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Abstract

Optical flow estimation with event cameras en-
compasses two primary algorithm classes: model-
based and learning-based methods. Model-based
approaches, do not require any training data while
learning-based approaches utilize datasets of events
to train neural networks. To effectively apply these
algorithms, it’s essential to understand their respec-
tive strengths and weaknesses. This study com-
pares model-based and learning-based optical flow
estimation methods using event cameras, aiming to
provide guidance for real-world applications. We
evaluated these methods on the MVSEC and DSEC
datasets, focusing on their accuracy and runtime.
Our findings indicate that model-based methods ex-
cel on the MVSEC dataset, characterized by small
motions, while learning-based approaches perform
better on the more dynamic DSEC dataset. To
investigate potential overfitting of learning-based
methods to DSEC, we retrained the IDNet and
TMA models on the BlinkFlow dataset. The
retrained models demonstrated competitive accu-
racy, surpassing model-based methods which indi-
cates that learning-based models perform better on
datasets like DSEC even when not able to overfit.
Finally, our analysis on runtime showed that model-
based methods achieve real-time performance on
CPUs and learning-based methods require a GPU
to run in real-time.

1 Introduction

Optical flow estimation is a fundamental computer vision
task [1]. It can aid in compression algorithms [2], in object
tracking [3], video restoration [4] and in robotics where
optical flow helps in the detection and avoidance of obsta-
cles [5,6]. Event cameras are particularly suitable for optical
flow estimation due to their detailed temporal information.
Unlike standard cameras, event cameras produce a stream
of asynchronous per-pixel brightness changes, known as
“events,” which encode the position, time, and polarity of the
brightness change. This high temporal resolution [7] allows
for capturing rapid motion and fine-grained details, making
event cameras ideal for accurate and efficient optical flow
estimation.

In the context of event cameras, optical flow needs to
be predicted from the sequence of events instead of frames
leading to significant challenges in the adaptation of methods
from frame based cameras to the new medium.

There exist two main families of algorithms for event-
based optical flow:

1. Model-based Algorithms: These algorithms investi-
gate the characteristics of event data and formulate
mathematical models to compute the flow.

2. Learning-based Approaches: These approaches utilize
datasets of events to train neural networks to predict the

flow. However, obtaining real-world ground truth data
for optical flow is challenging due to the complexity of
accurately capturing and annotating precise motion in-
formation in dynamic scenes. Consequently, if the ac-
curacy of model-based methods is sufficient, the use of
model-based methods is often preferred.

Previously, learning-based approaches were widely regarded
as more accurate than model-based methods. However,
this assumption has been challenged by the introduction
of MultiCM [8], which outperforms all other methods on
the MVSEC dataset [9]. Despite this success, MultiCM,
along with another leading model-based method by Brebion
et al. [10], significantly underperformed on the DSEC
dataset [11]. This discrepancy raises important questions
about the conditions under which one approach may be better
than the other and how they compare in terms of accuracy,
runtime, and generalizability.

Shiba et al. [12] theorized that the accuracy gap be-
tween the MVSEC and DSEC datasets for model-based
methods compared to learning-based approaches might be
due to overfitting. Specifically, learning-based methods may
overfit to the forward motion prevalent in the DSEC dataset,
which primarily contains driving scenarios, thereby inflating
their performance scores. In order to explore this theory,
we will train two models, IDNet [13] and TMA [14], on
BlinkFlow [15], which is another dataset that does not have
this forward motion bias. By testing these models on DSEC,
we can measure the magnitude of this effect and determine
if forward motion is the only factor that leads to the better
performance of learning-based methods or if there are other
reasons for this gap.

By assessing the accuracy and runtime of these meth-
ods and examining the performance discrepancies between
the MVSEC and DSEC datasets for model-based algo-
rithms, we aim to offer practical guidance for real-world
applications. This exploration will help identify the factors
contributing to the performance gaps and highlight areas for
potential improvements in current algorithms.

This research aims to compare model-based and learning-
based approaches for optical flow estimation with event
cameras and explore the performance gap observed on the
MVSEC and DSEC datasets by addressing the following
questions:

1. How do model-based and learning-based approaches
compare in terms of accuracy on publicly available
datasets?

2. How do the two approaches compare in terms of runtime
performance?

3. Why do model-based approaches excel on MVSEC but
perform substantially worse on DSEC when compared
to learning-based methods?



2 Related Work

Optical flow estimation methods for event cameras can be
categorized into two primary approaches: model-based and
learning-based. Each approach has distinct characteristics
and methodologies.

2.1 Model-based approaches

Model-based approaches do not need any training data and
rather rely on the underlying physical and geometric princi-
ples of motion. These methods focus on mathematical model-
ing of event sequences, often using algorithms to optimize ob-
jective functions that describe the motion of detected events
over time. These approaches generally rely on assumptions
to model event motion, the most common being Brightness
Constancy, which assumes that the brightness of a pixel re-
mains consistent throughout its motion and the local constant
flow assumption which asserts that the flow is constant over
a neighbourhood around a pixel. However, such assump-
tions may not always hold, potentially leading to underper-
formance.

Types of model-based algorithms

There is a significant variety within model-based approaches
for event-based optical flow estimation. Early methods
adapted traditional frame-based algorithms to handle event
data, while more recent methods leverage the unique char-
acteristics of event data to achieve greater accuracy and effi-
ciency. Notable examples of these approaches include:

¢ Lucas-Kanade Extension: Benosman et al. [16] ex-
tended the classic Lucas-Kanade method [17] to event
based optical flow. This method involves predicting op-
tical flow for each event by defining a neighborhood of
nxnxAt, where n is typically 5 and At is around 60us.
Within this neighborhood, spatial and temporal deriva-
tives of event activities are computed. These derivatives
form a system of equations for each event, which can be
solved using least squares minimization to estimate the
optical flow components. This algorithm is simple, can
be efficiently implemented on CPUs and GPUs but bases
itself on the Brightness Constancy and the constant local
flow assumption.

* Block-Matching Techniques: Liu et al. [18,19] adapted
block-matching techniques for use with event cameras.
These methods involves dividing the sensor’s output
into smaller blocks and tracking the movement of these
blocks over time. Events are accumulated into time
slices, and the motion of each block is determined
by comparing the current block of events to potential
matches within a search area in a previous time slice.
This method has been adapted to work successfully on
FPGAs allowing it to have great power efficiency and
latency, furthermore as opposed to Lucas-Kanade meth-
ods [16], the method can account for non-local structures
in the video.

* Plane Fitting Methods: Plane fitting methods [20] esti-
mate visual motion flow by fitting a plane to the spatio-
temporal data of events within a local neighborhood.
These methods assume that within a small spatial and

temporal window, the velocity is constant, leading to a
locally planar representation of the event surface.

For each incoming event, a spatio-temporal window is
defined around the event. A least squares minimization
is applied to fit a plane to the events in this window. The
plane parameters represent the trajectory of the events.

Additionally, these methods can use multi-scale pooling
techniques [21] in order to improve accuracy. This in-
volves computing local flow estimates at multiple spatial
scales and selecting the scale with the most consistent
flow magnitude.

These approaches are sensitive to noise and run for each
incoming event which could cause problems if the events
are very dense. They are however, efficient, easy to im-
plement and robust against the aperture problem.

Contrast Maximization Framework: Contrast maxi-
mization (CM) is a technique that estimates motion by
optimizing the sharpness of motion-compensated im-
ages. In CM, events are warped along predicted point
trajectories to create an image of warped events (IWE).
The objective function evaluates the contrast of this
IWE, with higher contrast indicating better alignment of
events or pixels and thus more accurate motion estima-
tion. The optimization seeks to find the warp parameters
that maximize this contrast.

However, applying CM to optical flow estimation faces
challenges such as overfitting and event collapse. The
framework can lead to overfitting by pushing events into
a line, particularly in scenes dominated by line features,
resulting in what is known as the aperture problem.
This occurs because line segments moving across the
image plane can produce ambiguous optical flow esti-
mates, with multiple trajectories producing similar con-
trast maximization results.

MultiCM [8, 12] tackles these issues by introducing a
novel loss function to enhance accuracy and reduce over-
fitting, improving handling of occlusions, and adopting
a multiscale approach to boost convergence and prevent
the algorithm from getting trapped in local optima. De-
spite being a state-of-the-art method on the MVSEC [9]
dataset, its current runtime performance is not desirable,
which may result from an unoptimized implementation
rather than inherent complexity [8]. MultiCM is the
leading algorithm in terms of accuracy for model-based
methods and will be a central focus of this research.

Pipeline Method with Inverse Exponential Distance
Surface: Brebion et al. [10] developed a versatile frame-
work for real-time optical flow computation with both
low- and high-resolution event cameras. This method
begins by accumulating events into edge images over
short temporal windows using the CPU. These edge im-
ages are then denoised to remove isolated noise and
filled to stabilize the representation by adding missing
edge pixels where neighboring pixels indicate an edge
should be present. The “inverse exponential distance
surface* converts these edge images into a dense for-
mat suitable for frame-based optical flow algorithms, re-



ducing noise impact and preserving object edges. The
current optical flow computation in the pipeline utilizes
a predictive filter-based approach [22], which can oper-
ate on either the CPU or be optimized for GPU imple-
mentation, achieving real-time performance with frame
rates of 250Hz at 346x260 pixels and 77Hz at 1280x720
pixels. The modular nature of this method allows for
substituting the optical flow algorithm at the end of the
pipeline with other methods as needed. This method
will be further explored in our study due to its impres-
sive runtime performance and strong accuracy on bench-
marks, falling just behind MultiCM.

2.2 Learning-based approaches

Learning-based approaches are extensively utilized in optical
flow estimation for both frame-based and event-based cam-
eras. These methods offer several advantages over model-
based approaches, including higher accuracy, competitive
runtime, and independence from assumptions like Brightness
Constancy. However, these benefits come at the cost of re-
quiring substantial training data, which is often expensive and
may lack reliable ground truth.

Input Representation

To process event data effectively, algorithms can adopt one
of two strategies. One approach is utilizing Spiking Neural
Networks (SNNs), networks that mimic biological neurons
and can process event data directly without preprocessing.
Models such as [23] are based on this strategy. Alternatively,
the data can be transformed into a structured format, such as
voxel grids, making it compatible with traditional neural net-
work architectures. Voxel grids are the most popular repre-
sentation in the current landscape of event-based algorithms
and involve computing a 3D grid where each voxel accumu-
lates the number or properties of events that occur within its
spatial and temporal boundaries. Figure 1 provides a visual-
ization of how a voxel grid representation looks like for the
DSEC dataset.

Categories of Learning Approaches

Learning-based optical flow estimation algorithms are cate-
gorized into three main types based on the type of learning
they perform:

* Supervised Learning: These methods [13-15,24] rely
on labeled ground truth data to train neural networks for
accurate optical flow prediction. While effective, they
are limited by the availability and quality of ground truth
data, which can vary across datasets.

* Self-Supervised Learning: In contrast to supervised
learning, self-supervised approaches [25-27] only uti-
lize event data to learn to predict the optical flow. This
eliminates the need for labeled data, making them more
adaptable to diverse environments. However, achieving
high accuracy without ground truth supervision remains
a challenge.

* Semi-Supervised Learning: Semi-supervised meth-
ods [28] combine the strengths of supervised and self-
supervised approaches by incorporating auxiliary sig-
nals, such as grayscale images, alongside event data dur-

Visualization of Voxel Grid Time Bins on DSEC

Figure 1: Illustration of a voxel grid representation. The 2D spatial
dimensions correspond to the resolution of the event camera sen-
sor, and the third dimension represents time divided into bins. Each
voxel contains aggregated information about the events that occurred
within its volume.

ing training. This hybrid approach can improve accu-
racy by leveraging additional information while mitigat-
ing the need for extensive labeled data.

For the purposes of this study, we will focus primarily
on supervised learning and self-supervised learning. Semi-
supervised learning, while beneficial, requires additional data
sources such as grayscale images, which may not always
be available or applicable in our targeted environments. By
concentrating on supervised and self-supervised methods, we
aim to address the broader applicability of optical flow esti-
mation using event data alone.

Notable Learning-Based Methods in Optical Flow
Estimation

Initially, optical flow methods for event-based cameras
adapted architectures from frame-based applications and
used self-supervised and semi-supervised learning. For
example, the U-Net [29] architecture was utilized for event
data by Zhu et al. [25] and the EV-FlowNet model [28].
EV-FlowNet [28] is a particularly interesting model that
used semi-supervised learning by using the grayscale images
provided from the MVSEC dataset [9] and optimized the
model using a photometric and smoothness loss.

The introduction of the DSEC dataset [11] made super-
vised learning more feasible by providing higher resolution
and more reliable ground truth flow, thus a significant
increase in terms of accuracy was marked by the adaptation
of the RAFT [30] architecture into the E-RAFT model [24],
originally developed for frame-based optical flow. E-RAFT
was one of the first methods to use correlation volumes in the
event camera literature and represented events as Voxel Grids.



MVSEC

DSEC BlinkFlow

Time taken to accumulate events: 1.382 seconds

Time taken to accumulate events: 63 ms

Time taken to accumulate events: 57 ms

Figure 2: Illustration of one million accumulated events from each of the datasets. Blue represents a predominantly positive negative polarity
for the pixel, and red represents a positive polarity. It can be seen that MVSEC takes two orders of magnitude more time for one million

events to accumulate than DSEC and BlinkFlow.

Subsequent research led to models such as E-FlowFormer by
Li et al. [15], which employs transformers [31] to enhance
feature encoding and is currently one of the leading models
in terms of accuracy. In addition to this, Temporal Motion
Aggregation (TMA) [14] leverages the temporal continuity
inherent in event data to significantly increase accuracy, thus
positioning it alongside E-FlowFormer [15] as a state-of-the-
art model.

Furthermore, the Iterative Deblurring Network (IDNet) [13]
represents an efficient approach that differentiates itself from
other methods by avoiding the use of correlation volumes
which are especially costly to compute. This design choice
results in a lightweight model with competitive accuracy,
demonstrating an alternative path for optimizing performance
and efficiency in event-based optical flow estimation. This
method will be further explored in our study for its efficiency
and great accuracy.

Another notable method is Taming Contrast Maximiza-
tion (TamCM) [26], which combines ideas from traditional
contrast maximization with modern learning-based tech-
niques to perform self-supervised learning efficiently. This
approach leverages the strengths of contrast maximization to
align events accurately while using learning-based methods
to refine the optical flow estimation and will be our baseline
for the self-supervised category of models.

3 Performance & Runtime Evaluation

To compare the accuracy and runtime performance of
learning-based and model-based approaches, we will evalu-
ate them on publicly available datasets. In Section 3.1, we
will introduce the datasets commonly used in the literature.
Subsequently, we will present the evaluation results, focusing
on accuracy in Section 3.2 and inference speed in Section 3.3.

3.1 Datasets

In the event-based optical flow literature, three datasets are
commonly used: MVSEC [9], DSEC [11], and the newly re-
leased BlinkFlow [15]. This study compares the performance
of different methods on the MVSEC and DSEC datasets, ag-
gregating results where reported. BlinkFlow was excluded
from the study due to the lack of ground truth in public test
data and the scarcity of benchmarks for other methods on this
dataset. Additionally, the training data for BlinkFlow is not
very diverse and is significantly different from the test data,
which could make it more difficult to reliably assess perfor-
mance. Figure 2 visualizes how events from the three datasets
look like and how dense they are in time.

MVSEC

The Multi-Vehicle Stereo Event Camera (MVSEC) dataset is
the first large-scale event-based optical flow dataset. This
dataset posses several limitations. Gehrig et al. [24] high-
lighted that the magnitude of changes was tiny (less than
3 pixels) in the majority of sequences. Additionally, Shiba
et al. [8] pointed out issues with the ground truth data due
to the differing frequencies of the cameras and sensors in-
volved in the creation of the groundtruth flow. The dataset
includes sequences involving drones flying indoors and out-
doors, driving scenarios during daytime and nighttime, and
one sequence involving handheld motion.

DSEC

DSEC offers a large amount of high-quality training data for
driving scenarios. It was created to address the limitations of
the MVSEC dataset and has become a benchmark standard.
DSEC adopted the use of a higher resolution sensor with a
megapixel count of 1.6, in contrast to 0.1MP of the MVSEC
dataset, it featured larger displacements and improved the
ground truth data generation. The dataset consists entirely
of driving scenarios captured during daytime and nighttime.
Shiba et al. [8] noted that learning methods could overfit to
the nature of the training data, as driving scenarios predomi-
nantly involve forward motion.



Table 1: Comparison of different methods on the MVSEC dataset for the scenarios: indoor_flyingl, indoor_flying2,indoor_flying3, and
outdoor_dayl. Metrics measured include endpoint error (EPE) and the percentage of pixels with EPE greater than 3 pixels, with optical flow
computed once every 22ms. All results displayed are reported from the respective papers; missing entries represent sections where the authors have
not tested their model, bold entries represent the best score, while underlined ones are the second best.

indoor_flying3
EPE| %%3prl EPE|l Yspel

indoor_flyingl  indoor_flying?2

EPE| %%3prpl EPE|l Yspel

outdoor_dayl

E-RAFT [24] 1.10 5.72 1.94 30.79 1.66 25.20 0.24 0.00

TMA [14] 1.06 3.63 1.81 27.29 1.58 23.26 0.25 0.07

SL  IDNet [13] (4 iterations,1/4 resolution) - - - - - - 0.31 0.1

IDNet [13] (4 iterations, 1/8 resolution) - - - - - - 0.34 0.0

IDNet [13] (TID,1 iteration,1/8 resolution) - - - - - - 0.45 0.2

SSL  TamCM [26] 0.44 0.00 0.88 4.51 0.70 2.41 0.27 0.05
Nagata et al. [32] 0.62 - 0.93 - 0.84 - 0.77 -

M  Brebion et al. [10] 0.52 0.10 0.98 5.50 0.71 2.10 0.53 0.20

MultiCM [8] 0.42 0.10 0.60 0.59 0.50 0.28 0.30 0.10

SL - Models using supervised learning, SSL - Self-Supervised models, M - Model-based methods.

Table 2: Comparison of different methods on the DSEC dataset averaged over all test scenarios. Metrics measured are endpoint error (EPE)
and the percentages of pixels with errors larger than 1, 2 and 3 pixels. The optical flow is computed at each 100ms. All results displayed are

reported from the respective papers, bold entries represent the best score while underlined ones are the second best.

EPE| Y%ipel Y%orel Yspel

E-RAFT 0.788  12.742 4.74 2.684

TMA 0.743  10.863 3.972 2.301

Supervised IDNet (4 iterations, 1/4 resolution) 0.719  10.069 3.497 2.036

IDNet (4 iterations, 1/8 resolution) 0.770  12.100 4.000 2.200

IDNet (TID, 1 iteration, 1/8 resolution)  0.840 14.700 5.000 2.800

Self-Supervised TamCM 2330  68.293 33.481 17.771
Model-based  MultiCM 3.472 76.57 48.48 30.855

Brebion et al. 4881 82.812 57.901 41.952

BlinkFlow MVSEC Results

BlinkFlow is the latest dataset, featuring fully simulated train-
ing data in an environment called BlinkSim. It provides the
most reliable ground truth data, and the E-FlowFormer algo-
rithm has demonstrated that, unlike previous works on sim-
ulated datasets, algorithms trained on BlinkFlow generalize
well beyond the dataset. BlinkFlow includes a wide variety
of motion types, not just forward motion like DSEC, but also
more varied movements.

3.2 Accuracy assessment

We will assess the performance of the different methods by
using the following metrics: the Endpoint Error (EPE) and
the percentage of pixels with EPE larger than 1%, 2%, and
3% where EPE is defined as the average L2-norm of the op-
tical flow error [33]. In this section, we will focus on the
state-of-the-art models from model-based and learning-based
methods but in Appendix A we also cover more classical ap-
proaches, namely Plane Fitting [20], Triplet Matching [34]
and Time Gradient [35].

Model-based approaches outperform others on the MVSEC
dataset in most scenarios and metrics. As shown in Table 1,
model-based methods, especially MultiCM [8], consistently
achieve lower endpoint errors (EPE) and fewer pixels with
EPE greater than 3 compared to learning-based approaches.
In particular, learning-based methods perform slightly better
in the outdoor dayl scenario, possibly due to the violation
of the Brightness Constancy assumption in variable outdoor
lighting conditions.

DSEC Results

The results on DSEC reveal a significant gap between
the leading model-based methods and supervised learning
approaches. Shiba et al. [12] theorize that due to the nature
of the DSEC dataset, which includes only driving scenarios,
learning-based approaches overfit the predominant forward
movement, resulting in high scores. Alternatively, it could be
that model-based methods do not perform well on large pixel
distances, which are much more prevalent in DSEC than in
MVSEC.



It is important to note that the self-supervised method
Taming Contrast Maximization (TamCM) [26] achieved
higher accuracy than MultiCM. This could be because the
losses used in TamCM help the model generalize better than
the optimization procedures of model-based approaches.
Additionally, by being trained on DSEC, TamCM may have
learned that predicting forward motion generally yields
higher scores, leading to a tendency to favor forward motion
predictions without overfitting to the ground truth flow.

3.3 Runtime performance

The runtime performance of optical flow computation is
crucial for the successful application of these approaches. In
scenarios such as real-time processing on small, embedded
hardware, such as drones, inference time is essential.

Table 3 presents the inference time for generating one
flow from the DSEC dataset, which accumulates events
over a 100-millisecond window. To simulate performance
on mobile hardware, we conducted our tests using a laptop
equipped with an AMD Ryzen 7 5800HS CPU and an RTX
3060 Laptop GPU.

Table 3: Inference time Comparison of different methods on DSEC
Dataset. All benchmarks are performed on a laptop with an AMD
Ryzen 7 5800HS CPU and an RTX 3060 Laptop GPU. Runtimes
are averaged over 100 computations of flows.

CPU GPU

E-RAFT
(12 iterations, 1/8 resolution) 2.52s  130ms
TMA 8.66s  246ms
IDNet

7 (4 iterations, 1/4 resolution) 7.70s 325ms
IDNet
(4 iterations, 1/8 resolution) 2.23s  120ms
IDNet
(TID, 1 iteration, 1/8 resolution) 530ms  24ms
Brebion et al. 63ms  39ms

SL - Models using supervised learning, M - Model-based meth-
ods.

It can be seen that the fastest method available is the
model-based method created by Brebion et al. [10] which can
run in realtime even on a CPU. The MultiCM [8] algorithm
has a slow runtime which might be due to the unoptimized
implementation of the current method but improvements
could possibly be devised to make it run faster. On the
Supervised learning side we can see that IDNet is able to
run in realtime on GPUs which makes it a good option for
applications that might need good accuracy and fast runtime.

The results indicate that, although learning-based meth-
ods may not be the absolute fastest, they offer sufficient
efficiency for a wide range of applications while still
achieving state-of-the-art performance.

4 Exploring the gap between MVSEC and
DSEC

Since there exists a large performance gap for model-based
methods between the MVSEC and DSEC datasets as exem-
plified by Table 1, 2, we aim to explore and reason about the
existence of the gap.

There are two leading theories in the literature. On one
hand, as Shiba et al. [8] theorizes the supervised learning
methods might overfit to the nature of the DSEC dataset
which includes only driving scenarios and the supervised
methods might overfit to the forward motion. On the other
hand, model-based methods might not be a good fit for
datasets with large displacements such as DSEC and their
limitations or assumptions might be limiting their perfor-
mance instead. If the overfitting is the not the only factor we
should expect to see the accuracy of the retrained models to
still be greater than the model-based methods.

4.1 Experiment Setting

We aim to explore this by training a model from scratch on
BlinkFlow, which does not only have forward motion but
much more diverse motion types.

We decided to retrain IDNet [13] on the BlinkFlow
dataset. We trained two versions, one at 1/4 and another
at 1/8 resolution, for 25 epochs on the first three sets of
sequences from the dataset, totaling a third of the entire
dataset. We only used a subset of the complete dataset
due to computational reasons. All training was done on a
single NVIDIA RTX 3090 24GB RAM GPU and took lees
than 12 hours. We used an Adam optimizer [36], with a
learning rate of le-4 and a One Cycle scheduler. Almost
all hyperparameters were adapted from the original IDNet
paper [13].

Additionally, we trained the TMA [14] model for 25k
steps(around 10 epochs), using AdamW [37] with a 2e-4
learning rate on an NVIDIA RTX A6000 GPU, also with a
One Cycle scheduler and it took around 16 hours. Training
the TMA [14] model aimed to determine whether the results
are dependent on the specific model or if learning-based
approaches in general achieve these results. Both models
were trained entirely from scratch and do not have any
pretrained feature encoders or modules.

4.2 Results

Table 4 demonstrates that both the retrained IDNet and
TMA outperform the MultiCM algorithm, even though they
were not trained on DSEC and the forward motion bias not
being able to affect the results. Furthermore, the retrained
algorithms achieves better accuracy than self-supervised
methods trained on DSEC.

Despite the promising results, it is evident that the re-
trained IDNet and TMA algorithms still lag significantly
behind the original models trained directly on DSEC. This
suggests some level of overfitting to the specific characteris-
tics of the DSEC dataset, possibly due to the motion type or



inherent differences between the BlinkSim simulator and the
real-world event camera used in DSEC event generation.

Table 4: Comparison of methods on the DSEC dataset. The first
three rows show results for the original IDNet and TMA trained on
DSEC, followed by IDNet and TMA retrained on BlinkFlow. Tam-
ing Contrast Maximization (self-supervised) and MultiCM (model-
based) are included for comparison.

EPE| %ipel %ol %spel
O IDNet (1/8) 0.770 12.100 4.000 2.200
(LH IDNet (1/4) 0.719 10.069 3.497 2.036
A TMA 0.743 10.863 3.972 2.301
IDNet (1/8)*  1.964 58.522 27.664 14.139
L IDNet (1/4)* 1.844 47657 22.657  12.594
TMA#* 1.938 51.618 21.111 9.693
?} TamCM 2.330 68.293 33.481 17.771
=  MultiCM 3.472 76.57 48.48 30.855

Models marked with an asterisk (*) were retrained on BlinkFlow.
BF - Models trained on BlinkFlow, DSEC - Supervised models
trained on DSEC, SSL - Models that are Self-Supervised, M -
Model-based methods.

Considering these results and our initial hypothesis, we
can assert that the superior accuracy of learning-based ap-
proaches, compared to model-based methods on the DSEC
dataset, is not solely due to overfitting to forward motion. In-
stead, model-based approaches inherently perform worse on
datasets like DSEC that feature large displacements. This per-
formance gap indicates that learning-based methods are more
adaptable and capable of handling complex motion dynamics
present in such datasets.

5 Conclusion

This work provides a comprehensive comparison of model-
based and learning-based optical flow estimation methods
using event cameras, with a focus on their performance
across the MVSEC and DSEC datasets. = Model-based
methods are shown to be more effective on the MVSEC
dataset, which is characterized by smaller motions and
shorter time intervals. In contrast, learning-based methods
exhibit superior performance on the DSEC dataset, due to its
dynamic motion patterns.

Our analysis suggests that the performance differences
between model-based methods on the MVSEC and DSEC
datasets stem from their inherent limitations, such as reliance
on assumptions. We have shown this by retraining the
IDNet and TMA models on the synthetic BlinkFlow dataset.
Even though these retrained models did not achieve the
same performance as those trained directly on DSEC, they
still significantly outperformed model-based methods. This
indicates that overfitting to the DSEC dataset does not fully

explain the performance gap. Instead, it highlights that
learning-based methods are inherently more adaptable and
effective in handling complex motion dynamics.

While model-based methods such as those developed
by Brebion et al. [10] can achieve real-time performance on
CPUs, learning-based methods, although not optimized for
CPU performance, still deliver decent results. However, their
performance excels on GPU-equipped systems, indicating
that with the right hardware, learning-based methods are
well-suited for real-time applications.

5.1 Recommendations

Based on the findings of this study, we recommend the fol-
lowing for selecting optical flow estimation methods:

1. Scenario-Based Method Selection: For applications
with small and predictable motions, model-based meth-
ods are preferable because of their efficiency and CPU-
based real-time performance. These methods are ideal
in environments with limited computing resources or
where fast processing is essential.

2. Use of Learning-Based Methods in Dynamic Envi-
ronments: In scenarios with complex and varied mo-
tions, such as dynamic driving or robotic navigation,
learning-based methods are better suited due to their ro-
bustness and ability to generalize from diverse training
data.

3. Leveraging Synthetic Data for Training: The success
of models retrained on the BlinkFlow dataset supports
the use of synthetic data to train learning-based optical
flow models. This strategy reduces the need for exten-
sive real-life data collection and can help models gener-
alize more effectively across different settings.

4. Exploring Dedicated Hardware: Future research
might explore the deployment of these methods on ded-
icated hardware like FPGAs and examine the runtime of
learning-based approaches on such hardware.

These recommendations are intended to assist in the selection
and application of optical flow estimation methods tailored to
the specific needs and constraints of different scenarios.

6 Responsible Research

In this section, we address the reproducibility of our work, en-
suring that our research adheres to high standards of integrity
and transparency.

6.1 Reproducibility

To promote transparency and facilitate the validation of our
findings, all experiments conducted in this study have been
thoroughly documented and are fully reproducible. We have
reported the hardware used to benchmark the methods, en-
suring that other researchers can replicate our setup and re-
sults. The metrics used in our evaluation are standard for the
field, providing a consistent basis for comparison. In addi-
tion, the evaluation of our new methods was performed using
the DSEC website, where one can upload their predictions



directly'. This approach minimizes the possibility of code-
related issues leading to incorrect results, as the evaluation
platform ensures standardized and accurate assessments. We
have also open-sourced? our retrained models on the Blink-
Flow dataset, ensuring that the results can be verified and re-
produced.

6.2 Ethical Considerations

Our study has been designed with careful attention to ethical
considerations. We believe that our work does not pose sig-
nificant ethical issues within the scope of this research. How-
ever, it is important to recognize that the broader field of op-
tical flow and computer vision, particularly with the use of
event cameras, can have ethical implications. Event cameras,
which capture asynchronous visual data, can significantly en-
hance the performance of autonomous systems. This tech-
nology can be used for both beneficial and harmful purposes.
Therefore, it is essential to develop such systems responsibly,
ensuring that ethical guidelines are in place to govern their
use.
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A Classical model-based approaches results

More traditional optical-flow estimation methods were also
benchmarked (Table 5), but their accuracy was not competi-
tive with the more recent model-based or learning-based ap-
proaches. However, the Time Gradient method [35], a modi-
fied version of plane fitting, achieved impressive runtime per-
formance on DSEC which might make it useful in certain sit-
uations where performance is critical.

Table 5: Comparison of classical model-based approaches in terms
of accuracy and inference time on the DSEC dataset. All imple-
mentations of these algorithms are from the Prophesee Metavision
SDK [35] and all run exclusively on the CPU. The runtime is aver-
aged over 800 optical flow maps creations.

EPE| %spgl CPU Time

PlaneFitting [20] 22.6 86.5 320ms
TripletMatching [34] 12.6 84.0 107ms
TimeGradient [35] 15.8 86.0 40ms
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