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Abstract—For running robots, angle of attack control is an
important part of the controller, as the angle of attack has a
large influence on the state of the running robot. Over the last
25 years, many angle of attack controllers have been introduced.
However, it is unknown what the relative performance is of
these controllers. The goal of this study is to determine the
best angle of attack controller in terms of disturbance rejection
and robustness. In this study, we investigated the disturbance
rejection and robustness of the six most used angle of attack
controllers. We found that dead-beat control provides by far
the best disturbance rejection. Furthermore, dead-beat control
also performs very well in terms of robustness; its disturbance
rejection is hardly affected by model and sensor errors. For these
reasons, we consider dead-beat control the best angle of attack
controller.

Index Terms—running robot, SLIP model, angle of attack

I. INTRODUCTION

LEGGED robots have been of interest to the robotics
community for quite a while. Many walking robots have

been designed in the past years. Inspired by the successes in
walking robots, attention has been starting to shift recently
to running robots. The reason for studying running robots
is twofold. First of all, legged robots provide more mobility
than e.g. wheeled robots. It is much more difficult to navigate
challenging terrain such as stairs, holes, etc. for a wheeled
robot than it is for a legged robot. When a legged robot is
walking, its speed is limited to

√
gl [1], where l is the leg

length. To increase the speed above this limit, the robot has to
start running. Thus, a running robot can provide better mobility
than a wheeled robot, at a higher speed than a walking robot.
The second reason to study running robots is that they can
be a model for human (and animal) running. The complex
task of locomotion is performed easily by humans, but still
poorly understood by science. A better understanding of the
science of locomotion makes it easier to help people who
now have trouble or are unable to walk and run. Knowledge
on how humans run could for example help in the design of
prostheses or rehabilitation techniques. As shown by famous
‘blade runner’ Oscar Pistorius, successful running prostheses
do exist, but little is known as to why these prostheses work
so well [2]. Having a running robot can facilitate research in
this area.

When building a humanoid running robot it is important
to consider how it can best be controlled. Since the early
days of running robotics, control of a running robot has often
been split in three parts [4]. First, the upper body posture
is controlled by applying a hip torque. Second, leg thrust is
applied during the stance phase or at lift-off to get the robot
to a certain energy level. Finally, leg placement at touchdown

Figure 1: Photographs of a human running. The middle picture shows
the moment of touchdown. The angle of attack α0 is defined as the
angle between the leg and the ground at the moment of touchdown.
Adapted from [3].

controls the ratio between forward speed and height at the next
hop. This is called angle of attack control.

The study presented in this paper focuses on angle of attack
control. The angle of attack is defined as the angle between
the leg (the line between hip and foot) and the ground at the
moment of touchdown, see figure 1. A steep angle of attack
will result in high forward speed but low height; a flat angle
of attack will result in low forward speed but great height at
the next hop.

Ideally, one would like to analytically solve the equations
of motion of a running model and determine an ideal angle
of attack from this solution. This ideal angle of attack
will get the model exactly to a certain desired state, for
example a desired forward speed or a desired hopping height.
Unfortunately, even for the simplest running model, it is
not possible to solve the equations of motion analytically.
This has compelled many researchers to find a different
way to control the angle of attack. Many angle of attack
controllers have been designed to date (e.g. [4], [5], [6],
[7]). All these controllers have been shown to provide stable
running patterns. However, they have never been properly
compared in terms of performance. This study will identify
and compare the most researched angle of attack controllers,
in order to determine the best angle of attack controller for
certain performance indicators. An extensive literature study
is performed to identify existing angle of attack controllers
and to find possibilities for a new controller. All controllers
are compared on a basic level to identify the most promising
controllers. The promising controllers are then investigated
in-depth, to determine the best angle of attack controller
based on several performance indicators, namely disturbance
rejection and robustness. These indicators show how well
a robot performs in real-world situations, such as being
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disturbed and having errors in sensor and/or model inputs.

The remainder of this paper is organized as follows: Section
II introduces two important running robot models that will be
used throughout this study, as well as a real running robot
that will be used for experiments. Section III introduces all
angle of attack controllers that are researched in this study, and
identifies the most promising controllers. Section IV describes
how the most promising controllers will be implemented on
the models and real robot. Section V presents the disturbance
rejection results of the most promising controllers, both on
a simple and on a realistic model. Section VI presents the
robustness of the controllers. Section VII presents a parameter
study for the controllers. Section VIII presents results of
experiments on the real running robot. Finally, discussions and
conclusions of this study can be found in Sections IX and X
respectively.

II. RUNNING MODELS AND ROBOT

For this study, several running models and a real running
robot will be used. A simple running model, the Spring
Loaded Inverted Pendulum (SLIP) model, is used to test the
disturbance rejection and robustness of the angle of attack
controllers. This model is described in section II-A. A realistic
model, which closely resembles a running robot, is described
in section II-B. This realistic model is used to verify that the
conclusions from the SLIP model are still valid in a more
realistic environment. To confirm that results obtained from
the simulations are also valid in the real world, the promising
controllers are implemented on a running robot. The running
robot used in this study is described in section II-C.

A. SLIP model

An important model in running robotics research is the
Spring Loaded Inverted Pendulum (SLIP) model. This model
consists of a point mass m attached to a massless spring with
spring constant k and rest length l0, see figure 2. Even though
this model is very simple, it is shown it is a good model for
human and robot running, and that the gaits found with this
model are similar to human and animal running gaits [8], [9].

For the SLIP model, equations of motion are divided in
stance phase and flight phase equations of motion. The flight
phase can be characterized as ballistic flight, leading to the
following equations of motion:[

ẍ
ÿ

]
=

[
0
−g

]
, (1)

where:

ẍ is the horizontal acceleration of the point mass,
ÿ is the vertical acceleration of the point mass and
g is the gravitational acceleration.

For the stance phase, the equations of motion are:[
ẍ
ÿ

]
=

[
− cosα
sinα

]
Fs

m
+

[
0
−g

]
, (2)

where:

m
apex

apex
touchdown lift-o�

l 0

α0

k

gy0
y1

x0
.

Figure 2: The Spring Loaded Inverted Pendulum (SLIP) model. This
model consists of a point mass m, attached to a massless linear spring
with spring constant k and rest length l0. The model is subject to
gravitational acceleration g. The highest point of the flight phase
is called apex; the instances where the foot touches and leaves the
ground are called touchdown and lift-off respectively. The angle of
the leg with respect to the ground at the moment of touchdown is
called the angle of attack α0.

Fs is the spring force,
α is the angle between leg spring and ground and
m is the mass of the point mass.

In this study, a linear spring is used, so the spring force is:

Fs = k · (l − l0), (3)

where:

k is the spring constant,
l is the spring length and
l0 is the rest length of the spring.

The transition from flight phase to stance phase is called
touchdown. This happens when the foot hits the ground, so
when:

y = l0 sinα0, (4)

where:

α0 is the angle between leg spring and ground
at touchdown, also called the angle of attack

The transition from stance phase to flight phase is called
lift-off. This happens when the foot leaves the ground, which
is when the leg spring returns to its rest length, so when:

l = l0 with l̇ > 0. (5)

During the flight phase, the state of the SLIP model consists
of horizontal and vertical positions x and y and horizontal
and vertical speeds ẋ and ẏ. At the highest point of the flight
phase, called the apex, the state of the model is completely
described by the height y and the horizontal speed ẋ. This is
because the horizontal position x is irrelevant and the vertical
speed ẏ is zero by definition, since the apex is the highest
point of the flight phase. The system is conservative, since
no energy can be lost or gained. There is no actuation system
which can add energy to the model, and no impact losses
can occur due to the fact that the leg has no mass. For such
a conservative SLIP model, the state at the apex can even be
described by height y alone, since the horizontal speed ẋ is
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then coupled to the height through the system energy Es.

A step for the SLIP model is considered here as the motion
from one apex to the next apex. To control a running robot
one would like to find a stable limit cycle [10] for a step.
A limit cycle is considered a series of steps where the state
of the runner at the end of each step is exactly equal to the
state of the runner at the beginning of the step. To analyze
the existence of a limit cycle for a running robot, a mapping
from one apex point to the next apex point can be used. Such
a mapping is called a Poincaré or return map. The return map
S gives the state at the next apex vi+1 as a function of the
state at the current apex vi:

vi+1 = S (vi) . (6)

A limit cycle exists if the return map S has a fixed point
v∗ where:

v∗ = S (v∗) . (7)

In this study, model parameters for the SLIP model are set
at m = 80kg, l0 = 1m, k = 20kN/m, g = 9.81m/s2,
both because of conformance to human values, as well as to
facilitate comparison to literature results, where these values
are somewhat standard values.

B. Realistic model

The realistic model (see figure 3) used in this study closely
resembles a robot runner. Sideways motion of the model is
not possible, making it a two-dimensional model. It has two
legs, both consisting of an upper and a lower leg, and an
upper body. All elements have a distributed mass and rotational
inertia. The elasticity of the legs is provided by a torsion
spring in the knees. This torsion spring has a non-linear
stiffness profile, which is chosen such that it has the same
effect as a linear spring between hip and toe. The simulated
linear spring stiffness is chosen in accordance with the real
robot at kknee,linear = 5.1kN/m. The spring in the knee is
only active when the relevant leg is in the stance phase. All
parameters of the realistic model are chosen in accordance
with the parameters of the real robot used in this study, in
order to facilitate easy comparison of experimental results.
The values of these parameters can be found in table I.

The upper body of the model is attached to the world in
such a way that rotation of the upper body is impossible, to
eliminate the need to control the upper body posture, which
is the subject of a separate study.

The realistic model has four motors: one in each knee and
one in each hip. The knee motors are placed parallel to the
knee springs. The motors can exert torques in order to position
all elements in the desired state. PD-controllers are used to
move the respective joint to its desired state. Fifth order splines
are used to determine a smooth desired trajectory from the
current state to the desired state. Since the realistic model is
not conservative like the SLIP model, a control system must
ensure that the energy of the model stays at the desired level.
In this study, to keep this control as simple as possible, the
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Figure 3: A realistic model of a runner. The model has two upper
and two lower legs, and an upper body. All elements have distributed
masses and rotational inertia. The upper body is attached to the world
so that rotation is not possible. The model is subject to gravitational
acceleration g. The rotational springs in the knees are only active
when the respective leg is in the stance phase. There are motors
in both knees and both hips. For the complex model, the angle of
attack α0 is defined as the angle between the hip-foot line and the
ground at the moment of touchdown. The left figure shows the model
parameters, parameter values are given in table I. The right figure
shows the definition and direction of state parameters.

Table I: Realistic model and Phides parameters.

body upper leg lower leg
Mass m [kg] 7.41 2.54 0.51
Moment of inertia I [kgm2] 0.080 0.036 0.005
Length l [m] 0.3 0.3 0.3
Vertical offset CoM c [m] 0 0.183 0.139
Horizontal offset CoM w [m] 0 0 0

choice is made to use a constant knee push-off during the
second part of the stance phase. This means that the stance
knee motor exerts a constant torque when the stance knee
angle has a positive angular speed. The value of the torque is
determined empirically, so that a resulting limit cycle will have
both the desired apex height and speed. To prevent slipping of
the stance foot at touchdown, and to prevent the occurrence
of liftoff before the stance leg is at its rest length, the torque
in the stance hip motor is limited so that there can never be
pulling forces between the ground and the stance foot.

As for the SLIP model, equations of motion are divided
between stance phase and flight phase. During the flight phase,
the leg that is supposed to hit the ground next is considered
the stance leg; the other one is the flight leg. The flight phase
ends when the stance foot hits the ground. At this point, impact
equations are calculated and the stance phase commences. The
stance phase ends when the leg is at its rest length, simulating
an end-stop in the knee. Impact equations are calculated, the
stance leg then becomes the flight leg and vice versa, and the
next flight phase begins.

C. Running robot Phides

For this study, we use a running robot called Phides (see
figure 4). Phides is about 0.6m high from foot to hip. It consists
of an upper body and two legs, both consisting of an upper
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Figure 4: Running robot Phides.

leg and a lower leg. The elasticity of the legs is provided
by a rotational spring in the knee. For the parameter values
of Phides see table I. Phides has four motors: two in the
knees, and two in the hips. All motors are Maxon RE35 30V
motors with Maxon gearboxes with a 1:55 gear ratio. The knee
motors are placed parallel to the knee springs. Furthermore,
the knee motors are placed in series with a torsion bar, so that
a series elastic actuator [11] is formed, ensuring smooth torque
control in the joints. At the hip, Phides is attached to a boom
construction, which prevents sideways motion of the robot,
in essence making it a two-dimensional robot. The robot can
run in circles on the ground, or it can run on a treadmill. A
construction is in place at the hip, which makes it possible to
prevent angular movement of the upper body. This is activated
during this study.

III. ANGLE OF ATTACK CONTROLLERS

A literature study is performed, which identifies the five
most researched types of angle of attack controllers, as well
as an opportunity for a new type of angle of attack control.
These controllers are compared on a basic level, to identify the
most promising controllers. In this comparison, all controllers
are compared to an ideal angle of attack, over a range of
initial conditions. All angle of attack controllers are described
in sections III-A-III-F. The basic comparison of the controllers
is described in section III-G.

A. Constant angle of attack controller

The simplest angle of attack controller that exists is the
constant angle of attack controller [5]. This controller sets the
angle of attack to a constant value, independent of any input:

α0 = const (8)

where:

α0 is the angle between the leg and the ground at
touchdown, also called the angle of attack.

Seyfarth et al. [5] investigated whether such a simple control
scheme can generate stable running patterns. They performed
a simulation of the SLIP model with constant angle of attack,
which shows that with a proper combination of model param-
eters and initial conditions, constant angle of attack control
can produce a stable running motion.

B. Raibert controller

To control the angle of attack, Raibert introduced the
concept of neutral point [4]. The neutral point is defined
as ‘the unique foot position that results in zero net forward
acceleration’, where net forward acceleration is defined as the
difference between forward speed at touchdown and at lift-
off. Due to the non-integrability of the equations of motion
of running models, the neutral point cannot be determined
exactly. Raibert estimated the neutral point based on forward
speed and stance time of the previous step:

xf0 =
ẋTs
2
, (9)

where:

xf0 is the horizontal distance between the foot and
center of mass for the neutral point,

ẋ is the forward speed and
Ts is the stance time of the previous stance phase.

This estimation of the neutral point can be understood as
follows: Assuming that the forward speed during stance is
constant and that the stance time stays the same for all stance
phases, ẋTs gives the distance traveled during the stance phase.
Assuming furthermore that the stance phase is symmetric, ẋTs

2
gives the neutral point.

It may not always be the objective to place the foot at
the neutral point, which gives zero net forward acceleration.
Therefore, the foot can be displaced from the neutral point ac-
cording to the difference between current and desired forward
speed. This leads to the following equation for foot placement:

xf =
ẋTs
2

+ kẋ(ẋ− ẋd). (10)

where:

xf is the desired horizontal distance between the foot
and the center of mass,

ẋd is the desired forward speed and
kẋ is a control gain.

C. Swing-leg retraction

In human and animal running, it is observed that the front
leg rotates backwards just before touchdown [3] (see figure
5). This is called swing-leg retraction.

Swing-leg retraction reduces the horizontal velocity of the
foot with respect to the ground at touchdown, and therefore
reduces landing impact losses [12]. Seyfarth et al. have shown
that, apart from these energy benefits, swing-leg retraction can
also improve stability [6]. The reason why swing-leg retraction
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Figure 5: Photographs of a human running. Retraction of the swing-
leg is observed in these photographs. Adapted from [3] and based on
[6].

control can improve stability is that the angle of attack is
automatically adapted to a change in height, because of the
swing-leg action. An increased hopping height of a runner
will result in a longer flight time. This will in turn result in a
steeper angle of attack. For a decreased height, the flight time
will be shorter, resulting in a flatter angle of attack.

D. Passive dynamic running

Passive dynamically walking robots, which are powered
only by gravity, have been researched extensively. McGeer
showed that, given the right initial conditions, two-legged
robots are able to perform stable walking on a shallow slope,
without active control or energy supply other than gravity
[13]. Inspired by the success in walking robots, researchers
started looking at passive dynamic running. In passive dynamic
running, a spring is inserted in the hips of the runner. The
energy stored in this spring during the stance phase will move
the legs during the flight phase. The idea behind passive
dynamic running is that, with proper selection of the hip spring
constant, the legs will automatically move to an angle of attack
which will result in stable running motions. McGeer looked
extensively at the possibilities of passive dynamic running
[14]. He found that, while some modes exhibit inherent sta-
bility, others need to be stabilized actively. Several controllers
have been devised that stabilize passive dynamic running (e.g.
[7] [15] [16]).

E. Approximate return map control

To control a running robot, it would be ideal to find an exact
return map of the state of the robot. A return map would give
the state at the next hop vi+1 as a function of the state at the
current hop vi and the angle of attack α0:

vi+1 = f (vi, α0) . (11)

To find such a return map, the equations of motion of the
model of the robot would have to be integrated. Unfortunately,
it is impossible to analytically integrate the equations of
motion of even a very simple running model. This means that
it is not possible to find an exact form of the return map.
Many researchers have made approximations of the equations
of motion of a simple running model (e.g. [17] [18] [19]), in
order to find an approximate return map:

vi+1 ≈ f̂ (vi, α0) . (12)

Having an approximate return map, this equation can also
be inverted to obtain the necessary angle of attack α0 as a
function of the current state vi and the desired state vi+1,d.
The inverted return map can then be used as an angle of attack
controller.

F. Dead-beat control

One of the problems of controlling a running robot is that,
even for the simplest running model, the equations of motion
cannot be integrated analytically, and so no explicit solution to
the equations of motion can be found. However, the equations
of motion can be integrated numerically, which means that it
is possible to calculate an ideal angle of attack, which gets
the runner as close as possible to its desired state at the next
step. A look-up table can then be created, containing the ideal
angle of attack for many combinations of current and desired
states.

Dead-beat control uses exactly such a look-up table. For
computational reasons, this look-up table is constructed using
the equations of motion of the SLIP model. Since the SLIP
model is considered a good model for human and robot
running [8], [9], it is expected that the data from this model
will transfer reasonably well to a more realistic model and to
a real robot. The look-up table contains all combinations of
current states and angles of attack (in a certain range and with
a certain grid size), and outputs the resulting state at the next
step. Thus, for a given desired state at the next step, the ideal
angle of attack can be found.

To the best of our knowledge, dead-beat angle of attack
control has never been used as an angle of attack controller
for a running robot. It will be investigated in-depth in this
study.

G. Controller comparison

All controllers that were described in the previous sections
are now compared on a basic level. This comparison is
performed on the SLIP model. The model is started in a
desired state of yapex = 1m, ẋapex = 5m/s, and disturbed
at apex. Only energy-neutral disturbances are applied. The
resulting angles of attack of all controllers are compared to
a numerically calculated ideal angle of attack, which returns
the model exactly to the desired state at the next step. The
results are shown in figure 6.

Figure 6 shows that two controllers give angles of attack
very close to the ideal angle of attack, namely swing-leg re-
traction and approximate return map control. Constant control
gives the ideal angle of attack only at the desired height of
1m. The crude assumptions made by the Raibert controller
result in angles quite far from the ideal angle of attack. Passive
dynamic running on average gives angles of attack farthest
from the ideal angle of attack. For the SLIP model, dead-beat
control will always give angles equal to the ideal angle of
attack, since its look-up table is constructed from the exact
equations of motion of the model.
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desired height is 1m. Angles given by dead-beat control are exactly
equal to the ideal angle of attack, as it uses a look-up table constructed
on the SLIP model.

From figure 6 it can be concluded that swing-leg retrac-
tion, approximate return map control and dead-beat control
are promising controllers. However, approximate return map
control requires the inversion of the approximate return map,
see equation 12. Since this has to be done numerically, it
cannot be done in real-time on a running robot, and thus
a look-up table would have to be constructed. If a look-up
table is constructed, it makes more sense to do this using
the exact equations of motion, instead of an approximation of
those. This is exactly what dead-beat control does. Therefore,
only swing-leg retraction and dead-beat control are considered
promising controllers, and they are investigated in-depth in this
study. Constant angle of attack control is used in this study as
a reference controller, as it is the most studied angle of attack
controller.

IV. CONTROLLER IMPLEMENTATION

In section III, two promising angle of attack controllers were
identified, namely swing-leg retraction and dead-beat control.
In this study we also investigate constant control as a reference
controller, as it is the most studied angle of attack controller.
All three controllers were discussed on a basic theoretical
level. Implementation of these controllers on the SLIP model
may be obvious at certain points, but implementation on the
realistic model is not so obvious. This section will discuss how
all three controllers are implemented on the two models and
the robot used in this study.

A. Constant angle of attack control

For the SLIP model, the constant angle of attack necessary
for a limit cycle with certain desired initial conditions can be
calculated by numerically integrating the equations of motion.
To find a limit cycle for the realistic model with certain desired
initial conditions, the model is started with the angle of attack

as found for the SLIP model. Often, this results in a limit
cycle with conditions slightly off from the desired conditions,
since the angle of attack value from the SLIP model is not
exactly equal to the necessary angle of attack for the realistic
model. The angle of attack is tweaked manually, together with
the push-off torque value during the stance phase, until a limit
cycle is found that has the desired apex height and forward
speed.

B. Swing-leg retraction

In this study, swing-leg retraction is implemented with a
constant retraction rate ωR. The swing-leg starts at a certain
retraction angle αR at apex, and is retracted with the constant
retraction rate from apex until touchdown. The resulting angle
of attack is:

α0 = αR + ωRt, (13)

where:

t is the flight time from apex until touchdown.

Karssen et al. [20] have shown that the optimal retraction
rate is only dependent on the horizontal velocity of the runner.
In this study the optimal retraction rate in terms of disturbance
rejection as found by Karssen et al. will be used.

For the SLIP model, the retraction angle αR and the
retraction rate ωR are chosen such that when the model is
started in a certain desired limit cycle, the resulting angle of
attack will keep the model in this limit cycle. If for a certain
limit cycle the ideal angle of attack (which keeps the model
exactly in the limit cycle), the desired retraction rate, and the
apex height of the model are known, the retraction angle can
be solved from the following formula:

yapex = l0 sin(α0) +
g

2

(
α0 − αR

ωR

)2

(14)

For the realistic model, the retraction angle cannot be
determined through a formula, since the hip does not follow
a ballistic flight trajectory. To find a limit cycle for swing-
leg retraction on the realistic model, the following method is
used. The value for the angle of attack that was found for
the constant controller is chosen as an initial estimate for
the swing-leg retraction angle of attack. The retraction rate
is determined based on the horizontal velocity, as mentioned
in [20]. The flight time from apex to touchdown is determined
from the limit cycle that was found for the constant angle of
attack limit controller. An initial estimate for the retraction
angle is then calculated with the following formula:

αR = α0,constant − ωRtconstant (15)

where:

α0,constant is the angle of attack in the constant angle
of attack limit cycle and

tconstant is the flight time from apex until touchdown
for the constant angle of attack limit cycle.
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Figure 7: Comparison of dead-beat controller angles of attack to ideal
angles of attack for realistic model. For 100 limit cycles near a desired
limit cycle the ideal angle of attack was calculated and is compared
to the angle of attack given by CoM dead-beat control. The line
αideal = αdead−beat is also indicated.

With these control parameters, and initial conditions as
found in the constant angle of attack limit cycle, the model is
run for several steps until it converges to a limit cycle.

C. Dead-beat control

Dead-beat control uses a look-up table that has both the
apex height at the next hop as well as the apex forward speed
at the next hop as outcomes. Since these state parameters are
coupled for the SLIP model, only one of the two can be used
as desired state. The choice is made here to use forward speed
as the leading desired state, with the side note that the height
at the next step should not go below the rest length of the leg.
This will ensure that controller is not limited in the choices
of angles of attack due to limited ground clearance.

To use dead-beat control on the realistic model, an assess-
ment needs to be made on how to interpret the SLIP model.
For the SLIP model, the location of the Center of Mass (CoM)
of the entire model and the location of the hip coincide. For
the realistic model, this is not the case. This begs the question
whether the dead-beat control should use values for the CoM
apex height and speed, or for the hip apex height and speed.
This question is investigated in-depth in appendix A. It is
shown that hip dead-beat control gives angles of attack slightly
closer to the ideal angle of attack than CoM dead-beat control
for the realistic model. However, practical considerations, such
as the availability and accuracy of certain sensors, will often
be paramount in determining which type of control is used.
For this study, the values for the CoM are used.

The dead-beat control look-up table is constructed using the
SLIP-model equations of motion. This look-up table will also
be used for the realistic model and the real robot. Although
the SLIP-model is a good model for human and robot running
[8], it is unknown whether the ideal angles of attack stored
in the SLIP-model look-up table will transfer well to the
realistic model. To investigate this, 100 combinations of initial

conditions are taken. The initial conditions are all within 10%
of the initial conditions a certain desired limit cycle. For
all 100 combinations of initial conditions, the ideal angle of
attack is calculated. This is the angle of attack for which
the conditions after one step are the closest to its initial
conditions. Also, the angle of attack that is given by the
CoM dead-beat controller is calculated. Figure 7 shows the
results. In this figure it can be seen that CoM dead-beat control
consistently gives angles of attack slightly lower than the
ideal angle of attack. However, the average difference is about
0.05rad, or about 3 degrees. Differences this small indicate
that the ideal angles of attack found on the SLIP model transfer
remarkably well to the realistic model. It is thus expected that
the performance of the dead-beat controller on the realistic
model will resemble its performance on the SLIP model. This
is investigated further in the next sections.

V. DISTURBANCE REJECTION

The main comparison method that will be used in this study
is disturbance rejection. This method shows how well a robot
can deal with unexpected disturbances. It is often used in
robotics as a performance measure, and resembles real-life
situations, where the robot is running along in its limit cycle
and is suddenly disturbed. Such a disturbance can be caused
by many factors, such as uneven terrain or wind factors when
running outside. First, the size of the disturbances that the
controllers can handle will be investigated, by looking at the
Basin of Attraction for all controllers on the SLIP model
(section V-A), and the maximum allowable disturbance for
all controllers on the realistic model (section V-B). Then, the
response of the controllers to disturbances is investigated in
section V-C.

A. Basin of Attraction

For the SLIP model, a Basin of Attraction (BoA) is created.
A BoA shows for all combinations of initial conditions,
whether the model keeps running for a certain number of steps
or falls down. In this study, a threshold of 24 steps is used. The
SLIP model is considered to have fallen when the point mass
is below the ground. Desired conditions are kept at the same
level throughout the test, since it is assumed that the model
is running in its desired limit cycle before it is disturbed, and
will want to return to this desired limit cycle regardless of
the disturbance. The SLIP model will be disturbed at apex,
which means that only disturbances in apex height and forward
speed need to be taken into account, as the state of the SLIP
model is completely determined by height and forward speed
at apex. The desired apex state is set at ẋapex,des = 5m/s and
yapex,des = 1m.

Figure 8 shows the resulting basins of attraction for all
three controllers on the SLIP model. Figure 8a shows that,
as expected, constant angle of attack control has a small
BoA around the desired state of ẋapex,des = 5m/s and
yapex,des = 1m. Figure 8b shows that swing-leg retraction
already has a much larger BoA than constant angle of attack
control. Finally, figure 8c shows that dead-beat control has
by far the largest BoA. The BoA of dead-beat control covers
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(c) Dead-beat control

Figure 8: Basin of attraction for all controllers on SLIP model. Model parameters m = 80kg, k = 20 ∗ 103N/m, l0 = 1m, g = 9.81m/s2.
The white star indicates the desired state.

almost the entire investigated region. The initial states that are
not part of the dead-beat BoA all have apex heights lower than
1m. If the initial apex height is lower than the rest length of
the leg, the ground clearance of the model limits the choices
for the angle of attack. These limits on the possible angles of
attack may cause the model to fall, regardless of the controller.

For the realistic model, it is computationally infeasible to
create a real BoA, since at any moment during the cycle its
state is defined by at least nine variables.

B. Maximum allowable disturbance

Since it is computationally infeasible to create a BoA for
the realistic model, the maximum disturbance is calculated
for this model, which takes into account disturbances in one
direction only. Furthermore, only disturbances in apex hip
height and hip forward speed are investigated, since these can
be compared to the SLIP model results. To make comparison
to the SLIP model disturbance rejection even easier, the
maximum disturbances of the SLIP model are distilled from
the BoA. These maximum disturbances are simply horizontal
and vertical slices around the desired state of the BoA shown
in figure 8. Maximum disturbance for all three controllers on
the SLIP model can be seen in figure 9.

For the realistic model, the runner is considered to have
fallen when the hip is below the ground. If the swing foot
is below the ground, the model is not considered to have
fallen, for this can be solved by changing controller parameters
of control parts that are independent on the angle of attack
controller. However, the results will note if the swing-foot was
below the ground during a certain running cycle. The desired
state for the realistic model is not set at the same (scaled) value
as for the SLIP model, as running robot Phides is not designed
to run at these high speeds. The desired state for the realistic
model is set at yapex,des = 0.58m (equal to the rest length of
the leg) and ẋapex,des = 1.5m/s. The maximum disturbances
for all three controllers on the realistic model can be seen in
figure 10.

Although figures 9 and 10 are made for different models and
different desired states, they show roughly the same results for
most controllers. Most importantly, they both show that dead-
beat control always outperforms or equals the other controllers,
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Figure 9: Maximum disturbance for controllers on the SLIP model.
These results are distilled from the Basin of Attraction of the SLIP
model of figure 8, around the desired states of ẋapex,des = 5m/s
and yapex,des = 1m. Waves at the end of the bars indicate that
the maximum disturbance may be even higher, but is not calculated
further for computational reasons. Model parameters m = 80kg, k =
20 ∗ 103N/m, l0 = 1m, g = 9.81m/s2
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Figure 10: Maximum disturbance for controllers on the realistic
model. Waves at the end of the bars indicate that the maximum
disturbance may be even higher, but is not calculated further for
computational reasons. Stripes in the bar indicate that at these
disturbances, the swing-foot is below the ground at some point during
the running cycle. The desired state is ẋapex,des = 1.5m/s and
yapex,des = 0.58m. For model parameters see table I.

regardless of the type of disturbance applied. This confirms
the results already found on the SLIP model that dead-beat
control has the best disturbance rejection of the angle of attack
controllers.
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Figures 9 and 10 further show that swing-leg retraction
cannot handle step disturbances very well, but can handle
push disturbances very well, especially forward pushes. Dead-
beat control deals very well with step down disturbances,
and not so well with step up disturbances. The last is true
for all controllers, due to limited ground clearance. There is
a slight discrepancy in the results for the SLIP model and
the realistic model for the constant controller. Both models
show that constant control cannot deal well with step down
and backward push disturbances. However, the realistic model
indicates that constant control can handle step down and
forward push disturbances better than expected by the SLIP
model results. An explanation for this discrepancy may be
found in the coupling of apex height and speed for the SLIP
model, which is no longer present in the realistic model.

C. Disturbance respons

The previous sections showed, for both models, the max-
imum disturbance the controllers can handle. However, the
maximum disturbance does not give any information as to
the model’s response to the disturbance; how fast does the
model return to a limit cycle, and which limit cycle does it
return to? To show the disturbance response, a variation of
the gait sensitivity norm [21] is used in this study. Instead of
summing the gait indicators over the steps of interest, as in
[21], this study uses plots of the gait indicators over time. The
gait indicator used for both the SLIP model and the realistic
model is step time. The models are initialized in their desired
limit cycles. After 10 steps, the apex height of the models
is disturbed. The forward speed of the models at apex is
changed accordingly, so that the overall energy of the models
stays the same. The applied disturbance is the same for all
controllers and is as large as possible, keeping in mind that all
controllers should be able to keep running after the disturbance
is applied. For the SLIP-model this means that the apex height
is increased by 10%; for the realistic model the apex height
is increased by 5%.

Figure 11 shows the disturbance response of the controllers
on the SLIP model. In this figure it can be seen that for dead-
beat control, the step time increases the first step after the
disturbance, but is back to the limit cycle level the second step
after the disturbance. For swing-leg retraction, the settling-time
is a bit longer, although the initial increase in step time is a
bit lower. Constant control has by far the worst disturbance
response of the three controllers. It has an enormous increase
in step time right after the disturbance, and it takes about 30
steps before the step time is back to its initial level.

Figure 12 shows the disturbance response of all controllers
on the realistic model. Since all models have slightly different
initial limit cycles, the initial step time levels are also different.
Dead-beat control shows somewhat similar behavior on the
realistic model as it did on the SLIP model. Immediately
after the disturbance, the step time is increased. However, it
takes dead-beat control a few more steps to settle back into
its original step time on the realistic model, whereas for the
SLIP model this happened already the second step after the
disturbance. This is explained by the fact that dead-beat control
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Figure 11: Disturbance response of controllers on SLIP model. After
10 steps, the controller is disturbed, in such a way that the overall
energy is kept constant. Model parameters m = 80kg, k = 20 ∗
103N/m, l0 = 1m, g = 9.81m/s2. Desired state ẋapex,des = 5m/s
and yapex,des = 1m.
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Figure 12: Disturbance response of controllers on the realistic model.
After 10 steps, the controller is disturbed, in such a way that the
overall energy is kept constant.

does not give exactly the ideal angle of attack for the realistic
model, unlike for the SLIP model. Swing-leg retraction also
shows a similar disturbance response for both models. The
step time is increased immediately after the disturbance, and
it takes about 10 steps for the step time to return to its original
level. Finally, constant control settles down to its original step
time a bit faster on the realistic model than on the SLIP model,
but it still has the worst disturbance response of all controllers.
The initial increase in step time right after the disturbance is
much larger than for the other two controllers.

VI. ROBUSTNESS

In the previous sections the angle of attack controllers were
compared in terms of disturbance rejection. It was assumed
that all model parameters and controller inputs were measured
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Figure 13: Robustness of controllers on SLIP model. Model parameters m = 80kg, k = 20∗103N/m,L0 = 1m, g = 9.81m/s2; Controller
input parameter k is estimated falsely at k = 18.18∗103N/m. Dotted lines indicate the original basins of attraction. The white star indicates
the desired state.
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(c) Robustness dead-beat control

Figure 14: Robustness of controllers on SLIP model. Model parameters m = 80kg, k = 20∗103N/m,L0 = 1m, g = 9.81m/s2; Controller
input parameter k is estimated falsely at k = 22 ∗ 103N/m. Dotted lines indicate the original basins of attraction. The white star indicates
the desired state.

correctly, whereas in real life model errors and sensor errors
are likely to occur. Therefore, this section investigates the
robustness of the controllers. Robustness indicates how well a
controller can handle model and sensor errors. For computa-
tional reasons, robustness of the controllers is examined only
on the SLIP model.

A. Model errors
To test the effect of model errors, the Basin of Attraction

(BoA) of figure 8 is recreated, this time with an error in
the model parameters. Out of the four model parameters of
the SLIP model (m, k, l0 and g), only one has to be varied,
because the equations of motion are scalable according to
Buckingham’s PI theorem [22]. The spring stiffness that is
used by the controllers will be varied, while the model spring
stiffness that is used in the equations of motion will be kept the
same. This way, any changes in the BoA will be attributable
to the model error only, and not to actual changes in the
model parameters. Effects of a 10% underestimation of the
spring stiffness can be found in figure 13. Effects of a 10%
overestimation of the spring stiffness can be found in figure
14.

Figure 13a shows that for constant angle of attack control,
an underestimation of the spring stiffness will result in a

slightly shifted and slightly larger BoA, where the desired state
of ẋapex,des = 5m/s and yapex,des = 1m is not even part of
the BoA anymore. Figure 14a shows that an overestimation of
spring stiffness also results in a slightly shifted, but smaller
BoA. The shift can be explained by the fact that an error
in the model parameters will result in a wrong estimation of
the constant angle of attack needed to stay in the desired limit
cycle. Figure 13b and figure 14b show that swing-leg retraction
is hardly affected by underestimation or overestimation of the
spring stiffness. The same goes for dead-beat control; although
there is a slight change along the edges of the BoA, the general
shape and size of the BoA stay the same.

B. Sensor errors
There are three different sensors that are relevant to the

different controllers. Constant angle of attack control needs no
sensors, and is therefore not affected by sensor errors. Swing-
leg retraction needs to know when the apex occurs, which is
the point at which the retraction of the swing-leg starts. Thus
it is affected by apex time errors. Dead-beat control is affected
by errors in apex state, so both apex height and apex forward
speed.

The effect of sensory errors on the controllers is investigated
as follows: A BoA is created, but at every step the relevant
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Figure 15: Robustness of swing-leg retraction controller on the SLIP
model with apex time sensor errors plus/min 5%. Other controllers
are not affected by this type of error. The dotted line indicates the
original basin of attraction. The white star indicates the desired state.

sensor information is varied randomly, with a uniform distri-
bution between plus and minus 5% of the actual value. For
apex time, the value that is varied is the time between liftoff
and apex. This process is repeated ten times for each sensor,
and the 10 resulting BoAs are summed.

First, apex time sensory errors are investigated. The only
controller affected by this is swing-leg retraction, since the
other controllers do not need to know the time at which
apex occurs. The results for apex time errors can be found in
figure 15. Although the resulting BoA for swing-leg retraction
becomes somewhat smaller due to the sensory errors, the
general shape stays the same, and swing-leg retraction is found
not to be affected too much by this type of error.

Results for apex height errors can be found in figure 16.
The only controller affected by this type of error is dead-
beat control. As can be seen in figure 16, dead-beat control
is affected by apex height sensory errors when the starting
height is lower than 1m. For starting heights lower than 1m,
the dead-beat controller may select an angle of attack that
places the foot below the ground at apex. This happens when
the measured height is more than the actual height and will
automatically result in a fall. This does not happen for starting
heights over 1m high, since the leg length is only 1m, and
the foot can thus never be placed below the ground.

Finally, apex forward speed errors are considered. The
results can be found in figure 17. Again, only dead-beat
control is considered, since the other controllers do not use
apex forward speed as an input, and are thus not affected by
these errors. The figure shows that dead-beat control is hardly
affected by apex forward speed errors.

Apart from the random sensory errors that were discussed
here, persistent sensor errors can also occur. Persistent sensor
error effects on the controllers show the same tendency as
given here for random sensor errors. Extensive results for
persistent sensor errors can be found in appendix B.

For all three controllers it can be concluded that they are
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Figure 16: Robustness of dead-beat controller on the SLIP model
with apex height sensor errors plus/min 5%. Other controllers are not
affected by this type of error. The dotted line indicates the original
basin of attraction. The white star indicates the desired state.
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Figure 17: Robustness of dead-beat controller on the SLIP model with
apex forward speed sensor errors plus/min 5%. Other controllers are
not affected by this type of error. The dotted line indicates the original
basin of attraction. The white star indicates the desired state.

very robust. Although the runner may end up in a slightly
different limit cycle than desired, for almost all of the points
in the initial BoA it will still keep on running with errors
present. The only type of error that has a significant effect
is the apex height error, which reduces the BoA of dead-beat
control for apex heights lower than the rest length of the leg.

VII. PARAMETER STUDY

In the previous sections, several angle of attack controllers
were tested on disturbance rejection and robustness, for cer-
tain parameter sets. This section will investigate whether the
conclusions that can be drawn from this are still valid for
other parameter sets. This parameter study is performed on
the SLIP model. Again, only one of the four model parameters
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has to be varied because the equations of motion are scalable.
Furthermore, the desired forward speed is also varied.

First the model parameter spring stiffness will be varied.
In the previously constructed Basins of Attraction(BoAs) the
spring stiffness was set at k = 20 ∗ 103N/m; here a spring
stiffness of k = 10 ∗ 103N/m and k = 40 ∗ 103N/m is used.
Figure 18 shows the resulting BoAs for a spring stiffness of
k = 10 ∗ 103N/m. Figure 19 shows the resulting BoAs for a
spring stiffness of k = 40∗103N/m. Although there are slight
differences between these BoAs and the BoAs with a spring
stiffness of k = 20 ∗ 103N/m, the general size and shape
of the BoAs stay the same regardless of the parameter change.

The second parameter that is changed is the desired forward
speed at apex. Previously the desired forward speed was set
at 5m/s; here it will be set at 2.5m/s and 7.5m/s.

From figures 20 and 21 it can be seen that changing the
desired forward speed has a slightly larger effect than changing
the spring stiffness. This is especially evident for the constant
controller, which is not even able to run with desired speeds
of 2.5m/s. Swing-leg retraction also has a smaller BoA at
this desired speed. However, the trends that were found in
section V-A are still valid: Constant angle of attack control
has the smallest BoA; Swing-leg retraction performs better
than constant control in terms of disturbance rejection, and
dead-beat control has by far the largest BoA, and thus the
best disturbance rejection. Therefore, it can be concluded that
results are independent of parameter values.

VIII. RUNNING ROBOT EXPERIMENTS

Both dead-beat control and swing-leg retraction are imple-
mented on running robot Phides. However, the robot is not
yet able to run with these controllers due to problems with
sensors and motors. The robot is able to hop with a constant
angle of attack controller, given the right initial conditions.
Results from the constant angle of attack controller show one
of the problems that occur for the other controllers. The main
problem is that the motors do not provide accurate angle of
attack control. Figure 22 shows the actual and desired angle of
attack for 16 consecutive steps of the robot. It can be seen in
this figure that actual angles of attack are sometimes quite far
from the desired angle of attack, up to 0.08 rad. This problem
is especially evident for the left leg of the robot. Possible
causes of this problem are the fact that while running the
robot operates near the actuator limits, and that the measured
torques provided by the motors is often not equal to the actual
torques that are applied.

We plan to resolve these problems in the near future, so that
both dead-beat control and swing-leg retraction can be tested
on the robot.

IX. DISCUSSION

In this paper two promising angle of attack controllers
have been compared in terms of disturbance rejection and
robustness. On the SLIP model, the Basin of Attraction (BoA)
of the dead-beat control was far larger than that of swing-
leg retraction. These findings are corroborated by the realistic
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Figure 22: Actual and desired angle of attack for running cycle on
robot Phides with constant angle of attack controller. Uneven step
numbers correspond to the stance phase of the left leg; Even step
numbers correspond to the stance phase of the right leg.

model results, where dead-beat control is able to withstand
very large disturbances, except for step up disturbances. Step
up disturbance rejection is limited for any controller due to
limited ground clearance. Swing-leg retraction showed a much
smaller BoA on the SLIP model than dead-beat control. Again,
the trends found for the SLIP model were confirmed by results
of the realistic model. These showed that swing-leg retraction
cannot handle very large step disturbances - both positive
and negative - but can handle push disturbances quite well.
Constant control was used as a reference, since this is a very
simple and much studied form of angle of attack control.
Indeed, the BoA of constant control found for the SLIP model
was quite small. Surprisingly, the disturbance rejection of
constant angle of attack control on the realistic model was
larger than for the SLIP model, for step down and forward
push disturbances. This may be explained by the decoupling
of forward speed and height at apex for the realistic model,
due to the possibilities of energy dissipation. This allows the
realistic model to end up in a limit cycle with a different
energy level, which is impossible for the SLIP model.

It was shown in this paper that dead-beat control performs
very well on the realistic model, even though the angles of
attack it uses are calculated on the SLIP model. However, for
a certain parameter set, it was shown that dead-beat control
consistently gives angles of attack lower than the ideal angle
of attack for the realistic model. It may be possible to correct
for this slight difference by adapting the angle of attack
given by dead-beat control. This is not done in this study,
so that the intrinsic properties of dead-beat control could be
better investigated. Further research is needed to determine
whether such a correction is possible and how the size of the
correction depends on certain parameters.

Results in this study show that dead-beat angle of attack
control performs better in terms of disturbance rejection than
swing-leg retraction. This begs the question why humans
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(b) Swing-leg retraction
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(c) Dead-beat control

Figure 18: Basin of attraction for all controllers on SLIP model. Model parameters m = 80kg, k = 10∗ 103N/m, l0 = 1m, g = 9.81m/s2.
The dotted line indicates the original basin of attraction. The white star indicates the desired state.
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(b) Swing-leg retraction
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(c) Dead-beat control

Figure 19: Basin of attraction for all controllers on SLIP model. Model parameters m = 80kg, k = 40∗ 103N/m, l0 = 1m, g = 9.81m/s2.
The dotted line indicates the original basin of attraction. The white star indicates the desired state.
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(a) Constant control
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(b) Swing-leg retraction
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(c) Dead-beat control

Figure 20: Basin of attraction for all controllers on SLIP model. Model parameters m = 80kg, k = 20∗ 103N/m, l0 = 1m, g = 9.81m/s2,
desired forward speed ẋapex,des = 2.5m/s. The dotted line indicates the original basin of attraction. The white star indicates the desired
state.
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(a) Constant control
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(b) Swing-leg retraction
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(c) Dead-beat control

Figure 21: Basin of attraction for all controllers on SLIP model. Model parameters m = 80kg, k = 20∗ 103N/m, l0 = 1m, g = 9.81m/s2,
desired forward speed ẋapex,des = 7.5m/s. The dotted line indicates the original basin of attraction. The white star indicates the desired
state.



14

and animals do retract their legs prior to touchdown when
they run, as can be seen in the photographs of Muybridge
[3]. The answer may be found in the fact that swing-leg
retraction reduces the foot speed relative to the ground at
touchdown. As explained by Karssen et al. [20], this has
three benefits. First of all, it reduces impact losses and thus
reduces the specific energy costs of running. Secondly, it
reduces the chance of slipping. Finally, it reduces the impact
forces at touchdown, thereby reducing the chance of damage
to the runner. These benefits were not taken into account
in this study, and may explain the running behavior of humans.

In this paper, swing-leg retraction and dead-beat control
were investigated as two separate angle of attack controllers.
However, it is also possible to combine the two types of
control. This will result in a controller where the desired
angle of attack is found in a lookup table, as for dead-beat
control, but instead of keeping the leg at this angle constantly
until touchdown, the leg is swung backwards around this
angle of attack as happens in swing-leg retraction. This way,
the angle of attack is still chosen based on the dead-beat
control that has been proven to work well, but will also have
the benefits of swing-leg retraction: it will compensate for
height sensor errors and will reduce impact losses and forces
as well as the likelihood of slipping. All the tests performed
on dead-beat control and swing-leg retraction in this study
have also been performed on the combined control, for full
results see appendix C. On the SLIP model, in most of the
cases, combined control performs exactly equal to dead-beat
control, as is expected when no errors are present. When
sensor height errors are present, combined control does indeed
improve the disturbance rejection compared to dead-beat
control. More prominent improvements were expected for the
realistic model. However, the realistic model also shows the
largest flaw of combined control. For the combined control to
work, the exact moment of touchdown has to be known, so
that the leg indeed swings around the desired angle of attack
at that moment. If the touchdown time is estimated wrongly,
the high retraction rates will result in angles of attack very
far off the desired angle of attack. Unfortunately, there is
no easy way to determine the exact moment of touchdown
for the realistic model. Therefore, it was impossible to find
a limit cycle using combined control on the realistic model
around the desired state. Unless a better way is found to
determine the touchdown time, a combination of dead-beat
control and swing-leg retraction will not perform well as an
angle of attack controller.

Finally, a note should be made here as to one of the initial
assumptions made in this study, namely the decoupling of
the three controllers for a running robot: the angle of attack
controller, the energy controller (push-off during the stance
phase), and the upper body posture controller. Although almost
all studies on running robotics use this assumption, the cou-
pling of these controllers has never been properly investigated.
For the SLIP model, only angle of attack control is relevant,
since the energy level is constant, and the upper body is a
point mass. For the realistic model, this study used a fixed

upper body, eliminating the need for an upper body posture
controller, and used the simplest form of energy control.
Other studies are ongoing at the Delft Biorobotics Laboratory
that study the other controllers needed for a running robot;
when these are finished it is recommended that the effects
that these controllers have on one-another is studied as well,
before assuming that what is best if only of the controllers is
considered is also best when complete control is considered.

X. CONCLUSIONS

In this paper two promising angle of attack controllers
were compared in terms of disturbance rejection, stability and
robustness. From this study, it can be concluded that:

• Dead-beat control outperforms swing-leg retraction in
terms of disturbance rejection and robustness.

• Both dead-beat control and swing-leg retraction can deal
well with push disturbances. Dead-beat control can han-
dle step disturbances a lot better than swing-leg retraction.

• Dead-beat control is hardly affected by model and sen-
sory errors.

• The ideal angles of attack that are used by dead-beat
control are calculated on a simple model, but transfer
well to a more realistic model.
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APPENDIX A
COMPARISON OF CENTER OF MASS OR HIP VALUES FOR

DEAD-BEAT CONTROL

In this study, dead-beat control is proposed as an angle of
attack controller. Using the equations of motion of the SLIP
model, a look-up table is constructed that contains an ideal
angle of attack for all combinations of current and desired
states (apex height and forward speed). However, using this
look-up table on the realistic model, it is unknown whether
values for the hip apex height and forward speed, or for the
Center of Mass (CoM) apex height and forward speed should
be used.

To investigate this, the following method is used. First, a
limit cycle is found for the realistic model with a constant
angle of attack controller. Then, the initial conditions of this
limit cycle are varied randomly, so that all initial conditions
are within +/-10% of their limit cycle value. For the new initial
conditions, an ideal angle of attack is calculated which gets
the model as close as possible to its initial conditions after
one step. Close is defined here as having a small sum of
all differences between conditions after one step and initial
conditions, so:

e =

12∑
i=1

abs (Vn+1(i)− Vn(i)) (16)

where:

e is the error that is to be minimized,
V is the initial conditions vector and
n is the step number.

For the same initial conditions, the angle of attack given
by the dead-beat controller is also calculated, both using
values of the CoM and using values of the hip. This process
is repeated 100 times. Figure 23 shows a boxplot of the
difference between the dead-beat angle of attack and the ideal
angle of attack, for both options.

From figure 23 it can be seen that using values of the hip
to look up an angle of attack performs slightly better, that is
it gives angles of attack closer to the ideal angle of attack.
There are also some practical considerations however when
choosing for CoM or hip dead-beat control. For the CoM type
of dead-beat control, the length from Center of Mass to foot at
touchdown is needed. Theoretically, it is impossible to know
this length before touchdown, as the location of the Center
of Mass is not yet known. However, when looking at the 100
trials as used before, it turns out that the length between CoM
and foot at touchdown is almost a constant value. For the 100
trials used before, the CoM-foot length has an average value
of 0.49m with a standard deviation of 0.001m. This is thus
chosen as the standard value of the CoM-foot length.

For the hip type of dead-beat control, a practical consid-
eration is that at liftoff the apex height and speed of the hip
is unknown, since the hip does not follow a ballistic flight
trajectory. This means that the desired angle of attack cannot
be calculated yet, and has to be estimated, so that the leg
can already be moved near its desired angle. If this is not
done until apex, there may not be enough time to move the

CoM dead-beat control Hip dead-beat control
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Figure 23: Boxplot of the difference between the ideal angle of attack
and the angles of attack given by the two types of dead-beat control,
for 100 different sets of initial conditions. On each box, the middle
line indicates the median, and the two outer lines indicate the 25th
and 75th percentiles. The whiskers indicate the farthest points that
are not considered outliers; outliers are indicated by crosses.

leg to its desired angle before touchdown. A first option to
estimate the desired angle of attack is to estimate the apex
height and speed of the hip by assuming that it does follow
a ballistic flight trajectory. Using this on the 100 trajectories
as calculated before, it is found that this gives an error in
apex height error of only 2%, but an apex speed error of 52%.
This will not give a realistic estimate of the angle of attack,
so instead another estimate is used. Another possibility is to
use the angle of attack that was found at the previous apex as
an estimate for the angle of attack between liftoff and apex.
For conditions close to a limit cycle, this will be a very good
estimate; for conditions further from a limit cycle this may
also be a bit further off the desired angle of attack, but is
close enough that after apex there is enough time to move the
leg to the desired angle of attack.

Since the hip apex height and speed can not be determined at
liftoff, an apex sensor is needed for the hip dead-beat control.
This is another practical consideration, since a sensor that
can accurately measure apex time may not be present in all
robots. For the CoM dead-beat control this is not a problem,
since the center of mass does follow a ballistic flight trajectory
during the flight phase. This means that CoM positions and
velocities at liftoff can be used to calculate the CoM apex
height and forward speed. Measuring liftoff is usually easier
than measuring apex, since ground contact sensors are usually
present in running robots. The absence of an accurate way to
measure apex is the reason why CoM dead-beat control was
chosen in this study.

Finally, a practical consideration to choose hip dead-beat
control is the amount of calculations and inputs needed for
CoM dead-beat control. To calculate the position and velocity
of the center of mass, the positions and velocities of all state
parameters have to be measured. The large amount of inputs
needed may lead to larger errors in the CoM apex height and
forward velocity, which will in turn result in a larger error in
the ideal angle of attack. This is not the case for hip dead-beat
control, which only needs to know the hip height and forward
speed.
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APPENDIX B
EFFECTS OF PERSISTENT SENSORY ERRORS ON ANGLE OF

ATTACK CONTROLLER DISTURBANCE REJECTION

In section VI-B the effects of random sensor errors on the
angle of attack controllers was shown. Another type of sensor
errors that can occur is a persistent sensor error, where the
error is a certain constant value. Here the effects of these
persistent sensor errors are investigated. As for the random
errors, swing-leg retraction is only affected by apex time errors
and dead-beat control is affected by apex height and apex
forward speed errors. Constant angle of attack control is not
affected by sensor errors. Persistent errors investigated here
will have a value of plus or minus 5% of the actual value.

The effects of persistent apex time errors on swing-leg
retraction can be found in figure 24. This figure shows that
persistent apex time errors have only a very small effect on
swing-leg retraction.

The effects of persistent apex height errors on dead-beat
control can be found in figure 25. It can be seen in this
figure that underestimating the apex height hardly affects
the dead-beat controller; however, overestimating the apex
height decreases the BoA of the dead-beat controller a lot,
especially for initial apex heights lower than 1m. This is
because overestimating the apex height leads the controller to
believe there is more ground clearance than there actually is,
which can cause the controller to select an angle of attack for
which the foot will always be below the ground. This always
results in a fall.

The effects of persistent apex forward speed errors on dead-
beat control can be found in figure 26. In this figure it can be
seen that apex forward speed errors hardly have an effect on
dead-beat control.
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(a) Persistent apex time errors of -5% of the actual value

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

[m/ s]

y 0
[m

]

x0
.

(b) Persistent apex time errors of +5% of the actual value

Figure 24: Basin of Attraction for swing-leg retraction with persistent apex time errors.
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(a) Persistent apex height errors of -5% of the actual value
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(b) Persistent apex height errors of +5% of the actual value

Figure 25: Basin of Attraction for dead-beat control with persistent apex height errors.
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(a) Persistent apex forward speed errors of -5% of the actual
value
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(b) Persistent apex forward speed errors of +5% of the actual
value

Figure 26: Basin of Attraction for dead-beat control with persistent apex forward speed errors.
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APPENDIX C
RESULTS FOR COMBINATION OF DEAD-BEAT CONTROL

AND SWING-LEG RETRACTION

In this study, swing-leg retraction and dead-beat control
were investigated as two separate controllers. However, it is
also possible to combine the controllers. Dead-beat control
will determine the desired angle of attack at touchdown, but
the leg will swing backwards around this point just before
touchdown. This may have both energy and robustness benefits
over dead-beat control alone. Energy benefits are explained by
the reduction of the foot velocity relative to the ground, in the
same way as for swing-leg retraction. Robustness benefits are
explained by the fact that swing-leg retraction automatically
adapts the angle of attack to a change in apex height, due to
changes in flight time. This means that the swing-leg action
can (partially) compensate for an apex height sensor error if
the right retraction rate is selected.

For the SLIP model this means that, if all sensor information
is correct, the leg will still hit the ground at the angle given
by the dead-beat controller. Thus, most results on the SLIP
model are exactly the same for the combined control as they
are for the dead-beat controller as discussed in this study.
Combined control can improve the robustness of the controller
for apex height sensor errors. To show this, the same process
is used as in section VI-B: The apex height sensor will give
values uniformly distributed between plus and minus 5% of
the actual value at every step. Ten Basins of Attraction (BoAs)
are constructed this way, and are summed. The result can
be seen in figure 27. Figure 27 shows that, although the
combined controller is slightly affected by apex height errors,
the combined controller does indeed increase the robustness
to apex height sensor errors, as compared to the dead-beat
controller in figure 16.

Since combined control uses swing-leg retraction, it can also
be affected by apex height errors. To investigate this, ten BoAs
are constructed and summed, having a measured apex time
uniformly distributed between plus and minus 5% of the actual
value at every step. The result can be seen in figure 28. This
figure shows that combined control is very much affected by
apex time errors, especially for apex speeds above 5m/s.

Unfortunately, implementation of combined control on the
realistic model is not easy. To use combined control, the exact
touchdown time has to be known, so that the touchdown angle
will indeed be (close to) the angle of attack determined by the
dead-beat controller, assuming no errors in the sensor inputs.
However, there is no easy way to determine the touchdown
time. Two methods were attempted to estimate the touchdown
time. The first method assumed that the hip follows a ballistic
flight trajectory. The second method assumed that the flight
time of the second part of the flight phase - from apex until
touchdown - is equal to the flight time from liftoff to apex.
Both assumptions are too crude to use as a touchdown time
estimator, and it was not possible to find a limit cycle for
the combined controller on the realistic model using these
assumptions. To be able to use the combined controller, a
different method of estimating the touchdown time should be
used.
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Figure 27: Robustness of combined controller on SLIP model. Apex
height sensor errors plus/min 5%. The dotted line indicates the
original basin of attraction.
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Figure 28: Robustness of combined controller on SLIP model. Apex
time sensor errors plus/min 5%. The dotted line indicates the original
basin of attraction.
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Abstract—In the control of running robots, one of the most
important aspects is the placement of the leg, or the angle of
attack control. The angle of attack is defined as the angle between
the leg of the robot and the ground, at the moment of touchdown.
By controlling the angle of attack, the ratio between height and
forward speed at the next hop of the robot is controlled. Due to
the non-integrability of the equations of motion of a running
robot model, an ideal angle of attack cannot be determined
analytically. Several different angle of attack controllers have
been proposed in literature, however a clear comparison of all
controllers has never been made. The goal of this study is to
determine which angle of attack controllers already exist and
to compare their performance on a simple model of a running
robot. An extensive literature study shows that five different types
of angle of attack controllers exist. Controllers are compared
both quantitatively, comparing resulting angles of attack to a
numerically computed ideal angle of attack, and qualitatively,
looking at the number of sensors a controller needs and energy
benefits the controller may have. This study shows that two types
of controllers have very good overall results: swing-leg retraction
and approximate return map control. Swing-leg retraction swings
the leg backwards during the flight phase, thereby adapting the
angle of attack to the state of the robot. Approximate return map
control simplifies the equations of motion, so that an estimate of
the return map is found, which is used as an angle of attack
controller. The other three types of controller produce angles
of attack so far from the ideal angle that they should not be
considered as controllers for running robots.

Index Terms—running robot, SLIP, angle of attack

I. INTRODUCTION

THE Delft Biorobotics Laboratory (DBL) has been build-
ing bipedal robots for many years. Recent DBL robots

include walking robots Mike [1], Max [2], Denise [3], [4]
and Flame [5] and soccer robot TUlip [5]. Inspired by the
successes in walking robotics, the DBL’s new goal is to build
a running robot.

The first mention in literature of a running or hopping
robot was in 1969, when a feasibility study was performed
for a lunar hopping transporter [6]. Since then, research
on running robots has progressed, and today running robots
include hexapods (e.g. [7], [8]), quadrupeds (e.g. [9], [10]),
bipeds (e.g. [11], [12]) and monopods (e.g. [13]–[15]).

The reason for studying running robots is twofold. First of
all, legged robots provide more mobility than e.g. wheeled
robots. It is much more difficult to navigate challenging
terrain such as stairs, holes, etc. for a wheeled robot than it
is for a legged robot. When a legged robot is walking, its
speed is limited to

√
gl [16]. To increase the speed above

this limit, the robot has to start running. Thus, a running
robot can provide better mobility than a wheeled robot, at
a higher speed than a walking robot. The second reason to

study running robots is that they can be a model for human
(and animal) running. The complex task of locomotion is
performed easily by humans, but still poorly understood by
science. A better understanding of the science of locomotion
makes it easier to help people who now have trouble or are
unable to walk and run.

While design of the DBL running robot has already started,
it is important to consider how it can best be controlled. To
control a running robot, three basic actions can be taken. First,
the upper body can be controlled by applying a hip torque.
Second, leg thrust can be applied during the stance phase or at
lift-off. Finally, leg placement at touchdown can be controlled
by controlling the angle of attack. This study will focus on
angle of attack control. Put simply, this control determines
at what angle the leg should hit the ground at touchdown.
Changing the angle of attack will determine the ratio between
forward speed and height at the next hop. A steep angle of
attack will result in high forward speed but low height; a flat
angle of attack will result in low forward speed but great height
at the next hop.

To decide on the best angle of attack controller for the
DBL running robot, a literature study on existing controllers
is performed. Controllers found in literature are compared on
a basic level; promising controllers will be studied in-depth at
a later stage. Results of the literature study and comparison
of the controllers can be found in this paper.

The remainder of this paper is organized as follows: Section
II introduces the SLIP-model: an important model for running
robotics, which will be used throughout this paper. Section III
describes the angle of attack controllers found in literature.
In Section IV, the controllers are compared in a quantitative
manner, whereas in Section V they are compared qualitatively.
Some points of discussion are found in Section VI and
conclusions are found in Section VII. Finally, plans for future
work are presented in Section VIII.

II. THE SLIP-MODEL

An important model in running robotics is the Spring
Loaded Inverted Pendulum (SLIP) model. This model consists
of a point mass m attached to a massless spring with spring
constant k and rest length l0, see figure 1. Even though this
model is so simple, research suggest that it is a good model
for human and robot running, and that the gaits found with
this model are similar to human and animal running gaits [17],
[18]. According to Full and Koditschek [19], the SLIP-model
can be considered a template for running, where a template is
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Figure 1: The Spring Loaded Inverted Pendulum (SLIP) model. This
model consists of a point massm, attached to a massless linear spring,
with spring constant k and rest length l0. The model is subject to
gravity g. The highest point of the flight phase is called apex; the
instances where the foot touches and leaves the ground are called
touchdown and lift-off respectively. The angle of the leg with respect
to the ground at the moment of touchdown is called the angle of
attack α0.

defined as ‘the simplest model (least number of variables and
parameters) that exhibits a targeted behavior’.

For the SLIP-model, equations of motion are divided in
stance phase and flight phase equations of motion. The flight
phase can be characterized as ballistic flight, leading to the
following equations of motion:[

ẍ
ÿ

]
=

[
0
−g

]
, (1)

where:

ẍ is the horizontal acceleration of the point mass,
ÿ is the vertical acceleration of the point mass and
g is the gravitation constant.

For the stance phase, the equations of motion are:[
ẍ
ÿ

]
=

[
− cosα
sinα

]
Fs

m
+

[
0
−g

]
, (2)

where:

Fs is the spring force,
α is the angle between leg spring and ground and
m is the mass of the point mass.

In this study a linear spring is used, so the spring force
becomes:

Fs = k · (l − l0), (3)

where:

k is the spring constant,
l is the spring length and
l0 is the rest length of the spring.

The transition from flight phase to stance phase is called
touchdown. This happens when the foot hits the ground, so
when:

y = l0 sinα0, (4)

where:

α0 is the angle between leg spring and ground
at touchdown, also called the angle of attack

The transition from stance phase to flight phase is called
lift-off. This happens when the foot leaves the ground, which
is when the leg spring returns to its rest length, so when:

l = l0 and l̇ > 0. (5)

The state of the SLIP-model consists of horizontal and
vertical positions x and y and horizontal and vertical speeds
ẋ and ẏ. At the highest point of the flight phase, called the
apex, the model is completely described by the height y and
the horizontal speed ẋ. This is because the horizontal position
x is irrelevant and the vertical speed ẏ is zero by definition,
since the apex is the highest point of the flight phase. If the
SLIP-model is undisturbed and the ground level stays the
same, the system is conservative, since no energy can be lost
or gained. For such a conservative SLIP-model the state at
the apex can even be described by height y alone, since the
horizontal speed ẋ is then coupled to the height through the
system energy Es.

A step for the SLIP-model is considered the motion from
one apex to the next apex. To control a running robot one
would like to find a stable limit cycle for a step. A limit cycle
is defined in [21] as ‘a series of exact repetitions of a closed
trajectory in state space’.

To analyze the existence and stability of a limit cycle for
a running robot, a mapping from one apex point to the next
apex point can be used. Such a mapping is called a Poincaré
or return map. A return map gives us the state at the next apex
vi+1 as a function of the state at the current apex vi:

vi+1 = S (vi) . (6)

The function S is called the stride function. The periodic
motion required for a limit cycle exists if a fixed point v∗

exists where:

v∗ = S (v∗) . (7)

The stability of the limit cycle can be analyzed by looking
at the eigenvalues of the partial derivative of the stride function
S to the state v. If the eigenvalues are within the unit circle in
the complex plane, the stability of the trajectory is guaranteed
and a limit cycle exists.

Existence and stability of a limit cycle can also be checked
graphically, if a plot is made of the return map [22]. A limit
cycle exists if there is a point on the return map which is
located on the line yi+1 = yi. Stability of this limit cycle
is guaranteed if the slope at this point has an absolute value
smaller than 1.

III. ANGLE OF ATTACK CONTROLLERS

Generally, to find the desired angle of attack for a running
robot, one would integrate the equations of motion of the
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(b) Steps to fall for constant angle of attack
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(c) Steps to fall for constant leg stiffness

Figure 2: A proper combination of leg stiffness k, angle of attack α0 and forward speed vx,0 can produce stable running. This figure shows
data from a simulation on the SLIP-model. The simulation is run until either the point mass falls on the ground (y = 0) or until 24 steps are
performed. The grayscale legends to the right of each figure indicate the number of steps that the SLIP-model performed. Each figure keeps
one parameter constant. In (a) horizontal velocity is kept constant at a value of 5m/s. Experimental data of a robot running at a horizontal
velocity of 4.6 ± 0.5m/s are also shown with small circles. The arrow points to a solid line with function k · (1− sinα0) = 1600N/m.
In (b) the angle of attack is kept constant at a value of 68◦. In (c) the leg stiffness scaled to the body mass (i.e k/m) is kept constant at a
value of 250/s2. Initial conditions used: y0 = 1m, vy,0 = 0m/s Model parameters used: m = 80kg, l0 = 1m. From [20].

SLIP-model, insert the current state and desired state, and
solve for the angle of attack. Unfortunately, the SLIP equations
of motion are non-integrable, forcing researchers to find a
different way to control the angle of attack. Through extensive
literature research, five types of angle of attack controllers are
found:

A. Constant angle of attack controller

The most basic controller that was found is the constant
angle of attack controller [20], [23], [24]. This controller sets
the angle of attack to a constant value, independent of any
input:

α0 = const (8)

In [20], Seyfarth et al. investigate whether such a simple
control scheme can generate stable running patterns. They
perform a simulation of a running SLIP-model with constant
angle of attack, which shows that a proper combination of leg
stiffness k, angle of attack α0 and forward speed vx,0 can
indeed produce stable running, see figure 2. Figure 2a shows
that for a given initial apex speed (vx,0 = 5m/s) and height
(y0 = 1m), stable running patterns are found for combinations
of leg stiffness k and angle of attack α0 that lie in a J-shaped
region of the (α0, k)-plane. Seyfarth et al. fit a function through
this region:

k · (1− sinα0) = const. (9)

The constant is found to have a value of 1600N/m for the
specific set of parameters used. Figures 2b and 2c show the
influence of horizontal speed on stable running. From these
figures, it can be concluded that running with constant angle of
attack control requires a certain minimum horizontal velocity,
about 3.5 m/s for the parameter set used by Seyfarth et al..
Furthermore it can be concluded that increasing the horizontal
velocity results in a larger region of stable running in the
(α0, k)-plane. This increased horizontal velocity will require
a higher leg stiffness and/or a flatter angle of attack.

B. Raibert controller

Marc Raibert is considered one of the pioneers in the field
of running robotics. Over 20 years ago, he designed a simple
but very effective controller [25]. Raibert decomposes control
of a robot in three distinct parts: hopping height, forward
speed and upper body attitude. Of these three parts, forward
speed is controlled by the angle of attack. To control the angle
of attack, Raibert introduces the concept of neutral point. The
neutral point is described as ‘the unique foot position that
results in zero net forward acceleration’, where net forward
acceleration is defined as the difference between forward
speed at touchdown and at lift-off. For the SLIP-model,
placing the foot at the neutral point will result in an apex
height and speed equal to the previous apex height and speed.
Due to the non-integrability of the equations of motion, the
neutral point cannot be determined exactly. Raibert has made
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an estimation of the neutral point based on forward speed
and stance time of the previous step:

xf0 =
ẋTs
2
, (10)

where:

xf0 is the horizontal distance between the foot and
center of mass for the neutral point,

ẋ is the forward speed and
Ts is the stance time of the previous stance phase.

This estimation of the neutral point can be understood as
follows: Assuming that the forward speed during stance is
constant and that the stance time stays the same for all stance
phases, ẋTs gives the distance traveled during the stance phase.
Assuming furthermore that the stance phase is symmetric -
which is true if the apex states before and after the stance
phase are equal - then ẋTs

2 gives the neutral point.
Of course, it may not always be the objective to place

the foot at the neutral point, which gives zero net forward
acceleration. To accelerate, the foot is displaced from the
neutral point, according to the following formula:

xf∆ = kẋ (ẋ− ẋd) , (11)

where:

xf∆ is the horizontal displacement of the foot
from the neutral point,

ẋd is the desired forward speed and
kẋ is a feedback gain.

This leads to the following complete formula for foot place-
ment:

xf =
ẋTs
2

+ kẋ(ẋ− ẋd). (12)

where:

xf is the horizontal distance between the foot
and the center of mass.

Knowing xf , it is easy to calculate the necessary angle of
attack:

α0 = arccos

(
ẋTs
2l0

+
kẋ (ẋ− ẋd)

l0

)
(13)

The feedback gain kẋ is determined empirically. For
Raiberts one-legged hopping machine kẋ has a value of
0.035m/(m/s) [26].

C. Swing-leg retraction controller

In human and animal running, it can be observed that
the swing-leg is retracted with respect to the ground just
before touchdown [27] (see figure 3). This is called swing-
leg retraction. The idea of retracting the swing-leg before

Figure 3: Photographs of a human running. Retraction of the swing-
leg is observed in these photographs. Adapted from [27].

α0

αR

ωR

Figure 4: Swing-leg retraction for SLIP-model. The angle of attack
α0 is dependent on the retraction angle at apex αR and the retraction
rate ωR.

touchdown was already mentioned in 1986 by Raibert [25].
Raibert called this ground speed matching, and although he
did not implement it on his hopping machines at the time, he
believed it could improve their performance.

As is expected, swing-leg retraction reduces the horizontal
velocity of the foot with respect to the ground at touch-
down, and therefore reduces landing impact [28]. Many years
since Raibert first mentioned the possibility of ground speed
matching, Seyfarth et al. started investigating this further [22].
They showed that, apart from the energy benefits, swing-leg
retraction, as they call it, also improves stability. Seyfarth et al.
consider swing-leg retraction with a constant retraction rate,
where the retraction angle at apex is αR and the swing-leg
retracts from apex until touchdown with a constant retraction
rate ωR (see figure 4).

Applying swing-leg retraction, the angle of attack becomes:

α0 = αR + ωRt, (14)

where:

t is the flight time from apex until touchdown.

The benefit of swing-leg retraction control is that the angle
of attack is automatically adapted to a change in apex height,
because of the swing-leg action. An increased height of a
runner at apex, will result in a longer flight time. This will
in turn result in a steeper angle of attack, as can be seen from
equation 14. For a decreased height at apex, the flight time
will be shorter, resulting in a flatter angle of attack. Proper
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selection of the apex retraction angle and retraction rate can
improve the stability of a running robot [22].

D. Approximate return map controller

To control a running robot, it would be ideal to find an
exact return map of the state of the robot at the apex. For the
SLIP-model with constant system energy, the state at the apex
is completely determined by the apex height. Thus, a return
map would give the height at the next apex yi+1 as a function
of the height at the previous apex yi and the angle of attack
α0:

yi+1 = f (yi, α0) . (15)

To find such a return map, the equations of motion of the
model of the robot would have to be integrated. Unfortunately,
it is impossible to integrate the equations of motion of even
a model as simple as the SLIP-model. This means it is not
possible to find an exact form of the return map. Many
researchers have made approximations of the equations of
motion for the SLIP-model, in order to find an approximate
return map:

yi+1 ≈ f̂ (yi, α0) . (16)

Having a (approximate) return map of yi+1 as a function
of yi and the angle of attack α0, this equation can also be
rewritten to obtain the necessary angle of attack α0 as a
function of the current state yi and the desired state yi+1,d:

α0 = h (yi, yi+1,d) . (17)

This equation can be used as an angle of attack controller.
In 2000, Schwind and Koditschek proposed an approximate

return map that uses an iterated application of the mean value
theorem for integral operators [29]. Both performance and
complexity of the return map increase with the number of
iterations.

In 2005, Geyer et al. proposed a much simpler approxi-
mation of the return map, assuming small angular sweep and
small spring compression during stance [30].

Both solutions described above assume steps that are sym-
metric, so that gravity can either be ignored or linearized
during the stance phase. This inspired Arslan et al. to contrive
a return map with gravity correction, which also takes into
account steps that are non-symmetric [31].

Arslan et al. have also compared the three return maps
described above [31]. For certain initial conditions, they com-
puted the next apex height by numerically integrating the
SLIP-model numerically. Then they computed the prediction
of the next apex height for all three return maps. This was done
for all angles no more than 0.4rad from the neutral angle of
attack. The neutral angle of attack is the angle which results
in a symmetric step, so that the next apex height equals the
previous apex height. The results of the comparison of the
three return map controllers can be seen in figure 5.

As seen in figure 5, none of the controllers outperform the
others for every touchdown angle, so no definite conclusion
can be reached as to which will perform best in the comparison
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Figure 5: Mean apex position percentage error versus relative touch-
down angle. From [31].

that will be done in this research. For simplicity reasons,
the comparison of the different types of controllers will be
performed on the approximate return map by Geyer et al. [30].
If results are promising, the different versions of approximate
return map control will be studied further.

E. Passive dynamic running

Passive dynamically walking robots, which are powered
only by gravity, have been researched extensively. McGeer
showed that, given the right initial conditions, two-legged
robots are able to perform stable walking on a shallow slope,
without active control or energy supply other than gravity [32].
Collins et al. built a three-dimensional walker [33] that showed
the passive-dynamic stability described by McGeer. Inspired
by the success in walking robots, researchers started looking
at passive dynamic running. McGeer looked extensively at the
possibilities of passive dynamic running [34]. He found that,
while some modes exhibit inherent stability, others need to
be stabilized actively. Thompson and Raibert also investigated
the stability of passive dynamic running and optimized initial
conditions and parameters to find trajectories that are nearly
reentrant [35].

Since passive dynamic running is not inherently stable, sev-
eral people have devised controllers to stabilize the trajectories.
Ahmadi and Buehler propose a controller based on ‘online
calculations of the desired passive dynamic motion’, which
they call Controlled Passive Dynamic Running, or CPDR [36],
[37]. They have implemented this controller successfully on
their ARL-Monopod II [38].

Francois and Samson derive 1-periodic solutions of a sim-
plified integrable model of a hopper, which are stabilized using
impulsive control inputs [39].

In [40], Hyon and Emura propose an energy-preserving
control strategy. They expect that preserving the system
energy will let the system generate natural periodic gaits
autonomously.
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All three controllers described above have been shown to
stabilize passive dynamic running. The comparison of the con-
trollers in the next sections will be based on completely passive
dynamic running, without stabilizing control, to investigate the
basic characteristics of passive dynamic running. If results
are promising, further research will be done on the control
of passive dynamic running.

For passive dynamic running, a design choice needs to be
made to select an appropriate hip oscillation frequency ωh.
This hip oscillation frequency depends amongst others on the
choice of the hip spring stiffness kh. The leg angle α is related
to the hip oscillation frequency through the following formula:

α̈ = ωh
2

(
1

2
π − α

)
. (18)

Thus, α becomes a function of time and the hip oscillation
frequency:

α = f (t, ωh) . (19)

For a given hip oscillation frequency the angle of attack
becomes:

α0 = α (t = ttouchdown) . (20)

IV. QUANTITATIVE COMPARISON

Now that the five types of existing angle of attack controllers
are introduced, it is important to know how they compare to
each other. To get a first impression of the performance of the
controllers, a simple simulation is performed. This simulation
will show how close the controllers get to the ideal angle of
attack for a certain situation. The methods for this simulation
will be discussed in Section IV-A. The results of the simulation
will be discussed in Section IV-B.

A. Method

The simulation is performed on the SLIP-model as de-
scribed in Section II. The equations of motion of the SLIP-
model are integrated using Matlabs ode45 integrator. Param-
eters are chosen at m = 80kg, l0 = 1m, k = 20kN/m,
g = 9.81m/s2, both because of conformance to human values,
and to facilitate comparison to literature results, where these
values are becoming somewhat standard values. The model is
started in a limit cycle with yapex = 1m and ẋapex = 5m/s.
At apex, the model is disturbed, in such a way that the total
energy of the system is conserved. This means that if the height
at apex is increased by the disturbance, the horizontal speed
at apex is lowered accordingly so that the total system energy
stays the same. The disturbances are up to 10% of the original
apex height, so that the apex height ranges between 0.9m
and 1.1m and the apex horizontal speed ranges accordingly
between 5.2m/s and 4.8m/s. The goal is to go back to the
original limit cycle, so the desired height at the next apex is
1m. The model is run for all the initial apex values with all
the controllers, to see what angle of attack the controllers give.
These angles of attack are then compared to the ideal angle
of attack. The ideal angle of attack is the angle which gets the

model exactly to its desired state at the next apex. This ideal
angle of attack cannot be determined analyticaly, but it can be
calculated numerically.

Most controllers have control and design parameters that
need to be set. If possible, the control parameters are chosen so
that if started in the desired limit cycle, the controller will give
an angle of attack equal to the ideal angle of attack. This means
that when the controller is started in this limit cycle, it will stay
in the desired limit cycle. If this still leaves choices for other
parameters (as is the case for the Raibert controller and swing-
leg retraction), these parameters are optimized numerically, so
that the resulting angles of attack over the entire range of
starting heights are as close to the ideal angle of attack as
possible.

As a measure of performance, the average distance between
angle of attack given by the controller and the ideal angle of
attack over the entire range of starting heights is taken.

B. Results
Results of the simulations can be seen in figure 6. First of

all, this figure shows the ideal angle of attack for apex heights
ranging from 0.9m to 1.1m. Starting at a given apex height,
this ideal angle of attack gets you exactly to your desired apex
height at the next apex (in this case an apex height of 1m).
Figure 6 also shows the results for all the controllers discussed
in Section III. Looking at the results for the constant angle of
attack controller, it is immediately obvious that this controller
indeed keeps the angle of attack constant, as the resulting angle
of attack is a straight line. The value of the constant angle of
attack is chosen so that when started in the desired state, the
model will stay in the desired state. This is clear from figure
6, where the constant angle of attack crosses the ideal angle
of attack at an apex height of 1m (which is the desired apex
height).

What stands out for the Raibert controller is that the result-
ing angle of attack is never equal to the ideal angle of attack.
As discussed in Section III-B the Raibert controller makes
some assumptions to determine the neutral point; namely that
the forward speed stays constant throughout the stance phase,
that the stance time in the next step will be equal to the stance
time of the previous step and finally that the stance phase
is symmetrical. Since these assumptions are never exactly
correct, the calculated neutral point is never exactly right. This
is most obvious when the model is started at an apex height
of 1 meter. Since this is the desired apex height, there is no
P-action and the only control is from the estimated neutral
point. The difference with the ideal angle of attack shows that
the neutral angle of attack is off by about 1o at this point.
Calculating back, the estimated neutral point (the distance
between hip and toe) is off by about 1.5cm, or 4%. In this
simulation, the feedback gain for the Raibert controller kẋ is
kept constant. The value of the gain is optimized numerically,
in such a way that the average difference with the ideal angle
of attack over the entire range of starting apex heights is
minimized. This results in an optimal value for the feedback
gain of 0.11.

Figure 6 also shows that the resulting angle of attack for
swing-leg retraction is very close to the ideal angle of attack.
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Swing-leg retraction control has two parameters which can be
chosen freely, the apex retraction angle αR and the retraction
rate ωR. As in constant angle of attack control, it is required
that, when started at the desired apex height, the model will
return exactly to this desired apex height at the next flight
phase. In other words, the angle of attack at the desired apex
height should be equal to the ideal angle of attack. This leaves
only one of the original two free parameters. This final free
parameter is optimized numerically using the same criterion as
for the Raibert controller, namely that the average difference
with the ideal angle of attack over the entire range of starting
apex heights should be minimized. This procedure gives an
optimal apex retraction angle of 62o and a retraction rate
of 36o/s. With these well-chosen apex retraction angle and
retraction rate, resulting angles of attack are very close to the
ideal angle of attack, reinforcing the choice for a constant
retraction rate.

The resulting angle of attack given by approximate return
map control is very close to the ideal angle of attack. What
stands out most is that, even though no control choices could
be made, the resulting angle of attack at the desired apex
height of 1m is (practically) equal to the ideal angle of attack.
This can be explained by the fact that the approximations to
the return map are valid for symmetrical steps. If the states
at the beginning and end of the step are equal, the step must
be symmetric and the approximate return map controller will
give the ideal angle of attack.

Finally, the results for passive dynamic running are also
seen in figure 6. For some initial apex heights, the resulting
angle of attack is so far off the ideal angle of attack that
results lie outside the boundaries of the figure. An explanation
for the large difference between passive dynamic running
and the ideal angle of attack can be found in the fact that
passive dynamic running has no control parameters that can
be set. The hip oscillation frequency can be set once during
the design stage of the robot, but after that control of the
robot is completely passive, not even the desired height can
be adapted. While this has the advantage that no sensors are
needed, it also results in angles of attack quite far off the ideal
angle of attack, as seen in figure 6. Furthermore, not all initial
apex heights have a resulting angle of attack. This is because
for apex heights lower than 0.95m, the foot starts below the
ground and the swing action of the leg is never able to get
the foot above the ground. For passive dynamic running, there
is a design choice to be made for the hip spring constant. In
this case the same condition was used as for constant angle
of attack control and swing-leg retraction control, namely that
when started at the desired height of 1m, the model should
still be at the desired height at the next apex. This results in
an angle of attack for passive dynamic running that is equal
to the ideal angle of attack for an initial apex height of 1m.

To get a feel for the effects that the resulting angles of attack
given by the controllers have on the resulting apex height,
figure 7 shows a return map of all the controllers. This figure
shows the resulting height at the next apex y1 for the range
of starting apex heights y0 for all controllers. The starting
apex height determines the resulting angle of attack for the
controller, which in turn determines the height at the next apex.

The ideal angle of attack by definition has the desired height at
the next apex, so this is a horizontal straight line through y1 =
1m. The two controllers that have the smallest deviation from
the ideal angle of attack, swing-leg retraction and approximate
return map control, also result in apex heights that are very
close to the desired apex height. The other controllers have
angles of attack that result in apex heights much further from
the desired apex height of 1m. Both the constant angle of
attack controller and passive dynamic running do not have
resulting apex heights for some initial apex heights. This is
because for both controllers, at certain initial apex heights, the
foot starts below the ground and never gets above the ground.

For all controllers, the difference between the resulting
angle of attack and the ideal angle of attack is calculated and
averaged over the entire range of starting apex heights. The
results can be seen in table I. For passive dynamic running,
only those starting apex heights where a resulting angle of
attack was found are included in the result. As expected from
figure 6, swing-leg retraction and approximate return map
control have the least difference with the ideal angle of attack
and passive dynamic running has the largest difference with
the ideal angle of attack.

V. QUALITATIVE COMPARISON

Now that the quantitative results of the controllers are
known, this section will investigate the qualitative aspects of
the controllers. First the number of sensors necessary for each
controller will be discussed. Then, some energy benefits that
certain controllers have will be addressed.

A. Sensors

The number of sensors required for a certain controller is
important because sensors in a real system will lead to sensor
errors. Eventually one of these controllers will be implemented
on a real robot. On this real robot, having many errors in the
sensor data will not be beneficial for the stability of the robot.
Therefore, the fewer sensors a controller needs, the better.
Some sensors may produce more errors than others. In general
measuring with respect to the ground (instead of internally)
will be more error-prone.

For the constant controller, only one sensor is needed,
namely a leg angle sensor, which measures the angle between
the leg and the ground.

Looking at the Raibert control equation (13) it can easily be
seen that two inputs are needed to calculate the desired angle
of attack: horizontal speed ẋ and stance time at the previous
stance phase Ts. To know the stance time a sensor to measure
whether there is contact between the foot and the ground is
needed. This is quite easy to measure and large errors are not
expected here. Finally, a sensor is needed to measure the leg
angle. All together three sensors are needed: a speed sensor (or
position sensor, with results differentiated), a contact sensor
and a leg angle sensor.
Swing-leg retraction control only needs two inputs, as can be
seen from (14). The time since the apex is required, which
means a sensor to know when the instant of apex occurs is
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Figure 6: Resulting angle of attack for all controllers found in literature, compared to the ideal angle of attack. All controllers are started
from initial apex heights ranging from 0.9 to 1.1m and resulting angles of attack are determined. The ideal angle of attack, which results
exactly in the desired height of 1m at the next apex, is determined numerically.
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Figure 7: Return map of the controllers found in literature. This return map shows the resulting height at the next hop y1 as a function of
the starting apex height y0. The starting apex height determines the resulting angle of attack for the controller, which in turn determines the
height at the next apex. Controllers that have angles of attack close to the ideal angle of attack, also give resulting apex heights very close
to the desired apex height of 1m.
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Controller Average difference with ideal Average difference with desired Parameter settings
angle of attack [degrees] height at next apex [m]

Constant angle of attack 1.30 0.0385 α0 = const = 66.4o

Raibert 0.80 0.0278 kẋ = 0.11m/(m/s)
Swing-leg retraction 0.10 0.0035 αR = 62o, ωR = 36o/s
Approximate return map 0.10 0.0032 -
Passive dynamic running 2.86 0.0680 ωh = 931o/s

Table I: Average difference between angle of attack given by controllers and ideal angle of attack over range of initial apex heights between
0.9 and 1.1m; Parameter settings

needed. The instance of apex will be quite difficult to measure.
Furthermore, a leg angle sensor is needed.

For return map control, three inputs are needed. The speed
and apex height are required to calculate the desired leg angle.
Also, a leg angle sensor is needed to set the leg angle to the
desired value.

Finally, passive dynamic running needs no sensors at all. As
the name already indicates, this control is completely passive
and requires no inputs.

B. Energy
When looking at controllers for running robots, it is also

important to look at energy aspects. As explained before,
the SLIP-model is conservative, so energy is not a measure
of performance for this model. In real robots (and humans
for that matter), energy losses can be substantial and energy
use of a controller becomes quite relevant. Furthermore, if a
running robot is viewed as a model for human running, it is
unlikely that humans use a type of control that uses a lot of
energy, when other control is available, provided quantitative
results are similar. Two of the controllers discussed in Section
III have energy benefits, which will be discussed here.

Swing-leg retraction has energy benefits, because it lowers
the ground-speed of the leg. In real robots and humans, legs
have mass and therefore impact losses occur at touchdown.
By swinging the leg backwards during flight, the horizontal
speed of the leg with respect to the ground is lowered and
thus impact losses are decreased.

Passive dynamic running also has energy benefits, for
two distinct reasons. As found by Alexander in 1990 [16],
running animals and robots can save energy if they use a
spring to swing their legs forward during flight phase. It was
found experimentally that for a certain type of running robot
without hip spring, the hip actuator consumes 40% of total
energy at top speed, most of which is used for swinging the
leg forward [41]. In passive dynamic running, this motion is
powered by the hip spring. Furthermore, it can be expected
that in normal operation of passive dynamic running, the leg
will be swinging backwards during the final part of the flight
phase, thereby reducing ground speed of the leg. Just like in
the case of swing-leg retraction, this will reduce impact losses.

The results of the qualitative comparison of the controllers
are summarized in table II.

VI. DISCUSSION

In the previous sections, five angle of attack controllers from
literature were discussed and compared in a qualitative and

quantitative manner. This section will first give a discussion
of the results of these comparisons and then discuss some
restrictions of this this literature study and the way the
controllers were compared.

A. Discussion of results

In the comparison of the five angle of attack controllers, two
controllers clearly outperform the other three, namely swing-
leg retraction and approximate return map control. Especially
in the quantitative comparison, they outperform the next best
controller by eight times. In the qualitative comparison swing-
leg retraction control also performs well, needing only two
sensors (one to measure the instance of apex and one to
measure the leg angle). Moreover, swing-leg retraction also has
energy benefits, since retraction of the swing-leg lowers impact
losses at touchdown. Approximate return map control needs
three sensors. Because of very good quantitative results, it is
still considered a promising controller. Both controllers should
be investigated further to determine which would perform best
on a real robot.

The constant angle of attack controller, Raibert controller
and passive dynamic running give far less promising results.
All three controllers give angles of attack that are quite far
from the ideal angle of attack, especially compared to the
two promising controllers. Constant angle of attack control
is the most basic control available and needs only one sensor,
yet quantitative results are disappointing. The assumptions that
have to be made for the Raibert controller are too crude to give
an angle of attack close to the ideal angle of attack. Passive
dynamic running has the benefit of being completely passive
and requiring no sensors at all, but it also has no control
parameters, resulting in very high deviations from the ideal
angle of attack.

B. Limitations

Some limitations exist to the generality of the research
discussed in this paper. First of all, the quantitative comparison
of the model was performed on the SLIP-model. This is the
simplest model possible of a human or robot runner, consisting
of a point mass as a body and massless spring as a leg. It has
only one leg. As was seen in Section II, literature suggests
that gaits found with this model are very similar to gaits seen
in human and robot runners, and controllers that perform well
on this model usually also perform well when implemented on
a real robot. To corroborate our belief that the current results
found with the SLIP-model are valid, future tests on the more
promising controllers will be performed on a more complete
model of a running robot.
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Controller Number of sensors Energy benefits
Constant angle of attack α0

Raibert ẋ, Ts, α0

Swing-leg retraction tflight, α0 +
Approximate return map ẋ, y, α0

Passive dynamic running - ++

Table II: Summary of the qualitative comparison of angle of attack controllers

In this paper, the controllers are all compared to the ideal
angle of attack, but the ideal angle of attack is never considered
as a controller in its own. There are several reasons for
this. First and foremost, this is a literature study, and only
controllers found in literature are considered here. In the
future, the ideal angle of attack may be considered as a
controller. A point of attention will be that the ideal angle of
attack for a certain situation needs to be computed numerically.
It either needs to be computed in real-time, which might be
too computationally intensive to implement on a real robot, or
extensive lookup tables need to be constructed. Also, to know
the ideal angle of attack it is still necessary to know the state
of the robot, thus requiring at the very least a height and leg
angle sensor.

VII. CONCLUSIONS

In this paper, the five types of angle of attack controllers
that are found in literature are compared in a quantitative
and a qualitative manner. From these comparisons it can be
concluded that swing-leg retraction and approximate return
map control have the best overall results and thus provide the
most promising control. Results for the other three controllers
are not nearly as good; thus they are not considered promising
controllers.

VIII. FUTURE WORK

Now that two promising angle of attack controllers have
come out of this literature study, future work will have to
determine which controller will be implemented on the real
running robot that is being built in the DBL laboratory. To
determine the appropriate controller for the DBL robot, a more
complete simulation model of the robot will be built. This
model will likely include a torso with inertia (where the mass
of the torso may or may not be positioned at the hip of the
robot), two legs that have mass and possibly knees.

The model will be used to perform more elaborate anal-
yses of the promising controllers. A stability analysis will
show whether certain fixed points are stable with the given
controllers. A disturbance rejection analysis will show how
far the model can be disturbed without falling over and how
quickly it returns to a desired limit cycle. Possible disturbances
include steps up/down and pushes. A robustness analysis will
show how sensitive the model is to modeling and measurement
errors.

The more extensive model of the robot will allow us to
examine energy aspects of the controllers, since this model
will have energy losses at touchdown and need energy input
to swing the leg forward, due to the mass in the legs. These
energy aspects will also be considered in the final choice of a
controller for the DBL robot.

Finally, angle of attack controllers other than the five found
in literature will also be considered as controllers for the
DBL robot. As already mentioned in Section VI, an ideal
angle of attack controller will be investigated further. Also,
combinations of angle of attack controllers will be considered.
Swing-leg retraction for example can be combined with e.g.
approximate return map control or ideal angle of attack con-
trol. The performance of such a combination of controllers will
be investigated using the more extensive model and analyses
described above.
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