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Abstract: The recently proposed b-modulation method for nonlinear Fourier transform-based
fiber-optic transmission offers explicit control over the duration of the generated pulses and
therewith solves a longstanding practical problem. The currently used b-modulation however
suffers from a fundamental energy barrier. There is a limit to the energy of the pulses, in
normalized units, that can be generated. In this paper, we discuss how the energy barrier can
be shifted by proper design of the carrier waveform and the modulation alphabet. In an
experiment, it is found that the improved b-modulator achieves both a higher O-factor and a
further reach than a comparable conventional b-modulator. Furthermore, it performs
significantly better than conventional approaches that modulate the reflection coefficient.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
1. Introduction

Nonlinear impairments are a major limiting factor in fiber-optic data transmission. There has
been significant interest in utilizing the nonlinear Fourier transform (NFT) for data
transmission in the last few years [1-7]. The NFT decomposes the ideal Nonlinear
Schrédinger Equation (NLS) into a set of parallel communication channels characterized by a
nonlinear spectrum [8]. The propagation of signals encoded under this framework reduces,
similar to linear channels in the conventional frequency domain, to a simple multiplication
with a transfer function. The nonlinear spectrum is divided into two parts: the continuous
spectrum, which depends on a real parameter £ (corresponding to the “dispersive” signal

components), and the discrete spectrum where eigenvalues A lie in the upper half of the
complex plane (corresponding to the “solitonic” signal components). Exploiting nonlinearity
in optical systems started two decades ago with on-off keying soliton transmissions. A form
of ‘eigenvalue communication’ was first proposed in [9]. Following the advances of digital
coherent technology in the last decade, arbitrarily complex phase and amplitude modulated
signals can be generated and received. Thus, today more dimensions can be used in NFT-
based communication designs. Numerous proof-of-concept experiments have been
demonstrated by many groups during the last few years. With the modulation of the discrete
part (eigenvalue transmission), data rates up to 24 Gbps at 4 Gbaud (6 bits/symbol) have been
reported [10]. By modulating the continuous part only, 32 Gb/s transmission with 64
modulated nonlinear subcarriers was demonstrated over 1464 km in [11], showing over 1 dB
performance advantage over conventional frequency division multiplexed (FDM)
transmissions. The first system modulating both discrete and continuous modes at 26.3 Gbps
has been demonstrated in [12].

However, a current issue in NFT-based transmission is that most modulation methods
(i.e., methods to embed blocks of data in a nonlinear Fourier spectrum) do not offer tight
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control over the duration of the pulse. One solution to this problem is to use the NFT for
periodic signals instead of the more common NFT for vanishing signals [13—15]. The
transmitter only transmits one period of the generated signal plus a cyclic prefix in this
scenario, similar to conventional OFDM. The challenge of the periodic NFT approach is that
the NFT for periodic signals is mathematically more complicated. It is in particular not
straight-forward to enforce a desired period. So far, only relatively simple systems with a few
degrees of freedom have been demonstrated. An alternative solution is our proposed b-
modulation method [16], which is based on the NFT for vanishing signals and can generate
pulses of a finite, pre-specified duration in a simple way. This method was adopted in an
experimental demonstration of 100 Gbps b-modulated nonlinear frequency division
multiplexed (NFDM) transmission using 132 subcarriers [17]. A dual polarization NFDM
transmission achieving a record net data rate of 400 Gbps based on b-modulation was
demonstrated in [18].

In this paper, we extend our previous work [16] and add several modifications to the
original b-modulation scheme, including flat top carriers and constellation shaping. The
modified method is numerally studied to show the advantages of limited signal time duration
compared with conventional modulation of the continuous spectrum (g -modulation). In a

back-to-back (B2B) scenario, simulation results show that signal-noise interactions through
NFT-processing can be significantly reduced for improved b-modulated signals. Based on the
results, we experimentally compare the modified b-modulator techniques with conventional

b- and ZI—modulation schemes for a 14.4 Gbps 16QAM NFDM transmission over 640km

standard single-mode fiber (SSMF). The proposed b-modulation scheme demonstrates a Q-
factor gain of ~1.2 dB and nonlinear tolerance (launched power) gain of ~4 dB over a
conventional FDM system. The results serve as another step forward in designing high
performance NDFM signaling techniques for nonlinear transmission systems.

2. Introduction to the b-modulation method

2.1 Basics of the nonlinear Fourier transform

The NFT of a signal q(t) , which in our context is either the (normalized) input to or the

(normalized) output of a single-mode fiber with anomalous dispersion, is defined in a two-
step procedure. First, consider the Zakharov-Shabat problem (see, e.g., [8]) z

i{ﬂ(nﬂ)}{ ~jA Q(I)}P(M)} {a(f;ﬂ)]: e, (1:4) ’:”H (1)

dt| ¢, (5A) | | =g (1) JA ||&(A) ][ bsh) ] e, (6:4) 0]

where A is parameter. The NFT of ¢(¢) has two parts defined in terms of the limits
a(A)=a(e;A) and b(A)=b(eo;A) . The first part is the continuous spectrum

K
k=1~

Z](f) =b(&)/a(§) , where £e R . The second part is the discrete spectrum (4, p, )
where the eigenvalues A4, are the solutions to a(4)=0 in JA> 0, and the residues are given

d
by p, ::b(/lk)/ﬁ(//tk)'

The main advantage of the NFT is that it simplifies the nonlinear Schrodinger equation

'a—u=&+2u|u
]az or?

2

, u=u(z,t), )
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which models the evolution of the complex envelope u(z,¢) at location z and at retarded
time ¢ in an ideal optical fiber. Denoting the functions a(4) and 5(A) that correspond to the
signal ¢(7)=u(z,t) by a_ (A) and b, (A) respectively, the NFT of the fiber input u(0,¢)

can be reconstructed from the NFT of the fiber output u(z,¢) using the relations

a,(§)=a,(£), b (£)=e¥b,(&). 3)
2.2 Conventional modulation methods for the continuous spectrum

We first aim to embed data in the continuous spectrum of the fiber input. The discrete
spectrum is not used and chosen to be empty. Several methods have been proposed to
modulate a block of symbols s_,...,s, € A, where A is a finite modulation alphabet, into

the continuous spectrum. Let y (&) denote a carrier waveform, A >0 a power control factor,

and & >0 a shift. Most modulation methods (e.g., [3, 19]) for c}(f) take one of two forms,

(}1 (4:) = Au (6) or ‘}2 (f) = \/Mej<”(§), 4)

where the power control factor A >0 is a constant and

N

w(é)= D sw(&-nd). )

n=—N
2.3 The original b-modulation method

The conventional modulation methods for the continuous spectrum offer no control over the
duration of the fiber input and suffer from poor utilization of the temporal domain. Motivated
by a classic result for the NFT with respect to the Korteweg-de Vries equation [24], it was

recently proposed to modulate b(&) instead of c}(f):b(f)/a(f) [16]. The modulation

scheme in [16] was of the form

b(&)=Au(¢&),  withAandu(&)as defined above. (6)
It was observed that the generated fiber-input ¢(z) would be time-limited with

a()=0 forre {—gﬂ ™)

if the carrier waveform (&) was bandlimited in the sense that its conventional inverse
Fourier transform

oo

¥(0)= Ju(g)en = ®)

—oo

satisfies ¥(7) =0 for t¢ [-7,T]. Note that this condition is a continuous-time version of

the realizability conditions derived in the context of codirectional coupler design [22]: in the
absence of eigenvalues, the discrete-time version of ¢(¢) is zero outside a given range if and

only if the Fourier series coefficients of the discrete-time version of (&) are zero outside a

related range. Also note that it is essential that the power scaling factor is a constant w.r.t. to
the nonlinear spectral parameter . Except in very specific special cases, a & -dependent
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power control factor will lead to a time-domain signal that is no longer time-limited even if
the carrier wave fulfills the condition mentioned above.

The original b-modulation scheme in [16] is one of the first NFT-based modulation
method that offers explicit control over the duration of the generated fiber inputs. It has been
demonstrated experimentally in [17, 23], where the carrier waveform was a sinc pulse. We
also remark that it was recently proposed [21] to embed information in the analytic extension

b(&) of 2](5) , but the methods in [21] do not lead to time-limited signals.

2.4 The energy barrier

The energy E:= j |q (t)|2 dt of the generated fiber-input is known to satisfy [8]

E= —% T 1og(1 —[p(&)f )df. ©9)

On the other hand, it is also known [8] that a valid b(&) satisfies |a(§)|2 +|b(5‘g)|2 =1 and

thus, in particular,
b(&) <1 forallé. (10)

It was observed in [16] that even if the power control factor A is driven towards the limit
imposed by the condition |b(§)| = A|u(§)| <1, the energy of the generated pulses would not

surpass a certain finite limit. To better understand this phenomenon, let us consider the case
of a single carrier with a unit symbol, i.e. b(&)=Ay(£). The single carrier case will be

indicative for the general case if the shift £ used in the definition of (&)= Au(¢) is large

enough. In the single carrier case, the condition |b(f)| <1 translates into A <1/sup|y(&)].
¢

The maximum energy we can achieve by adjusting the power control factor A in this case
thus is

MCE[y]=  lim —%Tlog(l—A2|w(§)|2)d§ (11)

A-)(l/sup;‘\ll(f)‘)i

We call MCE[y] the maximum carrier energy of the carrier waveform y (&) . The MCE can

be both finite or infinite, depending on the carrier waveform. Consider, e.g.,

Ji-&7, iflé <1
= 1,2,3,..}. 12
\Vexample (f) {O, lf‘ |§| > 19 ne { } ( )

The MCE of this carrier waveform is finite for any value of n,
MCE[ 0. | = 1im—lj log(1-A*(1-¢"))dé = —ij log E"d & = M o (13)
example Aol T ° T J T

The carrier waveforms in [16] were impulse responses of raised cosines, and it can be
checked numerically that their MCE is indeed finite as well. Interestingly, this is not true for
all carrier waveforms. The MCE of a rectangular carrier waveform,
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L if|g <1

0, if|£] >1 ()

Voo ($) ={

is actually infinite,
.1 5 2 . )
MCE[v,,, ] = hm——jlog(l—A )dé=-=limlog(l-A*)=e.  (15)
S A T A-1"

Rectangular carriers however defeat the purpose of b-modulation — their inverse Fourier
transform W (7) is not compactly supported, so that the duration of the generated pulses is

not finite anymore. The same discussion applies if a root raised cosine is chosen as the carrier
w (&), orif b(&) is formed similar to (}2 (&) as in [18]. In both cases, the energy barrier is
defeated, but the signals are no longer of finite duration because 5(¢) is not bandlimited.

In contrast, the energy barrier is not that relevant for conventional modulation of the

continuous spectrum, i.e., the modulation of &1 (&) and (}2 (&), respectively. The energy of a

signal obtained by modulation of (}1 (&) is given by

E=[la(of dz:% | 1og(1+\§] (5)‘2}15:% | g1+ A7 (&) )a¢. (16

As soon as the absolute value of the carrier waveform can be lower bounded by some
rectangle, the energy will go to infinity for A — . The same holds for the modulation of

2]2 (&), which has been especially designed to enable explicit control the pulse energy.

3. The improved b-modulator
3.1 Carrier waveform

In light of the discussion in the previous section, we find that the carrier waveform should at
least fulfill the following two conditions: (&) should have a

i) compactly supported W (7) to ensure finite pulse durations; and

ii) large enough MCE to enable sufficiently high signal energies.

The sinc and raised cosine carriers used for b-modulation so far satisfy these conditions,
but there is nevertheless an issue with them that has not been obvious so far since we focused
on the single carrier case until now. Ideally, the maximum energy we can achieve with a

multicarrier system containing 2N +1 carriers would be (2N +1)MCE[1//] . However, when
performing b-modulation with sinc or raised cosine carriers, the individual carriers are only
guaranteed not to influence each other at the carrier centers due to the Nyquist property. At

other nonlinear frequencies, the individual carriers do interact and can form a maximum at
random nonlinear frequencies that is very hard to control. Since the amplification factor has

to satisfy A <1/sup|b(¢&)|, such an uncontrollable maximum can limit the maximum energy
3

in a multicarrier system to random value much less that (2N +1)MCE[!//]. To avoid this

issue, we require our carrier waveform to fulfill a third condition: y (&) should be
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iii) localized in the ¢ domain so that with reasonably large carrier spacing & , no
uncontrollable maxima occur in |b(§)| )

To address all three conditions i)—iii), we propose to use Fourier-transformed flat top

windows (e.g., [20]) as carrier waveforms since they are bandlimited, concentrated in the &

domain, and approximate a rectangle at their center (which has infinite MCE). In our
experiments and simulations, we used the carrier that corresponds to the flat-top window

1, if |7 <1

18 T T
b =— = -, = ’
flat top (T) T,;)amr[T}COS[ T m] F(T) {0, otherwise

which was designed using the “Program 1” Matlab script in [20] with inputs that put
equal weight on the perfect flatness of the carrier around zero and the decay of the
sidelobes (i.e., N=64, M =15, DN =D0=7 and delt =0). The constant 7' >0
is the desired pulse duration in normalized units (see Section 2.3). The coefficients
a, are given as Table 1.

an

Table 1. The value of coefficients a,,

a, = 1.00781249999087

a, =2.01557690160615

g = 1.80756640511884

a,, =0.229897459751809

a, =2.01562499996723

a5 =2.01459671013285

Ay = 1.49055821347783

a,; = 0.064961507923051

a, =2.01562499848123

g =2.00542418293614

a,, = 1.03117157326193

a,, =0.0112874144984265

a; =2.01562428510123

a; =1.95813292084616

a,, = 0.563957100582878

@5 =0.000905697614069561

The corresponding carrier waveform is

Y op (§) = iam (sin C[ﬂ_ mj +sin c[£+ mD

m=0 T T

(18)

Both are shown as Fig. 1 for the duration 7 =4.5 .

5
2
4
1.5 3
Z g o2
= =
)
05
0
0 -
50 0 50 4 2 0 2 4

3
Fig. 1. The shape of the carrier (&) and its inverse Fourier transform ¥(7) for 7=4.5.

3.2 Constellation shaping
The energy of the fiber input in the original b-modulation method 5(&) = Au(&) with u(£)

as in (4) was adjusted through the power control factor A > 0. The energy of a single carrier
that has been modulated with a symbol s, € A is, as above,

E[s, ] =—% T log(l—Az |sn|2‘\v(§)2 (19)
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A disadvantage of the original b-modulation method discussed earlier is that the energy ratio
E[s,]/E[s,] for two different carriers n#k can be very different from the energy ratio

?y |sk|2 of their symbols. This is in contrast to the linear case, where the ratios are equal.

Sl"l
To avoid the generation of disproportionately weak carriers, we propose to abandon the
power control factor A >0 and use a reshaped version

shaped __ shaped shaped
At = Jgiered | et (20)

of the given modulation alphabet A ={a,,...,a,,} instead.
In the improved b-modulator, a block of symbols s_y,...,s, € A is modulated as follows.

Denote the index of the value in the alphabet that s takes by m(n) such that s, = a,- The

b(&) for the given block of symbols is then given by

N
b(g) — Z Srs’hapedlp(g_nfx )’ where Sshaped::ashaped c Ashaped’ (21)
m=—N

n m(n)

The reshaped modulation alphabet is chosen as

shaped ,
m .

a =Y.4,, Wwhere y_>0. (22)

Let E, >0 denote some desired average energy (in normalized units). Assuming that

MCE[¥] is high enough to support E, , the y, are defined indirectly by the relations

17 2 2 |am|2
E shaped =—— |1 1— d&é = E , 23
= Lol g = ™ e 09

where m=1,...,M. The term in the middle of this equation is monotonously increasing in
7, » while the right-hand side is known and independent of ¥, . Therefore, we could
determine the y, using the bisection method; the integral was computed numerically. Note
that our choice of y, ensures that the energy ratios of the modulated carriers match the
energy ratios of their symbols with respect to the original modulation alphabet, i.e.,

B[s ]/ st = [ /], (4)

In other words, the generation of disproportionately weak carriers is avoided. Another
advantage is that the average modulated carrier energy matches the desired average energy,

E[a" |+, +E[a}™ ]
M T
The y,, are monotonously increasing functions of the desired energy E,. As E, approaches

(25)

the maximum carrier energy MCE[y], the 7, will converge towards 1/sup|am|2 |l//(§)|2 .
13

3.3 Simulation examples

In this subsection, we numerically investigate the performance of the improved b-modulator
with that of several other methods in a back-to-back (B2B) scenario. The original modulation
alphabet is a 16-QAM. It is shown together with its shaped version, for a desired carrier
energy E, =4, in Fig. 2(a). The fiber inputs generated by the original b-modulator (i.e.,



Vol. 26, No. 21 | 15 Oct 2018 | OPTICS EXPRESS 27985

Optics EXPRESS

b(f) =Au(&); A is adapted to control the signal energy; the constellation is not shaped),

the improved b-modulator (i.e., b(&) =u(&); the reshaped constellation is used to control the

average signal energy) and the two conventional modulators (from (}1 (&), (}2 (&) mentioned

in Section 2.2) all contain 2N +1=9 flat-top subcarriers with random symbols and a shift of
£ =15 . We emphasize that in our setup both b-modulators, original and improved, use the

same flat-top carrier. The reason for not using a sinc or the impulse response of a raised
cosine was that, with such carriers, the original b-modulation scheme was not able to match
the energies of the improved b-modulator. The advantage of this choice is that we can isolate
the effect of constellation shaping in our investigations. Some example pulses are shown in

Fig. 2(b). The symbol duration for the b-modulators is 7'=4.5. For the cA]—modulation

methods, much larger windows are used to generate the initial signals and then truncated to
T =4.5. All four ¢(¢) have the same energy. The ¢(¢) generated by the b -modulators are

constrained to [-2.25 2.25] by design, while the other ¢(¢) are more spread out and suffer
from slowly decaying tails. The fiber inputs ¢(¢) generated by the b -modulators are exactly
zero outside the interval [-2.25, 2.25], but they are already very small for |t| >1. This
phenomenon can be explained with the shape that the inverse Fourier transform ¥(7) of the
carrier waveform /(&) (see Fig. 1). It decays quickly and is very small long before it
becomes exactly zero. Consequently, the same holds for the inverse Fourier transform B(7)
of (&), which in turn is at least indicative for the behavior of ¢(¢); for signals with low
amplitudes b (&) reduces to a conventional linear Fourier transform so that B(7) reduces to
q(t). Hence, we will later be able to truncate the signals generated by the b-modulators to
durations shorter than 7'=4.5 . The truncation error made will be much lower than for
conventional Zj-modulation because the tail is rapidly, and not slowly, decaying to zero. To
corroborate this claim, we show the 99.9% durations and bandwidths of each ¢(#) modulated

with randomly chosen blocks of symbols by the four methods in Fig. 2(c). It can be seen that
the 99.9% durations of the pulses generated by the b-modulators are consistently lower than
that for the conventional modulation methods. Figure 2(d) shows the (conventional) Fourier
transforms of the four fiber input types, which are all very similar.
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Fig. 2. (a) Constellation shape of 16 QAM and its shaped version with E; =4 ; (b) Time

domain shape of the fiber inputs |g(¢)| generated by the improved b-modulator, original b-

modulator, two conventional modulators by c}l , Wwith same information; (c) 99.9% durations
and bandwidths of fiber inputs ¢(¢) by the four modulation methods; (d) Fourier transform

spectra for the four fiber inputs ¢(7) .

Then, to understand the signal-noise interaction through NFT processing, we numerically
investigated the back-to-back (B2B) performance of the signals generated by the four
methods (described in the Sections 2.2, 2.3 and 3) under different normalized SNR (averaged
time waveform power to averaged noised power ratio). We also investigated the performance
of a linear frequency division multiplexing (FDM) scheme that uses the same flat-top carriers
as the other methods. The pulses were truncated to a duration of 7 =2 before transmission,
where the impact of tail truncation is negligible for the b-modulation methods and the linear
FDM method. No additional guard interval (GI) was used. For an average energy E, =4, the
BER as a function of SNR for the four modulation methods are shown in Fig. 3(a). At a BER
of 1e-3 (FEC threshold), the SNR penalties of the (}1 ,» modulation schemes and the original
b-modulation method are ~6 dB and ~1 dB respectively in comparison with the linear FDM
curve, while almost no penalty is observed for the improved b-modulation scheme. Since both
b-modulation schemes use the same flat-top carriers and carrier spacing in this example, we

attribute the better performance of the improved scheme to the use of reshaped constellation
instead of a power control factor. The results clearly indicate that the b-modulation schemes

are less sensitive to noises than the g, -modulation schemes. A similar phenomenon has

been observed for the discrete spectrum in [21] and the continuous spectrum in [17]. One
possible explanation is that a(£) is also affected by noise, such that the resulting effect
encompasses an additional noise contribution. Another possible explanation is that a square
16-QAM constellation performs bad since additive white Gaussian noises (AWGN) in the
time domain translate into quite complicated noises in the nonlinear Fourier domain. A
sufficient theoretical understanding of how noises affect the nonlinear Fourier coefficients,
which is required for the design of optimal constellations, is still lacking. In addition, for a
fixed SNR = 8dB, the noise tolerance for the different methods under various average carrier
energy E, (which controls the average power of fiber inputs) are shown in Fig. 3(b). Higher

desired carrier energies E; lead to stronger decaying tails and less tolerance to noise for the
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conventional non-linear methods. However, the improved b-modulator can largely reduce the
sensitivity. The original b-modulator again performs worse than our improved version.

1ot 2 E=4 | (b) SNR = 8dB
! F—e—=8——0—0 o
3 i \:;QQ F—= S
L -2
10
[a0]
) > I
§ 1073 >_e_bimproved(£) S bimproved(i)
§ = boriginal(é) ’_E_boriginal(g)
° —%—q(¢) ——d(0)
m 1075 N
—— a6 | ——da©
linear FDM linear FDM
6 8 10 12 -2 0 2 4 6 8 10 12

SNR (dB) - E, (@B)

Fig. 3. For improved b-modulated, original b-modulated, (}m modulated and FDM systems in
B2B scenario (a) BER vs SNR at an average energy of E, =4 ; (b) Q factor as function of
average energy of E; under SNR = 8dB.

3.4 The role of solitons

The b-modulators used here and in the literature so far generate signals that have no solitonic
components. The question arises whether the addition of solitons could bring benefits to b-
modulation. We suspect that these benefits are negligible.

It is well-known (see, e.g., [8]) that for finite-duration signals, the functions a(A) and

b(A) can be found for any complex A from their restrictions a(¢) and b(&) with A=¢
real by using analytic continuation. The condition a(1)a’ (1) +b(2)b"(1)=1, which

normally is only guaranteed for A =¢ real, consequently becomes true for all complex A .
Remember that solitons are represented in the NFT through eigenvalues A, , which now
satisfy

a(4)=0=b(2)b"(1")=1. (26)

The signals generated by the b-modulator contain no solitons. It is known that solitons can be
added on top of a time-limited signal without extending the temporal support, but from the
equation above we see that the corresponding eigenvalues can only be added at the zeros of

1-b(A)b" (X)) . See, e.g., [22], [Sec. IV] or also [25], (Case c) in Sec. 3. The possible

locations at which eigenvalues can be placed on top of a b-modulated signal thus depend on
symbols s_,...,s, that were used to generate b(&). This seems to make it difficult to devise

a practical modulation and demodulation scheme that uses solitons together with b-
modulation.

4. Experimental results and discussion
4.1 Experimental setup

We also conducted experimental verifications of the proposed algorithm. Figure 4 shows the
experimental setup and offline DSP structure. At the transmitter side, random 16-QAM

symbols were mapped either onto the continuous spectrum (}1/2 (f) or onto the scattering

coefficient b(&). The burst durations and the number of subcarriers were same as in the
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simulation setting in Section 3.3, that is, the duration of the transmitted bursts was 7'=2 and
the number of subcarriers was 2N +1=9 . No extra zero guard interval (GI) was placed
between neighboring bursts. After the inverse NFT, a linear pre-equalizer was used to
compensate the imperfection of transmitter components. An arbitrary waveform generator
(AWG) with 92 GSa/s was used to generate the electrical waveform of the burst train. With a
normalization parameter 7; = 0.2 ns, the burst duration in physical units is equal to 7xT| =

0.4 ns. The total bit rate of the designed system is 14.4 Gbps. After conversion by the I/Q
modulator, the optical waveform was amplified and launched into a fiber recirculating loop.
The loop consists of two span 80-km SSMF and lumped amplification only by EDFA. A flat-
top optical filter with a 3-dB bandwidth of 1 nm was used inside the loop to suppress the out-
of-band amplified spontaneous emission (ASE) noise. Both the transmitter laser and local
oscillator were from fiber laser sources with very low laser phase noise (NKT Koheras
ADJUSTIK Fiber laser with linewidth < 100Hz). After alignment by a polarization controller
in the x-polarization, the received signal was then coherently detected and sampled by a
digital storage scope with a sampling rate of 80 GSa/s and a bandwidth of 33 GHz. The
sampled signal was analyzed by off-line digital signal processing (DSP), whose structure is
also shown in Fig. 4. After timing synchronization and frequency offset compensation, the
received signal was separated into bursts for further NFT processing to recover the nonlinear
spectrum. A training symbol based equalizer followed to compensate the impact of the
channel distortion in NFDM systems. The last steps were symbol decision and bit error rate
(BER) calculations.

. RXDSP || Q
Linewidth<100Hz EDFA Switch . 1.5:(:1nm l X l X
Linewidth<100Hz e o Timing Synchronization
—g 5> ¢ &
® 2_,“" g 2 Freq. offset compensation
28y =258
S S% burst separation
f—p] X @0
TXDSP 1 | T Q © Normalization
Linear Pre-equalizer NFT
Inverse NFT Training symbol based
equalizer
b(§) or 4(§) mapping

Symbol Decision & Error
counting

80km SMSF 80km SMSF

EDFA EDFA

Fig. 4. DSP structure and experimental setup. AWG: arbitrary waveform generator; OBPF:
optical band-pass filter; PC: polarization controller.

A development version of the software library FNFT [26] was used to compute the
inverse and forward NFTs. The numerical algorithm that was used to compute the inverse
NFT for the b-modulators is the modification of Algorithm 2 in [27] described in [16]. Note

that this is a fast algorithm, which only requires O(Dlog’ D) floating point operations (flops)
in order to generate D samples of the signal ¢(¢). It will be part of the next release of FNFT.

The algorithm for the NFT is already included in the current release of FNFT. It is fast as well
and based on the results in [28]. The overall complexity of our transceiver digital signal
processing is thus O(Dlog” D) flops, which is — not taking the hidden constants in the big-O

notation into account — close to that of a conventional OFDM system.
4.2 Results and discussions

To illustrate the effectiveness of the proposed improved b-modulation scheme, we compared
the performance of the different modulation systems in Fig. 5. A linear frequency division
multiplexing (FDM) scheme that uses the same flat-top carriers and parameter setting as the
other methods was also experimentally tested with the same setup platform. As shown in Fig.
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5, after 640 km transmission, the improved b-modulated system offers 0.3 dB and 1.2 dB
advantage in terms of Q-factor over the original b-modulated and FDM system. In addition,
the improved b-modulated scheme extends the gain of nonlinear threshold (the optimum
launched power) to ~4 dB in comparison to FDM system, while only 2 dB gain is observed
for original b-modulated systems. This indicates the proposed b-modulation scheme can

improve the tolerance to the fiber nonlinearity impairment. One will note that the results of ;]
-modulated signals did not show the same advantages over FDM signals as in other NFDM
demonstrations [23]. This is because ZI—modulated signals tend to have longer durations and

slowly decaying tails in the time domain. In our system, where short time durations are
enforced and no additional GI is used, they suffer from severe truncation errors. This further
confirms the advantage of b-modulation in limiting the signal duration. We finally remark
that signals designed using inverse NFTs are very sensitive to linear and nonlinear responses
of optical transceivers [7,11]. Thus, our experimental results in Fig. 5 suffer from
implementation penalties due to limitations of current practical devices, including linear and
nonlinear responses, phase noise and limited resolutions of the optical transceivers. As a
result, advanced modulation formats, digital signal processing, and calibration techniques will
be important research topics and challenges for future NFT research.

10 T T T T r : . - bimproved(E)

______ - B_SEB- ———--- - biriginal ©

1 298 = (e)
—— ()

linear FDM

©
2
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Q
@

Q factor (dB)

18 -16 -14 -12 -10 -8 6 -4 2 0 2
Launched power (dBm)
Fig. 5. O-factor as function of average power at 640 km for improved b-modulated, original b-

modulated, (}1,2 modulated and linear FDM systems.

5. Conclusions

In this paper, we proposed to use flat top carriers and constellation shaping to improve on the
recently proposed b-modulation scheme. The improved b-modulator provides better control
over the signal power and avoids that some subcarriers are substantially weaker than others.
Numerical studies and experimental demonstrations showed that these improvements
translate into further reach and higher O-factors. It was also demonstrated that b-modulation
techniques allow one to generate pulses with lower time-bandwidth products than other
continuous spectrum modulation methods. The proposed method serves as another step to
further improve optical communications systems based on nonlinear Fourier transform.
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