. This
dataset still meets the requirements set by ELM to have a minimum distance of radius 𝑟 between all
clusters. The samples in DS2 have been set to a specific order that will be causing the premature
merge in ELM.

Figure 3.1 will show the clustering process of this reordered dataset DS2 in ELM using a radius
𝑟 = 1.7. Iteration 1 shows the first sample that is used to create a first cluster, as shown in blue. Next
to it, we see the next sample to be processed in red. This sample is not close enough to be added to
the existing cluster, and thus will be turned into a new cluster in the second iteration. The third sample
is just close enough to be added to the green cluster, as can be seen by the overlapping radius. This
will result in a distance parameter 𝜎 larger than the radius 𝑟, as shown in iteration 3. The fourth sample
will also be added to the green cluster, increasing 𝜎 further. We can see now in iteration 4 that the

11



12 3. Improving ELM with decision branching

Figure 3.1: Example of premature merge in ELM, showing different iterations on the reordered dataset DS2, with the radius 𝑟
and distance parameter 𝜎𝑖 around each cluster centre 𝜇𝑖. The next sample to be processed (𝑥𝑖) is shown in red, together with
the radius 𝑟 around it. Reordering of the samples causes ELM to return only one cluster.

blue and green clusters are almost overlapping. The fifth sample is also added to the green cluster,
increasing 𝜎 even more. At this point, the two clusters are overlapping and thus merged into a single
cluster. Iteration 5 shows this merged cluster, which has resulted in a large value of 𝜎. The addition
of the sixth sample, as shown in iteration 6, increases 𝜎 even further. All following samples will now
added to this cluster, resulting in a result with only one cluster. So where does the algorithm go wrong?
If we look at the clustering of dataset DS2 in fig. 3.1, we can see that the decision to merge the two
clusters is made in iteration 5, before both clusters have stabilized enough for the algorithm to make
a good decision. A similar situation could occur during the addition of a new sample, when a decision
must be made to either add the sample to then nearest cluster or to create a new cluster. This means
that two decisions would profit from decision branching, as shown below:

1. When a new sample 𝑥𝑖 is processed, it will search for the nearest cluster 𝑝. If the distance 𝑑𝑖𝑝
between sample 𝑥𝑖 and cluster 𝑝 is small enough according to eq. (3.1), it will add the sample
to this cluster. Otherwise, a new cluster is created for the sample. This can be visually seen by
either the radius 𝑟 or the distance parameter 𝜎𝑝 around cluster 𝑝 overlapping with the radius 𝑟
around the sample 𝑥𝑖.

𝑑𝑖𝑝 < (max(𝜎𝑝, 𝑟) + 𝑟) (3.1)

2. If a sample has been added to an existing cluster 𝑝, the algorithm will search for the nearest
neighbouring cluster 𝑗 ≠ 𝑝. If the distance 𝑑𝑝𝑗 is small, as determined by eq. (3.2), they will be
merged into a single cluster.

𝑑𝑝𝑗 < (max(𝜎𝑝, 𝑟) +max(𝜎𝑗 , 𝑟)) (3.2)
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Figure 3.2: Flowchart showing the part of the ELMDB algorithm where decision branching is being used. We can see here that
there are three options for both decisions. For the first decision this is to either create a new cluster, add sample to existing
cluster or try both using decision branching. Similarly for the second decision: merge clusters, don’t merge clusters, or try both
using decision branching.

Branching is only needed when it is not possible to make a good decision with the current information
available. When looking at the distance 𝑑𝑖𝑝 between a new sample 𝑥𝑖 and the nearest cluster 𝑝, there
is no need to use decision branching when the sample is very close to the cluster. The sample should
in this case always be added to the nearby cluster. So the algorithm will not branch when 𝑑𝑖𝑝 < 2𝑟 and
just add the sample to cluster 𝑝. There is also no need to branch when the sample is far away from
the nearest cluster. Thus, the algorithm will always create a new cluster when 𝑑𝑖𝑝 ≥ (max(𝜎𝑝, 𝑟) + 𝑟).
Otherwise, the algorithm should branch to explore both options: creating new cluster from 𝑥𝑖 and adding
𝑥𝑖 to cluster 𝑝.

Similar steps will be used for the second decision point. If sample 𝑥𝑖 has been added to cluster 𝑝,
the algorithm will check if this cluster 𝑝 is too close to the nearest neighbouring cluster and should be
merged with this cluster. If the distance 𝑑𝑝𝑗 between cluster 𝑝 and the nearest cluster 𝑗 is small e.g.
𝑑𝑝𝑗 < 2𝑟, then clusters 𝑝 and 𝑗 will always be merged. When 𝑑𝑝𝑗 is large e.g. 𝑑𝑝𝑗 ≥ (max(𝜎𝑝, 𝑟) +
max(𝜎𝑗 , 𝑟)), the clusters will not be merged. Otherwise, a good decision cannot be made and decision
branching will be used. Both options will then be calculated: merging clusters 𝑝 and 𝑗, and not merging
clusters 𝑝 and 𝑗. The two decisions described above are also illustrated in fig. 3.2.

The different branches will be implemented as a list of states that can be processed in parallel. The
algorithm starts with a single state, that will branch into multiple states, each time decision branching is
required. The algorithm will iterate over all samples one by one. Each iteration, it will update all states
in the list with the new sample.

This approach can result in many states to be processed in parallel, which will significantly increase
the runtime of the algorithm. Table 3.1 shows the number of states created after each iteration when
processing the reordered dataset DS2. We can see here that the number of states increases to 788
states for only 20 processed samples. Fortunately, this list of states contains a lot of duplicates that
can easily be removed. By removing these duplicate states, the number of states is reduced to only 15
unique states.
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Table 3.1: Number of parallel states and number of unique states after removing duplicate states for each iteration.

Iteration States Unique states
1 1 1
2 1 1
3 1 1
4 1 1
5 2 2
6 3 3
7 3 3
8 3 3
9 3 3
10 4 4
11 5 5
12 7 6
13 10 6
14 12 5
15 22 6
16 51 9
17 72 8
18 150 10
19 357 13
20 788 15

3.2. Scoring metric
The algorithm is now able to create multiple states, each containing a possible clustering result. A
scoring metric is now required to know which state has the best clustering performance. This metric
will be used to select the state that will be returned as result. It is also used during the clustering process
to detect which states have a low clustering performance.

There are several methods for evaluation of the clustering performance. All clustering evaluation
methods can be divided into two groups: internal and external validation. Internal validation methods
will evaluate the cluster performance without any external information, while external validation requires
some external information. This external information can for example be learning samples containing
a ground truth. As the scoring metric is used during the clustering process, it cannot use any external
information and must thus be based on an internal validation method. It is also important to consider
which aspect is being optimized by the clustering algorithm. The Mean Shift and ELM algorithms are
optimizing the density of the found clusters.

3.2.1. Silhouette coefficient
The silhouette coefficient [19] is a commonly used internal validationmethod for clustering performance.
It is based on how close together samples are within a cluster and how far they are from samples in
the nearest neighbouring cluster. This means that it will produce a higher score for denser clusters that
are further apart from each other. The silhouette coefficient gives a score to each sample in a cluster
in the range [1, 1], where 1 stands for perfect fit for the sample in the current cluster. A score of 1
shows a perfect fit with a different cluster which is an indication of bad clustering. The average score
of all samples is used to give an overall score of the clustering accuracy, called the silhouette score.

The silhouette coefficient 𝑠(𝑖) of a sample 𝑥𝑖 is determined by two factors. The average dissimilarity
𝑎(𝑖) of sample 𝑥𝑖 to all other samples in te same cluster. And the average dissimilarity 𝑏(𝑖) to all samples
in the nearest cluster that 𝑥𝑖 is not a member of.

The average dissimilarity 𝑎(𝑖) is defined as the mean distance between sample 𝑥𝑖 and all other
samples 𝑥𝑗 in the same cluster 𝐶𝑖. The definition for 𝑎(𝑖) is shown below, with 𝑑(𝑥𝑖 , 𝑥𝑗) as the distance
between 𝑥𝑖 and 𝑥𝑗.

𝑎(𝑖) = 1
|𝐶𝑖| − 1

∑
𝑗∈𝐶𝑖 ,𝑖≠𝑗

𝑑(𝑥𝑖 , 𝑥𝑗)
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For 𝑏(𝑖), the mean distance between 𝑥𝑖 and all samples 𝑥𝑗 in another cluster 𝐶𝑘 are calculated for
each other cluster 𝐶𝑘. 𝑏(𝑖) is determined by the cluster with the lowest mean distance to 𝑥𝑖 and can be
seen in the definition below.

𝑏(𝑖) =min
𝑘≠𝑖

1
|𝐶𝑘|

∑
𝑗∈𝐶𝑘

𝑑(𝑥𝑖 , 𝑥𝑗)

The silhouette coefficient 𝑠(𝑖) is then calculated from the factors 𝑎(𝑖) and 𝑏(𝑖) with the definition
below. Note that the score is set to 0 for any cluster 𝐶𝑖 with a size of 1.

𝑠(𝑖) = 𝑏(𝑖) − 𝑎(𝑖)
max {𝑎(𝑖), 𝑏(𝑖)} , if |𝐶𝑖| > 1 and 𝑠(𝑖) = 0, if |𝐶𝑖| = 1

Different distance metrics, for example Euclidean distance or Manhattan distance, can be used for
the distance 𝑑(𝑥𝑖 , 𝑥𝑗). For this application I will be using the Euclidean distance as this is the distance
metric being used in ELM. An overall silhouette score for the clustering can be achieved by calculating
the mean of 𝑠(𝑖) for all samples 𝑥𝑖, as described by Kaufman and Rousseeuw [15].

3.2.2. Streaming approximation
The silhouette score gives a good indication of the cluster quality. However, it requires all individual
samples to calculate the score. These individual samples are not available at arbitrary times, as this
would contradict the limitations set by the streaming approach. The individual samples can only be
accessed at limited times, in this case when the sample is being added to a state. This means that it is
not possible to use the distance 𝑑𝑖𝑗 between a sample 𝑥𝑖 and each other sample 𝑥𝑗. In this case, the
exact value of the approximate score compared to the silhouette coefficient is not important. However,
a positive difference between two silhouette coefficients should reflect into a positive difference on the
approximate score as good as possible.

The silhouette score of each sample is based on two factors: the average dissimilarity to other points
in the same cluster (𝑎(𝑖)) and the average dissimilarity to all points in the nearest neighbouring cluster
(𝑏(𝑖)). For the average dissimilarity 𝑎(𝑖), I will use the distance parameter 𝜎𝐶𝑖 of the corresponding
cluster 𝐶𝑖, that sample 𝑥𝑖 is a member of. This will give an indication on the dissimilarity of samples in
cluster 𝐶𝑖.

𝑎(𝑖) = 𝜎𝐶𝑖
The average dissimilarity 𝑏(𝑖) will be determined by the distance between the centre 𝜇𝑖 of cluster

𝐶𝑖 and the centre 𝜇𝑘 of its nearest neighbouring cluster 𝐶𝑘.

𝑏(𝑖) = min
𝐶𝑘≠𝐶𝑖

{𝑑(𝜇𝑖 , 𝜇𝑘)}

These values only need to be calculated once for each cluster, reducing the number of calculations.
In the case where there is only one cluster, the silhouette score is set to −1. This will encourage the
algorithm to find results with multiple clusters.

Table 3.2: Parameters used to generate the datasets for testing the Python implementations.

Standard deviation 1.0
Number of features 2
Number of clusters 3
Number of samples 250

To verify the accuracy of this approximation, I have compared the outcome of my approximation
with the actual silhouette score of over 10000 states. For this experiment, I have generated different
datasets with the make_blobs() method from SciKit Learn [17], using the parameters in table 3.2.
The datasets have been normalized and clustered with ELMDB, using a radius 𝑟 = 2.0 and unlimited
number of states. All resulting states from the clustering process are used to calculate both the silhou
ette score and silhouette score approximation. These steps have been repeated for different datasets
until 10000 states have been processed. To allow calculation of the silhouette score of a state, I have
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Figure 3.3: Correlation between the silhouette score approximation and the actual silhouette score for 10000 different cluster
results shown as points in this plot.

temporarily modified the ELMDB implementation in this experiment to store the individual samples in
each cluster.

I have analysed the correlation between my approximation and the actual silhouette scores. This
correlation can be seen in fig. 3.3. We can see here that there is a clear correlation between my
approximation and the actual silhouette score. The approximation is most accurate for cluster results
with a high score. The difference between the approximation and the actual score becomes larger for
low scoring cluster results. As the highest scoring states are most important to be ordered correctly,
this approximation should be sufficient for ordering of the states in ELMDB.

3.3. Multiple states
The algorithm produces many different states, as seen in table 3.1. The number of states need to be
limited in order to maintain performance. With the scoring metric we are now able to determine which
state contains the best result.

Figure 3.4a shows the approximate silhouette scores of all states after each iteration of the reordered
dataset DS2. This dataset has been clustered with ELMDB and ELM using a radius 𝑟 = 1.7 and an
unlimited number of states for ELMDB. Each orange dot shows the intermediate states in ELMDB for
each iteration and the approximate silhouette score given to this state by ELMDB. The branches from
each iteration in ELMDB is visualized with the orange line. The green line shows the decision path
ELM would take for this dataset. We can see here that the algorithm branches for the first time in the
fifth iteration. The first state has an approximate score of 0.39. The second one has an approximate
score of −1.00, which indicates that it contains only one cluster. When we look at the whole graph, we
see that this first decision is important to get to a good clustering result of 0.75. A second chance is
given in the sixth iteration to get a clustering result of 0.60. If the algorithm had created a single cluster
at iteration 6 (score of −1.00), it would not be able to recover from this decision and could at most get
a score of 0.17 at the end.

I will explain the decision branching in more detail using the data in table 3.3. These iterations are
also visualized in fig. 3.4b. We can see that iteration 3 resulted in two clusters: 𝐶0 with one sample
and 𝐶1 with two samples. Iteration 4 will process the next sample 𝑥3 = (1.64, 1.37) (shown in red in
iteration 3 of fig. 3.4b). ELMDB will now check the distance to each cluster centre to find the nearest
cluster. The distance to cluster 𝐶0 is 𝑑(𝑥3, 𝜇0) = 3.8, and the distance to 𝐶1 is 𝑑(𝑥3, 𝜇1) = 2.7.

𝑑(𝑥3, 𝜇1) < 2𝑟 ⟹ 2.7 < 3.4
This makes 𝐶1 the nearest cluster with a distance smaller than 2𝑟. Sample 𝑥3 will thus be added to

cluster 𝐶1. As the sample has been added to a cluster, the algorithm will now determine the distance to
the nearest cluster to check if it should be merged. There is only one other cluster, 𝐶0 with a distance
𝑑(𝜇1, 𝜇0) = 4.4. The equation below shows that 𝐶0 is far enough away and does not have to be merged.

𝑑(𝜇1, 𝜇0) ≥ (max(𝜎1, 𝑟) +max(𝜎0, 𝑟)) ⟹ 4.4 ≥ 4.3
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(a) Branching in ELMDB visualized with the approximate score of all states in each iteration, shown as orange points. Connecting lines show
how states evolve to the next iteration. Multiple lines from a state indicates branching, while multiple lines towards a point shows that there are
duplicate states. The green line shows the decision path that would have been taken by ELM.

(b) Similar to fig. 3.5, showing iterations 36 with the decision branching in state 4 to 5𝑎/5𝑏 and in state 5𝑏 to 6𝑏/6𝑐.

Figure 3.4: Decision branching in ELMDB visualized using dataset DS2 with unlimited states. Iterations 36 has been shown
into more detail.



18 3. Improving ELM with decision branching

Table 3.3: Internal variables for all states in iteration 36 for ELMDB, when clustering dataset DS2.

Iter. Sample Cluster 𝐶0 Cluster 𝐶1 Comments
𝑥𝑖 𝜇0 𝜎0 |𝐶0| 𝜇1 𝜎1 |𝐶1|

2→3 0.06, 1.98 0.0 1 0.62, 2.89 2.0 2
3→4 1.64, 1.37 0.06, 1.98 0.0 1 0.14, 2.38 2.6 3 Add 𝑥3 to 𝐶1
4→5𝑎 3.15, 3.48 0.06, 1.98 0.0 1 0.89, 2.66 3.6 4 Add 𝑥4 to 𝐶1
4→5𝑏 0.70, 1.73 5.2 5    Add 𝑥4 to 𝐶1, merge

𝐶1, 𝐶0
5𝑎→6𝑎 1.50, 4.41 0.78, 3.19 1.6 2 0.89, 2.66 3.6 4 Add 𝑥5 to 𝐶0
5𝑏→6𝑏 1.50, 4.41 0.0 1 0.70, 1.73 5.2 5 Create new cluster 𝐶0
5𝑏→6𝑐 0.33, 0.71 9.3 6    Add 𝑥5 to 𝐶0

In the next iteration, sample 𝑥4 = (3.15, 3.48) will be processed. Again, we start with finding the
nearest cluster. 𝐶1 is the nearest cluster with a distance 𝑑(𝑥4, 𝜇1) = 3.2. Sample 𝑥4 will also be added
to cluster 𝐶1 as 3.2 < 2𝑟 = 3.4. The algorithm will then check the distance to the nearest cluster being
𝑑(𝜇1, 𝜇0) = 4.7. At this moment, the algorithm will make the decision to branch into two different states,
following the equation below.

2𝑟 ≤ 𝑑(𝜇1, 𝜇0) < (max(𝜎1, 𝑟) +max(𝜎0, 𝑟)) ⟹ 3.4 ≤ 4.7 < 5.3
The first state (5𝑎) will keep the clusters separate, while the second state (5𝑏) will merge clusters 𝐶1

and 𝐶0 into a single cluster. Iteration 6 starts with two different states. We will start with the first state,
derived from 5𝑎. Sample 𝑥5 = (−1.50, −4.41) is closest to cluster 𝐶0, with a distance 𝑑(𝑥5, 𝜇0) = 2.8.
As the sample is close to the cluster it will be added to cluster 𝐶0, resulting in state 6𝑎. The second
cluster is not close enough, so the clusters will not be merged. The second state in this iteration is
derived from 5𝑏. Again, the distance 𝑑(𝑥5, 𝜇0) = 6.5 is calculated to the single cluster 𝐶0.

2𝑟 ≤ 𝑑(𝑥5, 𝜇0) < (max(𝜎0, 𝑟) + 𝑟) ⟹ 3.4 ≤ 6.5 < 6.8
This means that the algorithm will branch on this decision. The first state (6𝑏) will turn sample 𝑥5

into a new cluster. While the second state (6𝑐) adds 𝑥5 to cluster 𝐶0. As there is only one cluster in
this state, there will be no cluster nearby to merge with. As the algorithm continues with the remaining
samples, the states will evolve. After processing the states in each iteration, the algorithm will remove
any duplicate states. This results in 15 unique states after processing all 20 samples from dataset DS2.

The number of parallel states need to be limited to maintain performance. Figure 3.4a shows that
the states with the best intermediate scores will have the highest potential to a good clustering result.
I will thus limit the states by keeping the best 𝑠 states after each iteration. The number of states used
in the algorithm has a large effect on the runtime of the algorithm. In section 4.2, I will further analyse
the effect of this parameter on the cluster result and runtime of the algorithm.

With the introduction of multiple states, ELMDB needs to update all states in each iteration. This
already increases the runtime complexity to process all samples to 𝒪(𝑠𝑐𝑑𝑛). Similar to ELM, this is
based on 𝑛 samples in a dataset with 𝑑 dimensions and having 𝑐 clusters. However, for ELMDB we
also need to consider the number of states 𝑠. In order to manage these states, we also need time
to update the score of each state (𝒪(𝑠𝑐2𝑑)) and sort the states to find the best states (𝒪(𝑠 log(𝑠))).
This gives a total runtime complexity of 𝒪(𝑠𝑐𝑑𝑛 + 𝑠𝑐2𝑑 + 𝑠 log(𝑠)), maintaining linear scalability on the
number of samples 𝑛. The memory complexity of ELMDB is 𝒪(𝑠𝑐𝑑), as multiple states 𝑠 need to be
maintained. Note that the memory requirements are still independent on the dataset size 𝑛.

The clustering algorithm processes the data samples as a stream. This means that the algorithm is
not able to keep track of which samples have contributed to each cluster. Instead, it returns a structure
of clusters, containing the position, number of samples and the average norm 𝜎 of each cluster.
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In order to label a dataset, I have extended the algorithm to iterate a second time over all samples
𝑥𝑖. In this iteration each sample is labelled based on the nearest cluster. As some clusters have a
larger average norm 𝜎 than others, I have subtracted the average norm 𝜎𝑘 from the distance to each
cluster centre 𝜇𝑘.

min {𝑑(𝑥𝑖 , 𝜇𝑘) − 𝜎𝑘}
The clusters created by ELM and ELMDB evolve as more samples are being processed. This

means that for a sample the nearest cluster during clustering might not be the nearest cluster any more
when labelling this sample in the second iteration over the dataset. that samples processed by ELMDB
will thus not always be labelled with the same cluster it has contributed to during the clustering process.

Figure 3.5: Similar to fig. 3.1, showing the clustering process of the reordered dataset DS2 in ELMDB. WE can see here that
ELMDB is able to prevent the premature merge and returns clearly separated clusters. For each iteration, the state with the
highest approximate score is shown.

3.4. Results
With the use of decision branching my algorithm, ELM Decision Branching (ELMDB), should be able
to prevent a premature merge as described with the reordered dataset DS2. Figure 3.5 shows the state
with the highest score at each iteration. We can see here that ELMDB is able to prevent the premature
merge and create a cluster result with two clusters.

I have compared the cluster performance of ELMDBwith Mean Shift and ELM, using 1000 synthetic
datasets with a Gaussian distribution. All synthetic datasets are for this section are generated with the
make_blobs() method from SciKit Learn [17], using the parameters in table 3.2.

The datasets have been normalized before clustering and have been selected to have a minimum
distance 𝑟 between clusters as required by ELM. For ELM and ELMDB I have used a radius 𝑟 = 2.0
and for Mean Shift a radius 𝑟 = 2.6, as these values produce the highest average silhouette score.
ELMDB is set to use a maximum of 10 states.
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(a) Using datasets generated with a minimum distance of 𝑟 between
clusters, as required by ELM.

(b) Using datasets generated without the minimum distance require
ment.

Figure 3.6: Comparison of cumulative silhouette scores of 1000 datasets clustered by Mean Shift, ELM and ELMDB.

A cumulative distribution of these cluster results can be seen in fig. 3.6a. We can see here that Mean
Shift produces the best results, closely followed by ELM and ELMDB. We can also see that ELMDB
has a slightly better score than ELM, although the differences between the algorithms are very small.
Both Mean Shift and ELMDB are able to produce good cluster results for all datasets. However, ELM
was not able to cluster all datasets correctly. 5 datasets (0.5%) were given a score of 0.0, as the results
from ELM contained only one cluster.

The requirement in ELM to have a minimum distance between clusters, makes it easy to cluster
data as the clusters are clearly separated. Without this requirement ELM would be more likely to suffer
from premature merge. I have therefore repeated the last comparison without a minimum distance
requirement. The cumulative distribution of these results can be seen in fig. 3.6b. These results show
a larger difference between ELM and Mean Shift as ELM is not able to cluster all of these datasets
correctly. ELMDB does not have this problem and produces results close to Mean Shift. Both Mean
Shift and ELMDB were unable to cluster 10 datasets (1.0%) correctly, compared to ELM unable to
cluster 68 datasets (6.8%). In these cases, the algorithms returned a single cluster, resulting in a
silhouette score of 0.0.

Figure 3.7: Average silhouette score of 50 datasets using Mean Shift, ELM and ELMDB for different radius settings. We can
see here that Mean Shift is able to produce a high silhouette score for a large range of radius settings, followed by ELMDB.
While the radius needs to be chosen carefully to receive the highest silhouette score.
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Mean Shift, ELM and ELMDB all require the same parameter, the radius 𝑟. To see the effect of
this parameter, I have clustered 50 datasets with different radius values. Figure 3.7 shows the average
silhouette score for each radius value. The top plot shows that Mean Shift is able to give consistent
clustering results for every radius in the range of 2 to 4.5. ELM, on the other hand, requires a precise
radius of 2 to get the best clustering result. The silhouette score quickly drops as the radius is increased
or decreased. My algorithm is able to keep a better silhouette score than ELM when the radius is
increased above 2. The score is slowly deceasing until a radius of 4, after which the silhouette score
quickly drops. The slight increase for the silhouette scores with a radius below 1, can be explained by
the large number of clusters. When the radius is too low, the algorithms are not able to group samples
together. This results in a large number of clusters, as can be seen in the bottom plot.

In this chapter, I have explained the concept of decision branching and how I have implemented it
to create ELM Decision Branching to improve cluster quality. With these results we are now able to
answer the first subquestion:

Question 1: What is decision branching and can it be used to improve the clus
ter quality of Evolving Local Means?

Decision branching is a method used to postpone decisions by processing all possible cases in
parallel until the decision can be made. With the use of decision branching, ELMDB is able to reduce
the chance of premature merge as can be seen in fig. 3.6, resulting in a higher average silhouette
score. Figure 3.7 shows that it is also able to produce a high silhouette score for a larger range of
radius settings, making it more flexible to use in practice.





4
Performance of the algorithm

In the previous chapter we discussed the cluster quality of ELM Decision Branching (ELMDB). This
chapter will focus on the runtime performance. I have therefore created more efficient implementations
of ELM and ELMDB in C. These implementations will be faster than Python and will thus be useful
to cluster large datasets. I have verified that the C implementations produces the same results as the
Python implementations by comparing results from different datasets. The runtime performance will
be measured on a Windows 10 system with an Intel Core i78750H CPU at 2.2 GHz and 16 GB RAM,
running Windows Subsystem for Linux (WSL).

4.1. Analysing performance using C implementations
With the C implementations I will now analyse the runtime performance of ELMDB. I have compared
the runtime of Mean Shift, ELM and ELMDB for different dataset sizes. The number of samples for
Mean Shift have been limited to 1000, as larger datasets would take too long for a non streaming
algorithm.

Figure 4.1: Comparing total runtime and runtime per sample for Mean Shift, ELM and ELMDB using different number of states.

Figure 4.1 shows the average runtime on 50 datasets for each size. We can see that Mean Shift is
clearly slower than the other algorithms. This can easily be explained by the large number of calcula
tions it needs to perform when iteratively moving each point. It must also be noted that Mean Shift is
implemented in Python, giving it a disadvantage to the other algorithms that were written in C.

23
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More importantly, as Mean Shift is not a streaming algorithm, the processing time per sample in
creases as the dataset become larger. Even if Mean Shift would be faster than ELM and ELMDB for
small datasets, it would eventually become slower when the datasets becomes large enough due to the
exponential nature of the algorithm. Streaming algorithms like ELM and ELMDB on the other hand,
scale linearly with the size of the dataset. When we compare ELMDB with ELM, we see that it has
a comparable performance when using one state. Increasing the number of states in ELMDB clearly
increases the runtime of the algorithm.

4.2. Number of parallel states
As discussed in section 3.3, the number of parallel states needs to be limited to the best 𝑛 states in
order to maintain performance. In this section I will analyse the effect of this setting on the cluster
results. For this experiment I have compared the silhouette score and runtime when clustering with
different number of states, on 50 datasets with 1000 samples. As the number of states will have a
large influence on the runtime of the algorithm, this value should be kept as low as possible without
affecting the cluster result too much.

Figure 4.2: Comparing the average silhouette score and runtime from clustering 50 datasets with ELMDB using different number
of states. The silhouette score and runtime from Mean Shift and ELM have been added for comparison.

Figure 4.2 shows the average silhouette score and average runtime for 1 to 1000 states. The results
from Mean Shift and ELM have been added to this plot for comparison. These results are shown as
horizontal lines, as the number of states does not apply to these algorithms. We can see that ELMDB
is able to get a score of 0.72 using only one state, Which is close to the score from Mean Shift with
a score of 0.74. The score is slightly lower (0.71) when using two or more states, but still higher than
ELM which has a score of 0.68. At the same time we can see a large increase in runtime from 1.94𝑚𝑠
with one state to 1.58𝑠 with 1000 states. The runtime of ELMDB with one state is only 3.4% slower
compared to ELM which has a runtime of 1.88𝑚𝑠. These results show that using one state gives the
best result. However, this does not have to be true for al scenarios. Some datasets might require a
higher number of states to get a good clustering result.

It is interesting to see that the score is decreasing when ELMDB is using more states. I have
analysed the individual results for one and two states in more detail to locate a possible cause for this
issue. From the 50 datasets clustered, 5 datasets return a lower score when using two states compared
to using only one state. The ordering of states on decreasing approximate score is done correctly, the
second state always has a lower approximate score than the first state. However, in these 5 datasets,
the second state has a higher silhouette score than the first state. This shows an inaccuracy in the
silhouette score approximation, used in ELMDB: the approximation orders the states differently than
the actual silhouette score would have done.

It must be noted though that the silhouette score approximation is based on the cluster structure
in ELMDB, while the actual silhouette score in this experiment is based on the labelled dataset. As
described in section 3.3, samples might not always be labelled with the same cluster it has contributed
to during clustering. This might have influenced the silhouette score results.
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4.3. Parallel calculation on a commodity graphics card
In this thesis I have researched the use of decision branching on ELM. This branching will result in the
parallel calculation of different states. When there are many parallel states to be processed, it might
be useful to use a commodity graphics card.

A commonly used language for data processing on GPU(s) is CUDA. The GPU architecture works
with the Single Instruction, Multiple Threads (SIMT) model. It is based on the concept of Single In
struction, Multiple Data (SIMD) where a single instruction can be performed on multiple sets of data
simultaneously. In CUDA hundreds to thousands of threads are grouped together in to Warps, with
each warp containing 32 threads. All threads in a warp will synchronously perform the same instruc
tions on its own data. In order to effectively utilize the GPU, there needs to be enough parallelism to
perform hundreds of calculations in parallel. Without this parallelism, calculation on GPU will not weight
up to the performance of a CPU.

The results from fig. 4.2, show that ELMDB produces the best result with one or at most a few
states. This means that there is not enough parallelism in the algorithm to efficiently utilize a commodity
graphics card.

4.4. Practical performance
In this section I will analyse the practical performance by using real life datasets from the UCI Machine
Learning Repository [8]. I have selected four datasets with different sizes and number of features,
as shown in table 4.1. The datasets Iris and Wine are the same datasets as have been used in the
Evolving Local Means paper [2].

Table 4.1: Real life datasets from the UCI Machine Learning Repository [8] used to compare practical performance.

Datasets # Instances # Features Name in UCI repository
Iris 150 4 Iris
Wine 178 13 Wine
Motion Capture 78095 36 Motion Capture Hand Postures
Power Consumption 2049281 7 Individual household electric power consump

tion

The datasets have been normalized with the StandardScaler() function fromScikit Learn. I have
removed the Class column from the Iris, Wine and Motion Capture datasets, as this column contains
the ground truth for these datasets. For the Motion Capture dataset, I have also removed the User
column as this is not relevant for clustering. The missing values in this dataset have been replaced
with zeros. In the Power Consumption dataset, I have removed the date and time columns. The rows
with missing values (1.25% of the dataset) have been removed from this dataset. I will compare the
performance of three different algorithms:

• Mean Shift Implementation from Scikit Learn in Python.

• Evolving Local Means My implementation in C, based on the algorithm in the paper.

• ELM Decision Branching The C implementation of my algorithm.

The cluster algorithms will be run with different radius settings to find the cluster result with the
highest silhouette score. Mean Shift will only be used for the two smallest datasets Iris and Wine, as
the other datasets would take too much time for a nonstreaming algorithm. The silhouette scores of
the Power Consumption dataset are based on a random subset of 100.000 samples.

The results from this experiment are shown in table 4.2. All clustering algorithms are getting the
same silhouette score for the Iris dataset. For the Wine dataset, the streaming algorithms are getting
a score of 0.30, while Mean Shift is only able to get a score of 0.22. ELMDB is able to get a maximum
score on a large range of radius settings when only using one state. This range becomes smaller as the
number of states is increased. These first two datasets also show a large difference in runtime between
Mean Shift and the streaming algorithms. The difference in runtime between ELM and ELMDB with
various number of states is very small. This is because ELMDB uses at most 2 states when clustering
Iris and at most 3 states for Wine.
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Table 4.2: Comparison of clustering results from Mean Shift, ELM and ELMDB on four real life datasets.

Dataset / Algorithm Radius Number of Silhouette Runtime Compared
clusters score to ELM

Iris
Mean Shift 1.5  2.4 2 0.58 220  250 𝑚𝑠
ELM 1.0  1.4 2 0.58 0.463  0.482 𝑚𝑠
ELMDB (1 state) 1.0  1.4 2 0.58 0.479  0.484 𝑚𝑠 +3.5 %
ELMDB (2 states) 1.0  1.4 2 0.58 0.474  0.493 𝑚𝑠 +2.4 %
ELMDB (5 states) 1.0  1.4 2 0.58 0.474  0.484 𝑚𝑠 +2.4 %
ELMDB (10 states) 1.0  1.4 2 0.58 0.460  0.474 𝑚𝑠 0.6 %
ELMDB (100 states) 1.0  1.4 2 0.58 0.464  0.481 𝑚𝑠 +0.2 %
Wine
Mean Shift 4.0  4.2 2 0.22 428  568 𝑚𝑠
ELM 2.2  2.6 2 0.30 1.38  1.44 𝑚𝑠
ELMDB (1 state) 2.1  3.0 2 0.30 1.46  1.58 𝑚𝑠 +5.6 %
ELMDB (2 states) 2.4  3.0 2 0.30 1.52  1.68 𝑚𝑠 +9.9 %
ELMDB (5 states) 2.7  3.0 2 0.30 1.47  1.52 𝑚𝑠 +6.3 %
ELMDB (10 states) 2.7  3.0 2 0.30 1.43  1.53 𝑚𝑠 +3.7 %
ELMDB (100 states) 2.7  3.0 2 0.30 1.46  1.56 𝑚𝑠 +5.8 %
Motion Capture
ELM 4.8  5.3 2 0.48 1.21  1.26 𝑠
ELMDB (1 state) 5.8 2 0.46 1.24 𝑠 +2.5 %
ELMDB (2 states) 5.8 2 0.46 1.33 𝑠 +9.5 %
ELMDB (5 states) 5.7  5.8 2 0.48 1.35  1.46 𝑠 +11 %
ELMDB (10 states) 5.8 2 0.48 1.37 𝑠 +13 %
ELMDB (100 states) 5.8 2 0.48 1.35 𝑠 +12 %
Power Consumption
ELM 3.3  3.5 2 0.65 8.70  9.11 𝑠
ELMDB (1 state) 2.8 7 0.60 12.2 𝑠 +40 %
ELMDB (2 states) 3.5 2 0.65 10.6 𝑠 +22 %
ELMDB (5 states) 3.5 2 0.66 15.9 𝑠 +83 %
ELMDB (10 states) 3.5 2 0.65 20.1 𝑠 +132 %
ELMDB (100 states) 3.5 2 0.65 483 𝑠 +5456 %

The results from the third dataset, Motion Capture, show that ELMDB is not able to get the same
silhouette score as ELMwith only one or two states. The difference in runtime between these algorithms
is small, even when increasing the number of states. ELMDB uses at most 6 states when clustering
this dataset.

The Power Consumption dataset shows more differences. ELMDB is giving a clearly different
cluster result with 7 clusters when using only one state. When using two or more states, ELMDB is
producing results similar to ELM. The silhouette score is even higher than ELM when using 5 states,
with a silhouette score of 0.66 compared to 0.65 for ELM. This dataset also shows the large time penalty
when using more states. ELMDB is almost 40 times slower when using 100 states, compared to using
only one state. This is the only dataset where ELMDB utilizes all 100 states.

Overall, we can see that ELMDB is able to produce the same results as ELM while using up to 22%
more time. On the largest dataset, ELMDB is even able to produce a higher Silhouette score, but this
comes at a cost of a 83% longer runtime than ELM.

This chapter has focussed on the runtime performance as well as the practical performance of ELM
Decision Branching. We have compared the runtime of ELMDB using different number of states with
Mean Shift and ELM. We have also analysed the effect on cluster performance when using different
number of states. This allows us to answer the second subquestion:

Question 2: What is GPU acceleration and can it be used to improve the per
formance of decision branching on Evolving Local Means?
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The results show that ELMDB is able to achieve the highest average silhouette score using only one
state on the synthetic datasets as visible in fig. 4.2. For the real life datasets, up to 5 states are required
to achieve the highest silhouette score in ELMDB, as can be seen in table 4.2. GPU acceleration is
a useful tool for algorithms that contain a large number of parallelism. As described in section 4.3,
ELMDB performs best with a low number of states. This means that there is not enough parallelism
in the ELMDB algorithm to efficiently utilize a GPU.

The last subquestion focusses on the practical performance of ELM Decision Branching:

Question 3: What is the practical performance of Evolving Local Means with
decisionbranching compared to theoriginalEvolvingLocalMeansalgorithm
andMean Shift?

In section 4.4, I have analysed the practical performance of ELMDB compared to Mean Shift and
ELM using four real life datasets. Table 4.2 shows that ELMDB is able to achieve the same silhouette
score as ELM using up to 5 states and that this takes up to 22% more time, compared to ELM. For the
largest dataset Power Consumption, ELMDB is even able to improve the silhouette score from ELM
using 83% more time.





5
Conclusion and discussion

In this research I have shown the effect of decision branching on the streaming clustering algorithm
Evolving Local Means (ELM). I have extended the ELM algorithm with decision branching to create
a new algorithm called ELM Decision Branching (ELMDB). In this chapter I am going to answer the
research questions I have stated in the introduction. These answers will be used to form a conclusion.
After the conclusion there will be a discussion of the research together with some recommendations
for future work.

5.1. Answering the research questions
Chapter 1 has introduced the three subquestions and main research question for this research. In
this section I will discuss each of these subquestions and the answers I have derived in this research.
With the answers to these subquestions I will be able to answer the main research question and form
a conclusion for this research.

Question 1: What is decision branching and can it be used to improve the cluster quality of
Evolving Local Means? Decision branching allows important decisions to be postponed by processing
all possible cases in parallel until the decision can be made. It is used in two places in the ELMDB
algorithm. The first place where decision branching will be used is when deciding whether a new sample
should be added to the nearest cluster or should be turned into a new cluster. Samples very close to a
cluster will always be added to the cluster, while samples far from the nearest cluster will always create
a new cluster. Only when this decision is not clear, will the algorithm branch and continue both options.
This approach prevents unnecessary branching to reduce the amount of calculations.

If a sample has been added to a cluster, the algorithm will check how close this cluster is to the
nearest neighbouring cluster. This is the second place where decision branching may occur. When
the clusters are very close together, the algorithm will always merge the clusters together. Similarly,
ELMDB will never merge clusters that are far away from each other. Only when the decision is unclear,
will decision branching be used to continue both options.

The branches are implemented as a list of states. The algorithm starts with one state and will
duplicate a state whenever branching is required. Each iteration, the algorithm will update all states
with the new sample. After all states have been updated with the new sample, the algorithm will remove
any duplicate states caused by the branching. It will also reduce the total number of states by removing
states with the lowest score. This score is based on an approximation of the silhouette score that can
be calculated within the streaming limitations of the algorithm.

Experiments on 1000 synthetic datasets, with a minimum distance of 𝑟 between the clusters, show
that ELMDB is able to improve the average silhouette score compared to ELM. Both Mean Shift and
ELMDB were able to cluster all datasets correctly. 5 datasets were not clustered correctly by ELM,
returning a single cluster for these datasets. ELMDB is also able to maintain better cluster results than
ELM when there is no minimum distance between the clusters. ELM was unable to produce a correct
cluster result for 68 out of 1000 datasets, returning a single cluster as result. While, Mean Shift and
ELMDB returned a single cluster result for only 10 datasets. This means that ELMDB can handle
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clusters close to each other better than ELM. The decision branching also allows ELMDB to produce
good clustering results over a larger range of radius settings than ELM, making it more versatile to use.

Increasing the number of states used by ELMDB has a large impact on the performance of the
algorithm. However, experiments on synthetic datasets show the highest average Silhouette score of
0.72 when using only one state. This score drops slightly to 0.71 when using two or more states. This
means it is not useful to use a large number of states when clustering, as it would only increase runtime
without improving the cluster result. Using only one state, ELMDB is only 3.4% slower than ELM.

Question 2: What is GPU acceleration and can it be used to improve the performance of
decision branching on Evolving Local Means? GPU acceleration using CUDA can be a useful tool
for algorithms that contain a lot of parallelism. The main parallel aspect in ELMDB is the calculation of
multiple states. As the algorithm performs best using up to five states, there is not enough parallelism
to efficiently utilize a commodity graphics card.

Question 3: What is the practical performance of Evolving LocalMeanswith decision branch
ing compared to the original Evolving Local Means algorithm and Mean Shift? Results from four
real life datasets show that ELMDB is able to get the same Silhouette score as ELM using up to 5
states and up to 22% more time. On the largest dataset, ELMDB is even able to produce a higher
silhouette score than ELM. This requires a 83% longer runtime compared to ELM.

With the answers from each of the subquestions we are now able to answer the main research
question:

Can streaming cluster analysiswithEvolvingLocalMeansbe improvedusing
decision branching?

ELM Decision Branching is able to prevent the issue of premature merge with the use of decision
branching. This allows the algorithm is able to produce a higher average Silhouette score than ELM
using only a few states. It is able to produce consistent results for a larger range of radius values than
ELM, making it more versatile in use. This does come with a cost in terms of runtime, making ELMDB
up to 83% slower than ELM.

5.2. Discussion and future work
The results from this research are based on a random selection of synthetic datasets. Although mul
tiple datasets have been used to create an average result, this selection of datasets is only a small
sample from the infinite number of possible datasets. The synthetic datasets used in this research
are generated using a Gaussian distribution. This distribution fits the use case of Mean Shift and ELM,
expecting a cluster to become denser towards the centre. However, datasets in practice will not always
be shaped like this. Secondly, both ELM and ELMDB require clusters to be circular shaped as they
define clusters using a centre and radius.

The silhouette score approximation used in ELMDB to order the states, does not always produce
the same order of states as the silhouette score would do. Although the accuracy is higher for better
silhouette scores, this could still cause ELMDB to return the wrong state as final result, as we have
seen in section 4.2. We saw here that the score decreased when using two states instead of one state.
This was caused by ELMDB selecting a state with a lower silhouette score as best state. Improving
the streaming silhouette score approximation would allow ELMDB to make better decisions on which
state contains the best (intermediate) result.

The labelling of the dataset is performed after the clustering, in a second iteration over the dataset.
Each sample is labelled based on the nearest cluster using the centre 𝜇 and distance parameter 𝜎. This
means that a sample can be labelled with a different cluster than it has contributed to in the clustering
process.
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Experiments using the real life datasets show that ELM and ELMDB produces the highest silhouette
score when using a large radius, resulting in only two clusters on nearly all cases. The streaming
algorithms returned more clusters when the radius is decreased, but this resulted in a lower silhouette
score. The silhouette scoremight thus not be the best cluster performancemetric for ELM and ELMDB.
It would be interesting to analyse the results using other cluster performance metrics.

ELMDB is using multiple states to calculate different branches. Section 4.3 has discussed the
parallel calculation of these states using GPU acceleration. Although there is not enough parallelisation
in the algorithm to efficiently utilize a GPU, It would be interesting to analyse whether performance can
be improved by using multithreading on CPU.

The results from clustering real life datasets show that Mean Shift achieves a lower silhouette score
of 0.22 for dataset Wine than ELM and ELMDB with a score of 0.30. I would expect from Mean Shift
to produce the highest score, as it is not constrained by streaming limitations. It would be interesting
to analyse what caused Mean Shift to return a lower silhouette score than ELM and ELMDB.
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