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ABSTRACT

Magnetic Resonance Imaging is a painless procedure to produce high-resolution diagnostic images. Today,
it is one of the essential clinical imaging modalities. One of the major challenges involved with this imaging
modality is its long scanning time. Parallel imaging in combination with compressed sensing has overcome
this challenge to a great extent. As a quid pro quo for this reduced scan time is the increase in image re-
construction time. An extensive research is focused to develop algorithms to make the image reconstruction
faster. Fast Iterative Shrinkage Threshold algorithm is one of these algorithms (which is clinically viable) that
speeds up the image reconstruction process.

The present project focuses to speed up the particular algorithm, fast iterative shrinkage threshold algo-
rithm, by preconditioning the convex optimization problem. This work proposes two new preconditioners,
specifically in the context of the given algorithm, but otherwise can be used with different frameworks solving
similar problems. The first preconditioner is a degree one polynomial of the system matrix and the second
preconditioner is a block diagonal matrix where each block is a circulant matrix. The preconditioners are
evaluated using two stopping criteria: residual error and relative error. The computation complexity of both
the preconditioners are evaluated by measuring the floating point operations and total time consumption.
Additionally, the simulations are performed by undersampling the data at two factors r = 2 and r = 4.

The results indicate that the polynomial preconditioner reduces the overall time by a factor of 0.25 how-
ever is computationally expensive to construct. On the other side, block diagonal circulant preconditioner
is extremely cheap to construct and evaluate on a vector but does not provide the desired results within the
current framework. The study concludes that a suitable preconditioner for FISTA is the one that without
affecting the largest eigenvalue of the system matrix improves the condition number and simultaneously is
cheap to construct and evaluate.
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1
INTRODUCTION

Introduction of medical imaging techniques in 1895 brought a whole new perspective in the field of diagno-
sis with the discovery of non-invasive diagnostic techniques. Amongst them, a significant and widely used
technique is Magnetic Resonance Imaging (MRI). History of MRI can be traced back to the 1970’s and its foun-
dations even back to the 1930’s. MRI is based on the phenomenon of Nuclear Magnetic Resonance (NMR)
where atomic nuclei possessing certain magnetic properties when subjected to a strong static magnetic field
are perturbed by the selective absorption of radiofrequency (RF) waves. This phenomenon was discovered
and validated by Isidor Isaac Raabi in 1938 [1]. Later, in the 1970’s, Paul C. Lauterbur used this phenomenon
to create MR images [2]. Since then, significant developments have taken place producing commercial MR
scanners which in turn has made MRI a clinically viable imaging modality.

1.1. MOTIVATION
Today, MRI is an essential non-invasive technology for radiologists. Its importance can be owed to three fac-
tors: (i) no risk of radiation exposure (ii) tomographic scanning and (iii) high-resolution anatomical images.
It uses the NMR phenomenon to generate high-contrast images to look inside the human body. However,
despite being a vital and pervasive imaging modality, it has a major drawback of long scanning time. This
poses a problem for claustrophobic patients who have to remain inside the enclosed machine for long scan
sessions. Additionally, this reduces the patient’s compliance which degrades the quality of the scan. The latter
problem occurs especially with pediatric patients. These difficulties stimulated the research to find methods
that accelerate the scan session time in MRI.

The invention of Parallel Imaging (PI) in the late 1900’s addressed this well-motivated problem. PI uses
multiple independent receiver coils, which are spatially sensitive, to measure the NMR signal. The spatial
sensitive coils help in localising the NMR signal themselves, thereby, reducing the phase-encoding steps and
accelerating the scan session. In other words, this means that the measured data is lesser than that suggested
by the Nyquist criterion leading to aliasing artefacts in the image. Still, it is possible to obtain the true image.
This is achieved by using the information of the sensitivity profiles of each coil in solving the reconstruction
problem. However, there is a theoretical limit up to which a scan session can be accelerated. To accelerate
it further, Compressed Sensing (CS) methods are used with PI. CS allows measuring even less data than sug-
gested by the Nyquist criterion and recovers the image by using prior information. This prior information
exploits the sparsity representation of the image in a certain transformed domain. Combination of PI and CS
is used to obtain high-accelerated scan sessions.

A complete scan session includes the data acquisition time and the time taken to reconstruct the image.
Although PI and CS reduce the data acquisition time they subsequently increases the image reconstruction
time. The increased reconstruction time can be owed to the additional work that has to be performed because
of data undersampling which results in an ill-posed model of huge size. Solving such problems with direct
methods is infeasible. Hence, approaches involving iterative procedure are explored to obtain the solution of
these problems. The current model of PI-CS is formulated as a basis pursuit problem where the objective is
to find the minimum `1 norm solution to an underdetermined linear system. Using conventional gradient-
based algorithms for basis pursuit has a major drawback of slow convergence rate, thus, restraining their use.
Alternatively methods that solve the `1 norm problems are considered. The literature has abundant `1 solvers

1



2 1. INTRODUCTION

with its particular application in medical imaging. Selection of a particular algorithm depends on the user
implementation as some may provide a stable solution at the cost of slow performance whereas others might
prove to be faster methods with unstable behaviour. For clinical purposes, stable methods are of course the
reliable choice.

To further improve the clinical application it is required that the method is not only stable but also exhibits
faster convergence. One way to achieve this is by preconditioning the system with a matrix that in some sense
approximates the inverse of the system matrix. This improves the condition number of the linear system,
thereby, improving the rate of convergence. However, finding a preconditioner is a challenge, especially when
the system matrix is only available as a callback function that performs the matrix-vector product. Implicit
system matrix constraints the found preconditioner to be available as a callback function. This stems the
need to find suitable preconditioning techniques for clinically viable iterative solvers such that the overall
performance of the MR system is improved.

1.2. RESEARCH QUESTIONS
Preconditioning techniques in general context is a well-researched area, however its application in PI-CS
problems ([3][4][5][6]) is still in its evolving stage. The research considers the Fast Iterative Shrinkage Thresh-
old Algorithm (FISTA) as the `1 solver and aims to find a suitable preconditioner to accelerate the image
reconstruction time for parallel imaging-compressed sensing model with Cartesian trajectories. To realize
the objective, the study intends to find answers to the following relevant research questions.

• Is it feasible to fit preconditioner in the FISTA framework without compromising the quality of the
reconstructed image?

• Is it possible to find a preconditioner that increases the convergence without affecting the true solution?

• Due to memory limitations, it is not possible to explicitly store the preconditioner matrix. Is it possible
to implement the preconditioner as an operator?

• Can the preconditioner be extended to different frameworks?

1.3. THESIS OUTLINE
The report is structured as follows: chapter 2 provides a brief introduction to MRI followed by parallel imaging
in MRI. It also formulates the parallel imaging problem model and introduces the concept of compressed
sensing with parallel imaging. Chapter 3 describes FISTA and the existing preconditioning techniques. The
implementation of preconditioned FISTA with existing preconditioners is described in chapter 4. Further,
chapter 5 provides the derivation of the two new preconditioners and their computational implementation
is given in chapter 6. Chapter 7 presents the results and its discussion. Lastly, chapter 8 concludes the results
and describes the limitations and future work of the study.



2
PARALLEL IMAGING AND COMPRESSED

SENSING

The chapter begins with a short introduction to MRI and its working which is followed by a detailed discus-
sion on parallel imaging in MRI and the techniques to reconstruct the image in that case. Further, it describes
the principle of compressed sensing and how it can be combined with parallel imaging to reduce the recon-
struction time.

2.1. MAGNETIC RESONANCE IMAGING
To be able to comprehend the necessity of PI and its development, a brief description of the working of MRI is
presented. As mentioned before, MRI is based on the principle of the NMR phenomenon and consequently
requires nuclei that are NMR active. Generally, nuclei with an odd mass number or odd atomic number which
have a spin property attached to them are known to be NMR active. In our body, one such nucleus which is
available in abundance is, Hydrogen atom (1H). The spinning of these hydrogen nuclei induces a magnetic
moment making them act like a small magnet.

MRI utilizes a strong magnetic field that is in the order of 1.5 to 7T. This strong and static magnetic field
exerts a rotary force (or torque) on the magnetic moment of the nuclei which aligns the nuclear spins of
hydrogen atoms with that of the field. This system is then said to be in equilibrium. Now, when a radio
frequency current is exposed to this system, the system gets excited by the electromagnetic energy of the
RF wave thereby, making the system go out of equilibrium. Once this RF field is turned off, the spin system
returns to equilibrium by emitting radio-waves which carries information of different types of tissues. These
RF waves are proportional to the number of hydrogen atoms, the magnitude of the external magnetic field
and the time at which the waves are measured after the system is excited with an RF pulse. Thus, to generate
the MR image, the signals are spatially localised by the use of gradient coils that emit a semi-static strong
magnetic field to spatially encode the frequencies. It is important to note that the NMR phenomenon occurs
at the resonant frequency which in MRI is defined as Larmor frequency given by the Eq. 2.1.

ω= γB (2.1)

where ω is the resonant frequency, γ is the gyromagnetic ratio (for nucleus of 1H = 42.58 MHz T-1) and B is
the external magnetic field applied to the nuclear spin system. Gradient coils yield the Larmor frequency of
the system as a function of position. This means different positions of the system are excited with different
frequencies to encode the spatial position. This is called the frequency encoding step which can be used to (i)
select a slice in two-dimensional imaging and (ii) to localise the signal within a slice. However, frequency en-
coding can localise signal only in one dimension within the slice i.e. if it is applied in the horizontal direction
then it is not possible to discriminate between the pixels of a particular column. For reference, a represen-
tation of the same is shown in Fig. 2.1. Although signals from each column can be separated because each
column is excited with different frequency but it is not possible to separate signals from various pixels cor-
responding to the same column. For example, the red and green pixels in Fig. 2.1 can not be separated if
the signals are localised in one dimension. To be able to localise in the second dimension, spatial encoding
is done by a method known as phase encoding. This is also performed by the gradient coils in MR but this

3



4 2. PARALLEL IMAGING AND COMPRESSED SENSING

Figure 2.1: Representation of frequency and phase encoding in a slice.

gradient is used for a different purpose. In this case, gradient coils excite the system for a very short time
in which every position experiences a (short) different rotational speed yielding position dependant phases
which helps to localise signal in the vertical direction corresponding to a particular frequency. Intuitively, it
can be seen as a coordinate system where the x-direction has varying frequencies whereas y-direction has
varying phases of the signal (shown in Fig. 2.1). It is important to realise that the measured signal is spatially
sampled in the frequency domain, commonly referred to as k-space. Therefore, the true image is obtained by
taking the Fourier transform of the measured k-space.

To obtain the image, the signal must be sampled with at least the number of samples that satisfies the
Nyquist-Shanon sampling theorem, implying that the phase encoding steps must be repeated several times.
The repetition of the encoding steps to produce a high-resolution image consumes most of the time in MRI.
To get an idea, an MRI scan may take about 20 to 60 minutes depending upon the type and amount of slices
taken during the scan. This stems the need for research to develop methods which reduce the time consump-
tion of MRI, leading to the invention of PI.

2.2. PARALLEL IMAGING
Initially, the MRI set up used only a single receiver coil that covered the entire body part which was being
scanned resulting in a large field of view (FOV), but at the same time consumed a lot of time for data acquisi-
tion. On the contrary, PI uses multiple spatial sensitive coils where each coil works as an independent receiver
such that all the coils can operate simultaneously to reduce the data acquisition time. The concept behind PI
is easily understood with the simplified version of ’parallel imaging with localized sensitivity’ (PILS) method
[7].

Consider imaging the axial plane of the brain with a single receiver coil. Assume that it requires Ny phase
encoding steps to sample the FOV. It implies that the time required to image the plane would be proportional
to Ny . Now, instead of a single coil consider imaging the same axial plane with two receiver coils on either
side of the brain as shown in Fig. 2.2. In this case, the upper(lower) coil will be sensitive to the signals from
the upper(lower) half of the plane. So, instead of sampling the full FOV, only half of the FOV is sampled (in
k-space), resulting in an aliased image which is sensitive to upper(lower) half of the brain as depicted in Fig.
2.2(a) (2.2(b)). Sampling half the FOV will require only half of the Ny phase encoding steps and hence in
half the acquisition time. The aliased images from both of the coils can now be successfully combined to
reconstruct the un-aliased brain as shown in Fig. 2.2(c).

The above example explains the concept of PI in a facile form but in practice, the procedure involves
some complications. The key problem associated with PI is that while sampling half the FOV (in k-space), the
Nyquist-Shanon sampling theorem is violated which results in aliasing artefacts in the image, as shown in fig
2.3a and 2.3b. To obtain an un-aliased (Fig. 2.3c), PI requires a reconstruction algorithm that combines the
signals from all the coils and removes the aliasing artefacts.

Before understanding the methods to reconstruct images in PI, it is worthwhile to highlight two important
points related to the hardware setup of PI. First, the multiple receiver coils used in PI must be arranged such
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Figure 2.2: Simplified concept of parallel imaging.

(a) (b)

(c)

Figure 2.3: Reconstructed images for undersampled and fullysampled FOV in PI. (a) Aliased artefacts due to uniform undersampling.
(b) Aliased artefacts due to random undersampling. (c) Un-aliased image.

that every coil has a different spatial sensitivity pattern over the FOV. Second, it is important to have the
knowledge of coil’s sensitivity profiles which is used in the reconstruction algorithm to remove the aliasing
artefacts. Intuitively, this can be seen as providing some degree of information related to spatial encoding
which is why it is possible to reduce phase encoding steps in PI.

Owing to the sensitivity profiles, the desired image can be constructed with an algorithm that combines
data from all the coils. In PI, the reconstruction algorithms can be grouped into two categories based on
the domains they operate on i.e. image domain or k-space. Although, several methods, irrespective of the
operated domain, namely SENSE [8], GRAPPA[9], SMASH[10], SPIRiT[11] and ESPIRiT[12] have been derived
for Cartesian trajectories, yet only SENSE and GRAPPA are clinically viable. SENSE operates in the image
domain whereas GRAPPA operates in k-space. For the present study, we restrict ourselves to SENSE technique
to reconstruct the image.

2.2.1. PARALLEL IMAGING RECONSTRUCTION: SENSE
SENSitivity Encoding (SENSE) is a parallel imaging reconstruction method that operates in the image do-
main indicating that the aliasing artefacts caused due to the undersampling of k-space are rectified in the
image domain. It is achieved by weighting each pixel of the image by the respective pixel’s spatial sensitiv-
ity. As mentioned before, the desired image and k-space are related by the Fourier transformation, which is
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mathematically formulated as

Fx = mfull (2.2)

where, mfull ∈ CN×1 is the fully sampled measured k-space, x ∈ CN×1 is the true image and F ∈ CN×N is the
two-dimensional discrete Fourier transformation matrix. Here, the 2-D true image has the dimensions m×n
and N = mn. Similarly, the relation in PI can be formulated by weighting the true image in Eq. 2.2 with the coil
sensitivity profiles. Considering that the k-space is fully sampled, including the additive noise, the relation
can then be modified as

FSi x = mfull,i for i = 1, . . . ,Nc (2.3)

where, mfull,i ∈CN×1 are the fully sampled measured k-space with noise for i ∈ {1, . . . ,Nc } with Nc denoting the
number of receiver coils and Si ∈CN×N are diagonal matrices containing the coil sensitivity patterns of each
coil. In practice, the k-space data in PI is undersampled to accelerate the data acquisition time, which slightly
modifies the Eq. 2.3 by including the undersampling pattern in the problem formulation. The modified
formulation is represented as the following.

RFSi x = mi for i = 1, . . . ,Nc (2.4)

where, mi ∈ CN×1 are the undersampled k-space data (including noise) for i ∈ {1, . . . ,Nc } with zeros filled at
the non-measured points and R ∈ RN×N is a diagonal matrix representing the undersampling pattern. For
2-D cartesian trajectories, the freedom for undersampling is only in the direction of phase-encoding direc-
tion. In such a case, there are two potential sampling patterns i.e. uniform and random undersampling
patterns. Uniform undersampling measures every r th line in the phase-encoding direction whereas random
undersampling measures 1/r th lines in the phase encoding direction that are chosen randomly, here r is the
acceleration factor. An example of these patterns for r = 2 is shown in Fig. 2.4. It is observed that uniform

(a) (b)

Figure 2.4: Undersampling patterns for 2-D cartesian trajectory. (a)Uniform undersampling pattern. (b)Random undersampling
pattern.

undersampling pattern, Fig. 2.4a, results in coherent aliasing artefacts as shown in Fig. 2.3a whereas random
undersampling pattern, Fig. 2.4b, results in incoherent artefacts as depicted in Fig. 2.3b. These incoherent
artefacts due to random undersampling makes this pattern the desirable choice when used in compressed
sensing. This is discussed in detail in section 2.3.

Eq. 2.4 indicates that for each coil, the number of unknowns i.e. the components of vector x are more
than the number of equations. Therefore, the formulated problem for each coil is an ill-posed problem. But
it is possible to reconstruct an estimate of the true image x by combining the measurements of each coil to
solve the following least square problem

x̂ = argmin
x

{
NC∑
i=1

‖RFSi x−mi‖2
2

}
(2.5)

where x̂ ∈ CN×1 is the estimated image. Theoretically, the estimated image, x̂ will closely match the true
image, x until r ≤ Nc , which makes sense because for r > Nc the least squares problem 2.5 itself becomes an
ill-posed problem. However, in practice the limit is never reached due to noisy measurements. To accelerate
the data acquisition time beyond the number of coils, compressed sensing techniques can be combined with
PI, detailed discussion of this can be found in the following sections.
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2.3. COMPRESSED SENSING
The method of Compressed Sensing (CS) was first introduced as a mathematical concept in information the-
ory. It suggested the method to recover a signal when it is considerably undersampled with respect to the
Nyquist-Shanon sampling theorem [13][14]. It can be regarded as relying on the concept of compression,
which focuses on finding a sparse representation of data or signals. CS provides an edge over the other com-
pression techniques because of low computational cost and complexity while acquiring the data. CS is of
specific interest to MRI because it enables to measure significantly less k-space data while maintaining the
resolution of the true image.

In order to implement CS for MRI applications, there are two requirements:

1. Sparse Representation: The desired image must have a sparse representation in a known transform
domain.

2. Incoherent Artefacts: Artefacts caused due to undersampling of k-space should be incoherent (behaves
like noise) in the transformed domain.

These requirements can be easily satisfied in MRI which is the reason behind successful applications of CS in
MRI. Examining the first condition regarding the sparsity constraint, it is observed that MR images, in general,
are not sparse, however, they are known to be sparse in a certain transformed domain. Operators that map
the vector containing image data to a sparse vector are called sparsifying transforms. These are extensively
used for image compression with significant applications of compression strategy in JPEG, JPEG-2000, and
MPEG [15]. Some examples of these sparsifying transforms are finite differences, discrete cosine transform
(DCT) and discrete wavelet transform (DWT). For MRI, total variation (TV) and wavelet transforms are the
popular approaches used by researchers to represent MRI in a sparser domain.

To fulfil the second condition, which intends to use the undersampling pattern that yields incoherent
interference, recall the introduction of potential undersampling patterns in section 2.2.1. It was mentioned
that randomly undersampling the phase-encoding lines resulted in incoherent artefacts. Therefore, employ-
ing random undersampling pattern for data acquisition enables the application of CS in MRI because then
MRI meets both the requirements of compressed sensing. To understand the significance of incoherent arte-
facts for the feasibility of CS, Lustig et al. [16] provided an intuitive example in 1-D which also explains how
the signals can be recovered in CS. A similar example is described further.

Consider a 1-D sparse signal as depicted in Fig. 2.5(a). Undersample this signal, uniformly 2.5(b) and
randomly 2.5(c), in the frequency domain by a factor of 4. In the uniform undersampling pattern, equispaced
points are measured whereas in the random undersampling pattern, randomly chosen points are measured.
During this process, the unmeasured values are filled with zeros. Inverting this signal back to temporal do-
main results in aliasing artefacts, 2.5(d) and 2.5(e) that behaves differently for uniform and random patterns.
In the former case, the artefacts are coherent and the resulting signal is superimposed with shifted signal
copies which prevent the recovery of true signal 2.5(f). Whereas, in the latter case, the artefacts are incoherent
and behave like noise which can be removed by thresholding 2.5(g). Fig. 2.6 depicts the equivalence between
random undersampling artefacts and artefacts due to additive noise, where 2.6(a) utilize the same sparse sig-
nal as in 2.5. Their equivalence can also be interpreted visually by comparing 2.6(c) and 2.5(e) representing
similar artefacts even when both of them used different approaches, wherein the former case noise is added
to the sparse signal and in the latter scenario, the sparse signal is undersampled in the frequency domain.
Since, thresholding is the heuristic choice when dealing with additive noise, CS uses the same principle to

recover the undersampled signal. It utilizes a nonlinear reconstruction method that iteratively thresholds
the signal and selects the prominent components. Subsequently, it also subtracts the interference caused by
these components to recover the smaller components. This example provides an elementary background of
the compressed sensing principle to comprehend its application in MRI.

2.3.1. COMPRESSED SENSING IN PI
Application of CS in MRI was first proposed by [16] where Lustig et al. reconstructed the image by a nonlinear
method that promotes sparsity while maintaining data fidelity. This is mathematically modeled as a convex
optimization problem of the following form

min |Ψx|1
s.t. ‖RFx−m‖2

2 < ε
(2.6)
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Figure 2.5: A one-dimensional example of compressed sensing. (a) Representation of a sparse signal. (b) Uniformly undersampled
frequency domain of sparse signal. (c) Randomly undersampled frequency domain of sparse signal. (d) Coherent aliasing artefacts in

temporal domain in case of uniform undersampling. (e) Incoherent aliasing artefacts in temporal domain in case of random
undersampling. (f) Ambiguity in recovered signal from uniform undersampling. (g) Recovered signal (orange) from random

undersamping.

Figure 2.6: A one-dimensional example describing the removal of noise by soft thresholding (`1 denoising). (a) Representation of a
sparse signal. (b) Gaussian noise. (c) Sparse signal with additive gaussian noise. (d) Recovered signal (orange) using `1 denoising.

where, | · | denotes the `1 norm, Ψ denotes the sparsifying transform operator and ε controls the fidelity of
reconstruction to the measured data. Eq. 2.6 can be solved using numerical solvers as described in chapter
3. Combining the compressed sensing approach with PI results in an equation similar to 2.6 which is written
as an unconstrained convex optimization problem as described in Eq. 2.7.

x̂ = argmin
x

{
Nc∑
i=1

‖RFSi x−mi‖2
2 +λ|Ψx|1

}
(2.7)

where, λ is the regularization parameter for the `1 norm term. Presence of the non-smooth function, |Ψx|1,
makes the problem 2.7 difficult to solve as the gradient for the given non-smooth function is not defined at
Ψx = 0. In convex optimization theory, this particular kind of problem where the cost function is the sum of
smooth and non-smooth function, as shown below

min
x

f (x)+ g (x),

where, f and g are convex functions and g is non-differentiable, is termed as proximal minimization problem
[17]. Several iterative schemes exist in literature to solve these problems and some other that are specifically
designed to solve the compressed sensing problems. Discussion about the existing literature on these algo-
rithms and detailed discussion about the method employed in this project for reconstruction is done in the
following chapter, 3.



3
NUMERICAL SOLVERS & PRECONDITIONING

TECHNIQUES

The chapter mentions the iterative solvers required to solve the minimization problem 2.7. It discusses in
detail the Iterative Shrinkage Threshold Algorithm (ISTA) and fast iterative shrinkage threshold algorithm
(FISTA). Further, it describes the preconditioning techniques which is followed by a detailed explanation of
the ones implemented in this project.

3.1. NUMERICAL SOLVERS
The relation between the unknown image and fully sampled k-space measurements is formulated as a linear
system (Eq. 2.2, 2.3) of the form

Ax = b, A ∈CN×N , x ∈CN , b ∈CN . (3.1)

If A is nonsingular, such system has a unique solution given by the least square approach: x = A−1b. In more
general methods, A is usually ill-conditioned and it is not possible to find a solution with direct inversion.
Additionally, in practice, the k-space lines are undersampled in PI which reduces the rank of A making it an
underdetermined linear system with an infinite number of solutions. For this case, the least square estimate
is obtained by solving the Eq. 2.5, under the assumption that r ≤ Nc and that the noise is uncorrelated. This
is given by the following equation

x̂ = (AH A)−1 AH b = A†b (3.2)

where, A† = (AH A)−1 AH is the Moore-Penrose inverse of A [18]. But particularly in PI, the noise is not un-
correlated with measured data. So, to minimize the noise level in the reconstructed image, noise covariance
weighted least square problem is solved which yields the solution

x̂ = (
AHΨ−1 A

)−1
AHΨ−1b (3.3)

where,Ψ denotes the noise covariance matrix. In the case where the measured data is noise normalised or is
uncorrelated with the noise, the noise covariance matrix can be replaced by an identity matrix. Computing
the solution of linear system by Eq. 3.2 and 3.3 is straightforward, however, for large dimension problems it
is very expensive, both computation and memory-wise. Hence, an efficient way is to solve them by iterative
procedures. If the cost function is differentiable, then, the classic gradient methods such as steepest descent,
conjugate gradient and preconditioned conjugate gradient [19] can be used, which is true in the particular
case of Eq. 2.5. However, the PI compressed sensing problem, Eq. 2.7, is not differentiable because of the
presence of non-smooth function (`1 term). This restrains the use of conventional gradient methods for
solving Eq. 2.7. So, methods that specifically solve `1 norm problems are considered.

A classic example to solve this type of problem 2.7 is the iterative shrinkage threshold algorithm (ISTA)
[20]. Many different algorithms exist in literature which either differently considers this method or is a gen-
eralisation of this algorithm. For instance, proximal forward-backward method [21] can be interpreted as
a generalisation of ISTA in the convex optimisation theory. Other examples that belong to this particular

9
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class of iterative shrinkage threshold algorithms are expectation-maximization algorithm [22], majorization-
minimization algorithm [23], Bregman iterations [24], alternating direction method of multipliers (ADMM)
[25] and more. This class of method is computationally effective to solve the problems involving `1 term
than earlier used traditional descent algorithms which consumed a considerable amount of time to reach
the solution. In particular, they utilize a matrix-vector product at each iteration followed by a shrinkage step
where the prominent computation effort is the matrix-vector product. Thorough theoretical analysis of these
methods guarantees a minimizer for the cost function with a substantial rate of convergence.

Several methods have been proposed to speed up these techniques further. Among them the most pop-
ular are two-step ISTA (TWIST) [26], fast iterative shrinkage threshold algorithm [27], gradient method for
minimizing composite functions [28] and subspace optimization method [29]. These methods significantly
improve the convergence rate of earlier stated methods. Other relevant work for the considered problem
can be found in [13], [30], [4],[31], [32]. Amongst these, the algorithm that holds importance for this project
is fast iterative shrinkage threshold algorithm (FISTA). Its computational simplicity and a significant rate of
convergence makes it a potential choice for solving Eq. 2.7.

To be able to understand FISTA, it is important to learn about the iterative shrinkage algorithm which lays
the foundation for FISTA. This is covered in Section 3.1.1, followed by FISTA in the section 3.1.2.

3.1.1. ISTA
Iterative shrinkage threshold algorithm is a popular method to solve linear inverse problems with `1 norm
regularization. Such problems are difficult to solve because the differential of `1 norm is not properly defined
around zero. Consider the following model

min
x

{
F (x) ≡ ‖Ax−b‖2

2 +λ|x|1
}

(3.4)

where, λ is the parameter that controls the trade-off between data consistency and sparsity in x. ISTA solves
this problem by deconvoluting the problem in two substeps where the first substep evaluates the `2 norm
term and the second substep solves the `1 norm term in Eq. 3.4. The update equation for the problem 3.4 is
given by

xk+1 =Tλt
(
xk −2t AH (Axk −b)

)
(3.5)

where, t represents the stepsize with t ∈ (
0,1/‖AH A‖) to ensure convergence of xk to a minimizer x∗ of Eq.

3.4 and the notation ‖ ·‖ depicts the matrix norm. Tα :CN →CN is the soft thresholding (shrinkage) operator
defined as

Tα(x) = (|x|−α)+ sgn(x) (3.6)

where, (c)+ denotes the operation max(c,0), c ∈R. Here the sgn function is operated on complex vector so, it
is defined as sgn(x) = x./|x|.

The shrinkage operator follows from the subdifferential of `1 norm. It should be noted that Eq. 3.5 can be
split as

v = xk −2t AH (Axk −b) (3.7a)

xk+1 = (|v|−α)+ sgn(v) . (3.7b)

This way it is evident that ISTA solves two subproblems at each iteration where Eq. 3.7a can be viewed as
solving the `2 norm term and equation 3.7b can be viewed as solving the `1 norm term. Another way to
see this is by deriving ISTA as an extension to the gradient-based methods. For reference, one can find the
detailed derivation by Beck and Teboulle [27]. With this approach, the algorithm achieves only a sublinear
rate of convergence and is perceived to be a slow method.

Algorithm 1: ISTA Iterations

1 initialize t , x0 ∈CN , k = 1
2 while stopping criteria > tolerance do
3 v = xk−1 −2t AH (Axk−1 −b);
4 xk = max((|v|−α) ,0)sgn(v);
5 k = k +1;
6 end
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3.1.2. FISTA
FISTA is an extension to the class of iterative shrinkage threshold algorithms (ISTA) [20] which are specifically
used to solve large scale linear inverse problems. FISTA is a faster version of ISTA which besides maintaining
the computational simplicity of ISTA improves the global convergence rate. It aims to minimize a general
model of the following form

F (x) ≡ f (x)+ g (x) (3.8)

where it is assumed that g : CN → R is a nonsmooth continuous convex function and f : CN → R is a con-
tinuously differentiable (C 1,1) convex function. The algorithm first approximates the function f (x) in Eq.
3.8 by a linear function using taylor expansion and then proximally regularizes the linearized differentiable
function. Further, at each iteration it selects the next iterate as a particular linear combination of the previ-
ous two iterates. Mathematical formulation of the approximate model with linearised function and proximal
regularisation at a given point w is represented as

QL(x,w) := f (w)+〈x−w,∇ f (w)〉+ L

2
‖x−w‖2

2 + g (x) (3.9)

where, L is the Lipschitz constant of ∇ f (x). The function, Eq. 3.9, has a unique minimizer

pL(w) = argmin

{
f (w)+〈x−w,∇ f (w)〉+ L

2
‖x−w‖2

2 + g (x)

}
. (3.10)

After ignoring the constant terms in w, Eq. 3.10 can be reduced to

pL(w) = argmin
x

{
g (x)+ L

2

∥∥∥∥x−
(

w− 1

L
∇ f (w)

)∥∥∥∥2

2

}
. (3.11)

Therefore, the update equations of FISTA are described as

xk = pL
(
yk

)
(3.12a)

tk+1 =
1+

√
1+4t 2

k

2
(3.12b)

yk+1 = xk +
(

tk −1

tk+1

)
(xk −xk−1) (3.12c)

where the next iterate yk is a linear combination of the previous two iterates xk ,xk−1. Now, if we consider
the model in Eq. 3.4 for FISTA, Eq. 3.12a results in the update step of ISTA (Eq. 3.5). So, the only difference
between ISTA and FISTA is that FISTA takes an additional step to choose the next iterate more smartly. This
algorithm significantly improves the computation complexity from sublinear to subquadratic convergence
rate. Theoretical proof of the convergence can be found in [27].

Algorithm 2: FISTA Iterations

1 initialize L, t1 = 1, k = 1 x0 ∈CN , y1 = x0

2 while stopping criteria > tolerance do
3 xk = pL(yk );

4 tk+1 =
1+

√
1+4t 2

k

2 ;

5 yk+1 = xk +
(

tk−1
tk+1

)
(xk −xk−1);

6 k = k +1;
7 end

3.2. PRECONDITIONING TECHNIQUES
Preconditioning, in a layman’s term, is a technique that transforms a given problem into a form that is easier
to solve. It is generally used with numerical solvers to accelerate convergence, thereby reducing the com-
putation complexity. The most useful application of preconditioners can be found with large dimensional
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ill-posed linear inverse systems. This motivates the choice to use preconditioners for the given problem of
compressed sensing. Before beginning with the literature of preconditioners and its application for the cur-
rent problem, it is important to learn which properties of the system matrix indicate convergence behaviour
and how they are improved by using preconditioning techniques.

Essentially a preconditioner reduces the condition number of a matrix. The condition number for an
invertible matrix A is defined as

κ(A) = ‖A‖‖A−1‖ (3.13)

where, κ(A) represents the condition number of matrix A and ‖ · ‖ denotes the induced matrix norm. As per
the definition, condition number depends on the choice of norm but generally a 2-norm condition number
is the common choice. This is represented in the following equation

κ(A) = σmax(A)

σmin(A)
(3.14)

where,σmax(A) andσmin(A) are maximum and minimum singular values of matrix A, respectively. Intuitively,
it measures the sensitivity of the system i.e. amount of change in the solution given the perturbations in the
measured signal. In other words, it helps to determine the stability of the system.

The System is categorized as ill-posed when κ(A) is very large. When A is singular κ(A) is infinity. There-
fore, application of a preconditioner must reduce the condition number. A good preconditioner, M , is the
one that significantly improves the condition number: κ(M A) ¿ κ(A). Additionally, from Eq. 3.14 it can
be interpreted that a good preconditioner will try to keep the singular values clustered because more clus-
tered the values are, more closer the condition number will be to 1. Along with this, it is important that the
construction of the preconditioner and its application on a vector is computationally cheap. Thus, a good
preconditioner should have the following characteristics:

1. Preconditioner, M , should approximate the inverse of the given matrix, A, in some sense i.e. M A ≈ I .

2. Construction of M and its evaluation on a vector should be computationally cheap.

3. M should either be efficient in terms of memory storage or have an operator application.

Once a preconditioner is found that fulfils the above conditions, it can be applied to the matrix in the follow-
ing ways.

• Left Preconditioner: The linear system is reformed as

M Ax = Mb. (3.15)

• Right Preconditioner: The linear system is reformed as

AMu = b, x := Mu (3.16)

where the system is solved for unknown u.

• Two-sided Preconditioner: In this case M is factored as M = ML MR and the linear system is reformed
as

ML AMR u = MLb, x := MR u. (3.17)

These preconditioned systems can be solved using the same iterative procedures mentioned in the previous
chapter with slight changes to include the preconditioner matrix. Although, it may seem straightforward to
precondition systems, in practice finding an appropriate preconditioner is, in general, difficult and requires
a lot of technical details. Sometimes, a preconditioner reduces the total number of iterations but is com-
putationally expensive to construct. On the other hand, the preconditioner can be computationally cheap
to construct but its application on a vector may increase the computation complexity per iteration, which
eventually may reflect in total computation complexity. So, the best preconditioner is a combination of both
characteristics i.e. that does not significantly affect the per iteration computation complexity and is cheap to
construct. The choice of the preconditioner is specific to the formulated problem and depends on the kind
of iterative solver utilized.
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The literature has abundant preconditioning techniques available in the context of a linear system of
equations. A review of the same can be found in [33] where these techniques are classified based on ma-
trix properties such as symmetric positive/semi-positive definite, symmetric indefinite and non-symmetric
matrices with a focus on preconditioners for sparse matrices arising from the discretization of partial dif-
ferential equations. A detailed discussion of these methods can also be found in [19] which covers some
useful preconditioned algorithms along with preconditioning techniques in general. It also describes in de-
tail the techniques for parallel preconditioners. Besides these traditional preconditioning techniques, much
research work has been focused on the use of preconditioners specifically for MR reconstruction problem.
Early examples include the work of Sutton et al. [3] for single coil MR reconstruction in the presence of field
inhomogeneities where they use circulant preconditioners inspired by Clinthorne et al. [34]. Later, Ramani
and Fessler [35] also employed a circulant preconditioner, developed by Yagle [36], for the PI-CS image recon-
struction. Recently, Muckley et al. [5] discovered the circulant preconditioner for non-cartesian trajectories
using FISTA and Koolstra et al. [6] determined the preconditioner for cartesian trajectories in PI-CS approach
considering the split Bregman iterations.

In this project, preconditioning techniques for the compressed sensing PI problem with cartesian trajec-
tories are considered. As mentioned before, there are numerous preconditioners available in theory however
the detailed description of the ones that were implemented are presented.

3.2.1. JACOBI PRECONDITIONER
To find an appropriate preconditioner, the most common choice is Jacobi preconditioner, where it estimates
the inverse of a given matrix by its diagonal elements. For a given matrix A, Jacobi preconditioner, M , is given
as

M = diag{A}−1 (3.18)

where, diag{·} places the diagonal elements of its argument on the diagonal of a matrix. It should be noted
that M is a diagonal matrix of the same dimensions as A.

3.2.2. CIRCULANT PRECONDITIONER
Circulant matrices are special kind of Toeplitz matrix where each row is shifted circularly by one element
of the previous row. Linear systems with such matrices have a particular advantage of finding the solution
by Fast Fourier transforms (FFT) which requires considerably less arithmetic operations than conventional
direct methods. Because of its efficient implementation, preconditioners with circulant structure are a desir-
able choice, especially for linear systems with hermitian Toeplitz structure. For the current study, we particu-
larly consider the preconditioner derived by Koolstra et al. [6] for compressed SENSE reconstruction problem
with Cartesian trajectories. The choice to consider the specific preconditioner of [6] is based on the fact that
the current study has similar problem model as considered by them. However, there are two main differ-
ences. First, that their work utilize prior information from two sparsifying transforms i.e. total variation (TV)
and wavelet transform. Second, that their work considers the Split Bregman framework to solve the recon-
struction model. On the contrary side, the current study uses only wavelet transform as sparsifying transform
and solves the reconstruction problem with FISTA framework. Even then, it is interesting to investigate if it
is possible to extend the application of their work for FISTA. Therefore, this section describes the circulant
preconditioner of [6] from the perspective of the current problem model, Eq. 2.7.

The work of [6] assume their system matrix to be a Block Circulant with Circulant Block (BCCB). BCCB
matrices have a unique property that they can be diagonalised by two-dimensional Fourier transform. For
instance, if C is a BCCB matrix then it can be diagonalised in the following ways

D1 = FC FH or D2 = FH C F

where the diagonal entries, d1(d2), of diagonal matrices D1(D2) can be efficiently computed as d1 = Fc1(d2 =
Fc2). Here, c1(c2) denotes the first row (column) of C . This property is exploited to construct the circulant
preconditioner. Therefore, assuming A to be a BCCB matrix, A can be written as the following

A = FH FAFH︸ ︷︷ ︸
K

F

where, K is given by

K =
Nc∑
i=1

FSH
i FH︸ ︷︷ ︸
C H

i

RFSi FH︸ ︷︷ ︸
Ci

. (3.19)
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Since an assumption is made on A, matrix K is not diagonal. However, K is a diagonal dominant matrix
containing the information of SH

i FH RFSi . So, by removing the off diagonal elements of K it is still possible
to find an approximation of A−1. Thus, by computing the diagonal of K an estimate for the inverse of A is
computed which serve as the preconditioner for the given problem. If k represents the diagonal elements of
K then the preconditioner is formulated as

M = FH diag{k}−1F. (3.20)

The diagonal elements k of K are found as

k = FH

{[
F

Nc∑
i=1

(
cH

1;i ◦cT
1;i

)T
]
◦Fr

}
. (3.21)

where cH
1;i represents the first row of matrix CH

i . Thus, the first row cH
1;i of matrix C H

i is computed as
(
cH

1;i

)T =
FH sH

i where sH
i is the column vector with diagonal entries of matrix Si . Detailed derivation of Eq. 3.21 can be

found in [6].
This preconditioner achieves a speedup factor of 2.5 for the split Bregman framework with computing

only two additional FFTs per iteration. The present study investigates the performance this circulant precon-
ditioner with FISTA framework. The implementation and results of the same can be found in the following
chapters.



4
IMPLEMENTATION OF PRECONDITIONED

FISTA

The previous chapters set the groundwork to understand the work of this project where the mathematical
model of parallel imaging compressed sensing MR problem is formulated in chapter 2 and the numerical
solvers for the problem are discussed in chapter 3. Chapter 3 also explains the use of preconditioning tech-
niques to speed up the iterative solvers, mentions the existing preconditioners and discusses a few of them
in detail. Having attained the background, this chapter describes the mathematical implementation of FISTA
and preconditioned FISTA.

4.1. MATHEMATICAL MODEL
The study considers the problem of parallel imaging with compressed sensing in MRI, derived in chapter 2
(Eq. 2.7), where Daubechies 4 wavelet transform is used as the sparsifying operator. The problem formulation
with the wavelet operator W is described as

x̂ = argmin
x

{
Nc∑
i=1

‖RFSi x−mi‖2
2 +λ|Wx|1

}
. (4.1)

Although, it is possible to reconstruct the image for the above model (Eq. 4.1), the problem in general is
ill-posed. Solving such a system is hard because it is highly sensitive to small perturbations in measurements.
One key alternate to make the system better-posed is by providing additional information about the solution.
This is achieved by regularising the problem with some prior information. For instance, to better condition
the problem 4.1, regularization term, ‖Qx‖2 can be added where the matrix Q denotes the information that
distinguishes the region of interest from the background. With the regularization term, the PI compressed
sensing model 4.1 is re-formulated as the following:

x̂ = argmin
x

{
Nc∑

i=1
‖RFSi x−mi‖2

2 +λ|Wx|1 +µ‖Qx‖2
2

}
(4.2)

where,

Q =
(

Nc∑
i=1

SH
i Si

)− 1
2

(4.3)

and µ is the regularization parameter that quantifies the reliability of this additional information.

4.1.1. FISTA
To solve the minimization problem 4.1, the project utilizes the fast shrinkage threshold algorithm described
in chapter 3, section 3.1.2. Previously, FISTA was described for the general model 3.8 which can now be
transformed for the current problem by substituting f (x) = ∑Nc

i=1 ‖RFSi x−mi‖2
2 and g (x) = λ|Wx|1. FISTA

15
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update equations can then be obtained by solving Eq. 3.11 for the aforementioned function values. After the
substitution of f (x) and g (x), the solution is obtained by taking the derivative of Eq. 3.11 as described below

∂pL(w)

∂x
= WHλsgn(Wx)+ 2L

2

[
x−

(
w− 1

L
∇ f (w)

)]
. (4.4)

Equating the above result (Eq. 4.4) to zero and replacing w with xk−1 then yields

x+WH λ

L
sgn(Wx) = xk−1 −

1

L
∇ f (xk−1) (4.5)

which when solved for x gives the following closed form solution

x =


WH (Wv+ λ

L ) Wv < λ
L

0 |Wv| < λ
L

WH (Wv− λ
L ) Wv > λ

L

(4.6)

where, v = xk−1 − 1
L∇ f (xk−1). Here, 1/L represents the step size where L is the Lipschitz constant of ∇ f (xk−1).

Alternatively, Eq. 4.6 can efficiently be written in the following form

xk =Tα

(
xk−1 −

1

L
∇ f (xk−1)

)
(4.7)

where α= λ
L and Tα is the shrinkage operator defined as

Tα(v) = WH (|Wv|−α)+ sgn(Wv) . (4.8)

Here, the gradient ∇ f (x) is given by

∇ f (x) = 2
Nc∑
i=1

SH
i FH RH RFSi x−2

Nc∑
i=1

SH
i FH RH mi . (4.9)

Eq. 4.9 can equivalently be seen as
∇ f (x) = Ax−b, (4.10)

where, A = 2
∑Nc

i=1 SH
i FH RH RFSi and b = 2

∑Nc
i=1 SH

i FH RH mi . With the given ∇ f (x), the smallest Lipschitz con-
stant is given by L = 2σmax(A), where σmax(·) denotes the largest singular value of A. FISTA iterations for this
model is summarized in algorithm 3. In the above algorithm, Ax is computationally the most expensive step

Algorithm 3: FISTA Iterations for PI-CS Model

1 initialize L, λ,t1 = 1, k = 1 x0 ∈CN , y1 = x0

2 while stopping criteria > tolerance do
3 v = xk−1 − 1

L (Axk−1 −b);

4 xk = WH max((|Wv|−α) ,0)sgn(Wv);

5 tk+1 =
1+

√
1+4t 2

k

2 ;

6 yk+1 = xk +
(

tk−1
tk+1

)
(xk −xk−1);

7 k = k +1;
8 end

of FISTA. Although, A remains constant throughout the algorithm but because of large matrix dimensions it
is practically impossible to store this matrix. Therefore, Ax can only be evaluated in an operator form. It can
be inferred from the gradient Eq. 4.10 that calculation of b is also a product of matrices and vector, which is
again a computationally expensive product. However, the silver lining is that b is a constant term and need
not be calculated for every iteration, thus, saving some complex matrix-vector computations per iteration.

It is important to note that when the absolute value function (`1 term or in this case g (x)) is a function
of an operator such as |Ψ(x)|1 where Ψ is unitary sparsifying transform operator (i.e. ΨHΨ = I ), then the
shrinkage operator defined in Eq. 3.6 can be modified as

Tα(x) =ΨH Tα(Ψ(x)). (4.11)

Proof of the same can be found in Appendix B.
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FISTA FOR REGULARIZED MODEL
Previous section derives the update equations of FISTA for the problem formulation 4.1. In a similar man-
ner, it possible to derive the update steps for regularized problem formulation 4.2. It can be noted that the
difference between the two problem formulations lies only in the function value of f , where for regularized
problem f (x) =∑Nc

i=1 ‖RFSi x−mi‖2
2+µ‖Qx‖2

2. This changes the gradient value of f (x) for regularized problem
to the following

∇ f (x) = 2
Nc∑
i=1

SH
i FH RH RFSi x+2µQH Qx−2

Nc∑
i=1

SH
i FH RH mi . (4.12)

Therefore, the solution of regularized model can be obtained by substituting Eq. 4.12 as the gradient value of
f (x) in previously derived FISTA update equations.

4.1.2. PRECONDITIONED FISTA
The main objective of the project is to implement a preconditioner within FISTA framework such that it re-
duces the reconstruction time of MRI. So, to include the preconditioner with FISTA, the first step of the algo-
rithm given by Eq. 4.7 is reformed as

xk =Tα

(
xk−1 −

1

L
M(Ax−b)

)
(4.13)

where, M is any suitable preconditioner. Here, the preconditioner is included in the gradient step of FISTA as
this particular step is the bottleneck of the problem.

4.2. STRUCTURE OF THE SYSTEM MATRIX A
As stated in chapter 3, section 3.2 that the preconditioner must approximate the inverse of the system matrix,
A, in some sense, thus, to find an appropriate preconditioner it is important to learn about the structure and
properties possessed by the system matrix. System matrix, A, for the PI-CS model (Eq. 4.1) is described as

A =
Nc∑
i=1

SH
i FH RH RFSi (4.14)

where, R is a real matrix. Since R is real, RH R can be replaced by R alone. Analysing the Eq. 4.14, it can
be inferred that FH RF is a BCCB matrix. This can be deduced from the diagonalisation property mentioned
in section 3.2.2 that if C is the given BCCB matrix then it can be diagonalised by two-dimensional fourier
transform as

D1 = FC FH or D2 = FH C F,

conversely, if D1 or D2 is the given diagonal matrix then multiplication of two-dimensional Fourier transform
matrices with diagonal matrix results in the BCCB matrix, C , shown below.

C = FH D1F or C = FD2FH

This is because the two-dimensional Fourier matrix, F, is a unitary matrix i.e. FFH = I . The BCCB structure
of the term FH RF is depicted in Fig. 4.1. Here, an example of a relatively small dimension image (32×32) is
considered for which the matrix FH RF has the dimensions 1024×1024. The BCCB structure of FH RF is lost
when the matrices Si and SH

i are included.
It is observed that when r = 1 i.e. the k-space is fully sampled, A does not possess any structure except

that its main diagonal entries are same. This can be visualized in the Fig. 4.2a. The fact that A has same main
diagonal entries can be reasoned to the normalization of coil sensitivity maps i.e. the diagonal coil sensitivity
matrix of each coil, Si , is normalized by the root sum of squares of all the coil sensitivity map such that

Ŝi =
(

Nc∑
k=1

SH
k Sk

)− 1
2

Si . (4.15)

when r > 1, A possesses a BCCB-like structure as shown in Fig.s 4.2b, 4.2c and 4.2d. The prominence of this
faded-BCCB structure increases with increase in r which can be seen in Fig. 4.2, where structure of A for
r = 8, Fig. 4.2d, has more prominent BCCB-like structure than A with r = 4, Fig. 4.2c, which in turn has
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Figure 4.1: BCCB structure of matrix FH RF.

more prominent structure than A with r = 2, Fig. 4.2b. Therefore, lesser the measured k-space lines, more
prominent is the BCCB-like structure. In practice, A is not exactly a BCCB matrix because its main diagonal
blocks are different whereas in case of a BCCB matrix the diagonal blocks are same.

Another interesting property of A is that it is a hermitian matrix. This is apparent from Eq. 4.14 because
AH results in the following

AH =
(

Nc∑
i=1

SH
i FH RH RFSi

)H

=
Nc∑
i=1

SH
i FH RH RFSi = A.

Thus, A is a hermitian matrix with the same diagonal elements. However, for the regularized problem formu-
lation A is described as

Areg =
Nc∑
i=1

SH
i FH RH RFSi +µQH Q (4.16)

for which the main diagonal entries are different because of addition of the QH Q term which is a diagonal
matrix containing the information about the background. Yet, the regularized system matrix is a hermitian
matrix and possess the same BCCB-like structure for r > 1.

4.3. IMPLEMENTATION OF EXISTING PRECONDITIONERS

To begin with the search for appropriate preconditioners, the study implemented two existing precondition-
ers namely Jacobi and circulant preconditioner explained in section 3.2.1 and 3.2.2 respectively. The imple-
mentation of the same for the current model is discussed in this section.

4.3.1. JACOBI PRECONDITIONER

Jacobi’s preconditioner requires to find the diagonal elements of A. Considering the unregularized PI-CS
model for which A is defined as in Eq. 4.14, the diagonal can be found by exploiting the structure of A. It can
be recalled that A comprises of the FH RF term which is a BCCB matrix. BCCB matrices consist of circulant
blocks where the blocks are arranged in a circular manner. For instance, if C is a BCCB matrix of dimension
N ×N , it has the following structure

C =



C0 CN−1 · · · C2 C1

C1 C0 CN−1 · · · C2
...

. . .
. . .

. . .
...

CN−2
. . . C1 C0 CN−1

CN−1 CN−2 · · · C1 C0

 (4.17)
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(a) (b)

(c) (d)

Figure 4.2: Structure of the system matrix A for brain with an image dimension 32×32. (a) Structure of A with r = 1 depicting same
main diagonal entries. (b) Structure of A with r = 2. (c) Structure of A with r = 4. (d) Structure of A with r = 8.

where, C j for j = 1, . . . , N −1 are circulant matrices with dimension n ×n that have the following structure

C j =



c0 cn−1 · · · c2 c1

c1 c0 cn−1 · · · c2
...

. . .
. . .

. . .
...

cn−2
. . . c1 c0 cn−1

cn−1 cn−2 · · · c1 c0

 (4.18)

where, ck for k = 1, . . . ,n −1 are elements of the circulant matrix C j . The circulant matrices, C j , are special
type of toeplitz matrices where not only the diagonal entries are same but also each row is shifted one element
to right from the previous row. Due to the presence of these circulant blocks, BCCB matrix C has same main
diagonal entries. This means FH RF has the same main diagonal entries. To obtain A, this term is multiplied
by diagonal matrices Si and SH

i which destroys the property of same diagonal elements. However, due to
the normalization of coil sensitivity maps A retains the property of same diagonal elements and its diagonal
elements are in fact the diagonal elements of FH RF. Proof of the same follows.

Let the BCCB matrix FH RF be denoted by C , then A can be written as

A =
Nc∑
i=1

ŜH
i FH RF︸ ︷︷ ︸

C

Ŝi

The diagonal entries of A arranged in column vector a can be obtained as

a =
Nc∑
i=1

ŝH
i ◦c◦ ŝi

T (4.19)

where, ŝH
i is the column vector containing the diagonal entries of ŜH

i and c is the column vector containing
the diagonal entries of C . Here, since, c has same entries because of BCCB structure, c can be replaced by its
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first element c0. Therefore, Eq. 4.19 can be rewritten as

a =
Nc∑
i=1

ŝH
i ◦ c0 ◦ ŝT

i .

The constant term can be taken out of the summation

a = c0

Nc∑
i=1

ŝH
i ◦ ŝT

i . (4.20)

Normalization of coil sensitivity maps, Eq. 4.15, can be written in terms of vectors sH
i and sT

i , containing

the diagonal elements of SH
i and Si , respectively, as the following

ŝi = si√∑Nc
k=1 sH

k ◦sT
k

. (4.21)

Substituting Eq. 4.21 in 4.20 results in

a = c0

Nc∑
i=1

sH
i√∑Nc

k=1 sH
k ◦sT

k

◦ sT
i√∑Nc

k=1 sH
k ◦sT

k

a = c0

∑Nc
i=1 sH

i ◦sT
i∑Nc

k=1 sH
k ◦sT

k

(4.22)

a = c01 (4.23)

where, 1 is an all ones vector. Hence, indeed the diagonal elements of A are same as the diagonal elements of
C .

Now, to find the diagonal elements of A, it is required to find the diagonal elements of C = FH RF which
can be easily found using the properties of BCCB matrices. Ones that are particularly interesting for this
purpose is that BCCB matrices are completely described by their first row or first column and that they are di-
agonalised by Fourier basis. For the given BCCB matrix, C , whose first column is denoted by c·,1 the following
property holds

r = Fc:1

where, r denotes the vector containing diagonal entries of R. In the present scenario, r is already known, thus,
c:1 can be found as

c:1 = FH r (4.24)

It is important to note that if C is defined as FRFH then the BCCB matrix is defined by its first row and in that
case r = Fc1: where c1: denotes the first row of C . Having found the c:1, its first element, c11 = c0 is the diagonal
entry of C . Therefore, the diagonal elements of C and A arranged in the vector form is given by the following
equation

a = c111. (4.25)

The diagonal entries of Jacobi preconditioner defined by Eq. 3.18 can then be found in the vector p as

p = 1® c111 (4.26)

where, ® denotes the symbol for element-wise division. Results for Jacobi preconditioned FISTA are depicted
in section 7.2.1.

4.3.2. CIRCULANT PRECONDITIONER
Circulant preconditioners are a desirable choice because of its cheap construction and efficient implemen-
tation. These are particularly used when the system matrix has BCCB structure or can be approximated by a
BCCB matrix. Since, the system matrix for the current model has a BCCB-like structure which motivates the
choice of approximating A by a BCCB matrix. This idea was implemented in [6] for SENSE reconstruction
with Cartesian trajectories in the split Bregman framework. To investigate the performance, this circulant
preconditioner is implemented within FISTA framework. Choice of this particular circulant preconditioner is
motivated by similar problem models. Its implementation is straightforward from the explanation in section
3.2.2.



5
DERIVATION OF PRECONDITIONER

This chapter dderives two new preconditioners for FISTA framework. It also discusses how the difficulties
encountered during the design of the new preconditioners were overcome.

5.1. POLYNOMIAL PRECONDITIONER
To further explore the field of preconditioner especially in the context of the FISTA framework, techniques
that directly approximate the inverse of the system matrix, A, are considered. A classic example in the litera-
ture is the method of Frobenius norm minimization to approximate the inverse of sparse matrices [19]. The
main aim of the method is to find a sparse matrix M that approximates the inverse of the given matrix A. This
is formulated by the following minimization problem

min
M

‖I −M A‖2
F (5.1)

where, ‖.‖F denotes the Frobenius norm of the argument matrix. Here, M is the left preconditioner for matrix
A. It is also possible to find the right preconditioner by minimizing the objective function, ‖I − AM‖2

F =
‖I − M H AH‖2

F , which is equivalent to finding a left preconditioner for AH . Therefore, if the system matrix
is hermitian, the left and right preconditioner will be the same. Solving the least squares problem in Eq. 5.1
requires gradient type iterative methods. Here, the global minimal residual descent algorithm is considered to
solve the minimization problem 5.1. Since, the method aims to find a sparse matrix, matrix elements below a
specified tolerance are replaced with zero. This is known as the numerical dropping step where the elements
with very small magnitudes are replaced with zero to obtain a sparse solution. The algorithm is demonstrated
in Algo. 4.

Algorithm 4: Global Minimal Residual Descent Algorithm

1 initialize M, tol
2 while stopping criteria > tolerance do
3 C := M A;
4 G := I −C ;

5 α= tr(G H AG)/‖AG|2F ;
6 M := M +αG ;
7 M(|M | < tol ) = 0;
8 end

To study if solving the minimization problem 5.1 using algorithm 4 produces the desired result, a simple
example with smaller image dimensions, 64×70, was considered. The system matrix corresponding to this
example was relatively small (4480×4480) and could be stored explicitly. Using algorithm 4 with normalised
residual Frobenius norm error as the stopping criteria, defined as

ek = ‖I −Mk A‖F

‖I‖F
(5.2)

21



22 5. DERIVATION OF PRECONDITIONER

Figure 5.1: Sparsity pattern of preconditioner M for smaller dimensional problem.

where, ek represents the error at k th iteration, for the smaller dimensional problem results in M that was
found in about 43 iterations with a residual error of 9.013e −02. Using this M as the preconditioner in regu-
larized FISTA framework reduced the condition number of the system matrix from 1.475e+03 to 2.80 which
means M indeed provides a good approximation of the inverse of A. The obtained M is sparse with elements
only on the diagonal blocks as represented in Fig. 5.1. The preconditioned FISTA for the smaller dimensional
problem converges in significantly lesser number of iterations compared to FISTA alone. However, it comes
with an expense of the overwhelming time to calculate the preconditioner, as performing matrix-matrix prod-
uct in the algorithm 4 is extremely expensive computation wise. Further, to implement algorithm 4, A and M
should be stored explicitly which for large problem size is not possible because of memory limitations. With
lack of explicit system matrix and memory restrictions, it is impossible to find a preconditioner and even if
one can obtain such a preconditioner, it is computationally inefficient. Apart from this, the system matrix is
only available as a callback function that can be evaluated on a vector which makes the implementation of
the algorithm 4 redundant.

Table 5.1: Condition numbers of various system matrices for problem size of 64×70 with undersampling factor r = 2

S.No. System Matrix Condition Number

1. A 1.475e+03

2. M45 A 17.93

3. M2 A 464.68

4. Ar eg 217.477

5. M45 Ar eg 2.8

6. M2 Ar eg 63.38

Therefore, to implement this preconditioner for the current model it is important to address the draw-
backs stated above. First, considering the time consumed by algorithm 4 to calculate the preconditioner, it is
observed that with the specified stopping criteria (Eq. 5.2) and tol = 10e −04, M is obtained at 45th iteration.
To check how well it approximates the inverse of A, the condition number of M45 A is computed which comes
out to be 17.93. For reference, closer the condition number is to 1 better the problem is posed. Comparing
the condition number before and after the preconditioning matrix M , it is observed that M45 is indeed a good
approximation of inverse of A. However this comes at an expense of the construction time of M45. One way
to overcome this is by using the M at 2nd iteration of algorithm 4 instead of 45th . Referring to the table 5.1, it
can be seen that condition number of system matrix A with M2 preconditioner is far less than the condition
number of A. Therefore, M2 is a suitable candidate as its construction time is negligible compared to M45.

Second, due to memory limitations and huge problem size it is only possible to evaluate A in an operator
form on a vector. This can be addressed by expanding M2 to write it in terms of the initial matrix M0 and then
implementing it as an operator on a vector. To write M2 in the expanded form, Mk is explicitly derived for
first two or three iterations (k = 1,2 and 3) of algorithm 4 given by the following:
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• Iteration 1

C1 = M0 A
G1 = I −C1

α1 = tr
(
G H

1 AG1
)

tr
(
G H

1 AH AG1
)

M1 = M0 +α1(I −M0 A)

(5.3)

• Iteration 2

C2 = M1 A = [M0 +α1(I −M0 A)]A
G2 = I −C2

α2 = tr
(
G H

2 AG2
)

tr
(
G H

2 AH AG2
)

M2 = M0 + (I −M0 A)[α1 +α2 −α1α2 A]

(5.4)

• Iteration 3

C3 = M2 A = {M0 + (I −M0 A)[α1I +α2I −α1α2 A]}A
G3 = I −C3

α3 = tr
(
G H

3 AG3
)

tr
(
G H

3 AH AG3
)

M3 = M0 + (I −M0 A)[(α1 +α2 +α3)I − (α1α2 +α1α3 +α2α3)A+α1α2α3 A2]

(5.5)

If the initial matrix M0 is set as an all zero matrix, O, then the preconditioners at three iterations can be written
as

M1 =α1I (5.6a)

M2 = (α1 +α2)I −α1α2 A (5.6b)

M3 = (α1 +α2 +α3)I − (α1α2 +α1α3 +α2α3)A+α1α2α3 A2 (5.6c)

Since all these preconditioners are polynomials in A, they can be implemented in an operator form. Thus, if
the values of α1, α2 and α3 can be estimated then M2 and M3 can be considered as potential preconditioner
candidates for FISTA framework.

Estimating α1,α2 and α3 is not straightforward because it requires the diagonals of the following matrix-
matrix products: (i)G H AG and (ii) G H AH AG , which vary for each alpha. Further, because of the huge problem
size, these terms are not explicitly available. So, in order to estimate these coefficients, additional assump-
tions are made based on the structure of system matrix. In section 4.2, it was observed that A has same main
diagonal entries and that A is a hermitian matrix i.e. AH = A. From the property of hermitian matrices, M
should also be a hermitian matrix as it approximates the inverse of A. This further leads to C , G , G H AG and
G H AH AG being hermitian matrices as well. Now, assuming that the terms G H AG and G H AH AG are hermi-
tian matrices with same diagonal entries, then an approximation of the coefficient values can be made by
calculating the first diagonal entry of these terms and multiplying it by the size of the matrix, represented by
the following equation

αi ≈
N × [First diagonal entry of G H

i AGi ]

N × [First diagonal entry of G H
i AH AGi ]

= First diagonal entry of G H
i AGi

First diagonal entry of G H
i AH AGi

(5.7)

where, i represents the coefficient number corresponding to the iteration number at which it was introduced,
given by Eq.s 5.3, 5.4 and 5.5. The diagonal entries for each iteration can be found as follows.

Let m0
:1, c1

:1 and g1
:1 represents the first column of matrix M 0, C 1 and G1 respectively. Initialising M 0 as an

all zero matrix, O, means that
m0

:1 = 0

where, 0 is an all zero column vector. Then, from Eq. 5.3, it follows that

c1
:1 = Am0

:1 (5.8)

and
g1

:1 = e1 −c1
:1 (5.9)
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where, e1 is the first standard basis column vector. Having calculated the first columns of C and G ,α1 is given
as

α1 =
(g1

:1)H [Ag1
:1]

(g1
:1)H [A(Ag1

:1)]
(5.10)

where, multiplications with A are performed in an operator form. Similarly, α2 can be calculated which re-
quires the computation of m1

:1 given as

m1
:1 = m0

:1 +α1(g1
:1). (5.11)

These equations are calculated in an iterative manner to compute all the coefficients, represented by algo-
rithm 5.

Algorithm 5: Coefficient Estimation

1 initialize coefficients = 3, m0
:1 = 0

2 for j = 1:coefficients do

3 c j
:1 := Am j−1

:1 ;

4 g j
:1 := e1 −c j

:1;

5 α j := (g j
:1)H Ag j

:1

(g j
:1)H A Ag j

:1

;

6 m j
:1 := m j−1

:1 +α j g j
:1;

7 end

This approach estimate alphas based on the assumption that the diagonal elements of G H AG and G H AH AG
are same which is true in the present case because of normalised coil sensitivity maps. However, to build an
extensive preconditioner more robust methods to estimate the values of alpha are required.

In search of better methods to optimize the coefficient values of the polynomial preconditioner, Cheby-
shev’s method to estimate the coefficients of the polynomial was explored. Since, the preconditioners given
in Eq. 5.6b and 5.6c are polynomials in A similar to Chebyshev’s polynomial preconditioner [19], the coeffi-
cients, α j , can be calculated in the same manner as coefficients of the Chebyshev’s polynomial of first kind.
The criteria to find the coefficients of the Chebyshev’s polynomial preconditioner, s(A), is to find a partic-
ular s(A) that approximates the inverse of A by solving the minimization problem which aims to bring the
spectrum of the preconditioned problem close to the spectrum of identity. This is formulated as finding a
polynomial s ∈ Pk , where Pk denotes the space of the polynomials with degree not exceeding k, that solves
the following problem

min
s∈Pk

max
λ∈[α,β]

|1−λs(λ)| (5.12)

where maxλ∈[α,β] |1−λs(λ)| denotes the spectral radius of the preconditioned system, As(A), and [α,β] de-
notes the interval containing the eigenvalues of A. Eq. 5.12 can also be written as

min
q∈Pk+1

max
λ∈[α,β]

|q(λ)| (5.13)

Solving the problem 5.13 results in the following

q(t ) =
Tk+1

(
β+α−2t
β−α

)
Tk+1

(
β+α
β−α

)
where, Tk+1 is a three term recursion given by the following equations

Tk+1(t ) = 2tTk (t )−Tk−1(t ),

T1(t ) = t

and

T0(t ) = 1.
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Polynomial s(t ) can then be found as the following

s(t ) = 1−q(t )

t
.

To find the desired polynomial, it is important to know the interval in which the eigenvalues of the system
matrix lies. Finding this interval is a challenging task especially because of the huge problem size and lack of
an explicit system matrix. Assuming the interval to be [0,1], the Chebyshev’s polynomial for k = 1 and k = 2 is
given by

p1(t ) = 8−8t (5.14)

and

p2(t ) = 18−48t +32t 2 (5.15)

respectively. Coefficients of the Chebyshev’s polynomial did not provide good-estimates of the values of al-
phas as with these coefficient values, the algorithm starts to diverge. Hence, the idea to use Chebyshev’s poly-
nomial was dropped. Thus, the problem to find better methods to estimate the coefficient values remains an
open problem which needs further investigation.

5.2. BLOCK DIAGONAL CIRCULANT PRECONDITIONER
Literature is the witness that circulant preconditioners are the favourable choice for large dimensional image
reconstruction problems. This is because circulant matrices can be easily evaluated on vectors in an operator
form because of their diagonalisation property. Here, a block diagonal circulant preconditioner is derived to
approximate the inverse of A which is inspired by the work of Koolstra et al. [6]. Their work assumes A to be a
BCCB matrix and its inverse is approximated using the diagonalisation property of BCCB matrices (described
in detail in section 3.2.2). The resulting preconditioner from their approach has the structure as given by Eq.
4.18, indicating that the preconditioner has constant diagonal blocks. Using the small dimension problem
(64×70), the condition number of preconditioned system matrix (with this BCCB preconditioner) comes out
to be 916.82. Since the BCCB preconditioner reduces the condition number of the system matrix, it is a good
inverse approximation of A.

Alternatively, it is rational to write A as a block diagonal matrix because this way each diagonal block is
different unlike when assumed to be BCCB matrix. The block diagonal matrix will have the following struc-
ture.

A ≈ Â =


A1 0 · · · 0
0 A2 · · · 0
...

...
. . .

...
0 0 · · · Am

 (5.16)

Approximating each hermitian block by circulant block, Â can be written as

Â =



FH
n Fn A1FH

n︸ ︷︷ ︸
K1

Fn 0 · · · 0

0 FH
n Fn A2FH

n︸ ︷︷ ︸
K2

Fn · · · 0

...
...

. . .
...

0 0 · · · FH
n Fn AmFH

n︸ ︷︷ ︸
Km

Fn


(5.17)

where, Fn is n-point one-dimensional Fourier transform and K j for j ∈ {1, . . . ,m} are diagonal matrices. Since,
in practice every block is hermitian than circulant so K j ’s are not diagonal matrices. Yet, it is reasonable to
use the diagonal of each K j because each K j gathers a large part of the important information of A j on its
diagonal. The idea behind this step is exactly same as that proposed by Koolstra et al. [6] that removing the
off diagonal elements of K j will better approximate the inverse of A j than removing the off diagonal elements
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of A j itself. Hence, the preconditioner, M , that approximates the inverse of Â is given by

M =



FH
n diag{k1}−1Fn︸ ︷︷ ︸

M1

0 · · · 0

0 FH
n diag{k2}−1Fn︸ ︷︷ ︸

M2

· · · 0

...
...

. . .
...

0 0 · · · FH
n diag{km}−1Fn︸ ︷︷ ︸

Mm


(5.18)

where, k j represents the vector containing the diagonal of K j and diag{·} places the elements of argument on
the diagonal of a matrix. Each block, M j , has the dimension n ×n for j ∈ {1, . . . ,m}. The major difference be-
tween this preconditioner and the one suggested by Koolstra et al. is that here all the (main) diagonal blocks
are different whereas in their preconditioner all the (main) diagonal blocks are same. The condition num-
ber of preconditioned system matrix (with block diagonal circulant preconditioner) for the small dimension
problem 64×70 comes out to be 400.62 which means that this preconditioner better conditions the system
matrix. Condition numbers for system matrix and preconditioned system matrix (both BCCB preconditioner
and block diagonal circulant preconditioner) are tabulated in table 5.2.

Table 5.2: Condition numbers of system matrix and circulant preconditioned system matrices for problem size of 64×70 with
undersampling factor r = 2

S.No. System Matrix Condition Number

1. A 1.475e+03

2. MBCCB A 916.82

3. MBDC A 400.62

It is important to realize the preconditioner in an operator form for its efficient implementation. This can
be achieved in the similar way as done by Koolstra et al. [6], except that here the preconditioner is imple-
mented in a block wise manner. The undersampling diagonal matrix, R, and the i th coil sensitivity matrix, Si

in block wise manner are represented as

R =


R1 0 · · · 0
0 R2 · · · 0
...

...
. . .

...
0 0 · · · Rm

 (5.19)

and

Si =


Si ,1 0 · · · 0

0 Si ,2 · · · 0
...

...
. . .

...
0 0 · · · Si ,m

 (5.20)

respectively. Here, R j and S j for j ∈ {1, . . . ,m} are diagonal matrices of dimension n ×n. The diagonal blocks
A j for j ∈ {1, . . . ,m} of Â (Eq. 5.16) are then given as the following

Â =


∑Nc

i=1 SH
i ,1FH

n R1FnSi ,1 0 · · · 0

0
∑Nc

i=1 SH
i ,2FH

n R2FnSi ,2 · · · 0
...

...
. . .

...

0 0 · · · ∑Nc
i=1 SH

i ,mFH
n RmFnSi ,m

 . (5.21)

Note that the R is undersampling matrix where the matrix undersamples the data only in one direction, thus
all the blocks of R are equal i.e. R1 = R2 = ·· · = Rm . Now, to compute matrix M , the diagonals of K j for
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j ∈ {1, . . . ,m} are required. Let K be the matrix with K j as its diagonal blocks, then from Eq. 5.17 and 5.21, K j ’s
in elaborated form are represented by the following equation

K =


∑Nc

i=1 FnSH
i ,1FH

n R1FnSi ,1FH
n 0 · · · 0

0
∑Nc

i=1 FnSH
i ,2FH

n R1FnSi ,2FH
n · · · 0

...
...

. . .
...

0 0 · · · ∑Nc
i=1 FnSH

i ,mFH
n R1FnSi ,mFH

n

 . (5.22)

Therefore, the diagonal elements, ki , j for a certain coil, i (i ∈ {1, . . . , Nc }), and j th ( j ∈ {1, . . . ,m}) block of K ,

can be found on the diagonal of Ki , j = FnSH
i , j FH

n︸ ︷︷ ︸
C H

i , j

R1 FnSi , j FH
n︸ ︷︷ ︸

Ci , j

. Here, Ci , j = FnSi , j FH
n is a circulant matrix. So,

the diagonal elements ki , j of Ki , j can be found as

ki , j =
n∑

q=1
eq

(
cH

q ;i , j R1cq ;i , j

)
,

where, cH
q ;i , j is the q th row of matrix C H

i , j and eq is the q th standard basis vector. As R1 is a diagonal matrix, its

diagonal elements in a vector form can be represented by r1. Subsequently, ki , j can also be represented as

ki , j =
n∑

q=1
eq

(
cH

q ;i , j ◦cT
qi , j

)
r1

=


cH

1;i , j ◦cT
1;i , j

cH
2;i , j ◦cT

2;i , j
...

cH
n;i , j ◦cT

n;i , j

r1

=
(
CH

i , j ◦CT
i , j

)
r1, (5.23)

where ◦ denotes the hadamard product. The multiplication CH
i , j ◦CT

i , j contains product of two circulant ma-

trices which is again a circulant matrix. Since, circulant matrices possess special structure, their evaluation
on a vector can be represented as the circular convolution of first row/column of the circulant matrix and the
vector. Therefore, Eq. 5.23 can be written as

ki , j = (cH
1;i , j ◦cT

1;i , j )T ∗ r1. (5.24)

Using the circular convolution theorem on above equation gives us

Fn ki , j = Fn

[(
cH

1;i , j ◦cT
1;i , j

)T ∗ r1

]
= Fn

[(
cH

1;i , j ◦cT
1;i , j

)T
]
◦Fn r1.

As a result, the diagonal elements ki , j can be found as

ki , j = FH
n

{[
Fn

(
cH

1;i , j ◦cT
1;i , j

)T
]
◦Fn r1

}
(5.25)

where, the first row cH
1;i , j of matrix C H

i , j is given by (cH
1;i , j )T = FH

n (sH
i , j ) with sH

i , j being the column vector con-

taining the diagonal elements of Si , j . For multiple coils, diagonal elements of j th block is given by

k j = FH
n

{[
Fn

Nc∑
i=1

(
cH

1;i , j ◦cT
1;i , j

)T
]
◦Fn r1

}
. (5.26)

Eq. 5.26 can be efficiently computed in an operator form using the FFT operation. Further, matrix M can be
efficiently computed in an operator form using two additional FFT’s. The results of this preconditioner with
FISTA are presented in chapter 7.





6
COMPUTATIONAL IMPLEMENTATION

In this chapter, the computational implementation of the derived preconditioners (discussed in the previous
chapter) in MATLABr(9.4, R2018a) is discussed.

6.1. DATA
The dataset used in the study to test the algorithms is the measurement of T2-weighted scan of the 3D vol-
ume of the brain having 28 slices with a 3T MR system having 13-channel head coil for reception of signals.
Thickness of each slice is 4mm. The data is acquired using the turbo spin-echo (TSE) sequence with the scan
factor = 15 i.e. 15 k-space lines are acquired at the same time. The voxel size of the data is 0.4 and the field of
view (FOV) is 23×23 cm2. The acquired data is arranged as m ×n ×Nc × sl i ces.

6.2. FISTA
From algorithm 3, implementation of FISTA is fairly straightforward with two additional functions. One that
calculates the matrix-vector product, Ax, and second that performs the wavelet transform operation, Wv.

• Matrix-vector product (Ax): To compute A on a vector as an operator, i.e.

Ax =
Nc∑
i=1

SH
i FH RFSi x

where x is the unknown image whose elements are placed in a vector. The dataset of coil sensitivity
maps and the undersampling mask is of the dimension m ×n which as per the mathematical model is
arranged at the diagonal of matrices Si and R, respectively, with dimensions mn ×mn. For example,
if the data has the dimensions 320×470 then the matrices Si and R will have the size in order of 105 ×
105. Due to the huge size of matrices, it is not possible to store them as diagonal matrices. Therefore,
the diagonal elements of these matrices are stored in a vector form i.e. si and r contain the diagonal
elements of matrices Si and R respectively.

The Fourier matrix F can be replaced by the in-built MATLABr two-dimensional Fourier transforma-
tion function Y = fft2(X). Here, the function accepts input as a matrix and returns the output also
in a matrix. Therefore, when performing multiplication of F on a vector, it is reshaped into a matrix. In
the implementation, the normalized fft2 function is used which is shown in the following listing.

1 function Y = fft2n(X)
2 Y = (1/sqrt(numel(X)))*fft2(X);
3 end

Similarly, the inverse two-dimensional Fourier transformation functionifft2 is also normalized, shown
in the listing below.

29
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1 function Y = ifft2n(X)
2 Y = sqrt(numel(X))*ifft2(X);
3 end

The matrix-vector product Ax is then computed in the form of a function given by the following listing.

1 function Ax = matrix_vector_product(x)
2 for c = 1:Nc
3 Sx = s(c).*x;
4 FSx = fft2n(reshape(Sx,m,n));
5 FSx = reshape(FSx,[],1);
6 RFSx = r.*FSx;
7 FRFSx = ifft2n(reshape(RFSx,m,n));
8 FRFSx = reshape(FRFSx,[],1);
9 SFRFSx(:,:,c) = conj(s).*FRFSx;

10 end
11 A_x = sum(SFRFSx,3);
12 end

• Wavelet transformation function (Wv): To transform a given image, v, into the wavelet domain, a pub-
licly available wavelet operator class written by Michael Lustig [16] is used for the implementation. The
class implements the Daubechies wavelet transform of an image in an operator form where Y = WV

computes the wavelet transform of V and V = W'Y reconstructs it back. The operator accepts square
matrix as input where the dimensions of the matrix must be in the power of two. So, to implement
this wavelet operator, given image, v, is reshaped into a matrix which is padded with last row and last
column of it such that the dimension of the matrix is the next largest power of two. The function that
pads the matrix is shown in the following listing.

1 function Y = pad_matrix(X)
2 dim = max(size(X));
3 if rem(log2(dim),1) == 0
4 dim_new = dim;
5 else
6 dim_new = pow2(ceil(log2(dim)));
7 end
8 Y = zeros(dim_new);
9 Y(1:size(X,1),1:size(X,2)) = X;

10 Y(1:size(X,1),size(X,2)+1:end) = repmat(X(:,size(X,2)),1,size(new_X,2)-size(X,2));
11 Y(size(X,1)+1:end,1:end) = repmat(new_X(size(X,1),:),size(new_X,1)-size(X,1),1);
12 end

When the image is reconstructed back in the image domain, the extra padded numbers are truncated.

6.3. POLYNOMIAL PRECONDITIONED FISTA
Implementation of polynomial precondition with FISTA uses the same algorithm with two additional func-
tions. First, that estimates the coefficients i.e. α1, α2 and α3 and second that computes the preconditioner
matrix-vector product.

• Estimation of coefficients: Alphas can be obtained by the direct implementation of the algorithm 5.
Having calculated the values of alphas, the coefficients can be computed from the combination of al-
phas. The combination of alphas has a particular pattern that the first coefficient is just the sum of all
theα j , the second coefficient is the sum of products of combinations of 2 alphas out of total alphas and
the third coefficient is the sum of product of combinations of 3 alphas out of total alphas. This is shown
in the listing below.

1 vec = 1:no_of_alpha
2 for k = 1:no_of_alpha
3 combination_alpha{k} = combnk(vec,k);
4 end
5 coefficient = [];
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6 for i = 1:length(combination_alpha)
7 temp = cell2mat(combination_alpha(i));
8 for j = 1:size(combination_alpha{i},1)
9 index = temp(j,:);

10 prod=1;
11 for iter = 1: size(index,2)
12 prod = prod*alpha(index(iter));
13 end
14 coefficient(j) = prod;
15 end
16 prod_sum(i) = sum(coefficient);
17 coefficient = [];
18 end

• Preconditioner matrix-vector product: Including the polynomial preconditioner (for instance, M2 with
FISTA results in the change of gradient of f (x) to the following

∇ f (x) = (β1I −β2 A)Ax− (β1I −β2 A)b. (6.1)

where, β1 = α1 +α2 and β2 = α1α2. It can be inferred that including the polynomial preconditioner
results in few additional matrix-vector products of A on vectors and simple algebraic operations which
has a straightforward implementation from Eq. 6.1.

6.4. BLOCK DIAGONAL CIRCULANT PRECONDITIONED FISTA
Implementation of block diagonal circulant preconditioned uses the imeplementation of Sec. 6.2 with two
additional functions. One that constructs the diagonal elements of each block of the preconditioner and
second that evaluates the preconditioner vector product.

• Construction of diagonal elements: The diagonal elements of each block are computed from the straight-
forward implementation of Eq. 5.26. The Fourier matrix Fn is replaced by the in-built MATLABr one-
dimensional Fourier transformation function y = fft(x). Here, the function accepts input as a vec-
tor and returns the output also as a vector. In the implementation the normalised fft function is used
which is shown in the following listing.

1 function y = fftn(x)
2 y = (1/sqrt(numel(x)))*fft(x);
3 end

Similarly, the inverse one-dimensional Fourier transformation functionifft is also normalized, shown
in the listing below.

1 function y = ifftn(x)
2 y = sqrt(numel(x))*ifft(x);
3 end

The diagonal elements are then constructed by the following listing.

1 function k = diagonal_elements
2 for coil = 1:Nc
3 S_coil = csm(:,:,coil);
4 S_coil_vec = S_coil(:);
5 for block = 0:M-1
6 S_coil_block = conj(S_coil_vec(block*N + 1:block*N + N,1));
7 Col_block(block*N + 1:block*N + N,1,1) = ifft(S_coil_block);
8 end
9 Col(:,coil) = Col_block;

10 end
11 r = double(random_mask(:));
12 Col_squared = sum(abs(Col).^2,2);
13

14 for block = 0:M-1



32 6. COMPUTATIONAL IMPLEMENTATION

15 r_block = r(1:N,1);
16 Col_squared_block = Col_squared(block*N + 1:block*N + N,1);
17 k(block*N + 1:block*N + N,1) = ...

ifft((fft(r_block).*fft(Col_squared_block));
18 end
19 end

• Block diagonal circulant preconditioner vector product: This function evaluates the block diagonal
circulant preconditioner on a vector. Implementation of this evaluation can traced to the matrix vector
product of M in Eq. 5.18 on a vector. The following listing explains the computational implementation.

1 function Mx = block_preconditioner_vector_product(x)
2 for block = 0:M-1
3 x_block = x(block*N + 1:block*N + N,1);
4 Fv = ifft(x_block);
5 kFv = (k(block*N + 1:block*N + N,1).^-1).*Fv;
6 FkFv = fft(kFv);
7 Mx(block*N + 1:block*N + N,1) = FkFv;
8 end
9

10 end



7
RESULTS AND DISCUSSION

This chapter consists of the simulations and results. First, it presents the reconstruction results for the regu-
larized model with FISTA. Second, it shows the reconstruction results of existing and derived preconditioners
followed by their computational complexity.

The dataset utilized in this project has the dimensions 320×470×13 where the first two dimensions rep-
resent the image size and the third dimension represents the number of receiver coil channels. The volume of
the brain for this dataset is divided into 28 slices. All the results are presented with slice 9 of the given dataset.
Both FISTA and Preconditioned FISTA are evaluated at two acceleration factors i.e. r = 2 and r = 4. The given
data is fully sampled in k-space which is undersampled by multiplying the masks shown in Fig. 7.1. All the
results are obtained using the regularised FISTA model i.e. Eq. 4.2.

(a) (b)

Figure 7.1: Undersampling masks for the given dataset. Black lines represent ones and white lines represent zeros. (a) Mask for r = 2. (b)
Mask for r = 4.

7.1. RECONSTRUCTION USING FISTA
The reconstructed results with FISTA for acceleration factor r = 2 and r = 4 are presented in Fig. 7.2. It
represents the target image, the reconstructed image and the difference between the target image and re-
constructed image. The difference is magnified with the factor of 3. These reconstructions are obtained by
iterating FISTA for a fixed number of iterations.

In FISTA, the step size of the algorithm is controlled by the parameter ’L’ which is the Lipschitz constant
of ∇ f (x) given by 2σmax(A). Here, σmax(A) represents the largest singular value of A. The (nonzero) singular
values of A are defined as the square roots of the nonzero eigenvalues of AH A. Since, the system matrix
is hermitian i.e. AH = A, the singular and eigenvalues of A are closely related such that the nonnegative
eigenvalue is also the singular value whereas the negative eigenvalue must reverse its sign to become the
singular value. Here, we require only the largest singular value of A which by the above fact is equal to the
largest eigenvalue of A. Hence, the Lipschitz constant L can be written as 2λmax(A).

The largest eigenvalue of the system matrix can not be computed in a straightforward manner because
A is only available as a callback function that evaluates the matrix vector product. Therefore, an estimate of
the largest eigenvalue of A is computed using the power iteration method. Since, the results are obtained
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using regularized FISTA, we find the largest eigenvalue of the regularised system Areg. The estimate for the
regularised system matrix is found to be λmax(Areg) = 1.0996. Accordingly, L is set to 2.

As the quality of image is significantly influenced by the regularization parameters, it is important to
set them to provide the best image quality. Choice of `2 norm regularization parameter, µ, is based on the
best visual representation of the image and the `1 norm regularization parameter, λ, is chosen such that the
resulting image has both a reasonable signal to noise ratio (SNR) and perceived image quality. The plots
representing the SNR of the reconstructed image with variation in λ is shown in Fig. 7.3. Hence, step size
parameter and regularization parameters for these reconstructions are set as:

1. r = 2 : L = 2, λ= 0.4 and µ= 0.3

2. r = 4 : L = 2, λ= 0.4 and µ= 0.3

(a) (b) (c)

(d) (e) (f)

Figure 7.2: Reconstructed and difference image for given dataset for acceleration factor r = 2 and r = 4. (a) Target image. (b)
Reconstructed image for r = 2. (c) Difference(×3) image for r = 2. (d) Target image. (e) Reconstructed image for r = 4. (c) Difference(×3)

image for r = 4.

(a) (b)

Figure 7.3: Analysis to find optimum λ. (a) λ for r = 2. (b) λ for r = 4.

7.2. RECONSTRUCTION USING PRECONDITIONED FISTA
This section presents the reconstruction results of preconditioned FISTA for Jacobi, circulant and derived
preconditioners: polynomial and block diagonal circulant. The performance of these preconditioners is eval-
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uated with two stopping criteria i.e. residual error and relative error. The stopping criteria are defined as the
following.

1. Residual Error:

ek = ‖b− Axk‖
‖b‖ (7.1)

2. Relative Error:

er el
k = ‖x−xref‖

‖xref‖
(7.2)

where, xref is the reference image obtained from FISTA by keeping r = 1.

The tolerance for the specified error is set as

1. r = 2: (Residual error) ε= 8e−03 and (Relative error) εrel = 9e−02

2. r = 4: (Residual error) ε= 7e−03 and (Relative error) εrel = 13e−02

Preconditioning the system matrix Areg improves its condition number, however, changes its eigenvalues. As
the step size of FISTA depends on the maximum eigenvalue of the system matrix, the parameter ’L’ for the
preconditioned system matrices are set in accordance with their respective maximum eigenvalue.

7.2.1. JACOBI PRECONDITIONER
The reconstruction image, difference image (magnified three times) and the error convergence plots for Ja-
cobi preconditioned FISTA using the mentioned stopping criteria for r = 2 are shown in Fig. 7.4. The largest
eigenvalue of the system matrix after including the preconditioner is λmax = 2.2845, so, L is set to 4. Since
L has an inverse relation with the step size, increasing the value of L reduces the step size of FISTA, thereby,
making it slow. Thus, comparing the performance of the preconditioner with FISTA at same step size i.e.
L = 4, it can be observed (Fig. 7.4e, 7.4f) Jacobi preconditioner does reduce the consumed iterations but it
does not perform better than FISTA with L = 2. Under both stopping criteria, the number of iterations in-
cluding and excluding the preconditioner are almost same when compared to FISTA with L = 2. At r = 4, the
largest eigenvalue of the system matrix after including the preconditioner is λmax = 5.1965, so L is set to 10.
The results for r = 4 are presented in Fig. 7.5. The convergence for both the criteria at r = 4 follow the same
trend as with r = 2.

Ideally, preconditioners with the diagonal structure are preferred because of their computational effi-
ciency. However, in the current scenario, Jacobi preconditioner does not provide a good approximation of
the inverse of Areg. The reason can be owed to the constant diagonal elements of A (derived in 4.3.1) which
are the result of coil sensitivity normalisation. Implying that the Jacobi preconditioner scales the system ma-
trix with a constant value. Scaling the matrix provides a poor estimation for the system matrix inverse. Had
the diagonal elements of A been different, Jacobi preconditioner would have provided a better approxima-
tion. Additionally, including the preconditioner increases the largest eigenvalue of the system matrix which
makes the algorithm slower. Hence, it is meaningless to use this preconditioner for the current model.

7.2.2. CIRCULANT PRECONDITIONER
Reconstruction results using circulant preconditioner (derived in the work of [6]) with FISTA at r = 2 are
depicted in Fig. 7.6. The largest eigenvalue of the system matrix after including circulant preconditioner
is λmax = 10.3049 and thus L = 20. Setting L = 20 implies that the circulant preconditioned FISTA utilizes
a significantly small step size relative to FISTA, thereby making FISTA considerably slow. This can also be
visualized by comparing the convergence plots of circulant preconditioned FISTA and FISTA at L = 2, shown
in Fig. 7.6e and 7.6f. If the error convergence of circulant preconditioned FISTA is compared to FISTA with
L = 20, then the reduced number of iterations is notable. In this case the former lower bounds the error
convergence of latter.

For r = 4, reconstructed image, difference image and error convergence plots are presented in Fig. 7.7.
Here, the largest eigenvalue of the system matrix after including circulant preconditioner is λmax = 45.2091
and thus L = 90, implying that FISTA takes even small steps than at r = 2. Thus, making FISTA even slower
which can be confirmed by the increase in consumed number of iterations where FISTA at L = 2 takes about
10 iterations, FISTA at L = 20 takes approximately 30 iterations and FISTA at L = 90 takes significantly more
than 40 iterations. Even then, the error convergence trend at both the acceleration factors is similar to a great
extent.
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(a) (b)

(c) (d)

(e) (f)

Figure 7.4: Reconstructed image, difference image and convergence plots for Jacobi preconditioned FISTA with r = 2. (a) Reconstructed
image with residual error stopping criteria. (b) Reconstructed image with relative error stopping criteria. (c) Difference(×3) image with

residual error stopping criteria. (d) Difference(×3) image with relative error stopping criteria. (e) Residual error convergence plot. (f)
Relative error convergence plot.

A major drawback here is that the circulant preconditioner does not accurately approximate the inverse
of the current system matrix Areg as it does not take into account the diagonal matrix term QH Q. Even if it
does, it is poor to approximate the inverse of the diagonal matrix QH Q by a BCCB matrix. Undoubtedly, this
preconditioner is computationally efficient, yet it is not a good choice for the current framework.

7.2.3. POLYNOMIAL PRECONDITIONER

Section 5.1 derives two polynomial preconditioners i.e. M2 and M3. M3 is a quadratic polynomial in A. Evalu-
ation of M3 on a vector will at least require six (Fast Fourier Transform) FFTs and additional linear operations.
Alternatively, evaluation of M3 on a vector can be interpreted as three operations of A on a vector, implying
that the per iteration cost of M3 preconditioned FISTA increases approximately by a factor of 3. This can be
confirmed by comparing the number of flops consumed by FISTA and M3 preconditioned FISTA which are
computed in section 7.3. Therefore, this preconditioner is extremely expensive and practically infeasible for
huge dimension problems.

Reconstruction results with M2 polynomial preconditioned FISTA at r = 2 are represented in Fig. 7.8. The
largest eigenvalue of the system matrix after including the preconditioner is λmax = 1.0001, accordingly L is
set to 2. An important point to note is that this preconditioner utilizes the same step size as FISTA. It can be
observed from the error convergence plots (Fig. 7.8e, 7.8f) that M2 preconditioned FISTA lower bounds the
convergence of FISTA and the former takes approximately half the number of iterations to converge to the
specified tolerance than the latter under both stopping criteria.
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(a) (b)

(c) (d)

(e) (f)

Figure 7.5: Reconstructed image, difference image and convergence plots for Jacobi preconditioned FISTA with r = 4. (a) Reconstructed
image with residual error stopping criteria. (b) Reconstructed image with relative error stopping criteria. (c) Difference(×3) image with

residual error stopping criteria. (d) Difference(×3) image with relative error stopping criteria. (e) Residual error convergence plot. (f)
Relative error convergence plot.

Reconstructed image, difference image (magnified three times) and error convergence plots at r = 4 are
depicted in Fig. 7.9. The largest eigenvalue of the preconditioned system matrix at r = 4 remains the same as
at r = 2 and so L is set to 2. Even with increased acceleration factor, the preconditioned FISTA takes consid-
erably fewer iterations than FISTA. Thus, M2 preconditioned FISTA can be considered as a potential precon-
ditioner for this framework.

One of the limitations of M2 preconditioner is that it only approximates the inverse of A whereas the actual
system matrix is Areg. To better approximate the inverse, the diagonal matrix term QH Q should be taken into
account. Due to time constraints, a detailed analysis of including the `2 norm term in the preconditioner was
not completely investigated.

7.2.4. BLOCK DIAGONAL CIRCULANT PRECONDITIONER

Fig. 7.10 represents the reconstruction image, difference image (magnified three times) and error conver-
gence plots with block diagonal circulant preconditioned FISTA at r = 2. The largest eigenvalue of the pre-
conditioned system matrix is λmax = 14.3049. Therefore, L is set to 28. Taking into account the inverse rela-
tionship of L and step size, setting L = 28 results in step size in the order of 4e−02. Similar to circulant pre-
conditioner, this preconditioner also slowers the performance of FISTA by making its step size significantly
low. This can be observed by comparing FISTA L = 2 with block diagonal circulant preconditioned FISTA in
Fig. 7.10e and 7.10f. However, if the convergence of preconditioned FISTA is compared to FISTA L = 28 then
indeed preconditioned FISTA performs better. Results for this preconditioner at r = 4 are presented in Fig.
7.11. At r = 4 the largest eigenvalues of the preconditioned FISTA is λmax = 90.0561, subsequently, L = 180.
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Figure 7.6: Reconstructed image, difference image and convergence plots for circulant preconditioned FISTA with r = 2. (a)
Reconstructed image with residual error stopping criteria. (b) Reconstructed image with relative error stopping criteria. (c)

Difference(×3) image with residual error stopping criteria. (d) Difference(×3) image with relative error stopping criteria. (e) Residual
error convergence plot. (f) Relative error convergence plot.

The convergence behaviour of the preconditioner is almost the same at r = 4 as at r = 2.
The main drawback of the block diagonal circulant preconditioner is that it does not take into account

the diagonal matrix term QH Q. Better inverse approximations can be achieved by incorporating the diagonal
QH Q matrix. Therefore, approximating the inverse of `2 norm regularized system matrix remains an open
problem that needs further investigation.

In practice, preconditioners possessing special structures, for instance, circulant, BCCB, etc. are preferred
because of their efficient implementations. However, for the current framework including efficient precondi-
tioners comes with an expense of larger maximum eigenvalue. If the step size was independent of the largest
eigenvalue of the system matrix, both circulant and block diagonal circulant preconditioner would be the
obvious choice.

7.3. COMPUTATION COMPLEXITY OF DERIVED PRECONDITIONERS
The section compares the derived preconditioners in the context of their computational complexity. It is
measured by the number of Floating Point Operations (FLOPS) required by each preconditioner for its con-
struction and evaluation on a vector. Tab. 7.1 lists the required flops for the derived preconditioners.

Table 7.1 reveals that construction of M3 takes 1.5 times the number of flops used in the construction of
M2 and almost 9 times the number of flops required by evaluation of A on a vector. Moreover, its evaluation on
a vector is approximately 3 times the flops required by A to be evaluated on a vector. This means that M3 is not
only expensive to construct but it is also expensive to be evaluated on a vector. Using such a preconditioner
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Figure 7.7: Reconstructed image, difference image and convergence plots for circulant preconditioned FISTA with r = 4. (a)
Reconstructed image with residual error stopping criteria. (b) Reconstructed image with relative error stopping criteria. (c)

Difference(×3) image with residual error stopping criteria. (d) Difference(×3) image with relative error stopping criteria. (e) Residual
error convergence plot. (f) Relative error convergence plot.

is trivial because it may happen that the amount of time reduced using this preconditioner will be equivalent
to the time taken by the preconditioner’s construction and evaluation, leaving us with zero gain. Therefore, it
is impractical to use such an extremely expensive preconditioner.

Analysing the number of flops consumed by M2 preconditioner, it can be noted that construction of M2

takes 6 times the number of flops required by evaluation of A on vector indicating that construction of M2

is not cheap either. Additionally, it can be interpreted that the required flops are directly proportional to the
number of coils indicating that more the number of coils, more expensive will be the construction. Analysing
the evaluation of M2 preconditioner on a vector, it can be inferred that it costs (almost) the same number
of flops as consumed by evaluation of A on a vector. In such a case if the overall time gain succeed the
combined construction and evaluation time, then this preconditioner can be useful for the framework. Thus,
we compare FISTA and M2 preconditioned FISTA for their total time and per iteration time consumption.
This is tabulated in Tab. 7.2.

Tab. 7.2 represents the iterations, total time and per iteration time consumed by FISTA and M2 precon-
ditioned FISTA. Since, both the stopping criteria provides (almost) same results, comparison is made with
residual error stopping criteria. It can be observed that M2 preconditioned FISTA takes half the number of
iterations consumed by FISTA at both r = 2 and r = 4. Comparing the total time consumption of the two algo-
rithms, it can be analysed that M2 preconditioned FISTA reduces the image reconstruction time by approxi-
mately 42% at r = 2 and approximately 44% at r = 4. At the same time, M2 preconditioned FISTA increases the
per iteration time of the algorithm by 20%. Also, the construction time of M2 preconditioner was noted which
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Figure 7.8: Reconstructed image, difference image and convergence plots for polynomial preconditioned FISTA with r = 2. (a)
Reconstructed image with residual error stopping criteria. (b) Reconstructed image with relative error stopping criteria. (c)

Difference(×3) image with residual error stopping criteria. (d) Difference(×3) image with relative error stopping criteria. (e) Residual
error convergence plot. (f) Relative error convergence plot.

was found to be approximately 0.48 sec. This implies that the construction time of M2 is equivalent to one
additional iteration of the algorithm. Taking the construction time into account, M2 preconditioned FISTA
still consumes 25% lesser time than FISTA at r = 2 and 30% lesser time at r = 4. Although M2 preconditioner
is computationally expensive, it still manages to provide 25% reduction in overall time (in this case).

As seen before, that block diagonal circulant preconditioned FISTA does not perform well for the current
framework, it is insignificant to compare its iteration and time consumption. The block diagonal circulant
preconditioner might not have worked for the current framework but it may be promising for other frame-
works, for example, preconditioned conjugate gradient algorithm or Split Bregman framework, because the
step size of these frameworks do not depend on the eigenvalues of the system matrix. However, there is not
enough proof to substantiate the claim. So, it remains an open problem that requires further investigation.

Even then, there is no loss to compare the computation complexity of the derived block diagonal circulant
preconditioner. From Tab. 7.1, it can be noted that its construction is approximately one half of the flops
consumed by evaluation of A on a vector and its evaluation is approximately 0.04 times the flops consumed by
evaluation of A on a vector. Therefore evaluation of this preconditioner on vector is negligible with respect to
the flops consumed by A on vector. Further, the construction and evaluation of this preconditioner consumes
approximately half the flops consumed by circulant preconditioner. Hence, this preconditioner succeeds all
the compared preconditioners in terms of computation complexity.
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Figure 7.9: Reconstructed image, difference image and convergence plots for Polynomial preconditioned FISTA with r = 4. (a)
Reconstructed image with residual error stopping criteria. (b) Reconstructed image with relative error stopping criteria. (c)

Difference(×3) image with residual error stopping criteria. (d) Difference(×3) image with relative error stopping criteria. (e) Residual
error convergence plot. (f) Relative error convergence plot.
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Figure 7.10: Reconstructed image, difference image and convergence plots for block diagonal circulant preconditioned FISTA with
r = 2. (a) Reconstructed image with residual error stopping criteria. (b) Reconstructed image with relative error stopping criteria. (c)
Difference(×3) image with residual error stopping criteria. (d) Difference(×3) image with relative error stopping criteria. (e) Residual

error convergence plot. (f) Relative error convergence plot.
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Figure 7.11: Reconstructed image, difference image and convergence plots for block diagonal circulant preconditioned FISTA with
r = 4. (a) Reconstructed image with residual error stopping criteria. (b) Reconstructed image with relative error stopping criteria. (c)
Difference(×3) image with residual error stopping criteria. (d) Difference(×3) image with relative error stopping criteria. (e) Residual

error convergence plot. (f) Relative error convergence plot.
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Table 7.1: Calculation of flops for construction of derived preconditioner and evaluation of preconditioners and system matrix on
vector.

Operator Functions Flops

Evaluation of A on vec-
tor

∑Nc
i=1 SH

i FH RH RFSi x Nc (4N +2N l og N )−N

Construction of M2 c j
:,1 = Am j−1

:,1 Nc (4N +2N l og N )−N

g j
:,1 = e1 −c j

:,1 N

α j =
(g j

:,1)H Ag j
:,1

(g j
:,1)H A Ag j

:,1

2(Nc (4N +2N l og N )−N )+2N

m j
:,1 = m j−1

:,1 +α j g j
:,1 2N

Total 2[3Nc (4N +2N l og N )+N ]

Construction of M3 Total 3[3Nc (4N +2N l og N )+N ]

Construction of Block
Diagonal Circulant M

(
cH

1;i , j

)T = FH
n

(
sH

i , j

)
∀i ∈ {1, . . . ,Nc} Nc N l og n

∑Nc
i=1

(
cH

1;i , j ◦cT
1;i , j

)T
2Nc N −N

FH
n [Fn(. . .)◦Fn(. . .)] N +3N l og n

k−1 N

Total (3+2Nc )N l og n +N (2Nc +1)

Evaluation of M2 on
vector

(β1I −β2 A)vec Nc (4N +2N l og N )+N

Evaluation of M3 on
vector

(β1I −β2 A+β3 A2)vec 3Nc (4N +2N l og N )+2N

Evaluation of M on vec-
tor

(FH
n diag

{
k j

}−1 Fn)vec∀ j ∈ {1, . . . ,m} N +2N l og n

Table 7.2: Comparison of derived preconditioners based on the number of iterations, total time and per iteration time.

S.No. Algorithm No. of Iterations Time Per Iteration Time

r=2

1. FISTA 8 ≈2.79 sec ≈0.34 sec

2. M2 preconditioned FISTA 4 ≈1.61 sec ≈0.41 sec

r=4

1. FISTA 11 ≈3.76 sec ≈0.34 sec

2. M2 preconditioned FISTA 5 ≈2.10 sec ≈0.41 sec



8
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WORK

The work investigates the preconditioning techniques to accelerate fast iterative shrinkage threshold algo-
rithm (FISTA) for CS and PI problem. The study derives two new preconditioners, first is a degree one poly-
nomial of the system matrix, A, and second is a block diagonal matrix where each block is a circulant matrix.
The simulations for image reconstruction are obtained at two acceleration factors i.e. r = 2 and r = 4. To eval-
uate the performance of the preconditioners two metrics are considered: (1) Residual Error; (2) Relative Error.
Additionally, the preconditioners are compared on the computation complexity by measuring the number of
floating-point operations (flops) consumed by the preconditioners for their construction and evaluation.

Reconstructed image quality and its error convergence depend on the chosen step size and regulariza-
tion parameters. In the current work, L controls the step size and holds an inverse relationship with step size.
According to Beck et. al. [27], L is the Lipschitz constant of the gradient of the data fidelity term and it de-
pends on the maximum eigenvalue of the system matrix, A/Areg (of the current formulation). The maximum
eigenvalues of the system matrices are estimated using the power iteration method. Other regularization
parameters are set such that they provide high signal to noise ratio and good (perceived) image quality.

First, the performance of two existing preconditioners with FISTA is investigated where the precondition-
ers utilized are Jacobi and Circulant preconditioner from the work of Koolstra et al. [6]. Sec. 7.2.1 described
the reconstructed images and error convergence plots with Jacobi preconditioned FISTA. The results sug-
gested that the largest eigenvalue of the system matrix is higher including the Jacobi preconditioner which
reduces the step size of FISTA and makes it slower. Additionally, the diagonal elements of system matrix were
found to be constant (Sec. 4.3.1) because of coil sensitivity normalization implying that the Jacobi precon-
ditioner is only scaling the system matrix with a constant value. Scaling the system matrix with a constant
value is not an accurate approximation for the inverse of the system matrix. Hence, it can be concluded
that Jacobi preconditioner is not a good choice for the current problem. Next, results of circulant precondi-
tioner in Sec. 7.2.2 indicates that implementing this preconditioner with FISTA increases the magnitude of
the largest eigenvalue of the system matrix substantially. Accordingly, the step size is reduced which makes
FISTA considerably slow. Although, circulant preconditioner is computationally efficient, yet incorporating it
in the current framework does not provide the desired results.

Reconstructed results with polynomial preconditioned FISTA in Sec. 7.2.3 indicate that the convergence
with preconditioner is a lower bound to the convergence without preconditioner. Under both evaluation
metrics, polynomial preconditioned FISTA takes fewer iterations than FISTA. Comparison of consumed itera-
tions, total time and per iteration time indicates that M2 preconditioner takes approximately half the number
iterations consumed by FISTA. However, M2 preconditioner increases the per iteration time of FISTA by 20%.
Additionally, Sec. 7.3 indicates that M2 preconditioner is expensive to construct. Therefore, even though M2

preconditioned FISTA reduces the total time by a factor of 0.25, it is an expensive preconditioner especially
when the the number of receiver coils are more.

The results of block-diagonal circulant preconditioned FISTA in Sec. 7.2.4 are similar to the circulant
preconditioned FISTA. Analogous to circulant preconditioner, block-diagonal circulant preconditioner also
significantly increases the magnitude of the largest eigenvalue of the system matrix resulting in slower FISTA.
Sec. 7.3 describes that this preconditioner is computationally cheap to construct and evaluate, even cheaper

45
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than the circulant preconditioner. However, for the current framework including this preconditioner comes
with the expense of larger maximum eigenvalue. If the step size was independent of the largest eigenvalue of
the system matrix, both circulant and block diagonal circulant preconditioner would be the obvious choice.

8.1. LIMITATIONS
The major limitation of this work is that both derived preconditioners estimate the inverse of A and not Areg.
Therefore, the obtained preconditioners do not exactly approximate the inverse. Better inverse approxima-
tion of system matrix can be estimated by taking into account the diagonal matrix QH Q. Thus the problem
needs further investigation. Secondly, every time a preconditioner is included in the framework, the step size
has to be varied according to the system matrix’s largest eigenvalue. This limits us to use computationally effi-
cient preconditioners like circulant and block diagonal circulant. One way to overcome this is by using FISTA
with backtracking rule, however, FISTA with backtrack comes with an expense of increased per iteration time
of the algorithm.

8.2. FUTURE WORK
To yield better results inverse of QH Q term must be taken in to account when approximating the inverse.
While deriving the polynomial preconditioner, it is observed that diagonal of A is constant and hence its
performance is based on the fact that the diagonal of the system matrix is constant. Adding the term QH Q to
A refutes the fact that diagonal values are constant. Further investigation can be done to find a preconditioner
that exactly approximates the inverse of Areg.

The derived block diagonal circulant preconditioner does not provide the desired results with the FISTA
framework, however, its cheap construction and evaluation on a vector indicates that it can be a potential
preconditioner for a different framework. Since, the preconditioner is (to great extend) similar to the circulant
preconditioner of [6], block diagonal circulant preconditioner can be tried with Split Bregman framework.

The study tells us that to include preconditioners with FISTA framework, the largest eigenvalue of the sys-
tem matrix must not change. Therefore, further investigation is required to find preconditioners that without
changing the largest eigenvalue, improves the condition number of the system matrix and simultaneously
are cheap to construct and evaluate.



A
NOMENCLATURE

The report follows the nomenclature given in Tab. A.1 unless otherwise stated in the document.

Table A.1: Nomenclature of the document

Quantity Notation

Scalar a

Vector a

Vector transpose aT

Vector hermitian aH

i th component of vector ai

Matrix A

Matrix transpose AT

Matrix hermitian AH

Entry of matrix A on i th row and j th column ai j

i th row of matrix A ai :

j th column of matrix A a: j

Set of m ×n matrix with real entries Rm×n

Set of m ×n matrix with complex entries Cm×n

Set of real column vectors with n components Rn and Rn×1

Set of complex column vectors with n components Cn and Cn×1

`2 norm ‖ ·‖2

`1 norm | · |1
Absolute function | · |
Signum function sgn

max(a,0), a ∈R (a)+
Hadamard product ◦
Convolution operator ∗
Assignment operator :=
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B
PROOF OF SHRINKAGE OPERATOR

To prove the property defined in Eq. B.11, we reform the compressed sensing problem as function of c, where
c = Wx, instead of x described by the equations below

x̂ = argmin
x

 Nc∑
i=1

∥∥∥∥∥RFSi WH Wx︸︷︷︸
c

−mi

∥∥∥∥∥
2

2

+λ| Wx︸︷︷︸
c

|1
 (B.1)

ĉ = argmin
c

{
Nc∑
i=1

∥∥RFSi WH c−mi
∥∥2

2 +λ|c|1
}

. (B.2)

where, WH W = I . Accordingly, the functions f and g are now expressed as f (c) =∑Nc
i=1

∥∥RFSi WH c−mi
∥∥2

2 and
g (c) =λ|c|1. Taking the derivative of the following equation

pL(w) = argmin
c

{
g (c)+ L

2

∥∥∥∥c−
(

w− 1

L
∇ f (w)

)∥∥∥∥2

2

}
(B.3)

results in
∂pL(w)

∂c
=λsgn(c)+ 2L

2

[
c−

(
w− 1

L
∇ f (w)

)]
. (B.4)

Equating the derivative to zero and replacing w with ck−1 results in

c+ λ

L
sign(c) = ck−1 −

1

L
∇ f (ck−1). (B.5)

Now, solving this equation for c yields the following solution

c =


v+ λ

L v < λ
L

0 |v| < λ
L

v− λ
L v > λ

L

(B.6)

where, v = ck−1 − 1
L∇ f (ck−1). Alternatively, Eq. B.6 can efficiently be written in the following form

ck =Tα

(
ck−1 −

1

L
∇ f (ck−1)

)
(B.7)

where α= λ
L and Tα is the shrinkage operator defined as

Tα(v) = (|v|−α)+ sgn(v) . (B.8)

Here, the gradient ∇ f (c) is given by

∇ f (x) = 2
Nc∑
i=1

WSH
i FH RH RFSi WH c−2

Nc∑
i=1

WSH
i FH RH mi . (B.9)
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To obtain the solution in terms of x, substitute the value of c in Eq. B.7. The substitution results in

Wxk =Tα

(
W

(
xk−1 −

1

L
∇ f (xk−1)

))

xk = WH Tα

(
W

(
xk−1 −

1

L
∇ f (xk−1)

))
(B.10)

Eq. B.10 proves that if g (x is a function of an operator such as |Ψ(x)|1 whereΨ is unitary sparsifying transform
operator (i.e. ΨHΨ= I ), then the shrinkage operator is defined as

Tα(x) =ΨH Tα(Ψ(x)). (B.11)
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