
D
e

lf
t

U
n

iv
e

rs
it

y
o

f
T

e
c

h
n

o
lo

g
y

Depths and Deposits

Analyzing relationship between Ferromanganese
Crust Composition and Water Depth through
Collocated Co-Kriging to Study Potential
Improvements in Estimation

AESM7000: Master Thesis

Arjun Prakash Kollamparambil



Depths and Deposits

Analyzing relationship between
Ferromanganese Crust Composition and Water
Depth through Collocated Co-Kriging to Study

Potential Improvements in Estimation

by

Arjun Prakash Kollamparambil

Master Applied Earth Sciences

5911990

Main supervisor: Dr. Mike Buxton

Supervisor: Dr. ir. Rudy Helmons

Supervisor: Dr. Ing. Steinar Løve Ellefmo (NTNU Trondheim)

Supervisor: Kiarash Pashna

Project Duration: February, 2025 - August, 2025

Faculty: Faculty of Civil Engineering and Geosciences, Delft



Preface

This thesis was my first proper dive into academic research, compositional data analysis and geostatistics. And it

has helped me understand what I want to do with my career and life in many ways

I would like to thank my supervisors, Mike, Rudy, Steinar, and Kiarash, for their guidance and support throughout

this thesis. I am also grateful to Dr. Sarah Atinta Howarth and her supervisor, Prof. Bramley Murton, for

granting permission to use data from her doctoral research which is the foundation of this study. Special thanks

to Dr. Vera Pawlowsky-Glahn for her valuable advice on compositional data analysis and ILR transformation.

Finally, I appreciate the unconditional support and encouragement from my family and friends during this project

and my academic journey.

Arjun Prakash Kollamparambil

Delft, August 2025

i



Abstract

The global transition to green energy has intensified demand for critical raw materials, increasing

interest in deep-sea mineral resources such as cobalt-rich ferromanganese (Fe-Mn) crusts on seamounts

like Tropic Seamount in the NE Atlantic. This thesis investigates the relationship between water depth

and Fe-Mn crust composition and evaluates whether incorporating this relationship through Co-kriging

(CK) improves resource estimation compared to Ordinary Kriging (OK). Geochemical and bathymetric

data were analyzed using exploratory data analysis. The estimation workflow included block model

generation, isometric log-ratio (ILR) transformation, Landmark-ISOMAP embedding for locally varying

anisotropy, variogram modeling, and geostatistical estimation with Ordinary Kriging, Simple Co-Kriging

(SCK) and Intrinsic Collocated Co-Kriging (ICCK) as well as Inverse Distance Weighted (IDW) Estimation.

Model performance was assessed using Quantitative Kriging Neighborhood Analysis (QKNA) metrics

and leave-one-out cross-validation (LOOCV), with a critical evaluation of LOOCV’s limitations.

Results demonstrate a significant relationship between water depth and Fe-Mn crust composition, with

a significant improvement in estimation accuracy and confidence when water depth is used as the

secondary variable in Co-Kriging, with SCK and ICCK providing more accurate and confident resource

estimates than OK. ICCK also performed better than IDW. For the first time, tonnage calculations for

metals in Fe-Mn crusts based on a 3D block model and real geochemical data are presented, highlighting

Tropic Seamount’s potential as a substantial mineral resource for Europe. The workflow developed

in this study, including ILR transformation and L-ISOMAP embedding, proved effective for handling

compositional data and spatial anisotropy. The study also identifies methodological limitations, such as

the need for improved variography, better sampling distribution, consideration of non-metallic elements,

and more advanced cross-validation techniques. The assumption that the top 1 cm of crust represents

the entire deposit is noted as a simplification, and future research should address vertical stratigraphy

and sampling distribution.

The findings indicate that integrating ILR transformation and Landmark-ISOMAP embedding with

Co-Kriging leads to better resource estimation for Fe-Mn crusts, enabling more confident and accurate

assessments. This methodology offers significant potential for mineral resource exploration and future

research in both marine and terrestrial environments.

Keywords: Deep sea mining, ferromanganese crusts, compositional data, isometric log-ratio, co-kriging,

block model, estimation, critical raw materials.

Arjun Prakash Kollamparambil, Master Thesis, Delft University of Technology. "Analyzing relationship

between Ferromanganese Crust Composition and Water Depth through Collocated Co-Kriging to Study Potential

Improvements in Estimation"
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1
Introduction

1.1. Introduction and Relevance of the Project
As the world increasingly shifts towards green energy, demand for critical raw materials such as copper,

lithium, and rare earth elements (REEs) continues to grow (International Energy Agency, 2025). These

materials are essential for manufacturing batteries, renewable energy technologies, and a range of

applications vital to the energy transition. However, terrestrial reserves are becoming progressively

less viable for exploitation, prompting countries and companies to explore alternative sources. In this

context, deep-sea mineral resources, such as deep-sea massive sulfide deposits, polymetallic nodules,

and ferromanganese (Fe–Mn) crusts, have attracted renewed interest as potential contributors to future

supply (Vysetti, 2023).

Among these, cobalt-rich Fe–Mn crusts have garnered particular attention due to their high concentrations

of strategic metals, including cobalt (Co), nickel (Ni), and platinum (Pt) (Usui and Suzuki, 2022). The

elevated cobalt content, in particular, exceeds that of nickel and copper in polymetallic nodules,

enhancing their economic appeal. Consequently, Co-rich Fe–Mn crusts have emerged as a priority target

for mineral exploration.

Fe-Mn crusts often occur in shallower water than manganese nodules, sometimes up to 2000 m closer to

the surface, which might lead to a reduced complexity and cost of deep-sea mining compared to other

deeper resources. Their denser distribution in some seabed regions increases extractable yield per unit

area, and in many cases they occur on seamounts within the jurisdictions of island nations, possibly

simplifying regulatory frameworks (Cronan, 2024; Nath, 2008). Taken together, these factors suggest

a potentially more favourable operational and permitting environment for crust extraction compared

with other deep-sea resources.

However, extracting Fe–Mn crusts presents significant technical challenges. Unlike nodules, which can

be collected from the sediment surface, crusts are firmly attached to hard rock substrates and must be

mechanically separated (Halbach et al., 2017). The goal is to remove them with minimal inclusion of

the underlying non-valuable rock, yet this has no proven, widely-adopted solution. As of today, the

areas that can be economically and technically mined remain uncertain (Halbach et al., 2017), directly

affecting feasibility assessments.

Further complications arise from local variability. Oxide layer thickness can range from less than 1 cm to

over 15–20 cm even on a single crust (Nath, 2008), making it difficult to design mining systems that adapt

1



1.1. Introduction and Relevance of the Project 2

to changing scraping depths. Where seafloor relief exceeds 20 cm, loosening and recovering crusts

becomes more difficult (Halbach et al., 2017). In other words, fine-scale roughness and heterogeneity

need to be accounted for as well.

Despite advances in understanding Fe–Mn crusts, notable gaps remain in knowledge of their small-scale

distribution, genetic controls, occurrence modes, and regional patterns (Usui et al., 2016; Usui and

Suzuki, 2022). Key aspects such as age, trace element variation, and relationships to geological setting

etc remain limited in understanding. Comparing their origins to terrestrial deposits is hindered by

undetermined geological parameters, and intra-seamount variations in morphology and composition

remain under-characterised. Addressing these gaps is essential for reliable estimation of metal abundance

and grade.

Resource estimation is inherently uncertain, even in terrestrial mining where sampling density is

higher. Deep-sea conditions amplify these challenges, restricting both sample numbers and accessibility.

Traditional estimation methods such as drilling and physical sampling become more costly and limited,

highlighting the need for approaches that maximise the value of existing and / or limited datasets and

incorporate additional, spatially correlated variables.

In this context, Co-Kriging (CK) offers advantages over Ordinary Kriging (OK) by integrating secondary

variables, such as water depth, that are correlated with the primary variable, thereby reducing estimation

error and variance (Yalçin, 2005). While another method, adaptive sampling, can also improve model

accuracy (Fuhg et al., 2023), it is not applicable in this study due to a fixed sample data set. Adaptive

sampling is typically used to focus the sampling campaign further on geologically important areas and

improve model accuracy, it is not applicable here due to fixed sampling locations. Accordingly, the

focus here is on improving estimation quality through multivariate geostatistics like CK rather than

optimising sample placement.

Aim of the Thesis This master’s thesis investigates the relationship between water depth and Fe–Mn

crust composition and applies Co-Kriging to evaluate potential improvements in resource estimation.

By integrating geochemical data with depth as a secondary variable, the study seeks to enhance the

precision and confidence of kriging-based models and refine estimation and classification in line with

established reporting standards (Howarth, 2022; Usui and Suzuki, 2022; Usui et al., 2016). The research

also examines whether incorporating additional datasets, such as ocean current information, can improve

knowledge of metal distribution. Together, these components form a coherent framework for reliable

resource evaluation under the data-limited, high-cost conditions of offshore exploration. Ultimately,

the results could provide inputs for strategic mine planning and support responsible exploitation of

deep-sea mineral resources.

Objectives

1. Analyse the relationship between Fe–Mn crust composition and water depth.

2. Apply Co-Kriging to assess potential improvements in estimation accuracy compared to Ordinary

Kriging and simpler methods.

3. Evaluate the contribution of secondary datasets (e.g., bathymetry, ocean currents) to understanding

metal distribution and enhancing estimation.

4. Consider environmental implications and applicability of the results to other study areas.

Expected outcomes: A quantitative depth–composition analysis, higher-confidence resource estimates,

and an economic block model suitable for downstream planning studies.

The next section, Study area, introduces the geological and oceanographic setting to which these methods

are applied; the subsequent Research Questions section elaborates further on the aim and objectives.
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1.2. Study Area

Figure 1.1: (A) Location of Tropic Seamount in the NE Atlantic, situated between the Canary and Cape Verde Islands. (B)
Bathymetric map of Tropic Seamount from EM120 multibeam sonar data collected during cruise JC142, gridded at 50 m, showing

the position of core 085_004 (Josso et al., 2019).

Tropic Seamount is an isolated volcanic structure located in the northeast Atlantic Ocean, forming part

of the Western Saharan Seamount Province (WSSP). It is situated about 400 km off the coast of West

Africa, roughly halfway between the Canary Islands and Cape Verde Islands. The seamount began

forming in the early Cretaceous, with volcanic activity spanning from approximately 140 million years

ago to the present. Most eruptions occurred during the middle Miocene, while Tropic Seamount itself

principally developed in the late Aptian (119–114 Ma), with minor volcanic episodes continuing until

the middle Paleocene (60 Ma). The seamount is built on oceanic crust that is now around 155 million

years old, and its formation started when the oceanic crust was about 35–40 million years old. Tropic

Seamount rises from the abyssal plain at 4100 meters below sea level to a summit depth of 950 meters,

featuring a diamond-shaped, flat summit. The summit plateau is covered by carbonate platforms

encrusted with Fe-Mn oxides, unconsolidated pelagic sediments, and foraminiferal sand. The flanks

are marked by gullies, landslide scars, and spurs radiating from the summit, exposing volcanic rocks

beneath loose sediments. Erosional processes, such as wave action, have shaped the summit, resulting

in terraces and raised beach features (Howarth, 2018; Josso et al., 2019).

Taken together, these morphological and oceanographic characteristics shape the distribution, thickness,

and accessibility of Fe–Mn crusts on Tropic Seamount. The research questions will be answered based

on the datasets obtained from this seamount.

1.3. Research Questions
Anchored in the Tropic Seamount setting described above, this thesis investigates the depth–composition

relationship and its implications for resource estimation.

The primary research question is:

• What is the relationship between water depth and crust composition, and how can Co-Kriging,

using depth as a secondary variable, improve resource estimation accuracy and confidence
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compared to Ordinary Kriging?

From this, several secondary questions emerge:

1. What factors influence crust composition, particularly the links among composition, bathymetry,

and ocean currents?

2. Why use kriging instead of a simpler method such as inverse distance weighting (IDW)? Does

kriging offer demonstrable added value in this context?

3. Which benchmarks (e.g., IDW, OK, CK) should be used to assess estimation accuracy and

confidence?

4. How will the comparative analysis between estimation methods be conducted?

5. What are the potential benefits and challenges of incorporating ocean current data into the

estimation model?

6. What is the effect of the revised resource estimation on the number of drill holes required for a

successful exploration campaign?

7. How these results might affect environmental impact?

The research questions outlined are designed to be addressed within the scope of this master’s thesis.

Related areas of inquiry, including an in-depth Environmental Impact Assessment (EIA), advanced

drillhole placement optimisation studies, and expanded oceanographic analyses, are recognised for

their potential value but are excluded from the current study due to scope and resource constraints.

1.4. Methods
Literature Review: Existing literature was studied to identify the current state of the art and limitations

in understanding regarding the topic and to justify the necessity of the study.

Data Collection: Primary georeferenced geochemical data and secondary bathymetry data regarding

ocean floor topography were gathered for this study. These datasets were obtained from a PhD thesis

by Sarah Atinta Howarth titled "An Investigation into the Variability of Ferromanganese Crusts in the

NE Atlantic" from the University of Southampton (Howarth, 2022). Permission to use this data was

granted with the understanding that proper acknowledgment will be provided.

Data Preprocessing: The collected data were transformed using the Isometric Log-Ratio (ILR) Transfor-

mation to address the compositional nature of the geochemical data. Compositional data were then

collocated with corresponding topography data to ensure spatial alignment.

Exploratory Data Analysis (EDA): The data were visualized through scatter plots and a topography map

was created from the topography data. Sample visualizations were overlaid on the topography maps to

observe spatial alignment. Extensive statistical analysis, including descriptive statistics (mean, median,

mode, standard deviation, histograms, box plots, etc.), correlation analysis (Pearson’s Correlation

Coefficient, etc.), and clustering, was performed on both the original and transformed data.

Empirical Variograms and Cross-Variograms: Empirical variograms were calculated for both primary

(mineral concentrations) and secondary (depth) variables. Cross-variograms were also computed to

understand spatial relationships between primary and secondary data.

Fit Variogram Models: Appropriate variogram models were fitted to the empirical variograms and

cross-variograms. Parameters such as nugget, sill, and range were estimated, and model selection was

optimized based on goodness-of-fit metrics. These models were also used for implementing ordinary

kriging (OK).
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Linear Model of Coregionalization (LMC): Variogram models were combined into the LMC framework,

which integrates individual variograms into a single model that accounts for the spatial relationships

between the two variables. Adherence to LMC assumptions was ensured to guarantee that the combined

variogram model is valid and leads to meaningful results (e.g., positive definiteness).

Co-Kriging System: The CK system was set up using the fitted variogram models. The co-kriging

plan was implemented with geostatistical Python libraries. Ordinary kriging was also implemented,

utilizing all samples with the same setup, and the Inverse Distance Squared method was included

for later comparison. Mineral concentrations at unsampled locations were predicted, and leave one

out cross-validation (LOOCV) as well as Quantitative Kriging Neighbourhood Analysis (QKNA) was

performed to assess model accuracy and robustness. Performance metrics were calculated for each

method. Comparisons were made for evaluating how CK affects kriging performance.

Resource Estimation: The best performing method based on the LOOCV and/or QKNA metrics was

used for back-transformation and resource estimation, identifying areas with high resource potential.

Comparison with OK and IDW: CK results were compared with those of OK, which utilizes all samples,

and the simpler IDW method. The study assessed whether CK, using models that link water depth

and crust composition data, can affect the number of drillholes required for a successful exploration

campaign in terms of accuracy and confidence. Secondary research questions were answered based on

these findings.

Tools
Data transformations and CLR variance plot generation was conducted using the Compositional Data

Package (CoDaPack) software. All other data analysis and geostatistical analysis were performed using

Python in Visual Studio Code.

Data
The bathymetry dataset and the geochemical dataset used in this study was originally obtained from

bathymetric surveys and geochemical analyses conducted during a multidisciplinary oceanographic

expedition aboard the RRS James Cook (JC142) in late 2016, as part of the MarineE-Tech project under

the NERC ‘SoS Minerals’ research programme. The dataset being used here consists of 86 samples (out

of more than 100) collected from various locations on the surface of Tropic Seamount. For each sample,

the top 1 cm of the bulk sample was used for elemental composition analyses. The dataset includes

concentrations of major, minor, and trace elements, all of them metallic elements except Tellurium which

is a metalloid, reported in weight percentage, along with sample names and geographic coordinates.

Sample preparation involved air drying and agate-milling with geochemical measurements performed

using advanced instrumentation such as the Agilent 8900 ICP-QQQ and Thermo Scientific X-Series III

ICP-MS. Analytical procedures included calibration against certified reference materials, correction for

instrumental drift, blank values, and dilution, as well as regular use of internal standards to ensure

data quality. The resulting dataset provides a geochemical profile of the Fe-Mn crusts across Tropic

Seamount, enabling detailed analysis of elemental distributions in relation to water depth and spatial

location (Howarth, 2018). A copy of the resulting dataset was provided by Steinar with the permission

of Sarah’s supervisor Prof. Bramley Murton. One thing to note is that the growth rates of Fe-Mn crusts

vary from roughly 0.5-25mm per million years (Usui and Suzuki, 2022, Howarth, 2022) depending on

the location on a specific crust and the crust’s geological setting and therefore this 1 cm sample could

represent anywhere from 20 million years of depositional history and composition to maybe less than

a million years. However, this study will consider the 1 cm samples to be representative of the full

thickness of the crust due to the constraints of available data.
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Figure 1.2: An example of the stratigraphy of Fe-Mn crusts, showing vertical layering and corresponding geological time periods.
Obtained from "Study of Deep-Ocean Ferromanganese Crusts Ore Components"( Novakova and Novikov, 2021).

Figure 1.2 shows the vertical cross section of a Fe-Mn crust that shows the stratigraphy, highlighting the

vertical layering and how different layers correspond to distinct geological time periods such as the

Neogene, Paleogene, and Cretaceous that a single crust have formed through (Novakova and Novikov,

2021). This stratigraphy is important to consider when interpreting geochemical data, as the geochemical

analysis may not fully capture the complexity present throughout the entire crust thickness if only a

certain depth of the crust is sample.

Further details about the data can be found in D.



2
Literature Review

This chapter reviews the existing literature on the relationships between water depth and ferromanganese (Fe-Mn)

crust composition, the geochemical and oceanographic processes influencing element concentrations, and the

mechanisms underlying Fe-Mn crust formation. It provides context for the present study by summarizing key

findings and current understanding in the field.

2.1. Formation, Geochemistry, and Resource Context of Fe-Mn Crusts
This section synthesizes current research on the formation, distribution, geochemistry, textural controls,

resource assessments, and mining challenges of Fe–Mn crusts, identifying key knowledge gaps and

informing the research objectives of this thesis.

Fe–Mn crust formation is described by a colloidal–chemical model of hydrogenetic precipitation

involving inorganic chemical and surface-chemical mechanisms, sometimes influenced by microbial

activity (Halbach et al., 2017; X.-h. Wang et al., 2009). As illustrated in Figure 2.1 and Figure 2.2, elements

in seawater occur as dissolved ions or complexes whose charges vary with pH, which also affects Mn2+

oxidation rates (Stumm and Morgan, 2012). Hydrated colloids form and interact with dissolved metal

ions: positively charged metal ions such as Co, Ni, Zn, Sn, and Ce are attracted to negatively charged

Mn-oxide particles, whereas negatively charged ions and low-charge complexes such as U, As, Pb,

Hf, Th, Nb, and REEs are attracted to slightly positively charged Fe-oxyhydroxide (FeOOH) particles

(Halbach et al., 2017). Adsorption onto Mn-oxide and Fe-oxyhydroxide particles, together with redox

processes, enrich the crusts with trace elements, while oxygen supplied from deeper waters by turbulent

movements oxidizes Mn2+ and supports layer-by-layer precipitation and aggregation; slow growth rates

favor the incorporation of substantial amounts of trace metals into hydrated oxide and oxyhydroxide

phases within the water column and on crust surfaces (Halbach et al., 2017).

Recent works highlight both advances and needs in understanding the geochemistry and resource

potential of these deposits. J. Hein and Koschinsky (2014) emphasize the potential of Fe–Mn crusts

and nodules for REEs and other metals, recent advances in geochemistry, and new data on modern

high-tech elements, while underscoring the importance of element speciation, surface chemistry, and

physical properties. Although there has been significant progress in deciphering metal accumulation

mechanisms, further research is needed in real-time in situ measurements, environmental evaluations,

and the analysis of a wide variety of samples, especially thick phosphatized samples, alongside

technological challenges in crust mining and the implementation of green technologies (J. Hein and

7
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Figure 2.1: Schematic showing the formation, depths of formation, and locations of oceanic Fe-Mn crusts and nodules. (Huang
and Fu, 2023).

Figure 2.2: Schematic representation of processes controlling the deposition of minerals in hydrogenetic Fe-Mn crusts on basaltic
seamounts, highlighting colloid-chemical processes and biomineralization (X.-h. Wang et al., 2009).
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Koschinsky, 2014).

Geochemical distinctions between hydrogenous and hydrothermal contributions are central to interpret-

ing crust origin and composition. In the equatorial western Pacific, hydrogenous crusts show a narrow

and consistent range of Fe and Mn with a stable Fe/Mn ratio around 0.72, whereas hydrothermal crusts

display broad Fe and Mn ranges with Fe/Mn ratios spanning from <0.002 to 3930; hydrogenous crusts

are richer in Co, Ni, and Cu (G. Wang et al., 2015). At the same time, mineralogical indicators can be

ambiguous: the occurrence of minerals such as todorokite in non-hydrothermal settings cautions against

their use as sole hydrothermal indicators, and crusts identified as hydrogenetic may still incorporate

hydrothermal material in areas with tectonomagmatic activity (Baturin and Dubinchuk, 2011). More

generally, the origin of Fe–Mn crusts is constrained by the contents and ratios of Fe, Mn, ore metals, and

REEs (Baturin and Dubinchuk, 2011).

Post-depositional processes further modify trace-element systematics. Phosphatization, driven by

interactions with phosphate-rich seawater, remobilizes and reorganizes elements and minerals, enriching

certain trace metals such as REY (Zhou et al., 2023). Enhanced sorption of REY(III) and HPO2−
4 on

Fe oxyhydroxides during phosphatization facilitates REY enrichment (Zhou et al., 2023). Multiple

microanalysis methods applied to sample MP2D32A from the Line Islands reveal that phosphatization

plays a significant role in REY enrichment and that interactions among carbonate fluorapatite (CFA),

Fe–Mn (oxyhydr)oxides, and phosphate complexes are important, while acknowledging additional,

not yet fully understood factors contributing to REY enrichment and the limitations in the use of these

signatures as proxies for oceanic environmental variability over millions of years (Zhou et al., 2023).

Textural heterogeneity at the microscale also governs metal contents and resource assessments. High-

resolution XRCT and SEM–EDS mapping of Atlantic crusts from Tropic Seamount identify dense

pillared textures (up to 93% Fe–Mn oxides) and less dense cuspate zones (as low as 57% Fe–Mn oxides)

with higher detrital material and encrusting foraminifera; Co is highest in pillared textures, whereas

cuspate textures show dilution by detritus and lower metal contents (Yeo et al., 2018). Although

metal concentrations can be significant, the thin and variable textures present challenges for economic

extraction under current mining models, and accurate resource estimation requires accounting for these

textural variations (Yeo et al., 2018).

Regional studies further link composition to depth, age, and resource potential. At Takuyo Daigo

Seamount, Fe–Mn crusts are highly enriched in Co (6500 ppm), Ni (4000 ppm), Pt (0.19 ppm), and

REEs (1700 ppm), with element concentrations strongly correlating with Fe or Mn; deeper or younger

crusts show promise for REE resources, whereas shallower or older crusts are rich in Co, Ni, Ce, and Pt,

and the Fe/Mn ratio varies with water depth and age (Nozaki et al., 2016). Assuming a homogeneous

distribution, the estimated reserve is roughly 65 million tons of ore, including 420,000 tons of Co and

110,000 tons of REYs, but variability in crust composition, the precision of sampling methods, and

geographical constraints limit the accuracy and applicability of such evaluations and the feasibility of

commercial mining, suggesting future research should address these limitations (Nozaki et al., 2016).

Global studies reinforce both the scale of the resource and the uncertainties of current estimates.

Mizell et al. (2022), in a chapter from Perspectives on Deep-Sea Mining (Sharma, 2022), present global

tonnage and metal concentration estimates for Fe–Mn crusts and nodules using extensive geochemical

data and identify hydrothermal input as a significant control on crust composition, with crusts near

spreading centers showing varying hydrothermal inputs relative to those formed farther away. While

concluding that these deposits contribute a significant portion of the planet’s metal reservoir, the

study notes methodological limitations, including a uniform crust-thickness assumption, reliance on

two-dimensional footprints rather than full seamount surface areas (ignoring shapes such as cones or

guyots), lack of a formal code-based tonnage calculation, and additional uncertainties from sediment
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cover, erosion, and rugosity; collectively, these could skew tonnage estimates by a factor of two (Mizell

et al., 2022).

Finally, the feasibility of mining remains constrained. Growth interruptions spanning millions of years

can lead to diagenetic changes, crusts are firmly attached to substrates, and current methods for detaching

crusts from the seafloor without dilution by substrate rock are untested and no proven technology exists

for this task (Halbach et al., 2017). Consequently, reported crust tonnages are “identified resources”

rather than reserves, given the difficult separation and recovery process and uncertain economic viability.

Overall, the realization of Fe–Mn crust mining is more complex than other seabed mineral extraction

efforts (Halbach et al., 2017). In parallel, broader geochemical and technological priorities like real-time

measurements, environmental evaluations, diverse sampling (including thick phosphatized samples),

and green technologies etc frame the path forward (J. Hein and Koschinsky, 2014).

Given that the Fe/Mn ratio varies with water depth and age and that deeper or younger crusts differ

compositionally from shallower or older crusts (Nozaki et al., 2016), the following section examines the

Relationship between Depth and Crust Composition.

2.2. Relationship between Depth and Crust Composition
The relationship between deep-sea Fe-Mn crust composition and the depth at which they are found has

been recently studied, revealing significant depth-dependent variations in elemental concentrations.

Understanding this relationship is vital for effective exploration and extraction of these valuable

resources.

Fe-Mn oxides precipitate most efficiently in typical seawater conditions, including areas with low

oxygen, known as oxygen minimum zones (OMZs). Metals sensitive to redox conditions, such as Co

and Ce, tend to concentrate at specific water depths where these OMZs occur (Usui and Suzuki, 2022).

Oxygen content profiles of seawater at various depths are invaluable for determining ideal conditions

for Co-rich Fe-Mn crust formation (Glasby et al., 2010).

Building on this understanding, Usui and Suzuki (2022) in their chapter Geological Characterization of

Fe-Mn Crust Deposits in the NW Pacific Seamounts for Prudent Deep-Sea Mining from the book Perspectives

on Deep-Sea Mining (Sharma, 2022) proposed a hypothetical genetic model based on studies of the

Takuyo-Daigo seamount in the Northwest Pacific Ocean. According to this model, Fe-Mn crusts have

undergone slow, consistent growth since the Neogene period (23.04 Ma) or earlier, across all water

depths. The model highlights that the concentration of most metallic elements is strongly influenced by

water depth. For instance, younger layers at the Takuyo-Daigo seamount show higher Fe/Mn ratios

and Co content, while older layers are enriched in total REEs, P, and Pt. The chapter highlights that

the geological characteristics of these deposits are not fully determined at various scales, and the reasons

behind mineral diversity are not well understood. Small-scale variations in the occurrence, shape, and

composition of the crusts within a seamount are also poorly documented, primarily due to difficulties

in vehicle positioning, sampling of bottom materials, and the scarcity of geological information (Usui

and Suzuki, 2022).

Further supporting this depth-dependent variation, Usui et al. (2016), in the article Continuous growth

of hydrogenetic Fe-Mn crusts since 17 Myr ago on Takuyo-Daigo Seamount, NW Pacific, at water depths of

800–5500 m explains how they examined Fe-Mn crusts from the same seamount, focusing on their

temporal and spatial variations to assess their resource potential. Their findings indicate that as

depth increases, Fe concentrations decrease while the Mn/Fe ratio rises, suggesting a shift from

Fe-oxyhydroxides at shallower depths to Mn-oxides at greater depths. Co concentrations also exhibit

strong depth dependency, with higher levels in shallower regions due to elevated Co concentrations in

the OMZ and redox conditions of seawater. Despite continuous growth over 17 million years, regional
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variations are controlled by the seamount’s evolution, substrate rock, and sedimentary history. Current

knowledge is limited by the variability in crust composition and the challenges of precise sampling. The

study emphasizes the need for further global- to nano-scale characterization, on-site exploration, and

advanced analytical techniques to develop robust models for selective metal concentration and improve

resource evaluations.

In the Northeast Atlantic, according to the chapter Seamount-scale controls on Fe-Mn crust composition, NE

Atlantic of Sarah Atinta Howarths’s Phd Thesis titled An Investigation into the Variability of Fe-Mn Crusts

in the NE Atlantic (Howarth, 2022), the depth of the water seems to be the primary factor influencing

the presence of Fe-Mn crusts. This chapter investigates how water depth influences the composition of

Fe-Mn crusts at Tropic Seamount in the NE Atlantic. By examining 121 surface scrape samples, the

study reveals significant variations in element concentrations related to water depth. It also finds that

as water depth increases, Fe concentrations, along with Co and Te, decrease, while the Mn/Fe ratio

increases, indicating a shift from Fe-oxyhydroxides at shallower depths to Mn-oxides at greater depths.

Dissolved oxygen levels, closely linked to water depth, play a crucial role, with the OMZ indirectly

promoting Mn-oxide formation through upwelling and mixing processes. The unique conditions in the

NE Atlantic, including influences from Saharan dust and biogenic remineralization, result in different

depth-related patterns. Understanding these controls is essential for accurately assessing the resource

potential and mining feasibility of Fe-Mn crusts in this region. Local environmental factors like slope

angle, current velocities, and topography also affect crust composition by influencing the distribution of

detrital phases and the dilution of hydrogenetic phases. For example, Al shows negative correlation

with maximum current velocity and slope (Howarth, 2022).

In contrast, research conducted along the Ninetyeast Ridge in the Indian Ocean highlights a different

depth-related pattern in Fe–Mn crust composition. According to J. R. Hein et al. (2016), Fe/Mn

ratios exhibit a significant increase with water depth, largely attributed to the rising availability of

iron from deep-sourced hydrothermal systems and the dissolution of biogenic carbonates. While

dissolved manganese derived from the oxygen minimum zone (OMZ) plays a role in Mn enrichment

at intermediate depths, its influence diminishes below the OMZ, especially as oxidation conditions

intensify with depth. This process results in an enhanced incorporation of iron and a concurrent decline

in Mn/Fe ratios with increasing depth, indicating a transition toward Fe-oxyhydroxide dominance

at greater depths. The study further notes that Fe–Mn crust growth rates correlate positively with

water depth, underscoring the role of deep-ocean chemistry, sediment sources, and geologic features in

shaping crust composition. These findings, in tandem with regional environmental variables, refine

our understanding of the formation mechanisms and resource viability of crusts in different oceanic

provinces.

These studies collectively highlight that water depth, along with associated oceanographic and geological

conditions, significantly influences the composition and structure of Fe-Mn crusts. Understanding these

depth-dependent variations is essential for accurately assessing resource potential and mining feasibility

with confidence. This knowledge has the potential to better inform exploration strategies and enhance

resource estimation models, which is a central focus of this thesis.

In light of the critical importance of accurate resource estimation for Fe-Mn crusts and the limitations

of current methods under deep-sea conditions, there is a clear need for alternative approaches.

Specifically, understanding how water depth influences crust composition could unlock new avenues

for improving estimation techniques. Therefore, this study will explore the linkage between depth

and crust composition and assess the efficacy of CK in enhancing resource estimation accuracy and

confidence compared to traditional methods.

While this section has established the critical influence of water depth and associated oceanographic
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factors on the elemental composition and resource potential of Fe-Mn crusts. To further contextualize

these findings, it is important to examine the chemical relationships between individual elements within

the crusts as described in existing literature. The following section synthesizes published research on

geochemical associations, enrichment pathways, and post-depositional modifications concerning Fe-Mn

crusts, providing a detailed context for how elemental distributions are governed by both environmental

conditions and intrinsic chemical and mineralogical processes.

2.3. Chemical Relationships Between Elements in Fe-Mn Crusts
Sources and Distribution Mechanisms: Marine Fe-Mn crusts and nodules obtain their metal content

primarily from seawater, with additional contributions from terrestrial riverine input, groundwater

fluxes, hydrothermal activity, aeolian deposition, basaltic substrate weathering, and even cosmogenic

sources (Huang and Fu, 2023). In certain regions like the Rio Grande Rise, regeneration of nutrients from

local biological productivity provides metals that regenerate rapidly in the water column, particularly

Ni, As, V, and Cd. Important contributions also come from various water masses such as the South

Atlantic Mode Water and Antarctic Intermediate Water (Benites et al., 2020). In the North Atlantic,

Saharan dust (aeolian) input significantly influences Fe-Mn crust composition (Marino et al., 2017).

Element Associations and Phase Preferences: Metal enrichment in Fe-Mn crusts and nodules is largely

phase-dependent, with most elements exhibiting preferences for either Mn or Fe phases. This selectivity

is governed primarily by electrostatic interactions between the metal species and the oxide surfaces

(Huang and Fu, 2023). At typical seawater pH (approximately 8), �-MnO2 surfaces carry a negative

charge (pHİĦę = 2.8) while amorphous FeOOH surfaces maintain a slight positive charge (pHİĦę = 8.5).

This charge difference creates selective binding environments for different metal species. Analysis

of Fe-Mn crusts from the Canary Island Seamount Province reveals that Fe shows a strong positive

correlation with Mn (0.87) while exhibiting negative correlations (-0.5 to -0.7) with Mg, Al, K, and Si

(Marino et al., 2017). Both Mn and Fe demonstrate positive correlations with REEs, V, Mo, Pb, As, and

W, though Fe typically shows stronger correlations with REEs than Mn does (Marino et al., 2017).

Enrichment Pathways and Metal Groupings: The enrichment of metals in Fe-Mn crusts follows several

distinct pathways depending on their chemical properties (Huang and Fu, 2023). Phase associations

play a key role, with Light Rare Earth Elements (LREEs) tending to be more attracted to negatively

charged �-MnO2 surfaces due to their positively charged nature in seawater, while Heavy Rare Earth

Elements (HREEs) show a preference for slightly positively charged amorphous FeOOH surfaces. Direct

substitution on �-MnO2 surfaces is observed for Ni, Cu, Zn, and Li, while oxidative substitution on

these surfaces involves Co, Ce, and Tl. Some elements, such as REY (except Ce), Cd, Mo, W, V, Te, Pt, As,

and Sb, partition between Mn and Fe phases. Dominant sorption by amorphous FeOOH is seen for

Ti and Se. These pathways are influenced by the metals’ electrochemical properties in seawater. Free

cations and weak chloro-complexes (Co2+, Ni2+, ZnCl+) and positively charged LREEs are attracted to

negatively charged �-MnO2, while oxyanion complexes (Mo, Te) and HREEs preferentially bind to the

slightly positive amorphous FeOOH (Huang and Fu, 2023).

Coordination Preferences in Oxide Structures: Certain metals exhibit specific coordination preferences

within the layered and tunneled manganese oxide structures (Huang and Fu, 2023). Layer or tunnel-wall

incorporation is typical for Co, Ni, and Cu. Triple-corner-sharing configurations are observed for Co, Ni,

Cu, Zn, and Tl, while double-corner-sharing configurations are preferred by As, Sb, Mo, W, V, and Te.

Edge-sharing configurations occur at layer rims for corner-sharing metals when they are less competitive

or under less oxidizing conditions. Hydrated interlayer or tunnel-center sorption is common for Ni, Cu,

Zn, Cd, Tl, and Li.

Genetic Process Influences: Different formation processes significantly impact metal distribution in
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Fe-Mn deposits (Josso et al., 2017). Hydrogenetic precipitation favors enrichment of Co, high field

strength elements (HFSE), and REY. Diagenetic processes produce higher Mn, Cu, and Ni concentrations

through oxic remobilization in sedimentary columns. Suboxic conditions promote greater Mn and Fe

remobilization, which competes with the incorporation of Cu and Ni. Hydrothermal Fe-Mn deposits

show strong depletion in HFSE and REY due to rapid formation and high contents of either Fe or Mn

oxides.

Post-Depositional Modifications: Post-depositional processes, particularly phosphatization, signifi-

cantly alter the chemical composition of Fe-Mn crusts. In crusts from the Tropic Seamount, phosphatized

samples maintain their total REY content but show redistribution of these elements, with a 22%

preferential loss of LREEs, minor gains of HREEs (+7%), and a significant 42% enrichment in Y (Josso

et al., 2020).

In Rio Grande Rise crusts, phosphatization occurred during the Miocene (20 to 6.8 Ma) under suboxic

conditions, resulting in incorporation of Li from diagenetic reactions (Benites et al., 2020). Sulfate

(SO4) substitutes for phosphate (PO4) in the apatite structure, while Y3+ and REE3+ replace Ca2+ in the

carbonate fluorapatite structure, explaining the enrichment in HREEs (Benites et al., 2020).

Cobalt Relationships: Cobalt enrichment in Fe-Mn crusts occurs through incorporation into the

vernadite structure, influenced by substitution and adsorption processes on crust surfaces (Marino et al.,

2017). In seawater, dissolved Co2+ and Co3+ oxidize to their less soluble trivalent state. Crusts with

higher cobalt content (0.7 wt%) exhibit slower growth rates (1.2 mm/Ma) compared to those with lower

content (0.4 wt%, 2.7 mm/Ma). Co shows positive correlations with both Mn (0.58) and Fe (0.55), as

well as strong positive correlations with As (0.7), Ce (0.61), and other metals including Mo, Zn, V, Tl,

and LREEs (0.54-0.61) (Marino et al., 2017).

REE Patterns: REY elements in Fe-Mn crusts show strong positive correlations among themselves (>0.7)

and with Fe (0.68-0.97), while displaying weaker positive correlations with Mn (0.59-0.85) (Marino et al.,

2017). These correlation patterns suggest that REY elements primarily associate with Fe-oxyhydroxides,

with a secondary affiliation to Mn oxides. Additionally, REY elements exhibit strong positive correlations

with other metals found in Fe-Mn crusts, including As, V, Pb, Mo, and W, all hosted within Fe and Mn

phases (Marino et al., 2017).

Geochemical Discrimination Using Element Ratios: Various elemental proportions serve as critical

tools for distinguishing between formation mechanisms in oceanic Fe-Mn deposits. Particularly

noteworthy is the relationship between Y and Ho; when Y/Ho ratios (normalized to Post-Archean

Australian Shale) are below 1, they strongly indicate either hydrogenetic or diagenetic origin. In contrast,

deposits formed through hydrothermal processes display considerably more variable Y/Ho values

(Josso et al., 2017). Another significant indicator is the Ce anomaly, expressed mathematically as Ce/Ce*

= CeĤ /
√

LaĤ × PrĤ (subscript n implies normalized values), which functions as an effective redox state

marker and typically shows enrichment in hydrogenetically formed crusts (Josso et al., 2020). Further

diagnostic ratios include the Gd/Yb ratio, which indicates middle-to-heavy REE fractionation, and

La/Sm, which reflects light REE fractionation patterns (Josso et al., 2020, Benites et al., 2020).

Understanding of Phosphatization Effects: Phosphatization processes significantly alter REE distribu-

tions while preserving certain diagnostic features. Research indicates that despite overall REE content

remaining unaffected, phosphatization typically produces a flatter HREE profiles with (Gd/Yb)Ĥ values

approaching 1, alongside slightly negative to positive Y anomalies (Josso et al., 2020). Chemical analyses

reveal that phosphatized materials typically experience selective depletion, with LREEs decreasing

by approximately 22%, while HREEs show minor enrichment (+7%) and Y concentrations increase

substantially (42%). The characteristic positive Ce anomaly commonly intensifies during phosphatiza-

tion, primarily due to substantial Pr depletion (42%) relative to unaltered samples, while La and Ce
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exhibit comparatively moderate reductions (28% and 17%, respectively) (Josso et al., 2020). The Y/Ho

relationship can undergo particularly notable increase during phosphatization, potentially reaching

superchondritic ratios as high as 50 in extensively phosphatized Pacific Ocean samples, although

Atlantic specimens generally display less dramatic alterations (Josso et al., 2020).

Surface Charge Mechanisms and Element Fractionation: The fractionation of elements between

manganese and iron phases is largely governed by the contrasting surface charges of these minerals at

seawater pH ( 8). The �-MnO2 phase, with its pH zero point of charge (pHİĦę) of 2.8, carries a negative

surface charge that preferentially attracts free cations and weak chloro-complexes such as Co2+, Ni2+,

ZnCl+, and positively charged LREEs. Conversely, amorphous FeOOH with a pHİĦę of 8.5 maintains a

slight positive charge, preferentially binding oxyanion complexes like Mo and Te, as well as HREEs

(Huang and Fu, 2023). This electrostatic mechanism explains many of the observed element associations

in Fe-Mn crusts, though some elements (such as Pt and W) show enrichment patterns that suggest

additional mechanisms beyond simple electrostatic attraction (Huang and Fu, 2023).

It needs to be mentioned that none of the literature given in this section (2.3) explicitly mention any

compositional data transformation methods which are crucial when dealing with geochemical datasets

constrained by the constant-sum rule. Therefore the correlations mentioned here might not reflect real

world relationships due to the spurious correlations found in compositional data that sum to a constant.

Summary
Across the reviewed literature, Fe–Mn crusts form by slow hydrogenetic precipitation in which

dissolved ions and complexes in seawater, modulated by pH, redox conditions, oxygen supply and

other environmental factors, adsorb to Mn-oxide and Fe-oxyhydroxide surfaces and accrete layer by

layer, with post-depositional phosphatization redistributing REY. Composition varies systematically

with water depth and regional oceanography: OMZs and water-mass structure influence Co and Ce at

specific depths, and with depth, Fe and Mn partitioning and Fe/Mn or Mn/Fe ratios shift, and trends

differ among oceanic provinces. Microscale textures and detrital inputs further modify metal contents

and extraction feasibility. Resource potential appears significant but is uncertain due to variability

in composition and texture, sampling precision, simplifying assumptions in tonnage estimation, and

unresolved mining challenges related to substrate attachment and economic viability. Viewed through

a Source–Fluid–Transport–Trap/Sink lens, metals derive primarily from seawater with additional

inputs from terrestrial, groundwater, hydrothermal, aeolian, basalt weathering, and cosmogenic

sources (Source); seawater is the carrier (Fluid); ocean circulation, OMZs, upwelling and mixing, and

colloid formation and complexation provide the pathways (Transport); adsorption to Mn-oxide and

Fe-oxyhydroxide particles, redox-driven oxidation, layer-by-layer precipitation, phosphatization, and

textural controls act as the traps and sinks (Trap/Sink).



3
Methodology

This chapter outlines the theoretical background and methodological framework used to analyze the relationship

between water depth and ferromanganese crust composition. It details the data structure, preprocessing steps,

exploratory analyses, geostatistical modeling approaches and the tools employed to address the research questions

and hypotheses of this study.

3.1. Block Modelling of Tropic Seamount FeMn Crust
Generation of crust 3D volume: The creation of a three-dimensional volumetric model of the Fe-Mn

crust deposit began with the acquisition and integration of two crucial datasets. Bathymetric data

provided the spatial foundation through x, y coordinates (in UTM coordinates) and corresponding

z depth values (in metres) of the ocean floor topography. This was complemented by geochemical

measurements, which contained spatial coordinates and thickness measurements of the Fe-Mn crust

deposits along with metal concentrations. These thickness values, originally recorded in millimetres,

were converted to metres for consistency with the bathymetric scale.

To transform the discrete bathymetric points into a continuous thickness model spanning the entire

study area, an Ordinary Kriging interpolation approach was implemented. This geostatistical method

employed a linear variogram model to characterize the spatial correlation structure of the crust thickness.

To manage computational demands efficiently, the interpolation was executed in batches of 1000 points,

systematically mapping thickness values across the complete bathymetric grid. This process created a

comprehensive spatial model of crust thickness variations throughout the region of interest.

The interpolated thickness data enabled the generation of two spatially correlated surfaces that defined

the vertical boundaries of the Fe-Mn crust deposit. The top surface preserved the original bathymetry,

representing the interface between seawater and the upper crust boundary. The bottom surface was

mathematically derived by subtracting the interpolated crust thickness from the bathymetric elevation

at each grid point, effectively modeling the lower boundary of the mineral deposit, as visualized in

Figures 3.1a, 3.1b, and 3.1c from different viewing angles (these figures are only for visualization

of the volume and hence is not to actual scale or represent units). These surfaces were exported as

GOCAD TSurf files, preserving both vertex coordinates and triangulation information necessary for 3D

representation.

To complete the volumetric model, the top and bottom surfaces needed to be joined along their edges to

create a watertight 3D solid. This process began with reading the vertex and triangulation data from

15
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both TSurf files. The boundary vertices of each surface were systematically identified using a convex

hull algorithm in the xy-plane. Corresponding vertices between top and bottom surfaces were precisely

matched, enabling the generation of side faces by connecting these boundary points. The resulting

quadrilateral faces were triangulated to maintain proper mesh topology and ensure compatibility with

standard 3D visualization formats.

The final step involved integrating all mesh components; top surface triangles, bottom surface triangles,

and side triangles into a unified data structure with carefully managed vertex indexing. This complete

3D model was written to a VTK file in legacy ASCII format, containing the full available geometric

definition of the Fe-Mn crust deposit, as illustrated in Figures 3.1d and 3.1e with exaggerated thickness,

and in Figure 3.1f with actual proportions. This volumetric representation provides a comprehensive

basis for quantitative resource assessment, visualization in specialized scientific software, and further

geospatial analysis of the marine mineral deposit. The resulting model enables accurate volume

calculations and spatial characterization critical for both scientific understanding and potential resource

evaluation.

Creation of constrained block model from the 3D crust volume: The creation of a block model

represents a critical step in transforming the continuous 3D volume of Fe-Mn crust into a discretized

representation suitable for resource estimation and geostatistical analysis. This process begins with

the preparation of input data, which includes geochemical measurements, bathymetric data, and the

previously generated 3D volumetric model stored in VTK format.

The initial phase involves establishing the spatial domain for block generation. This is accomplished

by analyzing the spatial extents of the geochemical data points to determine the natural boundaries

of the study area. From these points, minimum and maximum coordinates are extracted along each

dimension (X, Y, Z) to define a bounding box. To ensure comprehensive coverage of the region of

interest, this bounding box is expanded with a small padding factor (5%) and additional significant

points are explicitly included, particularly, four carefully selected bathymetry data points that were

manually identified through visual comparison of the bathymetry data and the top surface of the

volume. These manually selected points form the vertices of a convex hull that effectively encompasses

the area containing meaningful Fe-Mn crust deposits.

With the spatial domain established, the next critical step involves creating a convex hull constraint

to focus the block model on geologically meaningful areas. Rather than filling the entire rectangular

bounding box with blocks, a convex hull is defined using the four manually selected vertices that

represent the outer boundaries of the meaningful study area. These vertices are projected onto the

XY plane to create a two-dimensional polygonal boundary using the Shapely library’s Polygon class,

with further optimization through Matplotlib’s Path functionality for efficient point-in-polygon tests.

This approach reduces computational requirements by eliminating blocks in areas outside the area of

interest.

After the convex hull is established, the block generation process begins by first creating a single

horizontal layer of blocks within the hull boundary. Each block in this initial layer has its centroid at a

specific XY location within the hull, with set block dimensions horizontally. Subsequently, this initial

layer pattern is replicated vertically to cover the entire Z-extent of the data domain, with each Z-layer

spaced at set intervals corresponding to block height. This creates a complete three-dimensional grid

of blocks, with finer resolution in the vertical dimension to capture the relatively thin nature of the

Fe-Mn crust deposits. To optimize memory usage on high-performance computing systems, the grid

generation is implemented using a file-backed approach where blocks are created and stored in batches

organized by Z-layers, leveraging Python’s multiprocessing capabilities.

A particularly sophisticated aspect of the block model generation is the filtering of blocks based on
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(a) Top and bottom surfaces with thickness exaggerated by a factor of
50,000.

(b) Alternative angle of top and bottom surfaces with exaggerated
thickness.

(c) Third perspective of top and bottom surfaces with exaggerated
thickness. (d) Complete 3D volume with exaggerated thickness factor.

(e) Alternative view of 3D volume with exaggerated thickness.
(f) 3D volume model with actual thickness proportions and slightly

exaggerated vertical scale for visibility.

Figure 3.1: Visualization of the Fe-Mn crust 3D model generation process, showing both the individual surfaces and the final
volumetric representation. All the axes are in metres (m)
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their intersection with the 3D Fe-Mn crust volume since only those blocks that encompass the crust is

required. This intersection testing employs ray tracing techniques, a computational method borrowed

from computer graphics, implemented through the PyVista library’s ray_trace functionality. For each

candidate block, multiple rays are cast from points slightly outside each of its six faces, directed inward

toward the block center. These rays from different directions (top, bottom, left, right, front, and back)

check whether they intersect with the triangulated surfaces of the crust volume. If any ray intersects

with the volume’s surface, it indicates that the block potentially contains part of the crust deposit and is

therefore retained in the model. This relatively complicated approach is required because the resolution

of the bathymetry data is much lower than the resolution of the blocks that simple filtering of the blocks

based on coordinates is not feasible.

The ray tracing algorithm functions by calculating intersections between each ray and the triangulated

mesh surfaces that define the crust volume. Ray origins are positioned at strategic points outside

each block face, and rays are directed perpendicular to these faces toward the block center. When a

ray encounters a triangulated face of the mesh, the intersection point is recorded. By analyzing these

intersections, the algorithm can determine whether a block is fully outside, fully inside, or partially

intersecting the volume. This approach ensures accurate representation of the crust geometry while

maintaining the regular block structure needed for resource estimation.

This was also one of the most computationally intensive part of the resource modeling because due to the

geographical extent of the Tropic Seamount (approximately 40km in diameter and 3km in height) and

the fine dimensions of the blocks, there were, depending on the dimensions of the block, upto billions

of blocks that had to be filtered through to find the required ones. For computational efficiency, this

intersection testing is preceded by a preliminary filtering step that eliminates blocks clearly outside the

volume’s bounding box. Only blocks that pass this initial spatial filter undergo the more computationally

intensive ray tracing tests. Furthermore, the intersection testing is parallelized and divides the workload

into chunks and processes them concurrently across multiple CPU cores, significantly accelerating the

computation for such large models.

The final phase involves organizing the blocks that have passed all geometric constraints into a structured

model. Each retained block is assigned a unique identifier (block id) and fundamental physical properties

such as volume and position information (centroid coordinates and extents). In preparation for more

advanced geostatistical modeling, the finalized block model is exported in multiple formats, including

standard mining industry formats such as CSV, Parquet, GSLIB, and VTK, ensuring compatibility with

a wide range of specialized software tools for visualization and further analysis.

This comprehensive block modeling approach transforms the continuous volumetric representation

of the Fe-Mn crust into a structured, quantifiable format that maintains an accurate representation of

the deposit’s complex geometry while providing the framework necessary for subsequent resource

estimation processes.

3.2. Exploratory Data Analysis
Exploratory Data Analysis (EDA) was conducted to understand the structure and relationships within

the dataset. The process began by loading the data into Python. Numeric features were identified and

aggregated, while sample names were retained for reference.

The raw and transformed compositional data were analyzed using statistical summaries and visualiza-

tions, including histograms, box plots, and cumulative distribution functions (CDFs), for each element

and each transformed variable. The code computed key statistics such as mean, median, variance,

standard deviation, and skewness to characterize the data distributions.
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A correlation matrix was generated to assess relationships between elements, and between ILR

coordinates, and the top correlated pairs were visualized using scatter matrix plots. Principal Component

Analysis (PCA) was performed to reduce dimensionality and visualize explained variance across

principal components.

Clustering analysis was conducted using K-Means on the principal components, with the optimal

number of clusters determined via silhouette scores. The resulting clusters were visualized in three-

dimensional space, both in PCA and geospatial coordinates. Further analysis included box plots to

compare element concentrations and water depth across clusters, providing insights into the underlying

patterns in the data.

3.3. Data Transformations
Why Is Data Transformation Necessary for Kriging? Kriging, like many geostatistical methods,

performs optimally when certain statistical assumptions are met. Data transformations serve several

critical purposes in this context. First, they help improve the normality of data distributions, which

is essential since kriging techniques generally work better when the data or residuals approximate a

normal distribution (Osborne, 2002). Second, transformations stabilize variance across the data range,

addressing heteroscedasticity (the situation where the variability of the error terms in a model is not

consistent across all levels of an independent variable (Clar, 2023)) issues that can undermine kriging

accuracy. When data exhibits significant skewness, as is common in environmental and geological

variables, kriging estimators become problematic due to their linear nature and sensitivity to outliers.

This is particularly challenging in contexts with highly skewed distributions, such as ore grades in gold

deposits, where a small number of samples can disproportionately influence the overall estimation

results (Chilès and Delfiner, 2012).

It has been demonstrated that for data with clearly lognormal distributions, applying appropriate

transformations before kriging typically produces estimates with lower experimental estimation variance

compared to classical linear kriging estimators applied directly to untransformed data (Journel and

Huĳbregts, 1976). The fundamental motivation is that the stationary Gaussian case represents an

ideal scenario for estimation, making transformations that bring non-Gaussian data closer to this ideal

particularly valuable.

3.3.1. Commonly Used Data Transformations
Several transformation approaches are employed in kriging applications, depending on data character-

istics and analysis requirements.

Logarithmic Transformations represent a versatile class rather than a single technique. As Osborne

(2002) describes, logarithmic transformations involve expressing values as powers of a chosen base.

While base 10 is common, natural logarithms (base ě = 2.7182818) and base 2 logarithms are also

frequently employed. The choice of base depends on data characteristics, for example, base 10 works

well for extreme ranges, whereas lower bases provide better resolution for less extreme distributions. An

important limitation is that logarithms are undefined for values less than or equal to zero, necessitating

the addition of constants when such values are present (Osborne, 2002).

Square Root Transformation offers a moderate alternative to logarithmic approaches. This technique

involves taking the square root of each data value, which compresses higher values while spreading out

lower ones. It proves particularly valuable for data with Poisson distributions (data representing the

tally of events in a fixed interval and these events occur randomly but at a steady mean rate (Haight,

1967)) or when variance is proportional to the mean. However, it may not effectively address left-skewed

variables and can sometimes increase distortion in such cases (Choueiry, 2025).
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For compositional data, where variables represent parts of a whole and sum to a constant, specialized

log-ratio transformations are necessary due to spurious correlations between components (Egozcue

et al., 2003):

• Additive Log-Ratio (ALR) expresses compositions by selecting one component as a reference

and computing logarithms of the ratios between all other components and this reference. While

straightforward, this approach is not isometric and thus inappropriate for analyses involving

distances or angles (Hartmann et al., 2023).

• Centered Log-Ratio (CLR) divides each component by the geometric mean of all components

before taking logarithms. This provides a more symmetric treatment of all components and

facilitates interpretation. However, it produces linear dependency among transformed components,

sums to zero, and lacks subcompositional coherence (Hartmann et al., 2023).

• Isometric Log-Ratio (ILR) transforms compositional data into a Euclidean space with one

dimension less than the original data. While the results can be challenging to interpret directly,

ILR ensures full-rank covariance matrices, making it compatible with a wide range of statistical

methods (Hartmann et al., 2023).

Why Are Log Ratio Transformations Better Than Simple Logarithmic Transformations (Especially for

Compositional Data)?:Compositional data presents unique analytical challenges due to its constrained

nature, that is, all components must sum to a constant (typically 1 or 100%). This constraint, known as

the closure problem, creates dependencies among components that simple logarithmic transformations

applied independently to each component fail to address.

According to Egozcue et al. (2003), applying standard logarithmic transformations to compositional data

can lead to several statistical issues. First, the closure constraint creates spurious correlations between

components that don’t reflect genuine relationships. Second, simple logarithmic transformations

neglect the fundamental property of compositional data that only the ratios between components carry

meaningful information (Egozcue et al., 2003).

Log-ratio transformations specifically address these limitations by:

1. Emphasizing relative differences between components rather than their absolute values

2. Maintaining scale invariance, acknowledging that only the proportions between components

matter

3. Ensuring subcompositional coherence, meaning analyses based on a subset of components remain

consistent with analyses of the complete set

These properties make log-ratio transformations mathematically rigorous and conceptually appropriate

for compositional data analysis in kriging contexts (Egozcue et al., 2003).

Why Is the ILR Transformation Generally Preferred Over ALR and CLR? While all three log-ratio

transformations convert compositional data into unconstrained space, they differ significantly in their

mathematical properties and suitability for kriging applications.

CLR transformation, while treating all components symmetrically, produces transformed values that

sum to zero. As Egozcue et al. (2003) explain, this constraint results in a singular covariance matrix that

complicates statistical analyses like kriging, which typically require invertible covariance matrices.

ALR transformation avoids this singularity issue but introduces asymmetry by arbitrarily selecting one

component as a reference denominator. More importantly, Egozcue et al. (2003) highlight that alr is

not an isometric transformation, meaning it doesn’t preserve the geometric properties (distances and

angles) when mapping from the simplex with Aitchison metric to real space with Euclidean metric.
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Table 3.1: Data Transformation Methods for Kriging Applications

Transformation Application Context Key Benefits

Logarithmic Right-skewed, positive-valued
data; particularly effective for
variables with extreme ranges

Improves normality; stabilizes
variance; different bases (10, ě,
2) offer varying degrees of com-
pression for different data ranges
(Osborne, 2002)

Square Root Data with Poisson distribution or
when variance is proportional to
the mean

Compresses higher values while
spreading out lower ones; moder-
ate alternative to logarithmic ap-
proaches; maintains more of the
original data structure (Choueiry,
2025)

Additive Log-Ratio
(ALR)

Compositional data where com-
ponents sum to a constant

Expresses compositions using
one component as reference; com-
putes logarithms of ratios be-
tween components and reference;
straightforward implementation
but not isometric (Hartmann et
al., 2023, Egozcue et al., 2003)

Centered Log-
Ratio (CLR)

Compositional data requiring
symmetric treatment of compo-
nents

Divides each component by geo-
metric mean before taking loga-
rithms; facilitates interpretation;
maintains symmetry among com-
ponents but produces singular
covariance matrices (Hartmann
et al., 2023, Egozcue et al., 2003)

Isometric Log-
Ratio (ILR)

Compositional data requiring rig-
orous statistical analysis

Transforms data into Euclidean
space with one dimension less
than original data; ensures full-
rank covariance matrices; pre-
serves geometric properties like
distances and angles; compatible
with methods requiring invert-
ible covariance matrices (Hart-
mann et al., 2023, Egozcue et al.,
2003)
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ILR is often favored over ALR in distance-based analyses like clustering or PCA because it preserves

Euclidean geometry and avoids the subjective, context-dependent challenge of selecting a reference

component, which can affect interpretation and consistency (Mangnier, 2024). In the absence of explicit

recommendations in the literature, the denominator for the ALR transformation was selected based on

expert guidance from supervisor Steinar, who has extensive experience in compositional data analysis.

In contrast, ILR transformation provides the advantages of both approaches while avoiding their

limitations. It employs an explicitly defined orthonormal basis to represent compositions, ensuring the

transformation is both bĳective (one-to-one) and isometric. This means Aitchison distances and angles

in the simplex accurately transform into standard Euclidean ones in the transformed space (Egozcue

et al., 2003).

This mathematical rigor makes ILR particularly compatible with geostatistical methods like kriging that

operate under Euclidean assumptions, explaining its general preference among practitioners working

with compositional spatial data.

Why Is ILR with the Sequential Binary Partition (SBP) Matrix a Good Approach? The SBP approach

significantly enhances the utility of ILR transformations for kriging applications through several key

advantages.

As described by Pawlowsky-Glahn et al. (2015), an SBP establishes a hierarchical structure for composi-

tional components. The process involves systematically dividing components into two groups, then

further subdividing each group until all groups contain just a single component. This hierarchical

partitioning can be conceptualized either as a division process (starting with all components together)

or as a fusion process (starting with each component separate) .

This approach provides considerable analytical benefits. First, the SBP guarantees that the resulting ILR

coordinates form an orthonormal basis, that is, they are both independent of one another and properly

normalized. As Pawlowsky-Glahn and Buccianti (2011) note, this property simplifies subsequent

statistical analyses like kriging because the coordinates fully conform to Euclidean assumptions.

Second, SBP creates interpretable hierarchies by organizing components into binary groups following

logical or theory-driven structures. Each ILR coordinate derived through this method represents a

meaningful balance (or contrast) between component groups, making results more interpretable within

the context of underlying geological or environmental processes (Pawlowsky-Glahn and Buccianti,

2011).

Perhaps most importantly, SBP can be tailored to specific research contexts by incorporating prior

knowledge. By designing partitions based on geological understanding, environmental characteristics,

or other domain expertise, analysts can ensure that the resulting transformed variables reflect meaningful

relationships in the data (Pawlowsky-Glahn and Buccianti, 2011).

Having established the advantages of using the SBP matrix for ILR transformation, namely, its ability to

create interpretable, orthonormal coordinates tailored to domain knowledge, the next step is to describe

how the SBP is constructed in this study. The following section details the systematic procedure for

generating an SBP matrix, including both division and fusion perspectives, and explains how these

partitions are used to compute ILR coordinates for compositional data analysis.

3.4. Sequential Binary Partition and ILR Transformation
The SBP represents a systematic approach to creating a hierarchical structure for compositional

components. As explained by Pawlowsky-Glahn et al. (2015), this process involves methodically

dividing components into groups through a series of binary splits. The construction follows a specific
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procedure:

First, all compositional parts are organized into two distinct groups, which are typically denoted using

+1 and −1 signs in a sign code matrix. This initial division represents the first order of the hierarchy

(Pawlowsky-Glahn et al., 2015). In subsequent steps, each previously formed group undergoes further

subdivision into two new groups. This hierarchical division continues until all resulting groups contain

exactly one component.

An alternative but equivalent perspective describes SBP as a fusion process rather than division. As

Pawlowsky-Glahn et al. (2015) note, one can start with Ā individual groups (each containing a single

part) and progressively merge them. The first step combines two of these single-part groups, resulting

in Ā − 1 groups. Through successive merging steps, the number of groups continuously decreases

until only one group remains, containing all Ā parts. This fusion process requires exactly Ā − 1 steps,

matching the number of steps in the division approach.

Each step in the SBP process, whether viewed as division or fusion, corresponds to the creation of

one ILR coordinate, often called a "balance" (Pawlowsky-Glahn and Buccianti, 2011). These balances

typically have meaningful interpretations within the context of the data being analyzed. The binary

nature of the partitioning ensures that each resulting coordinate represents a contrast between two

distinct groups of components.

It is important to note that the ordering of ILR coordinates produced through SBP is inherently

flexible. As Pawlowsky-Glahn et al. (2015) point out, the rows of the associated contrast matrix can be

rearranged, resulting only in a permutation of the indices of coordinates or balances without altering

their fundamental properties.

If the geochemical knowledge between elements presented in Section 2.3 was exhaustive enough

that it could be used to create an SBP matrix for the ILR transformation, it would have resulted in a

comprehensive SBP that considers all the available relationships between elemtal groups. However,

given the overlapping nature of the classifications in 2.3, alternative approaches need to be considered.

One such approach suggested by Dr. Vera Pawlowsky-Glahn is grouping based on the principal

components of the CLR transformed data. This was accomplished using the software "CoDaPack"

(Comas-Cufí and Thió-Henestrosa, 2011). The following SBP generation and ILR transformation

processes are adapted from the book chapters by Pawlowsky-Glahn et al. (2015) and Pawlowsky-Glahn

and Buccianti (2011).

3.4.1. Hierarchical Partition Creation and Resulting SBP Structure
The partitioning process follows a hierarchical approach, beginning with fundamental principal

component divisions and progressively adding smaller and smaller partitions (Thio-Henestrosa and

Comas, 2016):

Conditions for a valid SBP

Each partition must:

• Contain both positive and negative elements

• Be linearly independent from all other partitions

The composition was imported into CoDaPack, and CLR biplots were created for the entire dataset. For

each biplot, the elements were separated into two mutually exclusive groups based on their positions

on either side of the Principal Component 2 (PC2) axis. These groups were then used to create further

biplots, as illustrated in Figure 4.3.
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Initially, the whole composition was split into two groups, the metallic elements and the "Other"

non-metallic elements column. This partition forms the basis for calculating ilr.1. Then the group of

metallic elements were then further split according to their separation along PC2 in the first biplot,

using new biplots generated for each subgroup. At each step, the largest group resulting from a split

was selected for further partitioning. This process continued recursively until all final groups in one

branch contained only a single element (see Fig 4.4).

The order in which the groups are split determines the order of the ILR coordinates: ilr.2 follows ilr.1,

ilr.3 follows ilr.2, and so on. Since a biplot requires at least three elements, the final splits also considered

separation along Principal Component 1 (PC1) when necessary (when there is only 3 elements in the

biplot and the last split needs to be created) (see Fig 4.3f). The CLR biplots shown in Figure 4.3 represent

different stages of this sequential partitioning, and the PC1 and PC2 axes in each subplot correspond to

the specific group being analyzed at that stage and are therefore not the same.

The resulting SBP matrix:

• Encapsulates statistical relationships between elements and preserves ratios.

• Provides interpretable partitions

• Serves as a robust basis for compositional data analysis

• Enhances the interpretability of subsequent statistical analyses

This approach demonstrates how domain-specific knowledge can potentially be systematically incor-

porated into the statistical framework of compositional data analysis. In the presence of exhaustive

data on geochemical relationships, when structuring the SBP according to established geochemical

relationships, each resulting ILR coordinate would retain interpretability in terms of known geological

processes affecting Fe-Mn crust formation and evolution.

After describing the hierarchical partitioning process and the resulting SBP structure, it is important to

clarify how these partitions are used to compute the ILR coordinates for compositional data analysis.

3.4.2. Calculation of ILR Coordinates from an SBP
Given a composition Į = (Į1 , Į2 , . . . , ĮĀ), where the Ā parts sum to a constant, the SBP matrix defines a

series of Ā − 1 binary splits of the composition into two groups at each step. Each row of the SBP matrix

corresponds to one partition, with +1 and −1 indicating membership in the two groups (numerator and

denominator, respectively), and 0 indicating exclusion from the current split.

For each partition, an ILR coordinate, also called a balance, is calculated (in this study, the terms "ILR

coordinate" and "balance" are used interchangeably.). Specifically, for the Ġth partition, let Į+ denote the

group of Ĩ parts marked +1 and Į− the group of ĩ parts marked −1. The Ġth balance is then defined as:

Ę Ġ =

√
Ĩĩ

Ĩ + ĩ ln

(
ĝģ(Į+)
ĝģ(Į−)

)
(3.1)

where ĝģ(Į+) and ĝģ(Į−) are the geometric means of the parts in the +1 and −1 groups, respectively.

Each balance Ę Ġ thus represents the log-ratio between the geometric means of the two groups defined

by the corresponding SBP partition. Collectively, the Ā − 1 balances form an orthonormal coordinate

system for the simplex, ensuring that the ILR coordinates are unit-norm, orthogonal log-contrasts. This

construction provides a clear interpretation: each ILR coordinate quantifies the relative abundance of

two groups of elements as determined by the SBP.

In this study, the ILR transformation was applied to the compositional data using the SBP structure
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resulting from the methodology described above. The resulting ILR coordinates are then used for

subsequent statistical analyses, including outlier detection and winsorization. Figure 4.4 illustrates how

each group is recursively split into subgroups until only single elements remain, visually representing

the hierarchical structure underlying the ILR transformation.

3.4.3. Interpretation of ILR coordinates
An SBP divides the components of a composition into two groups at each step, assigning them codes

of +1 (numerator) and −1 (denominator). Each ILR coordinate, also called a balance, is constructed

as a normalized logarithm of the ratio between the geometric mean of the parts in the numerator

group and the geometric mean of the parts in the denominator group. The normalization factor

ensures comparability across balances. The sign of the balance indicates which group is relatively more

prominent: a positive value for the balance means the numerator group has a greater geometric mean

in the composition, while a negative value means the denominator group is more dominant. Thus,

balances provide a way to interpret the relative importance of grouped parts in a composition, with

the SBP structure directly informing which components are being contrasted in each ILR coordinate

(Pawlowsky-Glahn et al., 2015). For example, if an ILR coordinate has a positive correlation with another

variable, say water depth in this case, that means that its value increases with depth. That is, based on

the definition of the ILR coordinate, the ratio of the numerator group to the denominator increases with

increase in depth, or to simplify, the numerator groups increase in the composition when compared to

the denominator group as the depth increases.

3.4.4. Multivariate Outlier Detection
Pawlowsky-Glahn and Buccianti (2011) describes a robust approach for multivariate outlier detection in

compositional data by first applying the ILR transformation, which properly accounts for the relative

nature of compositional datasets. After transforming the data, robust estimators of location and

covariance, such as those derived from the Minimum Covariance Determinant (MCD) method, are

computed. These estimators are then used to calculate Mahalanobis distances for each observation,

quantifying how far each sample deviates from the robust center of the data cloud. Observations with

Mahalanobis distances exceeding a threshold, typically set at the 97.5th percentile of the chi-squared

distribution, are flagged as multivariate outliers. This method ensures that outlier detection is sensitive to

unusual ratios between components, rather than just extreme values in individual variables. The process

highlights the importance of using transformations that respect the compositional structure of the data,

as inappropriate transformations can lead to misleading conclusions. Identifying and addressing these

outliers enhances the reliability and interpretability of subsequent analyses (Pawlowsky-Glahn and

Buccianti, 2011).

This was the basis for outlier detection for the data used in this study. The process begins by loading

data that has already been transformed using the ILR transformation, ensuring that the compositional

structure is properly respected. Principal Component Analysis (PCA) is then applied to the ILR

coordinates to facilitate clustering, and ġ-means clustering is used to identify groups of similar samples.

For each cluster, the Minimum Covariance Determinant (MCD) estimator is applied to robustly estimate

the location and covariance matrix of the ILR-transformed data. Mahalanobis distances are computed

for each observation within its cluster, quantifying how far each sample lies from the robust center.

Observations with squared Mahalanobis distances exceeding the 97.5th percentile of the chi-squared

distribution (with appropriate degrees of freedom) are flagged as outliers, following the thresholding

approach described in the literature.

To address the influence of outliers, the code performs winsorization: outlier values are adjusted by

shrinking them toward the robust cluster center along the direction of their deviation (Statistics How
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To, 2024), scaled so that their Mahalanobis distance matches the cutoff. After winsorization, the code

re-evaluates outliers using the original robust models and cutoffs, ensuring that the cleaning process

is effective and does not introduce new anomalies. Winsorization was chosen rather than removal

of outliers because of the already sparse number of data points and also to ensure that all available

geochemical ratios are preserved.

This winsorized ILR transformed data was used for kriging.

3.5. Interpolation
There are numerous approaches that can be used for interpolation of geochemical grades onto the

empty blocks. The ones focused in this study will be OK, SCK, ICCK and IDW.

3.5.1. Inverse Distance Weighted Estimation
Inverse Distance Weighted Estimation (IDW) interpolation operates under the principle that spatially

close points are more similar than those further apart. When estimating a value at an unsampled location,

IDW utilizes the measured values from surrounding points. The influence of each measured value on

the prediction decreases as its distance from the prediction location increases. Thus, points closer to

the prediction site are assigned greater weights, and these weights diminish with increasing distance.

This approach ensures that each measured point’s local influence is reflected in the estimation, with the

weighting scheme directly tied to the inverse of the distance between points (ArcGIS, 2025). Standard

IDW interpolation is significantly less computationally intensive when compared to kriging and it

assumes isotropy which will be discussed in the following sections. IDW interpolation was conducted

on both the untransformed cartesian coordinates as well as a transformed embedded coordinate system

(3.5.4) that was used to account for anisotropy. The IDW interpolation in the embedded coordinates

were finally chosen for consistency across methods and it will serve as a threshold for comparison of

other more complicated methods of interpolation in this study.

Mathematical Formulation and Implementation of IDW

The IDW interpolation method is fundamentally based on the principle that spatial proximity implies

greater similarity, reflecting Tobler’s first law of geography. In IDW, the similarity between points is

modeled as a function that decreases with distance, such that the influence of each known sample on the

estimated value diminishes as the distance increases. The method is particularly effective when sample

points are evenly distributed across the study area, and it allows for the adjustment of the influence of

neighboring points through a power parameter (Emmanuel Romaric et al., 2020).

The estimated value at an unsampled location ī, denoted as Ė∗(ī), is computed as a weighted sum of

the values at Ĥ surrounding sample points īğ :

Ė∗(ī) =
Ĥ∑

ğ=1

�ğĖ(īğ) (3.2)

Here, Ė(īğ) represents the measured value at location īğ , and �ğ is the weight assigned to each sample

point. The weights are determined by the inverse of the distance between the estimation location and

each sample point, raised to the power Ħ:

�ğ =
1

Ě
Ħ

ğ

/
Ĥ∑

Ġ=1

1

Ě
Ħ

Ġ

(3.3)
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where Ěğ is the Euclidean distance between the estimation location ī and the sample point īğ , and Ħ

is the power parameter that controls the rate at which the influence of a sample point decreases with

distance. A higher value of Ħ increases the influence of closer points and reduces the effect of those

farther away, while a lower Ħ distributes the weights more evenly among all neighbors. The sum of all

weights is constrained to equal one:

Ĥ∑

ğ=1

�ğ = 1 (3.4)

In this study, the IDW was implemented by calculating the distances between each estimation location

and all sample points, applying the chosen power parameter to control the weighting, and normalizing

the weights so that their sum equals one. The final estimate at each location was then obtained as the

weighted sum of the measured values, following the equations above (Emmanuel Romaric et al., 2020).

3.5.2. Kriging
Kriging is a geostatistical estimation technique designed to provide the best linear unbiased estimate

(BLUE) of a regionalized variable, such as the mean grade within a block of a mineral deposit. The

primary objective is to estimate in situ resources prior to the application of any cut-off, distinguishing

this from the estimation of recoverable reserves, which depends on technical and economic constraints.

The method operates under the assumption of second-order stationarity, where the mean and covariance

(or variogram) of the variable are either known or can be reliably inferred. Kriging uses available sample

data, which in the context of mineral resources are typically grades measured at discrete locations, and

combines them linearly with weights that are determined to ensure two key properties: unbiasedness

and minimum estimation variance. The unbiasedness condition requires that the expected value of

the estimator equals the unknown mean, while the weights are optimized to minimize the estimation

variance.

The estimation process involves solving a system of equations derived from these conditions, resulting

in a set of weights that depend on the spatial configuration of the data and the underlying spatial

structure as described by the variogram or covariance function. Kriging can be extended to more

complex scenarios, such as universal kriging for non-stationary cases and Co-Kriging when multiple

correlated variables are available. The technique is widely applicable and forms the foundation for

practical resource estimation in mining, enabling the estimation of thousands of blocks efficiently and

with quantifiable uncertainty (Journel and Huĳbregts, 1976).

While traditional kriging assumes a stationary and isotropic spatial structure, recent advances have

enabled the method to accommodate more complex spatial relationships, such as locally varying

anisotropy (Dias and Deutsch, 2022).

Boisvert and Deutsch (2011) describe a novel kriging methodology for handling locally varying anisotropy

(LVA) through Landmark ISOMAP embedding (L-ISOMAP). Their approach follows these key steps

(3.2):

1. Generate an LVA field to characterize spatial relationships;

2. Select strategic landmark points and calculate shortest path distances between sample, between

samples, landmarks, ans blocks using Dĳkstra’s algorithm;

3. Apply L-ISOMAP to transform the grid cells into a higher-dimensional Euclidean space where

straight-line distances preserve the original shortest path relationships;
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4. Develop an isotropic variogram model in this transformed space, which is valid because the

embedding process has effectively incorporated the anisotropy information into the coordinate

system itself;

5. For estimation at unsampled locations, determine distances between data points and the estimation

location, convert these distances to covariances using the modeled variogram, and solve the

kriging system of equations.

6. Repeat this process for all 30 ILR coordinates for OK.

This approach was followed for Ordinary Kriging (OK), Simple Co-Kriging (SCK), and Intrinsic

Collocated Co-Kriging (ICCK) in this study. The following section goes into further details of how LVA

was tackled using this approach in this study.

3.5.3. Locally Varying Anisotropy in Geostatistical Modeling
Traditional geostatistical methods assume second-order stationarity, where spatial continuity remains

constant throughout the modeling domain (Ghosh et al., 2024). However, this assumption proves

inadequate when dealing with geological formations exhibiting varying spatial continuity patterns

across locations as such geological features often exhibit complex spatial relationships that vary locally,

which is visible on the plots of the tropic seamount (4.7), necessitating the incorporation of LVA.

LVA addresses this limitation by accommodating location-dependent covariance structures, effectively

treating anisotropy as a “trend in the variogram.” The need for LVA in kriging arises from natural

geological processes that create directional features whose orientation and magnitude change across the

modeling domain, including aligned structures and varying geological processes. Implementing LVA in

kriging workflows enhances estimation accuracy by properly accounting for local geological features,

resulting in models that better reflect real-world spatial relationships and produce more geologically

realistic representations of subsurface conditions (Ghosh et al., 2024). According to Ghosh et al. (2024),

three primary approaches exist for integrating LVA into geostatistical modeling. The first approach

employs hard boundaries between domains with distinct anisotropy characteristics, suitable when

variations occur abruptly. The second method involves local reorientation of the variogram, appropriate

when anisotropy changes occur at scales larger than sample spacing. The third approach incorporates

Shortest Path Distance (SPD) calculations, essential when anisotropy varies significantly at the sample

spacing scale. This last method is particularly valuable for modeling complex geological structures

such as folds, veins, and channels where traditional Euclidean distances fail to capture true spatial

relationships between points. The methodology that utilizes SPD proposed by Ghosh et al. (2024) was

utilized for extracting LVA parameters from surface topography and it is as follows:

Methodology

1. Surface Extraction: The surface topography is extracted from the Block model containing spatial

coordinates (Į, į, İ) by identifying the maximum elevation (İ) at each (Į, į) location using Pandas’

groupby and max functions. This creates a regular grid representation of the terrain through

NumPy’s meshgrid function, enabling efficient spatial indexing.

2. Gradient Calculation: After applying Gaussian smoothing (scipy.ndimage.gaussian_filter)

to reduce noise (controlled by the sigma parameter), the first and second derivatives of the surface

are calculated using NumPy’s np.gradient function, which implements finite difference methods

for numerical differentiation.

3. Full 3D Parameterization: All six LVA parameters are derived from the gradient information

using NumPy’s array operations:

• Strike (
): Azimuthal angle from north, calculated as (�/2− secondary_angle) mod 2� using

np.arctan2 for vector direction
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• Dip (�): Angle of the bedding plane, derived from the gradient magnitude using np.arctan

of the gradient magnitude

• Plunge (�): Angle of linear structure, approximated using surface curvature through second

derivatives

• Anisotropy Ratios: Two critical ratios are calculated using NumPy’s vectorized operations:

– Ĩ1: Ratio between minor and major axes (0.2–0.5, inversely proportional to gradient

magnitude)

– Ĩ2: Ratio between vertical and major axes (0.1–0.3, inversely proportional to gradient

magnitude)

4. Graph Construction: A Networkx graph is created to represent the spatial structure with

anisotropic properties:

• Node Creation: Each point in the LVA field is represented as a node with attributes containing

all six LVA parameters. For computational efficiency, a sparse subset of the full LVA field is

selected using systematic sampling.

• Edge Creation: Edges are established between neighboring nodes (8-connectivity pattern)

with weights computed using anisotropic distance calculations. These calculations transform

coordinates through three rotation matrices (for strike, dip, and plunge) before computing

the elliptical distance that accounts for directional variability.

• Distance Calculation: Shortest path distances between sample locations (from geochemical

sample data with spatial locations) are computed using Dĳkstra’s algorithm (Networkx.shortest_path)

to account for the anisotropic nature of the spatial relationships.

This approach follows the gradient-based methodology and extends it to include full 3D parameterization

as outlined in Ghosh et al. (2024). The implementation leverages SciPy’s spatial data structures (KDTree)

for efficient nearest neighbor queries and NumPy’s vectorized operations for performance. The graph-

based representation enables the calculation of geologically meaningful distances that respect anisotropic

spatial relationships, critical for subsequent multidimensional scaling and kriging operations. This is

ideal for the kriging estimations on the Fe-Mn crusts since the surface has a complex topography and

the samples are in roughly 4 varying directions.

3.5.4. Shortest Path Distance Calculation for Complex Geology
When anisotropy varies within local search neighborhoods, as is the case for the Tropic seamount where

the samples are spaces hundreds of metres apart, and the surface of the seamount has complex topology

in these spaces, traditional distance metrics inadequately represent spatial relationships. Ghosh et al.

(2024) describes how the SPD methodology addresses this limitation by calculating distances that follow

the geological structure rather than straight-line Euclidean paths. This approach considers the proper

relationship between points in folded or curved geological environments, where points that appear

distant in Euclidean space may actually be closely related geologically. The implementation utilizes

Dĳkstra’s algorithm on a graph where distances between segments are adjusted according to local

anisotropy specifications from the LVA field. For the kriging workflow, exhaustive secondary data from

block models provides the foundation for generating the LVA field, as it offers comprehensive spatial

coverage necessary for accurate structural representation. While non-Euclidean distances can create

mathematical challenges in kriging equations, multidimensional scaling (MDS) technique suggested by

Boisvert and Deutsch (2011) effectively embed samples in a high-dimensional space where Euclidean

distances appropriately reflect the original shortest path relationships. This is shown in Figure 3.2. The

ideal method to embed the blocks in the higher dimensional space is to:
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• Calculate the SPD between all sample points using Dĳkstra’s algorithm.

• Create landmark points based on clustering or a deterministic method. A uniform grid of

landmarks were generated based on the x,y extents of the data in this study to reduce computation

time and increase repeatability.

• Calculate SPD between sample points and landmarks as well as between each landmarks.

• Identify the location of all blocks using trilateration by calculating the SPD from that block to all

land marks.

• Then embed the landmarks, samples, and blocks in the multidimensional space using sklearn’s

MDS function. However this leads to a time complexity of O(N x L) where N is the number of blocks

in the model and L, the number of landmarks in the graph (49), which is far too high for the numer-

ous blocks in the block model. therefore, Networkx’s "nx.single_source_dijkstra_path_length"

functionality was utilized to calculate the SPD between all landmarks and all nodes in the LVA

field. Since each block is assigned to its closest node and the nodes are significantly dense in the

graph, this allows for an accurate approximation of the SPD between blocks and Landmarks. This

reduces the time complexity to O(L) which is orders of magnitude faster than the O(NxL).

• The final result is a block model (4.9) in which the samples and blocks are embedded in a higher

dimensional space (24 dimensions in this case) in which a single isotropic variogram can be

modelled without worrying about anisotropy.

3.5.5. Variogram Analysis and Modeling
Variogram analysis is performed in the embedded space to quantify spatial autocorrelation and develop

appropriate covariance models:

Empirical Variogram Calculation

• Variograms are calculated in the embedded space for each ILR coordinate as described by Boisvert

and Deutsch (2011)

• This approach inherently respects the anisotropic nature of the deposit

• Distance bins are optimized to ensure sufficient data pairs for reliable statistics

The empirical semivariogram �(ℎ) is calculated using:

�(ℎ) = 1

2Ċ(ℎ)

Ċ(ℎ)∑

ğ=1

[İ(uğ) − İ(uğ + h)]2 (3.5)

where Ċ(ℎ) is the number of data pairs separated by distance ℎ, İ(uğ) is the value at location uğ , and

İ(uğ + h) is the value at location uğ + h.

Variogram Model Fitting

• Multiple parametric theoretical variogram models were tested (exponential, spherical, Gaussian,

Matérn) one by one.

• Parameters are optimized using weighted least squares fitting

• The best-fitting model is selected based on goodness-of-fit metrics

• Models are validated through cross-validation techniques

The theoretical variogram models implemented include:
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Figure 3.2: Steps for Kriging with LVA proposed by Boisvert and Deutsch, 2011.
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Spherical model:(Samson and Deutch, 2025)

�(ℎ) =




ę0 + ę
[

3ℎ
2ė − 1

2

(
ℎ
ė

)3
]

for ℎ f ė

ę0 + ę for ℎ > ė
(3.6)

Exponential model:(Samson and Deutch, 2025)

�(ℎ) = ę0 + ę
[
1 − exp

(
−3ℎ

ė

)]
(3.7)

Gaussian model:(Samson and Deutch, 2025)

�(ℎ) = ę0 + ę
[
1 − exp

(
−3ℎ2

ė2

)]
(3.8)

Matérn model:(Pardo-Iguzquiza and Chica-Olmo, 2008)

�(ℎ) = ę0 + ę
[
1 − 1

2�−1�(�)

(
ℎ

ė

)�
ć�

(
ℎ

ė

)]
(3.9)

where ę0 is the nugget effect, ę is the sill, ė is the range parameter, � is the smoothness parameter, � is

the gamma function, and ć� is the modified Bessel function of the second kind of order �.

The weighted least squares objective function for model fitting is:

min
ę0 ,ę,ė

Ċ∑

ğ=1

ĭğ[�emp(ℎğ) − �model(ℎğ)]2 (3.10)

where ĭğ =
1
ℎğ

are the weights giving higher importance to shorter distances.

Non-Parametric Variogram Modeling

Limitations of Parametric Variogram Models:Traditional parametric variogram models (Gaussian,

spherical, exponential etc.) are defined by a fixed mathematical structure that assumes monotonically

increasing behavior until reaching a sill. The general form of a parametric variogram can be expressed

as:

�(ℎ) = �2{1 − exp(−(ėℎ)ģ)} (3.11)

where �2 represents the sill, ė is a range parameter, and ģ controls the shape (with 1 f ģ f 2). When

ģ → 1, the model approaches an exponential form with more linear behavior at small lags. When

ģ → 2, it approaches the Gaussian form with a more quadratic shape near the origin (Weku et al., 2019).

However, these parametric models impose strict structural constraints that sometimes cannot adequately

capture extremely complex spatial correlation patterns, particularly when the spatial correlation exhibits

non-monotonic behavior.

Non-Monotonic Spatial Correlation: The "Hole Effect":The geospatial data analyzed in this study

exhibits a phenomenon known as the "hole effect," where the spatial correlation does not decrease

monotonically as lag distance increases (Black, 2020). Instead, the variogram reaches a maximum, then
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decreases to a local minimum before rising again. This pattern indicates a complex spatial structure

(Weku et al., 2019).

The traditional parametric models cannot represent this behavior, as they are mathematically constrained

to monotonic increases. Using such models could force an inappropriate structure onto the data,

potentially leading to incorrect estimations (Weku et al., 2019).

Non-Parametric Bessel Variogram Model:To try to address this limitation, a non-parametric variogram

model based on Bessel functions was implemented, which can represent both monotonic and non-

monotonic spatial correlation patterns. According to Bochner’s theorem, a covariance function ÿ(ℎ) is

positive definite if and only if it can be expressed as (Weku et al., 2019):

ÿ(ℎ) =
+ ∞

0

¬Ě(Īℎ)Ă(ĚĪ) (3.12)

where ¬Ě(Į) = (2/Į)(Ě−2)/2�(Ě/2)Ć(Ě−2)/2(Į) are basis functions in R
Ě (Real coordinate pace in d dimen-

sions).

For two-dimensional data (Ě = 2), this leads to a covariance function ÿ(ℎ) = Ć0(Ęℎ), where Ć0 is the

first-kind Bessel function of order zero (Weku et al., 2019). The resulting non-parametric variogram

model takes the form:

�(ℎ) = �2
& + �2{1 −

Ħ∑

ġ=1


ġ Ć0(ġĘ · ℎ/$)} (3.13)

where:

• �2
& is the nugget effect

• �2 is the sill (partial sill when nugget is present)

• Ħ is the number of basis functions (typically Ħ f 5)

• 
ġ are weights with
∑Ħ

ġ=1

ġ = 1 and 
1 > 
2 > ... > 
Ħ

• Ę controls the frequency of oscillations

• $ controls the scale of the hole effect

This model provides more flexibility compared to traditional parametric variograms while maintaining

mathematical validity as a legitimate variogram function.

As noted by Weku et al. (2019), the non-parametric approach is particularly suitable for capturing

complex spatial structures in geological and environmental data. At the same time it sometimes fails to

capture the behavior at lag distances close to zero which is very important for geostatistical estimations.

3.5.6. Nested Variogram Models
Both parametric and non-parametric models have thier strenthgs and weaknesses. However,the spatial

continuity of geological phenomena sometimes does not follows a single, simple pattern. Instead,

these phenomena often represent complex processes operating at multiple scales simultaneously. This

complexity could be addressed through nested variogram models (Mundim et al., 1999), which linearly

combine different variogram structures to capture multi-scale spatial variability.

This approach was formalized in 1982 through Factorial Kriging Analysis (FKA), which established

the theoretical foundation that regionalized phenomena can be decomposed into independent sub-
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phenomena operating at different scales. Each sub-phenomenon is characterized by its own variogram

structure, and when these structures are combined linearly, they form the comprehensive variogram

model of the entire phenomenon (Mundim et al., 1999).

The mathematical formulation of a nested variogram model follows:

�(ℎ) =
Ĥ∑

ğ=1

�ğ(ℎ) (3.14)

where �(ℎ) is the total variogram, and �ğ(ℎ) represents individual variogram structures.

As a concrete example, consider a mineral deposit where the spatial variability might be modeled as:

�(ℎ) = ę0 + ę1 · Sph

(
ℎ

ė1

)
+ ę2 · Gau

(
ℎ

ė2

)
(3.15)

This combined model includes:

• A nugget effect (ę0) representing microscale variability (Maptek Pty Ltd, 2024)

• A spherical structure with sill ę1 and range ė1 capturing medium-scale phenomena, showing

linear behavior near the origin before steeply increasing and gradually flattening (Maptek Pty Ltd,

2024)

• A Gaussian structure with sill ę2 and range ė2 representing larger-scale regional trends with

parabolic behavior near the origin and smooth approach to the sill, ideal for modeling high spatial

continuity (Maptek Pty Ltd, 2024)

Mundim et al. (1999) emphasize that understanding the underlying geological processes helps identify

appropriate component structures and enhances the model’s interpretability, especially when the

experimental variogram shows complex patterns where nesting is not immediately obvious.

Thus, nested variogram models might offer not just better statistical fits but also more geologically

meaningful representations of spatial variability across multiple scales, leading to more accurate

estimation and simulation of spatially distributed phenomena and hence it was decided to use a

variogram fitting function that chooses the best fitting model from both parametric variograms, linear

combination of a parametric variogram and hole effect, linear combination of multiple parametric

variograms and hole effect up to a set number of components. This flexible function would choose the

best fit for each ILR variable based on Goodness of Fit (GoF) metrics like Root Mean Squared Error

(RMSE) and Mean Absolute Error (MAE). This will give the best of both parametric and non parametic

spatial correlations.

The ability to accurately model this combined behavior could be critical for subsequent kriging estimates,

as it ensures that the spatial correlation structure used for prediction correctly represents the true

underlying spatial dependencies in the data set (Weku et al., 2019). This improved modeling of spatial

structures could translate into more accurate predictions and more reliable uncertainty quantification in

geostatistical analysis.

It must be noted that the goodness-of-fit metrics and visual fit are only an indication of how well the

variogram model fits the empirical variogram. However, what it does not ensure is stable kriging and

accurate estimates. Therefore, even though the nested variogram approach might give a better fitting

variogram, it could also not necessarily lead to a more stable kriging implementation.
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In summary, the adoption of nested variogram models was motivated by the need to provide the kriging

implementation with sufficient flexibility to capture the complex, non-monotonic spatial correlation

structures observed in the data. These patterns are often not adequately represented by traditional

single-structure parametric models due to their inherent mathematical limitations (Weku et al., 2019).

While the flexible variogram fitting function allowed for both nested and single-structure models, the

final selection of the variogram model for each variable was ultimately based not only on goodness-of-fit

and visual inspection, but also on the stability and quality of kriging predictions as assessed by QKNA

metrics (see 3.5.11) to reach a balance between accuracy and stability.

Cross-Correlation Analysis

• Correlations between primary variables (ILR coordinates) and secondary variable (depth) are

quantified

• These correlation coefficients are essential inputs for the Markov Model II (MM II) approach

The Pearson correlation coefficient is calculated as (Samson and Deutch, 2025):

�İ,į =
Cov(Ė,ĕ)

�Ė�ĕ
=

∑Ĥ
ğ=1(İğ − İ̄)(įğ − į̄)√∑Ĥ

ğ=1(İğ − İ̄)2
√∑Ĥ

ğ=1(įğ − į̄)2
(3.16)

where Ė represents the primary variable (ILR coordinate) and ĕ represents the secondary variable

(depth).

3.5.7. Leave-One-Out Cross-Validation
A comprehensive validation procedure is implemented to assess estimation performance:

Sequential Validation Process

• Each data point is temporarily removed from the dataset

• Estimation is performed at the removed location using three methods:OK, SCK and ICCK

• Estimated values are compared with actual values

Error Metrics Calculation

• Root Mean Square Error (RMSE) is calculated for each method and each ILR coordinate

• Mean Absolute Error (MAE) is also computed to assess estimation accuracy

• Normalized Root Mean Square Error (NRMSE) is used to compare errors across different scales

defined as RMSE/range (Statistics How To, 2023b).

• Mean Absolute Percentage Error (MAPE) is calculated to express errors as percentages (Statistics

How To, 2023a).

• Results are aggregated to evaluate overall performance of each method

The error metrics are defined as (Samson and Deutch, 2025):

RMSE =

√√
1

Ĥ

Ĥ∑

ğ=1

(İğ − İ̂ğ)2 (3.17)

(Samson and Deutch, 2025)

MAE =
1

Ĥ

Ĥ∑

ğ=1

|İğ − İ̂ğ | (3.18)
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(Statistics How To, 2023b)

NRMSE =
RMSE

İmax − İmin
(3.19)

(Statistics How To, 2023a)

MAPE =
100%

Ĥ

Ĥ∑

ğ=1

����
İğ − İ̂ğ
İğ

���� (3.20)

where İğ is the actual value and İ̂ğ is the estimated value.

Comparative Analysis

• Performance metrics are compared across methods to determine the most appropriate approach

• Visualizations of error distributions help identify potential biases or limitations

3.5.8. Limitations of LOOCV and Interpretation of Kriging vs. IDW Performance
Certain spatial configurations of sampling data can cause kriging to assign weights in ways that seem

unexpected, leading to potential performance issues. These irregularities are rooted in data redundancy

and manifest through two main phenomena: String Effect (the linear clustering of samples) and the

occurrence of negative weights (Markvoort and Deutsch, 2024).

String Effect: When samples form a narrow linear pattern, either due to geological boundaries or

limited search ellipses, the estimation algorithm tends to give more influence to data points at the ends

of the sequence. These end points lack neighboring samples on one side, causing kriging to treat them

as more informative about the surrounding volume. In contrast, interior points, despite their seemingly

central position, are more redundant and thus receive lower weights. This imbalance can skew the

estimation output, particularly if the end-point values differ significantly from the average trend.

Negative Weights: A second issue arises when samples located farther from the estimation point are

effectively overshadowed by nearer ones. This screening effect can result in negative weights, which,

while mathematically valid and reflect redundancy and help kriging maintain an unbiased estimate

(Martin, 2020), might amplify subtle or marginal data patterns. Such effects are most prominent when

the data are closely spaced and covariance relationships remain positive. Simpler interpolation methods

like IDW does not account for how samples are positioned relative to one another, they only factor in

their distance to the point being estimated and is not as much affected by this redundancy (Martin,

2020).

In addition to the data-related phenomena described previously, another factor that can influence the

perceived performance of kriging versus simpler methods such as IDW is the way performance metrics

are computed, specifically through LOOCV. Despite its widespread use, LOOCV has notable limitations

when applied to kriging models, which can bias comparisons with methods like IDW.

LOOCV calculates prediction error by successively removing one sample and estimating its value using

the remaining data. In cases where the dataset includes clusters of nearby samples, such that each point

has a close neighbor, removing one does not significantly impact the quality of the prediction. This

scenario introduces a negative bias in LOOCV, as the estimator still performs well without that sample.

The resulting error appears lower than it truly is, potentially making distance-based methods like IDW

look favorable because they primarily rely on spatial proximity (Pronzato and Rendas, 2024).

In contrast, when data points are more widely spaced, leaving one out results in insufficient similar

samples for an accurate prediction. Here, LOOCV tends to overestimate the true prediction error,

introducing a positive bias (Pronzato and Rendas, 2024). This can make kriging appear less reliable
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than it actually is, especially given that kriging’s model structure depends on both sample proximity

and their spatial arrangement.

Another technical concern is the inconsistency in hyperparameter settings. In traditional LOOCV

implementations for kriging, the model is re-trained independently for each omitted sample. Because

the optimal variogram parameters or model settings may differ for each reduced dataset, the estimated

prediction errors might not reflect the behavior of the full model trained on the entire data. This

discrepancy introduces additional bias and undermines the reliability of LOOCV in evaluating kriging’s

performance (Pang et al., 2023).

These compounding issues may lead to situations where IDW seems to outperform kriging in terms

of cross-validation metrics especially in clustered or irregular spatial configurations despite kriging

offering theoretically superior and more robust estimations when applied with full spatial context and

appropriately validated model parameters.

3.5.9. Ordinary Kriging Implementation in Embedded Space
In most real-world applications, the mean of the regionalized variable is unknown. While one might

consider estimating the mean and subtracting it from the data, which is an approach similar to detrending

in time series analysis, this method can be problematic, as it may introduce theoretical uncertainties and

obscure the distinction between large-scale trends and local fluctuations.

OK addresses this challenge by assuming that the mean is constant but unknown within the estimation

neighborhood. Rather than relying on a separate mean estimation step, OK incorporates the mean as an

unknown parameter directly into the kriging system. This approach ensures that the resulting estimator

remains unbiased and achieves minimum variance, relying solely on the variogram to model spatial

dependence.

OK is particularly well-suited to stationary models and is widely used in practice due to its simplicity

and robustness. It serves as the foundational case for more general kriging methods, such as universal

kriging, which allow for more complex mean structures. By optimally combining the available data

and accounting for spatial correlation, OK provides reliable local estimates even when the mean is not

explicitly known (Chilès and Delfiner, 2012). OK is performed for each ILR coordinate in the embedded

space, leveraging the L-ISOMAP embedding and variogram models fitted in that space.

OK is the most widely used form of kriging, particularly when the global mean of the regionalized

variable is not considered locally reliable. Unlike simple kriging, which assumes a known and

constant mean across the entire domain, OK estimates the value at an unsampled location by implicitly

determining a local constant mean within a search neighborhood. This approach ensures that the

estimator remains unbiased without relying on the global mean, making it more robust in heterogeneous

environments.

The OK estimator at an unsampled location u0 is given by (Ashtiani and Deutsch, 2020):

Ė̂ċć(u0) =
Ĥ∑

ğ=1

�ğ(u0)Ė(uğ) +
[

1 −
Ĥ∑

ğ=1

�ğ(u0)
]

ģ (3.21)

where �ğ(u0) are the kriging weights assigned to each data value Ė(uğ), and ģ is the unknown local

mean. The weights are determined such that their sum equals one, ensuring unbiasedness.

The system of equations for OK, derived using the method of Lagrange multipliers to enforce the
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unbiasedness constraint, is:

Ĥ∑

Ġ=1

� Ġ(u0)ÿ(uĠ , uğ) + � = ÿ(uğ , u0), ğ = 1, . . . , Ĥ (3.22)

Ĥ∑

Ġ=1

� Ġ(u0) = 1 (3.23)

where ÿ(uĠ , uğ) is the covariance between data locations, ÿ(uğ , u0) is the covariance between the data

and the estimation location, and � is the Lagrange multiplier.

OK minimizes the estimation variance while maintaining the unbiasedness constraint, resulting in

weights that differ from those of simple kriging. The method is quasi-stationary, as it assumes the mean

is constant only within the local neighborhood rather than across the entire domain. This makes OK

particularly suitable for practical applications where local variations in the mean are expected (Ashtiani

and Deutsch, 2020).

3.5.10. Co-Kriging Implementation
Co-Kriging is a geostatistical estimation technique that extends OK by incorporating not only the

primary variable of interest, which may be sparsely sampled, but also one or more secondary variables

that are more densely sampled across the domain. This approach allows for improved estimation of the

primary variable at unsampled locations by leveraging the spatial correlation between the primary and

secondary variables. According to Monteiro da Rocha et al. (2012), the main advantage of Co-Kriging

is its ability to co-estimate poorly sampled variables using auxiliary information, which can lead to

reduced estimation error variance and the simultaneous estimation of multiple attributes within the

same spatial domain. Furthermore, Co-Kriging remains effective even when primary or secondary data

are missing at certain locations, making it a flexible tool for practical applications.

However, the benefits of Co-Kriging is when there is a significant spatial correlation between the primary

and secondary variables. If both variables are sampled everywhere or if there is little to no correlation

between them, Co-Kriging offers little to no advantage over OK (Monteiro da Rocha et al., 2012).

Collocated Co-Kriging (CCK) is a specialized form of Co-Kriging designed for situations where the

primary variable is sparsely sampled, but the secondary variable is available at every estimation location.

This method simplifies the Co-Kriging system by only considering the secondary data at the estimation

point, which helps to avoid matrix instability issues that can arise in ordinary Co-Kriging due to high

autocorrelation among closely spaced secondary data. Additionally, CCK reduces redundancy by

screening out the influence of distant secondary data, focusing instead on the most relevant local

information. This makes CCK computationally efficient and particularly well-suited for large datasets

or cases with heterotopic sampling patterns, where the spatial arrangement of primary and secondary

data differs (Monteiro da Rocha et al., 2012).

The estimation process is implemented using OK, SCK and ICCK, following the framework described

in Boisvert and Deutsch (2011) for handling locally varying anisotropy and efficient use of secondary

information.

Linear Model of Coregionalization (LMC) and Its Role in SCK and ICCK

The Linear Model of Coregionalization (LMC) is a widely adopted approach for modeling the joint

spatial continuity of two or more random variables (Babak and Deutsch, 2007). In the LMC framework,

the direct and cross-variograms of all variables are represented as a linear combination of a common set

of basic nested structures (such as spherical or exponential models). Each structure is associated with a
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coregionalization matrix that quantifies the spatial covariance contributions for each variable and their

cross-covariances. Mathematically, for two variables Ė and ĕ, the LMC expresses the variograms as:

�ĖĖ(ℎ) =
Ĥ∑

ğ=0

Ęğ ,ĖĖ �ğ(ℎ) (3.24)

�ĕĕ(ℎ) =
Ĥ∑

ğ=0

Ęğ ,ĕĕ �ğ(ℎ) (3.25)

�Ėĕ(ℎ) =
Ĥ∑

ğ=0

Ęğ ,Ėĕ �ğ(ℎ) (3.26)

where �ğ(ℎ) are the basic variogram structures and Ęğ ,ĖĖ , Ęğ ,ĕĕ , Ęğ ,Ėĕ are the sill (contribution) parameters

for each structure. The LMC requires that all variables share the same set of structures, but allows the sill

parameters to differ, subject to the constraint that each coregionalization matrix is positive semi-definite

and all sills are non-negative.

In this study, the LMC was implemented according to these principles. Variogram models were first fitted

to both the primary and secondary variables, and a common set of nested structures was established. For

each structure, a 2 × 2 coregionalization matrix was constructed, with diagonal elements representing

the direct sills and off-diagonal elements representing the cross-sills, initially set proportional to the

observed correlation and then adjusted to ensure positive definiteness. This LMC framework was then

used to compute all direct and cross-covariances required for both SCK and CCK.

The use of the LMC in the co-kriging procedures ensures that the spatial relationships between variables

are modeled in a consistent and physically meaningful way. By enforcing a shared set of spatial

structures and valid covariance matrices, the LMC provides a robust, albeit computationally intensive,

foundation for multivariate geostatistical estimation, allowing secondary information to be leveraged to

improve predictions of the primary variable.

Limitations of the LMC While the LMC is powerful, it is important to recognize its theoretical

limitations. The LMC can only produce symmetric cross-covariance models, meaning that the cross-

covariance between two variables at lag ℎ is assumed to be the same regardless of the direction or order

of the variables (Marcotte, 2012). Mathematically, this symmetry is expressed as ÿ12(ℎ) = ÿ21(ℎ), where

ÿ12(ℎ) is the cross-covariance between variable 1 at location ī and variable 2 at location ī+ ℎ, and ÿ21(ℎ)
is the cross-covariance in the reverse direction. This leads to the simplified cross-variogram formula:

�12(ℎ) = ÿ12(0) − ÿ12(ℎ) (3.27)

(Cuba and Deutsch, 2012), where �12(ℎ) is the cross-variogram at lag ℎ, and ÿ12(0) is the collocated

cross-covariance.

Within this framework, the cross-correlation is always modeled to be highest at ℎ = 0, i.e., when the two

variables are measured at the same location. As the lag ℎ increases, the cross-covariance ÿ12(ℎ) typically

decreases, resulting in positive cross-variogram values. However, if the empirical cross-covariance

at some lag ℎ exceeds the collocated covariance ÿ12(0), the cross-variogram �12(ℎ) becomes negative.

This situation is not compatible with the LMC’s assumptions, as it implies that the variables are more

strongly correlated at a distance than at the same location which is a scenario that LMC cannot represent

due to its requirement for maximum cross-correlation at ℎ = 0 (Marcotte, 2012).

More generally, asymmetry in the cross-covariance, known as the ’lag effect’, can occur when ÿ12(ℎ) ≠
ÿ21(ℎ), often due to geological processes that induce a spatial offset or phase shift in the relationship
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between variables (Cuba and Deutsch, 2012). The LMC, by construction, cannot model such lag effects,

and when negative cross-variogram values are observed at non-zero lags, it may indicate the presence

of such effects or the absence of a detectable spatial cross-structure under the constraints of the LMC. In

practice, to ensure positive definiteness required for valid Co-Kriging, the fitted cross-variogram model

may be set flat at zero, reflecting the lack of meaningful cross-correlation structure within the LMC

framework (Marcotte, 2012; Cuba and Deutsch, 2012). The SCK and ICCK implementations closely

follow the approach described by Samson and Deutch (2024)

Simple Co-Kriging

Simple Co-Kriging (SCK) is a multivariate extension of kriging that incorporates both primary and

secondary variables without requiring equal sampling densities. The estimation at an unsampled

location u0 is given by

Ė̂(u0) =
Ĥ∑


=1

�Ė,
Ė(u
) +
Ĥį∑


=1

�ĕ,
ĕ(u
) (3.28)

where Ė(u
) are the primary data, ĕ(u
) are the secondary data, and �Ė,
, �ĕ,
 are the kriging weights.

The weights are determined by solving the following system:

Ĥ∑


=1

�Ė,
ÿİ(u
 − u�) +
Ĥį∑


=1

�ĕ,
ÿįİ(u
 − u�) = ÿİ(u� − u0), � = 1, . . . , Ĥ (3.29)

Ĥ∑


=1

�Ė,
ÿįİ(u
 − u�) +
Ĥį∑


=1

�ĕ,
ÿį(u
 − u�) = ÿįİ(u� − u0), � = 1, . . . , Ĥį (3.30)

where ÿİ(h) is the covariance of the primary variable, ÿį(h) is the covariance of the secondary variable,

and ÿįİ(h) is the cross-covariance between primary and secondary variables. In practice, a Linear

Model of Coregionalization (LMC) is used to ensure valid covariance models, structuring the covariance

matrix in blocks:

K =

[
C11 C12

C21 C22

]
(3.31)

where C11 and C22 are the primary and secondary covariance matrices, and C12 = C
Đ
21

are cross-

covariance matrices, modeled using the LMC and scaled by the observed correlation coefficient. SCK

provides optimal estimates that account for the correlation structure between variables, but requires

fitting and interpreting complex cross-covariances, which can be challenging in practice.

Simple Co-Kriging with Markov Model II

SCK with Markov Model II (MM2) leverages the MM2 approach to relate the primary and secondary

variables, assuming the secondary variable is more stable and exhaustively sampled. The estimation at

an unsampled location u0 is given by

Ė̂(u0) =
Ĥ∑


=1

�Ė,
Ė(u
) + �ĕ,0ĕ(u0) (3.32)
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where Ė(u
) are the primary data, ĕ(u0) is the secondary variable at the estimation location, and �Ė,
,

�ĕ,0 are the kriging weights. The weights are determined by solving the following system:

Ĥ∑


=1

�Ė,
�İ(u
 − u�) + �ĕ,0�İį(u� − u0) = �İ(u� − u0), � = 1, . . . , Ĥ (3.33)

Ĥ∑


=1

�Ė,
�İį(u
 − u0) + �ĕ,0 = �İį(0) (3.34)

where �İ(ℎ) is the correlogram of the primary variable, and �İį(ℎ) is the cross-correlogram between

primary and secondary variables. The MM2 model expresses the primary correlogram as

�İ(ℎ) = �İį(0)2�į(ℎ) + [1 − �İį(0)2]�Ĩ(ℎ) (3.35)

where �į(ℎ) is the correlogram of the secondary variable, �İį(0) is the collocated correlation coefficient,

and �Ĩ(ℎ) is a residual correlogram. SCK with MM2 is computationally efficient and straightforward,

but may suffer from variance inflation due to not being a true intrinsic model.

Intrinsic Collocated Co-Kriging with Markov Model II

Intrinsic Collocated Co-Kriging (ICCK) with MM2 extends SCK by including both the secondary data

at the primary locations and the collocated secondary value in the estimation. This approach corrects

for variance inflation and more accurately reproduces the variance of the primary variable. The ICCK

estimator is

Ė̂(u0) =
Ĥ∑


=1

�Ė,
Ė(u
) +
Ĥ∑


=1

�ĕ,
ĕ(u
) + �ĕ,0ĕ(u0) (3.36)

The weights are obtained by solving the following system:

Ĥ∑


=1

�Ė,
�İ(u
 − u�) +
Ĥ∑


=1

�ĕ,
�İį(u
 − u�) + �ĕ,0�İį(u� − u0) = �İ(u� − u0), � = 1, . . . , Ĥ (3.37)

Ĥ∑


=1

�Ė,
�İį(u
 − u�) +
Ĥ∑


=1

�ĕ,
�į(u
 − u�) + �ĕ,0�į(u� − u0) = �İį(u� − u0), � = 1, . . . , Ĥ (3.38)

Ĥ∑


=1

�Ė,
�İį(u
 − u0) +
Ĥ∑


=1

�ĕ,
�į(u
 − u0) + �ĕ,0 = �İį(0) (3.39)

ICCK requires solving a larger system but avoids the variance inflation seen in SCK, providing more

reliable estimates when secondary data are available at all primary locations.

Both SCK and ICCK approaches are implemented with efficient matrix operations and parallel processing

to handle large datasets. Careful numerical handling ensures stable solutions, especially when working

with non-Euclidean distances or complex spatial structures, as highlighted in recent studies. These

methods allow for robust integration of secondary information, improving the accuracy of spatial

predictions (Samson and Deutch, 2024).
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3.5.11. Quantitative Kriging Neighbourhood Analysis
To rigorously assess the quality and reliability of kriging estimates, a suite of diagnostic metrics known

as Quantitative Kriging Neighbourhood Analysis (QKNA) is employed as explained in Barboza and

Deutsch (2024). QKNA provides a comprehensive evaluation of kriging performance at the block level,

taking into account the spatial configuration of data, the variogram model, and the geometry of the

estimation domain.

QKNA comprises six key metrics:

• Kriging Variance (KV): KV quantifies the minimized estimation error for each block, representing

the expected squared difference between the true value and the kriging estimate. It is computed

using the variogram-derived covariances and the kriging weights assigned to each data point

within the search neighborhood. Lower KV values indicate greater estimation precision.

• Kriging Efficiency (KE): KE, introduced by Krige, measures the effectiveness of the kriging

estimate relative to the block variance. It is defined as one minus the ratio of the kriging variance

to the block variance. High KE values correspond to low KV and indicate that the estimate is

strongly informed by local data, while low KE suggests greater smoothing or a lack of nearby data.

• Statistical Efficiency (SE): SE compares the achieved kriging variance to the theoretical minimum

variance obtainable by global simple kriging. Values closer to one indicate that the estimator is

operating near its theoretical optimum, while lower values reflect the impact of search restrictions

or the use of OK.

• Slope of Regression (SR): SR assesses conditional bias by measuring the slope of the regression

of the true value on the kriging estimate. An SR value of one indicates local unbiasedness, while

values less than one suggest conditional bias, often due to search restrictions or local trends.

• Negative Weights (NW): NW quantifies the proportion of negative kriging weights in the

estimation. While negative weights are mathematically optimal in some cases and can help capture

local trends, excessive negative weights may lead to undesirable effects, such as negative block

estimates, particularly in the context of physical quantities like ore grades.

• Weight to the Mean (WM): WM measures the influence of the stationary mean in the kriging

estimate. In simple kriging, any weight not assigned to local data is allocated to the mean. A

high WM indicates that the estimate relies more on the mean, typically due to sparse local data,

resulting in smoother predictions.

These QKNA metrics are calculated for each block in the model, providing a detailed, block-by-block

assessment of estimation quality. By jointly considering these measures, practitioners can diagnose

issues such as excessive smoothing, conditional bias, or instability in the kriging system, and can make

informed decisions about parameter selection and model refinement. It is important to note, however,

that while QKNA is a powerful diagnostic tool, it does not directly prescribe optimal choices for block

size or search radius, but rather helps to evaluate the consequences of such choices in the context of the

available data and spatial model (Barboza and Deutsch, 2024).

3.5.12. Optimization of Kriging Parameters
The kriging and Co-Kriging procedures described above require the selection of several key parameters,

including the number of neighbors, the number of variogram lags, the number of nested variogram

components, and a regularization factor for matrix inversion (a very mall number added to the kriging

matrix to ensure stability of the kriging process). To ensure robust and unbiased spatial predictions,

these parameters were systematically optimized for each variable and kriging method.

A grid search approach was implemented, where all combinations of the tunable parameters were
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evaluated. For each parameter set, the following workflow was executed:

• Empirical variograms (and cross-variograms for Co-Kriging) were computed in the embedded

(ISOMAP) space for the ilr-transformed variables.

• Nested variogram models were fitted based on the value of max_components, which controls the

maximum number of nested structures allowed in the model. For Co-Kriging, a Linear Model of

Coregionalization (LMC) was established to ensure valid covariance structures.

• Kriging or Co-Kriging was performed for all blocks in the model, with parallelization used to

efficiently process large datasets.

• For each block, kriging estimates, variances, and weights were saved, along with QKNA metrics

(such as kriging variance, efficiency, and weight metrics) to assess the quality of the spatial

predictions.

• Leave-one-out cross-validation (LOOCV) was performed for each method and parameter set,

providing additional validation metrics such as RMSE, NRMSE, and MAPE.

The max_components parameter was specifically optimized by allowing the variogram fitting function to

test models with up to the specified number of nested structures. The best-fitting model, as determined

by goodness-of-fit metrics (such as RMSE and MAE) and subsequent kriging performance (QKNA

metrics), was selected for each parameter set.

After evaluating all parameter combinations, the results were summarized and ranked. For each method

and variable, the top five parameter sets (based on the lowest mean kriging variance, KV and the highest

mean kriging efficiency (KE)) were identified and saved. This systematic optimization ensured that the

final block model estimates were based on parameter choices that provided the best balance between

prediction accuracy and model stability.

All kriging results, QKNA metrics, LOOCV metrics, and kriging weights were archived for further

analysis and visualization. The optimized estimates and variances in ILR space were subsequently

backtransformed to the raw variable space using a distribution-based approach (see 3.5.13), allowing for

meaningful interpretation of both the mean and uncertainty of the predicted metal grades.

3.5.13. Backtransformation of ILR Coordinates into Original Compositions
The process of converting kriging results from isometric log-ratio (ILR) space to the original compositional

(raw) space involves two main steps: (1) backtransformation of ILR means to raw compositions, and (2)

propagation of variance through the nonlinear transformation. The approach implemented here closely

follows the mathematical framework of the ilr_inv function in the scikit-bio library (scikit-bio

development team, 2024).

1. Backtransformation of ILR Means to Raw Compositions

Reading the Sequential Binary Partition (SBP) Matrix: The SBP matrix is read from a CSV file into a

NumPy array of shape (30, 31), where 31 is the number of compositional parts (elements). Each row

of the SBP matrix defines a binary partition of the 31 parts for one ILR coordinate, with entries of +1

(positive group), −1 (negative group), or 0 (excluded).

Constructing the ILR Orthonormal Basis: The function sbp_to_basis constructs an orthonormal basis

matrix þ of shape (31, 30) from the SBP matrix. For each row ġ of the SBP matrix, the indices of the

positive group (SBPġ,ğ = 1) and negative group (SBPġ,ğ = −1) are identified. Let ĤĦĥĩ and ĤĤěĝ be the

number of parts in the positive and negative groups, respectively. For each part ğ (column of the SBP

matrix) in the ġĪℎ row, the following assignment is made:
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Ĭ
(ġ)
ğ

=





1
ĤĦĥĩ

√
ĤĦĥĩĤĤěĝ
ĤĦĥĩ+ĤĤěĝ if SBPġ,ğ = 1

− 1
ĤĤěĝ

√
ĤĦĥĩĤĤěĝ
ĤĦĥĩ+ĤĤěĝ if SBPġ,ğ = −1

0 otherwise

(3.40)

The resulting vector Ĭ(ġ) is the ġ-th basis vector, and all such vectors are stacked as columns to form þ.

Loading ILR-Transformed Data: The ILR-transformed estimates for each block are read from a CSV file

into a NumPy array of shape (Ċ, 30), where Ċ is the number of samples (blocks). Each row contains the

ILR coordinates for one sample.

Inverse ILR Transformation: The function ilr_inv_custom performs the backtransformation for each

sample (row vector of ILR coordinates z) by first computing the log-composition:

log(c) = z · þ¦ (3.41)

whereþ¦ is the transpose of the basis matrix. Each entry is then exponentiated to obtain the unnormalized

composition:

c
′
= exp(log(c)) (3.42)

Finally, the composition is normalized so that the sum of all parts equals one:

cfinal =
c′

∑31
ğ=1 ę

′
ğ

(3.43)

This process is vectorized and applied to all Ċ samples at once. The values are then scaled to 100 to

obtain weight percent values consistent with the original raw compositions.

Assigning Element Names and Saving Results: The resulting matrix of compositions is converted to a

DataFrame with columns named for each element (e.g., “La (wt%)”, “Ce (wt%)”, etc.). The "block_id"

and spatial coordinates (“x”, “y”, “z”) are inserted as the first columns. The final DataFrame is saved as

a CSV file for further analysis.

2. Propagation of Variance through the Nonlinear Transformation

It is important to first clarify why the mean of ILR-transformed coordinates can be backtransformed

to compositional space, while the variance cannot be treated in the same way. The inverse ILR

transformation is nonlinear, and variance does not propagate linearly through such transformations

(d’Ache C., 2013, Mert et al., 2016). As a result, directly transforming the kriging-estimated variances in

ILR space into raw compositional variances is not mathematically valid or possible.

There exists a gap in the current literature regarding variance propagation from ILR space to composi-

tional space. In particular, no analytical framework has been established that accurately describes how

multivariate uncertainty transforms through the inverse ILR mapping. While there exists literature on

error propagation into the ILR space (Mert et al., 2016), the same is not the case for back transforma-

tion. To approximate this propagation, a simulation-based strategy inspired by multivariate normal

distribution modeling, as outlined in "Parameter Estimation for Multivariate Probability Distributions" by

Texas_A&M_University (2017) was employed. This approach is not formally defined with respect to

compositional data and ILR coordinates and may introduce inaccuracies due to geometric constraints
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and transformation nonlinearity; however, it offers a possible solution where full co-kriging covariance

estimation is unavailable such as in the case of this study.

The procedure is implemented as follows:

Covariance Matrix Construction: For each block, a covariance matrix is constructed in ILR space.

The diagonal entries are defined by the kriging-estimated variances for each coordinate, while the

off-diagonal entries are scaled using empirical correlation coefficients (�
emp

ğ Ġ
) calculated from the original

sample data. The covariance between coordinates ğ and Ġ is given by

Σğ Ġ = �
emp

ğ Ġ
·
√
�2
ğ
· �2

Ġ
(3.44)

where ğ and Ġ index the different ILR coordinates.

Multivariate Normal Distribution: This covariance matrix, together with the kriging mean vector,

defines a multivariate normal distribution (MVN) over the Ā − 1 ILR coordinates.

Monte Carlo Simulation: A Monte Carlo simulation is performed to generate multiple joint realizations

from this MVN distribution, thereby preserving both marginal uncertainty and inter-coordinate

dependencies.

Backtransformation to Raw Compositions: Each simulated ILR vector is backtransformed to the

original Ā-part composition using the inverse ILR transformation.

Empirical Variance Calculation: The ensemble of backtransformed samples is then used to empirically

compute block-level variance in raw compositional space.

This strategy should allow for a statistically coherent and geometrically valid approximation of variance

in the raw compositional space, using available kriging outputs and empirical relationships from sample

data (Texas_A&M_University, 2017). Another approach to tackle this could have been to do co-kriging

of all the ILR variables together but that is beyond the scope of this study.

3.6. Current Region Analysis
To investigate the influence of ocean currents on the spatial distribution of block model compositions,

a current region analysis was performed that integrates hydrodynamic data with the block model

grid. The ocean current data used in this analysis was obtained from the Copernicus Marine Service,

specifically the global physical analysis and forecast product (Copernicus Marine Service, 2024). The

horizontal and vertical current data at a resolution of 24 hours, from 2015 to 2025 was used for the

analysis. The process begins by assigning each block a representative current vector, derived from

nearby oceanographic model outputs. The study area is then divided into four spatial quadrants,

with the quadrant boundaries rotated by 45 degrees to better capture the orientation of the data and

prevailing currents.

Within each quadrant, distribution of current directions were analyzed. If the current directions exhibit

a single dominant trend, this is used as the reference direction for further classification. In cases

where two distinct dominant directions are present (bimodality), both are identified using clustering

techniques, and each block is associated with the closest dominant direction.

Blocks are then classified into three regions relative to their quadrant’s dominant current direction(s):

upstream, downstream, and wake. The downstream region includes all blocks located in the direction

of the current, while the wake region is defined as a cone-shaped subset of the downstream area, aligned
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closely with the current vector. The upstream region comprises blocks situated opposite to the current

direction.

The estimated compositions of each element obtained using ICCK is then clustered using 1D K-means

clustering to identify any clusters in the compositions. The current region boundaries are then overlaid

onto the cluster plots to further identify spatial correlation between clusters and current regions.

This classification enables a rough spatial analysis of how current regimes may influence the distribution

and clustering of block compositions across the study. However, without going into computational fluid

dynamics simulations, it cannot be said that this is the exact situation of the seamount in the current. It

is also worth mentioning that this analysis considers the current data of the past ten years to be the

constant across the 1̃50 million years of the sea mount’s existence.

3.7. Tonnage calculations
Tonnage calculations are done based on back-transformed estimate values. The total tonnage of

each element within the study area was estimated using a block model approach. Elemental weight

percentages for each block are taken from the back-transformed ICCK estimate dataset, and the x and

y dimensions (100 m) of the blocks were taken (block dimensions are 100 m × 100 m × 10 m). The

thickness of crust at each block was estimated using ordinary kriging interpolation of measured crust

thickness values from sample locations, providing a spatially continuous thickness model across the

entire block grid.

The mass of each block was calculated using the estimated crust volume (area × thickness) and a mean

dry bulk density of 1.3 g/cm3 (J. R. Hein et al., 1999). This mean dry density value is a generalization of

Ferromanganese crust densities and not specific to the Tropic seamount and could be considered as

an appropriate, yet approximate placeholder in the absence of seamount specific values as the weight

percentages were also calculated based on the mass of oven-dried samples (Howarth, 2022). The total

tonnage for each element was then determined by summing the block-wise mass of each element

(calculated from the block mass and its corresponding weight percentage) across all blocks.



4
Results & Discussion

This chapter analyzes the results obtained by following the methodology described in Chapter 3 and also discusses

the implications of those results in the context of geostatistics, resource estimation, and CRMs.

4.1. Exploratory Data Analysis of Raw metal grades
The exploratory data analysis plots (Figure 4.1) of the untransformed variables indicate that certain

elements, such as La, Ce, and most other REEs, exhibit approximately normal distributions with minimal

skewness. In contrast, other variables, including Li and Ca, display highly skewed distributions. These

observations underscore the necessity for appropriate preprocessing and transformation steps to ensure

the validity of subsequent statistical analyses and the subsequent ILR transformations tried to address

this.

The correlation between the absolute value of water depth (where higher values indicate greater depth)

and elemental percentages in the raw data is presented in Figure 4.2. Notably, the figure shows that Fe

exhibits a slightly positive correlation with water depth, whereas Mn displays a negative correlation.

This finding contrasts with observations reported in the literature (Section 2.2), where Mn/Fe ratios

are generally found to increase with depth. A possible explanation for this discrepancy (in relation to

the study by Howarth (2022)) could be that the dataset used in this study is a subset of a much larger

analytical dataset with more samples and more diverse analytical methodologies that might exhibit

different correlation values that is explained by the data not present in this study. This difference in

available data should be considered when comparing results to previous studies

The correlation matrix for the elements in the untransformed data is provided in the appendix. However,

these correlations are not emphasized in this report, as correlations in raw compositional data can be

spurious due to the closure property inherent to compositional datasets (Section 3.3). Additionally,

k-means clustering and principal component analysis were performed but did not yield results relevant

to the subsequent geostatistical modeling and are therefore not discussed further.

47
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(a) La (wt%) (b) Ce (wt%)

(c) Li (wt%) (d) Ca (wt%)

Figure 4.1: Histograms and PDFs of La, Ce, Li, and Ca (wt%).

Table 4.1: Summary of statistical parameters for all untransformed elements.

Element Mean Median Min Max Range Skewness
La (wt%) 0.04 0.04 0.02 0.06 0.04 0.09
Ce (wt%) 0.19 0.19 0.10 0.27 0.17 -0.05
Pr (wt%) 0.01 0.01 0.00 0.01 0.01 0.47
Nd (wt%) 0.03 0.03 0.01 0.05 0.04 0.08
Sm (wt%) 0.01 0.01 0.00 0.01 0.01 0.13
Eu (wt%) 0.00 0.00 0.00 0.00 0.00 0.13
Gd (wt%) 0.01 0.01 0.00 0.01 0.01 0.09
Tb (wt%) 0.00 0.00 0.00 0.00 0.00 0.11
Dy (wt%) 0.01 0.01 0.00 0.01 0.01 0.08
Ho (wt%) 0.00 0.00 0.00 0.00 0.00 0.02
Er (wt%) 0.00 0.00 0.00 0.00 0.00 -0.04
Tm (wt%) 0.00 0.00 0.00 0.00 0.00 -0.04
Yb (wt%) 0.00 0.00 0.00 0.00 0.00 -0.04
Lu (wt%) 0.00 0.00 0.00 0.00 0.00 0.03
Y (wt%) 0.02 0.02 0.01 0.04 0.03 0.38
Li (wt%) 0.00 0.00 0.00 0.01 0.01 1.43
Co (wt%) 0.56 0.56 0.19 1.07 0.88 0.24
Ni (wt%) 0.33 0.30 0.18 0.67 0.49 1.26
Cu (wt%) 0.08 0.06 0.02 0.22 0.20 1.38
Zn (wt%) 0.07 0.06 0.03 0.11 0.08 0.67
Mo (wt%) 0.05 0.05 0.03 0.09 0.06 0.39
Te (wt%) 0.01 0.01 0.00 0.01 0.01 0.42
Na (wt%) 1.13 1.14 0.84 1.61 0.77 0.51
Mg (wt%) 1.40 1.38 0.71 2.58 1.87 0.78
Al (wt%) 1.58 1.48 0.49 2.92 2.43 0.40
K (wt%) 0.39 0.37 0.23 0.67 0.44 0.84
Ca (wt%) 3.28 2.40 1.42 21.01 19.59 4.08
Ti (wt%) 0.74 0.72 0.28 1.39 1.11 0.36
Mn (wt%) 17.01 16.66 9.12 22.21 13.09 0.01
Fe (wt%) 23.55 23.44 9.33 32.70 23.37 -0.49
Others (wt%) 49.52 49.58 35.91 60.08 24.17 -0.20
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Figure 4.2: Correlation between water depth and weight percentage values of all elements

4.2. Additive Log-Ratio (ALR) Transformation
The ALR transformation was performed using the raw-ALR transformation functionality available in

the CoDaPack software suite. Lithium (Li) was selected as the denominator for the ALR transformation

based on compositional exploratory data analysis (EDA) using the variation matrix (Table A.2); Li

accounted for 26% of the total centered log-ratio (CLR) variance, making it a suitable choice for the

denominator. The subjective nature of choosing the denominator for ALR transformation can affect the

transformation significantly. Therefore, ILR transformation, which is stated to preserve the compositional

relationships better than the other log-ratio transformations was chosen. Also, preliminary kriging

models indicated that ALR-transformed variables consistently yielded poorer results in all error metrics

compared to ILR variables across all kriging plans. Therefore, further analysis in this report focuses

exclusively on ILR variables.

4.3. Sequential Binary partition and ILR transformation
The following is an example of the partitions generated according to the approach outlined in subsection

3.4.1. Again, it must be reiterated that for the ILR transformation, the way this partitioning is done can

be arbitrary as long as the partitions obey the conditions given (3.4.1).

• Left and right side of PC 2 axis in the CLR Biplot: (see Fig. 4.3a)

– Right (+1): La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Y, Co, Mo, Te, Ca, Ti

– Left (-1): Li, Ni, Cu, Zn, Na, Mg, Al, K, Mn, Fe

• Left and right side of PC 2 axis in the CLR Biplot: (see Fig. 4.3b)

– Right (+1): La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Ti

– Left (-1): Ce, Yb, Lu, Y, Co, Mo, Te, Ca

• Left and right side of PC 2 axis in the CLR Biplot: (see Fig. 4.3c)

– Right (+1): La, Gd, Tb, Dy, Ho, Er, Tm
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– Left (-1): Ti, Pr, Nd, Sm, Eu

• Left and right side of PC 2 axis in the CLR Biplot: (see Fig. 4.3d)

– Right (+1): La, Ho, Er, Tm

– Left (-1): Gd, Tb, Dy

• Left and right side of PC 2 axis in the CLR Biplot: (see Fig. 4.3e)

– Right (+1): La

– Left (-1): Ho, Er, Tm

• Left and right side of PC 2 axis in the CLR Biplot: (see Fig. 4.3f)

– Left (+1): ER, TM

– Right (-1): Ho

• Top and bottom side of PC 1 axis in the CLR Biplot: (see Fig. 4.3f)

– Top (+1): Er

– Bottom (-1): Tm

Figure 4.4 illustrates all the partitions obtained by following this approach and table 4.2 is the resulting

SBP created. This SBP matrix (Table 4.2) represents a comprehensive encoding of relationships between

the elements into a mathematically valid partitioning structure. Each row in the matrix corresponds

to a binary partition (Figure 4.4) that divides elements based on their associations. This partitioning

scheme formed the foundation for the subsequent ILR transformation, which mapped the compositional

data onto a Euclidean space where standard statistical methods can be applied while preserving the

compositional nature of the data. It must be stated that while the calculation of ILR coordinates from an

SBP is explained in the methodology, the actual transformation was done by importing both the data

and the SBP into CoDaPack and using the inbuilt Raw-ILR Transformation functionality.

It is important to note that, in the context of ILR transformations, while ILR coordinates are geometrically

independant, individual ILR variables should not be interpolated independently for estimation purposes

if they are correlated to each other as in the case of certain ILR coordinates in this study (example: Table

4.4). Instead, ideally, all ILR coordinates resulting from the transformation that are correlated with each

other must be interpolated together using co-kriging. However time and computational constraints of

this study meant they can only be interpolated individually.

Finally, only after the complete set of interpolated ILR coordinates is obtained can the data be back-

transformed to the original compositional space. This ensures that the compositional relationships are

preserved throughout the estimation process.
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(a) SBP 1 (b) SBP 2

(c) SBP 3 (d) SBP 4

(e) SBP 5 (f) SBP 6

Figure 4.3: Example of 6 Sequential Binary Partition (SBP) splits made using the CLR Biplot.
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Figure 4.4: Balance dendrogram of the numerator and denominator groups of each ILR coordinate
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Table 4.2: Sequential Binary Partition Matrix

Partition La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Y Li Co Ni Cu Zn Mo Te Na Mg Al K Ca Ti Mn Fe Others
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 -1
2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 -1 1 -1 -1 -1 1 1 -1 -1 -1 -1 1 1 -1 -1 0
3 1 -1 1 1 1 1 1 1 1 1 1 1 -1 -1 -1 0 -1 0 0 0 -1 -1 0 0 0 0 -1 1 0 0 0
4 1 0 -1 -1 -1 -1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0
5 1 0 0 0 0 0 -1 -1 -1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 1 0 0 0 0 0 0 0 0 -1 -1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0 0 0 -1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0 0 0 1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 1 1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
10 0 0 0 0 0 0 1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
11 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0
12 0 0 1 1 -1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
13 0 0 -1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
14 0 0 0 0 -1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
15 0 1 0 0 0 0 0 0 0 0 0 0 1 1 -1 0 1 0 0 0 1 1 0 0 0 0 -1 0 0 0 0
16 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 -1 0 0 0 -1 -1 0 0 0 0 0 0 0 0 0
17 0 1 0 0 0 0 0 0 0 0 0 0 -1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
18 0 0 0 0 0 0 0 0 0 0 0 0 1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 -1 1 0 0 0 0 0 0 0 0 0
20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 1 0 0 0 0 0 0 0 0 0
21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 -1 1 -1 0 0 -1 -1 1 -1 0 0 -1 -1 0
23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 -1 0 0 0 0 0 -1 0 0 0 0 0 0
24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 -1 0 0 0 0 0 0
25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 -1 1 0 1 0 0 -1 -1 0
26 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 -1 0 -1 0 0 0 0 0
27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 1 0 0 0 0 0 0 0 0 0 0 0
28 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 -1 0 0 0 0 0
29 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 -1 -1 0
30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 -1 0
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(a) ilr.1 (La) (b) ilr.10 (Ce)

(c) ilr.15 (Li) (d) ilr.19 (Ca)

Figure 4.5: Histograms and PDFs of ilr.1, ilr.10, ilr.15, and ilr.19.

Table 4.3: Summary of statistical parameters for all ILR transformed elements.

Element Mean Median Min Max Range Skewness
ilr.1 -7.03 -7.03 -7.51 -6.44 1.07 0.22
ilr.2 -9.66 -9.52 -12.05 -7.91 4.14 -0.69
ilr.3 -3.77 -3.75 -4.84 -2.95 1.89 -0.43
ilr.4 -3.12 -3.13 -3.37 -2.91 0.46 -0.15
ilr.5 -0.25 -0.25 -0.40 -0.13 0.27 -0.25
ilr.6 3.06 3.06 2.93 3.21 0.27 0.20
ilr.7 -0.04 -0.04 -0.08 0.00 0.08 -0.27
ilr.8 -1.39 -1.38 -1.43 -1.36 0.07 -0.61
ilr.9 -0.69 -0.69 -0.72 -0.64 0.08 0.55
ilr.10 1.36 1.36 1.34 1.38 0.04 -0.29
ilr.11 -4.23 -4.24 -4.58 -3.88 0.70 0.09
ilr.12 1.63 1.64 1.58 1.68 0.10 -0.52
ilr.13 1.03 1.03 1.01 1.05 0.04 -0.37
ilr.14 -1.08 -1.08 -1.11 -1.05 0.06 -0.44
ilr.15 -3.10 -3.07 -3.98 -2.69 1.29 -1.27
ilr.16 -2.78 -2.77 -3.37 -2.08 1.29 0.08
ilr.17 4.31 4.29 4.06 4.64 0.58 0.46
ilr.18 1.36 1.36 1.32 1.41 0.10 0.28
ilr.19 -0.01 -0.02 -0.62 0.65 1.27 -0.07
ilr.20 -3.34 -3.34 -3.49 -3.17 0.32 0.12
ilr.21 3.53 3.50 3.14 4.26 1.13 0.94
ilr.22 -4.66 -4.65 -6.44 -3.46 2.98 -0.39
ilr.23 -4.53 -4.55 -5.45 -3.37 2.08 0.55
ilr.24 -2.22 -2.22 -2.70 -1.66 1.04 0.03
ilr.25 -4.14 -4.17 -4.50 -3.44 1.05 0.96
ilr.26 -1.63 -1.64 -2.05 -1.23 0.82 -0.18
ilr.27 -1.15 -1.14 -1.49 -0.96 0.53 -0.61
ilr.28 0.92 0.93 0.54 1.17 0.63 -0.65
ilr.29 -2.35 -2.37 -2.54 -2.13 0.40 0.40
ilr.30 -0.23 -0.24 -0.43 0.00 0.43 0.30
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Another important point is that the original dataset included only major, minor, and trace metallic

element concentrations. To normalize the compositional data to 100%, all known metallic concentrations

were summed, subtracted from 100, and the remainder was assigned to a new column labeled "Others."

This column represents all elements present in the samples whose concentrations are unknown, primarily

non-metallic elements. This approach is a compromise, as previous studies have shown that non-metallic

elements such as oxygen significantly influence the composition of ferromanganese crusts. However,

these relationships are not captured in the SBP and ILR transformations. The "Others" column in general

only account for 2.62% of the total CLR variance and therefore might not affect the transformation as

much mathematically but it is still worth considering further studies into the non-metallic elements.

4.4. Exploratory Data Analysis of ILR-Transformed Variables
After applying ILR transformations (see Section (3.3) and managing outliers as described in Subsection

(3.4.4), most variables exhibit distributions closer to normality, although some skewness remains. The

prevalence of outliers has also been reduced. Notably, certain variables, such as ilr.1 and ilr.10 (Figure

(4.5), display bimodal distributions. For variables like ilr.15, and ilr.19 (Figure (4.5), a few outliers persist;

however, these were retained in the analysis due to the limited sample size and the fact that removing an

outlier would necessitate excluding the entire sample. This is particularly important because a sample

may be an outlier for one ILR coordinate but not for others, and further reduction in sample size would

negatively impact subsequent kriging.

The presence of bimodal distributions in certain ILR coordinates may indicate that the relative balance

between element groups is governed by two distinct regimes. This could reflect two types of deposition

events, each imparting a unique elemental signature. For example, elements associated with both Fe and

Mn may be distributed differently depending on the deposition process. Alternatively, bimodality could

result from a combination of deposition followed by post-depositional alteration, such as phosphatization

or leaching. In this context, one mode might represent unaltered material deposited directly onto the

crust surface, while the other corresponds to zones affected by post-depositional modification. Since

ILR coordinates capture relative contrasts rather than absolute concentrations, a bimodal signal may

strongly indicate the presence of dual-process behaviour within the crust.

Table 4.4: Top 10 ILR pairs with highest positive and lowest negative correlations.

Top 10 Highest (+ve) Correlations Top 10 Lowest (-ve) Correlations

ILR ILR Correlation ILR ILR Correlation

ilr.22 ilr.25 0.839 ilr.2 ilr.25 -0.926
ilr.3 ilr.16 0.827 ilr.2 ilr.22 -0.869
ilr.3 ilr.7 0.769 ilr.12 ilr.16 -0.825
ilr.23 ilr.25 0.731 ilr.8 ilr.18 -0.810
ilr.6 ilr.12 0.682 ilr.5 ilr.7 -0.795
ilr.4 ilr.13 0.674 ilr.3 ilr.5 -0.792
ilr.2 ilr.27 0.662 ilr.4 ilr.9 -0.766
ilr.22 ilr.24 0.661 ilr.2 ilr.24 -0.737
ilr.22 ilr.23 0.636 ilr.25 ilr.27 -0.730
ilr.24 ilr.25 0.626 ilr.5 ilr.9 -0.718

Table 4.4 presents the correlation values between ILR coordinates with the highest and lowest correlations.

The presence of significant correlations between ILR coordinates indicates that, in accordance with

the interpretability of ILR coordinates (see Subsection 3.4.3), specific groups of elements tend to vary

together within the compositional dataset. For instance, strong positive correlations such as between

ilr.22 and ilr.25 (Ĩ = 0.84), ilr.23 and ilr.25 (Ĩ = 0.73), ilr.7 and ilr.3 (Ĩ = 0.77), and ilr.3 and ilr.16 (Ĩ = 0.83)

suggest that these groups of elements exhibit similar behavior in their deposition and alteration processes

within ferromanganese crusts. Conversely, pronounced negative correlations, such as between ilr.16 and
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ilr.12 (Ĩ = −0.83), ilr.27 and ilr.25 (Ĩ = −0.73), ilr.25 and ilr.2 (Ĩ = −0.93), and ilr.22 and ilr.2 (Ĩ = −0.87),

imply that these groups of elements tend to exhibit opposing trends in compositional dominance; as

one group increases in relative abundance, the other decreases.

Importantly, the correlations observed between ILR variables are not influenced by the closure problem

inherent to compositional data. Therefore, these relationships can be interpreted as genuine associ-

ations between elemental groups, rather than artifacts arising from the mathematical constraints of

compositional datasets. The full correlation matrix is given in Appendix A

Figure 4.6: Correlation of ILR coordinates with absolute value of water depth

One important aspect of the analysis involves examining the correlation between each ILR coordinate

and water depth, as shown in Figure 4.6. These correlations provide insight into how the ratios between

groups of elements vary with depth. For example, ilr.4 exhibits a negative correlation with water depth.

ilr.4 represents the ratio of HREEs to LREEs (excluding La). This observation aligns with geochemical

knowledge (Section 2.3), which suggests that LREEs are preferentially associated with Mn, while HREEs

are more closely associated with Fe. A decrease in ilr.4 values with increasing depth implies that the

relative abundance of LREEs (associated with Mn) increases compared to HREEs (associated with Fe) at

greater depths.

However, this trend is contrary to what is observed in both the raw dataset and the ILR-transformed

data. Specifically, ilr.30, which represents the ratio of Mn (numerator) to Fe (denominator), also shows a

negative correlation (almost identical to ilr.4) with depth (Figure 4.6), indicating that the Mn/Fe ratio

decreases as depth increases. This finding is consistent with the results from the raw data (Figure 4.2),

where Mn concentrations decrease and Fe concentrations increase with depth.

One possible explanation for this discrepancy is that the geological setting of the Tropic seamount

may promote an atypical association, whereby LREEs are more closely linked to Fe and HREEs to

Mn, contrary to the geochemical expectations in the literature review. This highlights the importance

of considering local geological context when interpreting compositional trends. This could be similar to

the case of Ninetyeast Ridge in the Indian Ocean (Section 2.2) where Fe/Mn ratios increase with water

depth because Mn enrichment diminishes below the OMZ compared to Fe.

Another important aspect of the analysis involves cross-checking the relationship between water depth
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and ILR coordinates with the correlations observed between their constituent elemental groups and

water depth. For instance, ilr.16, which exhibits a positive correlation with water depth, represents

the ratio Ce, Yb, Lu to Co, Mo, Te. As shown in Figure 4.2, Co, Mo, and Te display notably more

negative correlation coefficients with water depth compared to Ce, Yb, and Lu. This indicates that,

with increasing depth, the relative abundance of Ce, Yb, and Lu increases compared to Co, Mo, and Te,

consistent with the interpretation of ilr.16.

Similarly, ilr.19 demonstrates a negative correlation with water depth and is defined by the ratio Co, Te

to Mo. The constituent elements Co and Te both exhibit more negative correlations with depth than Mo,

supporting the trend indicated by ilr.19. Another example is ilr.22, which has a positive correlation

with water depth and corresponds to the ratio Li, Cu, Al to Ni, Zn, Na, Mg, K, Mn, Fe. In Figure 4.2, Li,

Cu, and Al show positive correlations with depth, while all denominator elements of ilr.22, except Fe,

display negative correlations, further validating the compositional interpretation.

Comparable patterns are observed for ilr.16 and ilr.28 (see Figures 4.6 and 4.2), illustrating the consistency

between ILR coordinate correlations and the behavior of their respective elemental groups. This cross-

validation reinforces the interpretability of ILR coordinates in the context of geochemical processes

and their relationship with water depth.

Table 4.5: Numerator and denominator elements for ILR coordinates mentioned in this chapter.

ILR coordinate Numerator elements Denominator elements
2 La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb,

Lu, Y, Co, Mo, Te, Ti
Li, Ni, Cu, Zn, Na, Mg, Al, K, Mn, Fe

3 La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm Ce, Yb, Lu, Y
4 La, Gd, Tb, Dy, Ho, Er, Tm Pr, Nd, Sm, Eu
7 Ho, Er, Tm Ho
16 Ce, Yb, Lu Co, Mo, Te
19 Co Mo
22 Li, Ni, Cu, Zn, Na, Mg, Al, K, Mn, Fe Na, Mg, Al, K, Mn, Fe
25 Ni, Zn Mg, K, Mn, Fe
27 Zn Mn
28 Mg Mn
30 Mn Fe

The complete set of exploratory data analysis plots and the full ILR table is available in the Appendix A.
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4.5. Block Model
Two blockmodels were generated by following the methodology outlined in section 3.1. one with

block dimension 10m x 10m x 1m and one with block dimensions 100m x 100m x 10m. The lower

resolution blockmodel (Fig 4.7) with 90000 blocks was chosen for further estimation and analysis due to

computational constraints as the higher resolution block model had 14 million blocks. The initial plan

was to generate a low resolution block model for testing and finalization of the kriging plan and then

substitute that with the high resolution model for the final resource estimation. However, computational

requirements for processing a model with millions of blocks was too intense and therefore the lower

resolution model was chosen for all purposes.

Figure 4.7: Block model visualization with sample locations in red

4.6. Landmark-ISOMAP Embedded Coordinates
The LVA field was generated as described in the Subsection 3.5.3 and visualized in the seventh subplot

in Figure 4.8. Figure 4.8 provide a comprehensive visualization of the spatial structure and connectivity

within the study area. The first set of plots illustrates: (1) the smoothed surface elevation of the block
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model, (2) the spatial distribution of strike angles (azimuth from north), (3) the dip angles indicating

surface steepness, (4) the plunge angles representing the direction of maximum curvature, (5) the ratio

of minor to major axes of anisotropy (r1), (6) the ratio of vertical to major axes (r2), (7) the primary and

secondary anisotropy directions as vector fields, (8) ellipses visualizing the orientation and strength of

local anisotropy, and (9) the magnitude of the surface gradient.

Figure 4.8: LVA Filed Visualizations (x and y axes in metres.)

Using this field and shortest path distances between samples (see Subsection 3.5.4), both samples and

blocks were embedded into a 19-dimensional space where Euclidean distances reflect the original

shortest path relationships.

This embedded space forms the basis for subsequent interpolation. Its main advantage is that the

embedding accounts for complex anisotropic spatial structure, enabling standard geostatistical tools

to be applied without explicit anisotropy modeling in the variogram fitting step. This approach

should allow efficient and geologically meaningful interpolation in domains with locally varying

anisotropy. Another advantage is a space that is effectively flat in terms of spatial relationships and

this simplifies how complex geometries can be interpolated since there is no need for countless Search

Ellipsoids or complex domianing to account for the anisotropy. Another factor is that MDS and Isomap

embeddings are well-established mathematical and geometric methods used in manifold learning and

dimensionality reduction. Python libraries such as scikit-learn, SciPy, NetworkX etc offer plug-and-

play implementations that make it easy to apply these techniques to spatial and high-dimensional

datasets.

The unit of distance in a landmark Isomap embedded space is arbitrary and unitless. It represents a

measure of dissimilarity or geodesic distance between points as preserved by the embedding, but it
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Figure 4.9: Block model representation before (top) and after (bottom) multidimensional embedding using L-ISOMAP. The top
images show the original block model, while the bottom image displays the transformed block model after embedding, revealing
the intrinsic spatial structure captured by L-ISOMAP. The embedding preserves the shortest path distances between the points

but this is relative and therefore the distances in this space is unitless or abstract.
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does not correspond to any physical unit (such as meters or kilometers) or cardinal directions from the

original data. Any subsequent analysis in the embedded space will therefore be in unit-less distances

and relative directions (no northing or easting) including variography.

Figure 4.9 shows the block model and sample locations within the first two dimensions of the embedded

space, illustrating how the embedding transforms the coordinate system.

The embedded space and fitted variogram will be used for interpolation and kriging, leveraging the

advantages of this method for modeling complex geological structures. However, there are multiple

methods:

1. domaining into regions with constant variogram parameters,

2. locally reorienting the variogram at each point based on the LVA field, and

3. using shortest path distances (SPD) between points in the LVA field (used here),

that were suggested by Ghosh et al. (2024) to address local variations in anisotropy. Different results

could be obtained with these alternative approaches. The specific approach chosen here was due to the

fact that it would utilize all the available sample points and enable estimation with a single isoptropic

omnidirectional variogram for each variable.

4.7. Variogram Analysis and Model Fitting
Following the ISOMAP embedding and ILR transformation, isotropic omnidirectional empirical

variograms were computed, for each variable and theoretical models for modelling were fitted using

three approaches: strictly parametric models, strictly non-parametric models, and flexible nested

models that combine multiple functions. The methodology for variogram calculation and model fitting

is described in detail in Section 3.5.5. Figure 4.10 illustrates the comparative performance of these

approaches for two representative ILR coordinates in regards to their fit to the empirical variogram.

(a) Power model (ilr.9) (b) Bessel model (ilr.9) (c) Nested model (ilr.9)

(d) Spherical model (ilr.5) (e) Bessel model (ilr.5) (f) Nested model (ilr.5)

Figure 4.10: Comparison between strictly parametric variogram fitting function, strictly non-parametric variogram fitting
function and nested variogram fitting function that finds the ideal linear combination of multiple functions. It can be observed

that the nested function is flexible enough to find a better fit when the strict functions cannot in the 3rd sub-figure.

Figure 4.10 demonstrates how the flexible nested variogram model can provide superior fits in cases

where strictly parametric or non-parametric models are insufficient. For ilr.5, the basic spherical model

offers the best fit, while for ilr.9, a linear combination of power and dampened hole models better
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captures the experimental variogram, including the critical "hole effect" structure. This highlights the

importance of both goodness-of-fit metrics and visual inspection in variogram model selection.

While nested variogram models generally provided greater flexibility and improved fit to the complex

spatial correlation structures observed in the data, this did not always translate to more stable kriging or

improved estimation accuracy. In practice, the kriging implementation was found to be more stable and

reliable when restricted to a single parametric variogram model, as determined by further optimization

using QKNA metrics (see Section 3.5.11). This will be elaborated further in the Section 4.8. These

metrics directly assess the quality and stability of kriging predictions. It is important to note that this

outcome is specific to the present dataset and modeling context, and should not be generalized without

further validation.

To illustrate the final parametric variogram models selected for kriging, Figures 4.11 present the

fitted parametric variograms for ilr.5 and ilr.9, for both Ordinary Kriging (OK) and Linear Model of

Coregionalization (LMC). These plots correspond to the final optimized models used in subsequent

interpolation and estimation steps.

For ilr.9, the empirical cross-variogram (Figure 4.11d) displays negative values at all non-zero lags. As

discussed in the methodology (Section 3.5.10), this behavior highlights a key limitation of the LMC: it

cannot accommodate situations where the cross-correlation between variables is stronger at a distance

than at the same location, nor can it model asymmetric cross-covariances (lag effects). In such cases, to

maintain the positive definiteness required for co-kriging, the fitted cross-variogram model is set flat at

zero, indicating the absence of a meaningful cross-correlation structure between ilr.9 and the primary

variable within the LMC framework.

The negative cross-variogram values at non-zero lags may indicate the presence of a lag effect, where

the correlation between variables is maximized at a spatial separation rather than at collocated points.

One plausible explanation for this phenomenon is the influence of post-depositional processes such as

mass wasting, material flow, or diagenetic alterations (e.g., phosphatization), which could introduce

a spatial offset or phase shift in the relationship between water depth and crust composition. These

geological processes may result in the observed asymmetry in cross-covariance, further limiting the

applicability of the LMC in accurately capturing the spatial relationships between these variables.

The full set of empirical and fitted variograms for all variables and both methods (OK and LMC) is

provided in Appendix B.
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(a) OK parametric variogram fit for ilr.5 (b) OK parametric variogram fit for ilr.9

(c) LMC parametric variogram fit for ilr.5

(d) LMC parametric variogram fit for ilr.9

Figure 4.11: Parametric variogram fits for ilr.5 and ilr.9. Top: Ordinary Kriging (OK) fits for ilr.5 and ilr.9. Bottom: Linear Model
of Coregionalization (LMC) fits for ilr.5 and ilr.9.
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4.8. Estimation Results
The following subsections present the results of the 2 different variogram fitting approaches, (i) nested

variogram functions that used both parametric and non parametric variograms, and (ii) singular

parametric variogram functions.

4.8.1. Summary of Kriging using the nested variogram function
Significant improvements in accuracy were observed across nearly all ILR coordinates when employing

co-kriging, as compared to ordinary kriging, using the flexible nested variogram fitting function that

incorporates linear combinations of parametric and non-parametric variograms. This is illustrated in

Figure 4.12. Kriging accuracy seems to significantly improved compared to OK when using depth as a

secondary variable for co-kriging. However, the Quantitative Kriging Neighborhood Analysis (QKNA)

metrics for this implementation summarized in Table 4.6 revealed invalid values for Kriging Variance

(KV) and Kriging Efficiency (KE) in the case of ordinary kriging, with both metrics expected to lie

between 0 and 1. For the two co-kriging implementations, while the metric values were mostly valid,

they were consistently poor. Ideally, KV should be as close to zero as possible, and KE should approach

one (Barboza and Deutsch, 2024). These results indicate that the kriging plans were either unstable (OK)

or inefficient (SCK and ICCK), despite the promising gains indicated by leave one out cross-validation

(LOOCV).

Figure 4.12: co-kriging gain across all 30 ILR coordinates in mean NRMSE values along with Area Under the Curve for all 3
methods for ease of comparison
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Figure 4.13: Comparison of NRMSE between Inverse Distance Weighted (IDW) and Intrinsic Collocated Co-Kriging (ICCK)
estimates across all ILR coordinates
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Table 4.6: Summary of mean Kriging Variance (KV) and mean Kriging Efficiency (KE) values for OK, SCK and ICCK using nested variograms across all ILR coordinates.

ILR coordinate mean ok KV mean ok KE mean sck KV mean sck KE mean icck KV mean icck KE
ilr.1 5018.98 -4959.62 1.06 -0.05 0.77 0.24
ilr.2 1.66 -0.64 1.06 -0.05 1.01 0.01
ilr.3 19125.61 -18902.22 552.89 -545.46 1.04 -0.03
ilr.4 18087.37 -17876.06 0.98 0.03 0.72 0.28
ilr.5 1.26 -0.25 2.20 -1.17 1.07 -0.06
ilr.6 831.09 -820.43 0.83 0.18 0.82 0.19
ilr.7 62735480.00 -62005990.00 4.58 -3.53 0.95 0.06
ilr.8 1.26 -0.24 0.99 0.02 0.99 0.03
ilr.9 0.87 0.14 0.84 0.17 0.75 0.26
ilr.10 1575.48 -1556.16 13.93 -12.77 0.90 0.12
ilr.11 1.06 -0.05 0.96 0.05 0.92 0.09
ilr.12 184.13 -180.99 171.83 -168.83 1.21 -0.20
ilr.13 310036100.00 -306431000.00 0.94 0.07 0.92 0.09
ilr.14 198.69 -195.38 0.75 0.26 0.73 0.27
ilr.15 1.97 -0.95 1.01 0.00 1.01 0.00
ilr.16 0.83 0.18 1.66 -0.64 1.02 -0.01
ilr.17 1.44 -0.42 1.87 -0.85 0.96 0.05
ilr.18 1.18 -0.16 0.98 0.03 0.98 0.03
ilr.19 932403.50 -921560.60 4.66 -3.60 3.64 -2.60
ilr.20 1207346.00 -1193306.00 2.59 -1.56 0.87 0.14
ilr.21 1.76 -0.73 1.15 -0.14 0.96 0.05
ilr.22 1.17 -0.15 1.03 -0.02 0.96 0.05
ilr.23 1.25 -0.23 1.01 0.00 1.01 0.00
ilr.24 217.41 -213.88 1.07 -0.06 0.97 0.04
ilr.25 1.99 -0.97 1.01 0.00 1.01 0.00
ilr.26 1.09 -0.08 0.99 0.03 0.97 0.05
ilr.27 805.67 -795.30 1.08 -0.06 1.01 0.01
ilr.28 162315300.00 -160427900.00 1.78 -0.76 0.49 0.51
ilr.29 575.25 -567.56 0.69 0.32 0.68 0.75
ilr.30 1.13 -0.11 0.99 0.03 0.94 0.07
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Consequently, it cannot be concluded with confidence that these results represent real life improvements

in estimation accuracy or reliability. The observed instabilities and inefficiencies may be attributed to the

incompatibility of nested variograms with the conventional kriging plan which usally uses parametric

variograms, or to the nested variograms being unsuitable for the LMC in co-kriging, which is also

typically performed using parametric variograms. This also highlights the limitation of LOOCV as a

comparative metric across multiple estimation methods.

Figure 4.13 presents a comparison of ICCK, which achieved the lowest NRMSE in Figure 4.12, with IDW

interpolation in terms of NRMSE values across the ILR coordinates. Based solely on NRMSE, co-kriging

of ILR coordinates with water depth as a secondary variable appears to yield more accurate results

than IDW. However, these results are derived from an unconventional approach employing nested

variograms that combine linear combinations of parametric and, more importantly, non-parametric

models. As indicated by the generally poor or invalid QKNA metrics (Table 4.6), this approach leads to

unstable and potentially unreliable kriging solutions.

The presence of invalid QKNA metrics, in the case of Ok, or generally poor metrics for SCK and ICCK,

suggests that the kriging solution lacks stability and efficiency, and the observed improvements in

NRMSE may not reflect genuine gains in estimation accuracy. These findings could highlight the

importance of using conventional, well-validated variogram models in geostatistical interpolation which

could ensure more stability. In light of these considerations, the more conventional approach using

parametric variograms is subsequently explored and discussed in the following section. However,

the better LOOCV values for CK and ICCK suggest that the model could indeed capture the spatial

distribution of the variables even with unstable QKNA matrices which could be a result of the previously

stated advantages of nested variograms being able to capture complex spatial distribution patterns.

Due to the poor QKNA metrics, parametric variogram functions were used for the estimation next and

the results of that approach is as follows.

4.8.2. Summary of Kriging using Parametric Variogram Functions

Figure 4.14: Comparison of NRMSE values of IDW and the three kriging methods (OK, SCK, and ICCK) with parametric
variograms

Kriging conducted with conventional parametric variogram models did not yield any notable improve-

ment in NRMSE values from cross-validation for co-kriging; in fact, it performed marginally worse

than both Ordinary Kriging and Inverse Distance Weighting (IDW), as illustrated in Figure 4.14. This

outcome further exemplifies the limitations of relying solely on LOOCV-based metrics for method

comparison, as such metrics may not fully capture the underlying performance or reliability of the
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Figure 4.15: Comparison of Kriging Variances of the three methods, OK, SCK, and ICCK along with the absolute value of
correlation of ILR coordinates with water depth

interpolation methods. In contrast, the mean kriging variance and kriging efficiency values across all

blocks, as derived from QKNA metrics, which are consistently close to ideal, (Figure 4.7), present a

different perspective.

Specifically, the analysis revealed a correlation coefficient of 0.624 (Figure 4.15) between the gain in

co-kriging efficiency (fall in Kriging Variance) for ICCK and the absolute value of the correlation between

water depth and ILR coordinates. The plot shows how the co-kriging gains mostly coincide with the

higher correlation values. This finding indicates that improvements in both kriging variance and kriging

efficiency through co-kriging are closely linked to the correlation with water depth, thereby quantitatively

demonstrating the relationship between water depth and the composition of ferromanganese crusts on

the Tropic Seamount. While it is generally said that correlation does not imply causation, in this context

the correlation is observed between co-kriging gain and the secondary variable (water depth) which

was specifically chosen for co-kriging. Therefore, it can be reasonably assumed that this correlation

does reflect a causal relationship. That is, utilizing water depth as secondary variable in co-kriging

leads to better estimation of Fe-Mn crust composition.

It is important to note, however, that Table 4.7 shows a slightly negative Ordinary kriging variance

for ilr.15 (–0.0011), which is theoretically invalid and suggests instability in the kriging solution for

this coordinate. This issue may arise from the automated kriging workflow failing to identify optimal

variogram parameters for ilr.15, and could potentially be mitigated through more tailored variographic

analysis. But it still exhibited valid values for SCK and ICCK. Since ICCK performed consistently well

across all the approaches, Further resource estimation and tonnage calculation using back-transformed

variables and the block model will utilize the ICCK estimates obtained using kriging using parametric

variograms.

These observations also underscore the importance of considering multiple evaluation metrics and

geostatistical diagnostics, rather than relying exclusively on LOOCV, when assessing the performance

and reliability of interpolation methods.

The limitations of using LOOCV for comparing kriging implementations sated in 3.5.8 can be observed

in this study as well. Figure 4.7 shows exactly how samples are oriented as linear clusters and how there

is sparse data in areas away from them. The samples were mostly taken from the arms of the Tropic

Seamount. Negative weights were observed in the kriging estimation. Both the string effect and the

appearance of negative weights reflect the influence of redundancy on kriging’s variance minimization.

They can lead to a misrepresentation of spatial patterns: by overvaluing data with limited contextual
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support and undervaluing denser, high-quality clusters. Consequently, kriging may underestimate or

overestimate values in ways that hinder accurate spatial prediction (Markvoort and Deutsch, 2024). This

combined with the other limitations of LOOCV like positive and negative biases and inconsistencies in

hyperparameter settings make LOOCV a poor choice for comparison of different interpolation methods.

This further reinforces the choice of using QKNA metrics for the comparison.

In addition to the limitations of LOOCV, the quality of kriging results in this study is also affected by

challenges and limitations in variogram modeling and sample distribution. The automated approach

for fitting variograms led to an invalid variance value for ilr.15 as stated earlier, suggesting that a more

careful, manual variogram analysis and tailored variography is needed to achieve more reliable results.

Then there is the fact that the samples are mostly concentrated along a few linear paths, with large

gaps and sparse coverage elsewhere (Figure 4.7). This uneven and sparse sampling makes it difficult

for kriging to accurately capture spatial patterns, and can result in negative weights and misleading

estimates. Furthermore, these gaps in sampling corresponds to areas on the seamount which are affected

by landslides and other mass wasting events and this means that it is possible that those areas could

have very thin crusts or even exposed bedrock and no crusts at all. A scenario which is not considered

in this study. Improving both the density and distribution of sampling, as well as refining variogram

modeling, would help produce more robust and reliable kriging outcomes.
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Table 4.7: Summary of kriging variance (KV) and kriging efficiency (KE) QKNA metrics for OK, SCK and ICCK using parametric variogram models.

ilr_coordinate mean_KV_ok mean_KE_ok mean_KV_sck mean_KE_sck mean_KV_icck mean_KE_icck
ilr.1 0.27 0.73 0.17 0.83 0.17 0.83
ilr.2 0.22 0.79 0.06 0.94 0.06 0.94
ilr.3 0.65 0.36 0.24 0.76 0.25 0.76
ilr.4 0.60 0.41 0.38 0.62 0.38 0.63
ilr.5 0.78 0.23 0.34 0.66 0.35 0.65
ilr.6 0.29 0.71 0.19 0.81 0.19 0.81
ilr.7 0.17 0.83 0.10 0.91 0.10 0.91
ilr.8 0.08 0.93 0.04 0.96 0.04 0.96
ilr.9 0.56 0.44 0.29 0.71 0.29 0.71
ilr.10 0.46 0.54 0.21 0.80 0.20 0.80
ilr.11 0.39 0.61 0.29 0.71 0.29 0.71
ilr.12 0.93 0.08 0.38 0.63 0.37 0.63
ilr.13 0.00 1.00 0.04 0.96 0.05 0.95
ilr.14 0.31 0.70 0.14 0.86 0.14 0.86
ilr.15 0.00 1.00 0.02 0.98 0.03 0.97
ilr.16 0.80 0.21 0.38 0.63 0.39 0.62
ilr.17 0.47 0.54 0.16 0.84 0.16 0.84
ilr.18 0.14 0.86 0.08 0.92 0.08 0.92
ilr.19 0.68 0.33 0.25 0.76 0.25 0.76
ilr.20 0.26 0.74 0.16 0.85 0.16 0.84
ilr.21 0.25 0.75 0.11 0.90 0.11 0.90
ilr.22 0.23 0.78 0.27 0.73 0.27 0.73
ilr.23 0.02 0.98 0.03 0.97 0.03 0.97
ilr.24 0.18 0.82 0.06 0.94 0.06 0.94
ilr.25 0.06 0.94 0.08 0.92 0.08 0.92
ilr.26 0.26 0.75 0.40 0.60 0.42 0.59
ilr.27 0.21 0.80 0.15 0.85 0.15 0.85
ilr.28 0.88 0.13 0.28 0.73 0.29 0.72
ilr.29 0.57 0.43 0.32 0.69 0.32 0.68
ilr.30 0.39 0.62 0.43 0.57 0.44 0.57
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Impact of Kriging Parameter Optimization

The results of the kriging parameter optimization for the parametric variogram-kriging plan revealed

that there was only a negligible difference in kriging variance (KV) and kriging efficiency (KE) among

the top five parameter sets. As shown in Table 4.8, all selected parameter sets produced very similar

metrics for ilr.6 taken as an example, indicating that any of them could have been chosen without

significantly affecting the quality of the spatial predictions. For consistency and ease of interpretation,

the parameter set with the lowest mean kriging variance and highest mean kriging efficiency was

selected for the final block model estimates. However, the other top parameter sets would also have

yielded satisfactory results, as reflected by their comparable performance metrics. This demonstrates

the robustness of the kriging procedure to small changes in parameter selection within the optimized

range. This also demonstrates how much more stable the parametric variograms are in comparison

with the nested variogram kriging (Table 4.6) which produced a KV of 831 and KE of -820 for the same

ilr.6. This is the case across all ILR coordinates.

Table 4.8: Comparison of top kriging parameter sets based on mean kriging variance (KV) and mean kriging efficiency (KE).

Parameter set Mean KV Mean KE
n neighbors=25, n lags=15, max components=1, reg=1e-10 0.189 0.813
n neighbors=25, n lags=25, max components=1, reg=1e-10 0.192 0.811
n neighbors=20, n lags=15, max components=1, reg=1e-10 0.193 0.810
n neighbors=20, n lags=25, max components=1, reg=1e-10 0.195 0.808
n neighbors=15, n lags=15, max components=1, reg=1e-10 0.198 0.804
n neighbors=15, n lags=25, max components=1, reg=1e-10 0.200 0.802
n neighbors=25, n lags=20, max components=1, reg=1e-10 0.210 0.793
n neighbors=20, n lags=20, max components=1, reg=1e-10 0.213 0.790
n neighbors=15, n lags=20, max components=1, reg=1e-10 0.219 0.784

4.8.3. Back transformation to raw variables and visualization of block wise esti-

mates and variances
The block-ids and original x,y and z coordinates were always saved along with the isomap coordinates.

Therefore, there was no need to do a back transformation from the embedded space to the real cartesian

space and subsequent plots will utilize the cartesian coordinates. To interpret these results of ICCK in

the original compositional space, a back transformation from isometric log-ratio (ILR) coordinates to

raw metal grades was performed using the methodology described in Section 3.5.13. This approach

enables the direct comparison and visualization of estimated metal concentrations in their natural units.

The block-wise estimates and variances of cobalt, titanium, lithium, magnesium, and manganese are

given from both a top-down view Figures 4.16 and 4.17, where each subplot corresponds to one of the

selected metals, allowing for a spatial assessment of both the estimated grades and their associated

uncertainties across the study area.

The choice to focus on these metals were guided by the European Union’s 2023 classification of critical

raw materials (CRMs), as listed in the Fifth list 2023 of critical raw materials for the EU (Commission, 2023).

Among the 34 materials deemed critical for strategic and economic resilience, cobalt, titanium, lithium,

magnesium, and manganese were present within the geochemical dataset used in this study. Rare earth

elements, both light (LREEs) and heavy (HREEs) are also classified as CRMs, but their plots are given in

the Appendix C along with the rest of the non-CRM elements due to space constraints.

The variance plots (Figure 4.17) demonstrate that regions closer to sampled locations (Figure 4.7) exhibit

predictably lower simulated variances, indicating greater confidence in the estimated values. And areas

distant from sample points consistently display higher variance, reflecting increased uncertainty in

those estimates. Notably, lithium deviates from this spatial pattern, presenting mostly uniformly low
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(a) Cobalt (b) Titanium

(c) Lithium (d) Magnesium

(e) Manganese

Figure 4.16: Block-wise estimates of selected critical raw materials (CRMs): Cobalt, Titanium, Lithium, Magnesium, and
Manganese. Each plot shows spatial grade estimates across the study area, with selected metals drawn from those present in the

dataset that are classified as CRMs by the European Union Commission, 2023.
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(a) Cobalt (b) Titanium

(c) Lithium (d) Magnesium

(e) Manganese

Figure 4.17: Block-wise simulated kriging variances of selected critical raw materials (CRMs): Cobalt, Titanium, Lithium,
Magnesium, and Manganese. These plots illustrate the spatial distribution of uncertainty in grade predictions, based on

simulated variance of estimates. Lower values of variances means lower uncertainty and higher confidence in the estimation.
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variance values across the block model. However, given that these variances are actually simulated

values rather than directly obtained from kriging, it would be premature to conclude that Lithium

concentrations are estimated with uniformly high confidence throughout the study area.

Following up on that, it is important to reiterate that, as discussed in Section 3.5.13 (see also Para-

graph 3.5.13), the variances shown in Figure 4.17 are not direct back transformations of kriging variances.

Due to the nonlinear nature of the ILR back transformation, there is currently no established analytical

method for propagating variances from ILR space to compositional space. Instead, the variances were

approximated through a simulation-based approach, which provides a pragmatic solution in the absence

of a formal variance propagation method. Alternative strategies, such as using centered log-ratio (CLR)

or log transformations, could allow for direct back transformation of variances due to their linearity,

but these approaches may not fully respect the geometry of compositional data. Another theoretically

robust, yet computationally intensive, solution would be to perform co-kriging on all ILR coordinates

simultaneously, enabling variance simulation as outlined by Texas_A&M_University (2017); however,

this was beyond the scope of the present study.

4.9. Tonnage Calculation Results
The tonnage calculations on the back-transformed estimation results indicate a total of 27,122,579.81

tonnes of metallic elements (which is excluding the "Others" elements). The overall crust tonnage is

calculated at 52,952,367.28 tonnes (in dry weight), corresponding to a metal content of 51.22% by dry

weight. Table 4.9 summarizes the calculated total tonnages for the 31 elements considered in this study

based on the ICCK estimates. The total market valuation of each estimated metal present in the Fe–Mn

crust on the Tropic Seamount was calculated by multiplying its estimated weight by the corresponding

average market price, as reported by reputable metal market and exchange platforms. These figures

reflect pricing data from August 2025 and exclude costs associated with extraction, processing, and

refinement. It should be noted that market prices are subject to fluctuation and will vary over time.

The total market worth estimate of the major, minor and trace metallic elements present in the crust is

calculated at 59.41 billion euros.

Cut-off grade vs Tonnage plots of all elements are given in Appendix C.

4.10. Spatial Patterns and Environmental Correlations

4.10.1. Wake Zone Analysis
Comparing the upstream, downstream, and wake zones simulated using ocean current data as described

in Section 3.6 with the clustering results of elemental grade estimates (see Figure 4.18) did not reveal any

strong spatial correspondence. However, the clustering analysis itself yielded several notable insights.

For instance, aluminium (Al) displays a distinct zonation pattern on and around the flat summit area

(see Figure 4.18). This may be related to its known negative correlation with both slope and current

velocity, as discussed in Section 2.2.

A particularly striking pattern emerges in the clustering of REEs (see Figure 4.19). Almost all REEs,

except Ce, exhibit remarkably similar spatial patterns, with nearly all, except Dy and Tb, showing

almost identical spatial clustering. This likely reflects the natural tendency of REEs to occur together in

geological environments, a relationship that appears to persist even within ferromanganese crusts.

Despite the similar shapes of the clusters, the cluster assignments themselves are not always consistent.

For example, while La and Pr in the light REE group among LREEs show similar clustering with cluster

1 being the larger group, Nd and Sm display clusters that appear to be the inverse, with cluster 2 being

the larger group (see Figure 4.19). It is unclear whether this is due to Python randomly assigning cluster
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Table 4.9: Estimated total tonnage of elements in the study area and their total estimated market worth (in million euros).

Element Total Tonnage (tonnes) Market Worth (million euros)
La 18,787.16 47.09
Ce 101,697.68 343.84
Pr 3,895.50 356.59
Nd 16,745.02 1513.28
Sm 3,403.01 28.97
Eu 740.59 180.41
Gd 3,248.94 1446.43
Tb 476.99 486.42
Dy 2,912.65 699.74
Ho 576.15 36.43
Er 207.53 479.39
Tm 1,469.73 2345.69
Yb 1,360.63 200.01
Lu 200.04 579.72
Y 10,020.55 252.52
Li 616.77 6.10
Co 305,066.88 8542.30
Ni 165,978.83 2112.39
Cu 32,323.98 261.37
Zn 33,917.98 79.21
Mo 32,006.05 1209.83
Te 2,715.86 880.59
Na 600,114.69 1235.04
Mg 741,628.94 1396.69
Al 758,375.64 1622.53
K 207,282.33 3492.62
Ca 1,379,411.95 4985.91
Ti 382,093.50 2109.34
Mn 9,320,003.06 15892.47
Fe 12,995,301.21 6582.38
Others 25,805,266.81 —
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Figure 4.18: Upstream, downstream, and wake zone analysis with clustered estimate grades: example
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Figure 4.19: 1D K-means cluster plots for Dy, Tb, Pr, La, Nd, and Sm.
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labels, or if these elements actually exhibit positive and negative spatial correlations as groups. This

effect could also be a result of ILR transformations, which preserves compositional relationships which

could have become exaggerated spatially during interpolation.

Both Dy and Tb also exhibit very similar clusters to each other, and some of these clusters are spatially

similar to those of the other REEs, though there are even smaller clusters within them (see Figure 4.19).

It is unclear why these two show additional number of clusters compared to the others as they all show

quite similar distributions in the EDA plots. The full cluster plots and EDA plots for estimates are given

in the Appendix A and C.

4.11. Implications for the Environmental Impact of Fe-Mn Crust Ex-

ploration and Mining
Although a comprehensive environmental impact assessment (EIA) is beyond the scope of this study, the

improved accuracy and confidence provided by ICCK estimation, particularly when incorporating water

depth as a secondary variable, can contribute to reducing the environmental footprint of both exploration

and mining activities. More precise resource estimates mean that fewer drillholes and samples may

be required to achieve the level of confidence mandated by international mineral resource reporting

standards, such as the JORC Code. Additionally, enhanced spatial accuracy in grade distribution

within the block model enables more selective mining, minimizing unnecessary disturbance of the

seafloor. This targeted approach could help reduce the overall area affected by mining operations,

thereby lowering the environmental impact associated with uncertainty and inaccuracy in resource

estimation and extraction.



5
Conclusion

This study clearly demonstrates a significant relationship between water depth and Fe-Mn crust

composition, and shows that incorporating this relationship through co-kriging (CK) improves the

confidence and accuracy of resource estimation compared to ordinary kriging (OK). By applying these

methods, this work provides, for the first time, tonnage calculations for metals in a Fe-Mn crust based

on a block model that accurately captures the three-dimensional structure of the deposit and also using

real geochemical data. These results highlight the Tropic Seamount as a substantial mineral resource

with the potential to significantly contribute to Europe’s critical raw materials supply chain.

Throughout the research process, a comprehensive workflow was developed, including data transforma-

tion using the isometric log-ratio (ILR), advanced geostatistical modeling, and the integration of locally

varying anisotropy (LVA) via L-ISOMAP embedding. The study also critically evaluated the limitations

of leave-one-out cross-validation (LOOCV) for comparing interpolation methods, recommending that

future research explore more advanced cross-validation techniques. Additionally, the effectiveness

of QKNA metrics as a robust framework for assessing and comparing kriging model performance

was demonstrated. The nested variogram approach showed promising results by CK and ICCK being

able to outperform IDW and OK in LOOCV metrics even with invalid QKNA metrics. Therefore,

future research should look into how a stable nested variogram oriented kriging plan might perform in

comparison to the standard parametric variogram oriented plans.

While the potential for CK to reduce the number of required drillholes was clearly identified, this

effect was not quantitatively assessed due to the time and computational demands of performing

multiple kriging analyses with varying sample sizes. Future work should systematically investigate

how changes in sampling density and distribution influence resource estimation outcomes and drillhole

optimization. This study considers the landslide scars and gullies to be also definitively covered by

Fe-Mn crusts which might not be the ground truth. The sampling distribution in future studies should

consider these locations as well since they can affect tonnages significantly. Building on the topic of

sampling, this study relied on compositional data from geochemical analysis of only the top 1 cm of the

crust samples. However, previous research has shown that Fe-Mn crusts are vertically layered, with

compositions varying across different bands within a single crust. Therefore, the assumption that the

top 1 cm is representative of the entire crust thickness is a simplification. For more accurate estimations,

future studies should aim to analyze samples from the full thickness of the crust, ideally by extracting

drill-cores and conducting detailed compositional analyses across all layers.
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The advantages of using ILR transformation for compositional data were clear, as ILR coordinates

captured meaningful geochemical relationships and enabled correlation studies without the closure

problem. However, while ILR coordinates are geometrically independent, some correlations still appear

in exploratory data analysis. It is generally not recommended to interpolate correlated variables

separately, yet this study did not account for these interdependencies during kriging. Interpolating

correlated variables independently can lead to under- or overestimation in the results. Future research

should explore cokriging approaches that jointly interpolate all correlated ILR coordinates, thereby

incorporating their interdependencies and potentially improving estimation accuracy and confidence.

Another limitation of this study was the lack of compositional data for non-metallic elements. Future

studies should consider including major non-metallic elements such as oxygen, carbon, and silicon in

the SBP, and examine how this affects the ILR transformations, as these elements also contribute to

Fe-Mn crust composition.

Automated variogram fitting was employed due to the large number of ILR coordinates and the

limitations of available Python tools. However, a more hands-on approach to variography, incorporating

expert knowledge and manual model fitting, could further enhance kriging results. Moreover, the

assumption of stationarity was not explicitly tested, and instances of negative cross-variogram values

suggested possible violations of this spatial autocorrelation. Future studies should incorporate more

rigorous experimental variography and investigate the validity of stationarity and ergodicity in similar

settings.

The integration of LVA through L-ISOMAP embedding proved highly effective, simplifying the

variography and resource estimation process by enabling the use of a single isotropic variogram for each

variable while accurately capturing anisotropy and spatial correlations. This approach holds promise

for application to other complex marine and terrestrial mineral deposits.

Finally, this study assumed constant sea level and ocean current conditions throughout the history

of the Tropic Seamount, despite known changes over geological timescales. Future research should

incorporate global paleo sea level models and paleo-current data to better understand how these

dynamic oceanographic factors have influenced Fe-Mn crust formation and composition.

In summary, this thesis advances the understanding of the factors controlling Fe-Mn crust composition,

most importantly, the water depth-crust composition relationship, and presents an optimized, step-by-

step methodology for ILR transformation and kriging of compositional geochemical data, including

the handling of locally varying anisotropy using L-ISOMAP embedding. This approach enables more

confident and accurate estimation of mineral resources in both marine and terrestrial environments,

with significant potential for both the mineral resources industry and future research in this area.
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Exploratory Data Analysis

A.1. EDA of Raw Variables

Figure A.1: EDA plot for Al
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Figure A.2: EDA plot for Ca

Figure A.3: EDA plot for Ce

Figure A.4: EDA plot for Co
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Figure A.5: EDA plot for Cu

Figure A.6: EDA plot for Dy

Figure A.7: EDA plot for Er
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Figure A.8: EDA plot for Eu

Figure A.9: EDA plot for Fe

Figure A.10: EDA plot for Gd
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Figure A.11: EDA plot for Ho

Figure A.12: EDA plot for K

Figure A.13: EDA plot for La
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Figure A.14: EDA plot for Li

Figure A.15: EDA plot for Lu

Figure A.16: EDA plot for Mg
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Figure A.17: EDA plot for Mn

Figure A.18: EDA plot for Mo

Figure A.19: EDA plot for Na
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Figure A.20: EDA plot for Nd

Figure A.21: EDA plot for Ni

Figure A.22: EDA plot for Others
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Figure A.23: EDA plot for Pr

Figure A.24: EDA plot for Sm

Figure A.25: EDA plot for Tb
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Figure A.26: EDA plot for Te

Figure A.27: EDA plot for Ti

Figure A.28: EDA plot for Tm
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Figure A.29: EDA plot for Y

Figure A.30: EDA plot for Yb

Figure A.31: EDA plot for Zn
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A.2. EDA of ILR Variables

Figure A.32: EDA plot for ilr.1

Figure A.33: EDA plot for ilr.2
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Figure A.34: EDA plot for ilr.3

Figure A.35: EDA plot for ilr.4

Figure A.36: EDA plot for ilr.5
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Figure A.37: EDA plot for ilr.6

Figure A.38: EDA plot for ilr.7

Figure A.39: EDA plot for ilr.8
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Figure A.40: EDA plot for ilr.9

Figure A.41: EDA plot for ilr.10

Figure A.42: EDA plot for ilr.11
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Figure A.43: EDA plot for ilr.12

Figure A.44: EDA plot for ilr.13

Figure A.45: EDA plot for ilr.14
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Figure A.46: EDA plot for ilr.15

Figure A.47: EDA plot for ilr.16

Figure A.48: EDA plot for ilr.17



A.2. EDA of ILR Variables 103

Figure A.49: EDA plot for ilr.18

Figure A.50: EDA plot for ilr.19

Figure A.51: EDA plot for ilr.20
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Figure A.52: EDA plot for ilr.21

Figure A.53: EDA plot for ilr.22

Figure A.54: EDA plot for ilr.23
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Figure A.55: EDA plot for ilr.24

Figure A.56: EDA plot for ilr.25

Figure A.57: EDA plot for ilr.26
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Figure A.58: EDA plot for ilr.27

Figure A.59: EDA plot for ilr.28

Figure A.60: EDA plot for ilr.29
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Figure A.61: EDA plot for ilr.30
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Figure A.62: Correlation matrix of ILR variables
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Table A.1: Numerator and denominator elements for each ILR coordinate, as defined by the sequential binary partition matrix.

ILR coordinate Numerator elements Denominator elements
1 La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb,

Lu, Y, Li, Co, Ni, Cu, Zn, Mo, Te, Na, Mg, Al, K, Ca,
Ti, Mn, Fe, Others

Others

2 La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb,
Lu, Y, Co, Mo, Te, Ti

Li, Ni, Cu, Zn, Na, Mg, Al, K, Mn, Fe

3 La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Gd Ce, Yb, Lu, Y, Co, Mo, Te, Ti
4 La, Gd, Tb, Dy, Ho, Er, Tm Pr, Nd, Sm, Eu
5 La Gd, Tb, Dy
6 La Ho, Er, Tm
7 Ho, Er, Tm Ho
8 Er Tm
9 Gd, Tb Dy
10 Gd Tb
11 Pr, Nd, Sm, Eu Ti
12 Pr, Nd Sm, Eu
13 Nd Pr
14 Sm Eu
15 Ce, Yb, Lu, Co, Mo, Te Y, Ti
16 Ce, Yb, Lu Co, Mo, Te
17 Yb Lu
18 Gd Tb
19 Co Mo
20 Mo Te
21 Y Ca
22 Li, Ni, Cu, Zn, Na, Mg, Al, K, Mn, Fe Na, Mg, Al, K, Mn, Fe
23 Li Al
24 Cu Al
25 Ni, Zn Mg, K, Mn, Fe
26 Ni K
27 Zn Mn
28 Mg Mn
29 Na Mn, Fe
30 Mn Fe
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A.3. Kriging Estimates

Figure A.63: EDA plots for Al (left) and Ca (right).

Figure A.64: EDA plots for Ce (left) and Co (right).
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Figure A.65: EDA plots for Cu (left) and Dy (right).

Figure A.66: EDA plots for Er (left) and Eu (right).
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Figure A.67: EDA plots for Fe (left) and Gd (right).

Figure A.68: EDA plots for Ho (left) and K (right).
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Figure A.69: EDA plots for La (left) and Li (right).

Figure A.70: EDA plots for Lu (left) and Mg (right).
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Figure A.71: EDA plots for Mn (left) and Mo (right).

Figure A.72: EDA plots for Na (left) and Nd (right).
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Figure A.73: EDA plots for Ni (left) and Others (right).

Figure A.74: EDA plots for Pr (left) and Sm (right).
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Figure A.75: EDA plots for Tb (left) and Te (right).

Figure A.76: EDA plots for Ti (left) and Tm (right).
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Figure A.77: EDA plots for Yb (left) and Y (right).

Figure A.78: EDA plot for Zn.
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A.4. EDA ALR
Table A.2: CLR variance and percent of total variance explained by each element. Total CLR Variance: 2.671200

Element CLR Variance Percent of Total Variance
La (wt%) 0.0297 1.11
Ce (wt%) 0.0205 0.77
Pr (wt%) 0.0383 1.43
Nd (wt%) 0.0365 1.37
Sm (wt%) 0.0398 1.49
Eu (wt%) 0.0395 1.48
Gd (wt%) 0.0386 1.45
Tb (wt%) 0.0378 1.42
Dy (wt%) 0.0369 1.38
Ho (wt%) 0.0373 1.40
Er (wt%) 0.0367 1.37
Tm (wt%) 0.0338 1.27
Yb (wt%) 0.0312 1.17
Lu (wt%) 0.0316 1.18
Y (wt%) 0.0684 2.56
Li (wt%) 0.7207 26.98
Co (wt%) 0.0828 3.10
Ni (wt%) 0.1081 4.05
Cu (wt%) 0.3125 11.70
Zn (wt%) 0.0493 1.85
Mo (wt%) 0.0439 1.64
Te (wt%) 0.0914 3.42
Na (wt%) 0.0217 0.81
Mg (wt%) 0.0381 1.43
Al (wt%) 0.1402 5.25
K (wt%) 0.0697 2.61
Ca (wt%) 0.2814 10.53
Ti (wt%) 0.0473 1.77
Mn (wt%) 0.0181 0.68
Fe (wt%) 0.0195 0.73
Others (wt%) 0.0699 2.62
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Variograms

Figure B.1: OK (top) and LMC (bottom) variogram fits for ilr.1.
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Figure B.2: OK (top) and LMC (bottom) variogram fits for ilr.2.

Figure B.3: OK (top) and LMC (bottom) variogram fits for ilr.3.
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Figure B.4: OK (top) and LMC (bottom) variogram fits for ilr.4.

Figure B.5: OK (top) and LMC (bottom) variogram fits for ilr.5.
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Figure B.6: OK (top) and LMC (bottom) variogram fits for ilr.6.

Figure B.7: OK (top) and LMC (bottom) variogram fits for ilr.7.
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Figure B.8: OK (top) and LMC (bottom) variogram fits for ilr.8.

Figure B.9: OK (top) and LMC (bottom) variogram fits for ilr.9.
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Figure B.10: OK (top) and LMC (bottom) variogram fits for ilr.10.

Figure B.11: OK (top) and LMC (bottom) variogram fits for ilr.11.
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Figure B.12: OK (top) and LMC (bottom) variogram fits for ilr.12.

Figure B.13: OK (top) and LMC (bottom) variogram fits for ilr.13.
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Figure B.14: OK (top) and LMC (bottom) variogram fits for ilr.14.

Figure B.15: OK (top) and LMC (bottom) variogram fits for ilr.15.
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Figure B.16: OK (top) and LMC (bottom) variogram fits for ilr.16.

Figure B.17: OK (top) and LMC (bottom) variogram fits for ilr.17.
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Figure B.18: OK (top) and LMC (bottom) variogram fits for ilr.18.

Figure B.19: OK (top) and LMC (bottom) variogram fits for ilr.19.
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Figure B.20: OK (top) and LMC (bottom) variogram fits for ilr.20.

Figure B.21: OK (top) and LMC (bottom) variogram fits for ilr.21.
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Figure B.22: OK (top) and LMC (bottom) variogram fits for ilr.22.

Figure B.23: OK (top) and LMC (bottom) variogram fits for ilr.23.
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Figure B.24: OK (top) and LMC (bottom) variogram fits for ilr.24.

Figure B.25: OK (top) and LMC (bottom) variogram fits for ilr.25.
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Figure B.26: OK (top) and LMC (bottom) variogram fits for ilr.26.

Figure B.27: OK (top) and LMC (bottom) variogram fits for ilr.27.
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Figure B.28: OK (top) and LMC (bottom) variogram fits for ilr.28.

Figure B.29: OK (top) and LMC (bottom) variogram fits for ilr.29.
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Figure B.30: OK (top) and LMC (bottom) variogram fits for ilr.30.



C
Block-wise estimate and variance

plotsand other estimate plots

C.1. Estimate Plots of Light Rare Earth Elements (LREEs)

Figure C.1: Block-wise estimates of Lanthanum (left) and Cerium (right) (LREEs).
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Figure C.2: Block-wise estimates of Praseodymium (left) and Neodymium (right) (LREEs).

Figure C.3: Block-wise estimate of Samarium (LREE).



C.2. Variance Plots of Light Rare Earth Elements (LREEs) 137

C.2. Variance Plots of Light Rare Earth Elements (LREEs)

Figure C.4: Kriging variance of Lanthanum (left) and Cerium (right) (LREEs).

Figure C.5: Kriging variance of Praseodymium (left) and Neodymium (right) (LREEs).
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Figure C.6: Kriging variance of Samarium (LREE).

C.3. Estimate Plots of Heavy Rare Earth Elements (HREEs)

Figure C.7: Block-wise estimates of Gadolinium (left) and Terbium (right) (HREEs).
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Figure C.8: Block-wise estimates of Dysprosium (left) and Holmium (right) (HREEs).

Figure C.9: Block-wise estimates of Erbium (left) and Thulium (right) (HREEs).
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Figure C.10: Block-wise estimate of Ytterbium (HREE).

C.4. Variance Plots of Heavy Rare Earth Elements (HREEs)

Figure C.11: Kriging variance of Gadolinium (left) and Terbium (right) (HREEs).
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Figure C.12: Kriging variance of Dysprosium (left) and Holmium (right) (HREEs).

Figure C.13: Kriging variance of Erbium (left) and Thulium (right) (HREEs).
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Figure C.14: Kriging variance of Ytterbium (HREE).

C.5. Estimate Plots of Non-CRM Elements

Figure C.15: Block-wise estimates of Aluminium (left) and Calcium (right).
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Figure C.16: Block-wise estimates of Iron (left) and Potassium (right).

Figure C.17: Block-wise estimates of Molybdenum (left) and Sodium (right).
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Figure C.18: Block-wise estimates of Tellurium (left) and Zinc (right).

C.6. Variance Plots of Non-CRM Elements

Figure C.19: Kriging variance of Aluminium (left) and Calcium (right).
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Figure C.20: Kriging variance of Iron (left) and Potassium (right).

Figure C.21: Kriging variance of Molybdenum (left) and Sodium (right).
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Figure C.22: Kriging variance of Tellurium (left) and Zinc (right).

C.7. Clustering

Figure C.23: 1D K-means cluster plots for Al (left) and Ca (right).
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Figure C.24: 1D K-means cluster plots for Ce (left) and Co (right).

Figure C.25: 1D K-means cluster plots for Cu (left) and Dy (right).
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Figure C.26: 1D K-means cluster plots for Er (left) and Eu (right).

Figure C.27: 1D K-means cluster plots for Fe (left) and Gd (right).
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Figure C.28: 1D K-means cluster plots for Ho (left) and K (right).

Figure C.29: 1D K-means cluster plots for La (left) and Li (right).
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Figure C.30: 1D K-means cluster plots for Lu (left) and Mg (right).

Figure C.31: 1D K-means cluster plots for Mn (left) and Mo (right).
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Figure C.32: 1D K-means cluster plots for Na (left) and Nd (right).

Figure C.33: 1D K-means cluster plots for Ni (left) and Others (right).
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Figure C.34: 1D K-means cluster plots for Pr (left) and Sm (right).

Figure C.35: 1D K-means cluster plots for Tb (left) and Te (right).
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Figure C.36: 1D K-means cluster plots for Ti (left) and Tm (right).

Figure C.37: 1D K-means cluster plots for Yb (left) and Y (right).
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Figure C.38: 1D K-means cluster plot for Zn.

C.8. Grade tonnage curves

Figure C.39: Grade-tonnage curves for Al (left) and Ca (right).
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Figure C.40: Grade-tonnage curves for Ce (left) and Co (right).

Figure C.41: Grade-tonnage curves for Cu (left) and Dy (right).

Figure C.42: Grade-tonnage curves for Er (left) and Eu (right).
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Figure C.43: Grade-tonnage curves for Fe (left) and Gd (right).

Figure C.44: Grade-tonnage curves for Ho (left) and K (right).

Figure C.45: Grade-tonnage curves for La (left) and Li (right).
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Figure C.46: Grade-tonnage curves for Lu (left) and Mg (right).

Figure C.47: Grade-tonnage curves for Mn (left) and Mo (right).

Figure C.48: Grade-tonnage curves for Na (left) and Nd (right).
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Figure C.49: Grade-tonnage curves for Ni (left) and Others (right).

Figure C.50: Grade-tonnage curves for Pr (left) and Sm (right).

Figure C.51: Grade-tonnage curves for Tb (left) and Te (right).
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Figure C.52: Grade-tonnage curves for Ti (left) and Tm (right).

Figure C.53: Grade-tonnage curves for Yb (left) and Y (right).

Figure C.54: Grade-tonnage curve for Zn.
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Data

Table D.1: Overview of data.

Type of data File format How will
the data be
collected (for
re-used data:
source and
terms of use)

Purpose Storage loca-
tion

Who will have
access to the
data

Ocean floor to-
pography

.csv, .dxf Provided by
supervisor,
collected from
a PhD thesis
by Sarah Atinta
Howarth titled
"An Investi-
gation into
the Variability
of Ferro-
manganese
Crusts in the
NE Atlantic"
(Howarth,
2022)

To map the
ocean floor and
understand its
topography
for exploration
purposes

Project storage
drive

The project
team (The
research stu-
dent and
supervisors)

Geochemical
data (chemical
composition
and crust
thickness)

.csv Provided by su-
pervisor, col-
lected from the
same PhD the-
sis

To analyze
the chemical
composition
and crust
thickness of
the ocean floor
for resource
estimation

Project storage
drive

The project
team
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