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Abstract

This thesis is dedicated to the application of data science to sports data. The research for this
thesis is part of a bigger project on injury prevention and sport performance called Citius Altius
Sanius (CAS). Two data sets from two different projects within CAS are analysed, with two
different goals; one focusses on sports injury prevention in soccer, the other on performance
prediction in baseball.

First we analyse a data set on acceleration during exercise from project P6, generated while
testing a prototype of wearable sensor trousers during soccer drills. The aim of P6 is to design
special leg wear with wearable sensors in order to gain more knowledge on hamstring injuries.
Therefore, an algorithm needs to be developed to identify the intensity of certain movements
using sensor data. Features were extracted from the acceleration data in order to classify the
intensity. Four methods are then tested on the data, of which the decision tree seems to produce
the best results. Analysis showed that this model seemed to be able to predict low intensity
well (99.1% accuracy), although it struggles significantly more with medium and high intensity
exercise (75.5%).

The second data set covered the growth in throwing speed of a group of young baseball athletes
between the ages of 12 and 18. The aim of the research was to identify a common growth curve
for throwing speed of pitchers during adolescence and provide personalised growth curve models.
A mixed effects or multilevel design was chosen to model the growth in throwing speed, due to
its ability to model the hierarchical nature of the longitudinal data. After analysing the data
set and covariates, we found we could reduce the number of predictors, and thus the cost of
collecting data. Furthermore, it is possible to predict throwing speed on a personal level using
only age and one measurement on the predictors and throwing speed, although predictions are
improved when more measurements are available.

The results of this research can be implemented in the projects, although some complications and
opportunities for improvement still exist. Recommendations for future research have therefore
been discussed.
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1 Introduction

Over the last couple of years, interest in data collection and analysis has increased across various
disciplines such as business, management and government [19]. Given this rise in interest across
the board, it seems to be expected that sports organisations followed suit. However, despite
how new this fascination with data seems to be, the reality is that sport and data analysis have
been interlinked for far longer than most people realise.

Perhaps the most famous use of data analysis in sports is the 2011 movie Moneyball [48], in
which an accountant uses a statistical approach for scouting and analysing players for his baseball
team, and leads them to victory despite their small budget. In baseball, such analyses are so
widely used that they have their own name: sabermetrics. But, despite how recent the increase
in interest may seem, sabermetrics goes back to the creation of the box score by Henry Chadwick
in 1858 [38].

While baseball lends itself well to analysing due to the structure of the game, much better than
most team sports, this does not mean that the use of data analysis is restricted to baseball alone.
Even in more chaotic team sports such as soccer, calculating ball possession, the percentage
of successful passes and the number of attempted shots at the goal are standard for most
professional games. Additionally, during games players are often tracked across the field to
quantify their activity in terms of distance.

Data science has more to offer to sports than just game analytics, however. More and more
research is targeted to improving performance; for example in the field of cycling, where teams
decide their participation in cycling competitions on the basis of data analysis [5], or the inclusion
of sensors on skates for competitive speed skating, in order to give real-time feedback to an athlete
and improve their form [49]. New research not only focusses on performance improvement, but
injury prevention as well; recent studies have shown that the analysis of data collected by sensors,
questionnaires and tests, can help identify risk factors or athletes with an elevated risk for injury
[53, 47].

This research focusses on how data science can aid sports professionals in these last two cate-
gories; the research conducted for this thesis is part of a bigger project within the Citius Altius
Sanius (CAS) program, which aims to reduce sports injuries and improve performance in a
number of different sports.

1.1 Aim of research

Figure 1.1: Structure of the CAS
project. The three fundamen-
tal research lines (sensors, data
science and feedback) are com-
bined with the six applied re-
search lines [11].

In recent years, there have been millions of injuries
sustained in the Netherlands due to sports activities -
roughly 4.5 million each year. Some quite extreme: in
2016, 121.000 people required emergency care due to
sports injuries. In total, they cost 5 million euros in
direct medical costs. “Half of these injuries could po-
tentially be prevented through effective support and self-
management” [11]. The aim of the CAS project is thus
to “stimulate people at all performance levels to engage
in and sustain physical activity through sports and fit-
ness, improve their performance and prevent injuries by
providing informative and motivating information using
advanced sensor and data science techniques.” [33].
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The CAS project consists of nine projects, as is depicted
in Figure 1.1. CAS focusses on six different sports and types of injury, all of which are contained
within one project. Within each project, the use of data science is one of the fundamental
research lines, alongside sensors and feedback. Here data science is applied in order to “relate
the load to injury mechanisms, and provide an individual training advice to stimulate the athlete
and prevent injuries, or return to sports and exercise quicker.” [33].

The CAS research project started in April 2018 [12]. In the third quarter of 2018, the first
prototypes had been built and data had been generated, after which some projects contacted
the Statistics department of the Delft Institute of Applied Mathematics in order to gain more
insight into the generated data. This thesis will cover the analysis of some of this data.

The research done for this thesis will be connected with two projects within CAS: project P6,
which aims to reduce hamstring injuries in soccer and field hockey by employing smart sensor
shorts, and project P7, which focusses on shoulder and elbow injuries in tennis and baseball due
to bad coordination.

The data supplied by project P6 was generated by a prototype of the sensor shorts that is
being developed by Industrial Design Engineering. In order to gain more insight into hamstring
injuries, more data on muscle load during exercise needs to be generated and analysed. We
therefore will aim to develop a method that is able to detect medium and high intensity activity.
The data supplied by project P7 originates from project Fastball, a previous research, and was
provided for analysis. The data covers growth in throwing speed in youth baseball pitchers. The
aim of the data analysis is to develop a method for predicting throwing speed over time.

1.2 Structure of thesis

As mentioned previously, two separate subjects within the CAS project are covered in this thesis:
injury prevention in soccer and performance prediction in baseball. In Chapter 2 these projects
will be introduced in detail.

After this the thesis is seperated into two parts: first we will deal with the soccer project, where
we will look at sensor data in order to estimate intensity as a proxy for muscle load. Chapter
3 gives a background on some of the literature dealing with classification in sports using sensor
data. The next two chapters are dedicated to the exploration and classification of the data
itself, where Chapter 4 goes into how measures for classification were extracted and Chapter 5
provides some background on the methods used for classification and their results.

The next chapters are dedicated to the research that has been conducted for throwing speed
prediction for youth in baseball. For this research, mixed effects models were used, and Chapter
6 gives a concise overview on the literature in this area. Chapters 7 through 9 focus on the data
and prediction itself. Chapter 7 deals with the data, Chapter 8 explores the different models
that can be fitted to this data and Chapter 9 provides the final model. Chapter 10 reflects on
this research and discusses problems and recommendations for future research.
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2 Introduction to the CAS projects

The research conducted for this thesis is part of a bigger project within the Citius Altius Sanius
(CAS) program, which aims to reduce sports injuries and improve performance for athletes in a
number of different sports. There are nine different projects within the CAS program, most of
which Delft University of Technology is involved in. Out of all those projects, this thesis will be
dealing with data from the projects P6, where the focus is on team sports such as soccer, and
P7, which focusses on coordinative sports such as baseball. Although the aims of these projects
are very similar, the data and accompanying analyses are not. In this chapter we will look at
the different projects, discuss the related data sets, and specify what the aim of the analysis is
for each individual project.

2.1 Project P6

Project P6 focusses on soccer and field hockey, and more specifically on hamstring injuries.
These injuries are often due to physical overload during matches, but little is known about the
factors that contribute to such overload. In order to gain more knowledge about the stress
put on the hamstring when playing soccer, a special leg wear with wearable sensors is being
developed for use during exercising. The data that was supplied for analysis was generated from
an early prototype of such a garment.

2.1.1 Overview of project P6

The study consists of five participants who performed six soccer-related exercises consecutively.
These soccer exercises vary in difficulty and intensity, and the movement of the participants is
recorded by a set of six sensors that are placed on the body.

Figure 2.1: Placement of the sensors
[44]

There is one global sensor called the LPM sensor,
which measures, among other things, the global lo-
cation and acceleration. This sensor is placed on
the back of the person performing the exercise. A
selection of local sensors is used to calculate the ac-
celeration at precise points on the body. In this
case, the sensors are placed on the pelvis area (mid-
dle lower back), the thigh area on both sides and
the leg or shin area. These local sensors give higher
precision of the intensity of an exercise [44] when
compared to the global LPM system.

Not much is known about the impact that certain exercises have on specific muscles. There are
multiple hypotheses about why athletes are injured while playing sports. One of the hypotheses
asserts that sports injuries are related to muscle fatigue, caused by playing at higher intensity
over a longer period. The other hypothesis places more emphasis on peaks of high intensity.
Although both hypotheses focus on moments of high intensity, the first pays more attention to
the total length of the intense period, while the latter focuses more on the frequency of these
periods. The aim of the research conducted for project P6 is thus to use the local sensors to
gain a better understanding of the impact of certain movements and exercises.
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2.1.2 Overview of data for project P6

The data from these local sensors are generated by an accelerometer, a gyroscope and a mag-
netometer with a frequency of 200 Hz. Of these three instruments, only the accelerometer was
useful for analysis purposes, as the other two were not properly set up to deal with the in-
tense movement of the sensors during the exercises. The accelerometer describes the localised
acceleration in a three-dimensional space.

Figure 2.2: Example of acceleration data on left thigh over a time period of roughly 50 seconds,
acceleration in m/s2, time in 5 millisecond (ms)

High peaks correspond with high acceleration - sudden speeding up during an exercise, or kicking
the ball. A dip in the acceleration is reflective of a significant decrease in speed or a sudden
stop in movement. One way to summarise this data [41] is by calculating the size of the vector
(x, y, z) at time t by

a1(t) =
√
x2(t) + y2(t) + z2(t), (2.1)

which gives a comprehensive overview of the acceleration in all three components. This result
is plotted below for the same time period as that given in Figure 2.2.

Figure 2.3: Acceleration data on left thigh over 50 seconds, size of acceleration in m/s2, time in
5 millisecond (ms)

12



Figure 2.3 illustrates the first problem with the data: the acceleration is not centered around
zero. This is because gravity needs to be taken into account for the acceleration, which exerts
a constant force on the sensors. The data is therefore centered around 9.81 m/s2, the standard
acceleration due to gravity. Usually this gravitational force can be filtered out of the data as
it only works in one of the three directions in which the sensor measures. However, due to
the rotation of the sensor during the exercise, the gyroscope is needed to properly analyse the
acceleration in the three directions. In the current data set, the gyroscope did not measure
precisely enough; therefore the gravitational force cannot be removed before summarising the
data.

2.1.3 Mathematical research

Two aspects of the data analysis are of interest:

• Is it possible to predict the intensity of an exercise given the acceleration data from the
localised sensors?

• Is it possible to give a real-time summary of the generated data?

2.1.3.1 Prediction of intensity

As discussed above, there are two hypotheses about the occurrence of injuries when exercising.
In order to predict intensity, we will first need to construct a method that converts acceleration
data into intensity data by classification. As the sensors generate much data, it is necessary to
reduce the information obtained from the sensors to be more manageable. The first step would
be to find a suitable features that can be extracted from the data.

One way to summarize the data is by averaging the acceleration over time steps ∆t. Choosing
a time step needs to be done carefully, as a large time step could flatten out the data in such a
way that moments of high intensity would no longer be visible. Below the data from Figure 2.3
is summarized using different time steps.

(a) ∆t = 0.5s (b) ∆t = 0.25s (c) ∆t = 0.1s

Figure 2.4: Averaged acceleration on the left thigh over 50 seconds

While Figure 2.4c shows perhaps too many peaks to properly analyse the movement, Figure
2.4a leaves out the highest peak visible in Figure 2.4c. Finding a proper time step is therefore a
delicate balance between visibility and not removing too much detail from the data. In Rogers
et al. [41] several other methods are discussed for analysing and summarizing data gathered
from accelerometers, and Bonomi et al. [4] discuss possible features that can be extracted from
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the data. These methods, and others, will be considered in an effort to find a suitable method
to summarise the data. This will then be used to classify the intensity of the exercises.

2.1.3.2 Variable selection

In order to give real-time feedback to coaches or medical staff, it is useful to keep the amount
of information in the feedback as low as possible. However, the feedback does need to be
comprehensive enough to be able to make good decisions about whether to continue a certain
exercise or to substitute a player during a game.

There are two ways in which the data can be displayed: directly from the sensor (e.g. the
raw acceleration data) or summarised. For the summarised measurements, the results of the
classification research could be used. However, as this is not a direct measure, there might be a
delay in the feedback. Therefore, it can be useful to look at the many variables that are directly
available and make a selection.

2.2 Project P7

Project P7 focusses on coordinative sports such as baseball and tennis. With these sports there
are relatively many upper extremity injuries and so again sensors are deployed to gain more
knowledge about how and why such injuries occur. However, unlike the soccer data, the data
that was supplied for analysis by the members of the project team was not generated as part of
the CAS project. Instead, the data comes from a longitudinal study on baseball performance
that was conducted to gain more knowledge about growth patterns in throwing speeds and the
effect of injury on these growth patterns. Therefore, both the data and the way in which it can
be analysed differs significantly from project P6.

2.2.1 Overview of project Fastball

Project Fastball is a longitudinal study on the throwing speed of pitchers of the Dutch Youth
Baseball team. Every six months over a period of three years, all pitchers in the under-18 group
were asked to perform a series of physical tests and were interviewed to determine whether
they had sustained injuries during the last six months. In total, this resulted in six separate
measurements of a group of 125 pitchers, although for many of these pitchers less than six
measurements were available. This is mostly due to the nature of the study: some pitchers
entered the study later due to not being old or good enough at the start of the study, while
yet others withdrew from the study before it had ended due to being too old for the under-18
group, or not performing well enough to continue for the national team.

2.2.2 Overview of the data for project Fastball

The main interest behind this research is the ball throwing speed. The athletes were asked to
pitch ten times while the speed of the ball was measured. The resulting average was then cal-
culated; this measure became our main response variable. Alongside these results, the following
variables were also measured:

• Length and weight of the athlete

• The force of the external rotation (ER) of the throwing arm

• The force of the internal rotation (IR) of the throwing arm

• Range of motion of the external rotation (ER) of the shoulder
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• Range of motion of the internal rotation (IR) of the shoulder

• Whether the athletes were injured within the last 6 months in the shoulder

• Whether the athletes were injured within the last 6 months in the elbow

The age of the participants, along with the year when they started pitching, is also known.

2.2.3 Mathematical research

The main research question for project Fastball is whether we can fit a model to predict throwing
speed using the variables measured during the study. However, as discussed in Section 2.2.1,
there is the issue of missing data to take into account. This problem needs to be considered
first, in order to produce a useful model later.

2.2.3.1 Missing data

As discussed in Section 2.2.1, the data is missing in most cases due to the athletes being too
old or too young to participate in the study. In some cases the pitchers did not perform well
enough to stay in the national team, and were thus missing from the study as well. In both
cases, it can be argued that the missing data is missing not at random (MNAR). In cases where
age plays a role, this is quite obvious. However, due to the nature of the study, pitchers who
perform poorly on the team will also perform poorly in the strength tests.

Besides the observations of the participants that seem to be MNAR in our data set, there
are also missing values such as height and weight measurements or ball speeds while yet other
measurements are recorded. These values seem to be missing at random, although this is hard
to verify as the reason for the missingness is unknown.

2.2.3.2 Function estimation

After exploring the data, it seems that there is a clear relationship between age and throwing
speed. Figure 2.5a shows a scatter plot where the throwing speed is plotted against the age, and
Figure 2.5b shows the growth curve for the individual pitchers:

(a) Scatter plot with linear regression line (b) Growth curves for individual pitchers

Figure 2.5: Relationship between pitchers’ age and throwing speed in mph

As is visible in Figure 2.5a, the linear regression line is not a good fit for the data. The scatterplot
instead suggests a non-linear trend. We will first try to estimate the relationship between age
and speed, and then we shall try to incorporate the other measures such as length, weight, and
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internal or external rotation. If we look again at the scatter plot in Figure 2.5a but plot a
smoothed fit curve instead of a linear regression line, the result is as follows:

Figure 2.6: Scatter plot of throwing speed and age with Local Polynomial Regression Fitting
(loess) line

This plot includes data on pitchers that are outside of the scope of our research, because they
are either too young (i.e. younger than twelve) or too old to be a part of the national under-18
team. Even when excluding the observations for pitchers that were older than 18 or younger
than 12, the same trend is visible.

Figure 2.7: Scatter plot of throwing speed and age between 12 and 18 with Local Polynomial
Regression Fitting (loess) line

It is clear that a linear model might not be sufficient for predicting throwing speed. We therefore
propose using models that are specifically made to deal with longitudinal data, such as mixed
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effects or multilevel models. Multilevel models are an effective way to model data that is
hierarchically structured: they combine the information at different levels and thus handle data
at multiple levels more effectively. Chapter 6 delves into the theory and literature behind this
model.

In our case, we can structure the data in such a way that we get a linear or non-linear 2-level
model, meaning it models the data by using a hierarchy with two levels. This would mean the
individual observations of each pitcher would be on the lower level, and the general growth curve
per individual on the second level. Using this method, we hope to obtain a model that uses
both the individual growth and the general shape of the growth curves in a meaningful way.
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3 Classification of intensity during sports using accelerometers

Injuries are, unfortunately, an unavoidable side effect of sports, although some athletes are more
at risk than others depending on the sport. Sports where high-speed sprinting or multidirectional
acceleration are common, such as soccer, have for example a high prevalence of hamstring injuries
[15]. Injury prevention is beneficial for multiple reasons. First and foremost for health reasons;
injuries can be debilitating and would preferably be avoided by the athlete. Furthermore, they
have long-lasting effects: most athletes never make a full recovery, meaning they lose some of
the functional capabilities they had pre-injury. Injuries can in general have a remaining negative
effect on health-related quality of life [53].

Another reason is economical in nature: injuries in professional sports lead to absence and
increased costs. In soccer specifically, more than 30% of all injuries and a quarter of injury
absence are caused by muscle injury; 90% of those injuries occur in the muscles of the lower
extremities, the vast majority of which occur in the hamstring. On average a player sustains
0.6 muscle injuries per season; for a professional soccer team of 25 players, 80 football days are
lost to injuries each season [14]. Financially, the costs of an injured player for elite soccer teams
averages about half a million euros per month [13].

Only a small number of injuries in soccer occur due to contact or foul play: roughly 5% [14].
The other 95% of injuries are therefore somewhat preventable, and are worth investigating to
reduce their prevalence.

3.1 Why measure intensity?

Of all soccer injuries, two-thirds of them occur due to acute indirect trauma, the others have a
gradual onset [14]. Fatigue could be an important factor for muscle strains, considering injuries
are predominantly sustained at the end of training sessions and matches [15, 55]. Furthermore,
the explosive nature of some of the movements also cause muscle strain and result in injuries
[44].

In both cases, understanding the exact amount and intensity of muscle load can aid athletes,
trainers and physical therapists in injury prevention. Polglaze et al. [36] stress the utility of
understanding the distribution of player load, and therefore energetic demands, during matches
in order to “provide appropriate conditioning programs tailored to the needs of the sport and
the physiological status of the individual player”. Furthermore, the information could be used
to detect fatigue and determine substitution schedules.

3.2 Why classify intensity via sensors?

There are many ways to classify intensity, although not all are effective. Methods such as
tracking speed, for example by GPS, are not appropriate for classification of team sport activity
when the sport is characterized by continual changes in speed and direction. Even when looking
at personalised speed thresholds over general methods, this method fails to take acceleration
into account, which is more demanding [36]. Furthermore, Schotel [44] shows that methods
which collect data on a global level are less accurate compared to methods that use local data
from specific parts of the body, and often underestimate the experienced load.

Research in the field of sensor-based classification of soccer related activities is sparse: to date,
only Schuldhaus et al.’s work [45] on a sensor-based algorithm for shot/pass classification has
been developed. However, a meta-review by Chambers et al. [6] in 2015 showed that detection
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of sport-specific movemements by using wearable microsensors is not only possible but also
effective for many different sports. They concluded that sensors are a useful tool and are capable
of “quantifying sporting demands that other monitoring technologies may not detect”.

Furthermore, sensor-based recognition methods do not require additional cameras or sensors to
be installed, have more freedom in how and where an athlete can be monitored (both indoors
and outdoors) and can detect smaller movements if necessary [57]. As noted by Schuldhaus et al.
[45], sensors thus offer a lower-cost alternative to current methods such as video or computerized
technology, which are unavailable to most teams.

3.3 How is sensor-data classified?

Although many studies on activity recognition by sensors in the past focussed on single ac-
celerometers, the popularity of multiple motion sensors is growing. Classification of sensor data
is usually based on two parts: extracting features for classification at the sensor level, and a
classifying method at the “server level” [57].

As for the first step in activity recognition, there are three ways in which features are usually
extracted from the sensor data [57]. Firstly, features can be extracted based on statistics of
the acceleration, such as the maximum and minimum or the variance. Another popular method
focusses on the frequency domain and is based on fixed filter banks such as fast Fourier transform
(FFT), which is an algorithm that computes the discrete Fourier transform of a sequence, and
wavelets. Lastly, methods such as principal or independent component analysis (PCA/ICA)
can be used as well [31]. The signal from the sensor is then classified using features of the
acceleration in a set time frame.

There are many classification methods used when classifying accelerometer data: decision trees,
neural networks, k-nearest neighbours, Bayesian classifiers and hidden Markov models, to name
a few [4]. For example k-nearest neighbours has been popular due to the simplicity of the
algorithm, although more complex methods such as hidden Markov models and decision trees
have gained favour as well [57].

3.4 Goal of the research

Although much research on the use of accelerometers in activity detection has been performed
already, most of it is focussed on the detection of specific sports-related activities. There is a
lack in literature on the use of sensors for classifying intensity, especially in the field of team
sports such as soccer. Therefore this research aims to develop a method suitable for intensity
recognition during soccer using sensors.
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4 Classification of accelerometer data

The sensor data that is analysed in this research was collected by Schotel [44] to compare the
measurements from global sensors to local sensors, and show that local sensors are more accurate
in predicting experienced load than global sensors. Our analysis will therefore focus on the data
from the local sensors, placed on the shins, thighs and middle lower back.

4.1 A brief overview of the data

The acceleration data is briefly described in Section 2.1.2. In this section we will delve a bit
deeper into the specifics and explain some of the difficulties with analysing the data.

4.1.1 Experiment set-up

Figure 4.1: Experiment drill protocol

The data was generated by five participants, each
participating in ten separate drills which are de-
scribed in Figure 4.1. After each drill the partic-
ipant was asked to rate the intensity of the exercise
on a scale of 1-10. The level of fitness was not equal
amongst participants, but all were in good health.
The drills are mostly ascending in intensity, which
is reflected by the increasing heart rate and experi-
enced intensity amongst participants.

Videos of the drills were recording alongside sensors,
although those were not available for this research
due to the rules regarding the privacy of the partic-
ipants. The data from the wearable sensors is col-
lected and converted to a Matlab file, containing the
values in the magnetometer and gyroscope in each
axis and a time stamp. It also contains the acceler-
ation in all three axes, twice: once measured with a
wide range, and once with a low noise (but smaller
range). For this research, the wide range accelera-
tion was used, despite the fact that there was more
noise. This is because the low noise acceleration
could not fully capture the shifts in acceleration.

See Appendix A for a full overview of the experi-
mental protocol [44].

4.1.2 Extraction of the acceleration signal

The sensors used in the research measure acceleration in three dimensions: x (sideways or medial-
lateral), y (forward or anterior-posterior) and z (vertical). Due to gravity, there is a constant
force working in the z direction, and so the acceleration in the z direction in this sensor is 9.81
m2/s in rest. However, once the sensor rotates, the direction in which the sensor experiences
gravity also changes. This is due to the way in which the sensor measures the axis: they are not
constant in relation to the surface, but relative to the sensor itself. This means that the z-axis
is no longer perpendicular to the earths surface.
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Usually this shift in direction for the axis can be solved in the pre-processing stage of the
data analysis by using the gyroscope and magnetometer, which measure the internal rotation.
However, in this case the gyroscope was not properly adjusted before the drills were performed,
therefore the option of separating axes was not available to us. This is unfortunate, because
the separate axes are now meaningless and thus the information that can be learned from the
sensors is diminished.

In order to make sense of the acceleration data, we combine the three streams into one; we do
this by computing the size of the acceleration vector, meaning

a(t) =
√
x2(t) + y2(t) + z2(t). (4.1)

This measure is used by some sporting microtechnology companies to describe player load [6].
It is however not ideal: the resulting vector is positive, and therefore it is hard to separate
acceleration from deceleration, which both have a different impact on the muscle load. However,
it does remove the issue of separating the directions within the acceleration.

4.1.3 The data

Each participant was continuously recorded from start to finish, including the time it took to
fasten the sensors to the clothing. For each participant the recording took between 70 and 85
minutes. When we calculate this acceleration over the duration of the experiment, we find the
following patterns:

Figure 4.2: Size of acceleration on the left thigh during the drills for participant 1

The moments where the participant performed drills are mostly easy to discern by looking at the
data. Especially the later exercises that occur between minute 50 and 75, drills 3a through 4b,
are easy to see. However, the data between minute 15 and 45 is somewhat harder to interpret;
instead of six distinct peaks of activity, we are left with some that are easy to recognise, such as
the peaks between 25 and 35 minutes, and some that are harder to label. In these cases it would
have been possible to match the data to the video recordings in order to clear up confusion,
but as mentioned before, due to lack of access we were unable to do so. In general, moments of
activity are easy to separate from moments of rest.
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Figure 4.3: Size of acceleration on the left thigh during part of the drills

Figure 4.3 shows the acceleration during 7 minutes of the experiment. In these seven minutes,
two drills were performed: drill 1b, where participants jog between pylons and pass at one side,
and drill 1c, where participants performed the same drill but shot at one side instead of passing.
Drill 1b is also shown in more detail in the bottom figure. Figure 4.3 shows acceleration from
the dominant leg, as the athlete in question is left-footed. You can clearly see spikes where the
participant turns or passes, both of which have an increased muscle load when compared to
regular jogging.

4.1.4 Differences in sensors

Although Figure 4.3 shows distinct peaks in the data when the participant makes a pass, this is
not the case for all the sensors. Depending on the dominant leg of the participant, the read-out
from the sensors on the legs will differ; as the dominant leg kicks a ball, it will experience more
muscle load than the non-dominant leg. This means that kicks and shots are more pronounced
in the sensors of the dominant leg. To illustrate this, we plotted the same drill as in Figure 4.3,
drill 1b, for the left shin, right shin and pelvis sensors.
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Figure 4.4: Size of acceleration on the left shin, right shin and pelvis during part of the drills

Figure 4.4 shows a clear difference between sensors. Whereas the difference between passing and
jogging is clearly visible for the sensor data from the left (and thus dominant) shin, as the plot
shows ten high peaks around 200 while the remainder of the peaks stay below 150 or 100, this
difference becomes less clear for the right shin. Although most peaks for the L2 sensor are also
visible in the plot for the R2 sensor, these peaks are less distinct and are surrounded by peaks of
similar height. Also note the axes for both plots: the peaks from the L2 sensor reach a value of
200, while the acceleration in the R2 sensor mostly stays below 100. Passes are therefore harder
to extract from the acceleration data.4

Furthermore, whereas separating peaks from passes and jogging was difficult for the R2 sensor,
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it seems to be impossible for the one on the lower back; not only do the peaks that are visible
for sensor L2 not show up for the P sensor, but there are barely any distinct patterns to discern.

4.2 Measures used for classification

In order to use a classification method, we first need to extract features from our data. For this
research, the extracted features were only time-based. We chose a segment size of one second
for feature extraction, corresponding to 200 data points per segment.

4.2.1 Previous research on activity detection

The features mentioned in this section are based on the paper by Bonomi, Goris, Yin and West-
erterp [4], where accelerometers were employed to classify physical activity by type, duration
and intensity. Here a number of features in the time domain are suggested for classification:
the average, the standard deviation σ, the peak-to-peak distance aPP and the cross-correlation
R between axes and in the same axis. In this paper, the researchers were able to separate the
acceleration in the axes and thus extract these features from the distinct axes. Unfortunately
our data did not allow for separation of the axes, and as such the features were thus calculated
for the size of the acceleration as in Equation (4.1).

The average and standard deviation are calculated the same as usual: a segment of the data is
taken, and the values in this segment are used to compute the features.

Figure 4.5: Average and standard deviation for the acceleration on the left thigh, calculated per
second

Both features look quite similar; they are high when activity is happening and low when nothing
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is happening. However, when zooming in on for example drill 3a, we see the following.

(a) Average of the acceleration (b) Standard deviation of the acceleration

Figure 4.6: Average and standard deviation of acceleration measured on the left thigh during
drill 3a

Drill 3a consisted of zigzagging between a number of pylons while jogging, and then walking
back to the beginning once they had reached all the pylons. In Figure 4.6a, the difference in
the average between jogging between pylons and walking is clearly visible, while the standard
deviation in Figure 4.6b has more difficulty separating these phases.

The peak to peak distance is a feature that calculates the average distance between peaks in the
acceleration. As visible in Figure 4.7, the peak-to-peak distance increases as intensity increases,
although there does not seem to be a difference between lower and higher intensity drills, nor is
there much separation between drills and moments of rest.

Figure 4.7: Peak-to-peak distance for the acceleration on the left thigh, calculated per second

The cross-correlation R is a feature that represents either a measure on the similarity between to
axes when applied to multiple sensor axes, or the similarity in acceleration over two subsequent
time intervals in the same axis. When applying to our data, the latter is the case. Given two
subsequent segments of the same axis α and β of size N , i the shift between the two segments
and j an index that covers the full length of the overlap between α and β, we can define:
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rαβ(i) =


N−i−1∑
j=0

αi+jβj , i ≥ 0

rαβ(−i), i < 0

(4.2)

We then define Rαβ = max(rαβ). The cross-correlation of a vector with a delayed copy of itself
is also sometimes called the autocorrelation. Furthermore, the maximum is always obtained
when α and β perfectly overlap; that is, |rαβ(i)| ≤ rαβ(0) due to the rearrangement inequality,
stating that for any sequence x1 ≤ · · · ≤ xn and y1 ≤ · · · ≤ yn and permutation xσ(1), . . . , xσ(n),
we have

xσ(1)y1 + · · ·+ xσ(n)yn ≤ x1y1 + · · ·+ xnyn. (4.3)

Therefore, the cross-correlation will be equal to what is known in signal processing as the energy
Es of the segment size:

Es = 〈x(t), x(t)〉 =

∫ ∞
−∞
|x(t)|2dt. (4.4)

where x(t) is our acceleration vector. In the case of a discrete signal such as ours, this integral
is replaced by a summation.

Figure 4.8: Cross-correlation for the acceleration on the left thigh, calculated per second

It seems the cross-correlation is especially high for drills in which participants had to shoot.

4.2.2 Previous research on original data set

In the research of Schotel [44], two measures were found to be the most effective for predicting
the perceived intensity of a drill: method 12, which looks at the number of accelerations over a
time frame, and method 15, which focusses on the number of peaks.

Additionally, these methods take into consideration how high the peaks and accelerations are:
it divides the intensity into zones, based on the maximum magnitude of acceleration that the
player was capable of during the exercise. The acceleration is normalised and the zones are
divided accordingly: 0-10% for little to no activity (zone 1), 10-40% for low intensity (zone 2),

29



40-70% for medium intensity (zone 3) and 70-100% for high intensity (zone 4). This divide is
visible in Figure 4.9.

Figure 4.9: Zones for the acceleration on the left thigh

If an acceleration occurs between the 10 and 40 percentage lines, it will be counted for the low
intensity zone. These calculations are performed per second, giving the number of accelerations
Aj or peaks Pj per zone j. Before adding them, we multiply by a weight factor Wj for each
zone j,

m12 =

4∑
j=1

Aj ·Wj and m15 =

4∑
j=1

Pj ·Wj (4.5)

The weight factors for these were 0:1:4:7; if a peak or acceleration occurred in the lower 10% of
the acceleration, it was not counted, whereas a peak in the top 30% counts sevenfold.

Figure 4.10: Method 12 and 15 for the acceleration on the left thigh, calculated per second
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This measure was included as one of the features used for classification. They are quite similar,
except in scale: method 15 has a range of 0-40, while method 12 has a range of 200. Otherwise
they seem to correspond well to the moments of activity. When accounting for scale by normal-
ising these features and calculating the difference between these methods, there is no obvious
difference between the two. As can be seen in Figure 4.11, the only clear difference is that most
often method 12 seems to have relatively higher values compared to method 15. This could be
due to how this measures detect intensity: for every recorded peak in the data set, multiple
accelerations occur.

Figure 4.11: Relative difference between method 12 and 15 for the acceleration on the left thigh,
calculated per second. Positive values indicate method 12 had a relatively higher value.

One thing to note is that these methods assume that during recording, at least one acceleration
was made at high or maximum capacity. Because the methods rely on normalising the data set,
a data set in which drills were performed at at most medium intensity could generate the same
numeric values as one where the participants performed at the best of their abilities, despite a
difference in muscle load.
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5 Classification of intensity

The aim of this research is to design an algorithm than can classify activity into three intensity
classes: low, medium and high intensity. Drill 1a is a good example of an exercise at medium
intensity: the players were asked to jog back and forth between posts for a set number of minutes.
Similarly, drill 4a is a good example of a high intensity exercise, where players are asked to zig
zag at high speed between pylons.

Some exercises included passes or shots after finishing a drill, increasing the load for the player.
However, the labelling of the data did not take this into account: the exercises where the
participants jogged were labelled as medium intensity, those where they had to sprint were
labelled as high intensity, and the remainder of the data was labelled low intensity exercise.

The length of the acceleration vector was computed from the accelerometer data, and the mea-
sures as discussed in Section 4.2 were then calculated on a time interval of 1 second. The sensor
data of four out of five test subjects was then labelled and resulted in 86151 data points for low
intensity, 7427 for medium and 4951 for high intensity exercise. In total the data set contained
roughly 100.000 data points, 87% of which was classified as low intensity exercise. As we will
discuss in Section 5.2, this abundance of low intensity data and the characteristics of this data
means it is easier to classify than the other two categories.

5.1 Classification methods

In order to classify the data, we will need a method that can order data points into classes based
on a training data set. Three methods will be considered for classification: k-nearest neighbours,
decision trees and naive Bayes. The theory behind each method will be explained in separate
sections. To give a better impression of the error rates we will discuss in Section 5.2, a trivial
classifier will be discussed for comparison.

5.1.1 Trivial classifier

The difference between low intensity and medium or high intensity is not very difficult to discern.
We could find a value for which we classify everything above as medium intensity exercise and
below as low intensity exercise. Because the distinction between medium and high intensity
exercise is more difficult to model, we ignore this and just use the two classes. If we look at this
classifier, we find that the maximum accuracy obtainable is 93.5%. As can be seen in Table 5.1,
this is achieved by setting a bound on the value of method 15 applied to the data.

For each feature described in Section 4.2, a function was defined that classified every data point
with a value above a threshold as medium, below as low, and then computed the classification
accuracy. This function was than optimised over the range of the measure.

standard dev. Average Peak-to-peak Cross-corr. Method 12 Method 15

Threshold 7.3929 14.576 9.0020 54109 16.10 3.5667
Accuracy 0.9267 0.9298 0.9020 0.9334 0.9333 0.9350
Low int. 0.9873 0.9927 0.9744 0.9916 0.9917 0.9920
Medium int. 0.8422 0.8807 0.6633 0.8806 0.8788 0.8982
Activity 0.4442 0.4355 0.3198 0.4562 0.4556 0.4610

Table 5.1: Classification accuracy for trivial classifier
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After this optimum was computed and the data was classified, we found the classification accu-
racy for all classes; ‘Accuracy’ shows the correct classification rate for all the data, ‘Low int.’ and
‘Medium int.’ the classification rate for low intensity and medium intensity data respectively,
and ‘Activity’ shows the classification rate for medium and high intensity data combined.

Due to the abundance of low intensity data, especially compared to medium and high intensity
data, this classifier finds its optimum at a point where almost all low intensity data is classified
correctly; this can be seen in Table 5.1, where the accuracy for low intensity data remains between
97% and 99%, while the accuracy for medium intensity stays below 90%. However, as we will
see in Section 5.2, most methods still achieved a relatively low error rate when considering only
medium intensity data. Due to the fact that no high intensity exercise was correctly labelled,
the overall accuracy when conditioning on high and medium intensity data still is quite poor.

5.1.2 K-Nearest Neighbours

K-nearest neighbours (knn in short) is a classification method that relies on a certain metric,
usually Euclidean, to determine the k closest points to our data point in the training set and takes
the average of the response variable of these points. In case of qualitative response variables,
this is similar to a majority vote. This method is a natural result in our search for methods that
are as accurate as possible. When considering X ∈ Rp as a real-valued input vector and Y ∈ R
as a response factor, with a joint distribution Pr(X,Y ), we can use a loss function to determine
which prediction function f is more accurate. Most commonly the squared error loss,

L(Y, f(X)) = (Y − f(X))2, (5.1)

is used to penalise errors in prediction. This gives us a criterion for finding a good prediction
for Y : we would like to minimize the expected prediction error

EPE(f) = E(Y − f(X))2 =

∫
[y − f(x)]2Pr(dx, dy). (5.2)

This function is minimised by the conditional mean f(x) = E(Y |X = x). K-nearest neighbours
approximates this solution by

f̂(x) = Average(yi|xi ∈ Nk(x)), (5.3)

where Nk(x) is the neighbourhood consisting of the k closest points to x in the training set and
yi is the response for xi. The k-nearest neighbours classifier uses two methods to approximate
the conditional mean: the expectation is approximated by averaging over the sample data, and
conditioning on X = x is relaxed to conditioning on a certain region in proximity to the target x.
Theoretically, provided the joint probability distribution adheres some regularity conditions, as
N, k →∞ such that k/N → 0, the k-nearest neighbour function converges to the true solution
E(Y |X = x) [24, Section 2.4].

Although this sounds very promising, k-nearest neighbours does have some downsides: it can
be unstable at times, and suffers from the curse of dimensionality [24, Section 2.5]. Fortunately,
although we are dealing with a vast amount of data, our data is not high dimensional and thus
some of the problems with k-nearest neighbours, such as the increase of the metric size of the
k-nearest neighbourhood, will not have a huge impact on the classification accuracy. As for
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stability, this method performs well when there is a large sample size available for training;
considering the large amount of data, stability should be largely accounted for.

5.1.3 Decision trees

Tree-based methods for regression and classification use splitting rules to segment the data into
a smaller number of regions in order to predict outcomes, thus earning the name decision trees.
In order to grow a decision tree, the first step is to find suitable regions for stratification: this is
done by recursive binary splitting, a top-down, greedy algorithm that splits the predictor space
into sections R1, . . . , Rn trying to minimise either the RSS for regression trees, or an alternative
to the classification error rate for classification trees.

An intuitive measure for the classification error rate would be the misclassification error. We
first define p̂mj as the proportion of training observations in the m-th region Rm that are from
the j-th class; that is, given region Rm with Nm observations and class j, we define

p̂mj =
1

Nm

∑
xi∈Rm

1(yi = j). (5.4)

Then the misclassification error would be the quantity:

E = 1− p̂mj . (5.5)

However in practice this is not preferable for multiple reasons. In the case of classification trees,
most often either the Gini index or cross-entropy is used [25, Section 8.1]. The former is a
measure of total variance across the J classes, defined by

G =
J∑
j=1

p̂mj(1− p̂mj). (5.6)

This measure is low whenever the p̂mj ’s are either close to zero or to one, so the Gini index is a
good criterion for splitting nodes. Alternatively, cross-entropy can be used as a criteria, denoted
by

D = −
J∑
j=1

p̂mj log(p̂mj). (5.7)

Similarly to the Gini index, cross-entropy takes on lower values when the p̂mj ’s are close to
either zero or one. Both methods are numerically similar; in the case of two classes, and p
the proportion of observations in the second class, the measures are E = 1 − max(p, 1 − p),
G = 2p(1 − p) and D = −p log(p) − (1 − p) log(1 − p). In this case both the Gini index and
the cross-entropy are differentiable to p, and hence “more amenable to numerical optimization”
[24, Section 9.2]. The misclassification error does not have this property, nor is it as sensitive to
changes in the node probabilities as the Gini index or cross-entropy. Therefore, this method is
not very suitable for growing the decision tree.

Once a measure has been chosen, the recursive binary splitting algorithm defines for any i and
s the half-planes
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R1(i, s) = {X|Xi < s} and R2(i, s) = {X|Xi ≥ s} (5.8)

and seeks the value of i and s for which the value of the chosen measure on these planes is
lowest. Once it has found this optimum, it creates a split in the predictor space and repeats the
process for the newly created space of subsets, starting either in R1 or R2. This continues until
the predictor space has been sufficiently stratified, which is at a certain stopping criterion. The
result of this recursive binary splitting approach is a tree with separately defined subsets of the
predictor space, all of which cover a part of the training data. Classification is then based on
which class has the majority vote within each region Rj .

One of the strengths of this method is the interpretability of the model. However, it does have
its weaknesses. Often the segmentation created by the recursive binary splitting is very suitable
for the training data, but might be too complex for the test set. Pruning is used to reduce
the chance of overfitting the data: it uses the same criteria as mentioned before, including the
misclassification error. If overfitting is a problem, it could reduce the number of nodes in the
tree.

Another issue with decision trees is their high variance. Hastie, Tibshiran, and Friedman (2009)
note that “often a small change in the data can result in a very different series of splits, making
interpretation somewhat precarious. The major reason for this instability is the hierarchical
nature of the process: the effect of an error in the top split is propagated down to all of the
splits below it.” [24, Section 9.2].

5.1.4 Naive Bayes

Suppose we have a classification problem with J classes and want to quantify the accuracy of our
estimate f̂ . Previously we used a quadratic loss function to motivate the k-nearest neighbours
method, but we could use the test error rate as another measure for accuracy. This last measure
is minimized on average by the Bayes classifier, which assigns test data to the class j for which
the conditional probability Pr(Y = j|X = x0) is largest [25, Section 2.2.3].

In practice this conditional probability is unknown but can be approximated by several methods.
One of those is naive Bayes, a method that uses nonparametric kernel density estimates for
classification. It thanks its name to Bayes’ theorem and the naive assumption at its core: it
assumes that for a class j, the predictors Xk are independent, thus reducing the probability
density function to

fj(X) =

p∏
k=1

fjk(Xk) (5.9)

Despite its name and rather naive assumption, this method is popular and often performs quite
well. The assumption simplifies the estimation by reducing the difficult task of estimating a
joint density to estimating individual class-conditional marginal densities, which can be done by
using one-dimensional kernel density estimates [24, Section 6.6].

Given the premise of J classes and class priors π̂j (for example the sample proportions) for

each class j ∈ {1, . . . , J} , we can fit nonparametric density estimates f̂j(X) for each class j
seperately. By using Bayes’ theorem and our assumption of independence, we can compute the
posterior by
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P̂ r(Y = j|X = x0) =
π̂j f̂j(x0)∑J

m=1 π̂mf̂m(x0)
(5.10)

=
π̂j

∏p
k=1 fjk(xk,0)∑J

m=1 π̂m
∏p
k=1 fmk(xk,0)

.

This estimate is then used for classifying, assigning classes depending on which class j maximises
the posterior. The naive Bayes method is favourable when dealing with high dimensional data.

5.2 Accuracy

All three aforementioned methods have their advantages and disadvantages, both theoretically
and practically. To know which method performs the best with our data, the easiest method
is to run all methods and compare the error rates. The methods were run both on the normal
data set and a data set where the values were normalised per value and vector. Furthermore,
the methods were tested by using 5-fold cross validation and the accuracy was averaged over
these five trials.

The results are visible in Table 5.2. We computed not only the total percentage of correctly
classified data, but to give a broader picture of how these methods performed, the accuracy for
high, medium and both high and medium (activity) data was recorded, along with the time it
took to run the 5-fold cross-validation.

Accuracy Activity High int. Medium int. Time (s)

Decision Tree 0.9620 0.7556 0.7062 0.7886 16.2
Decision Tree [N] 0.9632 0.7482 0.7210 0.7663

Pruned DT 0.9618 0.7546 0.7021 0.7893 13.9
Pruned DT [N] 0.9628 0.7495 0.7273 0.7646

Naive Bayes 0.9379 0.7677 0.6060 0.8755 37.7
Naive Bayes [N] 0.9419 0.7562 0.6290 0.8408

KNN 0.9525 0.6798 0.6019 0.7317 480.7
KNN [N] 0.9641 0.7432 0.7216 0.7579

Table 5.2: Classification methods and their accuracy using time windows of one second, specified
by type of intensity classified. [N] indicates normalised data was used. Time indicates the time
needed to compute run the classification code in R for the regular and normalized data set, in
seconds.

As can be seen in Table 5.2, the overall accuracy of all the methods are comparable: all methods
perform between 93.7% and 96.4%. Another commonality is that the accuracy drops roughly
20% when not taking low intensity-acitivities into account. This last measure gives a better
impression of how accurate our method is, as there is a relatively large amount of low inten-
sity activity recorded and thus skewing the results. Furthermore, this activity is very easy to
classify, whereas the difference between medium and high intensity exercise is more difficult to
distinguish.
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5.3 Final result

After comparing all methods there is not one method that outperforms the others by a large
margin; both the decision tree models and the k-nearest neighbours have an overall accuracy
of 96% and are roughly 75% accurate when classifying sensor data that was recorded when the
players were performing an exercise. Naive Bayes is the highest performing method when only
considering moments of activity, but this is not the case when considering only high activity
exercise: here the model performs as poor as k-nearest neighbours on the unnormalised data.

In light of all this information, a decision tree seems preferable to the other methods due to its
accuracy and speed. Of all three methods, this method is also easiest to interpret and apply
to new data sets. The final classification tree is shown in Figure 5.1. It should be noted that
pruning did not affect the decision tree.

Figure 5.1: Final decision tree, pruned. The data percentages visible in the nodes are not in
ascending order but are ordered High - Low - Medium intensity.

As expected, lower values for the classifying measures such as average and standard deviation
gives cause for a lower intensity classification. One curious thing to note is the classification
accuracy for the different nodes in the decision tree: while the percentage of low intensity data in
nodes 4 or 30, where the sensor data is classified as low intensity, is pretty high, these percentages
decrease when we look at high and medium classification such as nodes 5 and 14. When we look
at node 4 specifically, we see that of the 87% of the full data set that falls in this category and
is classified as low intensity, 99% actually is low intensity data. As for node 14, which covers
roughly 1% of the data and classifies it as high intensity, only 58% - barely half - of this data is
actually high intensity data. When we look more closely to the error rates of this method, we
can see this effect.

Error rates

The error rate that is most important to us is that of the labelling of medium and high intensity
exercise to low intensity exercise and vice versa; only 3.9% of the medium and high intensity
exercise is labelled low intensity exercise, and conversely only 0.9% of low intensity exercise is
classified as medium intensity exercise. The full confusion matrix is given in Table 5.3 below.
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Predicted values
Low Medium High Total

Low 85.416 735 0 86.151
Medium 299 5739 1389 7427

High 178 1108 3665 4951

Total 85.893 7582 5054 98.529

Table 5.3: Confusion matrix for the decision tree in Figure 5.1

As noted before, this method has some difficulty with classifying high and medium intensity
correctly. This can be due to several factors, such as incorrect labelling, the inclusion of shots
and passes in medium intensity drills (thus containing high intensity moments in data that is
labelled as medium intensity), the general nature of the exercises and data or the classification
method itself. Nevertheless in terms of overall activity recognition it outperforms the trivial
classifier as mentioned in Section 5.1.1, thus proving its value.

5.3.1 Excluding normalising measures

As discussed in Section 5.3, the final classification model makes use of two methods that require
a complete data set, preferably including a moment where the participant performed at max
intensity, in order to calculate a “normalised” data set. Both method 12 and 15 are designed
to work on data sets that are divided into acceleration zones, in our case 0-10% for no activity,
10-40% for low activity, 40-70% for medium activity and 70-100% for high activity. There are
two problems with the use of these measures for classification:

1. Classification on-the-go is more complicated because it requires a recalculation of both
measures during exercise as maximum acceleration might increase over time, causing a
shift in the aforementioned acceleration zones. This also means that when the sensors
have just started recording, most data would be classified as medium or high intensity
even though not much activity has happened yet. It is clear that for real-time feedback,
the classification can be unreliable.

2. Normalising the data means that consistently low output would be on the same level as
consistently high output. That is, when a person chooses not to sprint but to jog during
the entire exercise and there are no activity bursts that would increase the maximum
acceleration, the top 70-100% of the acceleration of this participant would be set equal to
that of a person that had sprinted multiple times during the exercise.

To work around those two problems, we can choose to disregard those two methods and only
use the ‘invariant’ measures such as average and peak-to-peak distance for classification. The
results of classifying with this reduced data set can be seen below.
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Accuracy Activity High int. Medium int. Time (s)

Decision Tree 0.9553 0.7179 0.5915 0.8027 12.5
Pruned DT 0.9558 0.7059 0.5958 0.7798 12.0
Naive Bayes 0.9401 0.7251 0.4711 0.8945 34.5
KNN 0.9525 0.6791 0.6005 0.7316 392.3

Table 5.4: Classification methods for non-normalised data and their accuracy using time windows
of one second, specified by type of intensity classified. Time indicates the time needed to compute
run the classification code in R for the regular and normalized data set, in seconds.

There are a few similarities and a few differences between what we see when classifying with
the reduced data set, and the previous results in Table 5.2. We can see that again the decision
tree and naive Bayes outperform the k-nearest neighbour method. Another similarity is the
discrepancy between the classification of high intensity data and medium intensity data for the
naive Bayes method.

Unfortunately the exclusion of some of the measures has lead to an increase in the classification
error rate for activity data, specifically high intensity data. It seems these measures were helpful
in differentiating high and medium intensity data, and without them especially high intensity
data is more often incorrectly classified. Curiously, the k-nearest neighbours method now has
the lowest misclassification error for high intensity data. All things considered however, the
decision tree seems again to be most suited for our data, and so our final model is as follows:

Figure 5.2: Decision tree for reduced data set. As with Figure 5.1, the order in the nodes is
high - low - medium intensity

As we can see in Figure 5.2, when classifying with a reduced data set, all four remaining measures
are used. Similarly to the tree in Figure 5.1, the nodes 4 and 10 that are classified as low intensity
also have the lowest misclassification error, while the medium and high intensity nodes have a
lower percentage of data correctly classified. The confusion matrix of this model confirms this
as well.

39



Predicted values
Low Medium High Total

Low 85.230 921 0 86.151
Medium 412 6147 868 7427

High 173 1876 2902 4951

Total 85.815 8944 3770 98.529

Table 5.5: Confusion matrix for the decision tree in Figure 5.2

Again only a small percentage of the data is incorrectly classified between low and medium/high
intensity data: 1.1% of low intensity data is labelled as medium intensity, and 4.7% of medium
or high intensity data is labelled as low intensity (3.5% when only considering high intensity
data). Sadly the correct classification rate for high intensity data stays roughly 59%, although
medium intensity exercise is now recognised much better with an accuracy of 83%.

Although classification with less predictors is possible and more feasible for offering direct feed-
back, if a complete data set (including moments of high activity) is available, it seems the
inclusion of measures such as method 12 and 15 would be beneficial for correct classification of
the data.
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6 Growth curves for longitudinal data: a literature review

The modelling of growth curves has been a topic of interest among scientists of many disciplines
for a long time. As such, there is a vast amount of literature on the topic, ranging from
philosophical ideas about growth curves to papers specifying how to compute certain parameters
for certain models in a range of programming languages. Growth curves are applicable in many
fields, such as the growth of livestock in agriculture [54], the concentration of drugs in blood
or levels of cholesterol in medicine [27], the performance of students in schools in educational
studies [28]; they can be found in most social and biological sciences.

A natural way of defining growth curve models is to link it to two distinct questions about
change [43]:

1. How does growth behave over time for an individual?

2. Is there a significant difference in how growth behaves for different subjects? Are there
predictors that explain differences among the change trajectories between individuals?

Both questions are related to fitting growth curves to a data set, but where the first question
is related to the within-person level, the second focusses on the between-persons level. While
you can answer both questions separately, the simultaneous modelling of these concepts makes
growth curves vastly more appealing.

6.1 History of growth curve modelling

For many years there have not been many successful methods for the modelling of systematic
change over time. As noted in the short overview by Bollen and Curran [3], “although philo-
sophical discussion of change have been traced back as far as Aristotle (Zeger and Harlow, 1987),
the earliest development of statistical analysis of data over time appears to be early in the nine-
teenth century” (p. 10). Here the focus of the research laid mostly on the modelling of growth
curves for groups and populations, rather than the individual, such as estimating a trajectory for
characterising continuous mortality rates [22], population growth [50, 51] or anatomical growth
[39]. This focus on group-level trajectories remained all through the 1930s, where progress was
made in the diversification of applications of these models. Not until the paper by Wishart [54]
in 1938, modelling weight gain in bacon pigs, did the interest shift from group to individual
trajectories.

Two historically popular methods for analysing longitudinal data were analysis of variance
(ANOVA) and multivariate analysis of variance (MANOVA); as Everitt [16] points out, both of
these methods have their issues when applied to longitudinal data. One requirement for ANOVA
is the homogeniety of variance over time, which is unlikely for this kind of data as observations
usually have some form of autocorrelation and variance often increases over time.

In a paper by Potthof and Roy [37] a generalisation of the MANOVA model has been proposed
for dealing with growth curves by adding a post-matrix. However, these models increase consid-
erably in size as the number of predictors or treatment effects and the number of groups grow.
MANOVA is more flexible in the definition of covariance structures, but “only by including too
many parameters; MANOVA falls down on economy” [16]. As late as the seventies there has
therefore been a push back to the methods used to model growth curves, as noted by Cronbach
and Furby [9] in their paper on modelling growth: “investigators who ask questions regarding
gain scores would ordinarily be better advised to frame their questions in other ways.” (p. 80).
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6.2 Modern methods for growth curve modelling

This attitude towards growth curves shifted after the rise in popularity of other methods that
were found useful for modelling change. Currently there are two general methods for fitting
growth models to longitudinal data: multilevel (mixed effects) methods and structural equation
models [10].

While random coefficient models had been introduced as early as 1919 by Fisher [17], it would
take some time until mixed effects models - models consisting of both fixed and random effects
- would gain popularity. However, as Pinheiro and Bates [34] note in their book on mixed-
effects models, their current popularity “is explained by the flexibility they offer in modeling
the within-group correlation often present in grouped data, by the handling of balanced and
unbalanced data in a unified framework, and by the availability of reliable and efficient software
for fitting them”.

Similarly, the first person to propose using latent variables for trajectory modelling was Baker in
1954. In his paper he modelled change by reducing a data set containing 20 repeated measures
to four latent factors, each representing different stages of growth [1]. This would in 1984 form
the basis for the latent curve modelling using structural equation modelling (SEM) [3], more
than a century after the first serious attempts at statistical modelling of change.

This last method aims to model change by assuming a latent, unobserved, trajectory underlying
the observed growth. Structural equation models are a more general approach to modelling and
testing structural relationships between observed variables, including regression, confirmatory
factor and path models [46]. Within this framework, latent curve modelling specifies these
relationships more thoroughly: it assumes the existence of some latent variable that can be
inferred by the relationships between the observed variables, which form the components of the
underlying trajectory [3].

As Curran, Obeidat and Losardo [10] note in their review paper on growth curve modelling,
for many data sets and analyses the multilevel and SEM approach are “numerically identical”.
However, due to the way the observed measures are modelled, there is a clear difference for our
analysis. The SEM approach incorporates these measures as indicators on a number of latent
factors, which would be increasingly difficult to model for our data as the times at which the
participants have been measured, and the number of measurements, differ significantly between
participants. We therefore chose to focus on multilevel models, which models this structure
more forgivingly.

6.3 Theoretical mixed models and their computation

As with growth curve modelling, there is simply too much literature to properly review in a few
pages. We will therefore only give a short overview of the papers that were most instrumental
for the analysis in this thesis.

Laird and Ware [27] give a generalized linear model for data with multiple measurements per
research unit, which includes growth models as a special case, by dividing the model into two
stages. For the first, they introduce population parameters, individual effects and within-person
variation. With yi the variable for which to predict, the model is given by

yi = Xiβ +Zibi + εi, i = 1, · · · ,M, (6.1)

bi ∼ N(0,Σ), εi ∼ N(0,Ri),
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Where β a vector of unknown population parameters and Xi the design matrix linking β to yi;
furthermore, they define bi as a vector of unknown individual effects and Zi as the associated
design matrix. Afterwards the between-person variation is included by defining a distribution
for the bi. Additionally, Ri is a positive-definite covariance matrix depending on i in size but
not in value.

This models can be extended to nonlinear models; Goldstein [21] states the general model can be
written as the sum of a mixed-effects linear and nonlinear component. In his paper, he proposes
the following model:

y = f(X1β +Zuu) +X2γ +Zee, (6.2)

with f a nonlinear function, X1 and X2 design matrices for the fixed coefficients β and γ, e
and u sets of random variables with zero means and Ze and Zu their corresponding design
matrices. This model is then solved by first applying linearisation of f before using standard
procedures for the linear multilevel model. Conversely, Lindstrom and Bates [29] propose the
nonlinear model

yij = f(φi,xij) + eij , (6.3)

where f is a nonlinear function of the predictor vector xij and a parameter vector φi which can
be written as a combination of fixed and random effects; they are solved by a combination of
least squares estimators for nonlinear fixed effects models and maximum likelihood estimators
for linear mixed effects models.

There is a vast amount of literature on mixed effects models and the estimation of their param-
eters. Methods for computing maximum likelihood estimates for random coefficient models are
reviewed in a paper by Harville [23] and later extended by Goldstein [20], where an outline is
given for how mixed effects models can be specified for hierarchical models and how this hierar-
chy can be utilised in estimation. Furthermore, an iterative generalized least squares estimation
procedure is given for the computation for the maximum likelihood in the normal case.

On the other hand, Laird and Ware [27] discuss a “unified approach to fitting these models”,
by a combination of empirical Bayes and maximum likelihood estimation of model parameters
and using the EM algorithm. This method is challenged by Lindstrom and Bates [30] by their
Netwon-Rhapson method, which is shown to be preferable to the EM algorithm in most cases.

Two packages are currently most common in the modelling of mixed effects models in R, namely
nlme [35] and lme4 [2]. Both methods have some benefits in certain specific situations, but are
otherwise interchangeable. For this research, the package nlme is used to model the growth
curves for pitching speed. The computational methods for fitting linear mixed effects models fit
by the nlme package “follow the general framework” of the aforementioned paper by Lindstrom
and Bates [30], and use the model formulation of Laird and Ware [27, 35].

6.4 Applications to baseball

There have been instances of the use of growth curves in research to assess longitudinal data in
sports. Latent growth curves are used in the research by Conroy and Coatsworth [8] to determine
the effect of coach training on fear of failure in youth swimmers. As for mixed effects models,
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the research of Roring and Charness [42], researching the effect of aging on the performance of
elite chess players, is one of the few that applied a multilevel model to longitudinal data.

Baseball games are quite straightforward to analyse, giving rise to many fan and professional
websites that track and analyse Major League games. In 2015 a new pitcher performance metric
has been constructed, namely the Deserved Run Average (DRA), which incorporated mixed
models in the design [26]. In academic literature however, mixed effects models in baseball
research are not very popular; although some applications can be found, such as the use of
multilevel models in assessing rate of injury depending on the use of protective equipment [32],
research on performance growth curves is particularly hard to find.

This research thus has two main objectives. The first is to find a model that accurately de-
scribes the growth in throwing speed of young athletes, which will aid baseball professionals in
recruiting and training during the ages of 12 years old to 18 years old. The second is to examine
whether growth curves analysis via mixed-effects models can be applied to data on performance
in baseball.
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7 A look at the data from project Fastball

In this chapter we will focus on the data from project Fastball. Before predicting our model for
the growth curve, we will first examine our data.

7.1 Overview of data and preparation

In total there are 412 observations in the data set. Because we will model the throwing speed for
youth between 12 and 18, we remove 21 observations for pitchers who are outside of this range.
We also remove observations for which no ball throwing speeds were measured. The remaining
data set contains 391 observations, all of which the ball throwing speeds and age are measured.
Of the other variables, height and weight are missing in 5 cases, force of internal rotation in 6
cases, force of external rotation in 7 cases, ROM of the external rotation 5 times and ROM of
the internal rotation 3 times.

The remaining data seems to suggest a growth curve similar to a logistic curve, so we first
transform the data by squaring the throwing speed. This squared speed is also related to the
force needed for throwing by the kinetic energy of the ball:

Ekin =
1

2
mv2 (7.1)

Here m is the mass of the ball, and v the speed at which the ball is thrown. Plotting the age
against the squared ball throwing speed gives us the following results:

(a) Scatter plot with linear regression line (b) Scatter plot with loess regression line

Figure 7.1: Relationship between pitchers’ age and squared throwing speed

The transformation seems to have improved the linearity of the data set, as is illustrated in
Figure 7.1a. However, this linear regression line does not seem to be a perfect fit to the data;
we therefore computed the loess regression curve and observed that the data set does not follow
a linear trend. From Figure 7.1b it does seem as if the growth curve can be partitioned into two
different sections; between the ages of twelve and fifteen, the pitchers seem to increase in speed
quite a lot as they grow older. When they pass the age of fifteen, however, this trend seems to
slow down. This same behaviour is seen when plotting the height of the players against their
age. We will investigate this in Section 7.3.

As for outliers, only a few data points seem to differ significantly from the rest. Specifically
around sixteen years some pitchers seem to drop in performance.
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Figure 7.2: Scatter plot with loess re-
gression line after removing the outlier

The most obvious and outlying of these data points
is quite visible in Figure 2.5b, as the pitcher is per-
forming as expected at the age of fifteen but drops
dramatically at the age of sixteen, after which he
performs as expected again. When examining the
outlier, it seems that during the six months prior to
this measurement he had been injured in both his
elbow and shoulder. His performance is therefore
not unusual given the circumstances, but the ob-
servation is nonetheless quite outlying. Removing
this observation however does not change the gen-
eral structure of the data; when plotting the data
and adding the loess line, there is still a clear divide
between growth before and after the age of fifteen.

7.2 Size and spread of data

After inspection of the data it seems fair to assume that the observations can best be described
by two functions that differ depending on age. If we take the age of 15 to be the turning point
for this function, we can model the data after separating it into two sets. The results are as
follows:

(a) Under 15 (b) Over 15 (c) Over 15, removed outlier

Figure 7.3: Relationship between pitchers’ age and squared throwing speed, separated by age

There seems to be a wide spread in both categories, but especially for the category between 15
and 18 there seems to be a lot of variation between the different players.

(a) Spread of Ball speeds based on age (b) Frequencies of age

Figure 7.4: Spread of Age and Ball speeds
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Here we see that there are very few players who have been measured between 17.5 to 18 years
old, and relatively many athletes who have been measured between 13.5 and 16 years of age.
When examining the standard deviations of the average ball speeds, we see that there is more
variation between the throwing speeds for players ages between 13.5 and 16 years old.

Age max min mean median sd

12 155 154 154.5 154.50 0.707

12.5 171.1 152 160.6 159.90 5.32

13 183 150.4 165.9 165 8.44

13.5 198.5 149 170.1 168.75 10.3

14 198.9 157.5 175.3 175.30 8.83

14.5 200 162.2 179.0 180.30 7.67

15 201.6 167 181.6 182.50 7.10

15.5 202.5 172.5 183.6 184.1 6.32

16 204.8 173.8 184.4 184.75 6.44

16.5 192.5 174.5 184.8 185 4.84

17 196.5 175 185.4 186.5 5.58

17.5 204.2 172.5 187.1 187 7.65

18 192.7 183.7 188.2 187.4 3.62

Table 7.1: Means and variation of player height by age, ages divided in groups of 6 months

7.3 Effect of length on player performance

As mentioned in Section 7.1, there seems to be a certain age at which the pitchers’ speed does
not seem to increase as much as previously. This same trend is visible when looking at the
height of the pitchers when they age.

(a) Scatter plot of pitchers’ age and height (b) Scatter plot of height and throwing speed

Figure 7.5: Scatterplots of relationship between height and age and of height and throwing speed

One curious thing to note is that the loess curve goes down in Figure 7.5b as the players reach a
height of 195cm or more. This is a bit unexpected, but most likely due to the two data points in
the right lower corner, pitching 60 miles per hour despite their large height. Both these points
are from the same player, who is incidentally also the cause of the outliers from Figure 7.5a at
the ages 13.5 through 16. The two outliers in Figure 7.5b are thus caused by a young player
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that has a low speed in relation to his height, but not in relation to his age.

The age at where growth slows down in Figure 7.5a seems to be related to the age at which the
curve in Figure 7.1b changes. Perhaps this is not unexpected as this age coincides with a period
in which males no longer seem to grow as rapidly; however, it could also mean that the length
of the pitcher is more influential on the throwing speed than at first expected.

To research this hypothesis we shall look at the effect of height on average ball speed. We can
compare the lengths of the players to the sample medians, and determine whether the taller
players also perform better at pitching.

(a) Blue indicates above median length, red be-
low median.

(b) Percentage deviation from mean length for
age group, lighter curves are taller

Figure 7.6: Growth curves for throwing ball speed, differentiated by length of player.

Although it is hard to see from Figure 7.6, the figure does suggest that taller players throw
faster on average than shorter players. It has to be noted that not every pitcher can consistently
be catagorised as tall or short. Some players had an early or late growth spurt, meaning that
they were catagorised as either short or tall but did not remain in this group throughout their
career. However, when looking at the group means, we nonetheless see a significant difference.

Age Shorter Taller

12.0 57.55556 52.40000

12.5 56.78889 57.64286

13.0 59.80667 63.62500

13.5 60.67712 66.38268

14.0 66.11481 68.10270

14.5 67.54933 70.98956

15.0 70.15635 74.04497

15.5 71.45000 74.14392

16.0 70.92910 74.72235

16.5 74.75556 74.03513

17.0 75.60625 74.58100

17.5 74.33662 76.00000

18.0 77.66667 78.70000

Table 7.2: Group means for throwing speeds separated by age and length
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Table 7.2 shows again that for most age groups, the taller players do outperform the shorter
players. It has to be noted that for age group 12.0 there are only two observations, and thus the
discrepancy between this age group and the others can be explained by randomness. However,
the discrepancy at age 16.5 and 17.0 is quite curious, and cannot be explained by a low sample
size. We can also look at the joint influence of height and age with a three dimensional scatter
plot.

Figure 7.7: 3D scatter plot of height, age and throwing speeds, divided by throwing speed.

Again we can conclude from looking at Figure 7.7 that both the age and height of the pitcher
are correlated with throwing speeds.
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8 Growth curve modelling

In the social sciences, growth curve modelling is a popular tool for explaining change over
the course of time. Despite their popularity, growth curves are not straightforward to model,
especially when dealing with hierarchical data. There are many interesting ways of dealing with
growth curves, although not all methods are applicable to the data set from project Fastball. In
this chapter, we will consider two methods that work especially well for our data, and compare
them with a simple linear regression.

8.1 Linear multivariate regression model

The simplest and easiest model is a linear regression model, which we can use to benchmark
our other models. Here we treat the observations of the individual pitchers as equal amongst
all other observations, meaning that the model just incorporate the non-nested data points and
does not factor in which participant generated which data.

One important thing to note is that for our data set, the typical requirements for regression
are not satisfied. We do not have independent observations, although we will treat them as
such. Therefore, the error terms will not be independent, which is a standard assumption for
these kinds of models. Furthermore, because we no longer take into account what participant
generated which data, there is a bias towards participants that were able to be measured more
than once.

As observed in Figure 7.1a, the linearity of the data set seems to improve by squaring the average
ball speed (ABS), so we shall first transform the data. Then we simply generate a multivariate
regression model in R. For the results of these fits, please see Section B.1.

Yij = Xij
Tβj + εij , (8.1)

Where Yij is the squared throwing speed and Xij includes all possible covariates that have been
measured. The results of this regression are summarised below.

Estimate Std. Error t-statistic p-value

(Intercept) -605.878 729.930 -0.830 0.4070

Age1 213.945 28.560 7.491 5.10E-13

Height 19.328 4.497 4.298 2.21E-05

Weight 9.407 3.442 2.733 0.0066

Range of Motion (IR) -10.863 2.429 -4.474 1.02E-05

Range of Motion (ER) 1.737 1.564 1.111 0.2675

Force (IR) 2.272 1.070 2.123 0.0344

Force (ER) 4.030 1.162 3.469 0.0006

Table 8.1: Coefficient estimates with p-values

The adjusted R2 of this model is 0.67, based on 377 observations. The AIC is 5808.828, BIC
is 5844.218 and the MSE is 274,418. We see that all but one of our predictors is statistically

1Since we have pitchers aged between 12 and 18, we first recenter the data by subtracting 12
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significant. However, after further investigation it seems that more assumptions for regression
have been violated.

Figure 8.1: Residuals, autocorrelation between residuals, residuals versus fitted values and dis-
tribution of residuals for Model (8.1)

Figure 8.1 shows some clear issues with the model: not only are the residuals autocorrelated,
but their absolute value also seem to increase as the prediction increases. This can be explained
by the high variance of players at higher ages, as noted in Section 7.2 and visible in Figure 7.3c.
While the younger players do not have a large spread in performance, the older players differ
much in average ball speed. When fitting a linear regression model, this naturally results in a
larger spread for higher fitted values. We can also assess the validity of using a linear model by
plotting the component + residual plot:

Figure 8.2: Component+residual plots for the linear regression Model 8.1

We see here that the assumption of a linear trend between the response variable and the co-
variates seems unrealistic for most covariates. There are several methods of dealing with these
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kinds of relationships between variables. Instead of using a nonlinear model, we can try adding
a squared age term to improve the fit of the linear model. The resulting model is

Yij = X′
ij
T
βj + εij , (8.2)

where X ′ij now includes the squared age term to improve model fit. We again fit this model in

R and find that the adjusted R2 remains 0.68, but the MSE of this model is reduced to 264,750.

Figure 8.3: Component+residual plots for the linear regression Model (8.2)

The component + residual plot also improved for the age term: it seems adding a squared
age term sufficiently improves the linearity for these covariates. Nevertheless, neither the non-
linearity problems with many of the other covariates have been fixed, nor the problem concerning
autocorrelation and heteroscedasticity, as is visible below:

Figure 8.4: Residuals, autocorrelation between residuals, residuals versus fitted values and dis-
tribution of residuals for Model (8.2)
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Most of these issues can be addressed: we could use a weighted-least-squares regression to deal
with the non constant error variance, we could switch to a generalized least squares estimation
to allow for autocorrelated errors or we could transform the response variable or covariates to
improve the linearity between the ball speed and the predictors [18]. However, as stated above,
even with these adaptations we still violate multiple assumptions for linear regression.

8.1.1 Separate age dependent modelling

Although by squaring the ABS and adding a squared age term we improve the linearity, we do
not fix the real problem with the data. Around the age of 15, we see a clear shift in the growth
curve of the pitchers. The slope of the regression line, and therefore the predicted growth,
seems to slow down after this age. Because of this change point, quadratic transformations for
improving the linearity will never yield the desired effect. Therefore we will try modelling the
two growth curves separately as mentioned in Section 7: one between 12 and 15 years old, the
other between 15 and 18 years old.

Oddly enough, although for the pitchers between 12 and 15 years old the R2 of the simple
regression model stays roughly the same (0.66), for those between 15 and 18 years old the
regression model does not seem to predict ABS well: the R2 drops to 0.29. This could be
explained by the high spread between players of ABS at those ages, as can be seen in Figure
7.3c.

We can thus conclude that a linear model is not sufficient for modelling our data. We will
therefore focus on multilevel models as a more suitable structure for the data set.

8.2 Multilevel model

Multilevel models are a way to model data that is hierarchically structured. They combine the
information at different levels and thus handle data at multiple levels more effectively. In our
case, we can structure the data in such a way that we get a (non-linear) 2-level model, with
the individual observations of each pitcher on the lower level, and the general growth curve per
individual on the second level. Using this method, we hope to obtain a model that uses both
the individual growth and the general shape of the growth curves in a meaningful way. A great
book on modelling multilevel and mixed effects models is written by Pinheiro and Bates [34],
whom also authored the R package we will be using throughout this thesis. We use the package
nlme [35]; for the results of the multilevel modelling, please see Appendix B.

8.2.1 Mixed models based on age

We start with a model similar to a multivariate regression model. This model is also called the
random intercepts model, as only the intercept is considered a random effect in this model. The
model is defined as following:

Yij = β0j + β1aij + δij , (8.3)

β0j = γ00 + ε0j ,

where Yij is the throwing speed of individual j at measurement i and aij the age, and the error
terms δij and ε0j are normally distributed with mean zero but with different variance. This
model resembles a standard regression model, except for the addition of a random error term
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ε0j for β0j which makes it a random intercept. This means that the rate at which an individual
grows is equal amongst the population, but every individual starts at a different “base” speed.
See Figure 8.5a for a visual representation of this model.

This model supposedly does a better job of modeling the ball speed than our fixed-effects mul-
tivariate regression model, and when we look at the mean squared error this seems to hold
true: the MSE is reduced from 264,750 to 87,191. This is a vast improvement, but adding more
flexibility to the model might improve the fit even more. We do so by adding a random slope to
the model: where β1 used to be fixed for all j, we can make this effect a random effect as well
and bring more flexibility to the model:

Yij = β0j + β1jaij + δij , (8.4)

β0j = γ00 + ε0j ,

β1j = γ10 + ν1j .

Here both the initial speed and the rate at which individuals increase in speed are random, and
take on different values for each individual. This added flexibility seems to improve the model
fit as well, reducing the MSE from 87,191 to 71,500. As the standard deviation for the squared
ball speed itself is 921, this prediction seems quite accurate.

We randomly choose ten participants to help visualize the model predictions and compare them
with the data. The results are visible below:

(a) Random intercept Model (8.3) (b) Random intercept and slope Model (8.4)

Figure 8.5: Results for fit of squared average ball speed for 10 of the 114 participants

As stated in Section 8.1, a linear model does not seem to fit well with our observations. When
we only include age as a predictor variable, we can improve the fit by including quadratic or
higher order terms of age; that is, we include the squared age as a separate term:

Yij = β0j + β1aij + β2a
2
ij + δij , (8.5)

β0j = γ00 + ε0j ,

We can also include a random slope like in Model (8.4), which might again add some flexibility
to the model.
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Yij = β0j + β1jaij + β2a
2
ij + δij , (8.6)

β0j = γ00 + ε0j ,

β1j = γ10 + ν1j .

The log-likelihood of both models is comparable, suggesting that the addition of random slopes
is not leading us to a better fit. However, the MSE is reduced from 74,704 for Model (8.5) to
68,833 for Model (8.6). In fact, because the model is now more complex without increasing
much in predictive power, we can consider this model as worse than Model (8.5). We will see
later that this intuition holds true when considering model selection criteria; for a more detailed
comparison between these and other models, see Section 8.3. Below the fit for both models is
again shown for the ten participants.

(a) Random intercept Model (8.5) (b) Random intercept and slope Model (8.6)

Figure 8.6: Results for fit of ABS for 10 of the 114 participants, adding the squared age as a
predictor.

Although Figure 8.6b shows some more flexibility in the fit compared to Figure 8.6a, this differ-
ence is not very noticeable. It seems including a random slope is therefore not worth the added
complexity. However, overall the addition of a squared age term seems to improve the model
fit, both for individual predictions as for population predictions, as can be seen below.

(a) Population predictions of the Model (8.4) (b) Population prediction for Model (8.6)

Figure 8.7: Population predictions of the Models (8.4) and (8.6)
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As stated above, it is obvious that the linear model that only incorporates age is not sufficient
for prediction the ball speed well. Adding the squared age seems to improve this fit. However,
we have more data available than just the age of the pitcher, and we can see if incorporating
these covariates improves our basic model.

8.2.2 Including other covariates

The first model is formulated as follows

Yij = β0j + β1jaij +Xij
Tβj + δij , (8.7)

β0j = γ00 + ε0j ,

β1j = γ10 + ν1j ,

where Yij is the throwing speed of individual j at measurement i, Xij
Tβj is the usual linear

regression with fixed effects βj for the covariates in Xij , namely age, height, weight, force of
internal and external rotation and the internal and external range of motion. The results of this
fit can be found in Section B.3.

The complete model also includes the quadratic age term, but not the random slope; both of
these increase the model complexity, but while the quadratic age term significantly increases the
goodness of fit, the random slope does not and is thus not included. The full model is thus:

Yij = β0j +X′
ij
T
βj + δij , (8.8)

β0j = γ00 + ε0j ,

where the only change is that X ′ij now includes the age and quadratic age term as well.

8.3 Comparing models

One way to compare models is by applying a model-selection criteria. A common group of criteria
is the general family of penalized model-fit statistics for regression models fit by maximum
likelihood, taking the form

−2 log(L(θ̂j)) + csj , (8.9)

where L(θ̂j) is the maximized likelihood under model Mj with the fitted model parameters θ̂j
and sj regression coefficients, and c is a constant. The first term −2 log(L(θ̂j)) is the residual
deviance under the model; when dealing with a linear model with normal errors, this reduces to
the sum of squares.

The c in Equation (8.9) is a constant that differs for each statistic. Two statistics are used most
commonly: the Akaike information criterion (AIC) and Bayesian information criterion (BIC).
They are of the form:

AICj = −2 log(L(θ̂j)) + 2sj , (8.10)

BICj = −2 log(L(θ̂j)) + sj log(n), (8.11)
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with n the number of observations. The overall magnitude of these criteria does not say much
about the models, but the most information can be gained from the differences between models.
Smaller values are better; the model with the smallest AIC and BIC value is most supported
by the data [18, Section 22.1]. If we compare our models using the Akaike information criterion
and Bayesian information criterion, we find the following:

AIC BIC

Model (8.2) 5797.306 5836.628

Model (8.3) 5732.322 5748.051

Model (8.4) 5716.741 5740.334

Model (8.5) 5684.056 5703.717

Model (8.6) 5686.106 5713.631

Model (8.7) 5646.827 5697.946

Model (8.8) 5645.460 5689.715

Table 8.2: AIC and BIC values for the models in Section 8.1 and 8.2

Again, for the resulting fits of these models, see Appendix B. While Model (8.5) is significantly
better than Models (8.3) and (8.4) - as expected - it also seems to perform better compared to
Model (8.6). While we might expect a model with more complexity to model the true growth
better, this is not always the case. This is due to the model relying more on the training data
when increasing the complexity; this reduces the bias but increases the variance, and can lead
to overfitting [24, Section 7.2]. This same behaviour is visible when excluding the random slope
term in the full model; while the AIC value stays roughly the same, the BIC value for the less
complex model is lower (and thus better).

As mentioned above, the model with the lowest AIC score is most preferable. We therefore
choose Model (8.8) to be our model for predicting the ball speed. Before using this model, we
can quickly check the residuals to see whether or not our model assumptions are violated:

Figure 8.8: Residuals, autocorrelation between residuals, residuals versus fitted values and dis-
tribution of residuals
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None of these plots suggest that we have any serious issues regarding assumptions on the resid-
uals, although the “Residuals vs Fitted” plot could suggest some heteroscedasticity similar to
the linear regression model we fit in Section 8.1.

Figure 8.9: Comparison of heteroscedasticity for the linear regression (8.1) and multilevel (8.8)
model

By visual inspection, the heteroscedasticity seems to have decreased slightly from regression
Model (8.2). To test whether the heteroscedasticity has indeed been reduced, we perform the
Levene’s test [7] on a discretized version of our model. We divide the data into nine bins of
the squared ball speed of size 500 and use these for the Levene’s test; the resulting F(8,368)

test statistic is 0.512 with corresponding p-value 0.8477, indicating that heteroscedasticity is no
longer an issue for this model.The biggest improvement has been made in regards to the auto-
correlation of the residuals: whereas for Model (8.1) the residuals were clearly autocorrelated,
this no longer seems to be a big issue.

8.4 Correlation and collinearity

Figure 8.10: Correlation plot for the covariates
in our data set

Due to the nature of our data, correlation
and collinearity are issues to take into ac-
count. One quick method of assessing the
levels of correlation between the covariates
is to plot the correlation matrix; this is
shown in Figure 8.10, which has been gen-
erated with the package corrplot[52].

Most of these variables are naturally quite
correlated due to the fact that they are
age-dependent; this is quite obvious for
height and weight, but the same is true
for the force or range of motion of the ath-
lete’s rotation. We can take this effect into
account by calculating the partial correla-
tion for the variables with age as the de-
pendent variable. The partial correlation
ρXY ·Z between X and Y given Z is given
by the correlation of the residuals eX and

60



eY when computing the linear regression
of X and Y with Z. Computing the partial correlation given age gives us the following table:

Weight Height ROMIR ROMER FIR FER ABS

Weight 1 0.6018 0.412 0.2105 0.1901 -0.1464 -0.0115

Height 0.6018 1 0.4236 0.4626 0.3158 -0.1694 0.0564

ROMIR 0.412 0.4236 1 0.3994 0.3379 0.0044 -0.2032

ROMER 0.2105 0.4626 0.3994 1 0.624 -0.1313 -0.0057

FIR 0.1901 0.3158 0.3379 0.624 1 -0.0858 0.0218

FER -0.1464 -0.1694 0.0044 -0.1313 -0.0858 1 -0.2747

ABS -0.0115 0.0564 -0.2032 -0.0057 0.0218 -0.2747 1

Table 8.3: Partial correlation between covariates when accounting for age

A better way of assessing the collinearity of our data is assessing the variation inflation factor
for our models. This factor indicates the level of collinearity between factors, where a value of 1
indicates an absence of collinearity. In practice, a value over 5 or 10 is considered problematic
[25]. When assessing the VIF values, we see that for Model (8.8) the only values of concern are
those for the age and squared age term: this is of course no surprise, and not something we can
easily remedy if we still want to include the squared age term.

Age Age2 Height Weight ROMIR ROMER FIR FER

23.084486 16.051197 3.795912 3.150706 2.316651 1.631548 1.088724 1.208339

Table 8.4: VIF-values for full multilevel Model (8.8)

If we compare the results of the multilevel model with Model (8.1), the simplest regression
model we created in Section 8.1, we see that for this model the VIF value for age is much lower,
indicating that the high VIF value is most likely due to the inclusion of the squared age term.

Age Height Weight ROMIR ROMER FIR FER

2.113969 2.848399 3.259818 1.124998 1.130245 2.125191 2.855665

Table 8.5: VIF-values for simple regression Model (8.1)

We could however always try to reduce the multicollinearity of the model by excluding some
of the covariates that are highly correlated; for example, the range of motion for the external
rotation is quite correlated to the force of the internal rotation after accounting for age the
model to

Yij = β0j +Zij
Tβj + δij , (8.12)

β0j = γ00 + ε0j ,

where Zij contains the age, squared age, height, weight and force and range of motion of the
external rotation. The AIC and BIC values remain roughly the same: AIC goes from 5646.460
to 5646.455, and BIC is reduced from 5689.715 to 5681.846 due to the reduction in parameters.

61



The MSE is also reduced by 1,111. Not much is improved for the multicollinearity of the model,
as can be seen in Table 8.6, but this model might be useful for prediction purposes, which we
will discuss more thoroughly in Section 9.3.

Age Age2 Height weight FER ROMER

22.240035 15.627946 3.836361 3.163571 1.828059 1.031460

Table 8.6: VIF-values for reduced multilevel Model (8.12)
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9 Predicting player quality

Whereas in Chapter 8 we have tried to model the true growth curve related to the quality of
the player, we are now interested in predicting the quality of a player over time. This is mainly
useful for scouting future players when they are young; if we have a reliable way to predict their
success, we can make a better decision on whether we include this player for the national team.

9.1 Issues with prediction

The main problem for using multilevel or mixed effects models is that the random effects cannot
be estimated when no response variable has been recorded. Therefore, the throwing speed cannot
be estimated on the level of the individual and instead the population estimates are used. Our
mixed model then effectively reduces to a fixed effects model. This means that in order to obtain
an accurate prediction of the throwing speed of a pitcher at a later age, we first need to measure
his performance at least once, including all the covariates such as force and range of motion. If
we have one or two of these data points, we can then create a new mixed model for the player.

This however leads to another problem. If we want to use the model decided in Section 8.3, we
will need to know how tall and heavy the player is at a later age, along with harder to predict
measurements such as the range of motion. One method for dealing with, in a sense, “missing
data” is to use imputation to compute the missing variables.

9.2 Imputation

We start off by modelling the height of the players based on age alone. As age is the only known
covariate when modelling the ball speed at a later age, we cannot include other predictors to
improve our fit. We first consider a mixed effects model like the ones discussed in Section 8.2.1:

Hij = β0j + β1jaij + β2a
2
ij + δij , (9.1)

β0j = γ00 + ε0j ,

β1j = γ10 + ν1j .

However, this leads to problems as visiualised below:

(a) Model for standard subset of players (b) Model for different subset of players

Figure 9.1: Results for fit of height for players using Model (9.1) for different subsets of players.
The horizontal axis shows the age from 12 years old.
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As visible in Figure 9.1a and 9.1b, this method has several issues. Most prominently, if there is
only data from a very young age, this model seems to overestimate the height in the future. This
is most visible in Figure 9.1a for participant 110 (the pink line), for whom the model predicts a
height of 210 cm. When taking a different sample from the participants and plotting the model
fit, some other issues become visible; this is most visible for participant 20 (red line), whose
predicted height decreases after age 16 and who is predicted to be as tall at age 18 as he was at
age 13. It should be obvious that this model does not predict length well.

For modelling the length we try a different approach: we use a spline instead of adding a
quadratic term. For modelling this in R, we use the package splines which is part of the R

base [40]. We still use the mixed effects framework to allow for differences between players, and
incorporate both a random intercept and a random slope.

(a) Model fit for height prediction using splines
and random intercept

(b) Model fit for height prediction using splines
and random slope and intercept

Figure 9.2: Results for fit of height for players using splines in the linear mixed effects model,
for different subsets of players.

While the model visualised in Figure 9.2b follows the data more nicely and is preferred when
looking at the AIC and BIC values, the model in Figure 9.2a is a better representation of the
type of model needed. This is because the end goal for this research is to predict throwing speed
for older athletes at a younger age; while both models fit a nice curve to the growth data of
individuals, it seems the model for Figure 9.2b is more prone to overestimation when the only
recorded data is at a young age. This is because before the age of 15 the speed at which boys
grow in length is significantly higher than the speed after the age of 15, and thus when only
data before then is collected, the model assumes this growth continues after 15, which is usually
not the case.

We therefore have found a suitable mixed effects model for the height, and continue modelling
the covariates using only age and height as predictors. The models are as follows:
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Weight: Wij = β0j + β1jaij + β2Hij + δij , (9.2)

β0j = γ00 + ε0j ,

β1j = γ10 + ν1j .

F IR DA: (FIR)ij = β0j + β1aij + β2Hij + δij , (9.3)

β0j = γ00 + ε0j ,

F ER DA: (FER)ij = β0j + β1aij + β2Hij + δij , (9.4)

β0j = γ00 + ε0j ,

ROM IRsh DA: (ROMIR)ij = β0j + β1aij + β2Hij + δij , (9.5)

β0j = γ00 + ε0j ,

ROM ERsh DA: (ROMER)ij = β0j + β1aij + β2Hij + δij , (9.6)

β0j = γ00 + ε0j ,

Where Hij is the height of player i at moment j. We tried to simplify the models wherever
possible; as you can see, most models do not include a random slope because it either did not
significantly improve the model, or actively decreased the AIC or BIC value for the fit. These
models will be used to predict future values for the covariates needed to compute the ball speed
at age 18.

9.3 Reducing the number of predictors

As we could see in Section 8.4, we could reduce the amount of predictors by excluding the force
and range of motion of the internal rotation, without losing much prediction power. As can be
seen from Figure 9.3, there does not seem to be a dramatic difference in how these models fit
the squared ball speeds. To see if this still holds in the case of prediction, we will compare the
predictions using cross validation.

(a) Model fit for ABSSq, full model (b) Model fit for ABSSq, reduced model

Figure 9.3: Fitted squared ball speeds for different subsets of players, using the full and reduced
model.

We use 2-fold cross validation at first: we divide the data in a training set and test set, and
predict for the test set by including the first measurement for this participant in the training set
so we can make predictions on the level of the individual. We do not use imputation but simply
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use the observations we have in our data set. If we now compare the MSE, we find on average
143,479 for the full model and 140,619 for the reduced model, indicating that the reduced model
again provides more accurate predictions. However, an added benefit to reducing the amount
of predictors is that when using imputation, there is less error in the predicted covariates that
can negatively impact the prediction for the ball speed.

To test this hypothesis, we use only the first measured observation for each pitcher to predict
future ball speeds. The models we have created in Section 9.2 are fitted using the full data set
but excluding all observations for the pitcher except the first measurement, and these models
will in turn fit the covariates at a later age for the pitcher. This same method is used for fitting
a model for throwing speed. The results of this leave-one-out cross-validation are similar to the
2-fold cross validation we performed previously: the MSE for the full model is 153,927 but that
of the reduced model is 148,495.

While the value of some of the predictors in our model are quite cheap to come by, such as height
and weight, the force and range of motion have to be measured using an expensive machine.
Due to the cost of measuring these predictors and the fact that including these measurements
do not seem to improve our fit or predictions, it seems justified to use the reduced model for
predicting the ball speeds.

9.4 Final prediction

For the code used to model the individual predictions, please see Appendix C (Section C.2).
The models we have created in Section 9.2 have made it possible to predict the throwing speed
of pitchers at age 18 even when we do not know what physical characteristics the pitchers will
have at that age. The only requirement is that the pitchers have been measured at least once,
although the accuracy of the prediction should be improved when more data on the growth is
available. Figure 9.4 shows these predictions using all available data; all data was used to fit the
models (9.2) through (9.6), the final model (9.7) and the model for player height, after which
the imputed values for the variables in the final model are used to predict speed.

Figure 9.4: Fitted throwing speed using imputation for covariate prediction, individual level
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The more data available, the better this model will be able to predict the true growth. When
there is no data available for the pitcher the model can only predict on population level, which
is shown below.

Figure 9.5: Fitted throwing speed using imputation for covariate prediction, population level

The final model has become

Yij = β0j + β1aij + β2a
2
ij + β3Hij + β4Wij +

+ β6(FER)ij + β7(ROMER)ij + δij , (9.7)

β0j = γ00 + ε0j ,

where the covariates can be imputed using the models in Section 9.2. The result of this fit can
be found in Appendix B.4.

9.5 Remark on the simplicity of the model

The model we have used in Section 9.4 is a relatively simple multi-level or mixed-effects model.
We have restricted ourselves to the use of linear models, while the data that was collected for
the research is typically quite suited for non-linear models. However, while a more complex
model would have been a better fit of the data, the interpretation of the final model is much
more comprehensible than those of most non-linear mixed-effects models. Considering that this
model will be used by sports professionals, sometimes with little knowledge of mathematics, this
trade-off seemed reasonable.
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10 Conclusion, discussion and recommendations for future re-
search

This researched aimed to give insight into the value of data science for sports professionals, and
fill gaps in current research, by analysing data sets from two different sources and with two
different goals. There are two research questions to answer within this thesis, and so they will
be answered and discussed seperately.

10.1 Classifying intensity during soccer practice

We set out to find whether it was possible to produce an algorithm that would be able to give
insight into the intensity of an exercise by classifying sensor data. By extracting features from
the data we were able to classify intensity using a decision tree, which had the highest overall
accuracy of all methods. The decision tree had a classification accuracy of 96.2%, but had more
difficulty classifying medium and high intensity than low intensity, resulting in an accuracy of
75% when considering medium and high intensity data.

10.1.1 Discussion and recommendations for future research

In many studies the three axes are are used separately to aid classification, but unfortunately
due to the restriction on the gyroscope, we were unable to separate the axes properly. Therefore,
only the length of the vector is used for classification, due to which a lot of information is lost.
In coming research, additional attention should be paid to the settings of the sensors in order to
be able to separate the acceleration in the axes, and therefore gaining more useful information
for proper classification. This could increase the accuracy in the classification model as well.

Classification was based on single sensor input, rather than a combination of sensors. Classifying
based on multiple sensors might prove to be more effective, although the precise relationship
between the sensors has to be determined. Furthermore, there are more methods for classifi-
cation that could have been considered, but were excluded from current research due to time
restrictions. Popular methods are for example neural networks or hidden Markov chains, both
of which could offer different perspectives than the ones offered in this thesis.

After-the-fact labelling of the data is both inaccurate and time intensive, especially considering
there was no availability to the recorded exercise to check whether a drill was performed correctly.
Perhaps part of the inaccuracy when classifying between medium and high intensity is born from
this problem, although it is difficult to find how much of the inaccuracy in labelling bled through
to the error rates in classification. In future research, it would be beneficial to the accuracy of
labelling for the person working with and labelling the data to have access to all recordings.

Furthermore, defining clear moments for specific activities to occur during the experiment can
be helpful for data analysis, as this creates a clear sample of the activity that is supposed to
be detected from the data. In the case of soccer, an example of this would be for shoot/pass
classification to ask the participant to shoot a number of times without doing anything else,
thus creating a clear sample of what a recording of a shot looks like.

Lastly, more research has to be conducted in the field of human movement science to better
understand and predict muscle load. Although the algorithm in this research was able to detect
high and medium intensity activity, it needs more information on the impact of these activities
on the muscles to give worthwhile feedback for injury prevention. Two of the methods used for
classification have been developed by Schotel [44] as part of her research. However, as mentioned
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in her research as well, the percentage zones in which the data is divided and the weightfactors
used for these methods are currently a bit arbitrary. More research will hopefully reveal better
boundaries for the intensity zones and corresponding weights to identify the true difference
between different zones.

10.2 Predicting ball throwing speed for youth baseball pitchers

The aim of the research for project Fastball was to develop a method to predict throwing speed
for pitchers in the selection of the under-18 team. More specifically, the research aimed to
determine whether it was possible to model a growth curve to the performance of the pitchers
during their development.

We concluded that mixed effects models seemed to be well suited for the given data and research
question. We were able to develop a method that could predict throwing speed of pitchers
between the ages of 12 years old and 18 years old, using multilevel models. Future predictions
are made possible by unit imputation of all variables except age.

10.2.1 Discussion and recommendations for future research

Given at least one observation, it is possible to predict the throwing speed of any pitcher using
imputation. We first modelled the height by using a combination of splines and multilevel
models. This was due to the nature of the relationship between age and height: change in
height is nonlinear over time, and growth slows after a certain age. Using splines is therefore a
better way to model this changing relationship than a linear relationship alone.

Imputation using height was chosen because the recorded properties have a nonlinear relationship
with age, similarly to the nonlinear relationship of height. Using both height and age would be
a better predictor of the other covariates than just age alone if we want to fit the relationship
using only linear models. However, if relaxing the linearity constraint, splines, for example, could
have been used to better approximate the true relationship between age and other covariates,
thus eliminating the need for height as a predictor and reducing the potential error in these
predictions.

One interesting research topic that has not been covered in this thesis is the modelling of the
performance of pitchers relative to their peers. In theory one could model the performance in
terms of quartiles, similar to how height predictions are made, where besides or instead of the
prediction for the ball speed in absolute terms, we predict whether the player will be in the top
25% pitchers at a later age. For this question the use of quartile regression could be appropriate.

The data set from project Fastball contained data on injuries sustained by the athletes, but
unfortunately this was mostly missing and therefore very difficult to include in the analysis.
Although this information was never included in the analysis and modelling of the data, the
inclusion of injuries would possibly be beneficial for modelling. Not only does this give more
information on the players, but we know that injuries have quite an impact on performance;
including these predictors can help make sense of unusual data and could possibly help to predict
performance after recovering from injury.
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Experiment protocol (1/2)

Sources: 

http://www.shimmersensing.com/images/uploads/docs/Consensys_User_Guide_rev1.4a.pdf

https://www.pinterest.co.uk/pin/43136108902151520/ (seen on 14.03.2018)

P
R

E
P

A
R

A
T

IO
N

1
Preparation if participant has arrived

Conduct participant formalities

> Explain the experiment and goal to the participant, and 

answer any questions the participant may have

> Participant and researcher sign informed consent

> Participant puts on legging, heart rate belt, and shirt

Start Shimmer sensors to capture data

> Undock Shimmers from Base to start data capturing – data 

logging will start almost immediately, you must log data for at 

least one minute to ensure a data file is created

> Do not power off

> Watch led behaviour before proceeding – the green LED will 

turn on and off at one second intervals when capturing data

> Create a mark in Shimmer data by turning 15x around z-axis

Attach all sensors to clothing

> Tape Shimmer X to LPM sensor and attach LPM sensor to 

shirt

> Place Shimmer P, R1, R2, L1, and L2 in legging, use safety 

pins to keep the sensors in place – pay attention to location 

and orientation

Measure sensor distance

> Fill in information participant

> Measure length between top 

right corner of Shimmer X and P

with small tape measure

> Measure length between middle 

of bending line and top right 

corner of Shimmer with small 

tape measure – see figure

Start LPM system to capture data

> Click on imoServer at desktop

> Select Revalidatie Campus at Prepare in Measurement 

Selection field and click on Activate

> Check box of Cam 1 and Cam 2 of number 054

> Open Inmotio Client at desktop

> Click on Live/Record Start and click on OK to start

BPreparation before participant arrives

Collect all equipment

> Collect Shimmer3 IMUs – from TU Delft

> Collect LPM sensor #054, heart rate belt #054, and shirt

> Collect 11 cones and 10 balls

Prepare drills

> See drills and dimensions in section EXPERIMENT 2A/B

> Take cones, balls, and large tape measure to the pitch

Prepare Shimmer sensors for logging – repeat 6x

> Connect Base to power socket and to laptop via USB

> Start ConsensysBASIC v1.5.0 and select Manage 

Devices

> Switch on power of Shimmers and dock in Base

> Click on Reset Base and click on Reset Shimmers

> Select 1 Shimmer at the time in graphic – repeat 6x

> Check in device list for each Shimmer – repeat 6x:

• Firmware version SDLog v0.19.0 – for logging data to SD card

• SD Card memory empty – if not: click on Clear SD

• Battery life near 100%

> Click on Configure for each Shimmer – repeat 6x

• Set a trial name: ExpReal# – use participant number

• Select undock/dock as start/stop logging method

• Choose Shimmer Name – use name of Shimmer location

• Choose Sampling Rate of 199.8 Hz

• Select Low-Noise Accelerometer with ± 2g

• Select Wide-Range Accelerometer with ±16g

• Select Gyroscope with ±2000dps

• Select Magnetometer with ±4.7Ga

• Set Shimmer to factory default calibration by clicking on Reset

• Click on Write Config to write settings and save the 

configuration to the selected Shimmer

• Click on Done when configuration is completed

> Check configuration for each Shimmer – repeat 6x 

• Click on Configure

• Check configuration

• Click on Back and OK if the configuration is correct
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0
Experiment set-up and protocol

> Get approval of ethics committee TU 

Delft – fill in ethics checklist

> Make information letter participants

> Make informed consent

> Figure out LPM system

> Figure out Shimmer3 IMUs and 

ConsensysBasic

> Conduct Shimmer3 IMU and 

ConsensysBasic trial

> Design drills based on hypotheses

> Make protocol

> Make information participant form 

and drill questionnaire

> Make sensor legging size M

> Conduct experiment trial and update 

experiment protocol with the results

> Send information to participants

A Equipment

> Invite 5 participants –

with sport clothing

> Reserve pitch 

> 1x LPM system and 1x 

shirt

> 1x Heart rate monitor

> 6x Shimmer3 IMUs and 

1x legging

> Cones and balls

> Tape measure size S 

and L

> Safety pins

> Duct tape 

> Print all forms

> Stopwatch

> Laptop

B Shimmer orientation and location

> Define origin of internal 

coordinate system Shimmers

> Define orientation and 

location of Shimmers

• E90F = P – middle of lower back

• E90D = R1 – middle of right upper leg

• E914 = R2 – middle of right lower leg

• E8E2 = L1 – middle of left upper leg

• E8D0 = L2 – middle of left lower leg

• 96EF = X – extra Shimmer at LPM sensor

C

v
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Experiment protocol (2/2)
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Pre-experiment   

Instructions on how to perform the experiment

> General:

• The location of the drills on the pitch are fixed for all experiments

• The last cone is placed at the penalty spot – start drill from here

• After each situation the experienced load will be asked and noted

• The duration per situation will be timed and noted – use timer

• 3 min between situations and 5 min between drills – use timer

• Perform the drills in a normal and clear manner

• Don’t play with the balls or make lots of movements in between 

the situations, just try to stand relaxed

> Jog/sprint

• Jog: around 60% of your max speed

• Sprint: 100% of your max speed

> Turn

• Turn with one leg at the location of the cone – it doesn’t matter 

which leg and you don't have to go around the cone

> Pass/shoot

• The target is placed at the goal line – more towards the left if you 

are right-footed and visa versa

• The ball will replace the last cone and a new ball will be put down 

by the researcher during the situations involving a ball

• The researcher will collect the balls in between the situations

• Pass or shoot the ball directly with the inside of your foot –

without any small touch before passing or shooting

• Aim at the target – it doesn’t matter if you miss the target

Go to pitch to perform experiment

> Create a mark in data by (i) walk out of the medical centre 

to the right corner flag and jog to the right side of the goal, 

and (ii) stand still for 30s and (iii) jumping 15x on the 

penalty spot facing the goal

> Perform experiment
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Completion after participant leaves

Import data from each Shimmer –

repeat 6x

> Scanning SD Cards – one chance:

• Select 1 Shimmer in graphic

• Click on Import and click on Next when 

scanning is completed

> Configuring import sessions:

• Select ExpReal#

• Click on >> to add data as new session to 

the list

• Click on Next to continue to the next stage 

and click on Yes to proceed

> Importing session

• Data selected for import is now being 

imported into the Consensys database 

• Click on Done when import is completed

• Go to Manage Data and check if import is 

successful – check configuration and time

Put all the equipment away – if done

> Undock Shimmers out Base and switch 

off power

> Bring LPM sensor and heart rate belt 

back, place LPM sensor in charger, 

and close all programs at computer

> Take off the cones and balls from the 

pitch and put away

BCompletion before 

participant leaves

Stop LPM system with

capturing data

> Click in Inmotio Client on 

Live/Record Stop to stop 

> Click on Yes to save

> Save as ExpReal#_date in 

ExperimentsRozemarijn

folder at desktop

Detach all sensors from 

clothing

> Detach LPM sensor off shirt 

and Shimmer X off LPM 

sensor

> Take Shimmer P, R1, R2, 

L1, and L2 out legging

> Participant takes off legging, 

heart rate belt, and shirt

Stop Shimmer sensors to 

capture data

> Create a mark in Shimmer 

data by turning 15x around 

z-axis

> Dock Shimmers into Base to 

stop data capturing
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Perform experiment

Perform Drill A – 10x back and forward per situation;

3 min between each situation

> Situation 1a: jog + turn + no ball 

> Situation 1b: jog + turn + pass at one side

> Situation 1c: jog + turn + shoot at one side 

> Situation 2a: sprint + turn + no ball

> Situation 2b: sprint + turn + pass at one side 

> Situation 2c: sprint + turn + shoot at one side

Perform Drill B – 5x zigzag per situation and walk back; 

3 min between each situation

> Situation 3a: jog + turn + no ball

> Situation 3b: jog + turn + shoot at the end

> Situation 4a: sprint + turn + no ball

> Situation 4b: sprint + turn + shoot at the end

> Go back to lab to complete

B

i

ii

Sources: 

http://www.shimmersensing.com/images/uploads/docs/Consensys_User_Guide_rev1.4a.pdf

https://www.pinterest.co.uk/pin/43136108902151520/ (seen on 14.03.2018)

Manage and export data

This stage can be done at another/later 

moment

Export data LPM – .csv file

> Export and safe LPM data at a 

sampling rate of 200 Hz and safe 

video recordings – ask Rosanne

Export data per Shimmer – .mat file –

repeat 6x

> Click on Manage Data

> Select data: ExpReal# – repeat 6x

> Select format:

• File Format: .mat

• Timestamp Format: unix

• Data Format: calibrated

> Click on Export to export the selected 

data to a file in the requested format

> Select ExpReal#_date folder in Data 

Processing and Analysing folder, and 

click on Save

> Click on Open Path when export is 

completed to navigate to the file(s)

> Click on Done in Consensys

Process and analyse data in MATLAB

C
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B Summary outputs for models in R

Outputs for the summary() command in R for the models described in Section 8.

B.1 Models from Section 8.1

Summary output full linear model

Call:

lm(formula = ABSSq ~ age12 + Height + weight + ROM_IRsh_DA +

ROM_ERsh_DA + F_IR_DA + F_ER_DA, data = mdatfull)

Residuals:

Min 1Q Median 3Q Max

-1475.69 -320.07 -22.19 373.75 1566.09

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -605.878 729.930 -0.830 0.407047

age12 213.945 28.560 7.491 5.10e-13 ***

Height 19.328 4.497 4.298 2.21e-05 ***

weight 9.407 3.442 2.733 0.006577 **

ROM_IRsh_DA -10.863 2.428 -4.474 1.02e-05 ***

ROM_ERsh_DA 1.737 1.564 1.111 0.267502

F_IR_DA 2.272 1.070 2.123 0.034386 *

F_ER_DA 4.030 1.162 3.469 0.000585 ***

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 529.5 on 369 degrees of freedom

Multiple R-squared: 0.6754 , Adjusted R-squared: 0.6693

F-statistic: 109.7 on 7 and 369 DF , p-value: < 2.2e-16

-----------

> AIC(linfitfull)

[1] 5808.828

> BIC(linfitfull)

[1] 5844.218

> logLik(linfitfull)

’log Lik.’ -2895.414 (df=9)

Listing 1: R output for full linear regression model 8.1

Summary output full linear model with added quadratic term

Call:

lm(formula = ABSSq ~ age12 + I(age12 ^2) + Height + weight + ROM_IRsh_DA +

ROM_ERsh_DA + F_IR_DA + F_ER_DA, data = mdatfull)

Residuals:

Min 1Q Median 3Q Max

-1539.23 -304.30 -14.66 348.01 1455.12

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -408.954 719.936 -0.568 0.570353

age12 589.903 106.332 5.548 5.54e-08 ***

I(age12 ^2) -52.822 14.409 -3.666 0.000283 ***

Height 14.803 4.592 3.223 0.001380 **

weight 9.069 3.387 2.678 0.007741 **

ROM_IRsh_DA -9.764 2.407 -4.057 6.07e-05 ***

ROM_ERsh_DA 2.096 1.541 1.360 0.174639

F_IR_DA 2.352 1.053 2.234 0.026082 *

F_ER_DA 3.888 1.143 3.400 0.000747 ***

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
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Residual standard error: 520.8 on 368 degrees of freedom

Multiple R-squared: 0.6868 , Adjusted R-squared: 0.68

F-statistic: 100.9 on 8 and 368 DF , p-value: < 2.2e-16

-----------

> AIC(linfit2)

[1] 5797.306

> BIC(linfit2)

[1] 5836.628

> logLik(linfit2)

’log Lik.’ -2888.653 (df=10)

Listing 2: R output for full linear regression model with quadratic term 8.2

Summary output full linear model with robust regression

Call: rlm(formula = ABSSq ~ age12 + I(age12 ^2) + Height + weight +

ROM_IRsh_DA + ROM_ERsh_DA + F_IR_DA + F_ER_DA, data = mdatfull)

Residuals:

Min 1Q Median 3Q Max

-1558.87 -311.04 -19.45 342.13 1477.25

Coefficients:

Value Std. Error t value

(Intercept) -391.1858 744.8241 -0.5252

age12 571.0948 110.0083 5.1914

I(age12 ^2) -48.9223 14.9071 -3.2818

Height 15.2866 4.7513 3.2174

weight 8.9144 3.5038 2.5442

ROM_IRsh_DA -10.6996 2.4899 -4.2973

ROM_ERsh_DA 1.8414 1.5944 1.1549

F_IR_DA 2.4486 1.0890 2.2485

F_ER_DA 3.7131 1.1829 3.1390

Residual standard error: 493.8 on 368 degrees of freedom

------

> AIC(linfitrobust)

[1] 5797.78

> BIC(linfitrobust)

[1] 5837.103

> logLik(linfitrobust)

’log Lik.’ -2888.89 (df=10)

Listing 3: R output for full linear model with robust regression

B.2 Models from Section 8.2.1

Summary output random intercept model

Linear mixed -effects model fit by maximum likelihood

Data: mdatfull

AIC BIC logLik

5732.322 5748.051 -2862.161

Random effects:

Formula: ~1 | PPnumber

(Intercept) Residual

StdDev: 565.7517 344.2977

Fixed effects: ABSSq ~ age12

Value Std.Error DF t-value p-value

(Intercept) 2815.6098 95.72632 262 29.41312 0

age12 625.0249 23.14173 262 27.00856 0

Correlation:

(Intr)

age12 -0.805
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Standardized Within -Group Residuals:

Min Q1 Med Q3 Max

-3.0288733256 -0.4749101075 0.0003281178 0.5800414826 2.5212278890

Number of Observations: 377

Number of Groups: 114

Listing 4: R output lme for random intercepts Model 8.3

Summary output random slope + intercept model

Linear mixed -effects model fit by maximum likelihood

Data: mdatfull

AIC BIC logLik

5716.741 5740.334 -2852.37

Random effects:

Formula: ~age12 | PPnumber

Structure: General positive -definite , Log -Cholesky parametrization

StdDev Corr

(Intercept) 418.0214 (Intr)

age12 136.9277 -0.131

Residual 320.1146

Fixed effects: ABSSq ~ age12

Value Std.Error DF t-value p-value

(Intercept) 2876.568 83.63092 262 34.39599 0

age12 623.716 26.14496 262 23.85607 0

Correlation:

(Intr)

age12 -0.764

Standardized Within -Group Residuals:

Min Q1 Med Q3 Max

-3.11941883 -0.49360438 -0.02935689 0.58261613 2.75242381

Number of Observations: 377

Number of Groups: 114

Listing 5: R output lme for random slope + intercepts Model 8.4

Summary output random intercept model with quadratic term

Linear mixed -effects model fit by maximum likelihood

Data: mdatfull

AIC BIC logLik

5684.056 5703.717 -2837.028

Random effects:

Formula: ~1 | PPnumber

(Intercept) Residual

StdDev: 542.8396 319.1574

Fixed effects: ABSSq ~ age12 + I(age12 ^2)

Value Std.Error DF t-value p-value

(Intercept) 2128.6245 129.22617 261 16.47208 0

age12 1138.9636 73.11967 261 15.57671 0

I(age12 ^2) -78.2817 10.70337 261 -7.31374 0

Correlation:

(Intr) age12

age12 -0.848

I(age12 ^2) 0.715 -0.955

Standardized Within -Group Residuals:

Min Q1 Med Q3 Max

-3.096436806 -0.472437780 0.003862812 0.554295518 2.424305213

Number of Observations: 377

Number of Groups: 114

Listing 6: R output lme for random intercepts Model 8.5
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Summary output random slope + intercept model with quadratic term

Linear mixed -effects model fit by maximum likelihood

Data: mdatfull

AIC BIC logLik

5686.106 5713.631 -2836.053

Random effects:

Formula: ~age12 | PPnumber

Structure: General positive -definite , Log -Cholesky parametrization

StdDev Corr

(Intercept) 524.19015 (Intr)

age12 79.65155 -0.182

Residual 311.41585

Fixed effects: ABSSq ~ age12 + I(age12 ^2)

Value Std.Error DF t-value p-value

(Intercept) 2198.804 131.67381 261 16.698870 0

age12 1101.564 75.97826 261 14.498416 0

I(age12 ^2) -73.451 11.20124 261 -6.557401 0

Correlation:

(Intr) age12

age12 -0.864

I(age12 ^2) 0.736 -0.953

Standardized Within -Group Residuals:

Min Q1 Med Q3 Max

-3.07552562 -0.47787289 -0.01282994 0.56207161 2.46141379

Number of Observations: 377

Number of Groups: 114

Listing 7: R output lme for random slope + intercepts Model 8.6

B.3 Models from Section 8.2.2

Summary output random slope + intercept model with all covariates

Linear mixed -effects model fit by maximum likelihood

Data: mdatfull

AIC BIC logLik

5646.827 5697.946 -2810.413

Random effects:

Formula: ~1 + age12 | PPnumber

Structure: General positive -definite , Log -Cholesky parametrization

StdDev Corr

(Intercept) 378.83634 (Intr)

age12 77.98112 -0.052

Residual 305.02800

Fixed effects: ABSSq ~ age12 + I(age12 ^2) + Height + weight + F_ER_DA + F_IR_DA +

ROM_ERsh_DA + ROM_IRsh_DA

Value Std.Error DF t-value p-value

(Intercept) -1076.7515 960.8698 255 -1.120601 0.2635

age12 694.6591 97.5934 255 7.117893 0.0000

I(age12 ^2) -46.6887 12.3143 255 -3.791428 0.0002

Height 14.0441 6.5380 255 2.148079 0.0326

weight 14.2990 4.5580 255 3.137107 0.0019

F_ER_DA 2.0854 0.9681 255 2.154147 0.0322

F_IR_DA 0.5830 0.7943 255 0.734035 0.4636

ROM_ERsh_DA 4.1448 1.2151 255 3.411038 0.0008

ROM_IRsh_DA -2.9996 1.7231 255 -1.740766 0.0829

Correlation:

(Intr) age12 I(12^2 Height weight F_ER_D F_IR_D ROM_ER

age12 0.440

I(age12 ^2) -0.307 -0.925

Height -0.954 -0.491 0.390

weight 0.357 -0.073 -0.004 -0.524
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F_ER_DA -0.125 -0.077 -0.062 0.118 -0.223

F_IR_DA 0.008 -0.052 0.065 -0.036 -0.037 -0.467

ROM_ERsh_DA -0.203 0.033 -0.069 0.004 0.079 0.007 0.035

ROM_IRsh_DA -0.117 0.170 -0.099 -0.002 -0.054 -0.017 0.014 0.222

Standardized Within -Group Residuals:

Min Q1 Med Q3 Max

-2.67165031 -0.49533417 0.05103827 0.55287874 2.63864604

Number of Observations: 377

Number of Groups: 114

Listing 8: R output lme for full linear multilevel model with random slope + intercept 8.7

Summary output random intercept model with all covariates

Linear mixed -effects model fit by maximum likelihood

Data: mdatfull

AIC BIC logLik

5646.46 5689.715 -2812.23

Random effects:

Formula: ~1 | PPnumber

(Intercept) Residual

StdDev: 454.6857 310.8786

Fixed effects: ABSSq ~ age12 + I(age12 ^2) + Height + weight + F_ER_DA + F_IR_DA +

ROM_ERsh_DA + ROM_IRsh_DA

Value Std.Error DF t-value p-value

(Intercept) -1089.5219 989.5151 255 -1.101066 0.2719

age12 767.4708 98.3744 255 7.801531 0.0000

I(age12 ^2) -55.5793 12.0038 255 -4.630134 0.0000

Height 13.4290 6.6859 255 2.008548 0.0456

weight 14.7417 4.4958 255 3.279016 0.0012

F_ER_DA 1.9303 0.9599 255 2.010972 0.0454

F_IR_DA 0.4640 0.7960 255 0.583003 0.5604

ROM_ERsh_DA 4.1549 1.2312 255 3.374682 0.0009

ROM_IRsh_DA -3.3446 1.7366 255 -1.925977 0.0552

Correlation:

(Intr) age12 I(12^2 Height weight F_ER_D F_IR_D ROM_ER

age12 0.474

I(age12 ^2) -0.340 -0.930

Height -0.954 -0.526 0.422

weight 0.320 -0.059 -0.018 -0.493

F_ER_DA -0.127 -0.105 -0.028 0.125 -0.229

F_IR_DA 0.015 -0.055 0.065 -0.046 -0.021 -0.459

ROM_ERsh_DA -0.194 0.029 -0.070 -0.004 0.097 0.007 0.032

ROM_IRsh_DA -0.111 0.193 -0.132 -0.015 -0.034 -0.016 0.015 0.229

Standardized Within -Group Residuals:

Min Q1 Med Q3 Max

-2.71847862 -0.50110586 0.05088229 0.55129946 2.58888907

Number of Observations: 377

Number of Groups: 114

Listing 9: R output lme for full linear multilevel model with random intercepts 8.8

B.4 Final model in Section 9.4

Linear mixed -effects model fit by maximum likelihood

Data: mdatfull

AIC BIC logLik

5632.774 5668.14 -2807.387

Random effects:

Formula: ~1 | PPnumber

(Intercept) Residual
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StdDev: 471.4562 309.7278

Fixed effects: ABSSq ~ age12 + I(age12 ^2) + Height + weight + F_ER_DA + ROM_ERsh_DA

Value Std.Error DF t-value p-value

(Intercept) -1340.4690 1000.7887 256 -1.339413 0.1816

age12 808.8602 96.9645 256 8.341818 0.0000

I(age12 ^2) -58.7318 11.8981 256 -4.936223 0.0000

Height 13.5507 6.7961 256 1.993881 0.0472

weight 14.6869 4.5727 256 3.211900 0.0015

F_ER_DA 2.0834 0.8556 256 2.434951 0.0156

ROM_ERsh_DA 4.6447 1.1961 256 3.883322 0.0001

Correlation:

(Intr) age12 I(12^2 Height weight F_ER_D

age12 0.520

I(age12 ^2) -0.371 -0.929

Height -0.962 -0.544 0.436

weight 0.314 -0.058 -0.021 -0.492

F_ER_DA -0.137 -0.147 0.000 0.117 -0.266

ROM_ERsh_DA -0.171 -0.015 -0.043 0.000 0.110 0.026

Standardized Within -Group Residuals:

Min Q1 Med Q3 Max

-2.6810722 -0.5283475 0.0248107 0.5954327 2.4189089

Number of Observations: 376

Number of Groups: 114

Listing 10: R output lme for final prediction model 9.7
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C Codes in R

C.1 Code for labelling and classifying acceleration data

########################

# set up data analysis #

########################

# set working directory containing data sets

setwd("~/Applied Mathematics MSc/Master Thesis/Thesis Sport/Data/Data CSV")

# calculate intensity vector , square root of squared acceleration in X, Y, Z direction

measurefunct <-function(sensor ,ex){

docname <-paste("Ex",ex,"_",sensor ,".csv",sep="")

dat <-read.csv(docname)

colnames(dat)<-c("Accel_LN_X","Accel_LN_Y","Accel_LN_Z","Accel_WR_X","Accel_WR_Y",

"Accel_WR_Z","Gyro_X","Gyro_Y","Gyro_Z","Mag_X","Mag_Y","Mag_Z","

Timestamp")

return(sqrt(dat$Accel_WR_X^2+dat$Accel_WR_Y^2+ dat$Accel_WR_Z^2))

}

###############################

# choose levels for variables #

###############################

#choose sensor and number of experiment

sens <-"R1"

exp <-2

# [3] is this the first time you are running the data labelling?

#T if there is no labelled data yet , F otherwise

first <-F

#find acceleration vector and set number of seconds used for classification

accel <-measurefunct(sens ,exp)

secs = 1 #set number of seconds for classification

setframe <-seq(from=1,to=length(accel),by=200*secs) #set number of intervals of size secs

# [1] if too few activities are detected , lower the percentage lowlevel; increase it if

too much is detected

lowlevel <-0.06

# [2] assign intensity levels per detected period of activity

#first label the activities per detected period manually , according to the performed

exercises

highact <-c(8:10 ,15:24) #this vector contains the periods labelled high intensity ,

counting from "left to right" (chronological)

medact <-c(1:7 ,11:14) #this vector contains the periods labelled high intensity , counting

from "left to right" (chronological)

#set the number of folds for the k-fold crossvalidation

k<-5

####################

# set up libraries #

####################

{

library(ggplot2)

library(pracma)

library(rpart)

library(caret)

library(dplyr)

library(class)

library(party)

library(e1071)

library(gmodels)

}
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####################

# set up functions #

####################

#Functions needed for analysis and classification

{

#calculate cross -correlation according

#to (Bonomi , Goris , Yin & Westerterp , 2009)

rab <-function(i,N,a,b){

if(i>=0){

sumterm <-1

for(j in 1:(N-i)){

sumterm <-sumterm+a[i+j]*b[j]

}

return(sumterm -1)

}

if(i<0){

k=-i

sumterm <-1

for(j in 1:(N-k)){

sumterm <-sumterm+a[k+j]*b[j]

}

return(sumterm -1)

}

}

#find maximum value for cross -correlation

racc <-function(acc ,N,frame){

setframe <-seq(from=1,to=length(acc),by=200*secs)

rval <-c()

d<-acc[setframe[frame ]:( setframe[frame ]+200*secs)]

S<-length(d[!is.na(d)])

for(i in 0:(S-1)){

rval <-c(rval ,rab(i,S,acc[setframe[frame ]:( setframe[frame ]+200*secs)],acc[( setframe[

frame]+i):( setframe[frame ]+200*secs+i)]))

}

return(max(rval))

}

#compute method 15 according to thesis by Schotel , 2019

method15 <-function(acc ,weights){

Zone <-c(10 ,40 ,70 ,100)

intdf <-data.frame(zone1=c(),zone2=c(),zone3=c())

pks <-findpeaks(acc)[,1]

ZP<-c()

for(j in 2:4){

numpeak <-pks[Zone[j-1]<pks & pks <=Zone[j]]

ZP<-c(ZP,length(numpeak))

}

return(weights [1]*ZP[1]+ weights [2]*ZP[2]+ weights [3]*ZP[3])

}

#compute method 12 according to thesis by Schotel , 2019

method12 <-function(acc ,weights){

Zone <-c(10 ,40 ,70 ,100)

ZP<-c()

for(j in 2:4){

numpeak <-acc[Zone[j-1]<acc & acc <=Zone[j]]

ZP<-c(ZP,length(numpeak))

}

return(weights [1]*ZP[1]+ weights [2]*ZP[2]+ weights [3]*ZP[3])

}

#compute standard deviation , average , peak to peak distance ,

#cross -correlation , method 12, 15.

ClassMeasures <-function(acc ,secs){

setframe <-seq(from=1,to=length(acc),by=200*secs)

#speed <-c() #compute ’speed ’
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#for(i in 1: length(setframe)){

# d <- acc[setframe[i]:( setframe[i]+200*secs)]

# d <- d[!is.na(d)]

# speed <-c(speed ,trapz(abs(d -9.81)))

#}

sd<-c() # compute standard deviation of acceleration

for(i in 1: length(setframe)){

sd<-c(sd,sd(na.omit(acc[setframe[i]:( setframe[i]+200*secs)])))

}

avg <-c() # compute average of acceleration

for(i in 1: length(setframe)){

avg <-c(avg ,mean(na.omit(acc[setframe[i]:( setframe[i]+200*secs)])))

}

app <-c() # compute peak -to-peak distance

np<-c() # compute number of peaks

for(i in 1: length(setframe)){

w<-acc[setframe[i]:( setframe[i]+200*secs)]

peaks <-findpeaks(w)[,2]

peakh <-findpeaks(w)[,1]

peakdis <-c()

if(length(peaks) >=2){

for(j in 2: length(peaks)){

peakdis <-c(peakdis ,peaks[j]-peaks[j-1])

}

}

else{

peakdis <-4

}

app <-c(app ,mean(peakdis))

np<-c(np,length(subset(peakh ,peakh >=200)))

}

Racc <-c()

for(i in 1: length(setframe)){

Racc <-c(Racc ,racc(acc ,200*secs ,i))

}

accnorm <-acc/max(acc)*100

m12 <-c()

m15 <-c()

for(i in 1: length(setframe)){

m12 <-c(m12 ,method12(na.omit(accnorm[setframe[i]:( setframe[i]+200*secs)]),c(1,4,7)))

m15 <-c(m15 ,method15(accnorm[setframe[i]:( setframe[i]+200*secs)],c(1,4,7)))

}

return(data.frame(sd,avg ,ptp=app ,R=Racc ,Shots=np,m12 ,m15))

}

#find frames for which there is significant activity

#percent = 0.1 for secs=1, 0.15 for secs is 5 usually works

act <-function(df ,percent){

#classdf <-ClassMeasures(acc ,secs)

maxR <-max(df$R)

return(which(df$R>= percent*maxR)*(200*secs))

}

#compute the start and end of moment of activity , given list of moments of activity

frame <-function(list){

retlist <-c()

for(i in 1: length(list)){

#make new list for every item in list (num), containing all items within certain

distance of num

num <-list[i]

newlist <-list -num

framedis <-1000*secs

#distance depends on the number of seconds used for classification , per second the

reach is increased by 1000 frames (roughly 5 seconds)

surlist <-newlist[newlist %in% c(-framedis :-1,1: framedis)]
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poslist <-surlist[surlist %in% 1: framedis]

neglist <-surlist[surlist %in% -framedis :-1]

#check if there is any activity within the framedistance

if(length(surlist) >0){

if(isempty(neglist)){

retlist <-c(retlist ,num -200*secs)

#if there are no items in list within frame distance before num , include num as

begin time and add margin

}

if(isempty(poslist)){

retlist <-c(retlist ,num +200*secs)

#if there are no items in list within frame distance after num , include num as

end time and add margin

}

}

}

return(retlist) #returns list of begin and end times for activity

}

framewide <-function(list){

retlist <-c()

for(i in 1: length(list)){

#make new list for every item in list (num), containing all items within certain

distance of num

num <-list[i]

newlist <-list -num

framedis <-1000*secs

#distance depends on the number of seconds used for classification , per second the

reach is increased by 1000 frames (roughly 5 seconds)

surlist <-newlist[newlist %in% c(-framedis : -200 ,200: framedis)]

poslist <-surlist[surlist %in% 200: framedis]

neglist <-surlist[surlist %in% -framedis :-200]

#check if there is any activity within the framedistance

if(length(surlist) >0){

if(isempty(neglist)){

retlist <-c(retlist ,num -200*secs)

#if there are no items in list within frame distance before num , include num as

begin time and add margin

}

if(isempty(poslist)){

retlist <-c(retlist ,num +200*secs)

#if there are no items in list within frame distance after num , include num as

end time and add margin

}

}

}

return(retlist) #returns list of begin and end times for activity

}

#classify intensity of acceleration by comparing begin/end times of activity with time

frame

timetype <-function(frames ,time ,sprintdet ,jogdet){

type <-c()

sprint <-c()

jog <-c()

for(j in 1:( length(sprintdet)+length(jogdet))){

if(j %in% jogdet){

jog <-c(jog ,seq(time[2*j-1],time[2*j]))

}

if(j %in% sprintdet){

sprint <-c(sprint ,seq(time[2*j-1],time[2*j]))

}

}

for(i in 1: length(frames)){

if(frames[i] %in% sprint){

type <-c(type ,"High")
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}

else if(frames[i] %in% jog){

type <-c(type ,"Medium")

}

else{

type <-c(type ,"Low")

}

}

return(type)

}

#convert classification by levels to numerical values

numconv <-function(char){

if(char %in% c("Low")){

return (1)

}

if(char %in% c("Medium")){

return (2)

}

if(char %in% c("High")){

return (3)

}

}

#normalise vector

normalise <- function(x) {

if(max(x)-min(x) >0){

return ((x - min(x)) / (max(x) - min(x)))

}

else{

return(x)

}}

#Count function that counts the number of non -empty entries in a vector

counta <-function(x){

count <-0

for(i in 1: length(x)){

if(x[i]>0){

count <-count+1

}

}

return(count)

}

#compute all relevant accuracies

#works only for this dataset

classaccuracy <-function(pred ,labels){

return(c(overall_acc=(table(pred ,labels)[1,1]+ table(pred ,labels)[2,2]+ table(pred ,labels

)[3 ,3])/sum(table(pred ,labels)[,]),

int_acc=( table(pred ,labels)[1 ,1]+ table(pred ,labels)[3,3])/(sum(table(pred ,

labels)[1,])+sum(table(pred ,labels)[3,])),

high_acc=table(pred ,labels)[1,1]/sum(table(pred ,labels)[1,]),med_acc=table(

pred ,labels)[3,3]/sum(table(pred ,labels)[3,])))

}

#compare classification methods. Crosspercent is the percentage of data used for

crossvalidation

#Takes an even percentage of data from all three intensity classes for training. Options

for classification method

#are "decision tree", "decision tree pruned" and "naive Bayes"

classcomp <-function(k,dataset ,datasetn ,classmet){

list <-split(dataset , sample (1:k, nrow(dataset), replace=T))

listn <-split(datasetn , sample (1:k, nrow(datasetn), replace=T))

if(classmet %in% c("decision tree")){

acc <-data.frame(overall_acc=rep(NA ,k),int_acc=rep(NA ,k),high_acc=rep(NA ,k),med_acc=

rep(NA ,k),stringsAsFactors=F)

accn <-data.frame(overall_acc=rep(NA ,k),int_acc=rep(NA,k),high_acc=rep(NA ,k),med_acc=

rep(NA ,k),stringsAsFactors=F)
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for(i in 1:k){

train <-seq(1:k)[seq(1:k)!=i]

traindf <-list[[ train [1]]]

traindf_n<-listn[[train [1]]]

train <-train[-1]

for(j in train){

traindf <-rbind(traindf ,list[[j]])

traindf_n<-rbind(traindf_n,listn [[j]])

}

testdf <-list[[i]]

testdf_n<-listn[[i]]

fit <-rpart(type ~ sd + avg + ptp + R + m15 + m12 , method="class", data=traindf)

pred <-predict(fit ,testdf ,type="class")

acc[i,]<-classaccuracy(testdf$type ,pred)

fitn <-rpart(type ~ sd + avg + ptp + R + m15 + m12 , method="class", data=traindf_n)

predn <-predict(fitn ,testdf_n,type="class")

accn[i,]<-classaccuracy(testdf_n$type ,predn)

}

predacc <-colMeans(acc)

predaccn <-colMeans(accn)

classmatrix <-rbind(predacc ,predaccn)

rownames(classmatrix)<-c("DT","DT norm")

return(round(classmatrix ,4))

}

else if(classmet %in% c("decision tree pruned")){

acc <-data.frame(overall_acc=rep(NA ,k),int_acc=rep(NA ,k),high_acc=rep(NA ,k),med_acc=

rep(NA ,k),stringsAsFactors=F)

accn <-data.frame(overall_acc=rep(NA ,k),int_acc=rep(NA,k),high_acc=rep(NA ,k),med_acc=

rep(NA ,k),stringsAsFactors=F)

for(i in 1:k){

train <-seq(1:k)[seq(1:k)!=i]

traindf <-list[[ train [1]]]

traindf_n<-listn[[train [1]]]

train <-train[-1]

for(j in train){

traindf <-rbind(traindf ,list[[j]])

traindf_n<-rbind(traindf_n,listn [[j]])

}

testdf <-list[[i]]

testdf_n<-listn[[i]]

fit <-rpart(type ~ sd + avg + ptp + R + m15 + m12 , method="class", data=traindf)

pfit <- prune(fit , cp= fit$cptable[which.min(fit$cptable[,"xerror"]),"CP"])

pred <-predict(pfit ,testdf ,type="class")

acc[i,]<-classaccuracy(testdf$type ,pred)

fitn <-rpart(type ~ sd + avg + ptp + R + m15 + m12 , method="class", data=traindf_n)

pfitn <- prune(fitn , cp= fit$cptable[which.min(fit$cptable[,"xerror"]),"CP"])

predn <-predict(pfitn ,testdf_n,type="class")

accn[i,]<-classaccuracy(testdf_n$type ,predn)

}

predacc <-colMeans(acc)

predaccn <-colMeans(accn)

classmatrix <-rbind(predacc ,predaccn)

rownames(classmatrix)<-c("Pruned DT","Pruned DT, norm")

return(round(classmatrix ,4))

}

else if(classmet %in% c("naive Bayes")){

acc <-data.frame(overall_acc=rep(NA ,k),int_acc=rep(NA ,k),high_acc=rep(NA ,k),med_acc=

rep(NA ,k),stringsAsFactors=F)

accn <-data.frame(overall_acc=rep(NA ,k),int_acc=rep(NA,k),high_acc=rep(NA ,k),med_acc=

rep(NA ,k),stringsAsFactors=F)

for(i in 1:k){

train <-seq(1:k)[seq(1:k)!=i]

traindf <-list[[ train [1]]]

traindf_n<-listn[[train [1]]]

train <-train[-1]
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for(j in train){

traindf <-rbind(traindf ,list[[j]])

traindf_n<-rbind(traindf_n,listn [[j]])

}

testdf <-list[[i]]

testdf_n<-listn[[i]]

fit <-naiveBayes(type ~ sd + avg + ptp + R + m15 + m12 , method="class",data=traindf)

pred <-predict(fit ,testdf ,type="class")

acc[i,]<-classaccuracy(testdf$type ,pred)

fitn <-naiveBayes(type ~ sd + avg + ptp + R + m15 + m12 , method="class", data=

traindf_n)

predn <-predict(fitn ,testdf_n,type="class")

accn[i,]<-classaccuracy(testdf_n$type ,predn)

}

predacc <-colMeans(acc)

predaccn <-colMeans(accn)

classmatrix <-rbind(predacc ,predaccn)

rownames(classmatrix)<-c("NB","NB norm")

return(round(classmatrix ,4))

}

else if(classmet %in% c("knn")){

acc <-data.frame(overall_acc=rep(NA ,k),int_acc=rep(NA ,k),high_acc=rep(NA ,k),med_acc=

rep(NA ,k),stringsAsFactors=F)

accn <-data.frame(overall_acc=rep(NA ,k),int_acc=rep(NA,k),high_acc=rep(NA ,k),med_acc=

rep(NA ,k),stringsAsFactors=F)

for(i in 1:k){

train <-seq(1:k)[seq(1:k)!=i]

traindf <-list[[ train [1]]]

traindf_n<-listn[[train [1]]]

train <-train[-1]

for(j in train){

traindf <-rbind(traindf ,list[[j]])

traindf_n<-rbind(traindf_n,listn [[j]])

}

testdf <-list[[i]]

testdf_n<-listn[[i]]

pred <-knn(train=traindf [,1:7],test=testdf [,1:7],cl=traindf$type ,k=floor(sqrt(nrow(

dataset))))

acc[i,]<-classaccuracy(testdf$type ,pred)

predn <-knn(train=traindf_n[,1:7], test=testdf_n[,1:7],cl=traindf_n$type ,k=floor(sqrt

(nrow(datasetn))))

accn[i,]<-classaccuracy(testdf_n$type ,predn)

#classmatrix <-data.frame(overall_acc=rep(NA ,1),int_acc=rep(NA ,1),high_acc=rep(NA ,1),

med_acc=rep(NA ,1),stringsAsFactors=F)

#classmatrix [1,]<-predaccn

}

predacc <-colMeans(acc)

predaccn <-colMeans(accn)

classmatrix <-rbind(predacc ,predaccn)

rownames(classmatrix)<-c("knn","knn , norm")

return(round(classmatrix ,4))

}

else{

return("invalid classification method. Try: ’naive Bayes ’ or ’decision tree pruned ’."

)

}

}

acc_comp_tot <-function(k,dataset ,datasetn){

methods <-c("decision tree","naive Bayes","decision tree pruned","knn")

classmatrix <-data.frame(overall_acc=rep(NA ,7),int_acc=rep(NA ,7),high_acc=rep(NA ,7),med_

acc=rep(NA ,7),time=rep(NA ,7),stringsAsFactors=F)

for(n in methods){

start.time <-Sys.time()
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row <-classcomp(k,dataset ,datasetn ,n)

end.time <-Sys.time()

row <-cbind(row ,time=as.numeric(difftime(end.time ,start.time ,units="secs")))

classmatrix <-rbind(classmatrix ,row)

}

return(na.omit(classmatrix))

}

}

################

# analyse data #

################

# [1] Use activity function and check whether activity detection was correct

#a plot will be generated where red lines indicate the start and end times for the

detected activity periods

#if too few activities are detected , lower the percentage in act; increase it if too much

is detected

df<-ClassMeasures(accel ,secs)

plot(df$R,type="l",main=paste("Cross -correlation Acceleration data sensor ",exp ,"-",sens ,

sep=""),ylab="Acceleration norm")

abline(v=frame(act(df ,lowlevel))/(200*secs),col="red")

#If the correct level is found , save the begin and endtimes

times <-frame(act(df ,lowlevel))

# [2] now label the activities according to the intensity , on a scale 1-3

acttype <-timetype(setframe ,times ,highact ,medact)

#check whether activity labelling went well

plot (1+2*df$R/max(df$R),type="l",main=paste("Cross correlation of the acceleration",sens)

)

lines(sapply(acttype ,numconv),col="red")

#add labelling to data frame with measures , create normalised and regular data frame

dfull <-data.frame(df,type=acttype ,sensor=paste("Ex",exp ,sens ,sep=""))

dfulln <-data.frame(sapply(df,normalise),type=acttype ,sensor=paste("Ex",exp ,sens ,sep=""))

#add now labelled data frame to larger dataset containing previous data frames

# [3] run first two lines if this is the first iteration , otherwise run the latter two

if(first == T){

dftotal <-dfull

dftotaln <-dfulln

}

if(first == F){

dftotal <-rbind(dftotal ,dfull)

dftotaln <-rbind(dftotaln ,dfulln)

}
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C.2 Code for predicting throwing speed

library(car)

library(lattice)

library(nlme)

library(lme4)

library(ggplot2)

require(splines)

setwd("~/.../Fastball")

mdat <-read.csv("Fastball_len.csv",sep=";")

#############

# data prep #

#############

mdat$ageyrs <-mdat$Age_in_months/12

mdat <-mdat[complete.cases(mdat [,6]) ,]

mdat <-mdat[!(mdat$Age_in_months >216 | mdat$Age_in_months <144) ,]

mdat <-mdat[-c(297) ,] #remove one outlier

mdat$ABSSq <-mdat$AverageBallSpeed ^2/100

mdat$ABSSq <-mdat$AverageBallSpeed ^2/100

mdatana <-mdat[,c(1,4,5,6,17,18,19,20,23,26,27,28)]

mdatana$age12 <-mdatana$ageyrs -12

mdatfull <- na.omit(mdatana)

##################

# lme covariates #

##################

FitHeight <-lme(Height ~ bs(age12 ,knots=c(3)),random=~1|PPnumber , data = mdatfull ,method="

ML")

FitWeight <-lme(weight ~ Height + age12 , random = ~1+age12|PPnumber ,data=mdatfull ,method="

ML")

FitF_IR<-lme(F_IR_DA ~ Height + age12 , random = ~1|PPnumber ,data=mdatfull ,method="ML")

FitF_ER<-lme(F_ER_DA ~ Height + age12 , random = ~1|PPnumber ,data=mdatfull ,method="ML")

FitROM_IR<-lme(ROM_IRsh_DA~ Height + age12 , random = ~1|PPnumber ,data=mdatfull ,method="ML

")

FitROM_ER<-lme(ROM_ERsh_DA ~ Height + age12 , random = ~1|PPnumber ,data=mdatfull ,method="

ML")

MLMfull <-lme(ABSSq ~ age12+I(age12 ^2)+Height+weight+F_ER_DA+F_IR_DA+ROM_ERsh_DA+ROM_IRsh_

DA,

random = ~ 1 + age12 | PPnumber , data=mdatfull , na.action=na.omit ,

method="ML")

MLMfull2 <-lme(ABSSq ~ age12+I(age12 ^2)+Height+weight+F_ER_DA+ROM_ERsh_DA ,

random = ~ 1 | PPnumber , data=mdatfull , na.action=na.omit , method="ML")

predageSq <-function(fit ,age ,ID){

h<-predict(FitHeight ,data.frame(age12=c(age),PPnumber=c(ID)),level =1)

dat <-data.frame(age12=c(age),Height=c(h),PPnumber=c(ID))

w<-predict(FitWeight ,dat ,level =1)

fir <-predict(FitF_IR ,dat ,level =1)

fer <-predict(FitF_ER ,dat ,level =1)

rir <-predict(FitROM_IR,dat ,level =1)

rer <-predict(FitROM_ER,dat ,level =1)

newdat <-data.frame(age12=c(age),weight=c(w),Height=c(h),PPnumber=c(ID),ROM_IRsh_DA=c(

rir),ROM_ERsh_DA=c(rer),F_IR_DA=c(fir),F_ER_DA=c(fer))

speed <-predict(fit ,newdat ,level =1)

return.dat <-cbind(newdat ,ABSSq1=speed)

return(speed)

}

set.seed (1)

plotPPnumber <-sample(unique(mdatfull$PPnumber) ,10,replace=F)

PPindex <-which(mdatfull$PPnumber %in% plotPPnumber)
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mdatplot <-mdatfull[PPindex ,]

predframe <-with(mdatplot ,expand.grid(PPnumber=unique(as.character(PPnumber)),age12=seq

(0,6,0.1)))

predSp <-c()

for(i in 1:nrow(predframe)){

sp<-predageSq(MLMsqrtfull ,predframe[i,2],as.character(predframe[i,1]))

predSp <-c(predSp ,sp)

}

predframe$AverageBallSpeed <-predSp

ggplot(mdatplot ,aes(age12 ,AverageBallSpeed ,colour=PPnumber))+ggtitle("Predicted Throwing

Speed") +

xlab("Age in years") + ylab("Throwing speed in mph") + theme(plot.title = element_text(

hjust = 0.5)) + labs(col="Participant") +

geom_point()+ geom_line(data=predframe) + scale_x_continuous(breaks=c(0,2,4,6),labels=c

("12", "14", "16","18"))

avgspeed <-function(fit ,age){

h<-predict(FitHeight ,data.frame(age12=c(age)),level =0)

dat <-data.frame(age12=c(age),Height=c(h))

w<-predict(FitWeight ,dat ,level =0)

fir <-predict(FitF_IR ,dat ,level =0)

fer <-predict(FitF_ER ,dat ,level =0)

rir <-predict(FitROM_IR,dat ,level =0)

rer <-predict(FitROM_ER,dat ,level =0)

newdat <-data.frame(age12=c(age),weight=c(w),Height=c(h),ROM_IRsh_DA=c(rir),ROM_ERsh_DA=

c(rer),F_IR_DA=c(fir),F_ER_DA=c(fer))

speed <-predict(fit ,newdat ,level =0)

return.dat <-cbind(newdat ,ABSSq1=speed)

return(speed)

}

avgframe <-data.frame(age12=c(seq(0,6,0.1)))

avgSp <-c()

for(i in 1:nrow(avgframe)){

sp<-avgspeed(MLMsqrtfull ,avgframe[i,1])

avgSp <-c(avgSp ,sp)

}

avgframe$AverageBallSpeed <-avgSp

ggplot(mdatana ,aes(age12 ,AverageBallSpeed),pch =17)+ggtitle("Predicted Throwing Speed") +

xlab("Age in years") + ylab("Throwing speed in mph") + theme(plot.title = element_text(

hjust = 0.5)) + labs(col="Participant") +

geom_point(shape =1)+ geom_line(data=avgframe ,col="red",lwd=1) + scale_x_continuous(

breaks=c(0,2,4,6),labels=c("12", "14", "16","18"))
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