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Samenvatting

Deze studie heeft onderzocht welke factoren van invloed zijn op de twee belangrijkste

verwijderingsmechanismen (adsorptie en biodegradatie) voor organische microverontreinigingen

(OMV’s) tijdens oeverfiltratie (RBF). Tevens heeft deze studie gekeken of het mogelijk is een

voorspellend model te ontwikkelen voor OMV-verwijdering tijdens oeverfiltratie.

Hoofdstuk 2 heeft het sorptie- en biodegradatiegedrag van 14 OMV’s onderzocht in kolommen

gevuld met technisch zand (representatief voor de eerste meter bodempassage in

oeverfiltratiesystemen onder oxische omstandigheden). Om een onderscheid te kunnen maken tussen

OMV-sorptie en OMV-biodegradatie, zijn doorbraakcurves gemodelleerd op basis van de advectie-

dispersievergelijking. Retardatiefactoren (indicatie voor OMV-sorptie) waren voor de meeste stoffen

gelijk of ongeveer gelijk aan 1, wat aangeeft dat deze stoffen mobiel gedrag kunnen vertonen tijdens

bodempassage. Het effect van actieve en inactieve biomassa (bio-sorptie), zandkorrels en de 

watermatrix op OMV-sorptie waren verwaarloosbaar klein voor de onderzochte condities in dit

hoofdstuk. Hoewel trends werden waargenomen tussen lading, of hydrofobiciteit, van geladen

OMV’s en hun biodegradatiesnelheid, kon er geen statistisch significante lineaire relatie voor dit

OMV-mengsel verkregen worden op basis van deze fysisch-chemische eigenschappen. Echter kon er 

wel een statistisch significante relatie worden waargenomen tussen de biodegradatiesnelheid van de

OMV’s en de functionele groepen aanwezig in de moleculaire structuur ervan. De aanwezigheid van

ethers en carbonylgroepen verhoogde de biodegradatiesnelheid, terwijl de aanwezigheid van aminen,

ringstructuren, alifatische ethers en zwavel de biodegradatiesnelheid verlaagde.

Hoofdstuk 3 onderzocht de relatie tussen functionele groepen in de moleculaire structuur van een

mengsel van 29 OMV’s (waarvan er 11 hetzelfde waren als in hoofdstuk 2) en hun

biodegradatiesnelheid verkregen uit laboratoriumschaal bodemkolommen. Op basis hiervan werd een

multilineair regressiemodel ontwikkeld dat vervolgens werd gevalideerd met veldgegevens. In

tegenstelling tot hoofdstuk 2, waarbij technisch zand werd gebruikt voor het vullen van de

kolommen, werden de laboratoriumschaal kolommen in dit hoofdstuk gevuld met bodemmateriaal

van een operationele oeverfiltratie-locatie. Er werd een statistisch significante relatie gevonden tussen

de biodegradatiesnelheid van de OMV’s en de functionele groepen in de moleculaire structuur ervan.

De biodegradatiesnelheid werd verhoogd in de aanwezigheid van carbonzuren, hydroxylgroepen en

carbonylgroepen, maar daalde in aanwezigheid van ethers, halogenen, alifatische ethers,

methylgroepen en ringstructuren. Verschillen tussen de voorspellende modellen verkregen in

hoofdstuk 2 en 3 kunnen worden verklaard door de gebruikte bodemtypen en waterkwaliteiten

(water uit het Schie-kanaal en technisch zand in hoofdstuk 2, water uit de Lek-rivier en

bodemmateriaal van een oeverfiltratie-locatie in hoofdstuk 3). Het voorspellende model verkregen in

hoofdstuk 3 gaf een goede kwalitatieve indicatie van de biodegradeerbaarheid voor ongeveer 70% van

de in het veld onderzochte OMV’s (voor ongeveer 80% wanneer de glymen werden uitgesloten). Het

model was minder betrouwbaar wanneer de voorspelde biodegradatiesnelheid kleiner of gelijk was

aan de standaardfout (s = 0.77 d-1) of wanneer de OMV amide- of aminegroepen bevatte.

Aangezien er in de literatuur gerapporteerd is dat waterkwaliteit een belangrijke factor is in OMV-

verwijdering tijdens bodempassage, heeft hoofdstuk 4 onderzocht of dit de enige belangrijke factor is,

of dat het effect van type bodemmateriaal ook een belangrijke rol speelt in de verwijdering van OMV’s
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tijdens bodempassage. Sorptie- en biodegradatiegedrag van 20 OMV’s werd onderzocht in

laboratoriumschaal kolommen gevuld met twee verschillende types bodemmateriaal en gevoed met

dezelfde waterkwaliteit. De kolommen simuleerden het oeverfiltratieproces onder oxische

omstandigheden. Verschillen in retardatiefactoren en biodegradatiesnelheden van de OMV’s waren

statistisch niet significant voor de twee bodemtypes, hoewel zij werden gekenmerkt door verschillen

in kationische uitwisselingscapaciteit, organische stof en zandgehalte / slib / klei. Dit resultaat werd

ondersteund door de samenstelling van de microbiële gemeenschap (rijkheid, gelijkheid) van de twee

types bodemmaterialen, die meer vergelijkbaar werd tijdens de experimenten doordat beide

kolommen gevoed werden met dezelfde waterkwaliteit. Dit geeft aan dat de samenstelling van de

microbiële gemeenschap en daardoor OMV-verwijdering in oevers voornamelijk wordt bepaald door

de waterfase (hoeveelheid en kwaliteit organische stof, voedingsstoffen) in plaats van de bodemfase.

Deze resultaten impliceren dat verschillende oeverfiltratie-locaties gelegen langs dezelfde rivier

vergelijkbare OMV-verwijdering kunnen tonen (in het geval van vergelijkbare waterkwaliteit en

verblijftijd).

Hoofdstuk 5 onderzocht het effect van de waterkwaliteit diepgaander, en meer specifiek het effect van

verschillende organische koolstoffracties verkregen uit rivierwater (hydrofiel, hydrofoob, transfiel en

het totaal aan organische koolstof in het rivierwater) op de biodegradatiesnelheid van de OMV.

Bovendien werd het effect van een korte-termijn OMV- en DOC-shock-load (verviervoudiging van de 

concentratie OMV en verdubbeling van de concentratie opgelost organische koolstof (DOC))

onderzocht op de biodegradatiesnelheid van de OMV om te beoordelen hoe robuust RBF-systemen

zijn ten gevolge van bijvoorbeeld klimaatverandering. De resultaten impliceren dat, in tegenstelling

tot wat wordt waargenomen voor bodemsystemen die gevoed worden met afvalwater-effluent, de

biodegradatiesnelheid van de OMV’s tijdens oeverfiltratie niet wordt beïnvloed door het type

organisch koolstoffractie (verkregen uit rivierwater) gevoed aan de kolommen, bij stabiele operatie. Er

werd geen effect van een korte-termijn DOC-shock-load op de biodegradatiesnelheid van de OMV’s 

waargenomen tussen de verschillende organische koolstoffracties. Dit betekent dat de oeverfiltratie-

locatie onderzocht in dit hoofdstuk veerkrachtig is met betrekking tot voorbijgaande hogere DOC-

concentraties in het rivierwater (bijvoorbeeld na een afname van de rivierafvoer als gevolg van

seizoensinvloeden). Echter, een tijdelijke OMP-shock-load verhoogd de biodegradatiesnelheden van 

de OMV’s voor de totale organische koolstof- en de hydrofiele organische koolstoffracties verkregen

uit rivierwater. Deze verhoogde biodegradatiesnelheden konden niet worden verklaard door één van

de parameters onderzocht in dit hoofdstuk (adenosine triphosphate (ATP), DOC-verwijdering,

Specific UltraViolet Absorbance (SUVA), rijkdom / gelijkheid van de microbiële populatie of OMV-

categorie (hydrofobiciteit / lading).

Het effect van de redoxconditie op de biodegradatiesnelheid van de OMV’s en adaptief gedrag van

een mengsel van 15 OMV’s in laboratoriumschaal bodemkolommen gevoed met rivierwater werd

geanalyseerd in hoofdstuk 6. Dimethoaat, diuron en metoprolol toonde redox-afhankelijk

verwijderingsgedrag met grotere afbraaksnelheden in de oxische zone dan in de suboxische /

anoxische zone. OMV’s die persistent gedrag vertoonden in de oxische zone (atrazine, carbamazepine,

hydrochloorthiazide en simazine) werden ook niet verwijderd onder meer gereduceerde

omstandigheden. Adaptief gedrag werd waargenomen voor vijf OMV’s: dimethoaat, chloridazon,

lincomycine, sulfamethoxazol en fenazon. Nieuw te ontwikkelen of bestaande oeverfiltratie-locaties

die voor het eerst blootgesteld worden aan deze OMV’s kunnen na opstarten tot 9 maanden nodig
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hebben om de volledige verwijderingscapaciteit bereiken. Voor sommige OMV’s, zoals dimethoaat,

kunnen zelfs langere opstarttijden nodig zijn, omdat de volledige verwijderingscapaciteit zelfs na 15

maanden nog niet was bereikt voor de onderzochte condities in dit hoofdstuk. Het adaptieve gedrag

dat werd waargenomen voor sommige OMV’s kon niet worden verklaard door hun fysisch-chemische 

eigenschappen (hydrofobiciteit, lading, moleculair gewicht) of functionele groepen. Adaptief gedrag

van de biomassa richting OMV’s bleek een belangrijke factor te zijn die moet worden meegenomen in

voorspellende modellen voor OMV-verwijdering tijdens RBF.

Hoofdstuk 7 presenteert de conclusies, gevolgen voor de praktische toepassing en aanbevelingen voor

toekomstig onderzoek.
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Summary

This study investigated the factors influencing the main removal mechanisms (adsorption and

biodegradation) for organic micropollutant (OMP) removal during river bank filtration (RBF) and the

possibility of developing a predictive model of this process for OMP removal during RBF.

Chapter 2 analysed the sorption and biodegradation behaviour of 14 OMPs in soil columns filled with

technical sand (representative of the first meter of oxic conditions in RBF systems. Breakthrough

curves were modelled, based on the advection-dispersion equation, to differentiate between OMP

sorption and biodegradation. Retardation factors (indicators for OMP sorption) for most compounds

were close to 1, indicating little sorption of these compounds and thus the mobile behaviour of these

compounds during passage in soils. The influence of active and inactive biomass (bio-sorption), sand

grains and the water matrix on OMP sorption was found to be negligible under the conditions

investigated in this chapter. Although trends were observed between charge or hydrophobicity of

charged OMPs and their biodegradation rates, a statistically significant linear relationship for the

complete OMP mixture could not be obtained using these physico-chemical properties. However, a

statistically significant relationship was obtained between OMP biodegradation rates and the

functional groups present in the molecular structure of the OMPs. The presence of ethers and carbonyl

groups increased biodegradability, while the presence of amines, ring structures, aliphatic ethers and

sulphur decreased biodegradability.

Chapter 3 examined relationships between functional groups present in the molecular structure of a

mixture of 29 OMPs (of which 11 were the same as in Chapter 2) and their biodegradation rates

obtained from lab-scale soil columns and constructed a multi-linear regression model for

biodegradation rate prediction based on this. This model was then validated with field data. In

contrast to Chapter 2, where technical sand was used to fill the columns, lab-scale columns here were

filled with soil from an operational RBF site. A statistically significant relationship was found between

OMP biodegradation rate and the functional groups present in the molecular structures of the OMPs.

OMP biodegradation rate increased in the presence of carboxylic acids, hydroxyl groups, and carbonyl

groups, but decreased in the presence of ethers, halogens, aliphatic ethers, methyl groups and ring

structures in the molecular structure of the OMPs. Differences between the predictive models

obtained in Chapter 2 and 3 could be explained by the different soil types and water qualities used

(Schie Canal water and technical sand in Chapter 2, Lek River water and soil from an operational RBF

site in Chapter 3). The predictive model obtained from the lab-scale soil column experiment in

Chapter 3 gave a good indication of biodegradability for approximately 70% of the OMPs monitored

in the field (80% excluding the glymes). The model was found to be less reliable for the more

persistent OMPs (OMPs with predicted biodegradation rates lower or around the standard error =

0.77 d-1) and OMPs containing amide or amine groups. These OMPs should be carefully monitored in

the field, to determine their removal during RBF.

Water quality was reported to be an important factor in OMP removal during soil passage, however it

is unclear if this is the only important factor and therefore Chapter 4 explored the effect of soil type on

OMP removal. Sorption and biodegradation behaviour of 20 OMPs was investigated in lab-scale

columns filled with two different soil types and fed with the same water quality - the columns were

simulating RBF under oxic conditions.
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Differences in retardation factors and OMP biodegradation rates were statistically not significant

between the two soil types, although these soil types were characterized by a different cationic

exchange capacity, organic matter and sand/silt/clay content. This result was supported by the

microbial community composition (richness, evenness) of the two soils that became more similar

during the course of the experiments as a result of feeding both columns with the same water quality.

This indicates that microbial community composition and thereby OMP removal in soils is primarily

determined by the aqueous phase (organic matter quantity and quality, nutrients) rather than the soil

phase. These results imply that different RBF sites located along the same river may show similar

OMP removal (in case of similar water quality and residence time).

Chapter 5 investigated the effect of the water quality in more detail, and more precisely the effect of

different organic carbon fractions (hydrophilic, hydrophobic, transphilic and the complete river water

organic carbon) obtained from river water on the OMP biodegradation rate. Additionally, the effect of

short-term OMP and DOC shock-loads (e.g. quadrupling the OMP concentrations and doubling the

DOC concentration) on OMP biodegradation rates was investigated to assess the resilience of RBF

systems to, for example, climate change. The results imply that – in contrast to what is observed for

soil systems operating on wastewater effluent - OMP biodegradation rates during RBF are not affected

by the type of organic carbon fraction (obtained from river water) fed to the soil column, in case of

stable operation. No effect of a short-term DOC shock-load on OMP biodegradation rates was

observed, for none of the different organic carbon fractions dosed. This means that the RBF site

investigated in this chapter is resilient towards transient higher DOC concentrations in the river water

(e.g. following a decrease in river discharge due to seasonal effects). However, a temporary OMP

shock-load increased OMP biodegradation rates for the river water organic matter and hydrophilic

organic carbon fractions. These increased biodegradation rates could not be explained by any of the

parameters investigated in this chapter (ATP, DOC removal, SUVA, richness/evenness of the soil

microbial population or OMP category (hydrophobicity/charge).

The effect of redox condition on OMP biodegradation rate as well adaptive behaviour of a mixture of

15 OMPs (largely similar to the OMP mixtures used in Chapter 3, 4, and 5) in laboratory-scale soil

columns fed with river water was analysed in Chapter 6. Dimethoate, diuron, and metoprolol showed

redox dependent removal behaviour with degradation rates larger for the oxic zone compared to the

suboxic/anoxic zone. OMPs that showed persistent behaviour in the oxic zone (atrazine,

carbamazepine, hydrochlorothiazide and simazine) were also not removed under more reduced

conditions. Adaptive behaviour was observed for five OMPs: dimethoate, chloridazon, lincomycin,

sulfamethoxazole and phenazone. Newly developed, or existing, RBF sites exposed to these OMPs for

the first time may require up to 9 months following start-up to reach full removal capacity. For some

chemicals, such as dimethoate, even longer start-up times could be required since full removal

capacity was not reached in our tests even after 15 months. The adaptation time observed for some

OMPs could not be explained by their physico-chemcial properties (hydrophobicity, charge, molecular

weight) or functional groups. Finally, adaptive behaviour of the biomass towards OMPs was found to

be an important factor that should be incorporated in predictive models for OMP removal during

RBF.

Chapter 7 presents the conclusions, implications for the practical application and recommendations

for future research.
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1 Introduction

1.1 RBF as a special case of MAR

Managed Aquifer Recharge (MAR) technologies such as: infiltration basins/ponds, soil aquifer

treatment (SAT), dune filtration, percolation tanks, river bank filtration (RBF) etc. have received a lot

of attention in the past years as possible treatment processes for the removal of organic micropolluants

(OMPs). MAR has several advantages over other treatment processes capable of OMP removal (e.g.

membrane filtration and/or advanced oxidation): it is a low cost and robust process, does not require

chemical supplementation and is low in energy demand. The different MAR technologies show some

important differences with respect to operational parameters such as feed water quality. SAT uses

treated wastewater effluent while RBF uses river water. Feed water organic carbon quantity and

quality (composition) were shown to play a major role in shaping the microbial community

composition and thus OMP removal (Li et al., 2014). Therefore, result obtained from SAT studies

cannot be easily translated to RBF processes.

RBF is the natural treatment of river water by means of soil passage. Pumping wells located along the

river create a hydraulic gradient which enables the flow of river water through the bank. RBF is a

common pre-treatment technique adopted by Dutch drinking water companies using river water as

drinking water source (van der Hoek et al., 2014). Originally, RBF was used for the removal of

pathogens, bacteria, protozoa, natural organic matter (NOM) and turbidity. However, more recent

studies on RBF demonstrated that this process could act as possible barrier for a wide variety of

OMPs as well (Benotti et al., 2012, Hoppe-Jones et al., 2010, Storck et al., 2010).

1.2 Organic micropollutants

OMPs are a diverse group of chemical compounds that include pesticides, personal care products,

pharmaceuticals, and industrial waste products. These compounds enter aquatic environments, like

rivers, by different pathways such as agricultural run-off, discharges from wastewater treatment

plants and industry, as well as illegal spills. (Municipal) wastewater treatment plants are not

specifically designed for OMP removal, and thus OMPs have been detected in wastewater treatment

plant effluents discharged to rivers (Paxéus, 1996). Run-off and/or leaching from agricultural land

results in the presence of pesticides as well as veterinary pharmaceuticals in surface and/or ground

waters (Kemper, 2008, Willis et al., 1982). Although the effect of trace levels of OMPs on human health

is still largely unknown, ingesting low concentrations of OMPs for a prolonged period of time as well

as the effect of ingesting OMP mixtures could pose a potential health risk (Jones et al., 2004,

Sonnenschein et al., 1998). Therefore, it is important to remove these compounds from drinking water.

As a result of improved analytical techniques, nowadays more and more OMPs can be detected in the

river water. RBF has been shown to be an effective barrier for many OMPs, however, some OMPs (e.g.

atrazine, carbamazepine) were seen to persist (Benotti et al., 2012, Storck et al., 2012). Due to the lack of

insight into why certain OMPs are removed whilst others show persistent behaviour, drinking water

companies are challenged to predict if those newly discovered OMPs will be removed during RBF or

not. Ideally, the behaviour of every newly discovered OMP would be tested under controlled

conditions in the laboratory simulating the RBF process, but this is unrealistic given the financial and

time investments associated. Therefore, the development of a predictive model for OMP removal

during RBF is desirable for drinking water companies operating RBF. Predictive models based on
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Quantitative Structure Activity Relationships (QSARs), could enable drinking water companies to

predict the removal of OMPs based on their physico-chemical properties and/or structural fragments

(e.g. functional groups). Based on the outcome of such predictive models, drinking water companies

using RBF could adjust their post-treatment to prevent the presence of OMPs in the drinking water. In

addition, a predictive model should provide drinking water companies with more insight into the

parameters that influence OMP removal during RBF.

1.3 Main mechanisms affecting fate of OMPs during RBF

The fate of OMPs during the RBF process is affected by a number of processes including: adsorption,

microbial degradation, photodegradation, hydrolysis, oxidation-reduction, volatilization,

phytodegradation, and dilution with native groundwater (Gravilescu, 2005, Hiscock et al., 2002, Storck

et al., 2012, Verstraeten et al., 2003) (Figure 1).

Figure 1 - OMP removal mechanisms during RBF

Photodegradation (photolysis) describes the process of OMP degradation as a result of the reaction

with sunlight. Two types of photolysis can be distinguished: direct photolysis and indirect photolysis.

Direct photolysis refers to the absorbance of photons (sunlight) by the OMP resulting in bond cleavage

or rearrangement to form a new stable product (Mill, 1999). Indirect photolysis describes the process

by which soil constituents such as dissolved organic matter (DOM) react with photons to form

reactive oxidants such as singlet oxygen (1O2) or hydroxyl radicals (·OH) (Remucal, 2014). These

oxidants can subsequently react with the OMPs.

Hydrolysis is the reaction of an OMP with water (Gavrilescu, 2005, Shonnard et al., 2007). Some

functional groups, such as monohalogenated hydrocarbons, polyhalogenated hydrocarbons,

carboxylic acid esters, dialkyl phthalates, amides, carbamates, phosphoric acid triesters and

thiophosphoric acid triesters, epoxides, lactones, phosphoric acid esters, and sulfonic acid ester, were

demonstrated to be susceptible towards hydrolysis (Gavrilescu, 2005, Shonnard et al., 2007).

Hydrolysis is a primary degradation pathway for carbamate pesticides (e.g. carbosulfan, pirimicarb)

(Wei et al., 2001) and organophosphate pesticides (e.g. parathion, diazinon) (Cowart et al., 1971).
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In contrast to activated sludge and membrane bioreactor (MBR) processes, OMP removal facilitated

by phytodegradation is typically observed in MAR systems such as RBF, artificial recharge,

constructed wetlands. Phytodegradation is defined by Salt et al. (1998) as “the use of plants and

associated microorganisms to degrade organic pollutants”. Riparian vegetation can play an important

role in the removal of some OMPs, especially the ones which are not removed by other removal

mechanisms. Dordio et al. (2011) reported a 82% removal of carbamazepine by the macrophyte Typha

spp. in a hydroponic solution with an initial concentration of 0.5 mg L-1. Carbamazepine is known to

be very persistent during RBF and thus phytodegradation might be the sole removal mechanism for

this OMP, indicating the importance of this removal mechanism for certain OMPs.

Volatilization is the tendency of an OMP to move from the water phase into the air and is usually

expressed by the Henry’s law constant. The Henry’s law constant is described by the following

equation:

kH = p / c

In which:

kH = Henry’s law constant [L · atm/mol]

p = partial pressure [atm]

c = concentration of the dissolved gas [mol/L]

A high Henry’s law constant implies a high tendency of an OMP to move from the water phase into

the air.

The extent of dilution with native ground water depends on site specific geo-hydrological conditions.

De Vet et al. (2010) reported that dilution mainly occurs in the wells as opposed to the aquifer.

Although dilution can lead to significantly lower OMP concentrations in the abstracted water, it

cannot be regarded as a pure removal mechanism.

Sorption of OMPs onto soil matrices was found to be an important removal mechanism for a number

of pharmaceuticals (e.g. ofloxacin, propranolol, diclofenac), pesticides (e.g. oxyfluorfen) and hormones

(e.g. progesterone) (Drillia et al., 2005, Hall et al., 2015, Sangster et al., 2015). In general, two types of

adsorption can be distinguished: physical and chemical adsorption (Bailey et al., 1964). Physical

adsorption is the adsorption of an OMP to soil by means of Van der Waals forces as a result of

interactions such as: orientation or dipole-dipole, polarization or induced dipole, dispersion, and ion-

dipole in addition to Born repulsion (Bailey et al., 1964). Chemical adsorption is the adsorption of an

OMP to the adsorbent (soil constituents) as a result of covalent bonding (Bailey et al., 1964).

OMP sorption in soil is usually indicated by the soil sorption coefficient Kd which is defined by Eq .1.

� � =
� �

� �
Eq.1

In which:

KD = soil sorption coefficient [mL/kg]

CS = concentration of the OMP in the soil phase [µg/kg] 

CW = concentration of the OMP in the water phase [µg/mL] 

A high KD values indicates strong sorption of the OMP to the soil constituents, while a low KD

indicates weak sorption of the OMP to the soil constituents.



5

Based on the soil sorption coefficient, a retardation factor the OMP can be determined using Eq. 2.

� = 1 +
� � � �

�
Eq.2

In which:

R = retardation factor [-]

ρb = soil bulk density [kg m-3]

Kd = distribution coefficient [kg-1 m3]

θ  = volumetric water content [m3 m-3]

The higher the retardation factor, the more strongly an OMP is sorbed to the soil and retarded with

respect to the ground water velocity. If an OMP does not sorb onto the soil (or only very weakly), the

retardation factor is equal or close to 1.

Microbial degradation is the breakdown of OMPs facilitated by the soil microbial population and was

proven an important removal mechanism for OMP removal during soil passage in many studies

(Bertelkamp et al., 2014, Maeng et al., 2011a). Microbial degradation does not necessarily mean

complete mineralization since it is often defined as loss of the parent compound.

As described by Grady (1985), an OMP can be biodegraded if the following pre-requisites are met: (1)

an organism should be present that is capable of degrading the OMP, (2) it should be possible to

synthesize the required enzymes and (3) the appropriate environmental conditions should be present

to enable the degradation of an OMP at a significant rate. Persistence of an OMP is difficult to prove

since it is often the result of inappropriate experimental conditions (Grady, 1985).

Although a number of mechanisms contribute to the overall removal of OMPs as discussed in the

previous sections, some processes will play a more important role than others. Photolysis of OMPs

was reported to be limited to the first few mm in the soil (Frank et al., 2002, Hebert et al., 1990), thus

OMP removal as a result of photodegradation is expected to be small in RBF. McCutcheon et al. (2003)

showed that for a number of OMPs (carbontetrachloride, hexachloroethane, tetrachloroethylene,

triaminotoluent and benzonitrile) half-lives for the hydrolysis reaction were in the order of years,

while half-lives for the phyto- and microbial transformation ranged from hours to days. This implies

that phyto- and microbial transformation will play a more important role in OMP removal during RBF

than hydrolysis. However, since the rizosphere is usually limited to the river bank/initial infiltration

phase, phytodegradation can thus only contribute to a small extent to OMP removal in the RBF

process. Moreover, OMP losses due to volatilization were reported to be generally negligible

(Gavrilescu, 2005, Verstraeten et al., 2003). A large number of studies indicated that sorption and

biodegradation were the two main removal mechanisms during soil passage for most OMPs

(Gavrilescu, 2005, Hiscock et al., 2002, Hoppe-Jones et al., 2012, Maeng et al., 2011a, Maeng et al., 2011b,

Surampalli et al., 2004). Therefore, the remainder of this review will focus on these two removal

mechanisms.

1.4 Other biological treatment processes

Besides MAR systems, other biological treatment processes, such as: activated sludge (AS), membrane

bioreactors (MBR), bioremediation, biological activated carbon and slow sand filters, have been

reported to be capable of (partial) OMP removal (D'Alessio et al., 2015a, Magan et al., 2010, Radjenović
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et al., 2009, Rattier et al., 2014). However, process parameters (e.g. residence time, redox conditions,

feed water quality (e.g. BDOC concentration and composition), biomass quantity, initial OMP

concentration) that were demonstrated to affect OMP removal (Li et al., 2014, Storck et al., 2012), can

significantly differ between these processes and RBF (Table 1). Hence, results obtained from other

biological treatment processes cannot be easily translated to RBF. However, underlying mechanisms

facilitating OMP removal might be comparable and in addition results obtained from other biological

treatment process might improve our understanding of OMP removal during RBF. Therefore, this

review will refer to studies that investigated other biological treatment processes wherever possible or

useful and will indicate major differences.

1.5 Objectives

To enable the development of a predictive model for OMP removal during RBF, more insight is

required in the factors influencing the two main OMP removal mechanisms and how these two

mechanisms are related to each other.

The objective of this review paper is to: (1) identify the key soil, OMP, and water quality parameters

influencing OMP sorption and biodegradation, (2) present currently available QSAR models for OMP

sorption and biodegradation, (3) identify knowledge gaps that need to be addressed before a

predictive model for OMP removal during RBF can be developed, and (4) formulate research

questions to fill these knowledge gaps.
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Table 1 - Biological treatment processes and their main differences in process parameters (residence time, redox condition, feed water quality and biomass quantity)

Process Residence time Redox condition Feed water quality Biomass

quantity

Initial OMP concentration

Activated sludge days O2,NO3- Raw wastewater High ng/L - µg/L 

Membrane bioreactor days O2, NO3- Raw wastewater High ng/L - µg/L 

Bioremediation years O2, NO3-, Fe(III), Mn(IV), SO42-, CO2 Groundwater mg/L

Biological activated carbon minutes O2 Treated groundwater, surface water or wastewater Low ng/L - µg/L 

Slow sand filters hours O2, NO3- Treated groundwater, surface water or wastewater Low ng/L - µg/L 

River bank filtration weeks - years O2, NO3-, Fe(III), Mn(IV), SO42- Surface water ng/L - µg/L 
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2 Adsorption during RBF

2.1 Highly loaded versus lowly loaded systems

Sorption onto sludge in wastewater treatment processes was demonstrated to be an important

removal mechanism for a number of OMPs such as mefenamic acid, propranolol, loratidine,

amitriptyline, fluoxetine, triclosan and triclocarban in biological wastewater treatment processes

(Hyland et al., 2012, Radjenović et al., 2009). If a compound is recalcitrant towards biodegradation, it is

possible that sorption is even the only removal mechanism.

Since OMP sorption onto sludge (biomass) was found to play an important role for some OMPs, it is

expected that OMP sorption onto biomass for some OMPs could also be an essential removal

mechanism in the RBF process. In natural systems such as MAR, biofilms will develop which could

also affect OMP sorption. (Soil) bacteria excrete extracellular polymeric substances (EPS) which create

a biofilm in the soil that (partly) covers the soil grains (Flemming, 1995). Since the biofilm can cover

the soil grain, a new larger surface area will develop. This newly developed surface area could

potentially increase OMP sorption. Since biofilms contain anionic as well as cationic groups

(Flemming, 1995), it is expected that biofilm can influence sorption of charged OMPs (but also neutral

OMPs). However, the effect of biofilm present in soil on OMP retardation is still largely unknown.

2.2 Factors affecting OMP sorption

OMP sorption during soil passage is affected by three categories of parameters: (1) soil properties (e.g.

specific surface area, organic carbon content), (2) water quality parameters (e.g. pH, temperature,

biodegradable dissolved organic carbon (BDOC)) and (3) solute properties (e.g. hydrophobicity,

charge).

2.2.1 Soil parameter affecting sorption

Several batch studies demonstrated that soil properties such as organic carbon content, Cationic

Exchange Capacity (CEC), pH and/or composition (e.g. amount of clay, silt, sand) affect OMP sorption

(Fingler et al., 2004, Hiller et al., 2009, Hiller et al., 2012). In general sorption increases for an increase in

organic carbon content of the soil (Gao et al., 2014, Milinovic et al., 2015), at least for nonpolar OMPs

(Delle Site, 2001).

Similarly, if the soil consist of a larger amount of fines, the specific surface area will be larger and this

could positively influence OMP sorption. However, Sangster et al. (2015) concluded that the effect of

the soil organic carbon content on OMP sorption was larger comparted to particle size for steroid

hormones. While CEC can directly affect the sorption of charged compounds (Calvet, 1989), pH

determines the charge of ionisable OMPs and can thereby potentially affect their sorption behaviour.

Sorption of triazines which are weakly bases was reported to decrease for increasing pH (Gao et al.,

1998). This was explained by the fact that for a higher pH, the fraction of cationic species present in

solution is smaller resulting in less sorption. All of these parameters as well as the solute properties,

could explain the often contradictory results observed with different effects reported for different

OMPs (Bedmar et al., 2011, Fingler et al., 2004, Hiller et al., 2009, Hiller et al., 2012, Zhang et al., 2011)

OMP sorption is expected to be higher in activated sludge/MBR processes since both organic carbon

content and biomass quantity are higher compared to RBF and these factors were positively correlated
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with OMP sorption. However, the residence time in RBF systems is much higher which could make

up for the lower organic carbon content and biomass quantity.

2.2.2 Feed water parameters affecting sorption

An increase in Dissolved Organic Carbon (DOC) present in the aqueous phase can either decrease

sorption of OMPs (e.g. DDT, atrazine, triadimenol, fluroxypyr, anilazine, terbutylazine, and bifenox)

or have no effect (e.g. lindane) (Caron et al., 1985). In general, an increase in temperature, results in a

decrease in OMP sorption (Delle Site, 2001). The effect of pH has been discussed in “2.2.1 Soil

parameters affecting sorption”.

2.2.3 Solute parameters affecting sorption

Solute properties that can affect OMP sorption are: hydrophobicity, charge and solubility.

Hydrophobicity of neutral OMPs is expressed by Log Kow, while for charged OMPs this is Log D (in

which the effect of charge is accounted for). Hydrophobic OMPs will sorb more easily to the soil, than

their hydrophilic counterparts. For charged OMPs ion-exchange interactions could also play an

important role (Calvet, 1989). Soil constituents such as clay have a negative charge and could therefore

interact with charged OMPs. Similarly, the biofilm in the soil consists of functional groups with

different charges that could play a role in the sorption of charged OMPs (Flemming, 1995). On the

other hand, solubility of an OMP describes its tendency to be present in the aqueous phase. OMPs

with high solubility prefer to be present in the aqueous phase rather than the solid phase and

therefore sorption onto soil constituents is less likely.

2.3 Existing OMP sorption models

Doucette (2003) wrote an excellent review on the many existing QSAR models for OMP sorption onto

soil and concluded that these models can be divided in roughly two categories: (1) QSAR sorption

models based on the hydrophobicity or solubility of the OMP and (2) QSAR sorption models based on

molecular connectivity indices. Predictive models for OMP sorption onto soil are usually limited to a

specific class or property of OMPs (e.g. hydrophobic, non-hydrophobic, carbamates, PAHs,

chlorinated hydrocarbons) (Chiou et al., 1983, Gerstl, 1990, Sabljić et al., 1995) and models developed

for a wide variety of OMPs are more scarce (Baker et al., 1997, Gerstl, 1990). In contrast to the models

based on molecular connectivity indices, those based on hydrophobicity and solubility are easy to use

since these properties are widely available. However, their disadvantage is that they are generally less

predictable for the more polar OMPs.

2.4 Knowledge gaps

In order to develop a predictive model for OMP removal during RBF, the first step is to assess if both

sorption and biodegradation contribute to the same extent towards OMP removal or if one of these

removal mechanisms is more dominant than the other. While adsorption plays an important role for

some specific OMPs, it is unclear if sorption is equally contributing to overall OMP removal for the

majority of the OMPs. Besides, it remains uncertain if sorption is a pre-requisite in both intra- and

extracellular OMP degradation.

In addition, adsorption can also significantly influence OMP biodegradation, since OMPs need to be

available in the aqueous phase before biodegradation can occur (Ou, 1998). Strongly sorbed OMPs are

therefore less bioavailable and thus less susceptible to biodegradation. However, it remains unclear if

sorption is a pre-requisite for biodegradation.
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Biosorption (OMP sorption onto sludge) was found to be an important factor for OMP removal in

biological wastewater treatment processes. Therefore it is essential to investigate OMP biosorption for

the RBF system. Soil column studies investigating biodegradation behaviour of OMPs often use an

abiotic control to correct for OMP sorption (or other abiotic losses such as hydrolysis). The type of

abiotic control column used can differ from one study to another. The abiotic control can correct for

OMP sorption on to the developed biomass (Onesios et al., 2012) or OMP sorption onto the sand

medium (Maeng et al., 2011a, Maeng et al., 2011b). The effect of biomass or sand medium on OMP

sorption can be different, but these effects have not been investigated simultaneously yet.

Moreover, numerous studies investigated the effect of for example dissolved organic carbon (DOC),

pH, temperature, etc., on OMP sorption (Broznić et al., 2012, Flores-Céspedes et al., 2002, Gao et al.,

1998)). While every factor separately can have a positive or negative influence on the sorption, the

effect of the combination of these factors on OMP sorption has not been investigated. Furthermore,

since a number of sorption studies are performed with tap water, the effect of the water matrix on

OMP sorption should be established to gain insight into how transferable these results are to field

conditions

Likewise, a number of studies used silica sand as filter medium in the columns (Maeng et al., 2011a,

Rauch-Williams et al., 2010), which excludes the effect of soil properties (e.g. clay content) on OMP

sorption. Thus, currently, the effect of the solid phase on OMP sorption is unknown.

An overview of the research questions deduced from these knowledge gaps is presented in section 4.

3 OMP biodegradation during RBF

Microbial degradation in the soil is facilitated by the soil microbial community and the enzymes they

synthesize, both of which can vary as a result of prevailing redox condition. First the differences in

microbial degradation between highly loaded and lowly loaded systems is discussed. Subsequently,

the role of redox environment and soil microbial population is considered and this section concludes

with considering the different parameters affecting OMP biodegradation. Roughly three categories of

parameters can be distinguished that affect OMP biodegradation: (1) soil properties (e.g. pH, cationic

exchange capacity, organic carbon content), (2) water quality parameters (e.g. temperature,

biodegradable dissolved organic carbon (BDOC)) and (3) solute properties (e.g. hydrophobicity,

charge, molecular weight).

3.1 Highly loaded versus lowly loaded systems

River bank filtration is distinctly different from other biological processes such as conventional

activated sludge systems and membrane bioreactors in a number of aspects including: initial OMP

concentration in the feed, prevailing redox condition, biodegradable dissolved organic carbon

quantity and composition (Table 1). All these parameters were demonstrated to affect OMP

biodegradation (Baumgarten et al., 2011, Li et al., 2014, Storck et al., 2012)

Since treated wastewater is discharged on the river, significant dilution of OMPs can be expected.

However, other pathways such as agricultural run-off (e.g. pesticides, veterinary pharmaceuticals)

and leaching could result in higher concentrations of these OMPs in the river water. Therefore the

initial OMP concentration in RBF is expected to be more or less in a similar range to conventional
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activated sludge (CAS)/MBR. In contrast, initial OMP concentrations in bioremediation technologies

used to clean-up polluted aquifers/sites (through the use soil bacteria) deal with significantly higher

initial pollutant concentrations (mg/L) compared to the RBF process (EPA, 1995).

CAS and MBR in general receive raw wastewater which is still high in the amount of biodegradable

organic carbon. Total Organic Carbon (TOC) removals of 60 - 99% have been reported (Nguyen et al.,

2012, Radjenovic et al., 2007). In contrast, TOC removal in RBF systems is somewhat lower ranging

from 35 -67% (Grünheid et al., 2005, Hoppe-Jones et al., 2010, Ludwig et al., 1997). Recent studies

reported that OMP removal improved for more humic like (refractory) substrate (Alidina et al., 2014b,

Li et al., 2014). Since biodegradability of the organic carbon in river water can be expected to be lower

compared to organic carbon in the wastewater entering CAS/MBR, OMP removal will most likely be

higher in the RBF process compared to the CAS/MBR processes.

The major difference between CAS/MBR and RBF, however, is the prevailing redox environment.

While redox conditions in CAS or MBR are usually limited to oxic and/or NO3 reducing conditions

(Nguyen et al., 2012, Radjenovic et al., 2007, Tadkaew et al., 2010), redox in RBF systems can range from

oxic, to NO3, and Fe(III)-, Mn(IV)-and possibly even SO4-reducing conditions.

3.2 Redox-controlled degradation

A number of studies identified redox condition as a crucial factor in OMP removal during RBF

(Regnery et al., 2015b, Schmidt et al., 2007, Storck et al., 2012). RBF sites are characterized by different

redox environments which are created by oxidation-reduction reactions catalysed by the enzymes of

soil micro-organisms (MOs). The most important electron donor in soil is organic carbon, although

other electron donors are present (e.g. Mn2+, Fe2+, S2-, CH4, and H2) as well (DeLaune et al., 2005). Thus,

the organic carbon present in the river water and the prevailing redox conditions in the soil system are

closely connected.

Soil MOs oxidize soil organic carbon and simultaneously reduce oxygen (or another electron

acceptor). The electron that is obtained by oxidizing carbon is used to reduce oxygen. While river

water contains a large amount of dissolved oxygen, this is rapidly depleted by soil MOs during the

initial infiltration phase. In the absence of oxygen other electron acceptors found in soil such as: NO3,

Mn(IV), Fe(III), SO4 and CO2 can be used. The electron acceptors are used in this specific order since

MOs obtain the most energy from the reduction of oxygen and the least amount of energy from the

reduction of CO2. The succession of election acceptors for oxidation-reduction reactions in soil is

presented in Figure 2.

Different redox conditions are characterised by specific redox potentials. McBride (1994) demonstrated

that oxic conditions are characterised by a redox potential between 350 – 600 mV, nitrate reducing

conditions between 200 and 400 mV, manganese reducing conditions between -50 and 300 mV and

iron reducing conditions between -100 and 100 mV; sulphate reducing conditions and methanogenesis

are characterised by redox potentials of -150 mV or lower.
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Figure 2 – Succession of electron acceptors in soil aquifer (adapted from (McMahon et al., 2008))

DOC removal is faster under oxic conditions compared to anoxic/anaerobic conditions (Abel et al.,

2012, Baumgarten et al., 2011, Grünheid et al., 2005, Maeng et al., 2012), but this statement is not

generally applicable to OMPs. While OMPs such as clofibric acid, dichlorprop, mecoprop, phenazone-

type pharmaceuticals, 1,7-NSA, 2,7-NSA and NDMA are removed better under oxic conditions

compared to anoxic conditions, the opposite is observed for X-ray contrast media and

sulfamethoxazole (Baumgarten et al., 2011, Grünheid et al., 2005, Hoppe-Jones et al., 2012, Maeng et al.,

2011c, Patterson et al., 2012). This redox dependent behaviour of certain OMPs underpins the

importance of assessing the effect of (separate) redox conditions on OMP removal during RBF.

Studies investigating the effect of redox on OMP removal during RBF are scarce and terms as “anoxic”

and “anaerobic” are often not well defined which makes it extremely difficult to compare results

between different studies. A better approach would be to determine OMP removal under different

redox conditions for the specific electron acceptor, thus nitrate reducing conditions, or

iron/manganese reducing conditions or to measure the redox potential during an experiment.

Some field studies on OMP removal during RBF have tried to assess OMP removal for different redox

zones. Although field studies are very useful in validating lab-scale experimental results, it is a

daunting task to assess OMP removal for different redox zones since redox conditions in the field are

difficult to separate and subject to seasonal variations. Assessing the effect of redox on OMP removal

can therefore be better investigated in controlled laboratory column systems which makes it easier to

control and separate various redox conditions.

Most soil column studies investigating anoxic/anaerobic conditions in soil systems (both soil aquifer

treatment and river bank filtration) deplete the oxygen present in the feed water by purging it with

nitrogen gas or adding ethanol/starch (Abel et al., 2012, Baumgarten et al., 2011, Hoppe-Jones et al.,

2012, Maeng et al., 2012, Patterson et al., 2011). These artificially created reduced conditions do not

adequately represent real reduced environments as found in the field. Since many studies reported

that easily degradable organic carbon (BDOC) is removed already for the largest part in the initial

infiltration phase, it is obvious that oxic water made anoxic by purging with N2 gas is not adequately

simulating a real anoxic feed water since all BDOC is still present. Thus, it is questionable whether the

developed microbial population in artificially reduced systems is representative of the microbial

populations present under reduced conditions at a field site.
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3.3 Soil microbial population

3.3.1 Metabolism versus co-metabolism

Metabolism is the degradation of an OMP in which the carbon and energy obtained from this reaction

is used by the micro-organism for cell replication (growth). Co-metabolism is “the transformation of a

non-growth substrate in the obligate presence of a growth substrate or another transformable

compound” as defined by (Dalton et al., 1982). Since the dissolved organic carbon (DOC)

concentration is usually a few mg/L and OMPs are present in concentrations six orders of magnitude

smaller (ng/L) in surface water, co-metabolic degradation of OMPs is the more likely mechanism as

has been suggested in a number of studies (Alidina et al., 2014a, Maeng et al., 2011a, Rauch-Williams et

al., 2010). While metabolic degradation is often related to full mineralization of the OMP, co-metabolic

degradation in general results in partial degradation or transformation of the OMP (Janke et al., 1985).

Although co-metabolic OMP degradation has been suggested in a number of studies, the mechanism

is often not explicitly proven. Proving the metabolic or co-metabolic degradation of OMPs is

extremely difficult since OMPs are most likely degraded by bacterial consortia instead of one single

species (Aislabie et al., 1995, Dalton et al., 1982, Grady, 1985). Therefore, it is possible that the first step

in the degradation process is co-metabolic transformation performed by a one type of bacteria and a

subsequent step is metabolically driven by another type of bacteria (Janke et al., 1985). Thus, the

degradation of a specific OMP could also be a combination of metabolic and co-metabolic processes.

This further complicates the assessment of whether OMPs are degraded metabolically or co-

metabolically.

Besides, different bacteria are capable of degrading one and the same OMP. Yu et al. (2007) identified

14 types of bacteria capable of 17ß-estradiol degradation in the activated sludge of a wastewater

treatment plant (WWTP). Since the strains showed differences in degradation behaviour of the

transformation product estrone (only 3 strains could degrade estrone), it was hypothesized that some

strains were more likely involved in the metabolic degradation of 17ß-estradiol, while other strains are

possibly linked to co-metabolic degradation. Thus, even for one and the same OMP, different bacteria

could show different metabolic capabilities. The fact that multiple bacteria are capable of degrading

17ß-estradiol could explain the large differences in OMP removal observed between different

treatment processes as suggested by (Yu et al., 2007). Since different bacteria have different metabolic

capacities with respect to OMP degradation and not all species are present in the same composition

for a specific treatment process this could result in different OMP removal.

Another factor determining metabolic/co-metabolic OMP degradation is the class of bacteria involved

(e.g. heterotrophic, autotrophic). Heterotrophic bacteria use organic substrate, while autotrophic

bacteria use inorganic substrate for cell growth. As reported by Tran et al. (2013) and Ou (1998),

ammonia oxidizing bacteria (AOB) degrade OMPs most likely only by co-metabolism since the

substrate used is always ammonia, while heterotrophic bacteria could theoretically degrade OMPs

both by metabolism and co-metabolism.

3.3.2 Microbial community composition

A study of Janssen (2006) described the most abundant phyla of soil bacteria and their average

contribution to the overall soil microbial community: proteobacteria (39%, 10-77%), acidobacteria

(20%, 5-46%), actinobacteria (13%, 0-34%), verrucomicrobia (7%, 0-21%), bacteroidetes (5%, 0-18%),
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chloroflexi (3%, 0-16%), planctomycetes (2%, 0-8%), gemmatimonadetes (2%, 0-4%), and firmicutes

(2%, 0-8%).

Information on the composition of the soil microbial population in RBF systems (or MAR technologies

in general) is scarce. Medihala et al. (2012) examined the soil microbial community composition of a

river bank in relation to well clogging and found Fe-oxidizing bacteria (Rhodobacter spp.), S-oxidising

bacteria (Sulfuricurvum spp.), NO3-reducing bacteria (Acidovorax spp.), Fe(III)-reducing bacteria

(Ferribacterium), and SO4-reducing bacteria (Desulfobrio sp.). Recently, a study of Alidina et al. (2014a)

investigated the microbial community composition from soil in a laboratory soil column fed with

synthetic wastewater (simulating the SAT process). Major phyla of bacteria were the (γ-, δ-, ß-, α-)

proteobacteria, firmicutes, bacteroidetes, actinobacteria and acidobacteria. Similarly, Onesios-Barry et al.

(2014) identified proteobacteria, bacteriodetes, actinobacteria and firmicutes as major phyla present in a soil

column simulating a SAT site and in soil samples obtained from the SAT field site. However, these

studies were unable to link specific phyla or species of bacteria responsible for the degradation of

certain OMPs.

Studies exploring the role of bacterial species in OMP degradation are very limited for specifically the

RBF process. However, numerous studies have focused on identifying bacteria responsible for OMP

degradation in pure cultures. A number of studies showed that both proteobacteria and actinobacteria

are involved in the aerobic degradation of nitrobenzoates, nitrotoluene, polycyclic aromatic

hydrocarbons (PAHs) (Bamforth et al., 2005, Ye et al., 2004). Toluene, benzoate, bezaldehyde,

benzylacohol, p-hydroxybenzoate, p-hydroxybenzaldehyde, p-hydroxybenzylalcohol, phenol, and p-

cresol were degraded by a Fe-reducing bacterial strain belonging to the phylum proteobacteria. A

sulfate-reducing bacterial strain belonging to the proteobacteria was reported to degrade 2,4,6-

trinitrotoluene (TNT) (Boopathy et al., 1998). Polychlorinated biphenyls (PCBs) were anaerobically

degraded by the phylum firmicutes, while the phylum chloroflexi was responsible for the anaerobic

degradation of dioxins (Bunge et al., 2003, Wiegel et al., 1999). The list of bacteria degrading specific

OMPs is exhaustive and this review does not attempt to give a comprehensive overview of these

bacteria. However, it is tried to convey that the bacterial phyla identified in the previous mentioned

RBF and SAT studies possess bacterial strains that are capable of degrading certain OMPs.

Nevertheless, it is unclear which bacterial strains will be present in the RBF process and how these are

linked to the degradation of specific OMPs.

Moreover, a number of studies concluded that Ammonia Oxidizing Bacteria (AOBs) are an important

class of autotrophic bacteria involved in the degradation of OMPs. The nitrification process describes

the conversion of ammonia to nitrite performed by AOBs and the subsequent nitrite conversion to

nitrate facilitated by Nitrate Oxidising Bacteria (NOBs). The removal of atenolol, 17α-ethinylestradiol

(EE2) and halogenated hydrocarbon fumigants (methyl bromide, 1,2-dichloropropane, and 1,2-

dibromo-3-chloropropane) was reported to be facilitated by AOBs present in processes such as

activated sludge systems, fixed bed reactors, and MBRs. As described by Zhang et al. (2010) ammonia

in the soil can be present as a result of organic carbon degradation and it can thus be expected that

AOBs play an important role in OMP removal during RBF as well. However, the role of AOBs in the

removal of OMPs during RBF is not yet unveiled, making it an interesting topic for future research.

Redox conditions were found to be an important factor influencing the soil microbial population.

Röling et al. (2001) made an attempt to correlate microbial community structure to prevailing redox
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condition in landfill leachate-polluted aquifer. ß-proteobacteria were the dominant species in a sample

obtained from the nitrate reducing zone. Two samples obtained from beneath the landfill and

downstream of the landfill (both iron(III) reducing conditions) showed differences with respect to

abundant bacterial species. The sample taken beneath the landfill was dominated by low-G+C-content

gram positive group and high-G+C-content gram positive group bacteria, while the sample taken

downstream of the landfill was abundant in ß- and γ-proteobacteria. Thus, shifts in the soil microbial

community structure as a result of changing redox conditions can be expected.

3.3.3 Role of enzymes

Soil enzymes play an important role in the degradation of OMPs, since they catalyse the oxidation-

reduction reactions involved in OMP degradation. Soil enzymes can be divided in two categories:

intracellular and extracellular enzymes. OMPs that need to be degraded should fit on the active site of

the enzyme before the product can be taken into cell for further degradation. However, some OMPs

might be too large to penetrate through the cell. In this case, extracellular enzymes will break down

the OMP in smaller pieces which can pass through the cell membrane. An example of OMPs that are

too large to penetrate directly into the bacterial cell, and thus need to be broken down in smaller

pieces first by extracellular enzymes, are PAHs and PCBs (Burns et al., 2010). The separate

contributions of intra- and extracellular enzymes towards OMP biodegradation are currently unclear.

In general, soil enzymes constitute of roughly 6 classes: oxidoreductases, transferases, hydrolases,

lyases, isomerases and ligases. A number of oxidoreductases (e.g. cytochrome P450, dioxygenase),

transferases (e.g. glutathione S-transferase), and hydrolases (e.g. esterases) were reported to be

involved in the degradation of OMPs such as PAHs, polyester polyurethane (Bamforth et al., 2005,

Cavalca et al., 2007, Kay et al., 1993). These results are just an indication of which enzymes are possibly

involved in OMP degradation and by no means try to cover the exhaustive list of studies that

investigated this aspect.

Although it would be possible to determine the types of enzymes present at RBF sites, there are a few

important aspects to consider: (1) at the moment it is unknown which enzymes are present in RBF

systems and most likely it is also impossible to determine all of them, (2) it is unknown how the

presence and distribution of enzymes in RBF systems is affected by factors such as DOC

composition/concentration of the river water, spatial/temporal variability, prevailing redox conditions

and the presence of OMPs, (3) even if the types of enzymes present in the RBF process are known, it is

difficult to determine which enzymes are responsible for the degradation of a specific OMP since this

is usually a combination of the enzymes provided by the microbial consortium.

An extensive study on the types of soil bacteria and enzymes present in the soil will definitely provide

more insight in the degradation of OMPs. However, it will be challenging and potentially impossible

to engineer RBF systems with respect to the soil microbial population and the enzymes they

synthesize.

3.3.4 Adaptation

OMPs are degraded by the soil microbial community, but if a new (unfamiliar) OMP is detected in the

river, the soil microbial population might not be capable of instantly degrading the compound. Newly

detected OMPs sometimes require a certain adaptation time (or lag-phase) before degradation is

initiated. This adaptation time has been reported for a number of OMPs such as sulfamethoxazole,

naproxen, gemfibrozil, clofibric acid, bisphenol A, 17β-estradiol, isononylphenole, bisphenol F, 
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trimethoprim, bezafibrate, and iohexol in MAR and RBF systems (Baumgarten et al., 2011, Hoppe-

Jones et al., 2012, Lim et al., 2008, Patterson et al., 2011, Storck et al., 2012).

Spain et al. (1980, 1983) identified three mechanisms by which the soil microbial community can adapt

to a new OMP: (1) genetic changes, (2) enzyme induction and (3) population changes (Spain et al.,

1980, Spain et al., 1983). Genetic changes as a result of gene transfer or mutations can result in bacteria

capable of degrading certain OMPs. Secondly, the presence of specific OMPs can initiate the

expression of enzymes appropriate to degrade OMPs. Thirdly, the number of bacteria capable of

degrading a particular OMP can be minimal at initial exposure, but can increase when subjected to the

OMP.

Recently, a study of (Alidina et al., 2014a) concluded that adaptation of the soil microbial community

towards OMPs is not necessary if the soil microbial community is adapted to the primary substrate in

the feed. However, it is possible that bacteria (and thus the enzymes) required for degradation of the

investigated OMPs (bisphenol A, carbamazepine, gemfibrozil, ibuprofen, methylparaben,

oxybenzone, sulfamethoxazole and triclocarban) were already present in the aquifer material used to

fill the columns. Another explanation could be that these OMPs have similar structures to the natural

substrates used by the soil microbial population present in the column. Since the study was limited to

only 8 OMPs, it cannot be concluded that adaptation will not occur for any of OMPs encountered in

the environment.

Results on adaptation behaviour of OMPs are thus inconclusive. The main difference between the

studies that observed adapting behaviour and the one not, is the feed water quality. Adaptive

behaviour was observed in studies using natural waters, while the study of Alidina et al. (2014a) used

synthetic water. It could be hypothesized that the adaptation observed in the studies using natural

water, was caused by the presence of already low concentrations of these OMPs in the natural water

(in the order of low ng/L). When higher OMP concentrations are spiked in the laboratory, but the

number of bacteria capable of degrading this OMP is still limited, an increase in this/these specific

type(s) of bacteria is expected and thus a lag-phase could be observed.

The adaptation of OMPs is also an important aspect with respect to the development of a predictive

model for OMP removal during RBF. The question arises if a predictive model should incorporate the

immediate (unadapted) OMP degradation rate or the adapted OMP degradation rate and how

different these predictive models will be. First, more insight is required in the adaptation behaviour of

a large mixture of OMPs for RBF systems to investigate if similarities in physico-chemical properties

and/or functional groups can be found for OMPs characterised by an adaptation time. Once we are

able to better explain why certain OMPs require an adaptation time, while others show instant

degradation, a decision on whether or not and how to incorporate adaptation behaviour in predictive

models can be made.

3.4 Factors affecting OMP biodegradation

3.4.1 Soil properties affecting biodegradation

Soil properties such as pH, texture/grain size distribution, water content, Cationic Exchange Capacity

(CEC), nutrient availability, and organic carbon content can all influence OMP biodegradation (Fingler

et al., 2004, Hiller et al., 2009, Hiller et al., 2012, Picton et al., 2004, Schroll et al., 2006). These properties

are site specific and therefore it can be expected that OMP removal at various RBF sites is different.
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To gain more insight in the effect of certain soil properties on the microbial community composition,

for each soil property the range of values prevailing at the RBF site was determined from several

studied full-scale RBF sites. The results are presented in Table 2.

Table 2 – Soil properties and the range in which they are prevailing at RBF sites

Soil property Full-scale RBF

site

References

pH river water 7.4 – 8.5 (Benotti et al., 2012, Bertelkamp et al., 2015b, Henzler et al., 2014, Shamrukh et

al., 2008, Stepien et al., 2013)

pH well water 6.6 – 8.0 (Henzler et al., 2014, Shamrukh et al., 2008, Stepien et al., 2013)

Organic carbon content

[%]

0.01 – 0.1 (Henzler et al., 2014, Hoppe-Jones et al., 2010, Regnery et al., 2015a,

Schwarzenbach et al., 1983, Stepien et al., 2013)

Temperature river

water[°C]

0 – 31.5 (Henzler et al., 2014, Hoppe-Jones et al., 2010, Lee et al., 2009, Regnery et al.,

2015a, Schubert, 2002, Schwarzenbach et al., 1983, Sheets et al., 2002)

Temperature wells [°C] 2 - 30 (Grünheid et al., 2005, Henzler et al., 2014, Hoppe-Jones et al., 2010, Lee et al.,

2009, Regnery et al., 2015a, Schwarzenbach et al., 1983, Sheets et al., 2002)

Sand [%] 94 (Regnery et al., 2015a)

pH

A number of studies reported an increase in pesticide/fungicide/insecticide biodegradation for an

increase in soil pH (more alkaline environments) (Awasthi et al., 2000, Höllrigl-Rosta et al., 1999, Singh

et al., 2003). Although an increase in soil pH seems to increase OMP biodegradation, the range of pH

investigated in these studies was very broad (4.7 – 8.4). Soil pH for RBF sites usually ranges between

6.6 and 8.5 (Table 1) thus covering a much smaller range in pH near neutral conditions.

Awasthi et al. (2000) reported that for an increase in pH from 7.5 to 8.5, α-endosulfan removal 

increased with 2% and β-endosulfan removal decreased with 3%. Singh et al. (2003) reported identical

half-lives (t1/2 = 16 d) for chlorpyrifos for pH 7.7 and pH 8.4, while Karpouzas et al. (2000)

demonstrated that the difference in residual ethoprophos between the soil sample with pH = 8.3 and

pH = 6.8 was approximately 5-6% after 13 days. These results imply that for the pH range prevailing at

RBF sites, the differences in OMP biodegradation rate or percentage removal as a result of pH

variations are expected to be rather small.

Soil texture/grain size distribution

Soil texture/grain size distribution can affect the soil permeability and thus the water flow through the

soil media as well as the space available for the soil microorganisms. Low permeability soils are

characterised by a longer contact time between the OMPs and the soil phase which increases the

chance of OMP sorption and/or biodegradation. High permeability soil on the other hand are

characterized by shorter contact times which will reduce the chance of OMP sorption and

biodegradation. Höllrigl-Rosta et al. (1999) investigated two soil types with different textures in a

batch-study. Although the two soil types were similar in sand content, but different in silt and clay

content, no difference in prochloraz mineralization was found. Since RBF sites require a certain

permeability, sand will always be the largest fractions and extreme variations in the silt and clay are

therefore not expected.
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Water content

A number of studies investigated the effect of water content on OMP biodegradation. In general, OMP

biodegradation rate increased for increasing water content of the soil (Chatterjee et al., 2013,

Karpouzas et al., 2000, Wang et al., 2014). This can be explained by the fact that OMPs need to be

bioavailable to enable biodegradation. If the water content of the soil is high, OMPs can be transported

through the medium by means of the water flow thus increasing their bioavailability.

Cationic exchange capacity

Cationic exchange capacity (CEC) is determined by the amount of clay and organic carbon in the soil,

their correlation is presented in Eq.4 (Appelo et al., 2005, Breeuwsma et al., 1986):

CECcalc = 7 · (% clay) + 35 · (% C)  (Eq. 4)

In which:

CECcalc = calculated cationic exchange capacity [meq / kg dry weight]

% clay = clay content (fraction < 8 µm from grain size distribution) [% dry weight]

% C = organic carbon content [% dry weight]

Soils characterised by a higher CEC are able to sorb more cationic OMPs, thereby reducing their

bioavailability and degradation in the soil. In addition, soils with a high CEC are better able to retain

nutrients (Ca2+, Mg2+, K+, etc.) which can improve OMP biodegradation.

RBF soils are characterised by low organic carbon contents (0.01 – 1%) (Bertelkamp et al., 2015a,

Henzler et al., 2014, Hoppe-Jones et al., 2010, Regnery et al., 2015a, Schwarzenbach et al., 1983, Stepien

et al., 2013) and low contributions of clay (0.5- 4%) (Bertelkamp et al., 2015a). This is not surprising

since RBF soils need a certain permeability and clay is impermeable. Thus extreme variations in

cationic exchange capacity are not expected at RBF sites.

Organic carbon content

A higher organic carbon (OC) or organic matter (OM) content in soil can result in an increased

sorption of OMPs, thereby decreasing the bioavailability of OMPs and thus biodegradation of these

compounds. Although several studies showed that the soil with lowest organic carbon/matter resulted

in the highest OMP biodegradation, a general trend between soil organic carbon/matter and OMP

biodegradation could not be observed (Höllrigl-Rosta et al., 1999, Karpouzas et al., 2000). Karpouzas et

al. (2000) investigated three soils (0.3% OM, 2.3% OM and 8.5% OM). The difference in residual

ethoprophos after 13 days between the best (0.3% OM) and worst degrading soil type (2.3% OM) was

approximately 12%. OM content typically found at RBF sites ranges from 0.01 – 0.1% (Table 2) which

suggests that the differences in OMP biodegradation found at these sites as a result of variations in

OM content will be small.

Extreme variations in the aforementioned parameters (pH, soil texture/grain size distribution, water

content, cationic exchange capacity, and organic carbon content) between different RBF sites are not

expected (Table 2). At the same time (Alidina et al., 2014b) demonstrated that the soil microbial

community composition in soil aquifer treatment systems was largely influenced by BDOC

concentration and composition in the feed water (with the composition found to be even more

important than concentration). Therefore it was hypothesized that different RBF soil types fed by a

similar water quality (and thus BDOC concentration and composition) will lead to similar microbial

community compositions and thus OMP retardation factors and biodegradation rates. This would
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imply that RBF sites located along the same river may show similar OMP removal (in case of similar

water quality and redox configuration) and one predictive model can be used for both sites.

3.4.2 Feed water parameters affecting biodegradation

Since the aqueous phase is expected to play a more important role compared to the solid phase, the

effect of aqueous phase parameters (pH, nutrients (carbon, nitrogen and phosphorus), OMP

concentration, temperature) on OMP removal needs to be investigated.

pH

River water pH can affect the charge of the OMPs which could possibly affect OMP biodegradation.

However, pH variations in river water bodies do not show large variations (Table 2) and are usually

near neutral conditions. As hypothesized for soil pH, the small changes in river water pH are not

expected to greatly affect OMP biodegradation.

Temperature

Several studies investigated the effect of temperature on OMP biodegradation (Chatterjee et al., 2013,

Grünheid et al., 2008, Northcott et al., 2014a). In general, OMP removal increased for an increasing

temperature (Chatterjee et al., 2013, D'Alessio et al., 2015b, Karpouzas et al., 2000, Northcott et al.,

2014b, Regnery et al., 2015a, Wang et al., 2014). An increase in temperature in the range from 5°C to

25°C resulted in a decrease in OMP half-life by a factor of ~2 – 4.5 for batch experiments (Chatterjee et

al., 2013, Northcott et al., 2014b). River water temperature can fluctuate between 0 and about 30°C

(Henzler et al., 2014, Hoppe-Jones et al., 2010, Lee et al., 2009, Regnery et al., 2015a, Schubert, 2002,

Schwarzenbach et al., 1983, Sheets et al., 2002), but this effect is dampened by RBF (Gruenheid et al.,

2008, Schoenheinz et al., 2011). As described by Schoenheinz et al. (2011) the temperature fluctuation of

approximately 25°C in the river is already reduced to 13°C in a well located 60 m from the river. A

further reduction in temperature fluctuation to 5°C and 4°C is obtained in wells located 120 m and 250

m from the river, respectively. This was also supported by a study of Grünheid et al. (2008) that

showed a temperature variation of 7°C in a well located about 90 m from the river (residence time 3.9

Months).

While a temperature fluctuation of 30°C in the river seems valid, for RBF the fluctuations are smaller

and in the range of 5 - 10°C in the first part of the aquifer and even smaller 1-2°C in the deeper part of

the aquifer. Temperature will play a more important role in the initial infiltration phase (first few

metres) compared to the deeper parts of the aquifer. Thus the differences in OMP half-life for the

deeper parts of the aquifer as a result of temperature variations are expected to be significantly

smaller than the factor 2 – 4.5 previously mentioned. This reasoning is supported by a study of

(Alidina et al., 2015) who reported no significant change in OMP removal for a temperature variability

in the range of 4 – 30 °C for most OMPs in a managed aquifer recharge (MAR) system. Exceptions

were the OMPs that showed moderate biodegradability (diclofenac, gemfibrozil, ketoprofen,

naproxen, oxybenzone, and trimethoprim).

Although temperature does not seem to have a large effect on OMP removal (biodegradation) during

MAR and likely RBF, a rise in temperature in the initial infiltration phase can lead to increased activity

and thus oxygen consumption of the microbial population which can result in a different

configuration of the prevailing redox conditions (Burke et al., 2014). In this respect, temperature will

have a significant influence on OMP degradation, but this aspect will be discussed in more detail in

section 5.6.
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OMP concentration

An increase in spiked OMP influent concentration (factor 14 -18) resulted in a higher biodegradation

rate and a decrease in lag-phase (adaptation time), at least for the degradable OMPs (Baumgarten et

al., 2011, Storck et al., 2012). As reported by Storck et al. (2012) more persistent OMPs did not show (or

only minor) differences in biodegradation potential and lag-phase for an increase in spiked OMP

influent concentration. This underpins the importance of dosing OMPs in concentrations similar to

those detected in river waters (ng/L - µg/L) when determining their fate in soil column systems

simulating the RBF process. Dosing higher OMP concentrations than present in the river will lead a

severe underestimation regarding the time necessary to remove these compounds during RBF.

Nutrients (micro- and macro)

Nutrients such as carbon, nitrogen and phosphorus enter the soil via the river water and are

indispensable for microbial degradation. The effect of CEC on nutrient retention in soil was already

mentioned in section 3.4.1. Lewis et al. (1986) investigated the effect of nutrient limitation on the lag

phase for p-cresol removal and concluded that lag-phases decreased in case samples that received

additional nitrogen and phosphorus. Since river water is subject to variations in nutrients, a

(temporarily) limitation cannot always be prevented. A possible solution is the enrichment of soils

with nutrients (e.g. nitrogen and phosphorus) to enhance OMP biodegradation. This process is known

as bioremediation, but falls outside the scope of this study.

BDOC concentration and composition

Several lab-scale studies have investigated the effect of different dissolved organic carbon (DOC)

sources in the feed water (concentration and composition) on OMP removal during soil passage (Li et

al., 2014, Maeng et al., 2011a, Maeng et al., 2012, Onesios et al., 2012, Rauch-Williams et al., 2010). While

some studies reported a positive correlation between biodegradable dissolved organic carbon (BDOC)

concentration in the feed water and OMP removal (Lim et al., 2008), others demonstrated a negative

correlation (Li et al., 2014). The correlation between the BDOC composition and the removal of OMPs

reported in different studies also shows contradictory results (Lim et al., 2008, Maeng et al., 2012).

Although not explicitly shown in these previous studies, a possible explanation for the difference in

OMP removal with different BDOC concentration/composition, is the difference in microbial growth

and speciation as a result of organic carbon composition. This explanation was further supported by a

study performed by Rauch-Williams et al. (2010), who investigated OMP removal in soil columns fed

with different fractions of organic carbon obtained from wastewater effluent thereby mimicking a

managed aquifer recharge system. The soil column fed with hydrophobic acids (refractory carbon)

was characterised by the lowest soil biomass, but showed equal or better OMP removal compared to

the soil columns fed with other organic carbon fractions. It was hypothesized that an oligotrophic

community developed in this column, which was well capable of removing OMPs.

Most previous lab-scale studies involving the effect of BDOC concentration and composition on OMP

removal during soil aquifer treatment, have used synthetic wastewater or organic carbon fractions

obtained from wastewater effluent as feed (Alidina et al., 2014a, Li et al., 2014, Rauch-Williams et al.,

2010). Translating the results of these wastewater studies to RBF systems is difficult since the

composition and characteristics of organic matter in treated wastewater and natural surface water can

greatly differ. Shonnard et al. (2007) demonstrated for example that river water (more representative

of natural organic matter (NOM)) upstream from a wastewater treatment plant was characterised by a

higher hydrophobic and lower hydrophilic fraction of organics, compared to a sample obtained from
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the wastewater treatment plant effluent (representative of Effluent Organic Matter (EfOM)). In

addition, the river water sample was also characterised by a lower fraction of humic substances and a

higher fraction of low molecular weight acids. These differences emphasize the need to investigate

the effect of organic carbon fractions obtained from river water on OMP removal during RBF.

3.4.3 Solute parameters affecting biodegradation

Physico-chemical properties

Enzymes have an active site in which the substrate should be captured for a reaction to occur. Thus,

OMP properties such as shape and charge as well as the configuration of the functional groups of the

OMP are important for reaction with the enzyme. For intracellular enzymes it is important that the

OMP can penetrate through the cell membrane to reach the enzyme. Solute properties such as:

hydrophobicity, molecular weight, and charge are therefore important.

Paris et al. (1984) demonstrated good correlation between biodegradation rate and the octanol-water

partition coefficient Log Kow for 2,4-D esters (R2 = 0.94), while this correlation was weaker for the

chloro-ring-substituted phenoxyacetic ethyl esters (R2 = 0.47). A correlation between hydrophobicity

(Log Kow) and degradation rate could be expected since hydrophobicity determines movement

through the cell membrane prior to degradation. An explanation given in this study for the difference

in correlation between the two groups of compounds was that the movement of OMPs through the

cell membrane was possibly not the rate limiting step for biodegradation of the latter compounds.

Paris et al. (1984) suggested that for the chloro-ring-substituted phenoxyacetic ethyl esters the fit to the

active site of the enzyme was potentially rate limiting, implying that hydrophobicity is not the only

important factor in determining biodegradation rate.

Another important correlation found in the study of Paris et al. (1982) was that between OMP

biodegradation rate and van der Waals radii (R2 = 0.96, no values excluded) for phenols. In a later

study, Paris et al. (1987) reported that despite the fact that phenols and anilines were degraded by

different types of enzymes (monooxygenases and dioxygenases, respectively), steric effects (van der

Waals radii) showed high correlations with the degradation rate of both compounds.

Although previous mentioned studies provided valuable information regarding the correlation

between biodegradation rate and physico-chemical properties, they are mostly limited to certain

classes of compounds (phenols, esters of chlorinated carboxylic acids, anilines). Studies trying to

develop predictive models for OMP biodegradability based on physico-chemical properties for a wide

range of different classes of OMPs are scarce. Since different classes of compounds can cover different

ranges in physico-chemical properties, it is important to investigate a broader range of compounds.

Degner et al. (1991) concluded that predictive models based on physico-chemical properties were more

suitable for specific classes of OMPs (with similar degradation pathways), while predictive models

based on electronic/steric parameters were more suitable for a group of different classes of OMPs

(since multiple and different degradation pathways could be described based on these parameters).

This reasoning was supported by a study of Okey et al. (1996) who suggested that OMP

biodegradation rate was mainly determined by electronic effects. These electronic and steric

properties of the OMPs can be well described by molecular connectivity indices and using a

combination of structural fragments and molecular connectivity indices reduced the amount of

structural fragments needed to describe the different OMPs. Besides, Damborsky et al. (1997) reported
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that in contradiction to predictive toxicity models in which the hydrophobicity was the main

predictor, for biodegradability models the electronic and steric properties were more important.

Structural fragments

Enzyme attack can be hindered as a result of steric effects (the location of a functional group),

electronic effects (functional groups increasing or decreasing the electron density of the OMP) or

polar/a-polar interactions (Miller et al., 1997). The shape/geometry of an OMP is mainly determined

by the type of structural fragments (e.g. branches, rings) and their location within the molecular

structure. Moreover, the presence/absence of certain functional groups can affect the electron density

of the reactive site on the OMP and thus the reaction with the enzyme. Hence, the presence of certain

functional groups on the OMP structure can play an important role in the OMP biodegradation

process. Enzymes can only catalyse a reaction with an OMP if the reaction site of the OMP fits in the

slot of the reactive site of the enzyme.

Several studies found a correlation between certain functional groups present in the OMP molecular

structure and OMP degradability in biological processes. However, these studies were often limited to

a certain class of OMPs or did not specifically focus on the RBF process but on other biological

treatment processes such as activated sludge and/or membrane bioreactors which are usually

characterized by higher biomass quantities (Alexander et al., 1966, Okey et al., 1996, Pitter, 1985,

Tadkaew et al., 2011).

A number of studies demonstrated that OMP structure, substitute position and type of substitute

played an important role in the biodegradation potential of OMPs (Alexander et al., 1961, Alexander et

al., 1966, Pitter, 1985, Tabak et al., 1964). Structural fragments such as carboxyl, hydroxyl and methyl

groups enhanced a compounds’ biodegradability, while fragments such as nitro, sulfonate, amine,

cyano and halogens decreased a compounds’ biodegradability (Alexander et al., 1966, Degner et al.,

1991, Klopman et al., 1997, Okey et al., 1996, Pitter, 1985, Tabak et al., 1964).

Similar to the physico-chemical property studies, most of the studies on structural fragments focused

on OMP biodegradability obtained from batch experiments inoculated with micro-organisms from

wastewater treatment processes (Klopman et al., 1997, Okey et al., 1996, Pitter, 1985) or the study was

limited to a certain class of OMPs (Alexander et al., 1966, Degner et al., 1991, Tabak et al., 1964). Thus,

these results cannot be easily translated to the RBF process in which a different feed water quality is

used and a wide variety of different classes of OMPs.

Evidently, the methodology of relating biodegradation rate to physico-chemical properties and/or

functional groups is not new, however, it was never applied to soil passage processes such as RBF.

Although the quantity and species of micro-organisms prevalent in soil might be different compared

to wastewater treatment processes, the biological breakdown of OMPs is expected to be of a similar

nature.

3.5 Existing OMP biodegradation models

Tools such as BIOWIN and CATABOL can be used to determine the biodegradability potential of

OMPs based on the structural fragments present in the molecular structure. These tools are not limited

to a specific group or class of OMPs, but biodegradation potential for these OMPs is determined in

tests that use a mixture of sludge, surface soil, and water from a variety of sites such as sewage

treatment plants, industrial wastewater treatment works, rivers, lakes and seas as inoculum (OECD,
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1981, 1992). Biomass density and quality can differ significantly between for example sewage

treatment plants and natural treatment systems such as RBF which questions the applicability of these

models for RBF systems. Moreover, the tests used to determine these biodegradation rates are often

spiked with much higher concentrations of OMPs than naturally present in river water bodies. This

can lead to shorter adaptation times and higher biodegradation rates and as a consequence it provides

less realistic results (Baumgarten et al., 2011). Consequently, there is a lack of OMP biodegradation

rates representative for the RBF system which can be used to develop a predictive model based on the

functional groups present in the OMP molecular structure.

3.6 Knowledge gaps

Based on this review, a number of knowledge gaps regarding OMP biodegradation are identified. It is

unclear which bacterial phyla (and types of strains) and enzymes are present at RBF sites and how

they are linked to OMP biodegradation. In other words, which soil bacteria are capable of degrading

OMPs under field conditions? What is the role of AOBs in the removal of OMPs during RBF? Also, do

intra- and extracellular enzymes contribute to the same extent towards OMP removal? How do both

BDOC concentration and composition and redox conditions affect the soil microbial community? Are

OMPs degraded metabolic, co-metabolic or by a combination of both?

An extensive study on the types of soil bacteria and enzymes present in the river bank will definitely

provide more insight in the degradation pathways and mechanism of OMPs. However, it will be

challenging and potentially impossible to engineer RBF systems with respect to the soil microbial

population and the enzymes they synthesize.

A number of knowledge gaps need to be addressed before the development of predictive models for

OMP removal during RBF can be initiated. First of all, the separate contributions of sorption and

biodegradation to overall OMP removal should be determined. Which of these two removal

mechanisms is more dominant, or do they equally contribute to overall OMP removal? The approach

in recent soil column studies to determine the role of biodegradation is to compare OMP removal in a

biotic column to an abotic column and attribute the difference to biodegradation. However, since

these percentage removals are often determined based one point in time, it could potentially lead to

underestimations of the biodegradation potential if stable effluent concentrations are not reached yet.

This limitation can be tackled by determining breakthrough curves that will provide the OMP

biodegradation rate and a retardation factor (as indicator for sorption). These biodegradation rates are

not only essential in developing a predictive model for OMP removal during RBF, they will also

enable a comparison between different studies.

Both physico-chemical properties and structural fragments were found to show good correlations

with OMP biodegradability in other biological process (e.g. activated sludge, membrane bioreactors).

While some of these descriptors are easily obtained from online chemical databases others require

software programmes (e.g. Qikprop, HyperChem) that are able to calculate a diverse range of

extremely complicated OMP properties and characteristics. Although sometimes a correlation can be

found between biodegradability and these generated variables, their physical explanation is often

difficult to find. The development of a predictive model for OMP removal during RBF should provide

more insight into the underlying removal mechanisms instead of randomly correlating predictor

variables with response variables. Therefore, a predictive model should focus was on physico-

chemical properties (e.g. hydrophobicity, molecular weight, charge) and structural fragments (e.g.
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functional groups). The role of these properties in the enzyme catalysed degradation can be physically

explained as discussed in “3.4.3 Solute parameters affecting biodegradation”. This would also be

beneficial for the end-users of the model (the drinking water companies) since OMP properties such as

molecular weight, charge, hydrophobicity and types of functional groups present in the molecular

structure can be easily obtained from online databases, while descriptors such as molecular

connectivity indices are not readily available.

Therefore, the first step towards the development of a predictive model is to correlate the OMP

retardation factor and/or biodegradation rate to appropriate predictor variables. This is only possible

when the retardation factors and biodegradation rates of a large OMP mixture covering different

classes of OMPs (e.g. pharmaceuticals, industrial waste products, pesticides). This is another

limitation of previous studies: most studies investigating OMP sorption and biodegradation focused

on only 1 to 3 OMPs (Baumgarten et al., 2011, Scheytt et al., 2004), or a certain class of OMPs (Maeng et

al., 2011a, Onesios et al., 2012). This makes it impossible to develop predictive models that can predict

OMP removal based on, and thus applicable to, a wide variety of distinct classes of OMPs.

Secondly, the aqueous phase and then specifically the organic carbon composition and concentration

was found to play an important role in OMP removal (Alidina et al., 2014b, Li et al., 2014). It was

observed that for columns fed with more refractory carbon, OMP removal improved. Since carbon

limited conditions result in a strong pressure on mutants capable of attacking the OMP as reported by

(Grady, 1985), this could explain the improved OMP removal observed in the study of (Alidina et al.,

2014b, Li et al., 2014). Moreover, it is unclear if the organic carbon composition and concentration is

the only important factor shaping the microbial community and thus OMP removal. A number of soil

properties have been reported to influence OMP biodegradation and these properties can greatly

differ between different RBF sites. Therefore, the role of the solid phase (soil) on OMP biodegradation

should be determined.

In addition, river water organic carbon composition can change as a result of seasonal variations

(Alberts et al., 2001, Frehse et al., 2013). The effect of variations in the contribution of different fractions

(hydrophilic, transphilic, hydrophobic) to the overall river water organic carbon on OMP removal is

unknown and should thus be investigated.

Another important aspect that has received very little attention in past studies, is the effect of

temporary OMP/DOC shock-loads on OMP removal during RBF. These shock-loads could occur as a

result of, for example, industrial spills, dry weather conditions (low discharge of the river) in

combination with concentrated discharge from wastewater treatment plants, or the seasonal/temporal

use of pesticides/veterinary medicines on agricultural land. Few field studies tried to elucidate the

effect of seasonal variations in DOC concentration as well as the contribution of wastewater on the

RBF systems’ capability to remove OMPs (Cowart et al., 1971, Hoppe-Jones et al., 2010, Regnery et al.,

2015a). However, in field studies the sole effect of seasonal DOC variations or OMP/DOC shock-loads

is difficult to determine since the effect of other parameters (e.g. temperature) that influence OMP

removal cannot be excluded. Also, it is practically infeasible to determine OMP biodegradation rates

in the field and these are useful when comparing different RBF sites or assessing the removal potential

of a specific OMP for a RBF site.

Moreover, while many OMPs have shown persistent behaviour in oxic soil column systems or in field

studies which are always representative of a combination of redox condition, their removal under
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more reduced and separate conditions needs to be investigated. Theoretically, it would be possible to

develop a predictive model for every single redox condition. Combining the predictive models for

redox conditions that prevail at a specific site, would result in a model that could predict overall OMP

removal during RBF. In this way, drinking water companies are provided with insight into the OMPs

that persist during RBF and thus need additional treatment processes.

Finally, the adaptive behaviour of the soil microbial population towards some OMPs should be

investigated for a large mixture of OMPs covering a wide range of physico-chemical properties and

functional groups. Both these parameters can be used to try to find an explanation for why adaptive

behaviour is observed for certain OMPs, but not for others.

4 Research questions

This review attempted to provide a broad overview of the knowledge gaps that need to be addressed

before a predictive model for OMP removal during RBF can be developed.

The following research questions will be addressed in this thesis:

1. Are sorption and biodegradation equally contributing to overall OMP removal? (Chapter 2)

i. What is the effect of (in)active biomass on OMP sorption?

ii. What is the effect of clean filter sand on OMP sorption?

iii. What is the effect of the water matrix as a whole on OMP sorption?

2. Is it possible to develop a predictive model for OMP removal during RBF? (Chapter 2, 3)

i. Is it possible to correlate the OMP retardation factor and/or biodegradation rate to

the physico-chemical properties (charge, molecular weight, and hydrophobicity)

and/or functional groups of the OMPs in a soil column experiment simulating the

RBF process under oxic conditions?

ii. Can the model accurately predict field site removals?

3. What is the effect of soil type on microbial community composition and OMP removal? (Chapter 4)

i. What is the effect of soil type on OMP sorption?

ii. What is the effect of soil type on OMP biodegradation?

4. How is the soil microbial community composition (and thus OMP biodegradation rate) affected by organic

carbon fractions obtained from river water? (Chapter 5)

5. How is the soil microbial community composition (and thus OMP biodegradation rate) affected by an OMP

or DOC shock-load? (Chapter 5)

6. What is the effect of redox condition on OMP removal? (Chapter 6)

i. Is it possible to design a laboratory-scale column system that simulates the

separate redox conditions or the RBF process in a natural manner?

ii. Which OMPs show redox dependent behaviour and is it possible to determine

their biodegradation rates for the separate redox conditions?
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iii. Are the OMPs that show persistent behaviour under oxic conditions, removed

under more reduced conditions (nitrate reducing conditions and iron/manganese

reducing conditions)?

iv. Which OMPs show persistent behaviour under all redox conditions?

7. How important is adaptive behaviour of the soil microbial community towards OMPs? (Chapter 6)

i. Which OMPs show adaptive behaviour?

ii. Is it possible to explain adaptive behaviour based on the OMP physico-chemical

properties or functional groups?

iii. How should adaptation be incorporated in to predictive models?
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Chapter 2

Sorption and biodegradation of organic

micropollutants during river bank

filtration: A laboratory column study

This chapter is based on: Bertelkamp et al. (2014), Sorption and biodegradation of organic

micropollutants during river bank filtration: A laboratory column study, Water Research 52,

231 - 241
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1 Introduction

As a first step towards a predictive model for OMP removal, a better understanding of the

contribution of the two main removal mechanisms towards overall OMP removal is required. Only a

few studies have attempted to distinguish sorption from biodegradation. The contribution of

biodegradation towards overall OMP removal was determined by comparing a biotic (active biomass)

sand column to an abiotic (inactive biomass) sand column at a certain time point and allocate the

difference in OMP removal between these two systems to biodegradation (Maeng et al., 2011, Onesios

and Bouwer, 2012). However, this only gives a rough estimate of the percentage of OMP biodegraded

and can lead to an underestimation when stable effluent OMP concentrations have not been obtained

yet. In addition, a difference in OMP removal percentage at one time point does not elucidate how fast

a compound is degrading, which makes it more difficult to quantitatively compare compounds. To

enable a fair comparison of OMP biodegradability a more accurate parameter would be the

biodegradation rate. The biodegradation rate can be determined from the OMP breakthrough curve.

In addition, modeling the OMP breakthrough curves takes into consideration OMP dispersion and

allows determining the retardation factor which represents the extent of OMP sorption.

Most column studies on OMP sorption and biodegradation during soil passage involved only one to

four compounds (Baumgarten et al., 2011, Gruenheid et al., 2008, Scheytt et al., 2004, Scheytt et al.,

2006), making it impossible to link physico-chemical properties to OMP removal behavior and observe

trends. The behavior of a larger collection of OMPs in soil column systems has been investigated in a

few studies (Maeng et al., 2011, Onesios and Bouwer, 2012, Patterson et al., 2011), and was still mainly

limited to negatively charged and neutral compounds, thus not covering a wide range of physico-

chemical properties. Moreover, many studies dose higher OMP concentrations (10 - 700 µg/L)

(Onesios and Bouwer, 2012, Patterson et al., 2011) than the concentrations found for most compounds

to be present in surface water (lower ng/L - µg/L range) (Verliefde et al., 2007). Baumgarten et al.

(2011) reported that increasing the sulfamethoxazole concentration in the influent by one order of

magnitude showed significantly better removal of the compound (Baumgarten et al., 2011). Thus,

dosing higher OMP concentrations than present in the environment could significantly overestimate

the biodegradation rates. Therefore it is very important to dose OMPs at concentrations representative

of those detected in surface water.

Some studies indicated that sorption onto sludge can be an important removal mechanism in

wastewater treatment plants for several OMPs (e.g. propranolol)  (Radjenović et al., 2009, Ternes et al.,

2004). In case the OMP is not biodegradable, sorption onto sludge can even be the only removal

mechanism. Since biofilms are present in the soil and these contain both anionic and cationic groups

(Flemming, 1995), biosorption of OMPs could also play an important role in RBF. In addition, the

formation of a biofilm in soil can increase the specific surface area thereby possibly increasing OMP

sorption. However, the effect of biofilm present in soil on OMP retardation is still largely unknown.

Soil column studies investigating biodegradation behavior of OMPs often use an abiotic control to

correct for OMP sorption (or other abiotic losses such as hydrolysis). The type of abiotic control

column used can differ from one study to another. The abiotic control can correct for OMP sorption on

to the developed biomass (Onesios and Bouwer, 2012) or OMP sorption onto the sand medium

(Maeng et al., 2011). The effect of biomass or sand medium on OMP sorption can be different, but

these effects have not been investigated simultaneously yet.
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Moreover, numerous studies investigated the effect of for example dissolved organic carbon (DOC),

pH and temperature on OMP sorption (Broznić and Milin, 2012, Flores-Céspedes et al., 2002, Gao et al.,

1998). While every factor separately can have a positive or negative influence on the sorption, the

effect of the water matrix as a whole on OMP sorption has not been investigated.

In this chapter sorption and biodegradation behavior of OMP mixtures at concentrations

representative of those in RBF systems is studied. The main objective of this study is to investigate if

the OMP biodegradation rate can be related to the physico-chemical properties (charge,

hydrophobicity and molecular weight) or functional groups of the OMPs. Modeling OMP

breakthrough curves will enable a differentiation between sorption (retardation factor) and

biodegradation (biodegradation rate) and it will include OMP dispersion. Multi-linear regression is

used to relate OMP biodegradation rates to the physico-chemical properties or functional groups. In

addition, this study investigates OMP sorption onto sand grains, active and inactive biomass

(biosorption), and assesses the influence of the water matrix on OMP sorption. OMP retardation

factors are determined for different experimental conditions (sand grains, (in)active biomass and

different water matrices) by modeling the breakthrough curves. Comparing OMP retardation factors

for the different experimental conditions provides insight in the effect of the aforementioned factors

on OMP sorption.

2 Material and Methods

2.1 Columns set-up and operation

The experimental set-up consisted of 6 transparent PVC columns (L = 1 m, D = 36 mm) filled with

technical sand (d = 1.4 – 2 mm, d50 = 1.83 mm, Filcom, The Netherlands). Columns were filled with

sand in increments of 4 - 5 cm while tapping on the column, to prevent layering in the columns. To

prevent leaching of sand grains, the top and bottom of the column were fitted with perforated PVC

plates (30 holes, d = 0.8 mm).

The columns were operated from bottom to top in a controlled climate room in the dark (to prevent

algae growth and/or OMP loss due to photolysis). During an adaptation period of 4 months, the

columns were operated at 15°C for two months after which the temperature was increased to 20°C for

two months to increase biological activity. After 4 months adaptation time, the biomass reached stable

conditions indicated by a stable DOC removal. Subsequently, the experimental period was initiated by

dosing of the OMPs. During the whole experimental period the columns were operated at 20°C.

Columns (1, 2, 3 and 4) were fed with surface water from the local Schie Canal, spiked with 200 µg/L

sodium acetate (CH3COONa.3H20, Merck, Germany) to stimulate biological growth. After the

adaptation period of 4 months, columns 3 and 4 were fed with Schie Canal water with 400 mg/L

sodium azide (NaN3, Sigma-Aldrich, The Netherlands) to inactivate the developed biomass. UV254

absorbance was measured in the influent and effluent, as an indicator for DOC removal, to confirm

inactivation of the biomass. After inactivation of the biomass was confirmed, OMP dosing was started

in all columns. Column 5 was fed with Schie Canal water and 400 mg/L NaN3 to suppress biological

activity in this column from the start of the experiment. Column 6 was fed with demineralized water

and 400 mg/L NaN3 to suppress biological activity in this column from the start as well. From column

1 and 2 biodegradation rates and retardation factors for active biomass were determined. From the
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other columns, only retardation factors were determined. Comparing retardation factors of column 1

and 2 to column 3 and 4 and to column 5, provided insight into the effect of (in)active biomass and

sand grains on OMP sorption. Comparing OMP removal in column 5 to column 6 provided insight in

the effect of the water matrix on OMP sorption. The biologically active columns (1 and 2) and the

inactivated columns (3 and 4) were operated in duplicate since a larger variability in results for these

biological columns was expected. Table 1 presents the feed water qualities for the columns during the

experimental period.

Schie canal water was filtered (d = 0.4 mm), prior to use as feed, to prevent clogging of the pump

tubes. The columns were fed from 20 L jerrycans which were replaced three times a week to prevent

biological degradation of the OMPs in the feed. The jerrycans were washed with a 3% NaOH solution

followed by a 3% HCl solution and flushed with demineralized water before refilling to prevent

biofilm formation. The feed solutions were pumped through the columns by a peristaltic multichannel

pump (205S, Watson Marlow, The Netherlands) using Marprene® pump tubing (d = 0.63 mm, Watson

Marlow, The Netherlands). The pump tubes were connected to the columns by black polyethylene

tubing (di = 4 mm, Festo, The Netherlands). The hydraulic loading rate applied on the columns was 1

L/d, which equals a filtration rate of 1 m/d. The pore velocities and porosity in the six columns were

determined using a tracer (5 g/L, NaCl). NaCl concentration was measured with a conductivity meter

(Tetracon probe, Cond340i, WTW, Germany). Pore velocity ranged from 2.4 – 3.2 m/d and porosity

varied between 0.31 and 0.42.

2.2 Organic Micropollutants (OMPs)

A mixture of 14 OMPs (200 ng/L per solute) was dosed into the feed of the columns. Table 2 depicts

the wide variability in physico-chemical properties of the OMPs. All compounds were of analytical

grade and purchased from Sigma Aldrich, The Netherlands.
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Table 1 – Feed water qualities for the columns experimental period

NA = Not applicable

Table 2 – Physico-chemical properties OMPs, decay rates and half-lives

This study This study Other studies

Compound MW pKa Charge (pH 7) Log P1 Log D7 (pH 7) µ [d-1] t1/2 [hours] t1/2 [days]

Ibuprofen 206.3 4.911 -1 3.97 1.74 15.8 1 2 minutes8

Ketoprofen 254.3 4.451 -1 3.12 0.82 13.5 1 4.6 – 27.69

Gemfibrozil 250.3 4.74 -1 3.40 1.93 12.7 1 4 minutes8, 17.8; 20.6 10

Acetaminophen 151.2 9.381 0 0.46 0.86 17.1 1 6 minutes8, 2.111

Trimethoprim 290.3 7.121 0 0.91 0.98 11.5 1 3 minutes8

Caffeine 194.2 10.41 0 -0.07 -0.58 9.5 2 5 minutes8, 1.511

Propranolol 259.3 9.421 +1 3.48 0.21 3.6 5 0.4; 1.812, 2.211

Metoprolol 267.4 9.4 2 +1 1.88 -0.58 1.4 12 4.1; 8.712

Atrazin 215.7 <2 (1.6)4 0 2.616 2.26 0 -

Carbamazepine 236.3 - 2 0 2.45 2.64 0 -

Phenytoin 252.3 8.331 0 2.47 1.59 0 -

Sulfamethoxazole 253.3 1.83; 1.85; 5.57; 5.60; 5.655 0 0.89 0.62 0 -

Hydrochlorothiazi

de 297.7

7.91 0

-0.07

-0.71 0 -

Lincomycin 406.5 7.63 +1 0.56 -1.34 0 -

1 Obtained from Drugbank (http://www.drugbank.ca), 2 Chiang and Hu, 2009, 3 Wang et al., 2011, 4 Westerhoff et al., 2005 calculated with SPARC, 5 Babić et al., 2007, 6 Exp. value from chemspider

database (http://www.chemspider.com), 7 Obtained from calculated value ChemAxon (http://www.chemspider.com), 8 Zearley and Summers, 2012, 9 Xu et al., 2009, 10 Fang et al., 2012, 11 Yu-Chen Lin

et al., 2010, 12 Ramil et al., 2010

Column Feed water CH3COONa.3H2O

[µg/L]

NaN3

[mg/L]

Biomass condition Objective

1 Schie Canal 200 NA Active biomass Sorption active biomass + biodegradation

2 Schie Canal 200 NA Active biomass Sorption active biomass + biodegradation

3 Schie Canal NA 400 Inactivated biomass Sorption inactive biomass

4 Schie Canal NA 400 Inactivated biomass Sorption inactive biomass

5 Schie Canal NA 400 No biomass Sorption on sand grains, no biomass present (Water matrix effect)

6 Demineralized water NA 400 No biomass Sorption on sand grains, no biomass present (Water matrix effect)



42

A stock solution of 2 mg/L of OMPs was prepared by adding 20 mg of each compound to 10 L tap

water. The OMPs were dissolved in the stock solution by mixing for a minimum of three days before

being used as feed solution in the experiments. Samples of 200 mL of the influent and effluent from

the columns were collected in glass bottles. The OMPs in solution were extracted using Oasis HLB

cartridges (200 mL, 6cc) (Waters, USA), which had been conditioned with methanol (≥ 99.9%, Sigma 

Aldrich) and demineralized water. The OMPs on each cartridge were eluted with 2x5 mL of methanol

and 2x5 mL of hexane/acetone (1/1, v/v) and the extract was gently blown down to dryness under

nitrogen. The extract was reconstituted in 1 mL MeOH/H2O (25/75, v/v) and spiked with 50 µL of a 

200 µg/L mix of matching labeled internal standards. A volume of 20 µL of extract was injected in a 

Shimadzu UFLC connected to an AB Sciex 4000QTrap QLIT-MS equipped with a Turbo Spray source.

The analysis parameters were as described in Reungoat et al. (2012) (Reungoat et al., 2012). The OMPs

were quantified by an internal calibration renewed for each batch of samples. Quality control

standards were injected regularly during the run to ensure the signal intensity did not vary by more

than 10%. The final results were corrected for losses during extraction using the recovery of the

extraction method. The extraction recoveries were determined for each matrix and each OMP by

spiking samples at 100 ng/L before extraction and after reconstitution in triplicate.

Influent and effluent concentrations were measured at six different time points during a period of one

month (T = 10h, 34h, 58.5h, 80h, 1wk and 4wks). Samples were taken directly from the influent and

effluent side of the column to correct for possible sorption losses in the tubing. After one month all

columns were stopped, except column 2 which was operated for six months in total to investigate if

adaptation of the biomass to degrade OMPs could be observed.

2.3 Other analyses

Dissolved organic carbon (DOC) concentrations were measured with a Shimadzu TOC-VCPH/CPN

Analyser after filtering the aqueous samples through 0.45 µm filters (SPARTANTM, Whatman,

Germany). These filters were flushed twice with demineralized water prior to use. UV254 absorbance

was measured using a UV-Vis spectrophotometer (Thermo Scientific, Genesys 6) and a 1 cm quartz

cuvette. Oxygen and temperature were measured with an oxygen meter (Cellox 325 probe, Oxi340i,

WTW, Germany) and pH was measured with a multimeter (Sentix 41 probe, Multi 340i, WTW,

Germany) in a flow-through cell connected to the influent and effluent tubes of the columns.

At the end of the experiment, duplicate sand samples (2 – 5 g) were taken from the bottom and the top

of the columns, to determine adenosine triphosphate (ATP) concentrations as a measure of biological

activity. The sand sample with 10 mL of demineralized water was subjected to high energy sonication

(HES) treatment to suspend the biomass in solution. HES was performed with a Branson digital

sonifier, Model 250 D (amplitude 45%, Boom BV Meppel). After sonication the supernatant was

decanted and 10 mL fresh demineralized water was added and sonication was repeated until the

difference in ATP concentration measured in the supernatant was smaller than 10%. Four HES

treatments of 2 minutes were found to be sufficient. From every sample 2 mL was collected and mixed

to obtain a total volume of 8 mL. From this mixed sample, 200 µL was subjected to ATP analysis. ATP

analysis was performed with a Quench-Gone AqueousTM test kit (Aqua tools, France). The test kit

measures the concentration of cellular bound ATP (cATP), which is an indication of the active

biomass. A detailed description of the method is reported by (Keuten et al., 2012). In this study a LB

9509 luminometer (Aqua tools, France) was used. The sand samples were subsequently dried in an

oven (105 °C) for 24 hours to determine the dry weight.
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2.4 Statistical analyses

The statistical software package R was used to perform all statistical analyses (R Development Core

Team, 2008) . Two way ANOVA tests were used to determine if an observed difference between

columns (e.g. DOC removal between biologically active and inactive columns) was statistically

significant (p-value < 0.05). Multi-linear regression was used to determine if a statistically significant

(p-value < 0.05) relationship existed between OMP biodegradation rates and their physico-chemical

properties or functional groups.

2.5 Modelling

CXTFIT (Toride et al., 1995) was used to obtain the retardation factors (R) and biodegradation rates (µ)

of the OMPs in the columns by fitting the experimental breakthrough curves using the inverse

problem based on the deterministic equilibrium convection-dispersion equation (CDE). Concentration

mode was set to resident concentration (third type inlet), cr.

The CXTFIT model is based on the convection dispersion equation (CDE) given by Eq.1 (Toride et al.,

1995):

�
� � �

� �
= �

� � � �

� � �
− �

� � �

� �
− � � � Eq. 1

In which:

R = retardation factor [-]

cr = volume-averaged or resident concentration of the liquid phase [kg · m-3]

t = time [min]

D = dispersion coefficient [m2 · min-1]

x = distance [m]

v = average pore water velocity [m · min-1]

µ = first-order decay coefficient for biodegradation of the solute [min-1]

Average pore water velocity (ʋ) and the dispersion coefficient (D) for the columns were obtained from

fitting the breakthrough curves of the tracer experiment in CXTFIT (results are presented in Table 1 of

the SI).

The retardation factor is defined as (Toride et al., 1995):

� = 1 +
� � � �

�
Eq. 2

In which:

ρb = soil bulk density [kg · m-3]

Kd = distribution coefficient [kg-1 · m3]

θ  = volumetric water content [m3 · m-3]

The dispersion coefficient is defined as (Brusseau, 1994):

� = 	� � +
� �

�
Eq. 3

In which:
D = dispersion [m

2
· s

-1
]
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α  = dispersivity [m]
ν  = average pore water velocity [m · s

-1
]

D0 = fluid phase diffusion coefficient [m
2

· s
-1

]
τ  = factor accounting for the tortuosity of the porous medium [-]

Dispersivity (α) was determined from the tracer curves. The fluid phase diffusion coefficient (D0) for

NaCl (3 g/L) is equal to 1.53 · 10-9 m2s-1 as reported by Cremasco et al. (2001) (Cremasco et al., 2001).

Tortuosity (τ) was assumed to be 1. The dispersivity (α) values for the different columns are shown in 

Table 1 of the SI.

To determine the dispersion coefficient (D) for the OMPs, dispersivity was assumed to be equal to the

tracer and average pore water velocity was obtained from the tracer. The diffusion coefficient (D0) of

the OMPs was calculated according to Eq. 4 (Verliefde, 2008):

� � =
� � �

� � � � �
Eq. 4

In which:
RH = Stokes radius [m]
kB = Boltzmann constant = 1.3806488 · 10

−23
JK

-1
[JK

-1
]

T = Temperature = 293.15 K [K]
η  = viscosity [kg s

-1
m

-1
]

The Stokes radius was determined from the molecular volume of the OMPs assuming the OMP

molecules to be ideal spheres. The OMP volumes were obtained from ChemAxon (www.

chemicalize.org). The diffusion and obtained dispersion coefficients for the OMPs are shown in Table

2 of the SI.

Half-life of the compound was defined as:

� � / � =
� � 	( � )

�
Eq. 5

In which:
t1/2 = half-life [min]
µ = first-order decay coefficient for biodegradation of the solute [min

-1
]

3 Results and Discussion

3.1 Water quality parameters

Oxic conditions were maintained during the complete experiment. No significant changes in pH were

observed between the influent and effluent for the columns. DOC, UV254 and ATP were used as

indicator parameters to determine if the specific experimental conditions (biotic/abiotic) were

obtained in the columns. DOC and UV254 values are presented in Table 3 of the SI. Although DOC

removal was small (±5-10%) in the biologically active columns, the difference in DOC removal

between the biologically active columns and biologically inactive columns was statistically significant

(p-value = 4.56 · 10-15 < 0.05). In addition, the difference in UV254 absorbance decrease between the

biologically active and inactive columns was statistically significant (p-value is < 2 · 10-16 < 0.05),
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confirming the trend observed with the DOC results. The difference in DOC removal for columns 3

and 4 between the adaptation period and the experimental period was statistically significant (p-value

= 8.3 · 10-5 < 0.05), implying that inactivation of the biomass in these columns was obtained.

ATP concentrations were measured in sand samples from the influent and effluent side of the column

after finishing the experiment, results are presented in Table 3. ATP concentrations measured at the

influent side of the columns were in all cases higher than at the effluent side of the column, indicating

most biomass is present at the influent side, due to the largest fraction of biodegradable organic

matter present there. The average ATP concentration measured in the biologically active columns 1

and 2 was 24.5 ± 6.1 ng/cm3 and 36.5 ± 8.1 ng/cm3, respectively. Columns 3 and 4, which contained

biomass that was inactivated at the start of the study, showed an order of magnitude smaller ATP

values of 3 ng/cm3 and 2.5 ng/cm3, respectively. Column 5 (Schie canal water and NaN3 from the start)

showed an ATP concentration of 1.5 ng/cm3 which corresponds to, or is slightly less than the ATP

concentration measured in column 3 and 4. ATP concentrations in column 6 (fed with demineralized

water and NaN3) were below the detection limit, indicating that no biomass developed in the column.

Table 3 – ATP concentrations measured at the influent and effluent side of the sand columns

ATP [ng/cm3 of sand]

Column Influent side Effluent side Average

1 47 ± 6 2 ± 1 24.5 ± 6.1

2 70 ± 8 3 ± 1 36.5 ± 8.1

3 5 ± 1 1 ± 0 3 ± 1

4 4 ± 1 1 ± 0 2.5 ± 1

5 3 ± 3 0 ± 0 1.5 ± 3

6 <DL* <DL* < DL*

* Below detection limit

Maeng et al. (2011) found an average (top and bottom of the column) ATP concentration of 102 ng

ATP/cm3 for a column fed with Meuse river water (Maeng et al., 2011). This value is larger than the

ATP concentrations found in this study which could be explained by the higher DOC removal (54%)

in their study (compared to 5 – 10% in this study). However, Magic-Knezev et al. (2004) reported ATP

concentrations of 18 – 93 ng/cm3 for slow sand filters and this range exactly covers the values reported

in this study (Magic-Knezev and van der Kooij, 2004). From the ATP, UV254 and DOC results it was

concluded that the abiotic/biotic conditions aimed for in the columns were obtained.

3.2 Effect of (in)active biomass and the water matrix on OMP sorption

A statistically significant difference in OMP removal between the biologically active columns (1 and 2)

and the biologically inactive columns (3, 4, 5 and 6) for the different time points was observed (p-value

= 2.37 · 10-4 < 0.05). In addition, no statistically significant difference in OMP removal was observed for

the different time points within the two groups of columns (i.e., between 1 and 2 (p-value = 0.60 > 0.05

), or between 3, 4, 5 and 6 (p-value = 0.18 > 0.05 ), indicating that OMP removal was similar in columns

1 and 2 and similar in columns 3, 4, 5 and 6. Exceptions were metoprolol and propranolol which show

a clear difference in retardation behaviour between columns 3, 4, 5 and column 6.

The similar trend in breakthrough curves for column 1 and 2 was expected as well as for column 3 and

4, since these columns were duplicates. For most compounds, however, since no statistically

significant difference in removal was measured between columns 3, 4, 5 and 6, it could be assumed

that OMP sorption was not affected by the inactivated biomass or the water matrix in the

circumstances studied. As such, experimental data of the biologically inactive columns could be
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lumped and used to model the retardation factor R, while experimental data of the biologically active

columns could also be lumped and used to model the biodegradation rate µ. In addition, retardation

factors for non-degradable compounds were fitted for the biologically active and inactivated columns

and no statistically significant difference (p-value = 0.14 > 0.05) was found between the two

experimental conditions. This observation implies that also the effect of active biomass on OMP

sorption is negligible. The negligible effect of (in)active biomass on OMP sorption is probably caused

by the low DOC removal (5-10%) that limited the quantity of developed biomass in the columns.

Fitted retardation factors R of the biologically inactive columns can be found in Table 4 of the SI.

Figure 1 – Experimental data and modelled breakthrough curve metoprolol (PV = Pore Volumes)

Figure 2 –Experimental data and modelled breakthrough curve propranolol

The experimental breakthrough data as well as the modeled fits for metoprolol and propranolol are

shown in Figures 1 and 2. The retardation factor for metoprolol was R = 3.1 for columns 3, 4 and 5 and

R = 10.4 for column 6. The retardation factor for propranolol was R = 8.3 for columns 3, 4 and 5 and R =

62.6 for column 6. The confidence interval of the dispersion and decay coefficient for propranolol

(Column 6 data) are both going through zero, indicating the result is not statistically significant.

However, Figure 2, clearly shows that the retardation factor of propranolol for column 6

(demineralized water + NaN3) is much larger than for the other three columns.
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For both metoprolol and propranolol, the retardation factor is smaller for the columns fed with Schie

Canal Water compared to the column fed with demineralized water, which could be attributed to

competition of metoprolol and propranolol with the DOC (DOC = 16.5 ± 3.2 mg/L, n = 27) in the Schie

Canal Water for sorption places onto the sand or the inactivated biomass. The higher retardation

factors observed with demineralized water for these two compounds in comparison to other OMPs

likely arise from metoprolol and propranolol being positively charged, making them strongly sorb to

the negatively charged sand compared to the neutral and negatively charged OMPs. Drillia et al.

(2005) also reported higher distribution coefficients for propranolol (KD, soil 7 = 199 L/kg, KD, soil 1 = 16.3

L/kg) compared to carbamazepine (KD, soil 7 = 37 L/kg, KD,soil 1 = 0.49 L/kg) and sulfamethoxazole [KD, soil 7

= 37.6 L/kg, KD, soil 1 = 0.23 L/kg). However, one aspect that is not taken into account in the above

discussion, is that the solute lincomycin is also positively charged but not retarded (R = 1.09 for both

biologically inactive and active columns). The much stronger retardation for metoprolol and

propranolol in all columns could be explained by the lower hydrophilicity of the compounds.

Hydrophilic compounds have good solubility and are thus less likely to sorb. Lincomycin is the most

hydrophilic compound (Log D = -1.34) followed by metoprolol (Log D = -0.58) and propranolol (Log D

= 0.21). The negligible sorption of lincomycin could thus be explained by its higher hydrophilic

character (high solubility) and the partial deprotonation of this solute at the pH at which the

experiment was conducted (weaker positive charge).

3.3 Organic Micropollutant Sorption – Retardation Factors

OMP retardation factors (R) were determined by fitting R for the lumped experimental data of the

four biologically inactive columns (3, 4, 5 and 6), since these were determined not to be statistically

different. The average velocity and dispersion coefficient of the four columns were determined from

the tracer experiment and used as input for the CXTFIT model. The biodegradation rate µ was set to 0

since it was assumed that no biodegradation occurred in these columns (ATP concentrations in the

biologically inactive columns were one order of magnitude lower compared to the biologically active

columns – in column 6 no biomass was present at all).

In the convection-dispersion equation, retardation is linked to reversible sorption. Losses arising from

irreversible sorption or biodegradation of OMPs are included as first-order decay processes. Although

no loss of OMPs was observed for most compounds in the biologically inactive columns, losses of

metoprolol and propranolol were observed. As acetaminophen and caffeine, both easily degradable

compounds (Yu-Chen Lin et al., 2010, Zearley and Summers, 2012), did not show a loss in the inactive

columns – consistent with measurements of low ATP concentrations (2.5 – 3 ng/cm3 compared to 24.5 -

36.5 ng/cm3 in the biologically active columns), biodegradation of metoprolol and propranolol in the

biologically inactive columns does not seem likely. Therefore, the loss of these compounds could be

attributed to irreversible sorption possibly as a result of charge interactions; however, further research

is required to test this hypothesis. The loss (irreversible sorption) of metoprolol and propranolol was

modeled by fitting µ to correct for the effective biodegradation rate. The effective biodegradation rate

is determined as the biodegradation rate from the biologically active columns minus the loss of the

compound as a result of irreversible sorption from the biologically inactive columns, thereby

obtaining a safe estimate of the biodegradation rate for these two compounds.
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3.4 Organic Micropollutant Biodegradation

To determine the biological degradation rates of the different OMPs, µ was fitted for the experimental

data of both biologically active columns 1 and 2. The average velocity and dispersion were obtained

from the tracer and used as input for the CXTFIT model. The retardation factor determined from the

inactive columns was used to fit the biological degradation rate µ for the biologically active columns.

The OMPs were separated in two groups: biodegradable and non-biodegradable. Non-biodegradable

in this study means that the compound is either non-biodegradable (persistent) or is characterised by

a very small biodegradation rate which could not be determined with a statistically significant

confidence interval by the model. Acetaminophen, ibuprofen, ketoprofen, gemfibrozil, trimethoprim,

caffeine, propranolol and metoprolol were found to be biodegradable, while atrazine, carbamazepine,

hydrochlorothiazide, lincomycin, phenytoin and sulfamethoxazole showed more persistent behavior.

These results are in agreement with other studies: biodegradation of acetaminophen, ibuprofen,

ketoprofen, gemfibrozil, trimethoprim, caffeine, propranolol, and metoprolol has been reported in

many studies (Fang et al., 2012, Ramil et al., 2010, Xu et al., 2009, Yu-Chen Lin et al., 2010, Zearley and

Summers, 2012) as well as the more persistent behavior of compounds such as atrazine,

carbamazepine, hydrochlorothiazide, phenytoin and sulfamethoxazole (Benotti et al., 2012, Radjenović

et al., 2009, Scheytt et al., 2006, Zearley and Summers, 2012). To the best knowledge of the authors, no

biodegradation rates for lincomycin have been reported.

Biodegradation rates in this study range from 1.4 – 16.3 d-1, while half-lives range from 0.0 – 0.5 d.

Table 2 presents an overview of decay rates, half-lives obtained in this study and reported in other

studies for all OMPs. Graphs of the OMPs that show biological degradation (µ ≠ 0) are presented in 

Figures 1 and 2 of the SI. Table 5 of the SI presents the fitted biodegradation rate µ for the OMPs in the

biologically active columns.

From Table 2 it is observed that the half-lives determined in this study for the biodegradable

compounds are within the range of half-lives reported in literature. As was observed for the

distribution coefficient, half-lives can differ by four orders of magnitude between different studies.

The difference in half-life (biodegradation rate) is probably a result of the specific experimental

conditions investigated (initial OMP concentrations, type and quantity of biomass present,

experimental scale, soil etc.) in each of the studies.

Atrazine, carbamazepine, hydrochlorothiazide, lincomycin, phenytoin and sulfamethoxazole are not

or very poorly biodegraded. Atrazine also showed very poor removal in other soil column studies

(Benotti et al., 2012, Zearley and Summers, 2012), and also the persistent behaviour of carbamazepine

has been reported in many studies (Benotti et al., 2012, Maeng et al., 2011, Maeng et al., 2012, Scheytt et

al., 2006, Zearley and Summers, 2012). Hydrochlorothiazide showed recalcitrant behavior in a

conventional activated sludge system as well as two pilot MBR systems (Radjenović et al., 2009).

Phenytoin was poorly removed (±20%) in a pilot RBF system and did not show removal during full-

scale RBF treatment (Benotti et al., 2012). Sulfamethoxazole did not show removal in a pilot scale RBF

system as well as during full scale RBF treatment (Benotti et al., 2012) or in biological filters (Zearley

and Summers, 2012), but was reported to be biodegradable under oxic conditions in two soil column

studies (Baumgarten et al., 2011, Gruenheid et al., 2008). Baumgarten et al. (2011) reported a half-life of

t1/2 = 9 d for sulfamethoxazole in oxic conditions, but only after an operational period of 27 months

(sulfamethoxazole influent concentration = 0.25 µg/L) (Baumgarten et al., 2011). This could explain the
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more persistent behavior of sulfamethoxazole observed in this study, even after the longest operation

period, since biologically active column 2 was operated for only 6 Months.

Column 2 was operated for six months to investigate if adaptation of the biomass towards the OMPs

would occur. The fitted biodegradation rates for the one month period and the six month period are

presented in Table 6 of the SI. The difference in biodegradation rates for column 2 over the six month

period and for column 1 and 2 over the one month period was statistically not significant (p-value =

0.71 > 0.05), indicating that OMP biodegradation rates were similar and no adaptation of the biomass

towards the OMPs occurred in the six month period. This implies that new developed RBF sites

(under oxic conditions) might not be capable of removing OMPs such as atrazine, carbamazepine,

hydrochlorothiazide, lincomcyin, phenytoin and sulfamethoxazole during the first months of

operation.

3.5 Link with physico-chemical properties and functional groups

The main objective of this study was to determine if the OMP biodegradation rate µ could be related

to the OMP physico-chemical properties (MW, charge or hydrophobicity) or functional groups. Table

2 presents an overview of the physico-chemical properties of the OMPs and their biodegradation

rates. Table 7 in the SI depicts the functional groups present in their molecular structures. Log P is

used as an indication of the hydrophobicity of the non-ionizable compounds, similarly Log D is used

for ionizable compounds. Hydrophobicity of the compound is expected to play an important role in

penetrating the cell membrane, before the compound can be further degraded by intracellular

enzymes, in case no exo-enzymes are present. In addition, hydrophobicity of the compound is related

to the bioavailability of a compound. Hydrophobic compounds have poor solubility and are therefore

more likely to sorb, thereby reducing their mobility (and bioavailability) in soil.

From Table 2 it is observed that all negatively charged compounds are well removed in the

biologically active column, and thus characterized by high biodegradation rates (12.74 – 15.77 d-1),

while positively charged compounds are characterized by lower biodegradation rates (0 – 3.61 d-1). A

statistically significant linear relationship was observed between biodegradation rate and charge for

the charged compounds (R2 = 0.95, p-value = 8.87 · 10-4). In addition, charged compounds with higher

Log D (ibuprofen, ketoprofen and gemfibrozil) showed higher biodegradation rates than charged

compounds with lower Log D (propranolol, metoprolol and lincomycin). This was also confirmed by

a statistically significant linear relationship (R2 = 0.85, p-value = 8.48 · 10-3). A higher Log D indicates

larger hydrophobicity of the OMP, thus the compound will be sorbed more easily. The fact that

charged OMPs with higher Log D show higher biodegradation rates, could be explained by their

increased chance of sorption onto the cell and subsequent penetrating through the cell membrane to

be further degraded. However, this increased sorption of the compounds with high Log D could not

be observed from the retardation factors. It may be possible that the biological degradation of

ibuprofen, ketoprofen and gemfibrozil was so fast that it outcompeted the sorption and thus the

retardation effect could not be observed. Future research should elucidate why negatively charged

compounds show higher biodegradation rates compared to positively charged OMPs and determine

the specific role of sorption as a pre-requisite for biodegradation.

Although charge and hydrophobicity separately played an important role in predicting the

biodegradation rate of the charged compounds, no statistically significant relation was observed

between biological degradation rate and the physico-chemical properties for the neutral compounds.
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Neutral compounds characterized by lower Log D values (-0.58 to 0.98) were more biodegradable,

while neutral compounds characterized by higher Log D values (1.59 to 2.64) showed more persistent

behaviour, in contrast to what was observed for the charged compounds. Exceptions were

hydrochlorothiazide and sulfamethoxazole. Both compounds have low Log D values, but did not

show biodegradation. Although some trends were observed between the biodegradation rates and

two physico-chemical properties as explained above (charge and hydrophobicity), a statistically

significant relationship for the whole OMP mixture and all three physico-chemical properties

considered could not be obtained.

However, a statistically significant relationship (p-value = 1.26 · 10-4, R2 = 0.96) for all OMPs was

obtained explaining biodegradation behavior using functional groups present within the chemical

structure of the OMP:

µ = 22.797 – 7.357 · Am – 7.360 · RS + 6.045 · Et – 6.690 · Al.Et + 5.443 · Ca – 6.766 · S Eq. 6

In which:

µ = biodegradation rate [d-1]

Am = number of amines (primary and secondary) [-]

RS = number of ring structures [-]

Et = number of ethers [-]

Al.Et = number of aliphatic ethers [-]

Ca = number of carbonyl groups [-]

S = number of sulphur atoms [-]

Eq. 6 shows that the presence of ethers and carbonyl groups will increase biodegradability, while the

presence of amines, ring structures, aliphatic ethers and sulphur will decrease biodegradability.

Several studies concluded that functional groups such as carbonyl positively contribute to the

biodegradability of the compound (Loonen et al., 1999), while other functional groups such as ring

structures (Loonen et al., 1999), amines (Loonen et al., 1999, Okey and Stensel, 1996), aliphatic ether

(Boethling et al., 1994) and sulphur (Okey and Stensel, 1996) negatively contribute to a compounds’

biodegradability. Kawasaki et al. reported that the presence of ethers in the molecular structure of

aliphatic compounds and their derivatives did not show a significant effect on the biodegradability of

these compounds (Kawasaki, 1980), but ethers were found to increase biodegradability rate of the

OMPs investigated in this study. The different contribution of ethers to the biodegradation rate in the

two studies, could be attributed to the difference in biological system (sludge mixture versus RBF, e.g.

differences in biomass concentration and residence time) and/or the difference in type of compounds

investigated in the studies.

Further research is required to extend the amount of molecular properties investigated in the

predictive model as well as the OMP cocktail. For example, molecular properties such as: globularity,

ionization potential, electron affinity, and solubility could influence OMP biodegradation during soil

passage. A more extensive study is required to elucidate the importance of these molecular

descriptors which will be another step towards the development of a QSAR model for OMP removal

during soil passage.
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4 Conclusion

This study examined sorption and biodegradation behavior of OMP mixtures, at concentrations

representative of those in RBF systems, in lab-scale soil columns under oxic conditions. The main

objective of this study was to investigate if the OMP biodegradation rate could be related to the

physico-chemical properties (charge, hydrophobicity and molecular weight) or functional groups of

the OMPs. In addition, this study investigated OMP sorption onto sand grains, active and inactive

biomass (biosorption), and assessed the effect of the water matrix on OMP sorption.

OMP biodegradation rate of the complete mixture of OMPs investigated in this study can be predicted

based on the functional groups present in the OMP chemical structure. The obtained predictive model

provides a tool for drinking water companies to make a first estimation whether a newly detected

compound may be biodegraded during RBF or if additional treatment is required to prevent the OMP

from penetrating through the treatment train ending up in the drinking water.

Although a clear trend was observed between biodegradation rate and hydrophobicity or charge for

the charged OMPs, it was not possible to obtain a statistically significant relation between

biodegradation rate and these physico-chemical properties for the complete OMP mixture.

To distinguish OMP sorption from biodegradation it is imperative to determine breakthrough curves

as opposed to measure only influent and effluent concentration at one time point, since they will

provide retardation factors as well as decay rates and will take into account OMP dispersion. This

makes a comparison of sorption and/or biodegradation behavior between OMPs possible, which is

required to observe trends and to relate OMP removal to the OMP physico-chemical properties or

functional groups.

Retardation factors for most compounds were close to 1, indicating mobile behavior of these

compounds in the soil environment.

OMP sorption onto sand grains and developed (in)active biomass as well as the effect of the water

matrix on OMP sorption were found to be negligible under the conditions investigated in this study.
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Chapter 3

A predictive multi-linear regression

model for organic micropollutants, based

on a laboratory-scale column study

simulating the river bank filtration

process

This chapter is based on: Bertelkamp et al. (2015), A predictive multi-linear regression model

for organic micropollutants, based on a laboratory-scale column study simulating the river

bank filtration process, Journal of Hazardous Materials. In press.
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1 Introduction

Although several studies have indicated that RBF is an effective treatment process for many OMPs

(Benotti et al., 2012, Henzler et al., 2014, Hoppe-Jones et al., 2010), a few OMPs (e.g. carbamazepine,

primidone) have been seen to be very persistent during soil passage (Benotti et al., 2012, Rauch-

Williams et al., 2010). Drinking water companies are now faced with a lack of insight into why certain

OMPs are removed during RBF while others show persistent behaviour. This makes it difficult to

provide appropriate post-treatment after RBF to create an adequate or even absolute barrier against

OMPs in drinking water treatment plants. While insight could be obtained by experimentally

determining the removal of newly detected OMPs, this is practically not possible due to the high cost

of analysis and the associated time investment. Therefore, alternative approaches are needed.

Developing a quantitative-structure-activity-relationship (QSAR) for the prediction of OMP removal

during RBF could satisfy such requirements. This type of model should enable drinking water

companies to a-priori predict whether an OMP is removed during RBF based on its structural

fragments (functional groups).

To develop a predictive model for OMP removal during RBF, first a parameter that enables a

quantitative comparison in biodegradability between different OMPs should be determined. While

most soil column studies on OMP removal report total OMP removal in percentage, such data cannot

be used to quantitatively compare biodegradability potential for a group of OMPs - a similar

percentage removal at the end of a column does not necessarily mean that the OMPs are biodegraded

at the same rate. For example, imagine two soil columns (A and B, length is 1m) that are compared

with regard to ketoprofen removal and both columns are characterised by a ketoprofen removal of

80%. It is possible that 80% ketoprofen removal in column A is reached after 10 cm soil passage, while

column B requires the full column length/residence time for a similar removal percentage. A more

adequate parameter to quantitatively compare biodegradability potential of a group of OMPs would

therefore be the biodegradation rate. Although a number of studies investigated OMP biodegradation

rates in soil column studies (Patterson et al., 2011, Scheytt et al., 2006, Scheytt et al., 2007), these studies

only focused on a limited number of OMPs, a certain class of OMPs (e.g. pharmaceuticals) and/or did

not try to link these OMP biodegradation rates to the OMP functional groups.

OMPs are biodegraded by the microbial community present in the soil. Soil bacteria excrete enzymes

which can attack the reactive site of the OMP. However, this enzyme attack can be hindered as a result

of steric effects (the location of a functional group), electrical effects (functional groups increasing or

decreasing the electron density of the OMP) or polar/a-polar interactions (Miller et al., 1997).

Therefore, the presence of certain functional groups on the OMP structure can play an important role

in the OMP biodegradation process. Several studies found a correlation between certain functional

groups present in the OMP molecular structure and OMP degradability in biological processes.

However, these studies were often limited to a certain class of OMPs or did not specifically focus on

the RBF process but on other biological treatment processes such as activated sludge and/or

membrane bioreactors which are usually characterized by higher biomass quantities (Alexander et al.,

1966, Okey et al., 1996, Pitter, 1985, Tadkaew et al., 2011).

In addition, tools such as BIOWIN and CATABOL can be used to determine the biodegradability

potential of OMPs based on the structural fragments present in the molecular structure. These tools

are not limited to a specific group or class of OMPs, but biodegradation potential for these OMPs is
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determined in tests that use a mixture of sludge, surface soil, and water from a variety of sites such as

sewage treatment plants, industrial waste water treatment works, rivers, lakes and seas as inoculum

(OECD, 1981, 1992). Biomass density and quality can differ significantly between for example sewage

treatment plants and natural treatment systems such as RBF which questions the applicability of these

models for RBF systems. Moreover, the tests used to determine these biodegradation rates are often

spiked with much higher concentrations of OMPs than naturally present in river water bodies. This

can lead to shorter adaptation times and higher biodegradation rates and as a consequence it provides

less realistic results (Baumgarten et al., 2011). Thus, there is a lack of OMP biodegradation rates

representative for the RBF system which can be used to develop a predictive model based on the

functional groups present in the OMP molecular structure.

A first step towards a predictive model for OMP removal during RBF was proposed in Chapter 2, that

described a relation between OMP biodegradation rate and the functional groups present in the OMP

molecular structure. However, a limitation of this study was that the RBF lab-scale columns were

filled with clean filter sand. Since the soil microbial community is responsible for the OMP

biodegradation, and this community is affected by environmental factors such as soil organic carbon

content, nutrient availability, and OMP sorption, OMP biodegradation rates may differ, especially

between clean filter sand and soil from an operational RBF site. In addition, a relatively small number

(14 in total) of OMPs were tested in the previous study and the use of technical sand made it

impossible to validate the developed model with field data.

To overcome the aforementioned limitations, a larger set of OMPs (representing various classes of

OMPs, e.g. pesticides, pharmaceuticals, industrial waste products) should be investigated and

biodegradation rates for these OMPs should be obtained from lab-scale columns filled with soil from

an operational RBF site. Subsequently, the model should be validated with field data to test its

applicability for drinking water companies.

Therefore, this study investigates: (1) if a correlation exists between OMP biodegradation rates

obtained from a lab-scale oxic soil column system filled with soil from an operational RBF site and the

functional groups present in the OMP molecular structure (2) the general applicability of the

developed model for OMP removal data obtained from the RBF field site that the column is trying to

mimic. Laboratory scale columns were filled with oxic soil from RBF site Engelse Werk of drinking

water company Vitens (The Netherlands), and were used to simulate the oxic zone of the RBF process

at this site. The OMP mixture dosed in the columns was carefully selected to cover different classes of

OMPs (e.g. pharmaceuticals, pesticides, industrial agents, food/beverage additives) and a wide variety

of functional groups (e.g. aryl-aliphatic ethers, aliphatic ethers, amide, carboxylic acids, carbonyl,

esters, ethers, fosfor, halogens, hydroxyl, methyl, primary/secondary/tertiary amines, phosphine

oxide, rings, sulphonamide, sulfur), thus representative for a large number of OMPs present in the

environment. In addition, some of the selected OMPs have been reported to be detected frequently or

in high concentrations in the Dutch surface waters (ter Laak et al., 2014, van der Hoek et al., 2014,

Verliefde et al., 2007). OMP biodegradation rates were determined by fitting the convection-dispersion

equation to the experimental data. Multi-linear regression was then used to correlate the OMP

biodegradation rates obtained in the column study to the functional groups present in the OMP

molecular structure. Finally, the developed model was used to predict biodegradation rates of an

OMP mixture monitored in the field to validate the model.
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2 Materials and Methods
2.1 Experimental set-up
The experimental set-up consisted of 2 transparent PVC columns (L = 1 m, D = 36 mm) in series. Both

columns were filled with oxic soil from RBF site Engelse Werk of drinking water company Vitens

(52°29'39" N, 6°3'40.4" E). Columns were filled with soil in increments of 4-5 cm while tapping on the

column, to prevent layering in the columns. To prevent leaching of soil grains, the top and bottom of

the column were fitted with perforated PVC plates (30 holes, d = 0.8 mm) that were covered with filter

cloth (45 µm, Top7even net & mesh, The Netherlands). A flow from bottom to top was maintained in

both columns to prevent air entrapment and the system was operated in a temperature controlled

room (12 °C) in the dark (to prevent algae growth and/or OMP loss due to photolysis).

The pilot was fed from a jerrycan filled with Lek river water and an OMP mixture. River water was

refreshed every two weeks and was filtered (d = 0.4 mm), prior to use as feed, to prevent twigs and

larger particles from clogging the pump tubes. After every replacement feed jerrycans were washed

twice with acetone and flushed several times with demineralized water before refilling to prevent

biofilm formation. The feed solution was pumped through the columns by a peristaltic multichannel

pump (205S, Watson Marlow, The Netherlands) using Marprene® pump tubing (d = 0.63 mm, Watson

Marlow, The Netherlands). The pump tubes were connected to the columns by dark polyamide tubing

(di = 2.9 mm, Festo, The Netherlands). The hydraulic loading rate applied on the columns was 0.5 L/d,

which equals a filtration rate of 0.5 m/d. Pore velocity and porosity in the pilot was determined using

deuterium (2H) as tracer. Deuterium concentrations were determined with laser absorption

spectroscopy using a DLT-100 Liquid-Water Isotope Analyzer (Los Gatos Research, USA); precision

±0.56‰ for 2H. A quantity of 0.19 mL of 99% pure Deuterium was added to the feed solutions (20 L),

resulting in an approximate 60 ‰ increase in δ-2H. Pore velocity and porosity were 1.48 m/d and 0.33,

respectively.

2.2 Organic micropollutants
A mixture of 31 OMPs was dosed into the feed solutions of the columns (500 ng/L of each OMP). All

compounds used were of analytical grade and purchased from Sigma Aldrich, The Netherlands. A

stock solution of 2 mg/L of OMPs was prepared by adding 20 mg of each compound to 10 L tap water.

The OMPs were dissolved in the stock solution by mixing for a minimum of three days before being

used as feed solution in the experiments. The OMP mixture analysed in the in- and effluent of the oxic

pilot was measured on a monthly basis for about 7 months.

Table 1 presents an overview of all OMPs investigated in this study (in both the lab-scale columns and

the field), their physico-chemical properties and the method used to analyse the compound. The OMP

mixture was analysed using four different methods. Some OMPs were measured with two different

methods as a way of quality control. OMP removal (Ce/C0) for compounds measured with different

methods was compared by means of an ANOVA test, to cross-check results between different

analytical methods. No statistical significant differences in Ce/C0 values were found for any of the

OMPs (p-value < 0.05 for all OMPs).

Functional groups were identified for every molecule and the results are presented in Table 1 of the SI.

Method 1: Samples of 100 mL of the influent and effluent from the columns were collected in glass

bottles. A mixture of mass labelled internal standards (atrazine-d5, acetaminophen-d4, ketoprofen-d3,
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metoprolol-d7, diuron-d6 and sulfamethoxazole-13C6) was added to every sample or calibration

standard to a final concentration of atrazine-d5: 50 ng/L, metoprolol-d7: 1500 µg/L, sulfamethoxazole-

13C6: 600 ng/L, ketoprofen-d3: 600 ng/L, diuron-d6: 200 ng/L, acetaminophen-d4: 500 ng/L. The OMPs in

solution were extracted using Oasis HLB cartridges (200 mg, 6 cc) (Waters, USA), which had been

conditioned with 3 mL of methanol (≥99.9%, Sigma Aldrich) and 5 mL Milli-Q water. Following 

extraction of the OMPs, cartridges were flushed with 2 x 2.5 mL Milli-Q water to remove salts after

which the cartridges were dried under vacuum for 10 minutes. The OMPs on each cartridge were

eluted with 2 x 4 mL of methanol, which was subsequently evaporated with N2 gas to a volume of 100

µL (200 µL for the increased OMP concentration in experimental module 2).

OMPs were analysed with UHPLC-HR-Orbitrap-MS. A benchtop ExactiveTM Orbitrap mass

spectrometer (Thermo Fisher Scientific, USA) was coupled to an Accela autosampler (maintained at 15

°C), Accela degasser and an Accela 1250 pump, which pumped the injected extract (10 µL) and 

solvents at a flow rate of 300 µL/min over the column. The injected extract was segregated on a 

Nucleodur C18 Pyramid column (100 mm × 2.1 mm, 1.8 µm, Macherey-Nagel, PA, USA) at 25 °C. 

Solvent A (0.08% HCOOH dissolved in ultra-pure water) and solvent B (MeOH) were used according

to the following gradient: starting from 98% A and 2 % B, which was held for 1 minute; in 0.5 min the

contribution of solvent B increased to 90%; the percentage of B was increased further to 100% in 3

minutes and held for 1 minute; equilibration at initial conditions was done for 1.5 minutes. After

segregation of the extract on the column, components were ionised with a HESI-II (Heated

Electrospray Ionisation) interface. The HESI-II interface was set to a spray voltage of 4000 V, a

capillary temperature of 250 °C and a capillary voltage of 82.50 V. The sheath gas flow rate was set to

30 arbitrary units, no auxiliary or sweep gas were used. The tube lens and skimmer voltage were set

to 120 V and 20 V respectively. The vaporizer heater temperature was set to 350 °C. Ionized

components were sent to an OrbitrapTM-HRMS (Thermo Fisher Scientific, USA) at a polarity

alternating from negative to positive ion mode, and operating in a scan range of 80.0 – 800.0 m/z. A

resolution of 50 000 FWHM (full width at half maximum) and an automatic gain control (AGC) target

of 5.105 were used for detection. The High Energy Collision Dissociation (HCD) cell was turned off.

Data interpretation was performed with the Thermo Xcalibur 2.1.0.1140 software package (Thermo

Fisher Scientific, USA). Every analyte was detected based on the accurate mass of the precursor ions:

[M+H]+ and [M-H]-. The maximum mass tolerance was set to 5.0 ppm.

Method 2: Pharmaceutical compounds were analysed using HPLC-MS/MS (API 5500 AB-Sciex. USA).

Before injecting the OMP sample (1000 µL) onto the column, 80 µL internal standard and 0.1% formic 

acid was added to the sample. The injected extract was segregated on a Atlantis T3 (150 mm x 4.6 mm.

3 µm) column (Waters. USA) at 25 °C. Solvent A: Milli-Q water with 0.1% formic acid (HCOOH. 

Boom. The Netherlands); solvent B: Acetonitrile (C2H3N. Lab-scan. Ireland). Solvent A and B were

used according to the following gradient for positive ionisation: starting with 99.5% A and 0.5% B for

1.5 minutes; increasing the contribution of solvent B to 95% B. 5% A in 32.5 minutes which was then

held for 6 minutes; and 1 minute decreasing the contribution of solvent B to 0.5% B. 99.5% A. For

negative ionisation. solvent A and B were used according to the following gradient: starting with

99.5% A and 0.5% B for 1.5 minutes; increasing the contribution of solvent B to 95% B. 5% A for 18.5

minutes which was held for 5 minutes; decrease the contribution of solvent B to 0.5% B. 99.5% A for 2

minutes. The flow was 1 mL/min. After segregation of the extract on the column, analytes were

ionised with Turbo Ion Spray. Curtain gas was set to 20 psi. the Nebulizer gas was set to 50 psi and
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the Turbo gas was set to 50 psi. The Ionspray voltage was set to 5000 V (-3000 V for negative

ionisation), temperature of the heaters equalled 600 °C and collisionally activated dissociation was set

to 7 psi. An API 5500 (AB-Sciex. USA) was used for detection. Analyses of the analytes was performed

with the AB-Sciex Analyst 1.5.2 software package (AB-Sciex. USA). The analyte was detected based on

product ion (daughter) of the precursor ion (parent): [M-H+] or [M-H-].

AMPA was analysed in the same manner as the pharmaceutical compounds, only the sample

preparation was different. Before injecting the OMP sample (1000 µL) onto the column, 2.5 mL 

Boraxbuffer and 400 µL titriplex(III)-solution was added to 30 mL of the sample. The titriplex(III)-

solution was added to bind amongst others copper(II) and iron(II) to improve derivatisation. After

storing the samples overnight in the fridge, 6.5 mL of the sample is collected in a vial and internal

standard (52 µL) and 1000 µL FMOC-Cl reagens in acetonitrile added. After 2 hours the derivatisation

is ended by adding 80 µL formic acid.

Method 3: Pesticides were analysed using HPLC-MS/MS (API 4000 AB-Sciex. USA). Before injecting

the OMP sample (1000 µL) onto the column. 80 µL internal standard . 10 mmol ammonium acetate 

and 0.1% formic acid was added to the sample. The injected extract was segregated on a Polaris 3 C18-

A (1500 mm x 4.6 mm. 3 µm) column (Varian. USA) at 35 °C. Two solvents were used: A and B. 

Solvent A was Milli-Q water with 10 mmol ammonium acetate (Boom. The Netherlands). 0.1% formic

acid (Boom. The Netherlands) and 1% acetonitrile (Lab-scan. Ireland). Solvent B was Acetonitrile with

10 mmol ammonium acetate. 0.1% formic acid and 10% Milli-Q water. Solvent A and B were used

according to the following gradient for positive ionisation: starting with 0% B. 100% A for 2 minutes.

increasing the contribution of solvent B to 100% B. 0% A for 31 minutes which was then held for 2

minutes. decrease the contribution of solvent B back to 0% B. 100% A for 1 minute. For the negative

ionisation. solvent A and B were used according to the following gradient: starting with 0% B. 100% A

for 2 minutes. increase the contribution of solvent B to 100% B. 0% A for 8 minutes which was held for

10 minutes. decrease the contribution of solvent B back to 0% B. 100% A for 1 minute. The flow was 1

mL/min. After segregation of the extract on the column, analytes were ionised with Turbo Ion Spray.

Curtain gas was set to 30 psi. the Nebulizer gas was set to 80 psi (60 psi for negative ionisation) and

the Turbo gas was set to 50 psi (40 psi for negative ionisation). The Ionspray voltage was set to 3000 V

(-3000 V for negative ionisation). temperature of the heaters equalled 500 °C and collisionally activated

dissociation was set to 8 psi. Analyses of the analytes was performed with the AB-Sciex Analyst 1.5.2

software package (AB-Sciex. USA). The analyte was detected based on product ion (daughter) of the

precursor ion (parent): [M-H+] or [M-H-].

Method 4 : Volatile hydrocarbons were analysed using GC-MS (Thermo, Interscience, USA). Analytes

were purged from the water phase with helium, after which they were retained on a trap (Teledyne

Tekmar Analytical Vocarb 3000). The temperature of the cold trap was reduced to -165 ° C using

liquid nitrogen. The Vocarb 3000 is rapidly heated to 250 °C to enable desorption of the analyte to the

cold trap. When all components were moved from the Vocarb 3000 to the cold trap, the cold trap was

heated to 250 °C and by means of thermal desorption the analytes were placed on-line on a capillary

column (J & W DB-624, 60m x 0.32 mm, df = 1.8 mm, 40°C). Interpretation of the data was performed

with the Thermo Xcalibur 2.2 software package (Thermo Scientific, USA).
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2.3 Water quality and soil parameters
The dissolved organic carbon (DOC) concentration was measured with a Shimadzu TOC Analyser

after filtering the aqueous samples through 0.45 µm filters (Whatman, Germany); these filters were

flushed twice with demineralized water prior to use. Oxygen and temperature were measured with an

oxygen meter (FDO® 925 IDS probe, Oxi340i, WTW, Germany) and pH was measured with a

multimeter (SenTix® 940 IDS probe, Multi 340i, WTW, Germany) directly in the feed or in a flow

through cell connected to the effluent tubes of the columns. Ions were analysed with an ProfIC 15 –

AnCat ion chromatograph (Metrohm 881 anion (suppressed) and 883 cation system) (Metrohm,

Switzerland) after filtering the aqueous samples through 0.45 µm filters (Whatman, Germany); these

filters were flushed twice with demineralized water prior to use. For the anions an A Supp 150/4.0

anion column was used with 3.2 mM Na2CO3 and 1 mM NaHCO3 eluent. For the cations a C5 cation

column with 3 mM HNO3 eluent was used. Regenerant for the suppressor was 50 mM H2SO4.

ATP analysis was performed at the end of the experiment. Sand samples (10 g) were obtained from

both oxic pilot systems at the influent and effluent side, to determine adenosine triphosphate (ATP)

concentrations as a measure of biological activity. The sand sample with 10 mL of demineralized

water was subjected to high energy sonication (HES) treatment to suspend the biomass in solution.

HES was performed with a Branson digital sonifier, Model 250 D (2 minutes, amplitude 20%, Boom

BV Meppel). After sonication the supernatant was decanted and 10 mL fresh demineralized water was

added. Sonication was repeated until the difference in ATP concentration measured in the supernatant

was smaller than 10%. Three HES treatments of 2 min were found to be sufficient. From every

supernatant sample 667 µL was collected to obtain a mixture of 2 mL in total. From this mixed sample, 

200 µL was subjected to ATP analysis. ATP analysis was performed with a Quench-Gone AqueousTM

test kit (Aqua tools, France). The test kit measures the concentration of cellular bound ATP (cATP),

which is an indication of the active biomass. A detailed description of the method is reported by

(Keuten et al., 2012). In this study a LB 9509 luminometer (Aqua tools, France) was used. The sand

samples were subsequently dried in an oven (105 °C) for at least 24 hours to determine the dry weight.

Soil pH was measured by adding 40 mL demineralized water to a soil sample (16 g). The mixture was

shaken manually every hour and pH of the solution was measured the following day. This pH value

is referred to as pH-H2O. To determine the long-term exchange capacity of H3O+ ions, pH was also

measured after addition of KCl. After analysing the pH in the water solution, 1.8 g KCl was added.

The mixture was shaken manually every 15 minutes and again the pH of the solution was measured.

This pH is referred to as pH-KCl.

Grain size distribution of the soil was determined with laser diffraction (Helium-

Neon Laser Optical System, KR). Organic matter content of the soil was determined from thermo

gravimetric analysis (TGA-601, Leco Corporation). The soil sample was heated to 550 °C and weight

loss was determined (LOI550) to obtain an indication for the total organic matter content of the soil.

This value was corrected by 7% of the clay content which equals the cumulative value of 8 µm from

the grain size distribution (Hagen, 2014). This correction is necessary for Dutch soils to compensate for

the loss of crystallization water (Hagen, 2014). According to Eq. 1 (Hagen, 2014):

SOM = LOI 550 – 0.07 · L (Eq. 1)

In which:

SOM = Soil Organic Matter [% dry weight]
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LOI550 = Loss of Ignition at 550°C [% dry weight]

L = clay content (fraction < 8 µm from grain size distribution) [% dry weight]

Soil organic matter was converted to organic carbon by Equation 2 (Hieltjes et al., 1983, van den Berg,

1998, van Reeuwijk, 1992):

SOM  = 2 · SOC  (Eq. 2)

In which:

SOC = Soil Organic Carbon [% dry weight]

Cationic exchange capacity (CEC) was calculated according to Equation 3 (Appelo et al., 2005,

Breeuwsma et al., 1986):

CECcalc = 7 · (% clay) + 35 · (% C)  (Eq. 3)

In which:

CECcalc = calculated cationic exchange capacity [meq / kg dry weight]

% clay = clay content (fraction < 8 µm from grain size distribution) [% dry weight]

% C = organic carbon content [% dry weight]

DGGE analysis was performed on soil samples from the in- and effluent of both columns to gain more

insight into the microbial community composition as characterized by richness and evenness. Total

DNA extraction was performed as previously described (Boon et al., 2000). The 16S rRNA gene

regions were amplified by PCR using 338F and 518R primers targeting the V3 region (Muyzer et al.,

1993, Øvreås et al., 1997). A GC clamp of 40 bp was added to the forward primer. The PCR program

consisted of 10 min. 95°C; 30 cycles of 1 min. 94°C, 1 min. of 53°C, 2 min. of 72°C; and a final

elongation for 10 min. at 72°C. Amplification products were analysed by electrophoresis in 1.5%

(wt/vol) agarose gels stained with ethidium bromide. DGGE was performed as previously described

(Callewaert et al., 2013). The normalization and analysis of DGGE gel patterns was done with the

BioNumerics software 5.10 (Applied Maths, Belgium). The community richness (R) was analysed by

means of quantification of the total number of bands present on the DGGE gel. This gives an

indication of the richness and genetic diversity of species within the bacterial community. A high

richness indicates the presence of many types of bacteria. The community evenness was analysed by

means of the Gini coefficient (Read et al., 2011). A low evenness indicates an unequal community (1

dominant bacteria), while a high evenness indicates an equal community (no dominant bacteria). A

low evenness is characterised by a high Gini coefficient, while a high evenness is characterised by a

low Gini coefficient.

2.4 Statistical analysis
The statistical software package IBM SPSS Statistics for Windows version 20.0 was used to perform all

statistical analyses (IBMCorp., 2011).

2.5 Modelling
CXTFIT (Toride et al., 1995a) was used to obtain the biodegradation rate (µ) of the OMPs in the

columns by fitting the experimental data using the inverse problem based on the deterministic

equilibrium convection dispersion equation (CDE) as described in Chapter 2.
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Several studies as well as Chapter 2 investigating OMP sorption demonstrated that retardation factors

were close or equal to 1 for most OMPs (Burke et al., 2013, Henzler et al., 2014). Therefore the

retardation factor was set to 1 in this study for OMPs for which the breakthrough curve was not

determined. In addition, data acquisition for the 7 month period showed that Ce/C0 values obtained

steady state conditions, which indicates that the biodegradation rate will not be underestimated as a

result of incomplete breakthrough.

The diffusion and dispersion coefficients for the OMPs are shown in Table 3 of the SI.

2.6 RBF field site
Removal behaviour of a mixture of 23 OMPs (pesticides, pharmaceuticals, x-ray contrast media,

food/beverage ingredients and industrial compounds) was investigated at RBF site Engelse Werk of

drinking water company Vitens, The Netherlands (Table 1). A detailed description of the analytical

techniques used to measure the OMP concentrations in the field is presented in the SI.

RBF site Engelse Werk is located along the river IJssel, a tributary of the river Rhine. The oxic

monitoring well (94-61, Figure 1) from which the samples for OMP analysis were taken, is situated

approximately 10 meter from the river and is characterised by a travel time from the river of about 1 –

3 months. The water abstracted from this well is solely river water (no dilution with groundwater

occurring). The oxic monitoring well consists of five mini filters (diameter = 3 cm) located at a height

of 10, 15, 20, 25 and 30 m below the average river water level. While OMP concentrations in the river

were monitored for more than 20 years in a measuring campaign of the Dutch drinking water

companies (Stoks et al., 2013), the mini filters were sampled on only three consecutive events. Since it

is almost impossible to obtain OMP biodegradation rates from field data, OMP removal for the 23

compounds was classified as full removal, partial removal or no removal. If an OMP was removed till

below its detection level, it was assigned “full removal”. In case an OMP was not removed till below

its detection level, but the removal was more than 10%, “partial removal” was assigned to the OMP.

“No removal” was assigned to an OMP if the OMP concentration in the oxic monitoring well was

similar to that in the river or when OMP removal was smaller than 10%.

Figure 1 - Cross section of RBF field site Engelse Werk
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Table 1 – Organic micropollutants, their physico-chemical properties and analytical method used

OMP MW pKa Charge at pH 8 Log D at pH 81 Analytical method column study Analytical method field study

2,4-Dichlorophenoxyacetic acid (2,4-D) 221.04 2.6a -1 -0.69 3

Acetaminophen 151.16 9.3b 0 0.85 1

(Aminomethylphosphonic acid) AMPA 111.04 1.8, 5.4, 10.0c 0 -3.51 2

Atrazine 215.68 <2 (1.6)d 0 2.26 1, 3

Bentazone 240.28 3.3e 0 0.57 3

1H-benzotriazole 119.12 8.57f 0 1.25 3

Bisphenol A 228.29 9.9-11.3g 0 4.05 4

Caffeine 194.19 10.4h 0 -0.58 2

Carbamazepine 236.27 -b 0 2.64 1, 2 2

Chloridazon 221.64 3.4i 0 1.05 1, 3

Clofibric acid 214.65 3.2j -1 -0.18 1, 2

Diatrizoic acid 613.91 3.4k -1 -0.21 2

Dichlorprop 235.06 2.7l -1 -0.12 3

Diclofenac 296.15 4.2j -1 1.21 1, 2

Diglyme 134.17 ~4m 0 0.10 1, 3 3

Dimethoate 229.26 2.0n 0 0.21 1

1,4-Dioxane 88.11 - 0 -0.04 4

Diuron 233.09 13.6i 0 2.49 1, 3

ETBE 102.17 - 0 1.61 4

Hydrochlorothiazide 297.74 7.9o 0 -0.72 1

Ibuprofen 206.28 4.3b, 4.9j -1 1.01 2

Iomeprol 777.09 11.7, 12.6, 13.6i 0 -1.39 2

Iopamidol 777.08 10.7p 0 -0.66 2

Ketoprofen 254.28 4.7b -1 0.49 1, 2

Lincomycin 406.54 7.6q +1 -1.22 1

MCPA 200.62 3.1r -1 -0.77 3

MCPP 214.65 3.1i -1 -0.22 3

Metoprolol 267.36 9.4b, 9.7o 1 0.14 1 2

MTBE 88.15 -3.7s 0 1.25 4

Phenazone 188.23 1.4o 0 1.11 1, 2

Pindolol 248.32 9.3o +1 0.10 2

Pirimicarb 238.29 4.5t 0 1.74 1

Propranolol 259.34 9.4b +1 0.95 2

Prosulfocarb 251.39 - 0 4.19 3

Simazine 201.66 1.6n 0 1.83 1

Sotalol 272.36 9.44u +1 -1.52 2

Sulfamethoxazole 253.28 1.8, 5.8i 0 0.39 1, 2

Terbutaline 225.28 8.8, 9.5, 10.5v +1 0.18 1, 2

4-Tertoctylphenol 206.33 10.39w 0 4.71 4
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Tetraglyme 222.28 - 0 0.06 3

Theophylline 180.16 8.6b 0 -1.09 1

Triglyme 178.23 - 0 0.08 3

Triphenylphosphine oxide (TPPO) 278.28 - 0 4.76 3 3

Triclopyr 256.47 2.7x -1 -0.53 1

1 http://www.chemicalize.org
a (Celis et al., 1999), b (Chiang et al., 2009), c(Chen et al., 2009), d(Westerhoff et al., 2005), e(Boivin et al., 2005), f(Albert et al., 1948), g(Rykowska et al., 2006), hObtained from Drugbank

(http://www.drugbank.ca), i(Margot et al., 2013), j(Packer et al., 2003), k(Crowley et al., 1986), l(Loffhagen et al., 2003), m(Su, 1979), n(Yang et al., 2013), o(Ferreira da Silva et al., 2011), p(Felder et al., 1988),
q(Wang et al., 2011), r(Vione et al., 2010), s(Pletcher et al., 1967),thttp://pubchem.ncbi.nlm.nih.gov, u(de Ridder et al., 2011), v(Shalaeva et al., 2007), w(Blędzka et al., 2009), x(Petty et al., 2003)
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3 Results and Discussion

3.1 Soil and water quality parameters
Soil pH was 7.90/8.23 [pH-KCl/pH-H2O], soil organic matter content was 0.92 % dry weight and

cationic exchange capacity (CEC) was 42.13 meq/kg dry weight. DOC removal of the soil column

system was equal to 30.7 ± 14.3%. Oxygen was reduced to low concentrations (1.1 ± 0.8 mg/L, n = 12)

in the effluent, but no nitrate removal was observed (see SI, Table 4). This implies that oxic conditions

were maintained in the pilot during the experiment. ATP concentrations in the column and at the field

site were in the same order of magnitude (547 and 235 ng/cm3 for the column and the field site,

respectively).

3.2 OMP biodegradation rates
OMP biodegradation rates determined from fitting the convection-dispersion equation (Eq. 1) to the

experimental data are presented in Table 2 (confidence intervals are presented in Table 5 and 6 of the

SI). To get an indication of how well the experimental data fitted the convection-dispersion equation,

Figure 1 (SI) shows a plot of the experimental versus the modelled Ce/C0 values. In case an OMP

rapidly degraded (e.g. pindolol), a statistically significant retardation factor could not be determined.

To be able to determine the degradation rate, the retardation factor for these OMPs was set equal to 1.

This assumption is justified since a number of previous studies as well as Chapter 2 showed that

retardation factors of OMPs are close or equal to 1 (Burke et al., 2013, Henzler et al., 2014). Exceptions

were metoprolol and propranolol which are well known to show strong sorption affinities with soil

and are in general characterized by higher retardation factors than 1 (Chapter 2, Burke et al., 2013). It

was expected that given the long operational period in this study, breakthrough would be observed

for both these OMPs. However, this was not the case and thus biodegradation rate of these two

specific OMPs could not be determined.

Table 2 – OMP degradation rates (µ) for oxic pilot

Vitens soil

OMP Biodegradation rate µ [d-1]

2,4-D 3.00

Acetaminophen 2.30

Atrazine 0.03 ± 0.043

Bentazone 0

Carbamazepine 0.11 ± 0.163

Chloridazon 2.58 ± 0.331,3

Clofibric acid 1.00 ± 0.251,3

Dichlorprop 1.82

Diclofenac 2.06 ± 0.333

Diglyme 0.00 ± 0.003

Dimethoate 0.371

Diuron 0.92 ± 0.503

Hydrochlorothiazi

de

0

Ibuprofen 2.84

Iomeprol 2.23

Ketoprofen 2.53 ± 0.233

Lincomycin 0.341

MCPA 2.50

MCPP 2.10

Metoprolol ND2

Phenazone 2.67 ± 0.041,3

Pindolol 2.23

Pirimicarb 0.14

Propranolol ND2
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Prosulfocarb 2.57

Simazine 0

Sulfamethoxazole 1.44 ± 0.011,3

Terbutalin 1.79 ± 0.503

Theophylline 1.43

TPPO 0

Triclopyr 0.331

1 For these OMPs an increase in biodegradation rate over time (adaptation) was observed and therefore the adapted

biodegradation rate was determined.
2 ND = Not Determined; It was not possible to determine the retardation factor and biodegradation rate for these OMPs since

breakthrough was not observed and no abiotic column was operated.
3 For OMPs analysed with two methods, an average degradation rate (± st dev) is presented

In general, the magnitude of the biodegradation rates, as well as the spread in biodegradation rates

found in the current chapter was lower (µ = 0 – 3.24 d-1) compared to Chapter 2 (µ = 0 – 15.8 d-1). This

is remarkable since more active biomass (ATP = 547 ng/cm3) was present in the soil columns of the

current study and a higher DOC removal (30.7 ± 14.3%) was observed compared to the previous study

(ATP = 59 ng/cm3, DOC removal = 5 - 10% ). Since the previous study used lab-scale columns filled

with technical sand and the current study obtained soil from a RBF site, higher OMP biodegradation

rates would be expected (more bacteria present and more substrate available). However, the lower

OMP biodegradation rates obtained in the current study could be explained by the higher

concentration of easily degradable carbon present in the feed water compared to the previous study.

This trend of improved OMP removal in water with lower biodegradable substrate was also observed

in other studies (Alidina et al., 2014b, Tiehm et al., 2011).

The obtained degradation rates provide drinking water companies with more insight in the required

residence time of river water in the RBF process under oxic conditions necessary to obtain a certain

extent of removal of specific pollutants. To the best of the authors knowledge, degradation rates of

dichlorprop, iomeprol, MCPA, MCPP, pindolol and prosulfocarb were determined for the first time in

the current study.

Most OMPs are removed for >90% (= 4 · t1/2, with t1/2 = ln(2) / µ) after about 3 days, while >99% (= 7 · t1/2)

is removed after about 5 days residence time. Depending on the local geo-hydrological settings a

substantial to complete removal of these OMPs can be expected.

Dimethoate, lincomycin, triclopyr, carbamazepine, pirimicarb and atrazine were characterized by

much longer half-lives (t1/2 = 1.9 - 6.3 days) and thus require a longer residence time in the aquifer to

show some extent of removal (required residence time = 13.1 - 44.1 days for 99% removal).

The persistent OMPs (µ ≈ 0) atrazine, diglyme, hydrochlorothiazide, simazine, bentazone, and TPPO 

are most likely not degraded during RBF. This indicates that additional research is required towards

the removal of these compounds under other redox environments or possible post-treatment

techniques to remove these compounds at drinking water treatment locations using RBF.

3.3 Correlation between OMP biodegradation rate and functional groups
Multi-linear regression was used to determine a relation between OMP biodegradation rates and

functional groups present in the OMP molecular structures.

The relation between OMP biodegradation rate and functional groups for the complete OMP mixture

is presented by the following equation (R2 = 0.65, p-value = 0.003 < 0.05):
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µ = 3.269 + 1.199 · CA + 0.470 · OH + 1.253 · CO – 1.478 · Et – 0.794 · H – 0.827 · AE – 0.894 · Ring – 0.393 · Me   Eq. 4

In which:

µ = biodegradation rate [d-1]

CA = number of carboxylic acids [-]

OH = number of hydroxyl groups [-]

CO = number of carbonyl groups [-]

Et = number of ethers [-]

H = number of halogens [-]

AE = number of aliphatic ethers [-]

Me = number of methyl groups [-]

Ring = number of ring structures [-]

The experimental and predicted biodegradation rates µ are presented in Figure 1.

Figure 1 – Predictive model µ versus experimental µ

The predictive model was validated according to the guidelines described by the OECD for validating

QSAR models (OECD, 2007). The regression coefficient shows whether the functional group will

increase or decrease the OMP biodegradation rate. Carbonyl, carboxylic acids, and hydroxyl groups

increase the biodegradation rate and ethers, halogens, aliphatic ethers, rings and methyl groups

decrease the biodegradation rate. To determine the relative importance of each of these descriptors,

the standardized beta coefficients should be determined (Figure S2). Standardized beta coefficients

were all more or less in a similar range (0.42 - 0.70) which implies that the quantitative contribution of

the different functional groups are roughly equally distributed, with the contribution of the carbonyl

group being the smallest and the contribution of the halogen group being the largest. The statistical

significance of the descriptor variables was also tested and these values were <0.05 for all descriptors

(see column “Sig” in lowest Table of Figure S2), indicating that these values are statistical significant.

To asses if the descriptor variables were not strongly correlated to each other, collinearity was tested

with the variation of inflation factor (VIF) which should be lower than 5. This was the case for all

descriptor variables.

R2 is used to determine the goodness-of-fit. R2 = 0.65 for the developed model which demonstrates that

65% of the variance in biodegradation rate can be explained by the functional groups presented in this

model . R2 adjusted is used to determine if the model is not over-fitted. When adding the descriptors

stepwise, R2 adjusted increases to a maximum value of R2 = 0.50, thus the added descriptor reduces the

unexplained variance (i.e., the model is not over-fitted).
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The standard error of the estimate s = 0.77 d-1, thus predicted OMP biodegradation rates lower or

equal to this value are not reliable. These values are indicated in the striped triangle in Figure 1 and

represent the persistent OMPs (atrazine, carbamazepine, bentazone, simazine and

hydrochlorothiazide). For these compounds (false-positives) the predicted biodegradation rates (µ = 

0.40 - 0.80 d-1) are higher compared to the biodegradation rates observed in the columns study (for

almost all of these OMPs close to 0 d-1). Thus, OMPs with predicted biodegradation rates lower or

around 0.77 d-1, should be carefully monitored in the field, to determine their removal during RBF.

The F-value tests the null hypothesis that the coefficients in the multi linear regression equation are

equal to 0, implying that the corresponding group does not have a significant effect on the

biodegradation rate. Given the degrees of freedom of the experiment and the required confidence

level (usually α = 0.05), critical values for the F-value can be found in standardized tables. For the

experimental conditions investigated in this study, the F-value should be > 2.57 (Fischer et al., 1974).

The determined F-value in this study is 4.56 > 2.57, thus indicating that the null hypothesis can be

rejected and that the probability that the regression coefficients are by chance unequal to 0 is <5%.

Eq. 4 shows that the presence of carboxylic acids, hydroxyl and carbonyl functionalities, positively

contribute to the OMP biodegradation rate. This result was supported by several other studies that

also reported enhanced biodegradability when carboxylic acid (Okey et al., 1996, Pitter, 1985),

hydroxyl (Loonen et al., 1999, Pitter, 1985) or carbonyl groups (Loonen et al., 1999) were present in the

molecular structure. Ethers, halogens, aliphatic ethers, methyl groups and ring structures were found

to negatively affect the OMP biodegradation rate. This more persistent behaviour for molecular

structures that contain halogens, ring structures or aliphatic ethers was also observed is a number of

other studies (Boethling et al., 1994, Loonen et al., 1999, Okey et al., 1996, Pitter, 1985).

A few discrepancies in contribution of certain functional groups towards OMP biodegradation rate

between the current and the previous chapter were observed. The predictive model developed in the

previous study did not contain carboxylic, hydroxyl, halogens and methyl groups and the effect of

ethers on the biodegradation rate was negative compared to positive in the Eq. 4. In addition, the

model obtained in the previous study contained amines and sulphur; both of these functional groups

were not represented in Eq. 4. These discrepancies were likely caused by the different range in OMP

data sets used, the different water qualities (BDOC quantity/quality, nutrients) and/or soils (technical

sand versus field site sand) investigated.

This also directly shows the limitations of the model. A predictive model is influenced by the number

and type of OMPs included in the development and calibration of the model. The OMPs selected in

the current study were carefully chosen based on the wide range of functional groups they cover.

However, based on solely this lab-scale column study it is impossible to predict the degradation rate

of all OMPs present in the environment. It is known from literature that the microbial community

composition in for example activated sludge systems can differ significantly from those in soil systems

(Alidina et al., 2014a, Hu et al., 2012). Possibly different enzymes are produced that react with different

functional groups to degrade OMPs. Since the relation between BDOC (quantity and quality) and the

breakdown of certain functional groups is not unveiled yet, this shows the importance of using water

and soil from the studied RBF field site to develop a predictive model that can adequately predict

OMP removal at this site.



72

Future research should elucidate how microbial populations and their enzymes are related to the

breakdown of certain functional groups in RBF systems. In addition, the effect of parameters found to

be important in OMP removal during soil passage, for example, redox conditions, biodegradable

dissolved organic carbon concentration and composition and the effect of adaptation of the soil

microbial population towards certain OMPs should be further explored. The effect of soil type on the

predictive model is expected to be small as Chapter 3 demonstrates that soil microbial diversity and

thus OMP removal was similar in laboratory-scale columns filled with soil from two different RBF

sites. Furthermore, it should be investigated if the metabolic/co-metabolic breakdown of OMPs in RBF

systems results in different or similar predictive models. Nevertheless, the developed predictive

model can be used to provide a rough estimate of OMP biodegradability in the field.

3.4 Testing the applicability of the predictive model with field data

The applicability of the developed predictive model (Eq. 4) was tested for a mixture of 23 OMPs

monitored in the field (see Table 1). OMP removal that is measured in the field unfortunately is an

overall removal and consists of several removal mechanisms such as sorption, dilution, volatilization

and biodegradation. Although many studies showed that biodegradation is probably the major factor

contributing to OMP removal, the comparison between the predictive model and field data is only

indicative. OMP removal in the field was classified as full, partial or no removal and results are

presented in Table 3. This implies that if the predictive model results in a degradation rate larger than

0, the field site removal should be characterised as “partial” or “full”, in order for the predicted

degradation rate to be considered a correct prediction. Similarly, if a degradation rate of 0 d-1 is

obtained from the predictive model, the field site removal should indicate “no” removal to be

considered a correct prediction. Based on this reasoning, the model predicts the biodegradation

behaviour of 16 out of 23 OMPs (= 70%) correctly.

In total there are 8 overlapping OMPs for the soil column and field study (chloridazon, diglyme,

MCPP, sulfamethoxazole, TPPO, bentazone, carbamazepine, diuron). For these 8 OMPs, the

biodegradability of 5 OMPs is predicted correctly which equals 63%. For the OMPs which are not

overlapping between the column study and the field site, the percentage of correct predicted

biodegradability’s is 73%. This is explained by the fact that the percentage persistent OMPs is higher

for the overlapping OMPs (38%) compared to the non-overlapping OMPs (20%) and the

biodegradation rate is difficult to predict for these persistent OMPs since these biodegradation rates or

often close to or below the standard error of the estimated biodegradation rate.

From Table 3 it can be observed that diglyme, triglyme and tetraglyme, are characterised by persistent

behaviour based on the model prediction, but showed partial removal in the field. However, a field

study of (Stepien et al., 2013) also showed persistent behaviour of the three glymes during RBF. Thus,

the partial removal observed at the field site was possibly the result of a measurement artefact.

Considering the possible measurement artefact in the field data for these three compounds, the

exclusion of these OMPs from the validation data set would be justified. Excluding these three OMPs

in the comparison of modelled data to field data, results in an increase in percentage of correctly

predicted biodegradation rates to 80%.

Bentazone, 1H-benzotriazole, carbamazepine and diatrizoic acid seem to biodegrade based on the

predictive model but showed persistent behaviour in the field. The persistent behaviour of these

compounds was also observed in other studies which supports the field site data (Drewes et al., 2002,
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Grossberger et al., 2014, Lai et al., 2014, Lin et al., 2011, Stuyfzand et al., 2011). The incorrect predictions

of the model for these OMPs could possibly be explained by the presence of -amide and -amine

groups in the molecular structure of these compounds. Previous studies have reported that -amide

and -amine groups decrease the degradation rate of OMPs (Chapter 2, Eggen, 2015, Loonen et al., 1999,

Okey et al., 1996). Although the OMP mixture used to develop the predictive model contained OMPs

with these -amide and -amine functional groups, their relation with the biodegradation rate was

statistically not significant and thus the negative effect of these functional groups was not taken into

account for 1H-benzotriazole, carbamazepine and diatrizoic acid. This emphasizes the importance of

developing predictive models with an even larger data set covering hundreds of OMPs and a wide

range of functional groups.

Since this study was limited to oxic conditions, future research should focus on the development of

predictive models for more reduced conditions (NO3- reducing, Fe/Mn reducing). By combining these

predictive models for separate redox zones, an overall model for the whole RBF process can be

obtained.

Table 3 – Predicted biodegradation rates and field site removal

OMP Predicted biodegradation rate µ of model

[d-1]

Field site removal [-]

Degradable

AMPA 3.27 Partial

Bisphenol A 1.64 Full

Caffeine 0.30 Partial

Chloridazon 0.69 Full

DEET 1.20 Partial

Diglyme 0* ≠ Partial

ETBE 0.22 Full

Iopamidol 2.34 Partial

MCPP 1.99 Full

Metoprolol 0.84 Full

MTBE 0.22 Full

Sotalol 1.67 Full

Sulfamethoxazole 1.09 Partial

Tetraglyme 0* ≠ Partial

4-tertoctylphenol 0.88 Full

TPPO 0.59 Partial

Triglyme 0* ≠ Partial

Non-degradable

Bentazone 0.70 ≠ No

1H-benzotriazole 1.48 ≠ No

Carbamazepine 0.59 ≠ No

Diatrizoic acid 0.41 ≠ No

1,4-dioxane 0* No

Diuron 0.00 No
* For these OMPs the predictive model gave negative biodegradation rates and were therefore set equal to 0

4 Conclusions

This study investigated relationships between OMP biodegradation rates and the functional groups

present in the chemical structure of a mixture of 31 OMPs. The OMP biodegradation rates were

determined from lab-scale columns filled with oxic soil from a RBF site in The Netherlands. A

statistically significant relationship was found between OMP biodegradation rates and the functional
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groups of the molecular structures of OMPs in the mixture. OMP biodegradation rate increased in the

presence of carboxylic acids, hydroxyl groups, and carbonyl groups, but decreased in the presence of

ethers, halogens, aliphatic ethers, methyl groups and ring structures in the chemical structure of the

OMPs.

Applicability of the predictive model was tested with OMP data from the field. In three consecutive

measurement campaigns, removal of 23 OMPs in the field was determined. The predictive model was

able to give an accurate prediction of biodegradability for approximately 70% of the OMPs monitored

in the field (80% excluding the glymes). Incorrect predictions were mainly observed for OMPs that

contained amide or amine groups – functional groups that were represented in the OMP mixture used

to create the predictive model but did not show a statistically significant relation with the OMP

biodegradation rate.

The current study shows it is possible to mimic the RBF process with laboratory scale soil columns

and that the biodegradation rates obtained with these soil columns can be used to develop a

predictive model for OMP removal during RBF that can fairly accurately predict OMP biodegradation

in the field. Exceptions are the OMPs that have predicted OMP biodegradation rates below or close to

the standard error of the estimate (most persistent OMPs) and OMPs containing amine or amide

groups. The removal of these OMPs should be carefully monitored at the field site to determine their

fate. Although the OMP mixture used in this study was carefully selected to cover a wide variety of

functional groups, it is possible that the degradation rate of OMPs having functional groups other

than the ones tested in this manuscript are not accurately predicted. Nevertheless, the predictive

model can be used by the drinking water company operating this RBF site to obtain a first estimate on

the OMP biodegradability.
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Chapter 4

A laboratory-scale column study

comparing organic micropollutant

removal and microbial diversity for two

soil types

This chapter is based on: Bertelkamp et al. (2015), A laboratory-scale column study

comparing organic micropollutant removal and microbial diversity for two soil types,

Science of the Total Environment 536, 632-638, 2015
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1 Introduction

The effect of soil type on OMP sorption and biodegradation has been investigated in several batch

studies, but so far not in columns. The batch studies demonstrated that soil characteristics such as

organic carbon content, Cationic Exchange Capacity (CEC), pH and/or composition (amount of clay,

silt, sand) significantly affect OMP sorption (Fingler et al., 2004, Hiller et al., 2009, Hiller et al., 2012).

However, the results are often contradictory with different effects reported for different OMPs

(Bedmar et al., 2011, Fingler et al., 2004, Hiller et al., 2009, Hiller et al., 2012, Zhang et al., 2011). OMP

biodegradation in soil is influenced by factors such as OMP sorption, moisture content, nutrient

availability and organic carbon content (Guo et al., 2000, Picton et al., 2004, Schroll et al., 2006, Si et al.,

2009). Since OMPs sorbed to soil particles are less bioavailable to soil microorganisms, sorption can

also hamper OMP biodegradation (Guo et al., 2000). The aforementioned factors (soil parameters) can

vary significantly between different RBF sites and it could therefore be expected that OMP removal

via biodegradation will therefore also considerably differ.

Batch studies do not always accurately describe the results obtained from soil column and field

studies (Limousin et al., 2007, Murillo-Torres et al., 2012, Piatt et al., 1996, Rocio Estrella et al., 1993).

Sorption is usually overestimated in batch studies as a result of equilibrium conditions which are not

always reached in column studies. In addition, OMP concentrations dosed in batch studies are often

much higher (mg/L) than those normally detected in rivers (ng/L - µg/L) and the continuous feeding

of nutrients and OMPs in column and field studies compared to the one time dosage in batch studies

can cause results in these systems to differ. Thus, it is questionable whether the results on OMP

sorption and biodegradation from batch studies can actually be translated to lab-scale columns and/or

real RBF sites. Therefore there is a clear need for column investigations on the effect of soil type on the

sorption and biodegradation of a large mixture of OMPs at concentrations similar to those found at

RBF sites.

Since OMP biodegradation during RBF is carried out by soil microorganisms, characterizing the soil

microbial community composition could improve our understanding of the underlying mechanisms

of OMP removal during soil passage. However, this aspect has been largely ignored in past studies on

OMP removal during RBF, with only a few studies having investigated relationships between

microbial community composition and OMP removal in soil systems (Alidina et al., 2014a, Li et al.,

2014b). Substrate concentration and composition was found to play an important role in shaping the

soil microbial community composition (Alidina et al., 2014b, Li et al., 2013, Li et al., 2012). However, it

remains unclear if the aqueous phase is the only important factor in determining the soil microbial

population or that the soil composition also has a strong effect. This aspect requires more attention to

be able to understand the influence of soil characteristics on microbial communities, as well as their

effect on OMP sorption and biodegradation. Investigating microbial community composition of soils

from two different RBF sites operated with the same river water could provide a better understanding

of the role that the solid phase plays in determining the soil microbial community composition and

OMP removal.

The main objective of the study described in this chapter was to assess the influence of the solid phase

on microbial community composition (richness and evenness) and OMP removal. To overcome the

aforementioned limitations, this study investigated OMP removal and soil microbial community

composition in laboratory-scale columns filled with oxic soils (with different silt/clay/sand fractions,
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organic matter content and cationic exchange capacity) obtained from two RBF-sites. Both soil

columns were fed with a similar water quality to determine the role of the solid phase with respect to

OMP removal. Modelling the breakthrough curves for OMPs in these columns with a contaminant

transport model enabled a differentiation between OMP sorption (retardation factor) and

biodegradation (biodegradation rate), in contrast to earlier studies that only reported percentage

removals. The modelling provided retardation factors and biodegradation rates along with their 95%

confidence intervals to include the error in parameter estimation in analysis and interpretation and to

avoid experimental bias. This study was carried out using a large mixture of OMPs, with wide

ranging physico-chemical properties, dosed at concentrations similar to those encountered in real RBF

systems (i.e. ng/L). Microbial community composition was determined at both RBF field sites as well

as in both column systems to assess differences/similarities in richness and evenness between the two

communities.

2 Materials and Methods

2. 1 Experimental set-up

The experimental set-up consisted of 2 oxic pilots (A and B) and each pilot consisted of 2 transparent

PVC columns (L = 1 m, D = 36 mm) in series. Pilot A was filled with oxic soil from RBF site Engelse

Werk of drinking water company Vitens (52°29'39" N, 6°3'40.4" E). Pilot B was filled with oxic soil

sampled near the RBF site Bergambacht of drinking water company Oasen (51° 55' 0.4" N, 4° 47' 5.4"

E). Columns were filled with soil in increments of 4-5 cm while tapping on the column, to prevent

layering in the columns. To prevent leaching of soil grains, the top and bottom of the column were

fitted with perforated PVC plates (30 holes, d = 0.8 mm) that were covered with filter cloth (45 µm,

Top7even net & mesh, The Netherlands). A flow from bottom to top was maintained in all columns to

prevent air entrapment and both pilots were operated in a temperature controlled room (12 °C) in the

dark (to prevent algae growth and/or OMP loss due to photolysis).

The pilots were fed from jerry cans filled with Lek river water and an OMP mixture. Prior to dosing

the OMP mixture, columns were acclimated on Lek river water (without OMPs, to enable the

development of similar microbial populations in the columns) until DOC removal stabilized

indicating a stable biomass in both column systems. OMP samples were taken more frequently in the

beginning to determine the breakthrough curve. Once this breakthrough curve was established, OMP

samples were taken monthly. The running time of the experiment was 7 months in total (excluding the

acclimation period). River water was refreshed every two weeks and was filtered (d = 0.4 mm), prior

to use as feed, to prevent twigs and larger particles from clogging the pump tubes. After every

replacement feed jerry cans were washed twice with acetone and flushed several times with

demineralized water before refilling to prevent biofilm formation. The feed solutions were pumped

through the columns by a peristaltic multichannel pump (205S, Watson Marlow, The Netherlands)

using Marprene® pump tubing (d = 0.63 mm, Watson Marlow, The Netherlands). The pump tubes

were connected to the columns by dark polyamide tubing (di = 2.9 mm, Festo, The Netherlands). The

hydraulic loading rate applied on the columns was 0.5 L/d, which equals a filtration rate of 0.5 m/d.

Pore velocity and porosity in both pilots were determined using deuterium (2H) as tracer. Deuterium

concentrations were determined with laser absorption spectroscopy using a DLT-100 Liquid-Water

Isotope Analyzer (Los Gatos Research, USA) with a precision of ±0.56‰ for 2H. A quantity of 0.19 mL
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of 99% pure Deuterium was added to the feed solutions (20 L), resulting in an approximate 60 ‰

increase in δ-2H. Pore velocity was 1.48 m/d for the Vitens pilot and 1.40 m/d for the Oasen pilot.

Porosity varied between 0.33 (Vitens pilot) and 0.35 (Oasen pilot).

2.2 Organic micropollutants

A mixture of 20 OMPs was dosed into the feed solutions of the columns (500 ng/L of each OMP), Table

1. OMPs were analysed with U-HPLC-HR-Orbitrap-MS, see Method 1 Chapter 3.

Table 1 – Organic micropollutants and their physico-chemical properties

OMP MW pKa Charge at pH 8 Log D at pH 81

Acetaminophen 151.16 9.3a 0 0.85

Atrazine 215.68 <2 (1.6)b 0 2.26

Carbamazepine 236.27 -a 0 2.64

Chloridazon 221.64 3.4c 0 1.05

Clofibric acid 214.65 3.2d -1 -0.18

Diclofenac 296.15 4.2d -1 1.21

Diglyme 134.17 ~4e 0 0.10

Dimethoate 229.26 2.0f 0 0.21

Diuron 233.09 13.6c 0 2.49

Hydrochlorothiazide 297.74 7.9g 0 -0.72

Ketoprofen 254.28 4.7a -1 0.49

Lincomycin 406.54 7.6h +1 -1.22

Metoprolol 267.36 9.4a, 9.7g 1 0.14

Phenazone 188.23 1.4g 0 1.11

Pirimicarb 238.29 4.5i 0 1.74

Simazine 201.66 1.6f 0 1.83

Sulfamethoxazole 253.28 1.8, 5.8c 0 0.39

Terbutaline 225.28 8.8, 9.5, 10.5j +1 0.18

Theophylline 180.16 8.6a 0 -1.09

Triclopyr 256.47 2.7k -1 -0.53

1 http://www.chemicalize.org
a (Chiang et al., 2009), b (Westerhoff et al., 2005), c (Margot et al., 2013), d (Packer et al., 2003), e (Su, 1979), f (Yang et al., 2013), g (Ferreira da Silva et al.,
2011), h (Wang et al., 2011),i http://pubchem.ncbi.nlm.nih.gov, j (Shalaeva et al., 2007), k (Petty et al., 2003),

2.3 Water quality and soil parameters

Dissolved organic carbon (DOC), oxygen, temperature, pH, and ions were measured in the aqueous

phase. Adenosine triphosphate (ATP), pH, grain size distribution and organic matter (SOM) were

measured in the solid phase (soil). Cationic exchange capacity of the soil was determined from the

organic carbon content. DGGE analysis was performed on soil samples from the field sites as well as

the influent of both columns to gain more insight into the microbial community composition as

characterized by richness and evenness. A detailed description on these analyses is provided in the

Chapter 3.

2.6 Statistical analysis

The statistical software package IBM SPSS Statistics for Windows version 20.0 was used to perform all

statistical analyses (IBMCorp., 2011). One way ANOVA tests were used to determine if the retardation

factors and biodegradation rates between the two soil columns were statistically significant (p-value <

0.05).

2.7 Modelling

CXTFIT (Toride et al., 1995a) was used to obtain the retardation factors (R) and biodegradation rates

(µ) of the OMPs in the columns by fitting the experimental breakthrough curves, for a detailed

description see Chapter 2.
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3 Results and Discussion

3.1 Soil and water quality parameters

Soil from the two RBF sites was characterised for the parameters depicted in Table 2. The parameter

“ATP field site (0 – 5 cm)” refers to the ATP concentration measured in the soil samples taken from

the RBF field sites at a depth of 0 – 5 cm, which represents the initial conditions of the two soils. The

parameter “ATP column (0 – 5 cm)” represents the ATP concentration measured at the influent side (0

– 5 cm) of the lab scale column at the end of the experiment when both soil types are fed by the same

influent water quality.

Table 2 – Soil parameters column experiment

Units Oasen RBF soil Vitens RBF soil

ATP field site (0 – 5 cm) ng/cm3 109 235

ATP column (0 – 5 cm) ng/cm3 135 547

Clay ( < 8 µm) v/v % 0.50 3.72

Silt (8 – 63 µm) v/v % 0.52 3.58

Sand (63 – 2000 µm) v/v % 98.98 92.69

dmedian µm 330.62 380.38

LOI550 % dry weight 0.36 1.18

SOM % dry weight 0.33 0.92

pH – H2O - 8.04 8.23

pH – KCl - 7.83 7.90

CEC meq/kg dry weight 9.19 42.13

Since RBF sites require a certain hydraulic permeability, soils from these sites are usually

characterized by a large sand fraction, and extreme variations in the clay, silt and sand content are not

expected (Burke et al., 2013, Hoppe-Jones et al., 2012, Scheytt et al., 2006). Although the differences in

silt and clay for the soil types investigated in this study are not extreme, they do show a clear

difference. In addition, the two soil types differ in ATP concentration, soil organic matter (SOM)

content and cationic exchange capacity (CEC). The 4 times higher ATP concentration determined in

the Vitens soil (compared to the Oasen soil column) indicated that more active biomass was present in

this soil. This could be explained by the larger percentage of small particles in the Vitens soil which

results in a larger specific surface area for the biomass to attach to.

ATP results were not in agreement with the DOC removal since no statistical significant difference (p-

value = 0.065 > 0.05) in DOC removal was observed between the two soil types (Table 3 shows the

average DOC removal for both soil types). The ATP concentrations measured in this study were

higher than the values reported in other studies. (Maeng et al., 2011) demonstrated ATP

concentrations of 91 and 102 ng ATP/cm3 sand for columns fed with Meuse river water. Chapter 2

reported ATP concentrations of 24.5 and 36.5 ng ATP/cm3 sand for columns fed with Schie canal

water. The higher ATP concentrations reported in the current study are attributed to the fact that RBF-

site (and thus biologically active) soil was used, whereas both other studies used clean filter sand to

start up new columns.

Table 3 shows the average DOC removal and NO3-, PO43- concentrations (± standard deviation) in the

influent as well as both effluents. Oxygen was reduced to low concentrations (1.1 ± 0.8 mg/L, n=12) in

the effluent of both pilots and no nitrate removal was observed. This implies that oxic conditions were

maintained in both pilots during the experiment. Water quality parameters of the feed water in the

column experiment are presented in the Table S3.
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Table 3 – DOC, nitrate and phosphate removal in oxic pilots

Units Feed water Oasen RBF soil Vitens RBF soil

Δ DOC [%] 24.2 (± 12.9) 30.7 (±14.3)

NO3- [mg/L] 9.07 (±3.34) 7.90 (±3.37) 8.65 (±2.24)

PO43- [mg/L] 0.07 (±0.08) 0.11 (±0.04) 0.10 (±0.03)

3.2 DGGE analysis

Soil samples from the RBF sites (at a depth of 0 – 5 cm) were obtained to characterize the microbial

population. These soil samples represented the initial conditions. At the end of the experiment the soil

microbial population was characterized again by soil samples that were obtained from both column

systems (at the influent side, 0 – 5 cm). The microbial community composition in both soil types was

compared in terms of richness and evenness by means of DGGE. The results are presented in Table 4.

The microbial DGGE pattern of the different samples is presented in Figure S1 and S2.

Table 4 – Richness and evenness (Gini) results for the soil samples

Field site samples ( 0 – 5 cm) Column samples (0 – 5 cm)

Sample Richness

(# of bands)

Gini

(evenness)

Sample Richness

(# of bands)

Gini

(evenness)

Vitens 50 0.32 Vitens 35 0.41

Oasen 34 0.56 Oasen 42 0.42

DGGE fingerprinting analysis indicated that richness (determined as total bacterial bands present on

gel) and evenness (calculated as Gini coefficient) of the soil microbial community became more similar

as a result of feeding the columns with the same river water. The difference in richness and evenness

between the Oasen and Vitens soil was much larger at the field sites (representative of the initial

conditions when both soil types were fed with different water qualities) (Δ Richness = 16, Δ Evenness 

= 0.24) than for the columns at the end of the experiments (Δ Richness = 7, Δ Evenness = 0.01). For both 

soil column systems, a rich bacterial community was found (Table 4, Figure 2 SI) at the end of the

experiment when compared to literature (Lyautey et al., 2005). A rather even bacterial community

with very few abundant species present was observed (Table 4, Figure 2 SI). Again, the evenness was

very comparable for both pilots at the end of the experiment. The soil microbial diversity for both soil

column systems was comparable at the end of the experiment, indicating that the microbial

community composition present in both soil column systems was similar. This confirms the

hypothesis that a similar microbial community composition was achieved, as both pilots were fed

with the same water quality.

3.3 Influence of soil type on OMP retardation factors

The OMP retardation factor (R) is based on the solid-water distribution coefficient (Kd) according to

Eq. S5. Normalizing this Kd value to the soil organic carbon content gives the soil organic carbon-

water partitioning coefficient KOC= Kd / fOC. A correlation between KOW and KOC (Log KOC = Log KOW –

0.21) was demonstrated by (Karickhoff et al., 1979). This should make it theoretically possible to

determine retardation factors from Kow values of the different OMPs. However, several studies

demonstrated that this correlation does not always hold for ionisable OMPs (Burke et al., 2013,

Carballa et al., 2008). Therefore, this study determined the retardation factors for all OMPs from

experimental data by fitting the convection-dispersion equation (Eq. S4, SI) to the experimentally

determined breakthrough curves. The modelled retardation factors are presented in Table 5

(confidence intervals for both soil columns are presented in Table S4 and S5).
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Table 5 – OMP retardation factors (R) for both oxic pilots

Oasen soil Vitens soil References

OMP Charge Retardation factor [-] Retardation factor [-] Retardation factor [-]

Lincomycin 1 1.4 1.7 1.1b

Metoprolol 1 ND1 ND1 3.1b, >9.0e

Terbutalin 1 ND1 ND1

Acetaminophen 0 ND1 ND1

Atrazine 0 1.4 1.7 1.0b, 1.5 – 6.1f

Carbamazepine 0 1.4 1.9 1.8a, 1.1b, 1.9d, 1.0g

Chloridazon 0 ND1 ND1

Diglyme 0 1.0 0.7

Dimethoate 0 1.1 1.1

Diuron 0 ND1 ND1

Hydrochlorothiazide 0 1.3 1.7 1.1b

Phenazone 0 1.0 0.9 1.0e

Pirimicarb 0 1.4 1.5

Simazine 0 1.3 1.4 2.1 – 5.4f

Theophylline 0 ND1 ND1

Clofibric acid -1 ND1 ND1 1.1c

Diclofenac -1 ND1 ND1 4.8a, 1.4d

Ketoprofen -1 ND1 ND1

Sulfamethoxazole -1 1.0 0.5 1.0b

Triclopyr -1 1.1 1.1
1 A statistically significant retardation factor could not be determined for these readily degradable OMPs
a (Scheytt et al., 2006), b (Chapter 2), c (Scheytt et al., 2007), d (Rauch-Williams et al., 2010), e (Burke et al., 2013), f (Sakaliene et al., 2007), g(Patterson

et al., 2011)

For the rapidly degradable OMPs a statistically significant retardation factor could not be obtained as

these compounds were removed to below the detection level in the effluent right from the start of

experiment. An ANOVA test was performed for the less degradable OMPs to determine if there was a

statistical significant difference in OMP retardation factors between the two soil types. No statistically

significant difference in OMP retardation factors was found for the less degradable OMPs between the

two soil types (p-value = 0.63 > 0.05). The ANOVA test indicates that the effect of soil type is

insignificant for OMP retardation for the two soil types investigated in this study. Previously

mentioned batch studies reported that parameters such as CEC, organic carbon content and/or

composition (amount of clay, silt, sand) could each affect OMP sorption. Although the soils

investigated in this study show differences with respect to these parameters, no effect on OMP

sorption was observed. However, it needs to be mentioned that in soil columns, in contrast to batch

studies, sorption is usually limited (Murillo-Torres et al., 2012), resulting in very low retardation

factors. As such, the influence of soil parameters on sorption will be more limited in column studies.

This is also shown by the fact that in Table 5, the retardation factors for most OMPs were close to 1,

indicating that these OMPs are very mobile during soil passage. Similar OMP retardation factors were

demonstrated in other studies (Table 5). This implies that, for removal of OMPs during RBF,

biodegradation is probably the more dominant removal mechanism compared to sorption, at least for

the biodegradable OMPs. To the best of the authors knowledge, retardation factors for diglyme,

dimethoate, pirimicarb and triclopyr for the RBF process have not been reported previously and were

thus determined for the first time in the current study.

3.4 Influence of soil type on OMP biodegradation rates

OMP biodegradation rates determined from fitting the convection-dispersion equation (Eq. S4) to the

experimentally determined breakthrough curve data are presented in Table 6 (confidence intervals for

both soil columns are presented in Table S4 and S5). For the OMPs for which a retardation factor
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could not be determined, the retardation factor was set to 1. This assumption is justified since several

studies reported, and also the results presented in Table 5 show, that retardation factors were close or

equal to 1 for most OMPs (Chapter 2, Burke et al., 2013, Henzler et al., 2014). Figures S3 and S4 show a

plot of the modelled Ce/C0 values versus the experimentally obtained Ce/C0 values for both pilots,

representing the “goodness of fit” for the model.

Table 6 – OMP degradation rates (µ) for both oxic pilots

Oasen soil Vitens soil

OMP Biodegradation rate µ [d-1] Biodegradation rate µ [d-1]

Acetaminophen 2.70 2.30

Ketoprofen 2.68 2.36

Diclofenac 2.28 2.29

Theophylline 2.14 1.43

Phenazone 2.10 2.69

Terbutalin ND1 1.43

Clofibric acid 1.89 1.17

Chloridazon 1.65 2.35

Diuron 1.38 1.27

Sulfamethoxazole 0.98 1.44

Dimethoate 0.42 0.37

Carbamazepine 0.29 0.22

Triclopyr 0.27 0

Pirimicarb 0.21 0.14

Hydrochlorothiazi

de

0.18 0

Atrazine 0.17 0.05

Simazine 0.13 0

Lincomycin 0 0

Diglyme 0 0

Metoprolol ND1 ND1

1 A statistically significant biodegradation rate could not be determined

For a small number of OMPs (sulfamethoxazole, lincomycin, phenazone, dimethoate, triclopyr,

chloridazon, and clofibric acid) an increase in biodegradation rate over time (adaptation) was

observed during the 7 months of operation. For these OMPs, the adapted biodegradation rate was

determined. An adaptation time of more than 2 years for at least one of the aforementioned OMPs,

namely sulfamethoxazole, has been reported in a previous study (Baumgarten et al., 2011). The

adaptation time required for these OMPs could be caused by the differences in OMP concentration

between the river water and the OMP concentration dosed in the feed water used in this study. The

microbial community possibly needs a certain time to adjust itself to the variation in concentration of

these OMPs.

An ANOVA test was performed to determine if there was a statistically significant difference in OMP

biodegradation rate between the two soil types. No statistically significant difference in OMP

degradation rate between the two soil types was found (p-value = 0.82 > 0.05). This implies that for the

soil types used in this study, the effect of soil type on OMP biodegradation is insignificant and that

OMP biodegradation rate is mainly influenced by the aqueous phase as opposed to the solid phase

(since both pilots were fed with the same river water). This was unexpected given the initial

differences in physico-chemical and initial microbial community soil characteristics, yet is supported

by the comparable microbial community in both columns at the end of the experiment, as shown by

the DGGE data.

Although the current study only investigated two specific soil types, the results found are supported

by a batch study of Kasozi et al. (2010) who investigated the effect of different soil groups (carbonatic
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soils, histosoils, oxisoils and spodosoils) on the degradation of diuron; no statistical significant

difference in average half-life of diuron was found between the different soil groups. However, the

study of Kasozi et al. (2010) determined diuron half-lives in batch experiments using aqueous

solutions of diuron standard. Along with the previously discussed scale-effects, this approach does

not appropriately simulate RBF systems (water matrix effects are not included). Moreover, the study

of Kasozi et al. (2010) was limited to one specific OMP, namely diuron, which is a neutral OMP with a

relatively high Log D of 2.49. The results of the current column study show that soil type does not

affect the biodegradation rate of a large mixture of different OMPs covering neutral and charged

OMPs with a wide range in hydrophobicity.

Since the Biodegradable Dissolved Organic Carbon (BDOC) concentration of the aqueous phase

(mg/L) is typically 6 orders of magnitude larger than the OMP concentration (ng/L), co-metabolic

degradation of OMPs during soil passage was suggested by several studies (Maeng et al., 2011, Rauch-

Williams et al., 2010). Considering this co-metabolic degradation of OMPs, it is not surprising that

operating the RBF soil columns filled with different soil types but with one type/quantity of BDOC in

the aqueous phase, results in similar OMP removal.

Half of the OMPs (italics, Table 5) biodegraded very well (biodegradation rate = 1.00 d-1 or higher) and

most OMPs (17 out of 20) biodegraded at least to a certain extent in one or both pilots. Chapter 2

reported OMP biodegradation rates for ketoprofen and acetaminophen of 13.5 d-1 and 17.1 d-1,

respectively. These biodegradation rates are higher than observed in the current study which could be

explained by the different water types and thus water qualities (BDOC quantity/quality, nutrients)

used in both studies resulting in different soil microbial populations. (Henzler et al., 2014) reported

degradation rates of 0.01 d-1, 0.02 d-1, 0.01 d-1 and 0.03 d-1 for carbamazepine, diclofenac, phenazone

and sulfamethoxazole, respectively. These degradation rates are much lower than observed in the

current study. This could be explained by the fact that Henzler et al. (2014) determined OMP

biodegradation rates at the field site itself, which makes it extremely difficult to determine OMP

removal under a specific redox condition and thus can easily lead to over- or underestimations.

Sulfamethoxazole degraded relatively well in this study compared to other studies where no

sulfamethoxazole removal was observed in the first nine months of operation (Baumgarten et al.,

2011). This could be explained by the fact that Baumgarten et al. (2011) used clean filter sand while in

the current study soil from an operational RBF site was used. The microbial population present in the

soil from the RBF site was probably already adapted to the presence of sulfamethoxazole and/or the

BDOC in the river water (average sulfamethoxazole concentration in the Rhine river was 0.02 µg/L

(Stoks et al., 2014)). This shows the importance of using soil and river water from RBF locations when

rapid data acquisition on OMP removal by RBF is needed.

Close et al. (2008) reported OMP biodegradation rates of 0.004 d-1, 0.004 – 0.043 d-1 and 0.008 d-1 for

triclopyr, atrazine and simazine, respectively. In the current study biodegradation rates were 0 - 0.27d-

1 for triclopyr, 0.05 - 0.17 d-1 for atrazine and 0 - 0.13 d-1 for simazine. These low biodegradation rates

indicate the more persistent behaviour of these OMPs. Persistent behaviour (biodegradation rates of µ

= 0 d-1) of carbamazepine, atrazine, hydrochlorothiazide and lincomycin was also reported in Chapter

2. The persistent behaviour of the aforementioned OMPs, dimethoate, pirimicarb and diglyme (Table

6) clearly indicates that more research on these compounds is required to determine if they can be

removed under other redox environments or that additional treatment is necessary to prevent them

from ending up in the drinking water.
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To the best of the authors knowledge, biodegradation rates of terbutalin, theophylline, chloridazon,

clofibric acid, diuron, dimethoate, pirimicarb, and diglyme in RBF systems were determined for the

first time in the current study. These results provide important information with respect to required

residence times under oxic conditions for removal of these OMPs. If the OMP concentrations need to

be reduced to less than 1% of their original concentration, the required residence time is about 7 times

the half-life of the OMP (OMP half-life t1/2 = ln(2) / µ). This means that theoretically a residence time of

1.8 to 97.0 days under oxic conditions is required to obtain OMP concentrations of less than 1% of

their original concentration at the RBF sites and for the OMPs investigated in this study. An oxic zone

in the RBF process with a residence time of 97.0 days is not realistic since the oxic zone in general

provides a residence time of a couple of hours to days (depending on site specific water quality and

hydrogeological conditions), after which oxygen is used up for different biological processes. This

implies that in practical situations, the removal of some of the OMPs might be less than 99% in the

oxic zone. Further research on OMP removal under specific redox conditions (e.g. NO3 reducing,

Fe/Mn reducing) should therefore elucidate to what extent the OMPs are removed in these redox

environments. This will enable the modelling of OMP removal in field conditions and can provide

estimates on the extent of removal for the complete RBF process and insight into the required post-

treatment processes.

4 Conclusions

This study investigated the effect of two different soil types from operational RBF-sites on soil

microbial community composition and OMP removal. DGGE fingerprinting analysis was used to

assess the richness and evenness of the microbial community for the soil at the field site

(representative of the initial conditions when the soils were fed with different water qualities) as well

as for the soil in the columns operated with the same influent water quality (determined during

autopsy at the end of the experiment). Retardation factors and biodegradation rates for a large

mixture of different types of OMPs (20 in total) were determined by fitting the convection-dispersion

equation to the experimentally obtained breakthrough curves.

While richness and evenness of the soil microbial community was very different in the soil samples

obtained from the RBF sites, both parameters became more similar as a result of feeding the columns

with the same influent water quality. The soil microbial diversity (measured as richness and evenness)

for both soil column systems was comparable at the end of the experiment, indicating that the

microbial community composition present in both soil column systems was similar.

Retardation factors were close to 1 for all OMPs, indicating mobile behaviour of these OMPs during

soil passage. Most OMPs require a residence time of 1.8 to 97.0 days under oxic conditions to obtain a

removal of more than 99%. These conditions are in general not present at RBF sites, implying that

OMP removal may be less than 99% and further research into the removal of these OMPs under more

reducing redox conditions is required. Diglyme, atrazine, hydrochlorothiazide, lincomycin,

dimethoate, carbamazepine, triclopyr, pirimicarb and simazine showed relative persistent behaviour

with OMP biodegradation rates close or equal to 0, implying that these OMPs should be removed

either under more reducing redox conditions, or adequate post-treatment should be provided for their

removal.
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The results clearly indicated that soil type did not have a significant effect on OMP sorption and

biodegradation rate in this study. This result was supported by the similar microbial community

composition (richness, evenness) found in both soil types at the end of the experiment, despite the

differences in soil characteristics and the differences in microbial community composition at the start

of the experiment. This implies that the microbial community composition in the soil and thus OMP

removal are mainly determined by the aqueous phase (BDOC quantity/quality, nutrients), rather than

the solid phase (the soil). The results of the current study indicate that RBF sites located along the

same river will thus most likely show similar OMP removal (in case no significant changes in the

water quality occur between the two sites and residence times in the different redox zones are more or

less comparable)).
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Chapter 5

The effect of feed water dissolved

organic carbon concentration and

composition on organic micropollutant

removal and microbial diversity in soil

columns simulating river bank filtration

This chapter is based on: Bertelkamp et al. (2016), The effect of feed water dissolved organic

carbon concentration and composition on organic micropollutant removal and microbial

diversity in soil columns simulating river bank filtration, Chemosphere, 144, pp. 932-939
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1 Introduction

Several lab-scale studies have investigated the effect of different dissolved organic carbon (DOC)

sources in the feed water (concentration and composition) on OMP removal during soil passage (Li et

al., 2014b, Maeng et al., 2011, Maeng et al., 2012a, Onesios et al., 2012, Rauch-Williams et al., 2010).

While some studies reported a positive correlation between biodegradable dissolved organic carbon

(BDOC) concentration in the feed water and OMP removal (Lim et al., 2008), others demonstrated a

negative correlation (Li et al., 2014b). The correlation between the BDOC composition and the removal

of OMPs reported in different studies also shows contradictory results (Lim et al., 2008, Maeng et al.,

2012a). Although not explicitly shown in these previous studies, a possible explanation for the

difference in OMP removal with different BDOC concentration/composition, is the difference in

microbial growth and speciation as a result of organic carbon composition. This explanation was

further supported by a study performed by Rauch-Williams et al. (2010), who investigated OMP

removal in soil columns fed with different fractions of organic carbon obtained from wastewater

effluent thereby mimicking a managed aquifer recharge system. The soil column fed with

hydrophobic acids (refractory carbon) was characterised by the lowest soil biomass, but showed equal

or better OMP removal compared to the soil columns fed with other organic carbon fractions. It was

hypothesized that an oligotrophic community developed in this column, which was well capable of

removing OMPs.

Most previous lab-scale studies involving the effect of BDOC concentration and composition on OMP

removal during soil aquifer treatment, have used synthetic wastewater or organic carbon fractions

obtained from wastewater effluent as feed (Alidina et al., 2014a, Li et al., 2014b, Rauch-Williams et al.,

2010). Translating the results of these wastewater studies to RBF systems is difficult since the

composition and characteristics of organic matter in treated wastewater and natural surface water can

greatly differ. Shonnard et al. (2007) demonstrated for example that river water (more representative

of natural organic matter (NOM)) upstream from a wastewater treatment plant was characterised by a

higher hydrophobic and lower hydrophilic fraction of organics, compared to a sample obtained from

the wastewater treatment plant effluent (representative of Effluent Organic Matter (EfOM)). In

addition, the river water sample was also characterised by a lower fraction of humic substances and a

higher fraction of low molecular weight acids. These differences emphasize the need to investigate

the effect of organic carbon fractions obtained from river water on OMP removal during RBF.

Additionally, it is necessary to gain further insight into the effect of variations in the organic carbon

fractions in the feed water matrix on OMP biodegradation rates, because this aspect has not been

investigated in previous studies. Since the character of organic matter present in the river is subject to

seasonal variations (Alberts et al., 2001, Frehse et al., 2013), a larger contribution of a specific organic

carbon fraction towards the overall organic matter concentration present in the river could possibly

influence the soil microbial population and therefore the removal of (certain) OMPs during RBF.

Finally, another important aspect that has received very little attention in past studies, is the effect of

temporary OMP/DOC shock-loads on OMP removal during RBF. These shock-loads could occur as a

result of, for example, industrial spills, dry weather conditions (low discharge of the river) in

combination with concentrated discharge from wastewater treatment plants, or the seasonal/temporal

use of pesticides/veterinary medicines on agricultural land. Few field studies tried to elucidate the

effect of seasonal variations in DOC concentration as well as the contribution of wastewater on the
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RBF systems’ capability to remove OMPs (Cowart et al., 1971, Hoppe-Jones et al., 2010, Regnery et al.,

2015a). However, in field studies the sole effect of seasonal DOC variations or OMP/DOC shock-loads

is difficult to determine since the effect of other parameters (e.g. temperature) that influence OMP

removal cannot be excluded. In addition, it is practically infeasible to determine OMP biodegradation

rates in the field and these are useful when comparing different RBF sites or assessing the removal

potential of a specific OMP for a RBF site.

To tackle aforementioned knowledge gaps, the study described in this chapter investigated OMP

biodegradation rates in laboratory soil columns simulating the initial infiltration phase of a RBF

process under oxic/subanoxic conditions. The objectives of this study were (i) to investigate the effect

of feeding different organic carbon fractions obtained from river water (hydrophilic, hydrophobic,

transphilic and river water organic matter (RWOM)) to soil columns on OMP biodegradation rates,

and (ii) to investigate the effect of a short-term OMP/DOC shock-load on OMP biodegradation rates

during soil passage to determine the resilience of RBF systems towards these loads.

2 Materials and Methods

2.1 Soil columns

The experimental set-up consisted of 8 transparent PVC columns (L = 1 m, D = 36 mm) filled with soil

from the RBF site of drinking water company Oasen (51° 55' 0.4'' N, 4° 47' 5.4'' E). Three different OM

fractions (hydrophilic, hydrophobic, transphilic) and the river water were fed in duplicate to one of

the 8 columns each. A detailed description of the fractionation of the organic carbon is provided in the

Supplemental Information (SI). The RBF soil used was characterised by the following soil fractions:

sand 98.98 v/v %, clay 0.50 v/v % and silt 0.52 v/v%. The columns were filled with soil in increments of

4 to 5 cm until completely full to prevent layering. Top and bottom of the columns were fitted with

perforated PVC plates (30 holes, d = 0.8 mm per hole) that were covered with filter cloth (45 µm,

Top7even net & mesh, The Netherlands) to prevent leaching of sand grains. Water was fed to the

columns from bottom to top to prevent air entrapment at room temperature (20 °C). Columns and

feed solutions were packed with aluminium foil to prevent algae growth and/or OMP loss due to

photolysis. Feed solutions were pumped through the columns by a peristaltic multi-channel pump

(205S, Watson Marlow, The Netherlands) using Marprene® pump tubing (d = 0.63 mm, Watson

Marlow, The Netherlands). The pump tubes were connected to the columns by grey polyamide tubing

(di = 2.9 mm, Festo, The Netherlands). The hydraulic loading rate applied on the columns was 0.2 L/d,

implying a residence time of 1 [m] / 0.2 [m d-1] = 5 days. Pore velocity and porosity in all columns were

determined using deuterium (2H) as a tracer (SI). Pore velocity in the columns varied between 0.45

and 0.52 m/d, while porosity varied between 0.37 and 0.40.

2.2 Experimental phases

The columns were adapted to river water from the RBF site for approximately 2.5 months, until stable

DOC removal was observed, prior to feeding the columns with the organic carbon fractions. Hydro

chemical data of the river water is presented in Table S1.

Three experimental phases were distinguished in this study: phase 1, phase 2 and phase 3. In phase 1,

the columns were fed with the different fractions (RWOM, hydrophilic, transphilic and hydrophobic)

in a concentration of 4 mg/L DOC each. At the same time, OMPs were dosed in a concentration of 0.5
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µg/L. Phase 1 is further referred to as “stable operation”. In phase 2, the fractions were dosed in a

concentration identical to phase 1 (4 mg/L DOC), but the OMP dosing was increased to 2 µg/L to

mimick an OMP shock-load as a result of for example an accidental OMP spill upstream in the river.

Phase 2 is referred to as “OMP shock-load”. In phase 3, the OMP dosing was identical to phase 2 (2

µg/L), but the concentration of the organic carbon fractions dosed to the columns was increased to 8

mg/L DOC to mimick a temporarily lower discharge of the river which will result in a higher DOC

concentration. Phase 3 is referred to as “DOC shock-load”. Operational characteristics of the three

experimental phases are presented in Table S2. In phase 1, four OMP samples were taken from the

effluent of each column. Duplicate columns were operated for each fraction, thus eight data points

were obtained. For phases 2 and 3, two OMP samples were taken from the effluent of each column,

implying that four data points were obtained for each fraction since duplicate columns were operated.

Water quality parameters were analysed at the same frequency.

2.3 Organic micropollutants

The OMP mixture fed to the different columns consisted of 20 OMPs covering a wide range of

physico-chemical properties (Table 1). All OMPs were of analytical grade and purchased from Sigma

Aldrich, Belgium. OMPs were analysed with UHPLC-HR-Orbitrap-MS, a detailed description of the

analysis is provided in Chapter 3 (Method 1). Detection limits are provided in Table S3.

Table 1 – Physico-chemical properties of OMPs

OMP Class MW Charge (pH 8) Log D (pH 8)1 OMP category

Acetaminophen Pharmaceutical 151.16 0 0.85 Neutral – hydrophilic

Atrazine Herbicide 215.68 0 2.26 Neutral - transphilic

Carbamazepine Pharmaceutical 236.27 0 2.64 Neutral – transphilic

Chloridazon Herbicide 221.64 0 1.05 Neutral - transphilic

Clofibric acid Herbicide 214.65 -1 -0.18 Charged – Hydrophilic

Diclofenac Pharmaceutical 296.15 -1 1.21 Charged – Transphilic

Diglyme Solvent 134.17 0 0.10 Neutral – hydrophilic

Dimethoate Insecticide 229.26 0 0.21 Neutral – hydrophilic

Diuron Herbicide 233.09 0 2.49 Neutral – transphilic

Gemfibrozil Pharmaceutical 250.3 -1 1.36 Charged – transphilic

Hydrochlorothiazide Pharmaceutical 297.74 0 -0.72 Neutral – hydrophilic

Ketoprofen Pharmaceutical 254.28 -1 0.49 Charged – hydrophilic

Lincomycin Pharmaceutical 406.54 +1 -1.22 Charged – hydrophilic

Metoprolol Pharmaceutical 267.36 +1 0.14 Charged – hydrophilic

Naproxen Pharmaceutical 230.26 -1 0.10 Charged – hydrophilic

Phenazone Pharmaceutical 188.23 0 1.11 Neutral - transphilic

Pirimicarb Insecticide 238.29 0 1.74 Neutral – transphilic

Simazine Herbicide 201.66 0 1.83 Neutral – transphilic

Sulfamethoxazole Pharmaceutical 253.28 0 0.39 Neutral – transphilic

Triclopyr Herbicide 256.47 -1 -0.53 Charged - hydrophilic

1 Obtained from calculated value ChemAxon (http://www.chemspider.com)

2.4 Water quality parameters

Characterisation of the different DOC fractions (hydrophilic, hydrophobic, transphilic) was performed

by means of Liquid Chromatography - Organic Carbon Detection (LC-OCD) to identify differences in

DOC, organic nitrogen concentration and UV absorption (DOC Labor Huber, Germany). The analysis

was performed for phase 3 for the unfractioned river water and the different organic carbon fractions

fed to the columns. Measurement was performed as described elsewhere (Seybold et al., 2001,

Stuyfzand et al., 2011).
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Total organic carbon was measured with a TOC-5000 analyser (Shimadzu, USA). Samples (25 mL)

were filtered over 20 µm filters (Whatmann, Germany) prior to DOC analysis. UV254 was analysed

with a spectrophotometer (UV-1600PC, VWR, USA). Specific UltraViolet Absorbance (SUVA) was

then calculated as indicator for the aromaticity of the organic carbon according to Eq. 1:

� � � � =
� � � � � � � �

� � �
∙ 100 Eq. 1

In which:

SUVA = specific ultraviolet absorbance [L · mg-1 · m-1]

UVA = ultraviolet absorbance at 254 nm [cm-1]

DOC = dissolved organic carbon concentration [mg L-1]

100 = conversion factor [cm m-1]

Oxygen, temperature, pH and ions were measured as described in Chapter 4.

2.5 Soil microbial activity and composition

Cellular adenosine triphosphate (cATP) concentrations in the soil samples were determined as an

indicator for active biomass (for a detailed description see Chapter 2). Denaturing Gradient Gel

Electrophoresis (DGGE) analysis was performed on soil samples from the in- and effluent of all

columns at the end of each experimental phase to gain more insight into the microbial community

composition as characterized by richness and evenness. A detailed description is provided in Chapter

4.

2.6 Statistical analysis

The statistical software package R was used to perform all statistical analyses (Team, 2008). A p-value

<0.05 was defined as statistical significant.

2.7 Modelling

CXTFIT (Toride et al., 1995b) was used to obtain the OMP degradation rates (µ) in the columns fed

with different organic carbon fractions by fitting the experimental data to the convection-dispersion

equation (for a detailed description see Chapter 2).

3 Results and Discussion

3.1 Liquid Chromatography - Organic Carbon Detection (LC-OCD)

LC-OCD analysis was performed to determine if the organic fractions obtained after fractionation

were actually showing differences with respect to organic carbon composition (e.g. aromaticity and

carbon constituents). Decreasing aromaticity of the humics fraction was observed in the order of

hydrophobic, transphilic and hydrophilic (Table 2). The hydrophobic, transphilic and hydrophilic

fraction showed a statistically significant difference in aromaticity. Although aromaticity of the

transphilic fraction and the river water (RWOM) was similar, a statistically significant difference in

carbon constituents such as building blocks was observed for these fractions (Table S4). This implies

that the organic carbon composition of the four organic carbon fractions was indeed different.
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Table 2 - Aromaticity of the different fractions

Fraction Aromaticity (L mg-1·m-1) (95% confidence interval)

Hydrophobic 4.36 (3.94 - 4.78)

Transphilic 3.38 (2.96 - 3.80)

RWOM 3.07 (2.65 - 3.49)

Hydrophilic 2.02 (1.60 - 2.44)

3.2 Water quality parameters & soil microbial activity and composition

Most columns showed no, or only slight changes in pH between influent and effluent (Table S5) and

nitrate reducing conditions prevailed for all organic carbon fractions (Table S6) in all three

experimental phases.

The microbial populations in all columns showed a very rich and even community (with an average

richness of 47 (± 14) bands and an average evenness of 0.66 (± 0.18)) (Table S7). The soil microbial

population composition (richness and evenness, average in- and effluent side) and concentration

(ATP, average in- and effluent side, Table S8) it not greatly affected by either the four organic carbon

fractions or an OMP or DOC shock-load (Table 4). Since soil microbial population composition and

concentration are not greatly affected by an OMP or DOC shock-load, it apparently needs a longer

time to adapt to the new DOC/OMP shock-load than was provided in the current study (3 weeks). Li

et al. (2013) observed that the soil microbial population in a column representative of a managed

aquifer recharge system reached steady state conditions only after 3 to 4 months which confirms the

observed behaviour in the current study. Thus, RBF seems to be quite resilient against these shock-

loads in the sense that the microbial population is not strongly affected as long as the “shock-loads”

are only applied for a limited time.

No statistically significant difference in average DOC removal (Table 3, Table S9) was observed

between the four fractions within experimental phase 1 and 3 or for a specific organic carbon fraction

in the case of a temporary OMP or DOC shock-load (except the hydrophilic fraction for which the

evenness of the microbial population was altered as a result of OMP or DOC shock-load). DOC

removal within phase 2 was statistically significant smaller for the river water compared to the

hydrophilic and transphilic fractions, but similar to the hydrophobic fraction. Thus, the type of

organic carbon fraction or an OMP/DOC shock-load does not seem to affect DOC removal. This could

be explained by the similar soil microbial population composition and concentration.

A statistically significant difference in SUVA removal (Table 4, Table S10) was observed between the

four organic carbon fractions for each experimental phase. This could be explained by the difference in

aromaticity of the four fractions in the feed waters as indicated by the LC-OCD analysis.

Table 3 - p-values (one-way ANOVA) for water quality parameters in the columns between the different fractions for a

specific phase and for a specific fraction between different phases

Effect of organic carbon fraction

Phase DOC removal [%]

p-value

SUVA removal [%]

p-value

ATP concentration [pg/g]

p-value

Richness

p-value

Evenness

p-value

1 – Stable operation 0.37 5 · 10-3 0.84 0.31 0.37

2 – OMP shock-load 2.39 · 10-4 6.03 · 10-7 0.63 0.17 0.25

3 – DOC shock-load 0.14 0.03 0.10 0.87 0.90

Effect of OMP/DOC shock-load

Fraction DOC removal [%]

p-value

SUVA removal [%]

p-value

ATP concentration [pg/g]

p-value

Richness

p-value

Evenness

p-value
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Hydrophilic 3.00 · 10-3 0.015 0.43 0.89 0.68

River water OM 0.29 0.005 0.15 0.06 0.11

Transphilic 0.15 0.163 0.06 0.16 4.80 · 10-2

Hydrophobic 0.71 0.082 0.18 0.78 0.40

3.3 OMP removal

Several studies have indicated that OMP sorption is small compared to OMP biodegradation with

retardation factors close or equal to 1 for most OMPs (Chapter 2, Burke et al., 2013, Henzler et al.,

2014). Hence, the retardation factor in Eq. S3 was set to 1 and only the biodegradation rate (µ) was

determined. Table 4 provides the modelled degradation rates of the OMPs for the columns fed with

different fractions for all experimental phases. Plots of experimental data versus modelled data points

(Ceffluent/Cinfluent = Ce/C0) are presented in Figures S2, S3 and S4. Coefficients of determination for the

linear fits as well as the equations describing these fits are presented in Table S11.

For the persistent OMPs (atrazine, carbamazepine, diglyme, dimethoate, diuron, lincomycin,

pirimicarb, simazine, and sulfamethoxazole), OMP biodegradation rates were comparable to those

observed in a previous study in which similar soil and river water were used (Wei et al., 2001).

However, for the more degradable OMPs (acetaminophen, chloridazon, clofibric acid, diclofenac,

ketoprofen, and phenazone), biodegradation rates were slightly lower compared to our previous

study (Wei et al., 2001). This could be explained by either the lower active biomass on the soil in the

current study (ATP = 70 ng cm-3) compared to the previous study (ATP = 109-135 ng cm-3), the

different redox conditions (nitrate reducing versus oxic conditions in the previous study), or a

combination of both. Regnery et al. (2015b) demonstrated that acetaminophen removal was not

affected by redox conditions, thus the most plausible explanation for the lower OMP biodegradation

rates observed in this study is the lower quantity of active biomass.

3.3.1 OMP removal – effect of different organic carbon fractions within an experimental phase on

OMP biodegradation rate

No statistically significant difference in OMP biodegradation rate between the different organic

carbon fractions within Phase 1 and Phase 3 was observed (Table 5). This implies that variations in the

organic carbon fractions present in the river are not likely to affect the OMP biodegradation rate at the

RBF site simulated in this study in case of stable operation and for a DOC shock-load. RBF thus seems

robust and resilient towards variations in organic carbon composition during stable operation which

is contradictory to the results found for wastewater whereby the hydrophobic acids fed column was

characterized by the lowest biomass quantity, but showed similar or even better OMP removal

(Rauch-Williams et al., 2010). Since similar DOC feed concentrations were used in that study

compared to this study, the differences in observed OMP removal could be explained by the different

character (e.g. biodegradability) of the organic carbon. Depending on the extent of wastewater

treatment, biodegradability of wastewater derived organic matter can be significantly higher than the

organic matter found in river waters. Organic matter from river water (with a low impact of

wastewater) typically has a more refractory character, which could possibly lead to less distinct

differences in biodegradability between fractions. The river water investigated in this study is only

slightly impacted by treated wastewater (5 - 10 %) and it is possible that river streams more heavily

impacted by wastewater lead to different results. Future research should elucidate if there is a

threshold for which OMP degradation rates are affected as a result of impacts of wastewater organics

on the river water.
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However, a statistically significant difference in OMP biodegradation rate between the different

organic carbon fractions was observed within experimental Phase 2 (OMP shock-load). For an OMP

shock-load, the columns fed with the hydrophilic and RWOM fraction were characterised by higher

average OMP biodegradation rates than the transphilic and hydrophobic fraction. These results

indicate that in case of an OMP shock-load river waters consisting mainly of hydrophilic organic

carbon could demonstrate much larger OMP biodegradation rates.

The observed differences in OMP biodegradation rates could not be explained by the differences in

DOC removal, average ATP concentration, richness/evenness, or SUVA removal. Possibly, the higher

average OMP biodegradation rates observed for the RWOM and hydrophilic fraction are caused by

the presence of specialised soil bacteria and/or enzymes due to the nature of the organics fed.

However, more in-depth analyses of the microbial community composition (e.g. genomic analyses)

should be performed to test this hypothesis.

3.3.2 OMP removal – effect of OMP/DOC shock-load on OMP biodegradation rate for a specific

organic carbon fraction

A DOC shock-load did not significantly affect OMP biodegradation rates in the columns fed with the

different fractions (Table 5) which could be explained by the similar DOC removal and biomasses (e.g.

quantity and composition) observed in the different columns for phase 3.

However, an OMP shock-load resulted in a statistically significant difference in OMP biodegradation

rate for the hydrophilic and RWOM fraction (Table 5). The average OMP biodegradation rate for the

hydrophilic and RWOM fraction increased clearly between Phase 1 and Phase 2. Thus, as a result of an

OMP shock-load, average OMP biodegradation rates in the initial infiltration phase can differ

depending on the quantity of certain organic carbon fractions (hydrophilic) in the river water

contributing to overall RWOM.

In general an increase in OMP biodegradation rate as a result of an increase in OMP concentration is

suggestive of metabolic degradation, however, in the current study an increase in biomass is not

observed. Therefore the increase in OMP biodegradation rate as a result of an OMP shock-load is most

likely due to co-metabolic degradation. The co-metabolic degradation of OMPs during soil passage

has been suggested in previous studies as well (Alidina et al., 2014a, Rauch-Williams et al., 2010). A

further characterisation of the soil microbial population should provide more insight in the role that

(specialized) bacteria and/or enzymes play in co-metabolic OMP removal.
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Table 5 – p-values (multi-factorial ANOVA) for the effect of organic carbon fraction or OMP/DOC shock-load on the OMP biodegradation rate

OMP biodegradation rate,

p-value

OMP biodegradation rate,

p-value

Phase Effect organic carbon fraction Fraction Effect OMP shock-load Effect DOC shock-load

1 – Stable operation 0.09 Hydrophilic 4.94 · 10-2 0.24

2 – OMP shock-load 1.73 · 10-2 RWOM 0.03 0.13

3 – DOC shock-load 0.07 Transphilic 0.09 0.62

Hydrophobic 0.19 0.22

OMP biodegradation rate,

p-value

OMP biodegradation rate,

p-value

OMP category Effect organic carbon fraction within phase 2 Fraction Effect OMP shock-load

Hydrophilic-charged 0.20 Hydrophilic 0.07

Hydrophilic-neutral 0.50 RWOM 0.37

Transphilic-charged 0.59

Transphilic-neutral 0.10
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An increase in OMP biodegradation rate as a result of an increase in initial OMP concentration has

been reported before (Baumgarten et al., 2011), but was never linked to certain organic carbon fraction

as in the current study. Again, an explanation for the increase in OMP biodegradation rate as a result

of an OMP shock-load for specifically the RWOM and hydrophilic fraction cannot be given based on

the DOC removal, average ATP concentration and richness/evenness analyses. However, further

characterisation of the organic carbon fractions removal along the height of the column as well as the

microbial community composition (quantity and quality), is required to be able to provide a solid

explanation for the observed behaviour.

3.3.3 OMP removal – effect of OMP category on OMP biodegradation rate

A statistically significant difference in average OMP biodegradation rate was found between the four

different organic carbon fractions within experimental Phase 2. Additionally, a temporary OMP

shock-load affected OMP biodegradation rates in the columns fed with the RWOM and hydrophilic

fraction (Table 5). To determine if these effects were caused by the OMP category, a multi-factorial

ANOVA was used.

OMPs were categorized according to charge (charged and neutral) and hydrophobicity (hydrophilic,

transphilic, hydrophobic). According to the definition of (Cunningham, 2008) OMPs with a Log D < 1

were termed hydrophilic, while OMPs with a log D ≥ 3 were classified as hydrophobic. Any OMP 

with a log D between 1 and 3 was categorized as transphilic (Table 1).

No statistically significant difference in average OMP biodegradation rate was observed between the

four fractions for a specific OMP category within phase 2 (Table 5). Similarly, no statistically

significant difference in OMP biodegradation rate as a result of OMP category between Phase 1 and 2

was observed for the hydrophilic and RWOM fraction (Table 5). Therefore it is concluded that the

statistically significant difference in average OMP biodegradation rate observed between the four

different organic carbon fractions within experimental phase 2 and the difference in average OMP

biodegradation rate as a result of the OMP shock-load for the hydrophilic and RWOM fraction could

not be explained by the OMP category (charge and hydrophobicity) as investigated in this study.

4 Conclusion

From this study it is concluded that OMP biodegradation rate is not affected by either the type of

organic carbon fraction obtained from river water fed to the soil column (in contrast to what is

observed for managed aquifer recharge systems operating on wastewater effluent) or a DOC shock-

load. Thus, the RBF site simulated in this study is most likely resilient towards variations in the

organic carbon composition of the river water and a temporary higher DOC concentration in the river

water.

Finally, a temporary OMP shock-load resulted in an increase in OMP biodegradation rate for the

columns fed with river water organic matter and the hydrophilic fraction of the river water organic

matter. The increase in OMP biodegradation rate for specifically the columns fed with these fractions

could not be explained by the parameters investigated in this study (ATP, DOC removal, SUVA and

richness/evenness of the soil microbial population/OMP category). Future research should focus on

the changes in organic carbon composition (for example, by LC-OCD and F-EEM analysis) as well as

the microbial community composition (quantity and quality, for example by genomic analysis) along

the column to provide an explanation for the increase in OMP biodegradation rate as a result of an
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OMP shock-load for these two fractions and to elucidate the role of metabolic/co-metabolic OMP

degradation.
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Table 4 – OMP degradation rates (µ) for different experimental phases and organic carbon fractions

Phase 1 - µ [d-1] Phase 2 - µ [d-1] Phase 3 - µ [d-1]

OMP Hydrophil

ic

RW OM Transphilic Hydrophobic Hydrophilic RWOM Transphilic Hydrophobic Hydrophilic RWOM Transphilic Hydrophobic

Acetaminophen ND ND 0.63 ND ND ND ND ND ND ND ND ND

Atrazine 0.00 0.00 0.00 0.09 0.29 0.181 0.26 0.131 0.00 0.10 0.00 0.14

Carbamazepine 0.00 0.00 0.00 0.12 0.50 0.31 0.23 0.22 0.37 0.36 0.00 0.00

Chloridazon 0.00 0.00 ND 0.00 0.071 0.89 0.00 0.00 0.251 1.48 0.00 0.381

Clofibric acid 0.50 0.43 0.37 0.51 0.53 0.361 0.061 0.221 0.46 0.481 0.00 0.26

Diclofenac 0.311 0.231 0.091 0.37 0.91 0.521 0.39 0.711 0.93 1.08 0.93 ND

Diglyme 0.00 0.00 0.00 0.00 ND ND ND ND ND ND ND ND

Dimethoate 0.55 0.22 0.39 ND 0.60 0.42 0.43 0.36 0.45 ND 1.01 ND

Diuron 0.25 0.62 0.29 0.47 0.79 0.731 0.76 0.61 0.51 0.44 0.30 0.46

Gemfibrozil 0.50 ND ND ND 0.62 0.48 0.56 0.30 ND 0.68 0.24 ND

Hydrochlorothiazide ND ND ND ND 0.00 0.291 0.361 0.24 ND 0.261 0.23 0.00

Ketoprofen 0.83 0.341 0.26 0.26 ND ND ND ND ND ND 1.16 ND

Lincomcyin 0.43 0.00 0.70 0.28 ND ND ND ND ND ND ND ND

Metoprolol 0.44 0.43 1.09 1.08 2.20 ND ND ND 1.02 1.37 1.49 2.81

Naproxen ND ND 0.22 ND ND ND ND ND ND ND 0.661 ND

Phenazone 0.46 0.19 0.22 ND 0.39 0.72 0.25 0.00 1.07 1.98 0.00 0.00

Pirimicarb 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.121

Simazine 0.00 0.00 0.00 0.00 0.181 0.061 0.17 0.00 0.00 0.04 0.00 0.11

Sulfamethoxazole 0.54 0.34 0.32 0.31 2.26 2.03 0.15 0.951 1.83 2.09 0.121 0.981

Triclopyr 0.551 0.22 1.25 ND 1.00 0.91 0.731 1.79 0.371 0.371 0.121 0.721

Average 0.30 0.18 0.36 0.27 0.78 0.72 0.29 0.35 0.60 0.87 0.38 0.47

St dev 0.28 0.21 0.38 0.30 0.71 0.61 0.23 0.54 0.57 0.77 0.53 0.96

ND = No Data
1 Confidence interval through 0, result statistically not significant
2 µ ≤ 0.05 was set to µ = 0 
3 In case a row contained two or more “ND” values, the row was omitted from the statistical analysis. OMP biodegradation rates with a confidence interval through zero were also omitted from the statistical analysis.
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Chapter 6

The effect of redox conditions and

adaptation time on organic

micropollutant removal during river

bank filtration: A laboratory-scale

column study

This chapter is based on: Bertelkamp et al. (2015), The effect of redox conditions and

adaptation time on organic micropollutant removal during river bank filtration: A

laboratory-scale column study, Science of the Total Environment. In press.
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1 Introduction

Chapter 2, 3, 4 and 5 have demonstrated that a number of OMPs (e.g. atrazine, carbamazepine,

chloridazon, clofibric acid, diclofenac, dimethoate, diuron, hydrochlorothiazide, ketoprofen,

lincomycin, metoprolol, phenzone, pirimicarb, simazine and sulfamethoxazole) showed incomplete

removal or persistent behaviour under oxic conditions and combined oxic/nitrate reducing conditions.

Other studies, however, have demonstrated that some OMPs showing no or only partial removal

under oxic conditions sometimes show enhanced removal under more reduced conditions (anoxic,

anaerobic) (Grünheid et al., 2005, Storck et al., 2012, 2010). Thus, for drinking water companies

operating RBF systems, it is important to investigate if the OMPs showing persistent behaviour under

oxic conditions are removed under more reduced and separate redox conditions (e.g. NO3- and

Fe3+/Mn4+). If knowledge is obtained with respect to OMP removal for separate redox conditions, the

results of certain redox conditions prevailing at a specific RBF site could be combined to estimate the

overall removal. When OMP biodegradation rates and residence times are known for the different and

separate redox conditions, it is possible to determine to what extent these OMPs are removed at field

sites. This will provide drinking water companies with more insight into the required residence time

of an OMP in a specific redox zone to achieve a certain extent of OMP removal. If the investigated

OMPs are not eliminated during the complete RBF process, drinking water companies should

implement or adjust post-treatment processes to prevent the presence of these compounds in the

produced drinking water.

The removal of some of the previously mentioned OMPs has been investigated in a number of

wastewater treatment processes exhibiting different redox conditions such as soil aquifer treatment (in

which treated wastewater is infiltrated in, and treated by, the soil), constructed wetlands and

conventional activated sludge systems (Matamoros et al., 2007, Patterson et al., 2011, Rauch-Williams et

al., 2010, Suarez et al., 2010). However, these results cannot be directly translated to the RBF system,

since waste water treatment systems are usually characterized by much higher biomass quantities and

a notably different organic carbon composition and concentration in the feed water compared to river

water. Higher biomass quantities can lead to higher biodegradation rates while the feed water organic

carbon composition and concentration was reported to play an important role in shaping the

microbial community responsible for OMP removal and can thus greatly differ for river water

compared to wastewater (Alidina et al., 2014b, Frehse et al., 2013, Li et al., 2013).

For some OMPs, such as phenazone, redox dependent removal was identified in RBF field studies

(Massmann et al., 2008, Massmann et al., 2006). While field studies can be useful to identify redox

dependent removal of OMPs, biodegradation rates for the separate redox conditions cannot be easily

determined directly in the field. The reason why OMP removal for a specific redox condition is

difficult to determine in the field, is the seasonal variability of the redox zones due to for example

river water temperature. Therefore studies investigating OMP removal under controlled redox

conditions generally use batch or laboratory scale soil column studies to mimic the RBF process.

The removal behaviour of the formerly mentioned OMPs for separate and more reduced redox

conditions in RBF systems is largely unknown. Few batch studies investigated the fate of atrazine,

lincomycin, pirimicarb and metoprolol (Barbieri et al., 2012, DeLaune et al., 1997, Gu et al., 2003, Kah et

al., 2007, Sara et al., 2013, Taboada et al., 1994), but these either focused on combined redox conditions
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or one specific redox condition. Thus the fate of these OMPs for separate and/or other redox

conditions remains unclear.

The fate of carbamazepine, clofibric acid, diclofenac, ketoprofen, and sulfamethoxazole has been

investigated under different redox conditions in soil column studies simulating soil passage

(Baumgarten et al., 2011, Hoppe-Jones et al., 2012, Maeng et al., 2012a). However, these studies used

nitrogen gas and/or starch to deplete the feed water from oxygen to create reduced redox conditions.

The major drawback of these artificially created redox conditions is that the biodegradable dissolved

organic carbon (BDOC) composition entering the nitrate reducing zone is similar to the oxic zone,

which is a factually incorrect simulation of what occurs at full-scale operational RBF sites where the

easily degradable organic carbon is usually removed in the oxic infiltration zone and thus only the

more refractory organic carbon will enter the nitrate reducing zone. BDOC concentration and

composition have been reported to have a strong effect on microbial community composition and

diversity (Alidina et al., 2014b, Li et al., 2013) and therefore OMP removal can be different for

artificially created nitrate reducing conditions (with an oxic BDOC composition) compared to

naturally derived nitrate reducing conditions. Besides, most studies reported percentage removals

which make it difficult to determine how long an OMP needs to reside in the subsurface to obtain a

certain extent of removal. Therefore, OMP biodegradation rates are more appropriate since these can

be converted to half-lifes which can be used to determine how long an OMP needs to reside in the

subsurface to achieve a 90% or 99% removal.

Another important aspect that has been largely underexposed in previous studies is that of adaptive

behaviour. OMPs are degraded by the soil microbial community, but if a new OMP is detected in the

river the soil microbial population might not be capable of instantly degrading the compound if, for

example, the appropriate enzymes cannot be expressed (Spain et al., 1980, Spain et al., 1983). Therefore,

newly detected OMPs sometimes require a certain adaptation time (or lag-phase) before

biodegradation is initiated (Storck et al., 2012). This phenomenon is especially important for new

developed RBF sites or RBF sites that have never been exposed to certain OMPs, since it will provide

important information with respect to the required start-up time before full OMP removal capacity is

obtained for the RBF site

An adaptation time (or lag-phase) has been reported for a number of OMPs such as sulfamethoxazole,

naproxen, bisphenol A, 17β-estradiol, trimethoprim, bezafibrate, and iohexol during soil passage 

(Baumgarten et al., 2011, Patterson et al., 2011, Storck et al., 2012). However, recently, a study of Alidina

et al. (2014a) concluded that adaptation of the soil microbial community towards OMPs is not

necessary if the soil microbial community is adapted to the primary substrate in the feed. Thus,

results on adaptation behaviour of OMPs are inconclusive. Additionally, it remains unclear why

certain OMPs require an adaptation time while others do not.

Furthermore, Baumgarten et al. (2011) demonstrated that the adaptation time of sulfamethoxazole

could be more than 2 years. This explains why adaptive behaviour is not discussed in most studies

since these usually describe experimental periods of a few months or OMP removal for a specific

point in time which makes it impossible to capture adaptive behaviour. The studies of Baumgarten et

al. (2011) and Storck et al. (2012) were limited to soil column studies filled with either technical sand or

glass beads. The use of these clean filter media could potentially overestimate the required adaptation

time, since no biomass is present at the start of the experiment.
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Besides, understanding the adaptive behaviour of OMPs is necessary in relation to predictive models

for OMP removal during RBF. Such a predictive model enables drinking water companies to predict if

an OMP that is detected in a river for the first time will be removed during RBF of not based on for

example the functional groups present in its molecular structure. To date it is unclear if and how

adaptive behaviour of OMPs should be included in predictive models.

To tackle the aforementioned limitations, the research described in this chapter investigated (1) the

fate of a large OMP mixture (15 in total, dosed in a concentration of 500 ng/L), that showed partial or

persistent removal under oxic conditions, for more reduced conditions (e.g. oxic, nitrate reducing and

almost complete nitrate removal) that were developed in a natural manner, (2) if redox dependent

OMP removal could be explained by physico-chemical properties and/or functional groups (3)

adaptation behaviour of a large OMP mixture in a long-term column experiment simulating the RBF

system (oxic conditions) to examine if adaptation behaviour could be explained by physico-chemical

properties and/or functional groups, and (4) how the adaptive behaviour of OMPs could be

incorporated in predictive models.

To study the effect of redox condition on OMP removal, a unique set-up was used. To the best of the

authors knowledge, an experimental set-up like this has never been used before. Three laboratory-

scale RBF pilots were operated in parallel. Each of these pilots mimicked extended travel times: an

oxic, an oxic + suboxic (nitrate reducing) and an oxic + suboxic + anoxic installation (nitrate almost

completely removed). All three pilots were fed with oxic river water and increasing the number of

columns (residence time) resulted in a natural development of the different reduced redox conditions.

Three separate installations were required for two reasons: (1) each installation was only sampled at

the influent and effluent side (not in between), to prevent oxygen from entering the columns during

sampling, which could negatively impact the stable redox conditions inside the columns, (2) to

provide sufficient sampling volume for each “redox condition”, despite the low flows . Columns were

filled with RBF site soil and fed with river water from the same site. Biodegradation rates were

determined from the experimental results by fitting the experimental data to the convection-

dispersion equation.

2 Materials and Methods

2.1 Experimental set-up

Three independent RBF pilot installations were used in this research: pilot A, pilot B, pilot C. Pilot A

consisted of two transparent PVC columns (L = 1 m, D = 36 mm) in series. Both columns were filled

with oxic soil from RBF site Engelse Werk of drinking water company Vitens (52°29’39'' N, 6°3’40.4''

E). Pilot B consisted of 10 columns in series, the first four columns were transparent PVC (L = 1 m, D =

36mm) filled with oxic soil from RBF site Engelse Werk and the last six columns were stainless steel (L

= 1 m, D = 36 mm) filled with soil obtained from anoxic/anaerobic soil drillings (52°29'25.3" N, 6°3'56.0"

E) from the same RBF site. Pilot C consisted of 22 columns in series, the first four columns were

transparent PVC (L = 1 m, D = 36mm) filled with oxic soil from RBF site Engelse Werk and the last

eighteen columns were stainless steel (L = 1 m, D = 36 mm) filled with soil obtained from

anoxic/anaerobic soil drillings from the same RBF site. Operational parameters of the three

installations are presented in Table 1.
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Since the first two columns of all three pilots and columns three till ten of pilot B and C were filled

with the same soil material and fed with the same feed water, it is assumed that these columns will

show similar OMP removal.

Columns were filled with soil in increments of 4-5 cm while tapping on the columns, to prevent

layering in the columns. The anoxic/anaerobic soil columns were filled in a similar manner to the

stainless steel column, but the whole filling process took place in a glove box depleted from oxygen.

To prevent leaching of soil grains, the top and bottom of the columns were fitted with perforated PVC

plates (30 holes, d = 0.8 mm for each hole) that were covered with filter cloth (45 µm, Top7even net &

mesh, The Netherlands). A flow from bottom to top was maintained in all columns to prevent air

entrapment and the whole system was operated in a temperature controlled room (12°C) in the dark

(to prevent algae growth and/or OMP loss due to photolysis).

The pilots were fed from a jerrycan filled with Lek river water (the same water that was feeding the

RBF sites from which the soil was taken) and an OMP mixture. River water was refreshed every two

weeks and was filtered (d = 0.4 mm), prior to use as feed, to prevent twigs and larger particles from

clogging the pump tubes. After every replacement feed jerrycans were washed twice with acetone and

flushed several times with demineralized water before refilling to prevent biofilm formation. The feed

solution was pumped through the columns by a peristaltic multichannel pump (205S, Watson

Marlow, The Netherlands) using Marprene® pump tubing (d = 0.63 mm, Watson Marlow, The

Netherlands). The hydraulic loading rate applied on the columns was 0.5 L/d, which equals a filtration

rate of 0.5 m/d. Pore velocity and porosity in the pilot was determined using deuterium (2H) as tracer.

Deuterium concentrations were determined with laser absorption spectroscopy using a DLT-100

Liquid-Water Isotope Analyzer (Los Gatos Research, USA); precision ± 0.56 ‰ for 2H. A quantity of

0.19 mL of 99% pure Deuterium was added to the feed solutions (20 L), resulting in an approximate 60

‰ increase in δ-2H. Empty bed contact time (EBCT) and porosity determined in the pilots are

presented in Table 1.
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Table 1 – Experimental characteristics of the three pilot installations

Pilot Nr. of columns Redox conditions Terminal electron acceptor EBCT [d] Porosity [-] ΔDOC [%] ΔNO3- [%]

A 2 Oxic O2, no NO3 removal 4.1 0.33 24.1 ± 11.9 (n = 13) ~ 0 (n = 13)

B 10 Oxic + Suboxic Partial NO3 removal 20.4 0.39 18.1 ± 23.9 (n = 12) 21.3 ± 23.1 (n = 14)

C 22 Oxic + Suboxic + Anoxic NO3 almost completely removed 44.8 0.43 19.4 ± 16.6 (n = 14) 98.7 ± 2.5 (n = 14)
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2.2 Organic micropollutants

The OMP mixture used in this study and their physico-chemical properties are presented in Table 2.

OMP samples were taken from the influent and effluent, more frequently in the beginning to

determine the breakthrough curve and once the breakthrough curve was established samples were

taken monthly.

Preparation of the stock solution and analysis of the OMP samples was performed as described in

(Chapter 3, Method 1).

Table 2 – Organic micropollutants investigated in this study and their physico-chemical properties

OMP MW pKa Charge at pH 8 Log D at pH 81

Atrazine 215.68 <2 (1.6)b 0 2.26

Carbamazepine 236.27 -a 0 2.64

Chloridazon 221.64 3.4c 0 1.05

Clofibric acid 214.65 3.2d -1 -0.18

Diclofenac 296.15 4.2d -1 1.21

Dimethoate 229.26 2.0e 0 0.21

Diuron 233.09 13.6c 0 2.49

Hydrochlorothiazide 297.74 7.9f 0 -0.72

Ketoprofen 254.28 4.7a -1 0.49

Lincomycin 406.54 7.6g +1 -1.22

Metoprolol 267.36 9.4a, 9.7f +1 0.14

Phenazone 188.23 1.4f 0 1.11

Pirimicarb 238.29 4.5h 0 1.74

Simazine 201.66 1.6e 0 1.83

Sulfamethoxazole 253.28 1.8, 5.8c 0 0.39
1 http://www.chemicalize.org
a(Chiang et al., 2009), b(Westerhoff et al., 2005), c(Margot et al., 2013), d(Packer et al., 2003), e(Yang et al., 2013), f(Ferreira da Silva et al., 2011), g(Wang

et al., 2011), hhttp://pubchem.ncbi.nlm.nih.gov

2.3 Water quality parameters

Water quality parameters were measured more frequently in the beginning in parallel to the

measuring frequency used for the OMP breakthrough curves and biweekly once the breakthrough

curves were established (except for UV254 which was measured only at the end of the experiment for

the OMP samples as function of residence time). The dissolved organic carbon (DOC) concentration

was measured with a Shimadzu TOC Analyser after filtering the aqueous samples through 0.45 µm

filters (Whatman, Germany); these filters were flushed twice with demineralized water prior to use.

UV254 absorbance was measured using a UV-Vis spectrophotometer (Thermo scientific, Genesys 6) and

a 1 cm quartz cuvette. Oxygen and temperature were measured with an oxygen meter (FDO® 925 IDS

probe, Oxi340i, WTW, Germany) and pH was measured with a multimeter (SenTix® 940 IDS probe,

Multi 340i, WTW, Germany) directly in the feed or in a flow through cell connected to the effluent

tubes of the columns. Ions were analysed with an ProfIC 15 – AnCat ion chromatograph (Metrohm

881 anion (suppressed) and 883 cation system) (Metrohm, Switzerland) after filtering the aqueous

samples through 0.45 µm filters (Whatman, Germany); these filters were flushed twice with

demineralized water prior to use. For the anions an A Supp 150/4.0 anion column was used with 3.2

mM Na2CO3 and 1 mM NaHCO3 eluent. For the cations a C5 cation column with 3 mM HNO3 eluent

was used. Regenerant for the suppressor was 50 mM H2SO4.

2.4 Soil parameters

Soil pH, grain size distribution, organic matter content and cationic exchange capacity were

determined according to the protocols described in (Chapter 4).
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2.5 Modelling

CXTFIT (Toride et al., 1995a) was used to obtain the biodegradation rates (µ) of the OMPs in the

columns by fitting the experimental breakthrough curves using the inverse problem based on the

convection dispersion equation (CDE) as described in (Chapter 2). Average pore water velocity,

dispersion coefficient and dispersivity α of the three installations are presented in Table S1 of the 

Supplemental Information (SI).

For the oxic pilot, breakthrough curves of the complete experimental period of 15 months were used

to determine the biodegradation rate. Since it was impossible to determine the OMP biodegradation

rates for the separate redox conditions in the suboxic and anoxic pilot by fitting the breakthrough

curves of these pilots (this would result in a biodegradation rate for combined redox conditions), both

these pilots were sampled along the height at the end of the experimental period (15 months after

OMP spiking started) when stable effluent OMP concentrations were obtained. This final sampling

campaign was performed to determine the OMP concentrations as a function of residence time for all

three pilots and data was used to determine the biodegradation rates of the OMPs that showed redox

dependent behaviour for the different redox conditions.

It is assumed that the first two columns in all three installation will behave similarly with respect to

OMP removal since these are filled with similar soil and fed with the same feed water quality.

Likewise, columns three till ten (representative of nitrate reducing conditions) from pilot B and C are

expected to behave similarly with respect to OMP removal. Therefore, OMP biodegradation rates

under nitrate reducing conditions were determined by combining the data from column three till ten

of pilot B and C (the influent concentration of the suboxic zone was determined as the average of

column 2 from both the oxic and suboxic pilot). OMP biodegradation rates under anoxic conditions

(nitrate almost completely removed) were determined based on data from columns ten till twenty two

of the anoxic pilot (the influent concentration of the anoxic zone was determined as the average of the

effluent of column ten from both the suboxic and anoxic pilot).
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3 Results and Discussion

3.1 Water quality and soil parameters

Feed water quality parameters are presented in Table 3.

Table 3 – Water quality parameters feed water

Parameter Units Value ± st dev

pH [-] 8.01 ± 0.28 (n=16)

DOC mg/L 3.81 ± 0.74 (n=64)

NO3- mg/L 8.60 ± 3.05 (n=54)

PO43- mg/L 0.07 ± 0.07 (n=34)

Cl- mg/L 56.32 ± 18.74 (n=53)

SO42- mg/L 46.95 ± 9.63 (n=54)

NH4+ mg/L 0.08 (min. 0.04, max. 0.13, n=12)a

K+ mg/L 3.71 ± 0.80 (n=54)

Mg2+ mg/L 10.79 ± 1.79 (n=54)

Ca2+ mg/L 52.63 ± 14.69 (n=49)

a(Stoks et al., 2014)

Soil parameters for the oxic and the suboxic/anoxic soil drillings are presented in Table 4. While grain

size distributions are similar, soil organic matter and cationic exchange capacity are lower in the

suboxic/anoxic soil drillings.

Table 4 - Soil parameters

Units Vitens oxic soil Vitens sub oxic/deep anoxic soil

Clay (< 8 µm) v/v % 3.72 1.71

Silt (8 – 63 µm) v/v % 3.58 2.50

Sand (63 – 2000 µm) v/v % 92.69 95.79

dmedian µm 380.38 394.84

LOI550 % dry weight 1.18 0.24

SOM % dry weight 0.92 0.12

pH – H2O - 8.23 NA

pH – KCl - 7.90 NA

Cationic Exchange Capacity (CEC) meq/kg dry weight 42.13 14.07

NA = Not analyzed

3.2 DOC concentration

DOC removal is more or less similar for all three pilot installations (Table 1), which is mainly

attributed to the fact that the largest part of the DOC is removed in the first 2 – 3 meters of the soil

which has been observed in other studies as well (Maeng et al., 2012a, Möller et al., 2011). This first

part of the RBF soil columns is the most active and therefore the largest DOC removal is expected in

this zone. For suboxic (2 – 10 m) and anoxic conditions (10 – 22 m), the DOC concentration remains

relatively stable and no additional removal was observed. Figure S1 shows the DOC concentrations as

a function of soil depth for the oxic, suboxic and anoxic pilot installations combined.

To identify the prevailing redox conditions in the three installations, oxygen and nitrate were

measured. Nitrate removal is presented in Table 1 (yearly trends are presented in Figure S2). For the

oxic pilot, no nitrate removal was observed and thus oxic conditions prevailed. For the suboxic pilot,

partial nitrate removal was observed (average NO3- removal = 21.3 ± 23.1 %, n = 14), while for the

anoxic pilot practically complete nitrate removal was observed (average NO3- removal = 98.7 ± 2.5 %, n

= 14). These results show that indeed different redox conditions were created in the three pilot

installations.
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3.3 OMP removal – redox dependent behaviour

Retardation factors for the different OMPs were all close to 1 with maximum values for the retardation

factor equal to 2.6 (Table 5), thus indicating weak sorption and mobile behaviour of these OMPs in the

soil environment. These low retardation factors for most OMPs were confirmed by other studies

(Burke et al., 2013, Patterson et al., 2011, Scheytt et al., 2004b). OMP biodegradation rates were

determined for the complete OMP mixture in all three pilots and the results are depicted in Table 5.

Chloridazon, clofibric acid, diclofenac, ketoprofen, lincomycin, phenazone, and sulfamethoxazole

were rapidly degraded in the oxic pilot and therefore their removal could not be determined for the

more reduced redox conditions. Biodegradation rates for these OMPs ranged between µ = 1.16 - 3.12 d-

1 (t1/2 = 0.19 - 0.60 d) and thus a 90% removal (= 7 · t1/2) can be expected for most OMPs after 1.3 - 4.2

days residence time in the soil. High removal of diclofenac, ketoprofen, phenazone and clofibric acid

was also observed in other studies (Chapter 2, Maeng et al., 2012a, Massmann et al., 2006, Storck et al.,

2012, Zearley et al., 2012). For sulfamethoxazole a half-life of 9 days was determined (after 27 months

of operation time) in a study of Baumgarten et al. (2011), which is much higher than the half-life of t1/2

= 0.32 days determined in the current study. This discrepancy is most likely the result of the use of

technical sand without biomass in the study of Baumgarten et al. (2011) and the use of sand obtained

from a RBF site in the current study. Lincomycin showed good removal in the current study, while it

was found to be persistent in a previous study (Chapter 2). This persistent behaviour of lincomycin is

most likely the result of insufficient adaptation time in the previous study in which columns were

operated for 6 months compared to 15 months in the current study. For chloridazon a half-life of t1/2 =

10 days was reported for an aerated fixed bed bioreactor fed with wastewater treatment plant effluent

(Buttiglieri et al., 2009). The half-life demonstrated in the current study was much lower which could

be explained by the difference in organic carbon composition and concentration between the

wastewater effluent in the study of (Buttiglieri et al., 2009) and the river water used in the current

study (Alidina et al., 2014b, Li et al., 2014b). Depending on the local hydraulic and geochemical

conditions which determine the length of the oxic zone at the RBF site, a significant to complete

removal of these OMPs can be expected. The rapid removal of chloridazon, lincomycin and

sulfamethoxazole under oxic conditions was the result of an adaptation time which will be further

discussed in section “3.3 OMP removal – adaptative behaviour”.

Atrazine, carbamazepine, hydrochlorothiazide and simazine showed persistent behaviour under oxic

conditions and thus their removal under more reduced redox zones was investigated in this study. No

removal of the four OMPs was observed in any of the redox environments investigated in this study,

even after 15 months of operation (Table 5). Apparently, if the OMP is persistent under oxic

conditions, it does not tend to be removed under more reduced conditions either, at least for the four

persistent OMPs and redox conditions investigated in this study. Atrazine, hydrochlorothiazide and

simazine were present in the Lek river in concentrations below the detection limit and therefore it is

possible that the microbial population present in the soil obtained from the RBF site fed with Lek river

water was never previously exposed to these OMPs and appropriate enzymes to degrade these OMP

were not expressed.

The persistent behaviour of atrazine, carbamazepine and hydrochlorothiazide is confirmed by other

studies. Benotti et al. (2012) demonstrated that atrazine and carbamazepine were not eliminated in two

full-scale RBF systems, however the specific prevailing redox conditions were unclear. This study

shows that – in oxic, suboxic and anoxic conditions - there is no biodegradation. In addition, both
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carbamazepine and hydrochlorothiazide were not removed (<10%) in a conventional activated sludge

system (denitrification/nitrification) (Radjenović et al., 2009).

Although atrazine and simazine were not degraded under the redox conditions investigated in the

current study, biodegradation of these compounds has been observed under more reduced conditions

(DeLaune et al., 1997, Seybold et al., 2001, Shareef et al., 2014). Atrazine biodegradation was observed

for a redox potential of -200 mV to +169 mV, covering a number of electron acceptors, namely Mn4+,

Fe3+ and SO42- (Cronk et al., 2001, DeLaune et al., 1997, Seybold et al., 2001). Simazine biodegradation

was investigated in batch tests simulating a wetland fed with storm water under nitrate reducing

conditions and reported half-lives were t1/2 = 26-30 days (Shareef et al., 2014). For both atrazine and

simazine high initial spiking concentrations were used (atrazine: 55 - 70 µg g-1 soil, simazine 120 µg/L) 

compared to the current study (500 ng/L). Baumgarten et al. (2011) demonstrated that higher initial

OMP concentrations lead to shorter lag-phases and higher biodegradation rates. Thus, the reported

biodegradation of atrazine and simazine in those studies, is most likely the result of the higher initial

dosed concentrations compared to the current study and it is questionable if atrazine and simazine

would be biodegraded, in the concentrations used in the current study, when more reduced

conditions were examined.

The persistent behaviour of atrazine, carbamazepine, hydrochlorothiazide and simazine implies that

RBF alone (with oxic, suboxic and anoxic redox conditions) cannot provide an adequate barrier for all

OMPs, thus additional treatment is required to prevent their presence in drinking water.

Dimethoate, diuron, metoprolol and pirimicarb showed redox dependent removal (Table 5, Figure

S3). Dimethoate, diuron and metoprolol were characterised by higher biodegradation rates under oxic

conditions compared to suboxic and anoxic conditions which has been reported previously (Fritsche et

al., 2000, Tran et al., 2013). The higher biodegradation rates of metoprolol under oxic conditions (t1/2 =

1.02 d) compared to suboxic (partial nitrate removal, t1/2 = 6.29 d) confirm the results found for

metoprolol in a study of Burke et al. (2014), with half-lives of t1/2 = 1 h and t1/2 = 37 h for

oxic/penoxic/suboxic (oxygen almost depleted, partial nitrate removal) and transition conditions

(relatively constant nitrate concentration, manganese reduction), respectively. However, half-lives

reported in the study of Burke et al. (2014) were much lower compared to the half-lives reported in the

current study. Since feed water quality (surface water) and initial metoprolol concentrations were

similar in both studies (130 ng/L in the study of Burke et al. (2014) and 500 ng/L in the current study),

it is expected that the difference in half-lives is a result of different biomass quantity and composition

present in the column systems or temperature (19.7°C in the study of Burke et al. (2014) compared to

12°C in the current study).

Shareef et al. (2014) reported much higher half-lives for diuron of t1/2 = 35 – 41 days (oxic conditions)

and t1/2 = 91 days (nitrate reducing conditions) than observed in the current study (t1/2 = 1.33 – 7.49 d).

However, as a result of the much higher initial diuron concentration used in the study of Shareef et al.

(2014) (120 µg/L) compared to the current study (500 ng/L), shorter half-lives would be expected since 

higher OMP concentration lead to short adaptation times and higher degradation rates as reported in

(Baumgarten et al., 2011, Storck et al., 2012). However, it is possible that the higher initial diuron

concentration had a toxic effect on (part) of the soil microbial population present in the wetland

sediment, which resulted in a reduced biodegradation rate of the compound.
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Table 5 – OMP biodegradation rates and half-lives for the oxic, suboxic and anoxic pilot

Oxic pilot Oxic pilot Suboxic pilot Anoxic pilot

Retardation factor Oxic conditions NO3 reducing conditions Almost complete NO3 removal

OMP [-] μ [d-1] (CI) / t1/2 [d] μ [d-1] (CI) / t1/2 [d] μ [d-1] (CI) / t1/2 [d]

Atrazine 1.7 0 / - 0 / - 0 / -

Carbamazepine 1.9 0 / - 0 / - 0 / -

Chloridazon 1.0a 2.77c (2.22;3.33) / 0.25 NDd ND

Clofibric acid 1.0a 1.16 (1.02;1.30) / 0.60 ND ND

Diclofenac 1.0a 2.60 (2.28;2.92) / 0.27 ND ND

Dimethoate 1.2 0.39c (0.31;0.48) / 1.78 0.06 (0.02;0.10) / 11.52 0.11 (0.10;0.12) / 6.05

Diuron 2.6 0.52 (0.37;0.67) / 1.33 0.09 (0.05;0.13) / 7.49 0.11 (0.03;0.19) / 6.36

Hydrochlorothiazide 1.7 0 / - 0 / - 0 / -

Ketoprofen 1.0a 2.81 (2.35;3.26) / 0.25 ND ND

Lincomycin 1.9 2.69c (1.97;3.41) / 0.26 ND ND

Metoprolol 10b 0.68 (0.58;0.77) / 1.02 0.11 (0.00;0.22) / 6.29 0.16 (-0.03;0.36)e/ 4.22

Phenazone 1.3 3.70c (3.42;3.99) / 0.19 ND ND

Pirimicarb 1.6 0.06 (0.00;0.11) / 11.55 0.04 (0.02;0.06) / 18.80 0.08 (-0.13;0.29)e / 8.48

Simazine 1.5 0 / - 0 / - 0 / -

Sulfamethoxazole 0.8 2.19c (2.02;2.36) / 0.32 ND ND
a  Impossible to determine R since OMP was rapidly biodegraded, assumed to be 1 to enable the determination of µ, b Retardation factor was assumed to be 10 based on previous studies (Chapter 2, Burke et al., 2013), c Show

increase in OMP biodegradation rate over time, adapted biodegradation rate is presented in Table 4, d ND = Not determined since OMP was rapidly degraded in oxic pilot
e Note that the biodegradation rate of metoprolol and pirimicarb in the anoxic pilot is statistically not significant (confidence interval is going through zero) which means that this obtained biodegradation rate is not the only

possible solution when fitting the experimental data to the advection-dispersion equation. This could be explained by the fact that the retardation factor was assumed to be 10 based on previous studies (Chapter 2, Burke et al.,

2013). However, since no abiotic control was operated in the current study this assumption could not be verified. A study of (Barbieri et al., 2012) indicated that sorption was more important than biodegradation in the removal

of metoprolol and therefore retardation factors higher than 10 are not unlikely.
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Biodegradation rates of dimethoate increased from suboxic to anoxic conditions. This trend was also

observed for acetaminophen and sulfamethoxazole in other RBF and soil aquifer treatment systems

that created anoxic conditions by purging the aqueous phase with nitrogen has (Baumgarten et al.,

2011, Regnery et al., 2015b). Fetzner (1998) also demonstrated higher biodegradation rates for

quinolone for more reduced conditions (sulphate reducing and methanogenic conditions) compared

to denitrifying conditions. An explanation for this higher biodegradation rate under more reduced

redox conditions could be the change in soil microbial community diversity. Li et al. (2014a) reported

that the diversity of the microbial community composition increased as a function of soil depth.

Possibly bacteria are present in these more reduced zones that are capable of degrading pirimicarb

more effectively than the bacteria in the shallower zones (with higher redox potentials).

In contrast, for pirimicarb, the biodegradation rates for oxic, suboxic and anoxic conditions were

approximately similar. Apparently, pirimicarb removal is not redox dependent, but the result of a

longer residence time in the soil.

It was not possible to explain the redox dependent removal of diuron, dimethoate and metoprolol

based on their physico-chemical properties or functional groups. While diuron and dimethoate are

neutral OMPs, metoprolol is positively charged, thus charge does not explain the redox dependent

behaviour. Similarly, other neutral OMPs with Log D ranging between those of diuron and

dimethoate do not show redox dependent behaviour, implying that hydrophobicity (Log D) also

cannot explain the redox dependent behaviour.

To the best of the authors knowledge biodegradation rates for dimethoate, diuron, and metoprolol for

suboxic and anoxic conditions in RBF systems were reported for the first time in the current study.

This provides drinking water companies using RBF with important information regarding required

residence times for these OMPs under the investigated redox conditions. If more than 99% removal of

the OMPs is required, the residence time of the suboxic and anoxic zones should range from 1 to 5

months. Although redox zones and their accompanying residence times can vary from site to site and

also seasonally, residence times of 1 to 5 months or longer for suboxic (nitrate reducing) and anoxic

reducing conditions are not uncommon at RBF field sites in The Netherlands. Therefore these OMPs

are not expected to pose a problem in RBF processes.

3.4 OMP removal – adaptative behaviour

Five OMPs, dimethoate, chloridazon, phenazone, lincomycin, and sulfamethoxazole, showed an

increase in removal under oxic conditions during the 15 months of operation (Figure 1). Dimethoate

showed a sharp increase in removal after about 2 pore volumes (PV), followed by a slower increase

which seems to continue even after 330 PV (approximately 15 Months). For lincomycin, complete

removal was not observed until after about 200 PV (approximately 9 months). After about 100 PV

(approximately 5 months) the removal of sulfamethoxazole and phenazone stabilized and was almost

complete. For chloridazon the increase in removal was relatively quick and almost complete removal

was observed after about 27 PV (approximately 1 month).

Thus, a certain time was required to enable biodegradation of the aforementioned OMPs in the oxic

pilot installation. This could be explained by an adapting soil microbial population and is referred to

as adaptation time or lag phase. Table 6 shows the lag phases, the unadapted and adapted

biodegradation rates. To the best of the authors knowledge no adaptation time (lag phase) for
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dimethoate, chloridazon, phenazone and lincomycin in a RBF system has been previously reported

and thus was determined for the first time in the current study.

In Figure 1, the orange striped line represents the tracer (which does not biodegrade). The difference

between the tracer and the yellow striped line indicates the non-adapted biodegradation rate of

phenazone (the breakthrough curve shows an initial peak at Ce/C0 = 0.78. The green arrow (difference

between tracer and final Ce/C0 value of phenazone) is the adapted biodegradation rate of phenazone.

Figure 1 – Adaptive behaviour of dimethoate, chloridazon, phenazone, lincomycin, and sulfamethoxazole

Table 6 – Lag phases, non-adapted and adapted biodegradation rates

OMP Lag phase

[d]

μnon-adapted (CI)

[d-1]

μadapted (CI)

[d-1]

Max. concentration river Lek

[ng/L]

Chloridazon 2.6 1.85 (1.25;2.45) 2.77 (2.22;3.33) 14

Dimethoate 2.1 0.04 (0.00;0.08) 0.39 (0.31;0.48) Below detection limit (= 10 ng/L)

Lincomycin 36.4 0.00 (0.00;0.00) 2.69 (1.97;3.41) 1

Phenazone 2.1 0.00 (-0.03;0.19) 3.70 (3.42;3.99) 12

Sulfamethoxazole 2.1 0.00 (-0.26;0.27) 2.19 (2.02;2.36) 36

CI = confidence interval

Spain et al. (1980, 1983) identified three mechanisms by which the soil microbial community can adapt

to a new OMP: (1) genetic changes, (2) enzyme induction and (3) population changes (Spain et al.,

1980, Spain et al., 1983). Genetic changes as a result of gene transfer or mutations can result in bacteria

capable of degrading certain OMPs. Secondly, the presence of specific OMPs can initiate the

expression of enzymes appropriate to degrade OMPs. Thirdly, the number of bacteria capable of

degrading a particular OMP can be minimal at initial exposure, but can increase when subjected to the

OMP.

Since all OMPs (except dimethoate) that showed adaptive behaviour were detected in the Lek river

water in concentrations ranging from 1 - 36 ng/L (Table 6), it is most likely that the number of bacteria
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capable of degrading these OMPs was relatively small at the start of the experiment, but increased as a

result of the higher initially dosed OMP concentration (500 ng L-1) in the column experiment.

However, genetic changes or enzyme induction cannot be completely ruled out. To determine which

of the three mechanisms or combination of mechanisms is responsible for the adaptive behaviour of

chloridazon, dimethoate, lincomycin, phenazone and sulfamethoxazole, more in depth microbial

analysis towards the type of bacteria/enzymes/genes present in the soil column are required. These

analysis should be performed at the start of the experiment and at several points in time during the

experimental period to see how the type of bacteria/enzymes/genes evolve over time.

In Chapter 2, persistent behaviour of lincomycin and sulfamethoxazole was observed for a 6 month

experimental period. Based on the results of the current study, the observed persistent behaviour of

lincomycin and sulfamethoxazole in the previous study was more likely the result of insufficient

adaptation time. This demonstrates the importance of running soil columns experiments for a long

time (preferably more than 1 year) if adaptive behaviour needs to be captured.

Improved lincomycin removal was also observed in an anthracite biofilter after 30,000 BV (Rattier et

al., 2014). Baumgarten et al. (2011) reported that sulfamethoxazole biodegradation did not start until

after 1 year (initial concentration 0.25 µg/L) after operation started, and was not stabilized after 2 years

of operation. The much longer adaptation time observed in that study (1 year versus 3 days in the

current study) could be attributed to the use of clean filter sand in which no biomass was present at

the start of the experiment. In the current study soil from an operational RBF site was obtained to fill

the columns, thus the biomass was already present and sulfamethoxazole biodegradation started

almost instantly. The maximum sulfamethoxazole concentration in the Lek river was 36 ng/L and thus

it is possible that the biomass present in the soil columns (which was obtained from the RBF site fed

with river Lek water) contained certain types of bacteria already capable of expressing enzymes able

to catalyse the biodegradation of sulfamethoxazole. Since the spiked concentration of

sulfamethoxazole was 500 ng/L, it seems likely that the bacteria capable of degrading this OMP were

increasing during the first 5 months.

This shows that when rapid data acquisition is required in lab-scale simulation of RBF, soil from an

operational RBF site is preferred over clean filter sand. In addition, when information is required with

respect to the operational RBF site (e.g. start-up time required to obtain full OMP removal capacity in

case of newly detected OMP) the use of clean filter sand can lead to serious underestimations.

3.5 The role of OMP adaptive behaviour in predictive models

To gain an understanding of why only chloridazon, dimethoate, lincomycin, phenazone and

sulfamethoxazole were characterised by an adaptation time, their physico-chemcial properties

(charge, molecular weight, hydrophobicity) and functional groups present in the molecular structure

were compared with the OMPs that did not show an adaptation time. Larger molecules for examples

are more difficult to degrade and need to be broken down in smaller pieces first to enable penetration

though the cell membrane for further intracellular degradation. Functional groups can also affect

adaptation since some complex functional groups which are not familiar to the soil bacteria, require

genetic mutations before the appropriate enzymes can be expressed. Physico-chemical properties of

all OMPs investigated in this study are presented in Table 2 and functional groups identified for the

OMPs are depicted in Table S2 of the SI.
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Dimethoate, sulfamethoxazole, chloridazon and phenazone are all four neutral OMPs with Log D

ranging from 0.21 to 1.11, but OMPs that did not show adaptive behaviour were also neutral and

characterized by a Log D in the range of -0.72 to 2.64 (carbamazepine, hydrochlorothiazide,

pirimicarb, simazine, atrazine and diuron). Similarly, the molecular weight and charge of the OMPs

showing adaptive behaviour were in the same range of the OMPs that did not show adaptive

behaviour. Thus, the adaptive behaviour observed for the five OMPs could not be explained by these

physico-chemical properties.

Multi-linear regression analysis was performed to investigate if a correlation existed between the

OMP biodegradation rate and the functional groups present in their molecular structure for the

complete OMP mixture (Table 2 SI). First, the regression analysis was performed with the non-

adapted biodegradation rates of the complete OMP mixture followed by a regression analysis

including the adapted OMP biodegradation rates for the complete OMP mixture (for non-adapted and

adapted biodegradation rates see Table 6 and Figure 1).

Although for the non-adapted OMP biodegradation rates no correlation was found, a statistical

significant correlation existed between the OMP biodegradation rate (including the adapted OMP

biodegradation rate) and the functional groups for the complete OMP mixture (R2 = 0.93, p-value =

2.80 · 10-4 < 0.05):

� = 3.21 − 1.46 · � � − 3.01 · � � + 1.0 · � � − 2.06 · � � � − 0.90 · � � � − 1.51 · � � Eq. 1

In which:

µ  = biodegradation rate [d-1]

SA = number of secondary amines [-]

AM = number of amides [-]

Hy = number of hydroxyl groups [-]

AAE = number of aryl-aliphatic ethers [-]

SuA = number of sulphonamides [-]

TA = number of tertiary amines [-]

This correlation differs to a large extent from the relationship found in a previous study for OMP

removal under aerobic conditions (Chapter 3). This discrepancy in contributing functional groups

could be explained by the limited number and type of OMPs (pharmaceuticals, pesticides)

investigated in this study and their more persistent behaviour in oxic zones (the most easily

degradable OMPs were not included in the assessment).

Although this study was limited to pesticides and pharmaceuticals that showed persistent behaviour

or only partial biodegradation under oxic or combined oxic/nitrate reducing conditions, the found

correlation indicates that adaptive behaviour is an important factor that should be incorporated in

predictive models for OMP removal during RBF.

4 Conclusion

Based on this study, the following conclusions can be drawn:

• Dimethoate, diuron, and metoprolol showed redox dependent removal behaviour with

biodegradation rates larger for the oxic zone compared to the suboxic/anoxic zone. In contrast,
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for pirimicarb, the biodegradation rates for oxic, suboxic and anoxic conditions were

approximately similar. Apparently, pirimicarb removal is not redox dependent, but the result

of a longer residence time in the soil.

• OMPs that showed persistent behaviour in the oxic zone (atrazine, carbamazepine,

hydrochlorothiazide and simazine) were also not removed under more reduced conditions

(suboxic, anoxic) which indicates that additional treatment processes are required to remove

these OMPs from the water and that RBF alone cannot provide an adequate barrier for all

OMPs;

• Adaptive behaviour was observed for five OMPs in this study: dimethoate, chloridazon,

lincomycin, sulfamethoxazole and phenazone. This implies that new developed RBF sites or

existing RBF sites exposed towards chloridazon, lincomycin, sulfamethoxazole, and

phenazone for the first time require about 9 months of start-up time to reach full removal

capacity. For dimethoate, full removal capacity was not reached after 15 months, thus even

longer start-up times are required for this specific OMP.

• Adaptive behaviour of OMPs is an important factor that should be incorporated in predictive

models for OMP removal during RBF. However, adaptation could not be explained based on

the physico-chemical properties investigated in this study (charge, hydrophobicity, molecular

weight).

• When rapid data acquisition is required, soil from an operational RBF site is preferred over

clean filter sand and when information is required with respect to the operational RBF site

(e.g. start-up time required to obtain full OMP removal capacity in case of newly detected

OMP) the use of clean filter sand can lead to serious underestimations.
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Conclusions

The main objective of this research was to investigate the main removal mechanisms (sorption,

biodegradation) for OMPs during RBF in more detail, in order to establish the role of the factors

influencing these mechanisms (physico-chemical properties, functional groups, soil type, river water

organic carbon, redox zones and adaptive behaviour of the soil microbial population towards OMPs).

Based on this information the possibility to develop a predictive model for OMP removal during river

bank filtration (RBF) was studied. As a first step, the contribution of OMP sorption and

biodegradation on overall OMP removal needed to be determined. OMP sorption onto soil grains and

developed (in)active biomass was found to be negligible for most OMPs and therefore the predictive

model was only focused on biodegradation. While the relation between physico-chemical properties

(hydrophobicity, charge, molecular weight) and biodegradation rate of the OMPs under oxic

conditions showed some trends, a statistical significant correlation was not found.

However, a statistical significant relation between OMP biodegradation rate and functional groups

was observed for laboratory columns mimicking RBF filled with either technical sand or RBF site soil.

A validation with field data showed that the model could give a correct qualitative indication of the

biodegradability of an OMP in the field for 70% of the OMPs (80% when excluding di-, tri- and tetra-

glyme). The model was less reliable for the persistent OMPs that were characterised by

biodegradation rates below or close to the standard error and OMPs containing amide and amine

groups. Nevertheless, the drinking water company operating this RBF site can use the developed

predictive model as a first estimate to determine if an OMP will be biodegraded or not.

Subsequently, the effect of soil type on OMP removal was investigated. OMP retardation factors and

biodegradation rates in soil columns filled with soil from two different RBF sites, but fed with the

same water quality were determined and compared. Soil type did not have a statistical significant

effect on OMP biodegradation rate which implies that the microbial community composition and thus

OMP removal are mainly determined by the aqueous phase (BDOC quantity/quality, nutrients) rather

than the solid phase, at least for the soils and water investigated in this study. This result was

supported by a similar final microbial community composition (richness and evenness) for the two

different soils as a result of feeding both soil types with the same water quality, despite an initial

difference. Thus, it is expected that similar predictive models for RBF sites located along the same

river can be used (in case no significant changes in water quality occur between the two sites and

residence times in the oxic zones are more or less comparable).

Since the aqueous phase was shown to play an important role in the formation of the soil microbial

population and thus OMP removal, OMP biodegradation rates were compared between soil columns

fed with different organic carbon fractions (hydrophilic, hydrophobic, transphilic and the complete

river water organic carbon) present in the river water. OMP biodegradation rate was not affected by

the type of organic carbon fraction (obtained from river water) fed to the soil column – in contrast to

what has been described in literature for managed aquifer recharge systems operating on wastewater

effluent. Hence, variations in the organic carbon fractions of the river water investigated in this study

will most likely not affect the OMP biodegradation rates observed at the RBF site investigated.

However, the organic carbon composition of other rivers might contain organic material that was not

captured in the organic material from the river investigated in this thesis (e.g. in case of a larger

contribution of wastewater effluent) and results may be different.
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Furthermore, since no effect of a DOC shock-load on OMP biodegradation rate was observed, the

investigated RBF site seems to be resilient towards a temporary higher DOC concentration in the river

water. Additionally, a temporary OMP shock-load resulted in an increase in OMP biodegradation rate

for the river water organic matter (RWOM) and the hydrophilic fraction. As a result, OMPs will be

eliminated more rapidly during RBF fed with river water that contains a large portion of these two

specific fractions. An explanation for the increase in OMP biodegradation for specifically these OMPs

was not found based on the parameters measured in this study (biomass quantity, biomass richness

and evenness, and DOC). An increase in OMP biodegradation rate as a result of an increase in initial

OMP concentration was reported in other studies, but never linked to a certain organic carbon

fraction. The resilience of RBF systems towards a DOC/OMP shock-load was not investigated

previously and provides important information for the drinking water company that operates the RBF

site that was simulated with the laboratory scale columns in this study.

Redox zones have been stated in literature to have an effect on removal of OMPs. Dimethoate, diuron,

and metoprolol showed redox dependent removal behaviour with degradation rates larger for the

oxic zone compared to the suboxic/anoxic zone. The redox dependent removal of these OMPs could

not be explained by their physico-chemical properties (hydrophobicity, charge, or molecular weight)

or the functional groups present in their molecular structure. OMPs that showed no removal in the

oxic zone (atrazine, carbamazepine, hydrochlorothiazide and simazine) were also not removed under

more reduced conditions (suboxic, anoxic) which indicates that additional treatment processes are

required to remove these OMPs from the water and that RBF alone cannot provide an adequate

barrier for all OMPs.

Adaptive behaviour was observed for five OMPs: dimethoate, chloridazon, lincomycin,

sulfamethoxazole and phenazone. Adaptive behaviour of sulfamethoxazole and lincomycin has been

reported in previous studies, one simulating the RBF process and the other investigating OMP

removal in biological anthracite filters. For sulfamethoxazole, adaptation time was much shorter in

this thesis (using RBF site soil) compared to another study in which technical sand was used as filter

medium. Thus, when rapid data acquisition is required, soil from an operational RBF site is preferred

over clean filter sand and when information is required with respect to the operational RBF site (e.g.

start-up time required to obtain full OMP removal capacity in case of newly detected OMP) the use of

clean filter sand can lead to serious underestimations. It is known that the soil microbial population

can adapt to new OMPs by means of genetic changes, inducing appropriate enzymes or increasing the

number of bacteria present capable of removing the OMP. The five OMPs showing adaptive

behaviour were present in the investigated surface water in concentrations ranging from 1 - 36 ng/L.

Therefore it is expected that a small number of bacteria was already capable of degrading these OMPs.

The spiked OMP concentration in the column study was equal to 500 ng/L and the most likely

mechanism to explain the adaptive behaviour in this study would thus be an increase in the number

of bacteria present capable of removing these OMPs, although the other two mechanisms cannot be

fully excluded.

Since adaptive behaviour was also observed for two of these OMPs (lincomycin and

sulfamethoxazole) in other studies, the chance that adaptive behaviour was observed as a result of an

experimental artefact seems small. Therefore, the observed adaptive behaviour implies that new

developed RBF sites or existing RBF sites exposed towards chloridazon, lincomycin,

sulfamethoxazole, and phenazone for the first time require most likely about 9 months of start-up time
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to reach full removal capacity (in case of similar flow rate). For dimethoate, full removal capacity was

not reached after 15 months and as a result even longer start-up times are required for this specific

OMP. These results indicate that adaptive behaviour of OMPs is in an important factor that should be

incorporated in predictive models for OMP removal during RBF.

The next question is then how adaptive behaviour of OMPs should be incorporated in a predictive

model for OMP removal during RBF. For the OMPs showing adaptive behaviour an increase in

biodegradation rate was observed over time. The initial biodegradation rate is referred to as un-

adapted biodegradation rate, while the biodegradation rate at the end of the experiment is referred to

as the adapted biodegradation rate. This study attempted to develop a predictive model for OMP

removal during RBF based on the un-adapted biodegradation rates and adapted biodegradation rates.

Correlating the OMP functional groups to the un-adapted biodegradation rates was impossible, but a

statistical significant relationship between the OMP functional groups and the adapted

biodegradation rates was observed.

Recommendations for future research

This thesis provided insight in the development of a predictive model for OMP removal during RBF.

However, some aspects need further research clarification and therefore recommendations for future

research are presented in this section.

This study demonstrated for the first time that it was possible to develop a predictive model for OMP

removal during RBF under oxic conditions based on a lab-scale soil column study. The correlation

between OMP biodegradation rate and the presence of certain functional groups in the OMP

molecular structure for the RBF process was not found previously. The validation with field data

showed that the model could give a correct qualitative indication of OMP biodegradability in the field

for 70% of the OMPs (for the investigated RBF site under oxic conditions).

A limitation of the model was that it was less reliable for persistent OMPs since these were

characterized by degradation rates lower than or close to the standard error and OMPs containing

amide or amine groups. These OMPs require careful monitoring in the field to determine their fate.

A larger data set could possibly reduce the standard error. This emphasises the importance of

developing predictive models with an even larger data set covering hundreds of OMPs with a wide

range of functional groups and physico-chemical properties. Although, OMP biodegradation rates

have been determined in a some past studies, they cannot be easily compared due to the different

experimental approaches. Therefore, it would be useful to develop a standard protocol to determine

OMP biodegradation rates during RBF. In this way a database (containing OMP biodegradation rates

for specifically RBF conditions) can be established that can be used to develop a predictive model.

A standard protocol would not only be useful to determine OMP biodegradation rates during RBF,

but also for the inactivation of biomass. Most soil passage studies use NaN3 to inactivate the biomass.

However, the effectiveness of NaN3 in inactivating the biomass was investigated in a study of

Bellemans (2013). This study showed that the addition of NaN3 (10%) and metals (5 mM NiCl2 and 5

nM BaCl2) resulted in a 80-85% decrease in biological activity, while dosing γ-irradiation (25 kGy) 

resulted in a 99.79 - 99.98% decrease in biological activity (measured as ATP). Thus, using γ-

irradiation to inactivate the biomass is much more effective than using NaN3.
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Although the OMP mixture used to develop the model contained OMPs with amide and amine

functional groups, the relation of these functional groups with the biodegradation rate was

statistically not significant. An OMP mixture of 29 OMPs is already quite large for lab-scale studies

and the mixture was carefully chosen to cover a wide range in physico-chemical properties and

functional groups. However, (predictive) models and their outcome depend on their input. It is

possible that when more OMPs with these functional groups were present in the data set to develop

the model, this relation would have been more pronounced. In the current data set only 8, 2, 9 and 3

OMPs had amide, primary amine, secondary amine and tertiary amine groups in their molecular

structure, respectively.

Although the developed model showed promising results and provided a lot of insight in functional

groups increasing/decreasing the biodegradation rate, the effect of different factors on the model, such

as water quality (e.g. BDOC), redox conditions and adaptive behaviour of the soil microbial

community towards OMPs, should be further investigated to determine its general applicability.

The effect of the water quality can be investigated by feeding columns (filled with a similar type of

RBF soil) with different types of river water (representative for different RBF sites) spiked with an

OMP mixture. The predictive models obtained for each of these water qualities can then be compared.

By characterising the organic carbon content of the different water qualities (e.g. SUVA, LC-OCD,

Fluorescence excitation-emission matrix) a relation might be found between the contribution of certain

functional groups and the organic carbon characteristics.

Based on the four OMPs that showed redox dependent removal in the RBF pilot installation

investigated in this research, it is impossible to develop a predictive model for more reduced redox

zones. Thus, additional spiking before each redox zone is required to determine the OMP

biodegradation rates of the OMPs that are already removed in the previous redox zone. Although it

seems unnecessary to investigate OMP removal in the nitrate reducing zones when these OMPs are

almost completely removed in the oxic zone, this is crucial to develop predictive models for these

more reduced redox conditions (e.g. NO3-, Fe-, Mn-, SO4-reducing conditions).

Thus, future studies should determine OMP biodegradation rates in the separate more reduced

conditions and try to correlate these with the functional groups present in the molecular structure.

This could potentially result in predictive models (OMP biodegradation rates) for the separate redox

conditions which are useful since it is know from literature that some OMPs (e.g. sulfamethoxazole,

iopamidol, amidotrizoic acid, 2-, 3- and 4-nitrotoluene, trichloroethene, metazachlor) are removed

more effectively under more reduced redox conditions (anaerobic/anoxic) compared to oxic conditions

(Storck et al., 2012). Based on the biodegradation rates, half-lives can be determined. About seven half-

lives are required for more than 99% removal of an OMP. Thus, an assessment of the prevailing redox

conditions at the site and the residence times of these specific redox conditions is then required to

determine the extent of removal of a certain OMP for the complete RBF process.

Furthermore, future studies should elucidate why adaptive behaviour is only observed for specific

OMPs and what the responsible mechanism is: (1) mutations, (2) enzyme induction or (3) the increase

of a small number of bacteria capable of removing the OMP. This will make it possible to predict if a

newly discovered OMP will be characterised by an adaptation time or not.
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Biodegradation was found to be the dominant removal mechanism for most OMPs. However, the role

of OMP sorption as a pre-requisite for OMP biodegradation is still unclear and requires further

examination. An enzyme can only catalyse a reaction if the OMP fits the slot of the reactive site,

therefore sorption could potentially play an important role. While extracellular enzymes are present in

the aqueous phase, intracellular enzymes are encapsulated in the extracellular polymeric substances

(EPS) and OMPs needs to sorb onto the cell wall first before they can partition in the cell where it can

be degraded. In addition, the contribution of intra- and extracellular enzymes towards overall OMP

removal needs further exploring.

Moreover, the soil microbial population in the columns fed with different organic carbon fractions

obtained from river water should be studied with more in-depth microbial analysis (e.g. next

generation sequencing, metagenomics) to determine the types of bacteria and enzymes present. This

should provide insight into why OMP degradation rates are increasing for the river water organic

matter and hydrophilic fraction as a result of a temporary OMP shock-load for the RBF site

investigated in this study. The river water used in this research was only slightly impacted by treated

wastewater. The effect of larger contributions of wastewater in the river water on OMP removal in

columns fed with different organic carbon fractions obtained from this river water should be

investigated. Does a threshold exist for the amount of wastewater contributing to the overall river

flow, above which an effect on OMP removal can be observed? Similarly, the effect of feeding soil

columns with different organic carbon fractions on OMP removal under more reduced conditions

should be examined and the seasonal variation in composition of the different fractions and the soil

microbial population should be explored.

Most OMPs are removed entirely under oxic conditions and only a few persisted even under the more

reduced redox environments which shows that RBF is an effective treatment process for many OMPs.

However, the persistent OMPs should be removed by additional post-treatment. RBF can be used

effectively in a multi-barrier treatment concept in combination with for example membrane filtration

and granular activated carbon. However, it is questionable whether the combination of these three

processes is an adequate barrier for the removal of all OMPs.
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Appendix A - Supplementary material Chapter 2

Table SI1 – Dispersion, dispersivity, average pore water velocity and porosity in the columns determined from the tracer

study

Column vmean [m min-1] Porosity [-] D [m2 min-1] α [m]

1 2.25 · 10-3 0.31 4.48 · 10-6 1.95 · 10-3

2 2.19 · 10-3 0.32 4.07 · 10-6 1.81 · 10-3

3 2.02 · 10-3 0.34 3.95 · 10-6 1.91 · 10-3

4 1.96 · 10-3 0.35 3.23 · 10-6 1.60 · 10-3

5 1.73 · 10-3 0.40 2.84 · 10-6 1.59 · 10-3

6 1.67 · 10-3 0.42 2.93 · 10-6 1.70 · 10-3

Table SI2 – Calculated diffusion coefficients (D0) and dispersion coefficients (D) per column

D0

[m2 min-1]

D

[m2 min-1]

D

[m2 min-1]

D

[m2 min-1]

D

[m2 min-1]

D

[m2 min-1]

D

[m2 min-1]

OMP Column 1 Column 2 Column 3 Column 4 Column 5 Column 6

Caffeine 3.79 · 10-8 4.42 · 10-6 4.01 · 10-6 3.89 · 10-6 3.17 · 10-6 2.79 · 10-6 2.88 · 10-6

Carbamazepine 3.49 · 10-8 4.42 · 10-6 4.01 · 10-6 3.89 · 10-6 3.17 · 10-6 2.78 · 10-6 2.87 · 10-6

Metoprolol 3.20 · 10-8 4.42 · 10-6 4.01 · 10-6 3.89 · 10-6 3.17 · 10-6 2.79 · 10-6 2.87 · 10-6

Propanolol 3.27 · 10-8 4.42 · 10-6 4.01 · 10-6 3.89 · 10-6 3.17 · 10-6 2.78 · 10-6 2.87 · 10-6

Acetaminophen 4.02 · 10-8 4.43 · 10-6 4.01 · 10-6 3.90 · 10-6 3.18 · 10-6 2.79 · 10-6 2.88 · 10-6

Trimethoprim 3.25 · 10-8 4.42 · 10-6 4.01 · 10-6 3.89 · 10-6 3.17 · 10-6 2.78 · 10-6 2.87 · 10-6

Lincomycin 2.86 · 10-8 4.41 · 10-6 4.00 · 10-6 3.89 · 10-6 3.16 · 10-6 2.78 · 10-6 2.87 · 10-6

Sulfamethoxazole 3.53 · 10-8 4.42 · 10-6 4.01 · 10-6 3.89 · 10-6 3.17 · 10-6 2.78 · 10-6 2.87 · 10-6

Phenytoin 3.44 · 10-8 4.42 · 10-6 4.01 · 10-6 3.89 · 10-6 3.17 · 10-6 2.78 · 10-6 2.87 · 10-6

Atrazine 3.61 · 10-8 4.42 · 10-6 4.01 · 10-6 3.89 · 10-6 3.17 · 10-6 2.78 · 10-6 2.88 · 10-6

Ibuprofen 3.49 · 10-8 4.42 · 10-6 4.01 · 10-6 3.89 · 10-6 3.17 · 10-6 2.78 · 10-6 2.87 · 10-6

Ketoprofen 3.37 · 10-8 4.42 · 10-6 4.01 · 10-6 3.89 · 10-6 3.17 · 10-6 2.78 · 10-6 2.87 · 10-6

Gemfibrozil 3.28 · 10-8 4.42 · 10-6 4.01 · 10-6 3.89 · 10-6 3.17 · 10-6 2.78 · 10-6 2.87 · 10-6

Hydrochlorothiazide 3.50 · 10-8 4.42 · 10-6 4.01 · 10-6 3.89 · 10-6 3.17 · 10-6 2.78 · 10-6 2.87 · 10-6

Table SI3 – Average DOC removal and decrease in UV254 absorbance between influent and effluent for columns in the

experimental period

Column Average DOC removal [mg/L]

(Average ± standard deviation, n = 7)

Average Δ UV254 [cm-1]

Average ± standard deviation, n = 7)

1 1.19 ± 0.58 0.041 ± 0.016

2 1.34 ± 0.20 0.042 ± 0.013

3 0.19 ± 0.36 0.003 ± 0.006

4 0.11 ± 0.14 0.002 ± 0.006

5 0.09 ± 0.10 0.004 ± 0.004

6 0.00 ± 0.00 0.000 ± 0.000
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Table SI4 – Fitted retardation factor for OMPs in the biologically inactive columns

Retardat

ion

factor [-]

95% Confidence

interval

Decay rate

[min-1]

95% Confidence

interval

Decay rate

[d-1]

Dispersion

[m2min-1]

95% Confidence

interval

Compound R Lower Upper µ Lower Upper µ D Lower Upper

Acetaminophen 1.1 1.1 1.2

Atrazine 1.0 1.0 1.1

Caffeine 1.1 1.1 1.2

Carbamazepine 1.1 1.1 1.1

Gemfibrozil 1.1 1.1 1.1

Hydrochlorothiazide 1.1 1.0 1.1

Ibuprofen C3, C4, C5 1.1 1.0 1.1

Ketoprofen 1.0 0.4 1.5

Lincomycin 1.1 1.1 1.1

Metoprolol C6 10.4 9.9 11.0 8.3 · 10-5 3.2 · 10-5 1.4 · 10-4 0.1 7.4 · 10-4 5.4 · 10-4 9.4 · 10-4

Metoprolol C3, C4, C5 3.1 2.5 3.6 2.3 · 10-4 1.1 · 10-4 3.4 · 10-4 0.3 5.6 · 10-4 1.2 · 10-4 10.0 · 10-4

Phenytoin 1.0 1.0 1.1

Propranolol C6 62.6 -524.6 649.8 2.1 · 10-7 -3.1 · 10-2 3.1 · 10-2 0.0 9.6 · 10-4 -2.0 · 10-2 2.2 · 10-2

Propranolol C3, C4, C5 8.3 7.4 9.1 6.3 · 10-4 5.0 · 10-4 7.6 · 10-4 0.9 3.3 · 10-4 8.9 · 10-5 5.7 · 10-4

Sulfamethoxazole 1.0 1.0 1.1

Trimethoprim 1.3 0.3 2.3
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Table SI5 – Fitted degradation rates for OMPs in the biologically active columns

Retardation

factor [-]

Decay rate

[min-1]

95% Confidence

interval

Decay rate

[d-1]

Decay ratesorp

[d-1]

Decay rateeff

[d-1]

Half life

[hours]

Compound R µ Lower Upper µ µ µ t1/2

Acetaminophen 1.1 1.2 · 10-2 9.8 · 10-3 1.4 · 10-2 17.1 17.1 1

Atrazine 1.0 1.0 · 10-10 -1.8 · 10-4 1.8 · 10-4 0 0.0 -

Caffeine 1.1 6.6 · 10-3 5.7 · 10-3 7.5 · 10-3 9.5 9.5 2

Carbamazepine 1.1 1.0 · 10-10 -3.4 · 10-4 3.4 · 10-4 0 0.0 -

Gemfibrozil 1.1 8.8 ·10-3 6.4 · 10-3 1.1 · 10-2 12.7 12.7 1

Hydrochlorothiazide 1.1 1.2 ·10-5 -1.4 · 10-4 1.7 · 10-4 0 0.0 -

Ibuprofen (C3,C4,C5) 1.0 1.1 · 10-2 8.7 · 10-3 1.3 · 10-2 15.8 15.8 1

Ketoprofen 1.0 9.4 · 10-3 8.7 · 10-3 1.0 · 10-2 13.5 13.5 1

Lincomycin 1.1 7.8 · 10-5 -2.0 · 10-4 3.5 · 10-4 0 0.0 -

Metoprolol (C3,C4,C5) 3.1 1.2 · 10-3 9.0 · 10-4 1.5 · 10-3 1.7 0.3 1.4 12

Phenytoin 1.0 1.0 · 10-10 -2.1 · 10-4 2.1 · 10-4 0 0.0 -

Propranolol (C3,C4,C5) 8.3 3.1 · 10-3 2.6 · 10-3 3.7 · 10-3 4.5 0.9 3.6 5

Sulfamethoxazole 1.0 1.8 · 10-5 -2.2 · 10-4 2.5 · 10-4 0 0.0 -

Trimethoprim 1.3 8.0 · 10-3 6.4 · 10-3 9.6 · 10-3 11.5 11.5 1
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Table SI6 – Modelled degradation rates for the 1 Month period and the 6 Month period

1 Month period 6 Month period

Compound µeff [d-1] µeff [d-1]

Acetaminophen 17.1 9.4

Atrazine 0.0 0.0

Caffeine 9.5 8.6

Carbamazepine 0.0 0.0

Gemfibrozil 12.7 12.5

Hydrochlorothiazide 0.0 0.0

Ibuprofen 15.8 ND

Ketoprofen 13.5 ND

Lincomycin 0.0 0.0

Metoprolol 1.4 1.3

Phenytoin 0.0 0.0

Propranolol 3.6 3.1

Sulfamethoxazole 0.0 0.0

Trimethoprim 11.5 10.3

ND = Not determined
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Table SI7 – Functional groups

Compound Structure Functional groups

Acetaminophen - 1 Amide

- 1 Ring structure

- 1 Hydroxyl

- 1 Methyl

Atrazine - 1 Halogen

- 2 Secondary Amines

- 1 Ring structure

- 3 Methyl groups

Caffeine - 2 Amides

- 2 Ring structures

- 3 Methyl

Carbamazepine - 1 Amide

- 3 Ring structures

Gemfibrozil - 1 Carboxylic Acid

- 4 Methyl

- 1 Aryl-aliphatic Ether

- 1 Ring structure

Hydrochlorothiazide - 2 Sulphonamides

- 1 Halogen

- 1 Secondary Amine

- 2 Ring structures

Ibuprofen - 1 Carboxylic acid

- 3 Methyl

- 1 Ring structure
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Ketoprofen - 1 Carbonyl

- 1 Carboxylic Acid

- 1 Methyl

- 2 Ring structures

Lincomycin - 1 Amine

- 1 Amide

- 1 Sulphur

- 4 Hydroxyl

- 4 Methyl

- 2 Ring structures

- 1 Ether

Metoprolol - 1 Aliphatic Ether

- 1 Aryl-aliphatic Ether

- 1 Hydroxyl

- 1 Secondary Amine

- 3 Methyl

- 1 Ring structure

Phenytoin - 3 Ring structures

- 2 Amides

Propranolol - 1 Aryl-aliphatic Ether

- 1 Hydroxyl

- 1 Secondary Amine

- 2 Methyl

- 2 Ring structures

Sulfamethoxazole - 1 Methyl

- 1 Sulphonamide

- 1 Primary Amine

- 2 Ring structures
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Trimethoprim - 2 Ring structures

- 3 Ethers

- 2 Amine
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Structural fragment

Compound

Ether Hydrox

yl

Methy

l

Amines

(Primary and

secondary)

Amid

e

Sulphon-

amide

Sulphur Halogen Aryl-

aliphatic

Ether

Aliphatic-

Ether

Carboxyli

c

Acid

Carbony

l

Ring

structures

Propranolol 0 1 2 1 0 0 0 0 1 0 0 0 2

Metoprolol 0 1 3 1 0 0 0 0 1 1 0 0 1

Lincomcyin 1 4 4 1 1 0 1 0 0 0 0 0 2

Atrazine 0 0 3 2 0 0 0 1 0 0 0 0 1

Phenytoin 0 0 0 0 2 0 0 0 0 0 0 0 3

Carbamazepine 0 0 0 0 1 0 0 0 0 0 0 0 3

Trimethoprim 3 0 0 2 0 0 0 0 0 0 0 0 2

Acetaminophen 0 1 1 0 1 0 0 0 0 0 0 0 1

Hydrochlorothiazide 0 0 0 1 0 2 0 1 0 0 0 0 2

Caffeine 0 0 3 0 2 0 0 0 0 0 0 0 2

Gemfibrozil 0 0 4 0 0 0 0 0 1 0 1 0 1

Ibuprofen 0 0 3 0 0 0 0 0 0 0 1 0 1

Ketoprofen 0 0 1 0 0 0 0 0 0 0 1 1 2

Sulfamethoxazole 0 0 1 1 0 1 0 0 0 0 0 0 2
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Appendix B - Supplementary material Chapter 3

Table S1 – Functional group assessment OMP mixture

OMP AAE AE Amide CA CO Ester Ethers Fosfor H Hy Me PA PO Ring SA SuA Sulfur TA µpred [d-1]

2.4-D 1 0 0 1 0 0 0 0 2 0 0 0 0 1 0 0 0 0 1.99

Acetaminophen 0 0 1 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 2.45

Atrazine 0 0 0 0 0 0 0 0 1 0 3 0 0 1 2 0 0 0 0.40

Bentazon 0 0 1 0 0 0 0 0 0 0 2 0 0 2 0 1 0 0 0.70

Carbamazepine 0 0 1 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0.59

Chloridazon 0 0 0 0 1 0 0 0 1 0 0 1 0 2 0 0 0 0 1.94

Clofibric acid 1 0 0 1 0 0 0 0 1 0 2 0 0 1 0 0 0 0 1.99

Dichlorprop 1 0 0 1 0 0 0 0 2 0 1 0 0 1 0 0 0 0 1.59

Diclofenac 0 0 0 1 0 0 0 0 2 0 0 0 0 2 1 0 0 0 1.09

Diglyme 0 3 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0.00

Dimethoate 0 0 1 0 1 0 2 0 0 0 3 0 0 0 0 0 2 0 0.39

Diuron 0 0 0 0 1 0 0 0 2 0 2 0 0 1 1 0 0 1 1.25

Hydrochlorothiazide 0 0 0 0 0 0 0 0 1 0 0 0 0 2 1 2 0 0 0.69

Ibuprofen 0 0 0 1 0 0 0 0 0 0 3 0 0 1 0 0 0 0 2.40

Iomeprol 0 0 3 0 0 0 0 0 3 5 1 0 0 1 0 0 0 0 1.95

Ketoprofen 0 0 0 1 1 0 0 0 0 0 1 0 0 2 0 0 0 0 3.54

Lincomycin 0 0 1 0 0 0 1 0 0 4 4 0 0 2 0 0 1 1 0.31

MCPA 1 0 0 1 0 0 0 0 1 0 1 0 0 1 0 0 0 0 2.39

MCPP 1 0 0 1 0 0 0 0 1 0 2 0 0 1 0 0 0 0 1.99

Metoprolol 1 1 0 0 0 0 0 0 0 1 3 0 0 1 1 0 0 0 -

Phenazone 0 0 0 0 1 0 0 0 0 0 2 0 0 2 0 0 0 0 1.95

Pindolol 1 0 0 0 0 0 0 0 0 1 2 0 0 2 1 0 0 0 1.17

Pirimicarb 0 0 0 0 0 1 0 0 0 0 6 0 0 1 0 0 0 2 0.02

Propranolol 1 0 0 0 0 0 0 0 0 1 2 0 0 2 1 0 0 0 -
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Prosulfocarb 0 0 1 0 0 0 0 0 0 0 2 0 0 1 0 0 1 0 1.59

Simazine 0 0 0 0 0 0 0 0 1 0 2 0 0 1 2 0 0 0 0.80

Sulfamethoxazole 0 0 0 0 0 0 0 0 0 0 1 1 0 2 0 1 0 0 1.09

Terbutalin 0 0 0 0 0 0 0 0 0 3 3 0 0 1 1 0 0 0 2.61

Theophylline 0 0 2 0 0 0 0 0 0 0 2 0 0 2 0 0 0 0 0.70

TPPO 0 0 0 0 0 0 0 1 0 0 0 0 1 3 0 0 0 0 0.59

Triclopyr 1 0 0 1 0 0 0 0 3 0 0 0 0 1 0 0 0 0 1.19

AAE = Aryl Aliphatic Ether, AE = Aliphatic Ether, CA = Carboxylic Acid, CO = Carbonyl, H = Halogens, Hy = Hydroxyl, Me = Methyl, PA = Primary Amines, PO = Phosphine Oxide, SA= Secondary Amines, SuA =

Sulphonamides, TA = Tertiary Amines
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Table S2 – Porosity, velocity (v), dispersion (D), and dispersivity (α) for oxic pilot 

Parameter Units Vitens oxic pilot

Porosity [-] 0.33

Pore velocity [m/d] 1.48

Dispersion [m2min-1] 3.04 · 10-5

α [m] 2.94 · 10-2

Table S3 – Diffusion (D0) and dispersion coefficient (D) for OMPs for oxic pilot

OMP D0 [m2min-1] Vitens D [m2min-1]

2.4-Dichlorophenoxyacetic acid (2.4-D) 2.96 · 10-8 3.04 · 10-5

Acetaminophen 3.14 · 10-8 3.04 · 10-5

Atrazine 2.82 · 10-8 3.04 · 10-5

Bentazon 2.77 · 10-8 3.04 · 10-5

Carbamazepine 2.73 · 10-8 3.04 · 10-5

Chloridazon 2.89 · 10-8 3.04 · 10-5

Clofibric acid 2.85 · 10-8 3.04 · 10-5

Dichlorprop 2.87 · 10-8 3.04 · 10-5

Diclofenac 2.62 · 10-8 3.04 · 10-5

Diglyme 3.12 · 10-8 3.04 · 10-5

Dimethoate 2.85 · 10-8 3.04 · 10-5

Diuron 2.83 · 10-8 3.04 · 10-5

Hydrochlorothiazide 2.73 · 10-8 3.04 · 10-5

Ibuprofen 2.72 · 10-8 3.04 · 10-5

Iomeprol 2.15 · 10-8 3.04 · 10-5

Ketoprofen 2.63 · 10-8 3.04 · 10-5

Lincomycin 2.23 · 10-8 3.04 · 10-5

MCPA 2.95 · 10-8 3.04 · 10-5

MCPP 2.85 · 10-8 3.04 · 10-5

Mebendazole 2.57 · 10-8 3.04 · 10-5

Metoprolol 2.50 · 10-8 3.04 · 10-5

MTBE 3.43 · 10-8 3.04 · 10-5

Naproxen 2.71 · 10-8 3.04 · 10-5

Phenazone 2.90 · 10-8 3.04 · 10-5

Pindolol 2.60 · 10-8 3.04 · 10-5

Pirimicarb 2.65 · 10-8 3.04 · 10-5

Propranolol 2.55 · 10-8 3.04 · 10-5

Prosulfocarb 2.57 · 10-8 3.04 · 10-5

Salicyclic acid 3.30 · 10-8 3.04 · 10-5

Simazine 2.90 · 10-8 3.04 · 10-5

Sulfamethoxazole 2.75 · 10-8 3.04 · 10-5

Terbutalin 2.68 · 10-8 3.04 · 10-5

Theophylline 3.07 · 10-8 3.04 · 10-5

Triphenylphosphine oxide (TPPO) 2.57 · 10-8 3.04 · 10-5

Triclopyr 2.91 · 10-8 3.04 · 10-5

Table S4 – DOC, nitrate and phosphate removal in oxic pilot

Units Feed water Vitens RBF soil

Δ DOC [%] 30.7 (± 14.3)

NO3- [mg/L] 7.32 (±2.30) 8.65 (±2.24)

PO43- [mg/L] 0.05 (±0.02) 0.10 (±0.03)
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Table S5 – Modelled µ for Vitens pilot determined with analytical method 1 and 2

OMP R µ [min-1] Lower Upper µ [d-1]

2.4-D 1.0 2.08 · 10-3 2.04 · 10-3 2.13 · 10-3 3.0

Atrazine 1.0 6.12 · 10-5 -3.95 · 10-5 1.62 · 10-4 0.0

Bentazon 1.0 3.40 · 10-6 -1.95 · 10-5 2.63 · 10-5 0.0

Carbamazepine 1.0 3.14 · 10-5 -1.48 · 10-4 2.10 · 10-4 0.0

Chloridazon 1.0 1.95 · 10-3 1.42 · 10-3 2.48 · 10-3 2.8

Clofibric acid 1.0 5.69 · 10-4 3.78 · 10-4 7.60 · 10-4 0.8

Diclofenac 1.0 1.27 · 10-3 4.71 · 10-4 2.06 · 10-3 1.8

Diglyme 1.0 9.39 · 10-6 -5.74 · 10-6 2.45 · 10-5 0.0

Diuron 1.0 3.89 · 10-4 1.10 · 10-4 6.68 · 10-4 0.6

Ibuprofen 1.0 1.97 · 10-3 1.84 · 10-3 2.11 · 10-3 2.8

Iomeprol 1.0 1.55 · 10-3 1.24 · 10-3 1.87 · 10-3 2.2

Ketoprofen 1.0 1.87 · 10-3 1.37 · 10-3 2.38 · 10-3 2.7

MCPA 1.0 1.73 · 10-3 1.04 · 10-3 2.43 · 10-3 2.5

MCPP 1.0 1.46 · 10-3 6.87 · 10-4 2.23 · 10-3 2.1

Metoprolol 1.0 ND ND ND ND

Phenazone 1.0 1.84 · 10-3 1.44 · 10-3 2.23 · 10-3 2.6

Pindolol 1.0 1.55 · 10-3 1.34 · 10-3 1.77 · 10-3 2.2

Propranolol 1.0 ND ND ND ND

Prosulfocarb 1.0 1.79 · 10-3 1.58 · 10-3 1.99 · 10-3 2.6

Sulfamethoxazole 1.0 7.21 · 10-4 8.68 · 10-5 1.36 · 10-3 1.0

Terbutaline 1.0 1.49 · 10-3 1.01 · 10-3 1.96 · 10-3 2.1

TPPO 1.0 1.26 · 10-4 -1.08 · 10-4 3.59 · 10-4 0.0

Table S6 – Modelled R and µ for Vitens pilot determined with analytical method 3

OMP R Lower Upper µ [min-1] Lower Upper µ [d-1]

Acetaminophen 1.0 - - 1.60 · 10-3 1.28 · 10-3 1.92 · 10-3 2.3

Atrazine 1.7 1.6 1.7 3.21 · 10-5 6.54 · 10-7 6.35 · 10-5 0.1

Carbamazepine 1.9 1.7 2.1 1.50 · 10-4 5.81 · 10-5 2.42 · 10-4 0.2

Chloridazon 1.0 - - 1.29 · 10-3 1.03 · 10-3 1.55 · 10-3 1.9

Clofibric acid 1.2 1.0 1.5 7.64 · 10-4 6.38 · 10-4 8.89 · 10-4 1.1

Diclofenac 1.0 - - 1.59 · 10-3 1.21· 10-3 1.97 · 10-3 2.3

Diglyme 0.7 0.6 0.8 4.59 · 10-5 -3.96 · 10-5 1.31 · 10-4 0.0

Dimethoate 1.1 0.9 1.2 2.14 · 10-4 1.52 · 10-4 2.75 · 10-4 0.3

Diuron 1.0 - - 8.84 · 10-4 6.27 · 10-4 1.14 · 10-3 1.3

Hydrochlorothiazide 1.7 1.5 1.8 4.77 · 10-5 -1.83 · 10-5 1.14 · 10-4 0.0

Ketoprofen 1.0 - - 1.64 · 10-3 1.19 · 10-3 2.09 · 10-3 2.4

Lincomycin 1.7 1.5 2.0 1.83 · 10-4 6.70 · 10-5 3.00 · 10-4 0.3

Metoprolol ND ND ND ND ND ND ND

Phenazone 0.9 0.3 1.5 4.21 · 10-4 6.59 · 10-5 7.77 · 10-4 0.6

Pirimicarb 1.5 1.5 1.6 9.46 · 10-5 5.57 · 10-5 1.34 · 10-4 0.1

Simazine 1.4 1.3 1.5 3.70 · 10-5 -7.77 · 10-6 8.17 · 10-5 0.0

Sulfamethoxazole 0.5 0.1 0.8 5.97 · 10-4 2.67 · 10-4 9.28 · 10-4 0.9

Terbutalin 1.0 - - 9.95 · 10-4 7.28 · 10-4 1.26 · 10-3 1.4

Theophylline 1.0 - - 9.93 · 10-4 6.91 · 10-4 1.29 · 10-3 1.4

Triclopyr 1.1 0.9 1.3 2.35 · 10-4 1.36 · 10-4 3.34 · 10-4 0.3
ND = A statistically significant retardation factor and biodegradation rate could not be determined for this OMP
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Figure S1 – Goodness of fit for determination of µ with the convection-dispersion equation
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Figure S2 - Multi linear regression model output
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OMP breakthrough curves for the oxic pilot
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Appendix C - Supplementary material Chapter 4

Table S1 – Porosity, velocity (v), dispersion (D), and dispersivity (α) for oxic pilots 

Parameter Units Vitens oxic pilot Oasen oxic pilot

Porosity [-] 0.33 0.35

Pore velocity [m/d] 1.48 1.40

Dispersion [m2min-1] 3.04 · 10-5 2.59 · 10-6

α [m] 2.94 · 10-2 2.60 · 10-3

Table S2 – Diffusion (D0) and dispersion coefficient (D) for OMPs for both pilot systems

OMP D0 [m2min-1] Vitens D [m2min-1] Oasen D [m2min-1]

Acetaminophen 3.13630 · 10-8 3.03611 · 10-5 2.56315 · 10-6

Atrazine 2.81531 · 10-8 3.03579 · 10-5 2.55994 · 10-6

Carbamazepine 2.72584 · 10-8 3.03570 · 10-5 2.55904 · 10-6

Chloridazon 2.88536 · 10-8 3.03586 · 10-5 2.56064 · 10-6

Clofibric acid 2.84981 · 10-8 3.03583 · 10-5 2.56028 · 10-6

Diclofenac 2.62016 · 10-8 3.03560 · 10-5 2.55799 · 10-6

Diglyme 3.11811 · 10-8 3.03610 · 10-5 2.56297 · 10-6

Dimethoate 2.84759 · 10-8 3.03583 · 10-5 2.56026 · 10-6

Diuron 2.83444 · 10-8 3.03581 · 10-5 2.56013 · 10-6

Hydrochlorothiazide 2.73048 · 10-8 3.03571 · 10-5 2.55909 · 10-6

Ketoprofen 2.63139 · 10-8 3.03561 · 10-5 2.55810 · 10-6

Lincomycin 2.23031 · 10-8 3.03521 · 10-5 2.55409 · 10-6

Metoprolol 2.49508 · 10-8 3.03547 · 10-5 2.55674 · 10-6

Phenazone 2.90126 · 10-8 3.03588 · 10-5 2.56080 · 10-6

Pirimicarb 2.65325 · 10-8 3.03563 · 10-5 2.55832 · 10-6

Simazine 2.90399 · 10-8 3.03588 · 10-5 2.56082 · 10-6

Sulfamethoxazole 2.75106 · 10-8 3.03573 · 10-5 2.55930 · 10-6

Terbutalin 2.67601 · 10-8 3.03565 · 10-5 2.55854 · 10-6

Theophylline 3.07362 · 10-8 3.03605 · 10-5 2.56252 · 10-6

Triclopyr 2.90728 · 10-8 3.03589 · 10-5 2.56086 · 10-6

Table S3 – Water quality parameters influent column experiment

Units Feed water

pH - 8.1 ± 0.2 (n = 6)

O2 [mg/L] 9.7 ± 0.7 (n = 5)

DOC [mg/L] 3.86 ± 0.80 (n = 40)

NO3- [mg/L] 7.49 ± 2.66 (n = 37)

PO43- [mg/L] 0.08 ± 0.08 (n = 37)

SO42- [mg/L] 45.19 ± 9.30 (n = 37)

Cl- [mg/L] 60.00 ± 15.31 (n = 37)

NH4+ [mg/L] 0.08 ± 0.03 (n = 12)1

Mg2+ [mg/L] 10.25 ± 1.76 (n = 37)

Ca2+ [mg/L] 48.67 ± 8.43 (n = 37)

1 (Stoks et al., 2014)

Figure S1 - Microbial DGGE pattern of the soil samples at the real RBF sites clustered according to Pearson correlation,

unweighted pair group with mathematical averages dendrogram type (Oasen 0-5 cm = Oasen RBF site at depth 0 – 5 cm ,

Vitens Engelse werk 0-5 cm = Vitens RBF site at depth 0-5 cm)

1
0

0

Oasen 0-5 cm

Vitens Engelse werk 0-5 cm
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Figure S2 - Microbial DGGE pattern of the soil samples obtained at the influent side of both oxic soil column systems

clustered according to Pearson correlation, unweighted pair group with mathematical averages dendrogram type (OOXin =

Oasen soil influent side, VOXin = vitens soil influent side)

Table S4 – Modelled R and µ for Vitens pilot

OMP R Lower Upper µ [min-1] Lower Upper µ [d-1]

Diclofenac 1.00 - - 1.59 · 10-3 1.21 · 10-3 1.97 · 10-3 2.29

Ketoprofen 1.00 - - 1.64 · 10-3 1.19 · 10-3 2.09 · 10-3 2.36

Chloridazon 1.00 - - 1.63 · 10-3 1.10 · 10-3 2.16 · 10-3 2.35

Acetaminophen 1.00 - - 1.60 · 10-3 1.28 · 10-3 1.92 · 10-3 2.30

Theophylline 1.00 - - 9.93 · 10-4 6.91 · 10-4 1.29 · 10-3 1.43

Diuron 1.00 - - 8.84 · 10-4 6.27 · 10-4 1.14 · 10-3 1.27

Terbutalin 1.00 - - 9.95 · 10-4 7.28 · 10-4 1.26 · 10-3 1.43

Clofibric acid 1.00 - - 8.15 · 10-4 3.10 · 10-4 1.32 · 10-3 1.17

Phenazone 0.90 2.75 · 10-1 1.53 · 100 1.87 · 10-3 6.62 · 10-4 3.07 · 10-3 2.69

Metoprolol ND ND ND ND ND ND ND

Sulfamethoxazole 0.45 6.23 · 10-2 8.35 · 10-1 1.00 · 10-3 6.24 · 10-4 1.38 · 10-3 1.44

Carbamazepine 1.89 1.65 · 100 2.13 · 100 1.50 · 10-4 5.81 · 10-5 2.42 · 10-4 0.22

Dimethoate 1.06 9.25 · 10-1 1.19 · 100 2.55 · 10-4 1.89 · 10-4 3.21 · 10-4 0.37

Triclopyr 1.07 8.79 · 10-1 1.25 · 100 2.32 · 10-4 -5.72 · 10-5 5.20 · 10-4 0.00

Pirimicarb 1.53 1.47 · 100 1.60 · 100 9.46 · 10-5 5.57 · 10-5 1.34 · 10-4 0.14

Diglyme 0.70 5.71 · 10-1 8.23 · 10-1 4.59 · 10-5 -3.96 · 10-5 1.31 · 10-4 0.00

Atrazine 1.66 1.60 · 100 1.72 · 100 3.21 · 10-5 6.54 · 10-7 6.35 · 10-5 0.05

Hydrochlorothiazide 1.69 1.54 · 100 1.83 · 100 4.77 · 10-5 -1.83 · 10-5 1.14 · 10-4 0.00

Lincomycin 1.72 1.46 · 100 1.97 · 100 2.39 · 10-4 -4.18 · 10-5 5.19 · 10-4 0.00

Simazine 1.43 1.34 · 100 1.51 · 100 3.70 · 10-5 -7.77 · 10-6 8.17 · 10-5 0.00

1
0

0

5
0

0

OOXin

VOXin
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Table S5 – Modelled R and µ for Oasen pilot

OMP R Lower Upper µ [min-1] Lower Upper µ [d-1]

Terbutalin ND - -

Acetaminophen 1.00 - - 1.88 · 10-3 1.28 · 10-3 2.48 · 10-3 2.70

Ketoprofen 1.00 - - 1.86 · 10-3 1.48 · 10-3 2.24 · 10-3 2.68

Diclofenac 1.00 - - 1.58 · 10-3 1.35 · 10-3 1.81 · 10-3 2.28

Theophylline 1.00 - - 1.48 · 10-3 1.29 · 10-3 1.68 · 10-3 2.14

Diuron 1.00 - - 9.57E-04 4.87 · 10-4 1.43 · 10-3 1.38

Metoprolol ND ND ND ND ND ND ND

Chloridazon 1.00 - - 1.14 · 10-3 4.95 · 10-4 1.79 · 10-3 1.65

Phenazone 1.04 8.10 · 10-1 1.26 · 100 1.46 · 10-3 7.17 · 10-4 2.20 · 10-3 2.10

Clofibric acid 1.00 - - 1.31 · 10-3 9.15 · 10-4 1.71 · 10-3 1.89

Sulfamethoxazole 0.99 8.15 · 10-1 1.17 · 100 6.78 · 10-4 1.32 · 10-5 1.34 · 10-3 0.98

Carbamazepine 1.37 1.23 · 100 1.50 · 100 2.01 · 10-4 8.80 · 10-5 3.13 · 10-4 0.29

Dimethoate 1.05 9.65 · 10-1 1.13 · 100 2.92 · 10-4 9.76 · 10-5 4.86 · 10-4 0.42

Lincomycin 1.39 1.21 · 100 1.58 · 100 3.43 · 10-4 -1.76 · 10-4 8.63 · 10-4 0.00

Triclopyr 1.13 1.07 · 100 1.19 · 100 1.84 · 10-4 1.35 · 10-4 2.33 · 10-4 0.27

Hydrochlorothiazide 1.29 1.25 · 100 1.34 · 100 1.27 · 10-4 8.49 · 10-5 1.69 · 10-4 0.18

Pirimicarb 1.39 1.26 · 100 1.53 · 100 1.48· 10-4 5.00 · 10-5 2.47 · 10-4 0.21

Simazine 1.33 1.26 · 100 1.39 · 100 8.70 · 10-5 2.04 · 10-5 1.54 · 10-4 0.13

Atrazine 1.40 1.27 · 100 1.53 · 100 1.16 · 10-4 2.84 · 10-5 2.04 · 10-4 0.17

Diglyme 0.98 9.30 · 10-1 1.03 · 100 3.51 · 10-5 -1.13 · 10-5 8.15 · 10-5 0.00

Figure S3 – Modelled versus experimentally obtained Ce / C0 values for the Vitens soil pilot

Figure S4 – Modelled versus experimentally obtained Ce / C0 values for the Oasen soil pilot
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Appendix D - Supplementary material Chapter 5

S1.1 Organic carbon fractionation

Lek river water from the RBF site of drinking water company Oasen (51° 55' 0.4'' N, 4° 47' 5.4'' E, The

Netherlands) was used for fractionation. The Lek river is a tributary of the river Rhine and the amount

of treated wastewater discharged on the river Rhine is relatively small, 5 to 10% (Hoppe-Jones et al.,

2010). Prior to separating the organic carbon fractions, the river water was concentrated by a factor 10

by means of nanofiltration (NF90, Dow-Filmtec, The Netherlands) with a recovery of 90%. The NF-

concentrate was placed in an oven at 45°C which reduced the volume of the NF-concentrate by a

further 30%. The concentrated river water was then filtered (20 µm, Whatmann, Germany) to remove

larger particles before fractionation was initiated. The organic matter in the concentrated river water

was fractionated into three fractions: hydrophilic, transphilic, and hydrophobic, by means of XAD-8

and XAD-4 resins based on (Leenheer et al., 2000). The definition of hydrophilic, transphilic and

hydrophobic in this study is based on the variation in polarity of the different fractions. A mass

balance (mg DOC) was set-up to check for losses during the fractionation. Organic matter in the Lek

river water consisted of 41% hydrophilic, 25% transphilic and 37% hydrophobic organic material

resulting in a total of 103%. This indicates that the fractionation did not lead to significant loss of

organic material.

Each organic carbon fraction (hydrophilic, RWOM, transphilic and hydrophobic) was then diluted

into Milli-Q water in the desired concentration and fed to two soil columns each (duplicate

measurements). Micro- and macronutrients were added to all feed solutions. The micronutrient

solution was based on a study of (Vishniac and Santer, 1957). 10 mL aliquots of the micronutrient

solution (ZnSO4 × 7 H2O) (22.00 g), CaCl2 × 2 H2O (5.54 g), MnCl2 × 4 H2O (5.06 g), FeSO4 × 7 H2O (5.00

g), (NH4)6Mo7O24 × 4 H2O (1.10 g), CuSO4 × 5 H2O (1.57 g), CoCl2 × 6 H2O (1.61 g) in 1000 mL distilled

water; pH adjustment to pH = 6 with KOH) were added to each feed solution. Macronutrients

phosphate (0.2 ppm PO43-) and nitrate (11.4 ppm NO3-) were dosed in each feed solution in the same

order of magnitude as observed from a yearly monitoring programme that analysed both macro

nutrients in the field for the river water used in this study (Stoks et al., 2011). pH of the feed solutions

for the hydrophilic, transphilic and hydrophobic fractions was corrected with NaOH and H2SO4 to a

pH similar to the river water. The columns fed with the different fractions were also compared to two

duplicate columns fed with original river water, which served as a control that contained all OM

fractions at once.

S1.2 Tracer experiments with deuterium

Pore velocity and porosity in all columns were determined using deuterium (2H) as a tracer. The feed

solution was labelled with 150 µL deuterium oxide (2H2O) per litre, resulting in a doubling of the

natural deuterium abundance (i.e. δ2H ≈ 1000 ‰ ). Deuterium oxide concentrations were determined 

by wavelength-scanned cavity ring-down spectroscopy using a L2201-i (Picarro Inc., Sunnyvale, CA

USA) equipped with a vaporizer and micro pyrolysis unit. Effluent samples were distilled

cryogenically (West et al., 2006) to remove salts and exclude matrix effects.

S1.3 Soil parameters

ATP analysis of soil samples at the influent and effluent side of the columns was performed at the end

of each experimental phase according to the method described in (Chapter 2) with the following
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exceptions: (1) Sand samples were 2 - 5 g instead of 10 g, (2) From every supernatant sample 333 µL

was collected to obtain a mixture of 1 mL in total. This 1 mL mixture was subjected to ATP analysis.

Table S1 – Hydro chemical data Lek river water

Parameter Units Average value ± standard deviation

Temperature °C 20.1 ± 1.4 (n = 8)

pH - 7.9 ± 0.3 (n = 8)

O2 mg/L 7.8 ± 1.2 (n = 4)

DOC mg/L 4.0 ± 0.9 (n = 8)

NO3- mg/L 14.0 ± 0.3 (n = 5)

PO4- mg/L 0.44 (min. = 0.25; max. = 0.60)*

* Obtained from yearly monitoring programme (Stoks et al., 2014)

Table S2 – Characteristics of the experimental phases of the soil columns

Phase Experimental

condition

OMP dosed [µg/L] DOC feed [mg/L] Duration [weeks]

1 Stable operation 0.5 4 6

2 OMP shock-load 2 4 3

3 DOC shock-load 2 8 3

Table S3 – Detection limits for analysed OMPs

OMP LOD (ng/L)

Lincomycin 2.8

Acetaminophen 3.3

Hydrochlorothiazide 2.4

Metoprolol 0.4

Phenazone 0.1

Sulfamethoxazole 0.2

Pirimicarb 0.04

Dimethoate 0.1

Chloridazon 0.1

Simazine 0.2

Carbamazepine 0.03

Atrazine 0.3

Diuron 0.1

Ketoprofen 0.4

Naproxen 16

Clofibric acid 0.04

Diclofenac 0.2

Triclopyr 0.2

Gemfibrozil 0.4
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Table S4 – Carbon fractions compared by organic carbon constituents

Biopolymers [ppb-C]

(95% CI)

Humics [ppb-C]

(95% CI)

Building blocks [ppb-C]

(95% CI)

LMW acids & neutrals [ppb-C]

(95% CI)

RWOM 96 (24-168) 4266 (4194-4338) 901 (829-973) 1673 (1601-1745)

Hydrophobic 42 (0-114) 4048 (3976-4120) 1182 (1110-1254) 1451 (1379-1523)

Transphilic 89 (17-161) 4134 (4062-4206) 1064 (992-1136) 1107 (1035-1179)

Hydrophilic 155 (83-227) 3762 (3690-3834) 1591 (1519-1663) 2366 (2294-2438)

Table S5 – pH values in column in- and effluent for all experimental phases

Hydrophilic Phase 1 Phase 2 Phase 3

Influent 6.54 ± 0.20 (n = 8) 6.81 ± 0.09 (n = 3) 7.41 ± 0.17 (n = 3)

Effluent 7.61 ± 0.68 (n = 16) 7.94 ± 0.57 (n = 6) 8.07 ± 0.23 (n = 6)

RWOM Phase 1 Phase 2 Phase3

Influent 7.87 ± 0.34 (n = 8) 8.15 ± 0.11 (n = 3) 8.31 ± 0.04 (n = 3)

Effluent 8.04 ± 0.30 (n = 16) 8.15 ± 0.19 (n = 6) 8.41 ± 0.14 (n = 6)

Transphilic Phase 1 Phase 2 Phase 3

Influent 8.09 ± 0.31 (n = 8) 8.02 ± 0.21 (n = 3) 8.96 ± 0.01 (n = 3)

Effluent 8.46 ± 0.38 (n = 16) 8.67 ± 0.30 (n = 6) 8.86 ± 0.08 (n = 6)

Hydrophobic Phase 1 Phase 2 Phase 3

Influent 7.85 ± 0.34 (n = 8) 8.05 ± 0.15 (n = 3) 8.61 ± 0.07 (n = 3)

Effluent 8.51 ± 0.45 (n= 16) 8.66 ± 0.33 (n = 6) 8.91 ± 0.12 (n = 6)

Table S6 – Nitrate (NO3-) concentrations (mg/L) in column in- and effluent for all experimental phases

Phase 1 Phase 2 Phase 3

Hydrophilic NO3- NO3- NO3-

Influent 47.1 ± 7.2 (n=4) 6.3 (n=1) 76.7 (n=1)

Effluent 25.8 ± 16.0 (n=12) 13.6 ± 8.0 (n=4) 71.3 ± 2.6 (n=4)

RWOM

Influent 11.2 ± 5.5 (n=4) 14.4 (n=1) 28.2 (n=1)

Effluent 1.0 ± 2.1 (n=11) 8.5 ± 3.8 (n=4) 21.7 ± 3.7 (n=4)

Transphilic

Influent 19.0 ± 5.9 (n=4) 12.3 (n=1) 20.1 (n=1)

Effluent 2.8 ± 3.1 (n=12) 3.7 ± 3.3 (n=4) 7.9 ± 5.3 (n=4)

Hydrophobic

Influent 16.7 ± 3.1 (n=4) 11.0 (n=1) 9.2 (n=1)

Effluent 8.1 ± 3.2 (n=12) 8.0 ± 3.6 (n=3) 5.4 ± 3.5 (n=4)
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Table S7 – Average richness and evenness (± st dev.) in soil samples from the in- and effluent of the duplicate

columns

Influent side Module 1 Module 2 Module 3

Gini Richness Gini Richness Gini Richness

Hydrophilic 0.75 ± 0.09 38.0 ± 9.9 0.54 ± 0.17 54.5 ±13.4 0.90 ± 0.04 36.0 ± 4.2

RWOM 0.62 ± 0.04 52.0 ± 4.2 0.93 ± 0.01 20.5 ± 0.7 0.65 (-)* 57.0 (-)*

Transphilic 0.55 ± 0.04 56.5 ± 6.4 0.70 ± 0.13 40.5 ± 12.0 0.93 ± 0.01 29.0 ± 0.0

Hydrophobic 0.80 ± 0.08 35.0 ± 5.7 0.58 ± 0.20 52.5 ± 20.5 0.78 ± 0.12 45.0 ± 12.7

Effluent side Module 1 Module 2 Module 3

Gini Richness Gini Richness Gini Richness

Hydrophilic 0.58 ± 0.33 50.5 ± 26.2 0.64 ± 0.12 45.0 ± 5.7 0.56 ± 0.33 56.5 ± 26.2

RWOM 0.38 ± 0.12 67.0 ± 2.8 0.62 ± 0.07 45.0 ± 7.1 0.88 (-)* 33.0 (-)*

Transphilic 0.50 ± 0.26 57.0 ± 17.0 0.65 (-)* 41.0 (-)* 0.70 ± 0.05 52.5 ± 9.2

Hydrophobic 0.56 ± 0.04 57.5 ± 2.1 0.50 ± 0.28 55.0 ± 19.8 0.58 (-)* 64.0 (-)*

Avg. influent Module 1 Module 2 Module 3

+ effluent Gini Richness Gini Richness Gini Richness

Hydrophilic 0.66 ± 0.22 44.3 ± 17.7 0.59 ± 0.13 49.8 ± 10.0 0.73 ± 0.28 46.3 ± 19.3

RWOM 0.50 ± 0.16 59.5 ± 9.1 0.77 ± 0.18 32.8 ± 14.7 0.77 ± 0.16 45.0 ± 17.0

Transphilic 0.52 ± 0.16 56.8 ± 10.5 0.68 ± 0.09 40.7 ± 8.5 0.81 ± 0.14 40.8 ± 14.6

Hydrophobic 0.68 ± 0.15 46.3 ± 13.5 0.54 ± 0.20 53.8 ± 16.5 0.71 ± 0.14 51.3 ± 14.2

* Gini/richness measured only in one of the duplicate columns

Table S8 – Average ATP concentration measured at the column influent and effluent of duplicate columns

ATP concentrations [pg/g] - Phase 1

Average influent ± st. dev. Average effluent ± st. dev. Average influent and effluent ± st.

dev.

Hydrophilic 40244 ± 47574 12171* 41635 ± 45605

RWOM 22525 ± 17906 10994 ± 8173 16759 ± 4867

Transphilic 14407 ± 8116 12755 ± 1850 13581 ± 4983

Hydrophobic 28175 ± 27739 15478 ± 3612 21826 ± 12063

ATP concentrations [pg/g] - Phase 2

Average influent ± st. dev. Average effluent ± st. dev. Average influent and effluent ± st.

dev.

Hydrophilic 8770 ± 5183 3898 ± 2514 6334 ± 3849

RWOM 6092 ± 3147 3849 ± 263 4971 ± 1442

Transphilic 5522 ± 1188 8430 ± 5853 6976 ± 3520

Hydrophobic 12802 ± 3126 4632 ± 257 8717 ± 1692

ATP concentrations [pg/g] - Phase 3

Average influent ± st. dev. Average effluent ± st. dev. Average influent and effluent ± st.

dev.

Hydrophilic 22956 ± 205 8394 ± 3240 15675 ± 722

RWOM 11102 ± 576 5974 ± 1961 8538 ± 693

Transphilic 9204 ± 487 4800 ± 1220 7002 ± 854

Hydrophobic 9876 ± 855 6666 ± 1144 8271 ± 144

* ATP measured only in one of the duplicate columns
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Table S9 – Average DOC removal (%) (± st dev) of the columns

DOC concentrations [mg/L] - Phase 1

Average influent ± st. dev. Average effluent ± st. dev. Removal [%] ± st.dev.

Hydrophilic 4.97 ± 0.68 (n = 7) 2.93 ± 0.52 (n = 14) 40.81 ± 9.47 (n = 14)

RWOM 3.78 ± 0.66 (n = 7) 2.53 ± 0.51 (n = 13) 31.64 ± 14.23 (n = 13)

Transphilic 4.67 ± 1.16 (n = 7) 2.91 ± 0.58 (n = 13) 35.80 ± 20.65 (n = 13)

Hydrophobic 5.25 ± 0.92 (n = 7) 3.66 ± 0.89 (n = 13) 31.20 ± 17.68 (n = 13)

DOC concentrations [mg/L] - Phase 2

Average influent ± st. dev. Average effluent ± st. dev. Removal [%] ± st.dev.

Hydrophilic 4.24 ± 0.85 (n = 4) 2.29 ± 0.63 (n = 7) 45.27 ± 7.21 (n = 7)

RWOM 3.45 ± 0.61 (n = 4) 2.51 ± 0.29 (n = 8) 26.40 ± 6.75 (n = 8)

Transphilic 4.85 ± 0.88 (n = 4) 2.73 ± 0.55 (n = 8) 43.72 ± 5.59 (n = 8)

Hydrophobic 3.70 ± 1.14 (n = 4) 2.32 ± 0.66 (n = 8) 36.47 ± 10.98 (n = 8)

DOC concentrations [mg/L] - Phase 3

Average influent ± st. dev. Average effluent ± st. dev. Removal [%] ± st.dev.

Hydrophilic 8.03 ± 0.38 (n = 3) 5.91 ± 0.99 (n = 6) 26.72 ± 9.19 (n = 6)

RWOM 7.61 ± 0.45 (n = 3) 4.89 ± 0.62 (n = 6) 35.87 ± 5.50 (n = 6)

Transphilic 7.90 ± 0.63 (n = 3) 5.73 ± 0.44 (n = 6) 27.09 ± 7.94 (n = 6)

Hydrophobic 8.36 ± 0.46 (n = 3) 5.66 ± 0.47 (n = 6) 32.21 ± 6.71 (n = 6)

Table S10 – Average SUVA removal (%) (± st dev) of the columns

Phase 1 Phase 2 Phase 3

SUVA removal [%] SUVA removal [%] SUVA removal [%]

Hydrophilic -15.62 ± 76.51 66.41 ± 12.51 17.71 ± 1.86

RWOM -57.64 ± 48.23 -2.58 ± 19.58 -5.77 ± 8.43

Transphilic -46.95 ± 70.46 -5.00 ± 28.33 -8.14 ± 3.43

Hydrophobic 14.49 ± 31.31 28.62 ± 23.01 -22.24 ± 7.48
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Figure S2 – Experimental versus modelled data points Phase 1a

a Experimental Ce/C0 values higher than 1 were mostly observed for the persistent OMPs (e.g. carbamazepine, simazine, atrazine, chloridazon,

pirimicarb). However, modelled OMP biodegradation rates were not greatly affected for these OMPs are therefore these data points have not been

excluded from the Figure.

Figure S3 – Experimental versus modelled data points Phase 2a

a Experimental Ce/C0 values higher than 1 were mostly observed for the persistent OMPs (e.g. carbamazepine, simazine, atrazine, chloridazon,

pirimicarb). However, modelled OMP biodegradation rates were not greatly affected for these OMPs are therefore these data points have not been

excluded from the Figure.
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Figure S4 – Experimental versus modelled data points Phase 3a

a Experimental Ce/C0 values higher than 1 were mostly observed for the persistent OMPs (e.g. carbamazepine, simazine, atrazine, chloridazon,

pirimicarb). However, modelled OMP biodegradation rates were not greatly affected for these OMPs are therefore these data points have not been

excluded from the Figure.

Table S11 – Trend lines and R2 for experimental versus modelled data points (Figures S2, S3 and S4)

Phase 1 Phase 2 Phase 3

Trend line R2 Trend line R2 Trend line R2

Hydrophilic y = 0.5695x + 0.2519 0.5769 y = 0.768x + 0.1012 0.7685 y = 0.4961x + 0.2047 0.6552

RWOM y = 0.5987x + 0.2599 0.7035 y = 0.6854x + 0.135 0.6969 y = 0.8051x + 0.0615 0.9014

Transphilic y = 0.6438x + 0.1987 0.7155 y = 0.8017x + 0.1088 0.8093 y = 0.604x + 0.2098 0.7267

Hydrophobic y = 0.5919x + 0.2587 0.6253 y = 0.6744x + 0.181 0.7184 y = 0.2782x + 0.3998 0.4425
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Appendix E - Supplementary material Chapter 6

Table S1 – Average pore water velocity, dispersion coefficient and dispersivity α of the three installations 

Pilot Average pore water velocity (ʋ) [m

min-1]

Dispersion coefficient (D) [m2min-

1]

Dispersivity α [m] 

A 1,03 · 10-3 3,04 · 10-5 2,94 · 10-2

B 8,92 · 10-4 1,04 · 10-4 1,16 · 10-1

C 8,00 · 10-4 5,10 · 10-5 6,36 · 10-2

Figure S1 – DOC concentration in suboxic and anoxic pilot

0

5

10

15

20

25

0 1 2 3 4 5

D
e

p
th

[m
]

DOC [mg/L]

Oxic

Suboxic

Anoxic



176

Figure S2 – NO3 concentrations in the feed and effluent of the oxic, suboxic and anoxic pilot

Figure S3 – Ce/C0 values of metoprolol, pirimicarb, dimethoate and diuron in the different redox zones
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Table S2 – Functional groups of the OMPs

OMP Me AE TA H SA Ring PA CO Ethers Sulfur Amide Ester CA AAE Hy SuA

Dimethoate 3 0 0 0 0 0 0 1 2 2 1 0 0 0 0 0

Sulfamethoxazole 1 0 0 0 0 2 1 0 0 0 0 0 0 0 0 1

Chloridazon 0 0 0 1 0 2 1 1 0 0 0 0 0 0 0 0

Phenazone 2 0 0 0 0 2 0 1 0 0 0 0 0 0 0 0

Lincomycin 4 0 1 0 0 2 0 0 1 1 1 0 0 0 4 0

Atrazine 3 0 0 1 2 1 0 0 0 0 0 0 0 0 0 0

Carbamazepine 0 0 0 0 0 3 0 0 0 0 1 0 0 0 0 0

Clofibric acid 2 0 0 1 0 1 0 0 0 0 0 0 1 1 0 0

Diclofenac 0 0 0 2 1 2 0 0 0 0 0 0 1 0 0 0

Diuron 2 0 1 2 1 1 0 1 0 0 0 0 0 0 0 0

Hydrochlorothiazide 0 0 0 1 1 2 0 0 0 0 0 0 0 0 0 2

Ketoprofen 1 0 0 0 0 2 0 1 0 0 0 0 1 0 0 0

Metoprolol 3 1 0 0 1 1 0 0 0 0 0 0 0 1 1 0

Pirimicarb 6 0 2 0 0 1 0 0 0 0 0 1 0 0 0 0

Simazine 2 0 0 1 2 1 0 0 0 0 0 0 0 0 0 0

Me = Methyl, AE = Aliphatic Ether, TA = Tertiary Amines, H = Halogens, SA= Secondary Amines, PA = Primary Amines, CO = Carbonyl, CA = Carboxylic Acid, AAE = Aryl Aliphatic Ether, Hy =

Hydroxyl, SuA = Sulphonamides
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