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Abstract
The use of open-source packages is a common
practice among developers. It decreases the de-
velopment time and improves maintainability. But
adding a dependency to a project comes with in-
herit risks such as introducing vulnerabilities. A
few solutions that help visualize all of the depen-
dencies of a project exist already. However, none
provide the capability of selecting a moment in
time for analyzing the generated structure. This re-
search paper formalizes a time-based dependency
graph that can be generalized to any ecosystem
and then showcases its usefulness by analyzing the
Python ecosystem throughout time. The results in-
dicate that the Python ecosystem does have a sub-
set of packages that are the most used - such as
numpy and requests - but overall it is well bal-
anced, meaning that it is able to withstand the re-
moval of one of its most used packages. The data
structure also provides satisfactory results, having
a 89.6% accuracy when compared to the Python re-
solver. The findings of this study can be used to
improve existing dependency networks.

1 Introduction
Each programming language has libraries - content created by
other users and publicly shared for the common good. Most
libraries are built on top of other libraries. There is no need
for a developer to reinvent the wheel each time they want to
build something. This means that most libraries depend on
a subset of other libraries. Due to this relationship, the en-
tire concept can be imagined as a graph, where the nodes are
libraries, and the (directed) edges represent the concept of de-
pendency.

Libraries are hosted on code repositories like PyPI [1] or
npm [2]. From these repositories, using package managers
like pip1 and npm, developers can quickly install any needed
dependency by using a simple yet powerful Command Line
Interface (CLI). These tools recursively resolve the library re-
quirements specified in each of the dependencies and install
them on the host system.

Reliance on various dependencies (directly or transitively),
while reducing development time and increasing efficiency
[3], has the unwanted side effect of introducing vulnerabili-
ties which can then be abused by malicious third parties to
disrupt the normal workflow of various applications. One
well known example of this happening is the Equifax inci-
dent, when 100.000 private credit card records were leaked
due to an outdated dependency [4]. Another side effect is that
the entire functionality of a system is entrusted to third par-
ties that might turn malicious. An example of this happening
is the faker.js corrupt update [5]. The maintainer of the li-
brary wanted to showcase the reliance of projects (especially
that of closed source commercial projects) on their library, so
they pushed an update that introduced an infinite loop, crash-
ing thousands of projects worldwide.

1https://pip.pypa.io/en/stable/

As software engineering evolves, the depth of the transi-
tive dependency chain also increases. Even now, it is chal-
lenging, if not impossible, to manually analyze such relations.
As such, automated tools, such as Libraries.io [6], were de-
veloped. The purpose of such tools is to clearly inform the
developer of all the dependencies their project requires and
signal any possible vulnerability. But Libraries.io only shows
the most recent compatible versions of dependencies.

What happens if historic data about vulnerabilities is
needed? Researchers might be interested in analyzing how
the vulnerability of an ecosystem manifests throughout time.
But, currently, the only way to generate a dependency graph
for a given time frame is to find data specifically for that pe-
riod, then analyze it. This problem is even more apparent
if vulnerabilities from different time frames need to be an-
alyzed (for example for a comparative analysis of possible
vulnerabilities throughout time). The need for a dependency
graph data structure that takes as input a regular dataset (with
timestamps) and then allows time filtering based on the re-
lease dates of each package becomes apparent.

This leads us into the the goals of this research: to construct
a time-based dependency graph and to use this data structure
to analyze the most used Python packages at a given time.
This idea can be formalized into the main research question:
What are the most widely used Python packages at a given
time? To answer this, three sub-questions need to be an-
swered first:

• RQ1: How would a data structure for package depen-
dencies that contains a time component be designed?

• RQ2: Does the introduction of time make backwards
resolution precise?

• RQ3: What are the most widely used Python packages?
Answering these sub questions will provide the foundation

needed in order to answer the main research question.
Since this paper focuses on the dependency graph of

Python packages, some context needs to be provided first.
This language was chosen because it represents one of the
most popular programming languages 2, being the go-to lan-
guage for both data science and hobbyist programming. It has
a central repository, PyPI, and provides a tool that can fetch
dependencies - pip. To install dependencies, developers can
either do it one by one or by providing a requirements.txt file.

The research paper will be presented in the following struc-
ture. Background about the researched field and information
about existing studies can be found in Section 2. The method-
ology of the project is described in Section 3. Section 4 show-
cases the results of the research. The ethical aspects of this
research and its reproducibility are discussed in Section 5. In
Section 6, the results are investigated. Section 7 summarizes
the most relevant aspects of the paper and a few ideas for fu-
ture improvements are discussed.

2 Background
This section will focus on explaining some of the terminology
that will be used throughout this paper. Then, some related

2https://web.archive.org/web/20220606182015/https:
//www.tiobe.com/tiobe-index/
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https://web.archive.org/web/20220606182015/https://www.tiobe.com/tiobe-index/
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work is analyzed.

2.1 Terminology
• Transitive Dependency. An indirect dependency re-

sulting when direct dependencies also have their own
dependencies.

• Semantic Version. A standard that specifies strict rules
about the format of released versions of a piece of soft-
ware. The standard format of semantic versioning is
MAJOR.MINOR.PATCH .3.

• Dependency Graph. A graph where each node repre-
sents a package or package version and the edges repre-
sent the dependency/dependent relationship.

2.2 Related Work
Time-Based Graphs
The idea of introducing time as a component of regular graphs
has been discussed in past research. Various versions, ranging
from simply adding the time component to the edge [7] to
creating an entire framework based on the time component
[8] were explored. The overarching idea is the same: time
acts as a filter. The graph contains all possible edges and
when a time constraint is introduced, only the connections
that conform with it remain viable. This is a core idea of the
graph that will be explained later in this paper.

Dependency Graphs
Analyzing the dependency graphs of programming languages
is an emerging field. Kikas et al. [9] conducted a broad re-
search, focusing on the structure and evolution of package de-
pendency graphs for JavaScript, Ruby and Rust. Their work
is based on gathering meta-data about packages from various
sources (central repositories for each language, GitHub etc.),
structure it in a dependency graph and then analyse it. The
proposed graph structure heavily influenced the design of the
graph that will be discussed in the next sections. Their study
concludes that the number of packages are highly vulnerable
to the removal of most used packages is increasing, while the
removal of any other package has a decreasing vulnerability .

Wang. et al. [10] conducted research focused on the de-
pendency graph of the Ubuntu operating system. While the
research does not focus on the structure of the graph itself,
it provides a few dependency graph analysis techniques that
can be applied to the graph that will be constructed for this
research.

Python Dependency Ecosystem
The python dependency ecosystem has been explored in the
past. Ma et al. [11] analyzed the GitHub Python ecosystem in
order to find its dominant packages. Their research focused
on calculating centrality measures for all the Python packages
that had more than 20 stars on GitHub. Their findings indi-
cate that only a small number of projects have large values for
their centrality measures. A thing to note is that this research
only encompassed approximately 20,000. Bagmar et al. [12]
also conducted research in this field. The focus of their re-
search was to find vulnerabilities that could be exploited. A

3https://semver.org/

side effect of this process is that they also produced a ranking
of the top 10 Python packages based on the amount transitive
dependents each of them has. Both of these studies provide a
way of ranking the most used packages in the Python ecosys-
tem. The findings of this paper will be compared to their
findings in Section 6.

Synthesis of related work
While there is previous research done on both time-based
graphs/networks [7, 8] and regular dependency graphs [9,
10], the field of time-based dependency graphs remains
mostly unexplored. This opens up the opportunity of com-
bining previously found concepts into something new, a time-
based dependency graph data structure. The research done on
the Python dependency ecosystem [11, 12] will provide a way
of validating the results obtained from this research.

3 Methodology
This section will explore the methodology used throughout
the research project. As previously mentioned, the goals of
this research are to construct a time-based dependency graph
and to use this data structure to analyze the most used Python
packages at a given time. To achieve this, a series of steps
need to be completed first. The subsections that follow will
each describe one step in this process.

3.1 Data acquisition
In order to generate a time-based dependency graph, metadata
about packages and their dependencies had to be collected.
This process took place during April and May 2022. To this
end, a few different data sources were explored:

• PyPI API [13] . The first attempt was to gather data
directly from PyPI using the APIs they provide. After
some research into this method, it was discovered that
their robots.txt file (a file that is used to let users know
on which endpoints scraping bots are allowed) disallows
access to the endpoints that would be needed for data
acquisition.

• Libraries.io [6]. This website provides metadata about
libraries and their dependencies (but only for the lat-
est releases). As such, it could be used as a source of
partial data that would allow further progression. Un-
fortunately, calls to the public API are heavily rate lim-
ited. This would result in a large number of hours being
wasted waiting around for an incomplete data set. The
last two data sources from this subsection are both faster
and include more data.

• Zenodo [14]. A previous project provides a dump of
PyPI metadata. This data dump is quite old and was
itself gathered from Libraries.io so it would not provide
any advantage compared to the other sources.

• Project Metadata Table - Google BigQuery [15]. This
dataset represents the official data dump as provided by
the team behind PyPI. It contains a large amount of data
but some entries are duplicates caused by authors updat-
ing the metadata of their libraries. These updates create
duplicates because the data set disallows changes to its

https://semver.org/


entries, instead only allowing appends to it. This is the
best overall data set, but processing it requires a substan-
tial amount of time due to its size. One of the greatest
drawbacks of this source is that it can be access only
with a Google account making its automated retrieval
quite hard.

• PyPI Package Metadata Cache [16]. This data source
was created by hooking into a deprecated PyPI API. This
data set gets updates as author update their libraries but
because of the usage of a deprecated feature it can’t be
used reliably. Because the data does not contain as many
duplicates as the previously mentioned source and is ef-
ficiently compressed, its size is more manageable. This
source was used for the beginning phases of the project
as an easier to use alternative to the Metadata Table data.

Each of these data sources were explored and in the end the
decision was made to further process the Project Metadata
Table as it provided the most accurate and complete version
of the data due to it coming directly from the PyPI team.

3.2 Data processing
The data set from Project Metadata Table contained a large
amount of information. Fortunately, not all of it was nec-
essary for the purpose of this research, so only the name,
versions, upload time and required dependencies of each
package had to be extracted using the Big Query web appli-
cation.

A common JSON structure was decided upon by the team
as an expected input data format for creating the graph - Fig-
ure 1. A common format had to be chosen because the goal of
the software created as part of this research is to have a way
to construct time-based dependency graphs for multiple pack-
age repositories. It also makes it easier for future research to
have a format that can be used as a base. The shown format
was chosen because of its simplicity. Because it only uses
dictionaries/maps, its parsing and conversion into a different
data structure would prove trivial later down the line.

At this point, the data still contained duplicates and needed
to be normalized in the previously mentioned format. To
this end, the repository https://github.com/AndreiPurcaru/
PyPIAnalyser was created. It contains a series of Jupyter
Notebooks and Python scripts that allow the data to be
cleaned and processed. This can be replaced by any other
software that is able to convert the raw data into the previ-
ously mentioned JSON format.

3.3 Graph Design (RQ1)
The team spent the first couple of weeks researching the field
of dependency graphs. During this time, a few designs were
created and their usefulness was debated:

• Node: name, version. Edge: timestamp-start,
timestamp-end. This design closely resembles the work
done in [7]. It was decided against this design because in
order to calculate the start and end of a timestamp, mul-
tiple comparisons would need to be done. These com-
parison would need to happen between each consecutive
version of a package. They could provide insights into

Figure 1: JSON structure that was used as a middle step between
raw data and the graph data structure

the lifetime of a version, but that’s not the goal of this
paper.

• Node: name, version. Edge: timestamp. This design
was not used because we decided that instead of hav-
ing to also store information on the edges, it would be
cleaner to store all of the needed information in the
nodes.

• Node: name, version, timestamp. Edge: no information
stored. The nodes contain all the information about each
specific version of a package. The directed edges rep-
resent the dependency/dependent relation, with the di-
rection starting from the dependent and going towards
the dependency. This is the final design. An example
(using one of the dependencies of pandas) of this design
can be seen in Figure 2. As it can be seen, the struc-
ture of graph is similar to that proposed by Kikas et al.
[9]. The only difference is that instead of storing just
the name and the version of each package, information
about its release timestamp is also kept. This will allow
time-based querying of the graph.

As a result of this design, a formal definition of the state of
a time-based dependency graph in a given time frame can be
constructed:

G[t1,t2] = (V,E) (1)
Where:

• t1, t2 are the timestamps that define the time frame of
the state

• V is the set of all package versions, where v ∈ V if
vtimestamp ∈ [t1, t2]

• E is the set of edges, where an edge e = (a, b) ex-
ists only if the package version a depends on package
version b

• G is a directed graph

https://github.com/AndreiPurcaru/PyPIAnalyser
https://github.com/AndreiPurcaru/PyPIAnalyser


Figure 2: Example for the Final Design of a Time-Based
Dependency Graph

(using Pandas and one of its dependencies)
The node from which the arrows start represent the dependent

while the node at the other end represents the dependency. Dashed
arrows represent a possible relation but at a later timestamp while
full arrows represent the relation at the release of the dependent.

Note: time is abstracted for brevity

3.4 Graph Creation
The time-based data structure represents the core element of
this research. It also represents the part of this project that
was conducted as a team. As such it was designed, imple-
mented and tested in collaboration. The logic behind cre-
ating the graph can be seen in Algorithm 1. This can be
implemented in any programming language, but a low-level
language is recommended since the abstractions provided by
higher level languages might make the implementation use
more memory. The final implementation we constructed is
available here: [17]

Algorithm 1 Creation of time-based dependency graph

Require: A JSON List of Packages in the normalized JSON
format (Figure 1)

Ensure: A graph that contains each version of each package
as a node, following the format mentioned in 3.3
listOfPackages← parseJSON()
graph← createEmptyGraph()
for package← listOfPackages do ▷ Create the nodes

newNode← createNode(package)
graph.nodes.append(newNode)

end for
for package← listOfPackages do ▷ Create the edges

for dependency ← package.dependencies do
newEdge← createEdge(package, dependency)
graph.edges.append(newEdge)

end for
end for

While the process was not complicated, a few caveats that
had to be taken into account are:

• Different package managers use different semantic

versioning notations. While PyPI uses the notation
specified in PEP 440 [18], npm and maven (and prob-
ably others) use their own particular notation. To solve
this, care should be taken in the selection (or creation)
of a semantic versioning library that can handle multiple
notations.

• Different data sources use different timestamp for-
mat. This is something to look for when implementing,
especially if the goal is to accept normalized data from
different package managers. This can also be fixed by
introducing a timestamp specification to the normalized
JSON format.

• Some packages do not specify their dependencies.
Even though PyPI requires projects to include all of
their dependencies in a specific file, some authors do not
abide by this requirement. This problem is not really
solvable, and it mostly shows one of the weaknesses of
using dependencies.

• Some packages do not specify a semantic version con-
straint. On the same note as the previous caveat, authors
sometimes do not specify a strict enough semantic ver-
sioning. While using the notation ”numpy” to specify
that the project is using numpy works, specifying the
version that was actually used for the development of the
package is safer ”numpy >= 1.21.0”. This has little
impact on the research, mostly in the fact that libraries
that specify a generic dependency will have connections
to all versions of that package (as they are all possible
dependencies).

4 Results
This section will showcase the results obtained during this
research project.

4.1 Graph Structure
When it comes to the generation of the graphs, 3 variations
were created in order to balance data-size and creation speed
with accuracy. The statistics of the generated graphs can be
seen in Table 1. The first two graphs were generated using
data from the Metadata Table provided by PyPI. The differ-
ence between these two entries is that for the second one, all
of the dependencies that were tagged ”extra” were removed.
These dependencies are usually used for specifying extra re-
quirements for specific processor platforms or for letting de-
velopers know what requirements are needed for contributing
to said dependency. As it can be seen, this removed around 93
million edges, from 454M to 361M. The number of packages
and package versions (nodes) are the same for both graphs,
420,000 and 3,6M respectively. Due to them having the same
amount of nodes, the average number of versions per pack-
age is also the same: 8,76. The last source that was used is
the Metadata Cache from Repology. This dataset is compar-
atively smaller, containing 169,000 packages and nodes and
350,000 edges. Since it contained exactly one version for
each of the packages stored, the average number of versions
per package is 1. All of these graphs use the design that was
described in Section 3.



Table 1: Summary of Datasets

Source Metadata Table Metadata Table Metadata Cache
Applied Processing Keep All Remove Extra Keep All
Packages 420K 420K 169K
Nodes/Versions 3,6M 3,6M 169K
Edges 454M 361M 350K
Average Versions per Package 8,76 8,76 1,00

Table showcasing a summary of the used datasets. ”Keep All”
means that all of the dependencies of each package were taken into

account. ”Remove Extra” means that extra requirements (for
example testing requirements) were removed

Due to its reduced size, the Metadata Cache graph is the
only one that can be visualized. Graphia [19] was used to
generate the visualization that can be seen in Figure 3. The
red circles represent clusters of packages. For example, the
cluster in the top-right represents code used by the the Al-
ibaba Group4. When talking about connected components,
the central component represents the biggest (weakly) con-
nected component in the graph, while the components on the
margins represent small projects that only rely on their own
dependencies or on no dependencies at all. Due to the way
the graph is drawn, it can also be seen that the more central a
node is, the more dependents it has.

Figure 3: Visualization of Dependency Graph for 169K distinct
package versions (zoomed in and cropped for showcase purposes).

Circles represent groups of projects that stem from a common
library.

4.2 Accuracy of Resolution (RQ2)

To test if the introduction of time keeps the same level of
precision as the ground truth (in this case pip), a basic test
was conducted. 10 package versions were arbitrarily cho-
sen. Pip was used to install each of them and resolve their
dependencies in a fresh environment. Then, pipdeptree [20],
dependency tree generation tool, was used to generate all of
the dependencies (both direct and transitive) of the package
version. The graph was then generated (using the Metadata
Table without extra requirements) and queried about the same
package version. In order to calculate the accuracy of the res-
olution, the following formula was used:

4https://en.wikipedia.org/wiki/Alibaba Group

Let:
• A be the set of transitive dependencies resolved by pip
• B be the set of transitive dependencies resolved using

the implemented algorithm
• E be the number of dependencies that have a correct

name but incorrect version
We calculate the accuracy of the algorithm by this formula:

Acc =

{
1− |A|−|(B∩A)|+0.5∗E

|A| , if |A| ≠ 0

1, otherwise
(2)

This formula doesn’t take into account if the implemented
resolution algorithm contains more dependencies than the
ground truth. This is due to the fact that the implemented
algorithm is also able to select platform specific dependen-
cies, while pip only installs the dependencies required for the
system it is being ran on. Because of this, we decided to not
account for this case. Another caveat is that sometimes the
algorithm selects the correct dependency with an incorrect
version. This is most likely caused by the fact that the col-
lected data is at this point one month old while pip was ran in
the present. To make the accuracy calculation more balanced,
the calculation gives 0.5 per each dependency in this case.

The calculated accuracy per package version can be seen in
Figure 4. Overall, the accuracy of the algorithm is 0.896. This
is a good result, considering the fact that the implementation
is naive and that there is a discrepancy between the time when
the data was collected and when pip was used.

Figure 4: The accuracy per package version as calculated using
Equation (2). The averaged accuracy is 0.896.

4.3 Finding the most used package versions (RQ3)
In order to answer the third proposed research question,
PageRank5 was employed. The choice of using it was three-
fold. Firstly, Gleich [21] has indicated that the algorithm can
be successfully applied to graphs. The two other reasons were
the algorithm’s speed and popularity. Its popularity made it so
we were able to have an already built implementation of it in

5https://en.wikipedia.org/wiki/PageRank
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the graph library that was used for this project, while its speed
meant that it could be applied to the largest created graph with
relative ease and without incurring large wait times.

The Metadata Table without the extra dependencies was
used for this process. This was done in order to capture the
scores of packages and their versions across a large spectrum,
both in terms of time and versions per package. Figures 5 and
6 represent the obtained results. A good thing to note is that
the scores resulting from applying PageRank on the graph
always add up to 1. This means that the ranking also provides
insights into the distribution of the data.

Figure 5: Top 10 packages of all time calculated using PageRank.
The scores were calculated per individual package version, then

aggregated into one score per package

Figure 5 contains a ranking of the top 10 most used pack-
ages from the whole dataset. This data was generated by
running PageRank on the entire graph (without filtering for
a specific time frame), then aggregating all the results by the
package name. Packages numpy and requests come first with
a score of 0.024410 and 0.022157 respectively. This makes
them the most used libraries in the Python ecosystem.

With this data, a discussion can also be held about the vul-
nerabilities of the Python ecosystem. In this context, we de-
fine vulnerability in the same manner Kikas et al. [9] do:
”fraction of the network nodes that is impacted by a removal
of a single package or a single package version”. As it can
be seen, even the scores of the most used packages are quite
low (< 0.025), meaning that even though some libraries can
be marked as ”most used”, the ecosystem is balanced. Due
to this, the overall vulnerability of the ecosystem is quite
low. While removing a version or even the entirety of numpy
would impact a large number of packages, it wouldn’t bring
the whole ecosystem down. Nevertheless, it is good to un-
derstand the importance of the most used packages in order
to make the community aware that some packages are objec-
tively more critical than others.

Figure 6 contains a ranking of the top 10 distinct most used
package versions of all time. The PageRank scale is 10 times
smaller than that of Figure 5. This is because this data was
not aggregated, so each version represents a portion of the
total PageRank of the entire package. This 10 times factor is
also reinforced by the Average Versions per Package statistic

Figure 6: Top 10 package versions (for distinct packages) of all
time calculated using PageRank. Note: the PageRank scale is

different than that of Figure 5

that was presented in Table 1.
This data can provide insights into how different packages

handle versioning and releases. Let’s consider the typing
package and numpy. When comparing packages, numpy is
clearly ahead of typing. This changes drastically when com-
paring package versions, with typing’s 3.7.4 release being
clearly in the lead, and numpy’s version 1.22.3 coming in the
7th place. After checking each of their PyPI [1] pages, the
cause of this discrepancy became clear. The typing package
has rare releases, meanwhile numpy regularly has monthly re-
leases. Another reason for this difference might be that typing
does not use the standard semantic versioning which might
create problems in the implementation. When comparing re-
quests with numpy, the same trend emerges. The requests
package releases less frequent than numpy.

Another aspect than can be seen in this data is that the top
package versions are among the latest ones available in the
processed dataset. This means that the Python community
prefers to use the latest available release of the dependency
they need. This in turn decreases the risk of vulnerabilities in
the entire ecosystem.

4.4 Finding the most used package at a given time
(RQ)

In order to answer the overarching research question, a pro-
cess similar to the one in the previous subsection was con-
ducted. For each year between 2015 and 2022, the graph
was filtered to only contain package versions released that
year (between 1st of January and 31st of December). Then,
PageRank was applied to each of the filtered graphs. 7 pack-
ages that presented interesting trends throughout the years
were selected and their PageRank score was mapped into a
plot that can be seen in Figure 7. Note that the aggregated
PageRank scores were used, not the per version ones. Quite
a few interesting trends emerge from this data.

When looking at the PageRank scores throughout the
years, the trend of relying more and more on a set of ”core”
packages emerges. While the scores of the top rated packages
in 2015 was just above the 0.005 threshold, the scores of the
top rated packages in 2022 are well into the 0.030 to 0.040



Figure 7: Popularity in terms of usage (calculated as PageRank
scores) of 7 selected packages between 2015 and 2022

range. This means that in 2015 the importance of packages
was more evenly distributed than in 2022. Even thought this
trend might sound alarming, when looking at the whole pic-
ture, the highest PageRank score is still low enough to not
indicate that the ecosystem is vulnerable to the removal of a
singular package or package version. This trend can be seen
as the community realizing the importance of not reinventing
the wheel each time they create a package.

Some trends can be materialized when taking the packages
one by one in isolation:

• torch (PyTorch) appeared in the dataset in 2018. Its
score almost doubled from 2018 to 2020. Even though
the usage of Machine Learning heavily increased be-
tween 2015 and 2022, the usage of torch didn’t increase
enough to make it stand out. This is most likely due to
the fact that this analysis focuses on what packages are
being used by other packages in the graph, while torch is
a package that is used mostly in applications rather than
packages/libraries.

• numpy was always one of the most used packages, but
its usage climbed a lot between 2018 and 2019. Even
now, in 2022, its usage is one of the highest.

• Django peaked in 2017. The decrease in popularity
might be attributed to FastAPI entering the web frame-
work scene in 2018.

• typing-extensions had a boom in popularity from 2020

to 2021. This strange trend was also confirmed by it
still being one of the most used packages in 2022. This
might indicate that the Python community is becoming
more aware of the importance of having types in their
code.

There are also some interesting interactions that can be vi-
sualized in this data. Requests has urllib3 as a dependency.
This is why their scores are weakly correlated. This correla-
tion is more visible in recent years. From 2020 to 2021 when
urllib3’s score decreased, so did requests’ score. In the 2021-
2022 period, the exact effect occurs, only this time both in-
creased in popularity. Pandas depends upon numpy. As such,
the same trend that is seen in the urllib3-requests relationship
can be seen here. The difference is that urllib3 and requests
compete in the same space (providing http operations) while
numpy and pandas don’t. This can be seen when looking at
the two pairs in parallel. When requests’ score dropped in
2019, urlllib3’s increased by a similar amount. Meanwhile,
the scores of numpy and pandas fluctuate together.

5 Responsible Research and Reproducibility
Responsible Research
Due to the nature of this research, the ethical risk that is gen-
erated is minimal. Still, there are a few points that need to be
addressed.

All of the data that was used for this project has been gath-
ered from reputable sources and in accordance with all of the
mentioned licensing agreements. The only personal infor-
mation that can be gathered from the data sources that were
mentioned in this report is the name of the author (only if us-
ing the PyPI Metadata Cache source - see 3.1), but authors
are informed about this possibility when they agree to upload
their project on PyPI. If any operation was disallowed, that
approach would be stopped. A good example of this happen-
ing is the discovery that PyPI disallows scripts from accessing
some of its API’s (see 3.1).

When it comes to the results that were created during this
project, they and the methods used to generate them are fully
explained. Also, the results come from objective calculations,
as to avoid any bias from corrupting them.

Reproducibility
When it comes to reproducing this research, utmost attention
was paid to writing Section 3 as clearly as possible. This in
turn should allow other researchers to follow the exact steps
that were taken to reach the conclusion. The final data that
was used for the generation of the results (both in raw and
processed form), as well as the results generated during this
project are publicly available [22]. All of the sources that
were explored are also clearly mentioned in Section 3. The
code repositories that were used for this research project are
(and will remain) Open Source [17]. This was done to main-
tain transparency and to allow future researchers to start from
where we left off instead of having to redo all of this work.



6 Discussion
This section will focus on comparing the results of this re-
search with other studies. It will also include a list of limita-
tions that impacted the creation of this work.

6.1 Results
Graph Structure
Since the graph structure is heavily inspired by the work of
Kikas et. al [9], a similar discussion about it can be held.
Because the research community has not settled on a singu-
lar method for generating dependency graphs, it is hard to
conclude if the chosen representation is the best way of struc-
turing said data structure.

While the work of Kikas et. al [9] predicted that only us-
ing package metadata (compared to using package version
metadata) will not be sufficient in the future, we still haven’t
reached that point. For example, the work of Bagmar et. al
[12] occurred in 2021 (data collected in 2019), 4 years after
the publication of the study conducted by Kikas et al. The
work of Bagmar et al. is mentioned because it is one of the
more recent analysis of the Python ecosystem.

When discussing the structure from a time-based graph
standpoint, no research that was encountered during the writ-
ing of this paper mentioned storing the timestamp inside of
the nodes. The work of Wang et al. [7] focuses on having
time information in the edges, while the work of Cattuto et
al. [8] focuses on creating an entire framework built around
the idea of time. Fortunately, the core ideas of the time-based
dependency graph are abstract enough that they can be ap-
plied to a different graph representation.

Package Popularity
While Ma et al. [11] and Bagmar et. al [12] used differ-
ent metrics than this research to evaluate the importance of a
package to the Python ecosystem, some similarities did oc-
cur. In both studies, just like in this one (Figure 5), numpy,
requests and six were in the top 10. This gives a degree of
validity to the findings produced by this paper. An interesting
point is that in the results of Ma et al. [11], pandas doesn’t
get a place in the top 20. This is due to the fact that at the
time when this research was conducted (2016) Pandas had
just been released. This also confirms the findings of this pa-
per (Figure 7). Meanwhile, typing-extensions is not listed in
any of the studies. This also support the results of this paper,
as it can be clearly seen (Figure 7) that it rose in popularity
only recently (the data for the studies was collected in 2016
and 2019 respectively).

6.2 Limitations
This section will focused on the limitations of this research
paper. It will mention any ideas for circumventing these lim-
itations.

Memory Usage
The implementation created for this paper [17] uses an ex-
treme amount of RAM. For loading the Project Metadata Ta-
ble [15], without any extra requirements 56 GB of memory
are required (69 GB for also loading the extra requirements).
This amount was recorded after an attempted optimization of

the graph library that was used - removing one of the maps
that was used for storing the edges. This optimization theo-
retically halved the memory usage. Overall, the amount of
memory used by the code is still abnormally high. A sugges-
tion could be switching to a different programming language
for the implementation. In the provided repository, the ba-
sic data structure is also written in Rust. The memory usage
was way lower than when using the Go implementation. This
might prove to be a better approach than the current one.

Dependencies with Special Requirements
Some packages have special dependency requirements de-
pending on the platform they are being installed on. These
dependencies are tagged similarly to how extra requirements
are tagged. For this paper, all platform specific requirements
were treated as regular requirements. But, future research
might want to focus on platform specific requirements. This
would require minimal change in the repository, but the pro-
vided dataset would then become invalid.

Data not Clean Enough
Even though processing was applied to the data, it is still not
in its cleanest form. As it can be seen in Figure 3, there are
a lot of free floating nodes (not connected to any other node).
This is due to the fact that packages with no dependencies
and no dependents were not remove from the dataset. While
it doesn’t impact the results drastically, it might save quite a
bit of processing time and memory to not even consider these
packages.

Project Metadata Table Requires a Google Account
This is not the biggest limitation of this research but it has
to be mentioned. Due to the fact that the main dataset used
for this paper comes from Google BigQuery [15], a Google
account is required to access it. Unfortunately, to be able
to download it, a Google Cloud Project needs to be created
and a lot of steps need to be taken. To alleviate some of this
nuisance, the dataset used for this project was included in the
Zenodo upload [22]. But if new data needs to be acquired,
the process will take a bit of setup.

7 Conclusions and Future Work
The main contributions of this paper are: (i) a data structure
that introduces the time component into dependency graphs;
(ii) an analysis of the time-based dependency graph con-
structed for Python packages. The data structure represents
a step into the domain of time-based dependency graphs. Its
formalization enables it to be implemented in any program-
ming language. It also allows properties to be derived from it.
When it comes to the analysis part, multiple trends were dis-
covered. It also became apparent that the Python ecosystem
has evolved over the years, with developers using top pack-
ages now more than in 2015. The analysis also showed that
from a popularity of usage standpoint there aren’t any pack-
ages that, once removed, would collapse the entire ecosystem.

This research opens up the way to improve multiple other
venues. One of the first recommendations would be the reim-
plementation of the existing code base in a different, more
memory efficient graph structure or even a different program-
ming language. The general goal of future research should



be to optimize the current prototype to make it viable for real
world applications. More in depth research could also be con-
ducted on the specifics of particular ecosystems at specific
times.
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