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Koopman operators are of infinite dimension and capture the characteristics of nonlinear dynamics in
a lifted global linear manner. The finite data-driven approximation of Koopman operators results in
a class of linear predictors, useful for formulating linear model predictive control (MPC) of nonlinear
dynamical systems with reduced computational complexity. However, the robustness of the closed-
loop Koopman MPC under modeling approximation errors and possible exogenous disturbances is still
a crucial issue to be resolved. Aiming at the above problem, this paper presents a robust tube-based
MPC solution with Koopman operators, i.e., -KMPC, for nonlinear discrete-time dynamical systems
with additive disturbances. The proposed controller is composed of a nominal MPC using a lifted
Koopman model and an off-line nonlinear feedback policy. The proposed approach does not assume the
convergence of the approximated Koopman operator, which allows using a Koopman model with a
limited order for controller design. Fundamental properties, e.g., stabilizability, observability, of the
Koopman model are derived under standard assumptions with which, the closed-loop robustness
and nominal point-wise convergence are proven. Simulated examples are illustrated to verify the
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effectiveness of the proposed approach.

© 2021 Elsevier Ltd. All rights reserved.

1. Introduction

Model predictive control (MPC), is employed as an effective
control tool for control of numerous applications, such as robotics
and industrial plants, see Mayne, Rawlings, Rao, and Scokaert
(2000) and Qin and Badgwell (2003). In MPC, a prediction model
is typically required, with which many MPC algorithms can be
formulated, e.g., stabilizing MPC for nominal models in Rawlings
and Mayne (2009) and the references therein, and robust MPC
such as min-max MPC in Bemporad, Borrelli, and Morari (2003)
or tube-based MPC in Mayne, Seron, and Rakovi¢ (2005) and
Mayne, Kerrigan, Van Wyk, and Falugi (2011) for systems under
model uncertainties and disturbances. Focusing on building well-
performed prediction models, designing MPC using data-driven
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models has been noted as a promising direction. Many works on
this aspect have been developed, see Piga, Formentin, and Bem-
porad (2017), Carron et al. (2019), Terzi, Fagiano, Farina, and Scat-
tolini (2019), Peitz, Otto, and Rowley (2020), Bujarbaruah, Zhang,
Tanaskovic, and Borrelli (2019) and Koéhler, Andina, Soloperto,
Miiller, and Allgéwer (2019) and the references therein. Among
them, a unitary learning-based predictive controller for linear
systems was addressed in Terzi et al. (2019), where set mem-
bership was adopted to estimate a multi-step linear prediction
model to be used for designing a robust MPC. Similarly, resorting
to the set membership identification, adaptive MPC algorithms for
uncertain time-varying systems were proposed in Lorenzen, All-
gower, and Cannon (2017) and Fagiano, Schildbach, Tanaskovic,
and Morari (2015) for reducing the conservativity caused by
robust MPC. Relying on the main idea from iterative learning con-
trol, a data-driven learning MPC for repetitive tasks was studied
in Rosolia and Borrelli (2017) with terminal constraints updated
iteratively. In these approaches, a linear robust (or stabilizing)
MPC problem is to be solved online since the considered model
is linear.

In the control of nonlinear systems, the derivation of a non-
linear prediction model could be a nontrivial task. In Limon,
Calliess, and Maciejowski (2017), a nonlinear MPC algorithm us-
ing a machine learning-based model estimation was proposed
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with stability property guarantees. However, nonlinear MPC re-
sults in nonlinear, even nonconvex, optimization problems, which
can be computationally intensive for systems with high nonlin-
earity. To reduce the computational load, a supervised machine
learning algorithm was used to approximate the nonlinear MPC
law in Hertneck, Kéhler, Trimpe, and Allgéwer (2018). The ro-
bustness was guaranteed under bounded control approximation
errors with verified statistic empirical risk.

In another line, Koopman operators have been noted to be
effective to represent the internal dynamics of nonlinear sys-
tems (Arbabi, Korda, & Mezic, 2018; Korda & Mezi¢, 2018b).
Specifically, the Koopman operator is typically with infinite di-
mension, capturing the nonlinear dynamical characteristics
through a linear dynamic evolution on a lifted observable func-
tion of states. In Korda and Mezi¢ (2018a), a finite-dimensional
truncation of the Koopman operator was used to form a linear
predictor of nonlinear dynamics for designing a linear MPC. This
approach paves the way to linear MPC formulations of nonlinear
systems with a linear predictor that represents a wide operation
range. Among the most related works, the extension to an MPC
algorithm using the integrated Koopman operator was addressed
in Peitz et al. (2020), and MPC methods using a deep learning-
based Koopman model were developed in Lian, Wang, and Jones
(2021) and Han, Hao, and Vaidya (2020). The application of Koop-
man MPC to flow control was addressed in Arbabi et al. (2018).
In Narasingam and Kwon (2020), a Lyapunov-based Koopman
MPC was developed for the feedback stabilization of nonlinear
systems.

Note that, the presence of modeling errors is almost inevitable
in lifted Koopman models, due to the data-driven finite-
dimensional approximation of Koopman operators and exoge-
nous disturbances, see Korda and Mezi¢ (2018a)
and Williams, Kevrekidis, and Rowley (2015). An interesting
offset-free Koopman MPC extension of Narasingam and Kwon
(2020) was presented in Son, Narasingam, and Kwon (2020) for
handling model-mismatch with an estimator. However, the satis-
faction of hard state constraints and closed-loop robustness under
both non-negligible approximating errors and unknown additive
disturbances are crucial concerns, which were not addressed in
the previous Koopman-based MPC (Korda & Mezi¢, 2018a; Lian
et al., 2021; Narasingam & Kwon, 2020; Peitz et al., 2020; Son
et al., 2020). This motivated our research work.

In this paper, we present a robust MPC solution with Koopman
operators in the framework of tube-based MPC (Mayne et al.,
2011, 2005). The contributions are twofold. The first contribution
is a linear robust Koopman-based MPC design methodology for
nonlinear systems with unknown dynamics and additive distur-
bances. As opposed to the classic tube-based MPC (Mayne et al.,
2011, 2005), our approach allows designing robust MPC from
measured data, and no explicit model information is required;
also, our approach results in a nonlinear MPC law by a linear
robust MPC design. The second contribution is the analysis of
the closed-loop theoretical guarantees for Koopman-based MPC
under modeling errors and additive disturbances. This is achieved
via imposing standard prior conditions on the lifting observable
functions, allowing for using a truncated Koopman model with a
limited system order in the controller design.

The rest of the paper is organized as follows. Section 2 intro-
duces the considered control problem and preliminary solutions.
In Section 2 the main idea of the proposed r-KMPC and the
associated theoretical results are obtained. Section 4 shows the
simulation results obtained by applying the proposed approach to
nontrivial simulated systems, while some conclusions are drawn
in Section 5. The ingredients for estimating the uncertainty terms
are given in Appendix.

Notation: We denote N as the set of positive natural numbers
and N’1 as the numbers 1, ..., I Given the variable r, we use r,y
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to denote the sequence ry ...y and ry to denote r, .y after its
first appearance, where k is the discrete time index and N is a
positive integer. For a vector x € R", we use ||x||é to stand for
x"Qx, ||x|| to denote its Euclidean norm; while for a matrix x
R™™M we denote ||x||r as the Frobenius norm. Given two sets Z
and V, their Minkowski sum is represented by Z®V = {z+v|z €
Z,v € V}. For a given set of variables z; € R%,i = 1,2,..., M,
we define the vector whose vector-components are z; in the
following compact form: (z1, 22, ...,2w) = [2] z; --- z; 1" €
RY, where ¢ = YV g;.

2. Control problem and preliminaries
2.1. Control problem

Consider a class of nonlinear discrete-time systems with addi-
tive disturbances described by

xt = f(x, u) + w,, (1)

where x € X C R, u € U C R™ are the state and control
variables, x™ is the successor state at the next discrete-time
instant, w, € W, is an additive bounded noise which can be
unknown and not measurable, W, is a compact set containing
the origin, X and ¢/ are convex sets containing the origin in their
interiors, f is the state transition function which can be partially
or completely unknown. It is assumed that f(0, 0) = 0, f(x, u) is
C*® on X x U, and |f(x, u)|| < 4oo for all x x u € X x U. The
state x is measurable.

Starting from any initial condition xo € X, the control objec-
tive is to minimize a quadratic cost of type J] = 3 ;% Ixellg +
l|ugll3, where Q = QT € R™" and R=R" € R™™ Q,R > 0.

Definition 1 (Local Stabilizability (Bacciotti, 1988)). Model xy+1 =
f(xk, uy) is stabilizable on the domain & x i/ if, for any xy € &,
there exists a feedback function u(x;) € i/, u(0) = 0, such that
state x; of the corresponding closed-loop system asymptotically
converges to the origin.

Definition 2 (Generalized Gradient (Clarke, 1975)). The generalized
gradient of a Lipschitzian function h(x) : R" — RY at x, denoted
as vh(x), is the convex hull of all matrices of the form M =
lim;_, oo Vh(x + 8x;), where 8x; — 0 as i — o0.

Definition 3 (Maximal Rank (Clarke, 1976)). The generalized gradi-
ent vh(x) is of maximal rank, if for every M rank(M) =
min {n, q}.

2.2. Preliminary Koopman MPC

We first review the Koopman operator theory for autonomous
dynamical systems and its extension to dynamical systems with
controls.

Let us introduce the so-called observable of x defined by a
scalar-valued function ¢(x) : X — C and denote F as a given
space of observables. For an autonomous model x* = f(x, 0),
i.e. model (1) with u, w, = 0, the Koopman operator £ : 7 — F
is defined by Arbabi et al. (2018) and Korda and Mezi¢ (2018b)

Ko(x) = ¢(x) o f(x. 0), (2)

for every observable ¢(x) € F (F is invariant under the ac-
tion of the Koopman operator), o is the composition operator,
i.e., Kop(x) = ¢(f(x,0)). For any discrete-time instant k € N, it
holds that

P(xk) = Kp(xi—1) = - - - = Kr(xo),
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which captures the dynamical characteristics of the original non-
linear dynamics. For a detailed introduction of the Koopman
operator please refer to Klus, Niiske, and Hamzi (2020), Klus,
Niiske, Peitz, et al. (2020) and Korda and Mezi¢ (2018b).

The Koopman operator for x* = f(x, 0) can be generalized
to systems with controls (i.e. model (1)) in several ways, see
e.g. Williams, Hemati, Dawson, Kevrekidis, and Rowley (2016),
Proctor, Brunton, and Kutz (2018) and Korda and Mezi¢ (2018a).
In our study, we adopt the practical and rigorous scheme in Korda
and Mezi¢ (2018a), which relies upon an extended state space
X x LU x W,), where £(U x W) is the space of all the sequences
composed of the control and disturbance, ie. u,, = {u,(i)}2,
with u,, (i) = (u(i), we(i)) € U x W,. Letting fw (X, uy) == f(x, u) +
w, and u,,(i) be the ith element of u,,, one can write the dynamics
of the extended state y = (x, u,,) as

X" =F(x) = (fw(x, u,(0)), I'uy), (3)

where I' is a left shift operator such that u,,(i + 1) = I'u,(i). In
this way, the Koopman operator K : 7, — F, associated with (3)
is given by Korda and Mezic¢ (2018a)

Ko(x) = ¢(x) o F(x) (4)

where ¢(x) : X x LU x W,) — C belongs to the extended
observable space 7, which contains observable functions on
arguments x and u,,.

A finite-dimensional numerical approximation of K in (4) is of
interest for controller design, which can be computed by resorting
to the extended dynamic mode decomposition (EDMD) method in
a data-driven manner, see Korda and Mezic¢ (2018a). Let a finite-
dimensional approximation of K be Ky, € R"*", associated
with an observable vector @(x) = (d1(x), ...,¢N¢(X)). The goal
in EDMD is to compute Ky, via minimizing ||q)(x+)—ICN¢<1>(x)||2.
Note however that x = (x,u,) is of infinite-dimension, which
can be problematic from the computational viewpoint. Hence, we
choose a computable observable function as

(%, uy) = (¥(x), u,(0)), (5)
where Ny = ny +m+n, ny >n,
V() =W @), Yy, (X)),

and v, i € Nq‘”, can be chosen as some basis functions or neural
networks (Lian et al., 2021).

To compute Ky 3 with EDMD, let us assume to have collected M
input-state datasets {(u;, Wo 1, X, x; )}, satisfying x;" = f(x;, u;)+
w, ;, where W, ; is the estimation of w,; which can be computed
by resorting to a nonlinear estimation technique or a Koopman
operator-based estimator (Surana & Banaszuk, 2016).

The following condition is assumed to hold (Klus, Niiske, &
Hamzi, 2020; Klus, Niiske, Peitz, et al., 2020; Korda & Mezic,
2018b).

Assumption 1. The data points {(ui,x,-)}?i , are drawn inde-
pendently according to a non-negative probability distribution
e

This condition can also be replaced with the assumption that
{(u,-,xi)}?i] are ergodic in &/ x X with respect to u, which can
be generated by integrating a stochastic dynamics, see Korda and
Mezic¢ (2018b) and Klus, Niiske, and Hamzi (2020).

Let the first n, rows of Kny be [ICN¢]1;,1‘// = [ABD] € R *",
where A € R™W*™, B € R™"*™ and D € R™*". Since we are
only interested in predicting ¥ (x") with ¥ (x) and the estimation
of u,(0) (due to w,), the following regularized least squares
problem can be stated:

min  { S0 1Ty, Jin, (F (X0, i) — W02
Uy 1iny, (6)
+ ol (K, Jiny lIF }:= Vi
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where il,; = (Ui, Woi), @ > 0 is a tuning parameter on the
Frobenius norm regularization of []CN¢]1:n v To recover x using
¥(x), a linear matrix C € R™"™ is optimized according to the
following problem (Folkestad et al., 2020; Korda & Mezi¢, 2018a;
Williams et al., 2015):

M

mcin; ICw(x:) = xll* + BICIE, (7)
i=

where 8 > 0 is a tuning parameter. By solving (6) and (7), a

linear Koopman predictor of (1) can be obtained, i.e.,

ST =AS+ Bl
{ o (8)
x =Cs.
Note that, in (8), a new (abstract) variable § serves as the state due
to the lifted observable construction, while the predicted value of
the original state, i.e., X, becomes the output variable through the
mapping matrix C from the observable space.
With (8), a linear Koopman MPC (KMPC) problem similar
to Korda and Mezi¢ (2018a) can be stated as follows:

N-1
: 5 2 2 5 2
min > (IResilly + luiillR) + 1Resn 13, 9)
i=0

Uje:k+N—1

subject to model (8) with 5, = W(xy), state constraint CSy,; €
&, Vi € Ny, and control constraint uy; = Ui € U, Vi € Ny ',
where Qy = Q) € R™" and Qy > 0.

Because of the characteristics of Koopman operators, a merit
of KMPC lies in the linear property of the built model (8), leading
to a linear MPC problem instead of a nonlinear one. However,
the derivation of (8) with (5) by (6) and (7) could bring mod-
eling errors, see Korda and Mezi¢ (2018a), Folkestad et al. (2020)
and Williams et al. (2015), whose property and possible (neg-
ative) influences on the closed-loop control performance is not
yet analyzed. As a consequence, the closed-loop property under
modeling errors and additive disturbances remains still a crucial
issue, which was not addressed in the prescribed Koopman-based
MPC (Korda & Mezi¢, 2018a; Lian et al., 2021; Narasingam &
Kwon, 2020; Peitz et al., 2020; Son et al., 2020). Peculiarly, with
KMPC in Korda and Mezi¢ (2018a), the constraint satisfaction x €
X might not be fulfilled by C5 € X and the closed-loop robustness
of the Koopman MPC might not be verified under modeling errors
and disturbances. Aiming at this problem, in the following section
we propose a robust tube-based MPC using Koopman operators
with theoretical guarantees.

3. Robust Koopman MPC

In this section, the proposed robust MPC solution using Koop-
man operators, i.e., -KMPC, is presented. First, a Koopman model
with approximation errors is derived and its stabilizability and
observability properties are proven under standard assumptions.
Then, the proposed r-KMPC algorithm using the Koopman model
is presented. Finally, the closed-loop theoretical properties of
r-KMPC are proven.

3.1. Koopman model for robust MPC

As described in Korda and Mezi¢ (2018a), it is not guaran-
teed that Ky, converges to K as Ng,M — 400 even if w,
is measurable and {wo’,-}f,‘i1 are ergodic samples, because the
adopted observable function (5) does not form an orthonormal
basis of 7. Hence, the presence of modeling errors of (8) with (5)
is inevitable also due to the existence of estimation errors of
w, and to the practical design with o, 8 # 0 in (6) and (7).
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Nonetheless, as pointed out in Otto and Rowley (2021), the model
structure like (8) is of interest from the control viewpoint because
it could still be effective for approximating (1) in a large state
space region; also, it permits a linear MPC implementation for
nonlinear systems, leading to a computational load reduction
compared with the approaches using complex bilinear models
and switched models (Peitz & Klus, 2019; Peitz et al., 2020).
The consideration of using bilinear or switched models is left for
further investigation.

To derive a robust Koopman MPC solution with (8), the fun-
damental boundedness property of the overall uncertainty caused
by multiple sources is required. To this end, letting s = ¥(x), one
can first write an equivalent Koopman model of (1) considering
the effects of model uncertainties, that is

st = As + Bu + w(s, u, w,, W)
(10)
x = Cs + v(s),

where w = D, + w(s, U, wy, Wo) € W, w(s, u, wy, We) € W and
v(s) € Vv are the modeling errors, where W and V are convex
sets containing the origin; W = DW, @ W, W, is a computable
convex set where W, lies in. It is assumed that WV, is bounded. A
discussion on the boundedness property of sets W (i.e., W) and
V is deferred to Proposition 2. To this end, we first introduce the
following assumption about ¥(x).

Assumption 2.

(a) The llfted function ¥(x) is Lipschitz continuous.
(b) {Wi(x )}l , are linearly independent.

The verification of the above assumption is easy since many
adopted basis functions (BF) such as Gaussian kernel functions,
polyharmonic splines, and thinplate splines are in fact C*° and
linearly independent.

Lemma 1 (Existence of Inverse Maps (Clarke, 1976)). Letting Sy be
the set such that Sy = {s € R™|s = W¥(x),x € X}, if v¥(x) is
of maximal rank, i.e., rank(v¥(x)) = n, there exists a Lipschitzian
function ¥~ : Sy — X such that ¥~ (¥ (x)) = x for every x € X.

In the following proposition, taking a special type of Gaussian
kernels as an example of basis functions, we show indeed that
multiple solutions of ¥~! can be found.

Proposition 1 (Multlple choices of w~1). Letting v;(x) = eI~ Cszy
GEXI= Nl , a group of any n + 1 basis functions of ¥(x) can
surely define a choice of ¥~ if and only if Assumption 2.(b) holds.

Proof. Since ¥(x), i € N?‘” are Gaussian kernels, the resulting ¥
is continuous differentiable. In this case the generalized gradient
v¥(x) coincides with the exact gradient 0¥ (x). For a generic n €
N, select a group of any n+ 1 basis functions such that [|x—c¢;||*> =

—logyr(x), Vi € NIT1 Letting ¥/(x) = (Y1(x), ..., Ynr1(x)), the

corresponding gradient 8 (x) is

(X)) =—2[v(x) (x—c1) ~mﬂuyu—qﬂﬂT(”)
= —2diag(P (%)} [(x — 1) - (x—cni1)]

where diag{y/(x)} = diag{¥1(x), ..., ¥np1(x)}. As diag{yr(x)} is
full rank in view of the property of ¥;(x), for any x € X, one has
X =] )

rank(0y(x)) = rank([(x — ¢1)

(12)
=n,

if and only if cq, ..., cpyq1 are linearly independent, where the

worst testing scenario isx =¢;, i € N’;H. O
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Remark 1. Proposition 1 implies that, with prescribed Gaussian
kernels, one can find Z ' combinations of basis func-

i=n (ny—i!
tions (choices of ¥~1). In this wpecullar case, determining x using
multiple /s, can be stated as a feasibility problem with multiple
quadratic equality constraints, while its dual problem does not
fulfill the Slater condition that ensures strong duality property,

see Boyd and Vandenberghe (2004).

We recall that (cf. Korda and Mezi¢ (2018a)), a straightfor-
ward and well-performed choice of ¥(x) can be of type ¥ (x) =
(x, ¥(x)), i.e., with the original state x being included. With this
choice, one can promptly find a candidate ¥ ~!(s) = [I, 0]s such
that &~ 1(¥(x)) = x.

Now, it is possible to state the boundedness property of sets
W (i.e.,, W) and V in the following proposition.

Proposition 2. If ¥(x) is such that set Sy is bounded, then W and
V are bounded.

Proof. To first prove W is bounded, in view of (1) and (10) and
recalling that s = ¥(x), one has that the modeling uncertainty is

w(s, U, wy, Wo) = F(F(¥1(s), u) + w,) — As — Bu — Dib,. Letting
Sw = w, — Wy, for all s € Sy, U € U, Wy € W,, and w, € W, it is
convenient to write the following inequality:

lw(s, u, wo, Wo)ll < Lllsll + Lullull + Lsw 16w, I+

. (13)
Li|lwoll < +o0,

where L, Ly, Ls,, and L are bounded Lipschitz constants and the
last inequality holds since X, 4, W,, and W, are bounded. Hence,
W is bounded, leading to W being bounded. As for V, it follows
from (10) that V = x © CSy, which is also bounded. O

Indeed, the boundedness (instead of convergence) of w and v
from Proposition 2 is sufficient for theoretical guarantees of the
proposed r-KMPC, which allows us to reduce the dimension of the
approximated Koopman model in (10). It can also be observed
through (13) that, the range of w (i.e., w) and v hinges upon
the Lipschitz constants L, L,, and L;. To further reduce the size
of W and V), it is convenient to minimize L, L,, and Ly or their
estimations in the modeling phase by modifying the optimization
problem (6) as

in Vic + asLs + oLy + oLy, (14)
“CN¢]1:nv, JLs,Ly,Ly,

subject to L, Ly, L; > 0 and
i = YjlI < Lsllsi — sjll + Lullui — wll + La || o, — o ll,

iaj € NMv where Y; = [ICN(»]]:nw(lp(Xi)’ ﬁw,i)_lp(xrﬁ)v s, oy, oy, > 0
are tuning parameters.
In the case that w, = 0, one also has w, = 0. Letting s, = ¥(0)

and A = [I-A" CT]T, the triple (u,s,x) = (0,s,,0) is an
equilibrium of model (10) if and only if
(w(sr, 0,0, 0), U(Sr)) = Asr, (15)

which results in a prior knowledge of w and v, since s, = ¥(0) is
available. In principle, it is convenient to define an MPC prediction
model using (10) with w replaced by w(s;, 0, 0, 0). However, for
the case that w, is time-varying, the computation of w(s;, 0, 0, 0)
can be nontrivial because w,, W, = 0 might not be accessible or
even exist. As a consequence, (10) with w = w(s;, 0, 0, 0) is no
longer suitable for prediction in the MPC algorithm. To solve this
issue, we first introduce the following proposition.
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Proposition 3 (Equilibrium). (w(s;, 0, 0, 0), v(s;)) = 0 if and only
if

s CKerA or s =0; (16)

moreover, if the pair (A, C) is observable, condition (16) is reduced
to

s =0. (17)

Proof. Condition (16) follows directly from (15) by linear alge-
bras.

Remark 2. Condition (16) implies that two choices can be chosen
for guaranteeing (w(s;, 0,0, 0), v(s;)) = 0. A choice is to allow
s, # 0, i.e, to enforce s, C KerA, which can be imposed by
s, = As, and Cs;, = 0. The derivation of the above condition
requires to include in the optimization problem (6) the constraint
As, = s, and in (7) the constraint Cs, = 0. The resulting problems
can be solved since s;, i.e., ¥(0) can be chosen a priori. Note
however that the resulting model is not observable if there exist
eigenvalues of A being 1, in view of the Popov-Belevitch-Hautus
(PBH) test.
Also, provided that (A, C) is observable, (16) is equivalent to

Cs; =CAs, =---=CA™ 15, =0 (18)

since s, = As, = A%s,, ..
solution s, = 0.

Hence, a simple and elegant way is to choose s, = 0 for
verifying (15) (see (17)), which allows to avoid the reformulation
of problems (6) (or (14)), and (7). O

. from s, = As;, leading to the unique

We now give the following basic assumption.
Assumption 3. The lifted function is constructed such that
v(0)=0.

Remark 3. Assumption 3 can be easily verified since, for the
lifted function being selected as ¥'(x) = (¥1(x), ..., mw (x)) with
¥’(0) # 0, a coordinate transformation can be used to define
a new function ¥(x) = ¥’'(x) — ¥’(0), leading to ¥(0) = 0,
consequently to verification of (15). Take the prescribed Gaussian
kernels as an example. Let y/(x) = elx—al® ¢ Nq"’, then it
holds that ¥i(x) = v/(x) — ¥/(0) = e Ix—al® — e=l0—cl® wyith
¥i(0) = 0. Hence the resulting ¥ (x) satisfies ¥(0) = 0. With this
choice, Proposition 1 can still be verified because AV (x) becomes
AV (x) = —2diag{y'()}(x — 1) ... (x — cuy1)]", where ¥'(x) =
(W), - .oy Y4 (X))

Proposition 4 (Local Stabilizability). Under Assumption 3, model
(10) with w, = 0 is stabilizable on the set Sy x U, if and only if
f(x, u) is stabilizable on the domain X x U.

Proof. (i) Sufficient condition: as f(x, u) is stabilizable on X x
U, there exists a feedback law u(x) € ¢ such that x = 0 is
asymptotically stable, under model x* = f(x, u). In view of the
fact that (10) with w, = 0 is equivalent to x™ = f(x, u), it holds
that s = ¥(x) converges to the origin asymptotically under u(x),
since x converges to the origin asymptotically and ¥(0) = 0.
Hence, model (10) is stabilizable on Sy x U.

(ii) Necessary condition: likewise, starting with the stabilizability
of model (10) on Sy x U, one has s converging to the origin
asymptotically under u(x) € U. The stabilizability of f(x, u) on X x
U follows since x = Cs + v(s) — 0+ v(0) = 0 asymptotically. O

Remark 4. Proposition 4 implies that, in the unperturbed case,
i.e,, w, = 0, there exists a control law such that the point-wise
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convergence of the closed-loop evolution of s and x under (10) can
be guaranteed, which is a fundamental hint for the result stated
in Theorem 3 (deferred in Section 3.3).

In a class of MPC problems such as (9) where the penaliza-
tion on the output is used in the cost function, the observabil-
ity property could be a prior condition in deriving the closed-
loop theoretical property. In the following, we also analyze the
observability property of (10).

Definition 4 (Local Observability (Albertini & D’Alessandro, 1996)).
System (10) under w, = 0 is locally observable on Sy if, for each
54,0, Sb,0 € Sy, the corresponding future states x,; € X, Xpj € X,
under the same control sequence, ug, ..., U; € Wl j > 1, are
such that x, ; = x, j implies sq0 = Sp.0.

Proposition 5 (Local Observability). System (10) is locally observ-
able on Sy if

{f (xj, uj) o - - - o f(xo, Ug)}
8X0

=n, (193)

for each xy € x, u; € U, Vi € N’é satisfying f(x;, u;) € X, Vi € N’(‘),
and

W(xq) # W(xp), VXq # Xp, Xq,Xp € X. (19b)
Proof. In view of the argument in Albertini and D’Alessandro
(1996), if condition (19a) is satisfied, it promptly holds that x,; =
Xpj implies Xq.0 = Xp 0. AlSO, Xq0 = Xp 0 implies ¥(x40) = ¥ (Xp,0)
since (19b) holds. Finally, x,; = Xp; implies S,0 = Sp,0 due to
Sa.0 = ¥(Xq,0) and spo = ¥(xp0). Hence, in view of Definition 4,
(10) under w, = 0 is locally observable on Sy. O

In view of Proposition 3 and Assumption 3, (8) becomes the
nominal model of (10) and is used as the predictor in the online
MPC deferred in Section 3.2. It is also observed that the pair
(41,5, %) = (0, 0, 0) is an equilibrium of model (8).

Remark 5. One can conclude from Propositions 4 and 5 that
(A, B) is stabilizable and (A, C) is observable, if the infimum of
Lipschitz constants L, L, i.e., L;, L, — 0 (which leads to w, v —
0), since model (10) under w, = O is equivalent to (8) in this
peculiar case. If L, L, are nonzeros, Assumption 4 might not be
directly derived using Propositions 4 and 5. For instance, consider

a special Koopman model of type:
{ Ske1 = diag{1.01, 1}s; 4+ [0 177wy 4+ wy
Xk = [0 1]sk + vg,

where w = —0.02s, v = [0.01 O]s; which is stabilizable and
observable. However, its nominal model is neither stabilizable nor
observable.

Hence, we also require the following assumption about (8).
Assumption 4. The pair (A, B) is stabilizable and the pair (A, C)
is observable.

Note that, once (6) and (7) are solved, one can verify the above
assumption via calculating the stabilizability and observability
matrices using the computed A, B, and C.

3.2, Robust Koopman MPC design

Inline with classic tube-based MPC, the proposed control ac-
tion to Koopman model (10) relies on the feedback term of the
state error correction:

u=10+K(s—5), (20)
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where K is a gain matrix such that F = A + BK is Schur stable,
i and § are decision variables computed with a standard MPC
(deferred in (22)) with respect to (8).

Remark 6. Different from classic tube-based MPC for linear
systems (Mayne et al., 2005), & and K(¥(x) — §) in (20) are both
nonlinear control laws on the original state x since &t depends on
S and § is related to s = W(x), see (25¢).

From (10) and (20), the error e; := s — S evolves according to
the following unforced system (10):

ef =Fe,+w
(21)
ey = Ce; + v,

where e, = x — X. Let Z; be a robust positively invariant set of e,
such that 2Z; € FZ, @ W), then it holds that e, € CZ; @ V := Z,.

Now we are ready to state the nominal MPC problem to
compute & and $ in (20). At any time instant k, the following
online quadratic optimization problem is to be solved:

minV (8, i) (22)
Ske> Uk
where

V(S i) = 2000 (IRerill + Niieill?) + Vy Gegn), (23)

and S, i, are the decision variables, Vf(5) is the terminal cost
with respect to the nominal lifted state § and it is chosen as
V;(5) = $TPS, where the symmetric positive-definite matrix P is
the solution to the Lyapunov equation

F'PF —P = —(Q + K 'RK) (24)

and Q = C'QC.
The optimization problem (22) with (23) is performed subject
to the following constraints:

(1) The nominal Koopman model (8).
(2) Tighter state and control constraints:

Sk €S,i=0,...,N—1 (25a)
fypied, i=0,...,N—1, (25b)
where S= (§|CSe X © 2}, U =UOKZ,.

(3) The initial and terminal state constraints
Sk — Sk € Zs (25c)
SkeN € Sfs (25d)

where &; is a positive invariant set of (8) under state and control
constraints such that (A + BK)S; C ;.

Assume that, at any time instant k the optimal solution of §;
and i, can be found and is denoted by 8y and i, then the final
control applied to system (1) is given as

Up = ﬁ;”( + K(Sk - §k\k)' (26)
In summary, the pseudocode of the proposed r-KMPC is de-

scribed in Algorithm 1.

3.3. Closed-loop property analysis

Assumption 5. The computed nominal control and lifted state
constraints are non-empty and contain the origin in their interi-
ors, ie, {0} C U, {0} CS.

Under Assumptions 1 and 2, to satisfy the above condition,
one can choose a proper observable function ¥ (x) and a proper
number of samples M used in (6) and (7).
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Algorithm 1 Pseudocode of r-KMPC
Off-line designs:

1) Select ¥(x) such that Assumption 2 is verified.

2) Compute A, B, C, and D with (6) (or (14)) and (7), and check
that Assumption 4 is verified.

3) Calculate W and V according to Algorithm 2 described
in Appendix.

4) Compute K and P with (24) and calculate the robust
positively invariant set Z;, Z, with K.

5) Compute S, Z and check that Assumption 5 is verified (see
Section 3.3); calculate the terminal set Sy with K.

On-line procedures:
At each discrete-time step k=1,2, ---
1) Measure x; and set the lifted state s, = ¥(x).
2) Solve (22) with (23) and obtain i, S
3) Set uy, with (26) and apply it to the nonlinear system (1).

Theorem 1 (Recursive Feasibility). Under Assumptions 1-5, if the
optimization problem (22) is feasible at the initial time k = 0,
then it is recursively feasible at all times k € N3°, i.e., the recursive
feasibility of r-KMPC is guaranteed.

Proof. Assume at any time instant k, an optimal decision se-
quence of (22) with (23), i.e., Sgk, ﬁ:lk, have been found associated
with the optimal cost, denoted as V|, such that the state and
control constraints $i4; € S, i € U, Vi € Ng"l, and the
terminal constraint S,y € Sf is fulfilled. Hence, it holds that
the real state and control constraints are verified, i.e, x;x € X
and u. € U for all t >k At the next time instant k + 1, choose
Skt 1k1 = Sk 1k By g = Uy 1. KNk KSiinik as a candidate sub-
optimal solution, under which it follows that Csi 1 + vk € X,
§k+1\k € S, leading to Spy1 — §k+1|k € Z, §k+j|k+l €S, Ve NN,
through inheritance, and Sy n41k+1 € Sf in view of the definition
of &. Hence, (22) is feasible at time k + 1 under Sy, ﬁiH,
associated with a sub-optimal cost V}} ;. The recursive feasibility
of r-KMPC holds. O

Under Theorem 1, one can state the following theoretical
results.

Theorem 2 (Closed-loop Robustness). Under Assumptions 1-5, it
holds that:

(a) the lifted nominal system (8) using Sy, i, computed with (22)
converges to the origin asymptotically, i.e., S, X, and i, —
0as k — +oo;

(b) the state s and the control u of the closed-loop system (10)
with (20) are such that s, — Zs; and u, — KZ5 as k — +o0;
and x, — Z as k — +oo.

Proof. To prove the closed-loop robustness property, first note
that the optimal cost V; associated with the optimal solution Sy,
ﬁ,f‘k (cf. Theorem 1), satlsﬁes V,f > ||)?k||Q for all X, &® 2, € Xx. Also,
iterating (24) leads to V; < §, 1P, for 5, € S;. Considering the
fact that V,j‘+1 Vi where V is the sub-optimal cost associated
with Sg1pk, ukJrl (cf. Theorem 1), and in view of (24), one has the

monotonic property:
N2 N2
Vil = Vi = =Xl — lluellz+

k+1
[ (27)

FTPF—P+Q+KTRK
— IRl — Niikllz-
Then, from (27), V{¥,; — V¢ — 0 as k — +oo. Consider also

Vi-Vig = ||$<k||(22 + ||t |3, hence il — 0, X — 0, as k — +o0,
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in view of the positive-definiteness of R and Q. Also, 5§, — 0 as
k — 400 due to ¥(0) = 0 in view of Assumption 3. Moreover,
recall that x e X P 2y, u c UD KZ,, and s € § @ Z,, it holds that,
Xy — 2y and uy — Kz, as k — +oo; and s, — Z; as k —
+o0. O

Remark 7. Note that, in the MPC problem (22) with (23), pe-
nalizing the lifted state, i.e., ”§”2Q can be used instead, where

Q € R™ ™ js a positive-definite tuning matrix. Herewith the
observability of (A, C) is not necessarily required in (24) since
a solution surely exists for any Q being positive-definite. In this
case, in the proof argument of Theorem 2, ||5<||2Q in (27) is replaced
by ||§||(21, which leads directly to the asymptotic stability of § and
X since X = Cs.

Moreover, under the result in Theorem 2, point-wise asymp-
totic convergence of r-KMPC can be verified, under w, = 0.

Theorem 3 (Point-wise Convergence). Under Assumptions 1-5, if
w, = 0 and
+00
E = (LI + LKTK)| ZF"H is Schur stable, (28)
k=0
then the closed-loop systems (10) with (20) and (1) with (20)
converge to the origin asymptotically, i.e.,

xx — 0, u,— 0, and sy — 0as k — +oo.

Proof. In view of Theorem 2.(a), assume that i, X, and § have
converged asymptotically to the origin, i.e., it = 0, X = 0, and
§ = 0. Also, u, x, and s have converged asymptotically to robust
tubes, i.e., x € Z,, u € KZ;, and s € Z. From (21), one can write

Skp1 = Fs + wy

(29)
X = Csp + vy,
where, in view of (13), the uncertainty w satisfies:
lwll = llw(s,u,0,0)
< Lg|Is|| + Ly|lu
s|Isl] uIIAII A (30)
= LslIsll + Lullt + K(s — $)]
< Islliyi4rax Tk
and the last inequality is due to (20) and 4,§ = 0. Inline

with Farina, Zhang, and Scattolini (2018), we write the evolution
Skr1 = Fsp + wy from (29) with two redundant interconnected
systems, i.e.,

{ ST:FS1+U}2

31
sy = Fsy + wn, G

where the initial condition s19 = .0 = Sp and w9 = w20 = Wo.
In view of the small gain theorem in Farina et al. (2018), the inter-
connected system converges to the origin asymptotically (31) if
(28) holds (see also Zhang, Pan, Scattolini, Yu, & Xu, 2021). Hence,
the state s converges to the origin asymptotically. Moreover, x;, —
0 as k — 400 since x; = Csi + v(sk), Sy — 0 as k — +o0, and
v(0) = 0. Also, in view of (20), uy — 0 as k - +o0. O

4. Simulation results
4.1. Regulation of a Van der Pol oscillator

Consider a Van der Pol oscillator (Korda & Mezi¢, 2018a),
whose continuous-time model is

).(] X1

.= > + wo, (32)

X —2xy + 10x7x; + 0.8x; +u
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Trajectory of 2/& of --KMPC Control u/i of r-KMPC
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Fig. 1. The state and control tubes of the controlled Van der Pol oscillator under
sinusoidal noise. In the left (right) panel, the real trajectory, marked with blue
+ (x), lies in the gray tube, i.e., 2, (K Z;), centered at the nominal one, marked
with black + (x).

Table 1

Cumulative cost comparison: “S” and “SW” stand for “sinusoidal” and

“Step-wise” respectively.
Algorithm

r-KMPC KMPC (Korda & Mezic, 2018a)
Tl\l,:4 n,/,:4n\/,:12n¢:22
Nominal 258 431 401 360
S-noise 270 449 418 374

UDR-noise 248 413 403 371
SW-noise 262 379 387 359

Nominal 247 427 402 -
S-noise 257 446 419 -
UDR-noise 241 416 403 -
SW-noise 253 416 410 -

Thinplate kernel

Cost |

Polynomial kernel

where x = (X1, X2) and u are the state and control respectively,
lwolleo < 0.4. Peculiarly, a sinusoidal noise w, = 0.4sin(10xt)
is initially adopted. The consideration on other types of distur-
bances are deferred in Table 1. The state and control are limited
as —(2.5m,2.5m/s) < x < (2.5m,2.5m/s), —10m?/s < u <
10 m?/s.

In order to implement r-KMPC, we first discretized model (32)
to obtain model (1) with a suitable sampling period T = 0.01
s. We obtained the data-driven model using Koopman operators.
The datasets of (u, W,, x, x*) in (6) with M = 8-10° were collected
with a uniformly distributed random (UDR) control policy. A thin-
plate BF was selected to construct the lifted observable function,
e, ¥(x) = (x, ¥1(x), ¥2(x)) — (0, ¥r1(0), ¥(0)), where i(x) =
lx—cill? log(llx—cill), i = 1,2,ny = 4,¢1 = (0.381, —0.341),¢; =
(0.267, —0.889) were the kernel centers generated with UDR
numbers. The parameters of the linear predictor were computed
with (6) and (7). _ ~

The penalty matrices Q and R were selected as Q =
diag{1, 1,0.1,0.1}, R = 0.1. Matrix P was calculated with (24).
The sets W, V were obtained according to Algorithm 2, see Ap-
pendix. The gain matrix K was computed via solving a lin-
ear quadratic problem. The robust invariant set was obtained
with (21) and the terminal constraint S; was computed accord-
ing to Rawlings and Mayne (2009). The prediction horizon was
chosen as N = 10.

The proposed r-KMPC algorithm was implemented with an
initial condition x = (1.5, —1.5) € X. The simulation tests
were performed within Yalmip toolbox (Lofberg, 2004) installed
in Matlab 2019a environment. The simulation results are reported
in Fig. 1, which show that the nominal lifted state S and control
il converge to the origin; moreover, the real state trajectory x
and the real control u remain in tubes centered at X and i
respectively, i.e, x € X ® 2 and u € 0 & K2, which verifies
the robustness of the closed-loop control system. Also, under no



X. Zhang, W. Pan, R. Scattolini et al.
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Fig. 2. The state and control tubes of the controlled inverted pendulum under
sinusoidal noise. In the left (right) panel, the real trajectory, marked with blue
+ (%), lies in the gray tube, i.e., 2, (K Z2;), centered at the nominal one, marked
with black + (x).

external perturbation, the state and control of r-KMPC converge
asymptotically to the origin, see Figure 3 in Zhang et al. (2021).

The KMPC algorithm in Korda and Mezic¢ (2018a) is adopted for
comparison. First, we have chosen the lifted function in KMPC as
¥ (x) without the resetting procedure, i.e., ¥(0) # 0. The resulting
one-step prediction collective square error with 50000 different
initial state conditions is 56.4, comparable with 55.9 obtained
by using the resetting procedure. The resulting controller using
KMPC does not yet converge with 400 steps, while the state
and control of our approach converge to the origin (see Figure 3
in Zhang et al. (2021)). For a numerical comparison, the cumula-
tive costs of both approaches, computed as ] = Z:i()] ||xk||é +
||uk||§, are collected in Table 1, which show that the proposed
r-KMPC results in a lower cost consumption, compared with
KMPC (Korda & Mezi¢, 2018a) even using a greater number of
observable functions.

4.2. Angle regulation of an inverted pendulum

The continuous-time model of an inverted pendulum is

HE

where x = (X1, X,) are the state variables that represent the angle
and its rate respectively, while u is the control, w, = 2 sin(107xt).
The constraints to be enforced are —(1 rad,2 rad/s) < x <
(1rad, 2 rad/s), —20 m?/s < u < 20 m?/s.

Inline with Section 4.1, model (33) was discretized with T =
0.005s. The data samples were obtained with M = 5-10% under a
UDR control policy. A Gaussian kernel was selected to construct
U(x), ie, P(x) = (x, ¥1(x), Ya(x), ¥3(x)) — (0, 91(0), ¥2(0),
¥3(0)), where yi(x) = e ==l i = 1,2,3, ny, = 5 ¢ =
(—0.644, —1.09), c; = (—0.99, 0.76), and c3 = (—0.26, —1.48)
were the kernel centers generated with UDR numbers. The
penalty matrices Q and R were selected as Q = Is, R = 0.1.
The prediction horizon was chosen as N = 10. The proposed
r-KMPC was implemented with xo = (0.2, 1). The obtained
results by applying r-KMPC to (33) (see Fig. 2 and Figures 4-6
in Zhang et al. (2021)) verify the robustness of the closed-loop
control system and the point-wise convergence of the nominal
system. Under no external perturbation, the state and control
of r-KMPC can converge asymptotically to the origin. Compared
with KMPC (Korda & Mezi¢, 2018a), r-KMPC results in a lower
cost consumption even using a smaller number of observable
functions (see Table 2). For more details of simulation results and
implementation aspects see Zhang et al. (2021).

We also verified the proposed approach for regulation of
a nonlinear non-affine system (Ge, Hang, & Zhang, 1999). The

X1

|:4g sin(x1) — 3u Cos(xl)i| + Wo, (33)
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Table 2
Cumulative cost comparison: “S” and “SW” stand for “sinusoidal” and
“Step-wise” respectively; “InvQuad” stands for “Inverse quadratic”.

Algorithm r-KMPC KMPC (Korda & Mezi¢, 2018a)
nw=5 le:S n¢=15 H,/,=25
Nominal 175 434 228 203
Gaussian kernel S-noise 333 695 407 367

UDR-noise 191 570 235 189
SW-noise 201 763 255 214

Nominal 173 512 252 -
InvQuad kernel S-noise 319 871 432 -
UDR-noise 236 546 276 -
SW-noise 248 484 261 -

Cost |

continuous-time model of the adopted non-affine system is

X1 X1 n (34)
%] [*2+0.15u% 4+ 0.1(1 + x2)u + sin(0.1u) Wo:

where x = (X1, X) are the state variables, u is the control, w, =
sin(10xrt). The constraints to be enforced are —(2.5,2.5) < x <
(2.5,2.5), =25 <u < 25.

The obtained results by applying r-KMPC to (34) (see Figures
7-9 in Zhang et al. (2021)) illustrate that the robustness of the
closed-loop control system and the point-wise convergence of the
nominal system are verified. Under no external perturbation, the
state and control of r-KMPC can converge asymptotically to the
origin. For more details of simulation results and implementation
aspects see Zhang et al. (2021).

5. Conclusions

In this paper, we proposed a robust tube-based model pre-
dictive control scheme, i.e., r-KMPC, for nonlinear systems with
additive disturbances as well as state and control constraints. The
proposed r-KMPC relies upon a lifted global linear model built us-
ing Koopman operators. The closed-loop robust controller is com-
posed of a nonlinear control action computed by an online linear
MPC using the nominal Koopman model and a nonlinear static
state-feedback policy. The robustness of the closed-loop system
was verified under internal modeling errors and exogenous dis-
turbances. Moreover, the asymptotic stability of the controlled
system under no exogenous disturbance was proven under mild
assumptions. Simulation results verified the effectiveness of the
proposed approach.

Appendix. Statistical validations of sets Y and V

The derivation of ¥ and V relies upon a relaxed risk eval-
uation condition according to the law of large numbers (see
also Hertneck et al., 2018) :

P (1600 — Gl =€) <

where §, = 2exp (—2Le?), G(f;) and G(f;) are the empirical and
true risk respectively, f; i1s the learned function, and L is the
number of samples. For fixed f}, §; — 0 as L — +o0.

Loss function for validation: Let L tuples (u;, W, X;, X;") be gen-
erated under Assumption 1. Let w; = ¥(x;") — 5 where §
is computed by (8) with § = ¥(x;) and & = u; and let v; =
x; — C¥(x;). We define the loss function as

0 ifg, =1
1 otherwise

(A1)

+

Ui, xi, %) = { (A2)

where » = w, v in turns, gz, = 1 stands for w; € W and &y =1
stands for v; € V.
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With (A.2), for any * = w, v, the empirical risk of the learned
linear predictor is G, = %Z; £, (ui, xi, x;7). In view of (A1),
P, =0)=0G, < 6* + €,. For the validation of uncertainty sets,
we choose G, > G, and 8, > 0, then we check if for the L samples
that Hertneck et al. (2018)

at Z a* + 6*
with a confidence level of 1 — &, €, = /—log (0.53,)/2L.

(A3)

Algorithm 2 Computation of W and v

1) Set initial sets YV, and V;
2) Set G, > G, and §,, we calculate G, with (A2) and €, =
+/—log (0.56;) /2L, for x = w, v;
if Condition (A.3) is satisfied for x = w (or x = v) then
3) Return W, (or V;);
else
4) Increase L or enlarge the size of W (or V});
5) Go back to step 2);
end if
6) Set W = y, W, and V = y,V; where y,,, ¥, > 1.

The computation steps of W and V are given in Algorithm 2.
For a detailed description of the rationale behind the uncertainty
scaling in step 6) of Algorithm 2 please see Zhang et al. (2021).
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