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 Distinct morphological behavior between South Branch and mouth bar zone in 

the Changjiang Estuary.

 Large-scale morphodynamic response lags riverine sediment source reduction by 

a time scale >10 years.

 Big river floods with long duration and sediment deficiency cause severe erosion. 

 Human activities stabilize coastlines and narrow channels. 
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17 Abstract

18 Examination of large scale, alluvial estuarine morphology and associated time 

19 evolution is of particular importance regarding management of channel navigability, 

20 ecosystem, etc. In this work, we analyze morphological evolution and changes of the 

21 channel-shoal system in the Changjiang Estuary, a river- and tide-controlled coastal 

22 plain estuary, based on bathymetric data between 1958 and 2016. We see that its 

23 channel-shoal pattern is featured by meandering and bifurcated channels persisting 

24 over decades. In the vertical direction, hypsometry curves show that the sand bars and 

25 shoals are continuously accreted while the deep channels are eroded, leading to 

26 narrower and deeper estuarine channels. Intensive human activities in terms of 

27 reclamation, embankment, and dredging play a profound role in controlling the 

28 decadal morphological evolution by stabilizing coastlines and narrowing channels. 

29 Even though, the present Changjiang Estuary is still a pretty wide and shallow system 

30 with channel width-to-depth ratios >1000, much larger than usual fluvial rivers and 

31 small estuaries. In-depth analysis suggests that the Changjiang Estuary as a whole 

32 exhibited an overall deposition trend over 59 years, i.e., a net deposition volume of 

33 8.3×108 m3. Spatially, the pan-South Branch was net eroded by 9.7×108 m3 whereas 

34 the mouth bar zone was net deposited by 18×108 m3, suggesting that the mouth bar 

35 zone is a major sediment sink. Over time there is no directional deposition or erosion 

36 trend in the interval though riverine sediment supply has decreased by 2/3 since the 

37 mid-1980s. We infer that the pan-South Branch is more fluvial-controlled therefore its 

38 morphology responds to riverine sediment load reduction fast while the mouth bar 
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39 zone is more controlled by both river and tides that its morphological response lags to 

40 riverine sediment supply changes at a time scale >10 years, which is an issue largely 

41 ignored in previous studies. We argue that the time lag effect needs particular 

42 consideration in projecting future estuarine morphological changes under a low 

43 sediment supply regime and sea-level rise. Overall, the findings in this work can have 

44 implications on management of estuarine ecosystem, navigation channel and coastal 

45 flooding in general.
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49 Highlights:

50  Distinct morphological behavior between South Branch and mouth bar zone in 

51 the Changjiang Estuary.

52  Large-scale morphodynamic response lags riverine sediment source reduction by 

53 a time scale >10 years.

54  Big river floods with long duration and sediment deficiency cause severe erosion. 

55  Human activities stabilize coastlines and narrow channels. 
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58 1. Introduction

59 Morphological evolutions are critical for socio-economic and ecological 

60 environmental development, especially in estuaries where most of the world’s famous 

61 mega cities and harbors locate. The combined action of fluvial discharge, tidal flows, 

62 and waves generally controls the long-term estuarine morphological changes, 

63 resulting in a feedback loop between estuarine morphology and hydrodynamics 

64 through sediment transport (Cowell and Thom, 1994; Freire et al., 2011; Wang et al, 

65 2013). Morphological evolution of large estuaries influenced by more than one 

66 primary forcing are insufficiently understood owing to inherent complexity in terms 

67 of large space scale and strong spatial and temporal variations. In addition, 

68 anthropogenic activities, such as waterway regulation project, dredging, embankment, 

69 reclamation, and dam construction, have profound effects on estuaries and human 

70 interventions play an increasingly important role in driving estuarine morphological 

71 changes (Milliman et al., 1985; Syvitski et al., 2005; Wang et al., 2013). Centennial 

72 bathymetric data of estuaries are rare while data at decadal time scales are readily 

73 more available, enabling quantitative examinations of medium- to long-term (decades 

74 to centuries) estuarine morphological evolution in response to natural forcing and 

75 human influences.

76 Morphological evolution and channel pattern changes in rivers, tidal basins, 

77 estuaries, and coasts have been broadly discussed at varying time scales. The 

78 depositional and morphologic patterns can be quite different under varying single or 

79 multiple primary forcing including river, tides, waves, etc (Wright, 1977). A 
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80 meandering channel pattern with coexisting flood and ebb channels is observed in 

81 tide-dominated systems, such as the Dutch Western Scheldt Estuary (Van Veen, 1950; 

82 Van den Berg et al., 1996; Toffolon and Crosato, 2007) and the Chesapeake Bay in 

83 the USA (Ahnert, 1960). Distributary channels with multiple bifurcations are 

84 observed in river-controlled estuaries and/or delta systems (Andrén, 1994; Edmonds 

85 and Slingerland, 2007; Wang and Ding, 2012). Large scale morphodynamic behavior 

86 under combined river and tidal forcing, such as the Changjiang Estuary in China, is 

87 insufficiently examined (Guo et al., 2015).

88 Morphological evolution of the Changjiang Estuary has been examined by 

89 calculating erosion-deposition volumes and analyzing movements of isobaths, 

90 shorelines, and thalwegs (Chen et al., 1985 and 1999; Yun, 2004; Wang et al., 2013; 

91 Luan et al., 2016). Riverine sediment source availability and human activities are 

92 widely seen as two important factors in controlling morphological evolution in the 

93 Changjiang Estuary, which is also true in other estuaries and deltas such as Niles, 

94 Mississippi, and Colorado (Syvitski and Kettner, 2011). Note that previous 

95 examinations of the morphological changes in the Changjiang Estuary were mainly at 

96 regional scale without taking the estuary as a whole into consideration. For instance, 

97 owing to riverine sediment supply reduction, regional erosion was detected in the 

98 South Branch (Wang et al., 2013) and the delta front regions (10 m deep nearshore) 

99 (Yang et al., 2003, 2005, 2011) in the recent decades, whereas the examination of a 

100 larger region including the sand bars in the mouth bar zone indicates continued 

101 deposition (Dai et al., 2014). Moreover, the time scale of large scale estuarine 
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102 morphodynamic adaptation in responding to external forcing changes is very much 

103 ignored in previous studies. The morphological impacts of human activities such as 

104 reclamations (Chu et al., 2013; Wei et al., 2015) and the Deep Waterway Channel 

105 Project along the North Passage (De Vriend et al., 2011; Jiang et al., 2012, 2013) can 

106 also vary in a large space and time scales depending on their location, implementation 

107 time, and scales. Sea-level rise is also another factor needs consideration (Wang et al., 

108 2013; Wang et al., 2014; Wei et al., 2015). So far, a comprehensive and quantitative 

109 investigation of morphological evolution in the entire Changjiang Estuary is still very 

110 much needed.

111 This study analyzes the morphological changes in the Changjiang Estuary as a 

112 whole based on the bathymetric data collected in the period between 1958 and 2016. 

113 We will focus on the erosion-deposition processes, changes of hypsometry, and cross-

114 section configuration of different branches in the estuary to elaborate the channel 

115 patterns and the spatial and temporal variability of the estuarine morphology. The 

116 controls of the morphological changes are discussed in terms of natural processes and 

117 human activities. The insights obtained from this study are helpful for management 

118 and restoration opportunities in the Changjiang Estuary. 

119

120 2. Data and methods

121 2.1 Brief introduction to the Changjiang Estuary

122 The Changjiang River and its estuary is one of the biggest on earth with respect 

123 to its quantity such as river discharge, sediment load, and space scales. The annual 
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124 mean river discharge is approximately 28.3×103 m3/s (1950-2015) and annual 

125 sediment load is 3.7×108 tons (1953-2015) (CWRC, 2015). The river and sediment 

126 discharges exhibit markedly seasonal variations, with about 71% of water flux and 

127 87% of sediment load flushed in the wet season between May and October (Chen et 

128 al., 2008). Mean tidal range decreases from about 3.2 m nearshore to 2.4 m at 

129 Xuliujing, the present delta apex, and further to be insignificant 500 km upstream of 

130 Xuliujing. The tidal prism varies between 1.3 × 109 and 5.3× 109 m3, with a mean 

131 tidal discharge almost 9 times as much as the mean river discharge (Chen et al., 

132 2002). Thus the Changjiang Estuary is dominantly a partially-mixed, meso-tidal 

133 system (Chen et al., 2002). The waves in the Changjiang Estuary are mainly wind 

134 waves with a mean wave height of 0.9 m at Yinshuichuan in the river mouth area (Wu 

135 et al., 2009; Wang et al., 2013). River and tides are the main forcing conditions 

136 though wind and waves can affect hydrodynamics and sediment transport over the 

137 shallow tidal flats. The present Changjiang Estuary has four prime inlets connecting 

138 to the sea, namely the North and South Branch, North and South Channel, and North 

139 and South Passages (Fig. 1). The estuary mouth is as wide as 90 km and the width 

140 decreases to approximately 6 km at the apex of the funnel-shaped estuary, i.e., 

141 Xuliujing. Overall the Changjiang Estuary is a complex large scale system with few 

142 comparable cases in the world. 

143

144 2.2 Data and methods
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145 We collect bathymetric data in 1958, 1973, 1986, 1997, 2002, 2010, and 2016, 

146 covering the entire regions seaward Xuliujing until 10-15 m deep waters (Fig. 1). The 

147 North Branch (NB), nowadays tide-dominated and limitedly influenced by fluvial 

148 processes, is excluded in this study due to data scarcity. The bathymetry data in 1958, 

149 1973, and 1986 are obtained from digitization of historical marine charts with a 

150 resolution 1/50000 and data in other years are from field sounding measurements with 

151 an accuracy of 1-2% for depths <2 m and <1% for depths >2 m (Wang et al., 2011, 

152 2013). All depth data are referenced to the same datum, the Theoretical Lowest 

153 Astronomical Tide (TLAT), which is basically below local mean water level by a half 

154 maximum tidal range (～ 2 m). A digital elevation model (DEM) by 20×20 m is 

155 created using Kriging interpolation. 

156 Considering spatial variations of hydrodynamics, sediment properties, and 

157 morphological features (Fig. 3), we divide the study area into three regions for the 

158 benefit of clarification. Region A includes the South Branch (SB) and region B 

159 includes the South Channel (SC) and the upper section of the North Channel (NC), 

160 while region C indicates the mouth bar zone (MBZ) which includes the lower section 

161 of the North Channel, the North Passage (NP), and the South Passage (SP). Regions A 

162 and B together are also named pan-South Branch (PSB) region as a counterpart of 

163 region C (Fig. 1). Erosion and deposition volumes of different regions and the estuary 

164 as a whole are calculated for different time intervals. Hypsometry curves are also 

165 derived by linking channel volumes and planar areas at different depths. The 

166 hypsometric curves help to uncover morphological change of channels and shoals in 
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167 the vertical direction. Moreover, we also estimate variations of width, depth, and 

168 width-to-depth ratio and examine cross-section profile variations in different regions. 

169  

170 3. Results

171 3.1 Overall morphological evolution (1958-2016)

172 We see that there is no new channel bifurcation in the Changjiang Estuary since 

173 1958. The three-level bifurcation and four-outlet configuration persists and the 

174 channels and shoals develop toward mature conditions by strong erosion and 

175 deposition evolution (Fig. 4). The middle-channel channel-shoal pattern is featured by 

176 meandering channels and sand bars. The entire estuary becomes narrower and deeper 

177 owing to deposition over the shoals and tidal flats and erosion along the channels.

178

179 3.2 Erosion and deposition patterns

180 The study area as a whole (including regions A, B, and C) had experienced 

181 deposition from 1958 to 2016. The total net deposition amount of the study area 

182 reached 8.3×108 m³ over 59 years, which equals a net deposition rate of 14.3×106 

183 m³/year. 

184 Temporally, the estuary did not exhibit directional persistent deposition or 

185 erosion over 59 years (Table 1, Fig. 4). The entire study area first experienced fast 

186 deposition in 1958-1973 (98.2×106 m³/year), followed by slight erosion in 1973-1986 

187 (9.2×106 m³/year), deposition in 1986-1997 (56.3×106 m³/year), erosion in 1997-2002 

188 again (40×106 m³/year), slight deposition in 2002-2010 (13.9×106 m³/year), and 

189 recently fast erosion in 2010-2016 (175.7×106 m³/year).
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190 Spatially, the net erosion volume was 9.7×108 m³ in the pan-South Branch 

191 between 1958 and 2016. Approximately 52% of that occurred in region A and 48% in 

192 region B. To the contrast, the MBZ was deposited by 18×108 m³ in the interval, 

193 indicating that the MBZ is a major sediment sink. The erosion and deposition patterns 

194 are different in different regions (Table 1). Region A had changed from deposition 

195 (1958-1973, 19.2×106 m³/year) to erosion (2010-2016, 28.8×106 m³/year). Similar 

196 variation behavior was also observed in region B by slight deposition (1958-1973, 

197 5.5×106 m³/year) and moderate erosion (2010-2016, 31.7×106 m³/year). However, 

198 region C showed a strong deposition trend from 1958 to 2010 and the deposition rates 

199 reached up to 75×106 m³/year most of the time, followed by significant erosion of 

200 1.15×108 m³/year since 2010.

201

202 3.3 Changes of hypsometry 

203 Hypsometric curve is a concise and quantitative way to understand vertical 

204 morphological characteristics. According to the hypsometric curves of the study area 

205 as a whole from 1958 to 2016 (Fig. 5D), both the total water volume and area of the 

206 study area decreased due to deposition and human activities. Specifically, the total 

207 water volume of the region below +2 m isobaths was 31.6×109 m³ in 1958. It 

208 decreased to 30×109 m³ in 2016, indicating 5% reduction compared to 1958. The total 

209 area at +2 m isobaths also decreased by about 514 km2 from 1958 to 2016, i.e., 13% 

210 of that in 1958, mainly owing to reclamations and embankment for the Qingcao Shoal 

211 reservoir. 
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212 In the vertical direction, the erosion and deposition patterns of the sand bars and 

213 shoals and the deep channels were quite different from each other during the past 59 

214 years. By comparing the water volumes and areas of the channels under different 

215 isobaths in both 1958 and 2016 (Fig. 5D), we see that the entire study area was 

216 confined by -8 m isobaths. The water volume of the region above -8 m (-8～+2 m) 

217 isobaths reduced from 28.1×109 m³ in 1958 to 25×109 m³ in 2016, and the area 

218 decreased from 2.76×109 m2 to 2.15×109 m2. Deposition took place in the sand bars 

219 and shoals, which includes intertidal zone (0～+2 m). The water volume of the region 

220 below -8 m isobaths (-8～ -20 m) increased by about 1.49×109 m³ and the area 

221 increased by 0.1×109 m2. In the deep part of the channels below -12 m isobaths, the 

222 water volume and the area increased by 0.9×109 m³ and 0.11×109 m2, respectively. 

223 Thus the channels, especially the deep parts of them, were continuously eroded from 

224 1958 to 2016.

225 For three regions of the estuary, deposited sand bars and shoals and eroded deep 

226 channels were also detected from 1958 to 2016, but the depth thresholds for shallow 

227 (deposited) and deep (eroded) areas were different. Region A as a whole was 

228 separated by -7 m isobaths while region C was separated by -8 m isobaths. The shape 

229 of the hypsometric curves in different years was similar to each other, for both regions 

230 A and C (Fig. 5A and 5B). However, region B was separated by -1 m isobaths. The 

231 hypsometric curves in region B had significantly changes during the past 59 years, 

232 especially after 2002, mainly owing to embankment for the Qingcao Shoal reservoir 

233 (Fig. 5C).
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234

235 3.4 Changes of cross-section

236 The width of the cross-sections in region C increases in the seaward direction. 

237 The depth of the cross-sections has a significant seaward decrease trend and has a 

238 minimum value on the top of the mouth bar. They are quite different from those in 

239 regions A and B which do not have such a significant seaward depth variation along 

240 the river.

241 For the chosen 6 cross-sections in the Changjiang Estuary (Fig. 6), the width and 

242 average depth at 0 m of the cross-section 1 in region A were 11.1 km and 8 m in 

243 1958, respectively. They changed to 11.5 km and 8.6 m in 2016. And the width to 

244 depth ratio (B/H) reduced by 4% from 1958 to 2016. The average depths of the cross-

245 sections 2 and 3 in region B both increased by 0.2 m and 3.1 m, respectively. The 

246 width of the former increased by about 5% while the latter reduced by 16%. The B/H 

247 of the cross-section 2 in the South Channel had no obvious change, but that of the 

248 cross-section 3 in the upper section of the North Channel significantly decreased by 

249 40%, due to embankment for the Qingcao Shoal reservoir. The above-mentioned 

250 parameters of cross-sections 4, 5 and 6 in region C also had a similar variation 

251 tendency as those in the upper section of the North Channel. From 1958 to 2016, the 

252 mean width and width to depth ratio of the three cross-sections in region C reduced by 

253 42% and 60%, respectively, while the mean depth increased by almost 50%. The 

254 reclamations in both East Nanhui shoal and East Hengsha shoal and the Deep 

255 Waterway Channel Project in the North Passage were the main reasons for such 
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256 changes (Fig. 6B and 6C). 

257 So far, the width at 0 m of the most cross-sections in the Changjiang Estuary had 

258 a decreasing trend while the average depth had an increasing trend from 1958 to 2016, 

259 especially in the regions where human activities occurred frequently. Thus the mean 

260 width to depth ratio of the cross-sections decreased obviously during the past 59 

261 years. It indicated that the cross-sections in the Changjiang Estuary became much 

262 narrower and deeper from 1958 to 2016, corresponding to deposition in the sand bars 

263 and shoals and erosion in the deep channels.

264

265 4. Discussion

266 4.1 Spatially varying hydrodynamics and sediment characteristics

267 The Changjiang Estuary covers so large area that hydrodynamics and sediment 

268 transport dynamics present strong spatial variations from upstream to downstream due 

269 to the combined effect of river and tides (Liu et al., 2010; He et al., 2015). Most of the 

270 main channels in the Changjiang Estuary are ebb-dominated with stronger ebb 

271 currents than flood currents (Fig. 3A). The ratios of river discharge to tidally mean 

272 discharge (Qr/Qt) present an obvious decreasing tendency in the seaward direction. 

273 For instance, the Qr/Qt ratios are 0.44 and 0.12 in regions A and C, respectively (Fig. 

274 3B). From the South Branch to the MBZ, the Qr/Qt ratio reduces by 73%. It indicates 

275 that the South Branch is more river-influenced while the MBZ is much more tidal-

276 influenced than the South Branch. 

277 The suspended sediment concentration (SSC) exhibits an increasing trend from 
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278 upstream (region A) to downstream (region C). For example, the mean SSC was only 

279 0.43 kg/m3 between 2003 and 2007 in the South Branch (region A), while the mean 

280 SSC increased to 0.99 kg/m3 in the South Passage (region C), which is twice more 

281 than that in the South Branch (Fig. 3C; Liu et al., 2010; He et al., 2015).

282 The grain size of suspended sediment presents an increasing trend from the 

283 South Branch to the MBZ (Fig. 3D). In 2003, the median grain size of suspended 

284 sediment in region A was 6.5 μm while it was 8～9.5 μm in the MBZ. In contrast, the 

285 grain size of bottom sediments decreases seaward along the river. In the main channel 

286 of the South Branch, the median grain sizes of bottom sediments were >200 μm while 

287 such values were far ˂50 μm in the main channel of the MBZ in 2003 (Fig. 3E).

288 All these differences between regions A and C (region B is in transition between 

289 them) suggest that they are controlled by different hydrodynamic conditions thus 

290 potentially explaining different morphological behavior between them. 

291

292 4.2 Spatially varying morphodynamic behavior of the Changjiang Estuary

293 Riverine input is a major source of water and sediment fluxes that influence the 

294 estuarine morphological evolution. Sediment source reductions below pristine 

295 conditions are observed in many estuaries creating new challenges to estuaries and 

296 deltas under sea level rise (Syvitski et al., 2011). For the Changjiang Estuary, it was 

297 obvious that the morphological changes were influenced by riverine sediment load 

298 reduction (Yang et al., 2005, 2011; Kuang et al., 2013; Wang et al., 2008, 2013; 

299 Wang et al., 2014), but some parts of the estuary, such as the MBZ, had little response 
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300 to riverine sediment load reduction within a short time (Dai et al., 2014), owing to the 

301 complex spatio-temporal variations of hydrodynamics and sediment characters in 

302 such a large estuary. The effects of sediment source reduction caused by the Three 

303 Gorges Dam in the watershed on estuarine morphological change are still in dispute. 

304 How different branches in the Changjiang Estuary responded to sediment source 

305 reduction needs further clarification.

306 It is widely known that river discharge acting on the Changjiang Estuary did not 

307 show significant decreasing or increasing trend from 1958 to 2016, but the sediment 

308 load at Datong had significantly reduced since the mid-1980s, mainly attributed to 

309 dam constructions in the drainage basin. The annual river discharge at Datong 

310 remained about 890×109 m3/year in the total six periods while the annual sediment 

311 load had continuously reduced from 4.82×108 t/year (1958-1973) to 1.28×108 t/year 

312 (2010-2016), a 2/3 reduction (Fig. 2A; Chen et al., 2008; He et al., 2015). However, 

313 there was no directional deposition or erosion trend of the entire study area in the 

314 estuary (Table 1), suggesting that estuarine morphological changes are not linearly or 

315 simply correlated with riverine sediment supply changes as widely documented in 

316 previous studies. We will discuss potential factors acting on the inconsistent change 

317 behavior, including spatially varying estuarine morphological response behavior, time 

318 lag effect, etc. 

319 Both regions A and B were featured by an obvious switch change from 

320 deposition to erosion over time. A positive linear relationship was found between the 

321 annual mean erosion or deposition rates in region A (R2=0.48) and region B (R2=0.56) 
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322 and the annual mean sediment load at Datong (Fig. 7A and 7B), indicating that the 

323 morphological changes of these two regions had a good relationship with riverine 

324 sediment source variations. We infer that the pan-South Branch is more fluvial-

325 influenced that its morphology is sensitive to riverine sediment supply reduction. On 

326 the other hand, the MBZ presented a persisting deposition trend prior 2010 and turned 

327 to be afterward erosion. The annual mean erosion or deposition rates of the MBZ had 

328 poor relationship with the annual mean sediment load at Datong over 59 years 

329 (R2=0.19) (Fig. 7C). We think the MBZ is controlled by both river and tides that its 

330 morphological changes can have resilience to sediment source changes and/or are out 

331 of phase of sediment source changes.

332 Specifically, region A turned to be moderately eroded from 1986 to 1997, but 

333 region B still showed a slight deposition at that time and shifted to moderate erosion 

334 from 1997 to 2002. The response of the South Branch and region B to riverine 

335 sediment source reduction thus did not occur simultaneously. We see that both the 

336 mean annual erosion or deposition rates of region A and region B are positively 

337 correlated to the annual mean sediment load at Datong, suggesting erosion happened 

338 in these zones due to riverine sediment source reduction. For region A, the 

339 correlationship changes little (R2<0.48) when considering a 2 year time lag between 

340 estuarine morphology and riverine sediment supply. The correlationship significantly 

341 improves (R2=0.77) in region B considering a time lag of 5 years (Table 2). It 

342 indicates that there is a ˂5 years of time lag for the response of morphological 

343 changes in region B, while the time lag of region A is in the order of ～2 years, 
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344 which is shorter than that in region B. The annual mean erosion or deposition rates of 

345 region C (the MBZ) has little (R2=0.19) relationship with the annual mean sediment 

346 load at Datong. The correlationship also improves (R2=0.53) considering a time lag of 

347 5 years (Table 2). Though limited data about sediment load at Datong before 1953 is 

348 available, we believe that the time lag of morphological changes in the MBZ can 

349 be >10 years considering its large scale and tidal influence.

350 The presence of a time lag between large scale estuarine morphological 

351 responses to riverine sediment supply variations is understandable. The Changjiang 

352 Estuary is primarily controlled by river and tides. River discharge transports a large 

353 amount of suspended sediment seaward and flushes bottom sediments downward. 

354 Tidal waves and currents propagate landward and create stratification and 

355 gravitational circulations particularly in region C, which have effects in trapping 

356 sediment in the mouth bar (turbidity maximum zone) and even inducing landward 

357 sediment transport in the bottom layers. Tidal asymmetry and tidal pumping can also 

358 favor landward sediment transport though it may be of secondary importance due to 

359 high river discharge (Guo et al., 2015). Sediment redistribution within the estuary, 

360 e.g., by channel erosion and flat accretion, explains the large scale morphological 

361 resilience to external source changes (Guo, 2014). Spatially, region A is overall well-

362 mixed and more river-influenced and its sediment source and transport processes are 

363 directly affected by river forcing first (He et al., 2015), explaining why the South 

364 Branch is sensitive to riverine input and a small time lag. Region C is dominantly 

365 partially-mixed and both river and tides are of equal importance. Region C is strongly 
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366 affected by density currents, horizontal circulations, tidal asymmetry, etc. (Guo, 2014; 

367 Wu et al., 2010, 2012; Jiang et al., 2013), that its morphology has large resilience and 

368 inherent buffering effects to riverine sediment source changes. Region C, facing to the 

369 open sea, is also influenced by wind and waves which can rework tidal flats sediments 

370 to be transported and deposited in channels. Overall these processes explain why a 

371 large time lag is present in the MBZ compared to the inner estuary, e.g., the South 

372 Branch. 

373 The time scale of sediment transport in such a large estuary system may also play 

374 a role though it is difficult to quantify accurately. The riverine sediment flux 

375 monitored at Datong, 600 km upstream of region C, may take quite a while to be 

376 transported seaward step by step while along river morphological changes have 

377 buffering effects. It can explain the seaward increasing time lag. The SSC in both 

378 regions A and B had decreased significantly over time. For instance, the depth-

379 averaged SSC in the South Branch and the South Channel reduced by 84% and 64% 

380 from 2003 to 2013, respectively (Fig. 3C). However, the depth-averaged SSC in the 

381 MBZ was still high (>0.5 kg/m³ ) and even increased by 36% in the North Passage 

382 and 75% in the lower section of the North Channel (Fig. 3C). It suggests that the 

383 response behavior in region C is quite different from regions A and B.

384 The overall erosion since 2010 in all the three regions may suggest that the 

385 estuary undergoes a shift from overall deposition to erosion after a time lag (Fig. 4, 

386 Table 1). Comparing with the previous period (2002-2010), the erosion rate of region 

387 A decreased while the erosion rate of region B increased (Table 1). However, the 
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388 MBZ sustained a high deposition rate from 2002 to 2010, even the sediment load at 

389 Datong had reduced by 2/3 since 2003. It suggests that the effects of riverine sediment 

390 source reduction on the MBZ are only detectable in the very recent years. It again 

391 supports the argument of a time lag ˂10 years for the response of the morphological 

392 changes in region C to riverine sediment source reduction. The time lag effect is 

393 easily ignored in the morphological examination in previous studies, which can 

394 explain why the controversial conclusions reached.

395 So far the time lag is only quantitatively discussed due to large bathymetric data 

396 interval. Future work by morphodynamic modeling can help to better quantify the 

397 time lag and its spatial variability. Actually a large estuarine morphodynamic 

398 adaptation time scale is reported in schematized long-term estuarine and deltaic 

399 morphodynamic studies and it merits careful consideration in real world as well when 

400 predicting future morphological changes in response to a low sediment influx regime 

401 and sea level rise.

402

403 4.3 Spatially varying morphological changes under big river floods 

404 Estuarine morphological evolution is so complex that it is influenced by a variety 

405 of factors other than riverine sediment load changes. River flow is just one prominent 

406 process governing estuarine morphodynamics. Though the annually mean river 

407 discharge changes little and is not expected to cause directional estuarine 

408 morphological changes (Table 1), changes of the frequency and magnitude of episodic 

409 big river floods can play a role in shaping morphological evolution (Yun, 2004; Guo, 
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410 2014; Luan et al., 2016). At long-term time scales, catastrophic river floods with a 

411 peak river discharge ˂70,000 m3/s were thought to play an prominent role in 

412 stimulating new channel bifurcation in the Changjiang Estuary, such as the formation 

413 of the North Passage due to the big flood in 1954 (Yun, 2004). At decadal time scales, 

414 we identify five years with flood peak discharges ˂70,000 m³/s from 1958 to 2016, 

415 including a catastrophic flood in 1998. We see that most of the high river discharges 

416 occurred in the period of 1997-2002 (Fig. 2B). Accordingly, the estuary displayed 

417 severe erosion in the same interval (1997-2002) compared to other periods though net 

418 deposition was detected in region A due to the accretion over the shoals (Fig. 4). This 

419 change pattern was inconsistent with the long-term tendency between 1958 and 1997 

420 (Table 1). Linear riverine sediment source reduction since the mid-1980s failed to 

421 explain such intense changes. 

422 We argue that enduring high river discharges exert strong influence on estuarine 

423 morphological changes. The high river discharges (>70,000 m3/s) persisted 1-2 

424 months in 1998 and 1999, and post-flood discharges maintained at a relatively high 

425 level (>45,000 m3/s) for 2-3 months in these two years. The river discharge 

426 hydrographs were quite different from normal conditions. It provided a continuous 

427 strong river force in flushing sediment seaward. Moreover, based on the historical 

428 data from 1951 to 1984, Yin et al. (2009) found significant sediment deficiency for 

429 river discharges >60,000 m3/s at Datong. High river flow has a larger sediment 

430 transport capacity but the sediment source-limited condition in the river upstream 

431 Datong restricts sediment availability to the estuary, thus triggering erosion in the 
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432 estuary considering further by enhanced sediment transport capacity thru river-tide 

433 interactions (Guo, 2014). The net deposition in region A in 1997-2002 reflects the 

434 imbalance between channel erosion and shoal accretion which is very much related to 

435 channel migration and shoal movement caused by big river floods as well. Overall we 

436 think that it is not only the magnitude of the flood peak discharges, but also its 

437 duration and associated sediment deficiency, matter in causing strong estuarine 

438 morphological changes.

439

440 4.4 The influence of human activities

441 Extensive human activities in the estuary locally, such as the Deep Waterway 

442 Channel Project, dredging, reclamation, and embankment for reservoir construction, 

443 also exert strong impacts in estuarine morphological evolution at decadal time scales 

444 (Fig. 8A). 

445 Reclamation and embankment is one of the main factors in stabilizing coastlines 

446 and narrowing channels in historic periods. The width of the Xuliujing section 

447 narrowed from 15.7 km in 1958 to 5.7 km in 1970s due to reclamation and the 

448 narrowed Xuliuing section became a controlling point in stabilizing the division 

449 between the South Branch and the North Branch (Yun, 2004; Guo, 2014). As a result 

450 of it, the old Baimao Shoal moved northward and merged with the Chongming Island 

451 in 1970s and the entrance of the South Branch became much narrower and deeper 

452 from 1958 to 1973. For the entire study area, a reduction of 571 km2 of the water 

453 surface area resulted from reclamation and embankment from 1958 to 2016, 
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454 accounting for almost 14% of that in 1958, which meant 11 man-made Hengsha 

455 Islands formed in the Changjiang Estuary (Fig. 8A). Due to the reclamation and 

456 embankment, the channels in the estuary become much narrower and deeper, 

457 especially around the regions reclamation or embankment occurred nearby. For 

458 instance, the width and width to depth ratio of the cross-section 3 obviously decreased 

459 by 16% and 40%, respectively, especially after 2009 owing to embankment for the 

460 Qingcao Shoal reservoir (Fig. 6).

461 The Deep Waterway Channel Project was carried out in the North Passage of the 

462 Changjiang Estuary since 1998 and almost 50-80×106 m³ of sediment was dredged 

463 each year from the navigation channel (Fig. 8B). The morphological changes of the 

464 MBZ, including the North Passage, were intensely impacted by these human 

465 interventions. The North Passage tended to be a man-controlled bifurcation channel 

466 owing to the navigational works and dredging. The cross-section of the North Passage 

467 also became narrower and deeper. Taking cross-section 5 as an example, a 53% 

468 reduction in width and a 35% growth in average-depth were observed from 1958 to 

469 2016 and a dramatic change mainly occurred since 2002 because of the navigational 

470 works and dredging. Other changes such as local erosion in the middle reach of the 

471 North Channel and the upper section of the South Passage and reduced horizontal 

472 growth and enhanced vertical accretion of the Jiuduan Shoal from 2002 to 2010 were 

473 also attributed to the navigational works (Jiang et al., 2010).

474 Human activities play a more important role in driving abrupt changes of 

475 estuarine morphology by stabilizing coastlines and narrowing channels in relatively 

1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357



476 short time and their impacts can persist for long time, overlapped by slow changes 

477 under natural evolution processes. Overall the Changjiang Estuary is becoming more 

478 constrained and human-influenced due to extensive reclamation, embankment, and 

479 navigational works and the channel-shoal system of the estuary will be more 

480 stabilized under human interventions in the future.

481

482 5. Conclusions

483 We analyzed and interpreted 59-year's morphological evolution of the 

484 Changjiang Estuary as a whole from 1958 to 2016 and inferred the causes and 

485 implications. We see that its channel-shoal pattern featured by meandering and 

486 bifurcated channels does not change over decades though there is strong erosion and 

487 deposition. The Changjiang Estuary exhibits an overall deposition trend but with 

488 strong temporal and spatial variations. The net deposition volume of the whole study 

489 area was 8.3×108 m³ from 1958 to 2016, or a net deposition rate of 14.3×106 m³/year. 

490 Spatially both regions A and B, the inner part of the estuary, turned from 

491 deposition to erosion, i.e., by totally 5×108 m³ and 4.7×108 m³ eroded, respectively, 

492 over 59 years. However, there was 18×108 m³ of deposition in region C, i.e., the 

493 mouth bar zone, from 1958 to 2016. Erosion had been also detected since 2010 in the 

494 MBZ. The strong spatial variability can be explained by the differences in their 

495 hydrodynamic forcing and morphological features owing to along river distribution of 

496 river and tide energy. In the vertical direction, the hypsometric curves showed that 

497 deposition happened over the sand bars and shoals, whereas erosion mainly occurred 
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498 in the deep channels since 1958. As a result, the channels of the estuary became much 

499 narrower and deeper.

500 The non-directional deposition and erosion trend of estuarine morphological 

501 changes is consistent with directionally decreasing riverine sediment supply. The 

502 morphological change of the pan-South Branch had a good relationship with riverine 

503 sediment source reduction. We infer that the pan-South Branch is more fluvial 

504 influenced and its morphology is sensitive to riverine sediment supply reduction. The 

505 mouth bar zone is controlled by both river and tides thus its morphology does not 

506 show a clear linkage with sediment supply. Seaward sediment flushing takes time and 

507 there is a time lag between estuarine morphological changes and riverine sediment 

508 source variations in the different regions. The time lag increases in the seaward 

509 direction and it is >10 years in the mouth bar zone. Sediment redistribution has 

510 buffering effect and the estuarine circulation, tidal pumping, waves, etc. can also 

511 explain sediment trapping in the mouth bar zone which has a large morphological 

512 resilience to external source changes. We argue that the time lag effects need to be 

513 considered when examining large scale estuarine morphological changes in response 

514 to riverine sediment supply variations which is not well understood but an important 

515 issue given projection of future changes.

516 Big river flows with long duration and sediment deficiency may also explain the 

517 erosion in periods from the late 1990s to early 2000s. 

518 Human activities such as the Deep Waterway Channel Project, reclamation, and 

519 embankment play an important role in driving morphological evolution in the estuary 
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520 by stabilizing coastlines and narrowing channels. Overall the Changjiang Estuary is 

521 becoming more constrained and man-influenced due to extensive reclamation, 

522 embankment, and the navigational works and the channel-shoal system of the estuary 

523 will be more stabilized in the future.

524 Future work by using morphodynamic modeling is needed to better quantify the 

525 time lag and explain the controls of spatial morphological variability. 
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740
741 Fig. 1. A sketch map of the study area and division of different branches in the Changjiang Estuary with its 

742 bathymetry (depth in meters) in 2016. The whole study area is divided into three parts by brown solid lines, i.e., 

743 region A (the South Branch (1#)), region B (the South Channel (2#) and the upper section of the North Channel 

744 (5#)), and region C (the North Passage (3#), the South Passage (4#), and the lower section of the North Channel 

745 (6#)).

746



747
748 Fig. 2. (A) Annual river discharge and sediment load at Datong from 1950 to 2015 (Blue dotted line: annual 

749 river discharge from 1950 to 2015, Brown solid line: annual sediment loads from 1951 to 2015, Brown dotted 

750 lines: the annual mean sediment loads during different periods which indicated the riverine sediment load 

751 reduction mainly due to dam constructions in the Changjiang River basin (4.7×108 t/year 1953-1984, 3.4×108 

752 t/year 1986-2002, 1.4×108 t/year 2004-2015), Green square solid points: the years that catastrophic floods 

753 happened in both 1954 and 1998). (B) The number of the days that daily water discharge is greater than 60,000 

754 m³/s (blue), 65,000 m³/s (red), and 70,000 m³/s (green) each year at Datong from 1958 to 2015. 

755
756
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758 Fig. 3. Longitudinal distribution of the depth-averaged flood and ebb current velocity during a neap-spring tidal 

759 cycle (A), ratio of river discharge to tidally mean discharge (Qr/Qt) during a neap-spring tidal cycle (B), depth-

760 averaged suspended sediment concentration (C) (yellow bar: 2003; blue bar: 2013), depth-averaged suspended 

761 sediment D50 (D), and bottom sediments D50 (E) in wet season in 2003 (data from Liu et al., 2010 and He et al., 

762 2015).
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765
766 Fig. 4. Bathymetry changes of the study area during different periods (1958-1973, 1973-1986, 1986-1997, 1997-

767 2002, 2002-2010, and 2010-2016) (unit: m/year).

768
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770 Fig. 5. Hypsometry changes of region A (A), region B (B), region C (C), and entire study area (D) from 1958 to 

771 2016.



772
773 Fig. 6. (A) Location of 6 chosen cross-sections in the Changjiang Estuary. (B) Width to depth ratios of 6 cross-

774 sections based at 0 m referenced to the TLAT in 1958 and 2016. (C) Morphological variations of 6 cross-sectional 

775 profiles in both 1958 and 2016. 
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790 Fig. 7. Comparison of mean annual erosion/deposition rates in region A (A), region B (B), and the MBZ (C) with 

791 mean annual sediment load at Datong during the different periods.
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798
799 Fig. 8. (A) Change of the shorelines and main large hydraulic constructions in the Changjiang Estuary different 

800 periods. (B) Annual dredging amount in the North Passage in the Changjiang Estuary.
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725 Table 1. Annual mean river discharge and sediment load at Datong and the erosion or deposition parameters (net 
726 rates, area and net thickness) in region A, B, C, and whole study area (A+B+C) during different periods (1958-
727 1973, 1973-1986, 1986-1997, 1997-2002, 2002-2010, 2010-2016) (positive values stand for deposition while 
728 negative values stand for erosion).

729

Location Unit
Annual-mean river discharge Datong 108 m3/year 8632 8925 8805 10018 8401 8588

Annual-mean sediment load Datong 108 t/year 4.88 4.53 3.60 3.36 1.84 1.28

net rates 106 m3/year 19.2 -0.4 -35.9 16.0 -37.7 -28.8

area 108 m2 6.9 6.8 6.6 6.7 6.3 6.3

net thickness mm/year 27.7 -0.5 -54.3 23.9 -59.6 -45.8

net rates 106 m3/year 5.5 -11.1 8.4 -23.5 -23.7 -31.7

area 108 m2 3.6 3.6 3.5 3.5 2.9 2.9

net thickness mm/year 15.1 -31.1 24.4 -67.8 -81.9 -110.8

net rates 106 m3/year 73.5 2.3 83.7 -32.5 75.3 -115.3

area 108 m2 29.0 28.9 28.6 27.9 27.3 25.4

net thickness mm/year 25.3 0.8 29.3 -11.6 27.6 -45.3

rates 106 m3/year 98.2 -9.2 56.3 -40.0 13.9 -175.7

area 108 m2 39.6 39.3 38.7 38.1 36.5 34.6

thickness mm/year 24.8 -2.3 14.5 -10.5 3.8 -50.8

2002-2010 2010-20161958-1973 1973-1986 1986-1997 1997-2002

region A

region B

region C

A+B+C

Erosion / deposition
parameters

730

731

732

733

734

735 Table 2. Linear correlation coefficients between the mean annual erosion/deposition rates in region A (A) (i.e., the 
736 South Branch), region B (B), and region C (C) (i.e., the MBZ) and the mean annual sediment load at Datong in 
737 current periods or 1-5 years before the current periods.

R2

Region corresponding 
year

previous 
1 year

previous 
2 years

previous 
3 years

previous 
4 years

previous 
5 years

A 0.48 0.48 0.45 0.35 0.28 0.23 

B 0.56 0.58 0.63 0.71 0.73 0.77 

C 0.19 0.23 0.29 0.38 0.51 0.53 

738

739



1

2 An analysis on half century morphological changes in the 

3 Changjiang Estuary: spatial variability under natural processes 

4 and human intervention

5

6 Jie Zhao a, Leicheng Guo a,*, Qing He a, Zheng Bing Wang a,b,c, D.S. van 

7 Maren b,c, Xianye Wang a 

8

9 a. State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, 

10 People’s Republic of China

11 b. Faculty of Civil Engineering and Geosciences, Delft University of Technology, P.O. Box 5048, NL-2600 

12 GA Delft, The Netherlands

13 c. Deltares, WL | Delft Hydraulic, P.O.Box 177, NL-2600 MH Delft, The Netherlands

14 *. Corresponding author: E-mail: lcguo@sklec.ecnu.edu.cn

15

16



17 Abstract

18 Examination of large scale, alluvial estuarine morphology and associated time 

19 evolution is of particular importance regarding management of channel navigability, 

20 ecosystem, etc. In this work, we analyze morphological evolution and changes of the 

21 channel-shoal system in the Changjiang Estuary, a river- and tide-controlled coastal 

22 plain estuary, based on bathymetric data between 1958 and 2016. We see that its 

23 channel-shoal pattern is featured by meandering and bifurcated channels persisting 

24 over decades. In the vertical direction, hypsometry curves show that the sand bars and 

25 shoals are continuously accreted while the deep channels are eroded, leading to 

26 narrower and deeper estuarine channels. Intensive human activities in terms of 

27 reclamation, embankment, and dredging play a profound role in controlling the 

28 decadal morphological evolution by stabilizing coastlines and narrowing channels. 

29 Even though, the present Changjiang Estuary is still a pretty wide and shallow system 

30 with channel width-to-depth ratios >1000, much larger than usual fluvial rivers and 

31 small estuaries. In-depth analysis suggests that the Changjiang Estuary as a whole 

32 exhibited an overall deposition trend over 59 years, i.e., a net deposition volume of 

33 8.3×108 m3. Spatially, the pan-South Branch was net eroded by 9.7×108 m3 whereas 

34 the mouth bar zone was net deposited by 18×108 m3, suggesting that the mouth bar 

35 zone is a major sediment sink. Over time there is no directional deposition or erosion 

36 trend in the interval though riverine sediment supply has decreased by 2/3 since the 

37 mid-1980s. We infer that the pan-South Branch is more fluvial-controlled therefore its 

38 morphology responds to riverine sediment load reduction fast while the mouth bar 



39 zone is more controlled by both river and tides that its morphological response lags to 

40 riverine sediment supply changes at a time scale >10 years, which is an issue largely 

41 ignored in previous studies. We argue that the time lag effect needs particular 

42 consideration in projecting future estuarine morphological changes under a low 

43 sediment supply regime and sea-level rise. Overall, the findings in this work can have 

44 implications on management of estuarine ecosystem, navigation channel and coastal 

45 flooding in general.

46  

47 Key words: Changjiang Estuary; Morphological Evolution; Sediment supply

48



49 Highlights:

50  Distinct morphological behavior between South Branch and mouth bar zone in 

51 the Changjiang Estuary.

52  Large-scale morphodynamic response lags riverine sediment source reduction by 

53 a time scale >10 years.

54  Big river floods with long duration and sediment deficiency cause severe erosion. 

55  Human activities stabilize coastlines and narrow channels. 

56

57



58 1. Introduction

59 Morphological evolutions are critical for socio-economic and ecological 

60 environmental development, especially in estuaries where most of the world’s famous 

61 mega cities and harbors locate. The combined action of fluvial discharge, tidal flows, 

62 and waves generally controls the long-term estuarine morphological changes, 

63 resulting in a feedback loop between estuarine morphology and hydrodynamics 

64 through sediment transport (Cowell and Thom, 1994; Freire et al., 2011; Wang et al, 

65 2013). Morphological evolution of large estuaries influenced by more than one 

66 primary forcing are insufficiently understood owing to inherent complexity in terms 

67 of large space scale and strong spatial and temporal variations. In addition, 

68 anthropogenic activities, such as waterway regulation project, dredging, embankment, 

69 reclamation, and dam construction, have profound effects on estuaries and human 

70 interventions play an increasingly important role in driving estuarine morphological 

71 changes (Milliman et al., 1985; Syvitski et al., 2005; Wang et al., 2013). Centennial 

72 bathymetric data of estuaries are rare while data at decadal time scales are readily 

73 more available, enabling quantitative examinations of medium- to long-term (decades 

74 to centuries) estuarine morphological evolution in response to natural forcing and 

75 human influences.

76 Morphological evolution and channel pattern changes in rivers, tidal basins, 

77 estuaries, and coasts have been broadly discussed at varying time scales. The 

78 depositional and morphologic patterns can be quite different under varying single or 

79 multiple primary forcing including river, tides, waves, etc (Wright, 1977). A 



80 meandering channel pattern with coexisting flood and ebb channels is observed in 

81 tide-dominated systems, such as the Dutch Western Scheldt Estuary (Van Veen, 1950; 

82 Van den Berg et al., 1996; Toffolon and Crosato, 2007) and the Chesapeake Bay in 

83 the USA (Ahnert, 1960). Distributary channels with multiple bifurcations are 

84 observed in river-controlled estuaries and/or delta systems (Andrén, 1994; Edmonds 

85 and Slingerland, 2007; Wang and Ding, 2012). Large scale morphodynamic behavior 

86 under combined river and tidal forcing, such as the Changjiang Estuary in China, is 

87 insufficiently examined (Guo et al., 2015).

88 Morphological evolution of the Changjiang Estuary has been examined by 

89 calculating erosion-deposition volumes and analyzing movements of isobaths, 

90 shorelines, and thalwegs (Chen et al., 1985 and 1999; Yun, 2004; Wang et al., 2013; 

91 Luan et al., 2016). Riverine sediment source availability and human activities are 

92 widely seen as two important factors in controlling morphological evolution in the 

93 Changjiang Estuary, which is also true in other estuaries and deltas such as Niles, 

94 Mississippi, and Colorado (Syvitski and Kettner, 2011). Note that previous 

95 examinations of the morphological changes in the Changjiang Estuary were mainly at 

96 regional scale without taking the estuary as a whole into consideration. For instance, 

97 owing to riverine sediment supply reduction, regional erosion was detected in the 

98 South Branch (Wang et al., 2013) and the delta front regions (10 m deep nearshore) 

99 (Yang et al., 2003, 2005, 2011) in the recent decades, whereas the examination of a 

100 larger region including the sand bars in the mouth bar zone indicates continued 

101 deposition (Dai et al., 2014). Moreover, the time scale of large scale estuarine 



102 morphodynamic adaptation in responding to external forcing changes is very much 

103 ignored in previous studies. The morphological impacts of human activities such as 

104 reclamations (Chu et al., 2013; Wei et al., 2015) and the Deep Waterway Channel 

105 Project along the North Passage (De Vriend et al., 2011; Jiang et al., 2012, 2013) can 

106 also vary in a large space and time scales depending on their location, implementation 

107 time, and scales. Sea-level rise is also another factor needs consideration (Wang et al., 

108 2013; Wang et al., 2014; Wei et al., 2015). So far, a comprehensive and quantitative 

109 investigation of morphological evolution in the entire Changjiang Estuary is still very 

110 much needed.

111 This study analyzes the morphological changes in the Changjiang Estuary as a 

112 whole based on the bathymetric data collected in the period between 1958 and 2016. 

113 We will focus on the erosion-deposition processes, changes of hypsometry, and cross-

114 section configuration of different branches in the estuary to elaborate the channel 

115 patterns and the spatial and temporal variability of the estuarine morphology. The 

116 controls of the morphological changes are discussed in terms of natural processes and 

117 human activities. The insights obtained from this study are helpful for management 

118 and restoration opportunities in the Changjiang Estuary. 

119

120 2. Data and methods

121 2.1 Brief introduction to the Changjiang Estuary

122 The Changjiang River and its estuary is one of the biggest on earth with respect 

123 to its quantity such as river discharge, sediment load, and space scales. The annual 



124 mean river discharge is approximately 28.3×103 m3/s (1950-2015) and annual 

125 sediment load is 3.7×108 tons (1953-2015) (CWRC, 2015). The river and sediment 

126 discharges exhibit markedly seasonal variations, with about 71% of water flux and 

127 87% of sediment load flushed in the wet season between May and October (Chen et 

128 al., 2008). Mean tidal range decreases from about 3.2 m nearshore to 2.4 m at 

129 Xuliujing, the present delta apex, and further to be insignificant 500 km upstream of 

130 Xuliujing. The tidal prism varies between 1.3 × 109 and 5.3× 109 m3, with a mean 

131 tidal discharge almost 9 times as much as the mean river discharge (Chen et al., 

132 2002). Thus the Changjiang Estuary is dominantly a partially-mixed, meso-tidal 

133 system (Chen et al., 2002). The waves in the Changjiang Estuary are mainly wind 

134 waves with a mean wave height of 0.9 m at Yinshuichuan in the river mouth area (Wu 

135 et al., 2009; Wang et al., 2013). River and tides are the main forcing conditions 

136 though wind and waves can affect hydrodynamics and sediment transport over the 

137 shallow tidal flats. The present Changjiang Estuary has four prime inlets connecting 

138 to the sea, namely the North and South Branch, North and South Channel, and North 

139 and South Passages (Fig. 1). The estuary mouth is as wide as 90 km and the width 

140 decreases to approximately 6 km at the apex of the funnel-shaped estuary, i.e., 

141 Xuliujing. Overall the Changjiang Estuary is a complex large scale system with few 

142 comparable cases in the world. 

143

144 2.2 Data and methods



145 We collect bathymetric data in 1958, 1973, 1986, 1997, 2002, 2010, and 2016, 

146 covering the entire regions seaward Xuliujing until 10-15 m deep waters (Fig. 1). The 

147 North Branch (NB), nowadays tide-dominated and limitedly influenced by fluvial 

148 processes, is excluded in this study due to data scarcity. The bathymetry data in 1958, 

149 1973, and 1986 are obtained from digitization of historical marine charts with a 

150 resolution 1/50000 and data in other years are from field sounding measurements with 

151 an accuracy of 1-2% for depths <2 m and <1% for depths >2 m (Wang et al., 2011, 

152 2013). All depth data are referenced to the same datum, the Theoretical Lowest 

153 Astronomical Tide (TLAT), which is basically below local mean water level by a half 

154 maximum tidal range (～ 2 m). A digital elevation model (DEM) by 20×20 m is 

155 created using Kriging interpolation. 

156 Considering spatial variations of hydrodynamics, sediment properties, and 

157 morphological features (Fig. 3), we divide the study area into three regions for the 

158 benefit of clarification. Region A includes the South Branch (SB) and region B 

159 includes the South Channel (SC) and the upper section of the North Channel (NC), 

160 while region C indicates the mouth bar zone (MBZ) which includes the lower section 

161 of the North Channel, the North Passage (NP), and the South Passage (SP). Regions A 

162 and B together are also named pan-South Branch (PSB) region as a counterpart of 

163 region C (Fig. 1). Erosion and deposition volumes of different regions and the estuary 

164 as a whole are calculated for different time intervals. Hypsometry curves are also 

165 derived by linking channel volumes and planar areas at different depths. The 

166 hypsometric curves help to uncover morphological change of channels and shoals in 



167 the vertical direction. Moreover, we also estimate variations of width, depth, and 

168 width-to-depth ratio and examine cross-section profile variations in different regions. 

169  

170 3. Results

171 3.1 Overall morphological evolution (1958-2016)

172 We see that there is no new channel bifurcation in the Changjiang Estuary since 

173 1958. The three-level bifurcation and four-outlet configuration persists and the 

174 channels and shoals develop toward mature conditions by strong erosion and 

175 deposition evolution (Fig. 4). The middle-channel channel-shoal pattern is featured by 

176 meandering channels and sand bars. The entire estuary becomes narrower and deeper 

177 owing to deposition over the shoals and tidal flats and erosion along the channels.

178

179 3.2 Erosion and deposition patterns

180 The study area as a whole (including regions A, B, and C) had experienced 

181 deposition from 1958 to 2016. The total net deposition amount of the study area 

182 reached 8.3×108 m³ over 59 years, which equals a net deposition rate of 14.3×106 

183 m³/year. 

184 Temporally, the estuary did not exhibit directional persistent deposition or 

185 erosion over 59 years (Table 1, Fig. 4). The entire study area first experienced fast 

186 deposition in 1958-1973 (98.2×106 m³/year), followed by slight erosion in 1973-1986 

187 (9.2×106 m³/year), deposition in 1986-1997 (56.3×106 m³/year), erosion in 1997-2002 

188 again (40×106 m³/year), slight deposition in 2002-2010 (13.9×106 m³/year), and 

189 recently fast erosion in 2010-2016 (175.7×106 m³/year).



190 Spatially, the net erosion volume was 9.7×108 m³ in the pan-South Branch 

191 between 1958 and 2016. Approximately 52% of that occurred in region A and 48% in 

192 region B. To the contrast, the MBZ was deposited by 18×108 m³ in the interval, 

193 indicating that the MBZ is a major sediment sink. The erosion and deposition patterns 

194 are different in different regions (Table 1). Region A had changed from deposition 

195 (1958-1973, 19.2×106 m³/year) to erosion (2010-2016, 28.8×106 m³/year). Similar 

196 variation behavior was also observed in region B by slight deposition (1958-1973, 

197 5.5×106 m³/year) and moderate erosion (2010-2016, 31.7×106 m³/year). However, 

198 region C showed a strong deposition trend from 1958 to 2010 and the deposition rates 

199 reached up to 75×106 m³/year most of the time, followed by significant erosion of 

200 1.15×108 m³/year since 2010.

201

202 3.3 Changes of hypsometry 

203 Hypsometric curve is a concise and quantitative way to understand vertical 

204 morphological characteristics. According to the hypsometric curves of the study area 

205 as a whole from 1958 to 2016 (Fig. 5D), both the total water volume and area of the 

206 study area decreased due to deposition and human activities. Specifically, the total 

207 water volume of the region below +2 m isobaths was 31.6×109 m³ in 1958. It 

208 decreased to 30×109 m³ in 2016, indicating 5% reduction compared to 1958. The total 

209 area at +2 m isobaths also decreased by about 514 km2 from 1958 to 2016, i.e., 13% 

210 of that in 1958, mainly owing to reclamations and embankment for the Qingcao Shoal 

211 reservoir. 



212 In the vertical direction, the erosion and deposition patterns of the sand bars and 

213 shoals and the deep channels were quite different from each other during the past 59 

214 years. By comparing the water volumes and areas of the channels under different 

215 isobaths in both 1958 and 2016 (Fig. 5D), we see that the entire study area was 

216 confined by -8 m isobaths. The water volume of the region above -8 m (-8～+2 m) 

217 isobaths reduced from 28.1×109 m³ in 1958 to 25×109 m³ in 2016, and the area 

218 decreased from 2.76×109 m2 to 2.15×109 m2. Deposition took place in the sand bars 

219 and shoals, which includes intertidal zone (0～+2 m). The water volume of the region 

220 below -8 m isobaths (-8～ -20 m) increased by about 1.49×109 m³ and the area 

221 increased by 0.1×109 m2. In the deep part of the channels below -12 m isobaths, the 

222 water volume and the area increased by 0.9×109 m³ and 0.11×109 m2, respectively. 

223 Thus the channels, especially the deep parts of them, were continuously eroded from 

224 1958 to 2016.

225 For three regions of the estuary, deposited sand bars and shoals and eroded deep 

226 channels were also detected from 1958 to 2016, but the depth thresholds for shallow 

227 (deposited) and deep (eroded) areas were different. Region A as a whole was 

228 separated by -7 m isobaths while region C was separated by -8 m isobaths. The shape 

229 of the hypsometric curves in different years was similar to each other, for both regions 

230 A and C (Fig. 5A and 5B). However, region B was separated by -1 m isobaths. The 

231 hypsometric curves in region B had significantly changes during the past 59 years, 

232 especially after 2002, mainly owing to embankment for the Qingcao Shoal reservoir 

233 (Fig. 5C).



234

235 3.4 Changes of cross-section

236 The width of the cross-sections in region C increases in the seaward direction. 

237 The depth of the cross-sections has a significant seaward decrease trend and has a 

238 minimum value on the top of the mouth bar. They are quite different from those in 

239 regions A and B which do not have such a significant seaward depth variation along 

240 the river.

241 For the chosen 6 cross-sections in the Changjiang Estuary (Fig. 6), the width and 

242 average depth at 0 m of the cross-section 1 in region A were 11.1 km and 8 m in 

243 1958, respectively. They changed to 11.5 km and 8.6 m in 2016. And the width to 

244 depth ratio (B/H) reduced by 4% from 1958 to 2016. The average depths of the cross-

245 sections 2 and 3 in region B both increased by 0.2 m and 3.1 m, respectively. The 

246 width of the former increased by about 5% while the latter reduced by 16%. The B/H 

247 of the cross-section 2 in the South Channel had no obvious change, but that of the 

248 cross-section 3 in the upper section of the North Channel significantly decreased by 

249 40%, due to embankment for the Qingcao Shoal reservoir. The above-mentioned 

250 parameters of cross-sections 4, 5 and 6 in region C also had a similar variation 

251 tendency as those in the upper section of the North Channel. From 1958 to 2016, the 

252 mean width and width to depth ratio of the three cross-sections in region C reduced by 

253 42% and 60%, respectively, while the mean depth increased by almost 50%. The 

254 reclamations in both East Nanhui shoal and East Hengsha shoal and the Deep 

255 Waterway Channel Project in the North Passage were the main reasons for such 



256 changes (Fig. 6B and 6C). 

257 So far, the width at 0 m of the most cross-sections in the Changjiang Estuary had 

258 a decreasing trend while the average depth had an increasing trend from 1958 to 2016, 

259 especially in the regions where human activities occurred frequently. Thus the mean 

260 width to depth ratio of the cross-sections decreased obviously during the past 59 

261 years. It indicated that the cross-sections in the Changjiang Estuary became much 

262 narrower and deeper from 1958 to 2016, corresponding to deposition in the sand bars 

263 and shoals and erosion in the deep channels.

264

265 4. Discussion

266 4.1 Spatially varying hydrodynamics and sediment characteristics

267 The Changjiang Estuary covers so large area that hydrodynamics and sediment 

268 transport dynamics present strong spatial variations from upstream to downstream due 

269 to the combined effect of river and tides (Liu et al., 2010; He et al., 2015). Most of the 

270 main channels in the Changjiang Estuary are ebb-dominated with stronger ebb 

271 currents than flood currents (Fig. 3A). The ratios of river discharge to tidally mean 

272 discharge (Qr/Qt) present an obvious decreasing tendency in the seaward direction. 

273 For instance, the Qr/Qt ratios are 0.44 and 0.12 in regions A and C, respectively (Fig. 

274 3B). From the South Branch to the MBZ, the Qr/Qt ratio reduces by 73%. It indicates 

275 that the South Branch is more river-influenced while the MBZ is much more tidal-

276 influenced than the South Branch. 

277 The suspended sediment concentration (SSC) exhibits an increasing trend from 



278 upstream (region A) to downstream (region C). For example, the mean SSC was only 

279 0.43 kg/m3 between 2003 and 2007 in the South Branch (region A), while the mean 

280 SSC increased to 0.99 kg/m3 in the South Passage (region C), which is twice more 

281 than that in the South Branch (Fig. 3C; Liu et al., 2010; He et al., 2015).

282 The grain size of suspended sediment presents an increasing trend from the 

283 South Branch to the MBZ (Fig. 3D). In 2003, the median grain size of suspended 

284 sediment in region A was 6.5 μm while it was 8～9.5 μm in the MBZ. In contrast, the 

285 grain size of bottom sediments decreases seaward along the river. In the main channel 

286 of the South Branch, the median grain sizes of bottom sediments were >200 μm while 

287 such values were far ˂50 μm in the main channel of the MBZ in 2003 (Fig. 3E).

288 All these differences between regions A and C (region B is in transition between 

289 them) suggest that they are controlled by different hydrodynamic conditions thus 

290 potentially explaining different morphological behavior between them. 

291

292 4.2 Spatially varying morphodynamic behavior of the Changjiang Estuary

293 Riverine input is a major source of water and sediment fluxes that influence the 

294 estuarine morphological evolution. Sediment source reductions below pristine 

295 conditions are observed in many estuaries creating new challenges to estuaries and 

296 deltas under sea level rise (Syvitski et al., 2011). For the Changjiang Estuary, it was 

297 obvious that the morphological changes were influenced by riverine sediment load 

298 reduction (Yang et al., 2005, 2011; Kuang et al., 2013; Wang et al., 2008, 2013; 

299 Wang et al., 2014), but some parts of the estuary, such as the MBZ, had little response 



300 to riverine sediment load reduction within a short time (Dai et al., 2014), owing to the 

301 complex spatio-temporal variations of hydrodynamics and sediment characters in 

302 such a large estuary. The effects of sediment source reduction caused by the Three 

303 Gorges Dam in the watershed on estuarine morphological change are still in dispute. 

304 How different branches in the Changjiang Estuary responded to sediment source 

305 reduction needs further clarification.

306 It is widely known that river discharge acting on the Changjiang Estuary did not 

307 show significant decreasing or increasing trend from 1958 to 2016, but the sediment 

308 load at Datong had significantly reduced since the mid-1980s, mainly attributed to 

309 dam constructions in the drainage basin. The annual river discharge at Datong 

310 remained about 890×109 m3/year in the total six periods while the annual sediment 

311 load had continuously reduced from 4.82×108 t/year (1958-1973) to 1.28×108 t/year 

312 (2010-2016), a 2/3 reduction (Fig. 2A; Chen et al., 2008; He et al., 2015). However, 

313 there was no directional deposition or erosion trend of the entire study area in the 

314 estuary (Table 1), suggesting that estuarine morphological changes are not linearly or 

315 simply correlated with riverine sediment supply changes as widely documented in 

316 previous studies. We will discuss potential factors acting on the inconsistent change 

317 behavior, including spatially varying estuarine morphological response behavior, time 

318 lag effect, etc. 

319 Both regions A and B were featured by an obvious switch change from 

320 deposition to erosion over time. A positive linear relationship was found between the 

321 annual mean erosion or deposition rates in region A (R2=0.48) and region B (R2=0.56) 



322 and the annual mean sediment load at Datong (Fig. 7A and 7B), indicating that the 

323 morphological changes of these two regions had a good relationship with riverine 

324 sediment source variations. We infer that the pan-South Branch is more fluvial-

325 influenced that its morphology is sensitive to riverine sediment supply reduction. On 

326 the other hand, the MBZ presented a persisting deposition trend prior 2010 and turned 

327 to be afterward erosion. The annual mean erosion or deposition rates of the MBZ had 

328 poor relationship with the annual mean sediment load at Datong over 59 years 

329 (R2=0.19) (Fig. 7C). We think the MBZ is controlled by both river and tides that its 

330 morphological changes can have resilience to sediment source changes and/or are out 

331 of phase of sediment source changes.

332 Specifically, region A turned to be moderately eroded from 1986 to 1997, but 

333 region B still showed a slight deposition at that time and shifted to moderate erosion 

334 from 1997 to 2002. The response of the South Branch and region B to riverine 

335 sediment source reduction thus did not occur simultaneously. We see that both the 

336 mean annual erosion or deposition rates of region A and region B are positively 

337 correlated to the annual mean sediment load at Datong, suggesting erosion happened 

338 in these zones due to riverine sediment source reduction. For region A, the 

339 correlationship changes little (R2<0.48) when considering a 2 year time lag between 

340 estuarine morphology and riverine sediment supply. The correlationship significantly 

341 improves (R2=0.77) in region B considering a time lag of 5 years (Table 2). It 

342 indicates that there is a ˂5 years of time lag for the response of morphological 

343 changes in region B, while the time lag of region A is in the order of ～2 years, 



344 which is shorter than that in region B. The annual mean erosion or deposition rates of 

345 region C (the MBZ) has little (R2=0.19) relationship with the annual mean sediment 

346 load at Datong. The correlationship also improves (R2=0.53) considering a time lag of 

347 5 years (Table 2). Though limited data about sediment load at Datong before 1953 is 

348 available, we believe that the time lag of morphological changes in the MBZ can 

349 be >10 years considering its large scale and tidal influence.

350 The presence of a time lag between large scale estuarine morphological 

351 responses to riverine sediment supply variations is understandable. The Changjiang 

352 Estuary is primarily controlled by river and tides. River discharge transports a large 

353 amount of suspended sediment seaward and flushes bottom sediments downward. 

354 Tidal waves and currents propagate landward and create stratification and 

355 gravitational circulations particularly in region C, which have effects in trapping 

356 sediment in the mouth bar (turbidity maximum zone) and even inducing landward 

357 sediment transport in the bottom layers. Tidal asymmetry and tidal pumping can also 

358 favor landward sediment transport though it may be of secondary importance due to 

359 high river discharge (Guo et al., 2015). Sediment redistribution within the estuary, 

360 e.g., by channel erosion and flat accretion, explains the large scale morphological 

361 resilience to external source changes (Guo, 2014). Spatially, region A is overall well-

362 mixed and more river-influenced and its sediment source and transport processes are 

363 directly affected by river forcing first (He et al., 2015), explaining why the South 

364 Branch is sensitive to riverine input and a small time lag. Region C is dominantly 

365 partially-mixed and both river and tides are of equal importance. Region C is strongly 



366 affected by density currents, horizontal circulations, tidal asymmetry, etc. (Guo, 2014; 

367 Wu et al., 2010, 2012; Jiang et al., 2013), that its morphology has large resilience and 

368 inherent buffering effects to riverine sediment source changes. Region C, facing to the 

369 open sea, is also influenced by wind and waves which can rework tidal flats sediments 

370 to be transported and deposited in channels. Overall these processes explain why a 

371 large time lag is present in the MBZ compared to the inner estuary, e.g., the South 

372 Branch. 

373 The time scale of sediment transport in such a large estuary system may also play 

374 a role though it is difficult to quantify accurately. The riverine sediment flux 

375 monitored at Datong, 600 km upstream of region C, may take quite a while to be 

376 transported seaward step by step while along river morphological changes have 

377 buffering effects. It can explain the seaward increasing time lag. The SSC in both 

378 regions A and B had decreased significantly over time. For instance, the depth-

379 averaged SSC in the South Branch and the South Channel reduced by 84% and 64% 

380 from 2003 to 2013, respectively (Fig. 3C). However, the depth-averaged SSC in the 

381 MBZ was still high (>0.5 kg/m³ ) and even increased by 36% in the North Passage 

382 and 75% in the lower section of the North Channel (Fig. 3C). It suggests that the 

383 response behavior in region C is quite different from regions A and B.

384 The overall erosion since 2010 in all the three regions may suggest that the 

385 estuary undergoes a shift from overall deposition to erosion after a time lag (Fig. 4, 

386 Table 1). Comparing with the previous period (2002-2010), the erosion rate of region 

387 A decreased while the erosion rate of region B increased (Table 1). However, the 



388 MBZ sustained a high deposition rate from 2002 to 2010, even the sediment load at 

389 Datong had reduced by 2/3 since 2003. It suggests that the effects of riverine sediment 

390 source reduction on the MBZ are only detectable in the very recent years. It again 

391 supports the argument of a time lag ˂10 years for the response of the morphological 

392 changes in region C to riverine sediment source reduction. The time lag effect is 

393 easily ignored in the morphological examination in previous studies, which can 

394 explain why the controversial conclusions reached.

395 So far the time lag is only quantitatively discussed due to large bathymetric data 

396 interval. Future work by morphodynamic modeling can help to better quantify the 

397 time lag and its spatial variability. Actually a large estuarine morphodynamic 

398 adaptation time scale is reported in schematized long-term estuarine and deltaic 

399 morphodynamic studies and it merits careful consideration in real world as well when 

400 predicting future morphological changes in response to a low sediment influx regime 

401 and sea level rise.

402

403 4.3 Spatially varying morphological changes under catastrophic big river floods 

404 Estuarine morphological evolution is so complex that it is influenced by a variety 

405 of factors, not just other than the riverine sediment load changes. River flow is just 

406 one prominent process governing estuarine morphodynamics. Though the mean-

407 annually mean river discharge changes little and is not suppose expected to cause 

408 strong directional estuarine morphological changes (Table 1), changes of the 

409 frequency and magnitude of episodic large big river floods may can play a role in 



410 shaping morphological evolution (Yun, 2004; Edmonds et al., 2010; Guo, 2014; Luan 

411 et al., 2016). At long-term time scales, cCatastrophic river floods with a peak river 

412 discharge ˂70,000 m3/s were thought to play an prominent role in stimulating new 

413 channel bifurcation in the Changjiang Estuary, such as the formation of the North 

414 Passage due to the big flood in 1954 (Yun, 2004; Luan et al., 2016). At decadal time 

415 scales, we 

416 In this work we identify five years with flood peak discharges ˂70,000 m³/s 

417 from 1958 to 2016, including a catastrophic flood in 1998. We see that most of the 

418 high river discharges occurred in the period of 1997-2002 (Fig. 2B). Accordingly, the 

419 estuary displayed severe erosion in the same interval (1997-2002) compared to other 

420 periods though net deposition was detected in region A due to the accretion over the 

421 shoals (Fig. 4). This change pattern was inconsistent with the long-term tendency 

422 between 1958 and 1997 (Table 1). The entire lower estuary was overwhelmingly 

423 eroded while deposition was detected in the South Branch in this period (Table 1). In 

424 the South Branch, deposition mostly happened in the deep channels while erosion 

425 took place in the sand bars and shoals, with an amplitude of >0.5 m/year. In contrast, 

426 the deep channels in regions B and C were eroded obviously, especially along the 

427 main channels in the North Channel while depositions were observed in the sand bars 

428 and shoals (Fig. 4). Linear riverine sediment source reduction since the mid-1980s 

429 failed to explain all such intense changes. 

430 We argue that enduring the high river discharges exert strong influence on 

431 estuarine morphological changes. The high river discharges (>70,000 m3/s) persisted 



432 1-2 months in both 1998 and 1999, and also the post-flood discharges maintained at a 

433 relatively high level (>45,000 m3/s) for 2-3 months in these two years. , whichThe 

434 river discharge hydrographs were quite different from the normal yearsconditions. It 

435 provided a continuous strong river force to in flushing sediment seaward and may 

436 cause erosion in the estuary. Moreover, based on the historical data from 1951 to 

437 1984, Yin et al. (2009) found significant sediment deficiency for river 

438 discharges >60,000 m3/s at Datong. The hHigh river flow has a larger sediment 

439 transport carrying capacity but there is not enough sediment to be transported (the 

440 sediment source-limited limited condition in the river upstream Datong restricts 

441 sediment availability to the estuary), thus triggering erosion in the estuary considering 

442 further by enhanced sediment transport capacity thru river-tide interactions (Guo, 

443 2014). The net deposition in region A in 1997-2002 reflects the imbalance between 

444 channel erosion and shoal accretion which is very much related to channel migration 

445 and shoal movement caused by big river floods as well.. Overall wWe also think that 

446 it is not only the magnitude of the flood peak discharges, but also its duration and 

447 associated sediment deficiency, matter in causing strong estuarine morphological 

448 changes during large river floods.

449

450 4.4 The influence of human activities

451 Extensive human activities in the estuary locally, such as the Deep Waterway 

452 Channel Project, dredging, reclamation, and embankment for reservoir construction, 

453 also exert strong impacts in estuarine morphological evolution at decadal time scales 



454 (Fig. 8A). 

455 Reclamation and embankment is one of the main factors in stabilizing coastlines 

456 and narrowing channels in historic periods. The width of the Xuliujing section 

457 narrowed from 15.7 km in 1958 to 5.7 km in 1970s due to reclamation and the 

458 narrowed Xuliuing section became a controlling point in stabilizing the division 

459 between the South Branch and the North Branch (Yun, 2004; Guo, 2014). As a result 

460 of it, the old Baimao Shoal moved northward and merged with the Chongming Island 

461 in 1970s and the entrance of the South Branch became much narrower and deeper 

462 from 1958 to 1973. For the entire study area, a reduction of 571 km2 of the water 

463 surface area resulted from reclamation and embankment from 1958 to 2016, 

464 accounting for almost 14% of that in 1958, which meant 11 man-made Hengsha 

465 Islands formed in the Changjiang Estuary (Fig. 8A). Due to the reclamation and 

466 embankment, the channels in the estuary become much narrower and deeper, 

467 especially around the regions reclamation or embankment occurred nearby. For 

468 instance, the width and width to depth ratio of the cross-section 3 obviously decreased 

469 by 16% and 40%, respectively, especially after 2009 owing to embankment for the 

470 Qingcao Shoal reservoir (Fig. 6).

471 The Deep Waterway Channel Project was carried out in the North Passage of the 

472 Changjiang Estuary since 1998 and almost 50-80×106 m³ of sediment was dredged 

473 each year from the navigation channel (Fig. 8B). The morphological changes of the 

474 MBZ, including the North Passage, were intensely impacted by these human 

475 interventions. The North Passage tended to be a man-controlled bifurcation channel 



476 owing to the navigational works and dredging. The cross-section of the North Passage 

477 also became narrower and deeper. Taking cross-section 5 as an example, a 53% 

478 reduction in width and a 35% growth in average-depth were observed from 1958 to 

479 2016 and a dramatic change mainly occurred since 2002 because of the navigational 

480 works and dredging. Other changes such as local erosion in the middle reach of the 

481 North Channel and the upper section of the South Passage and reduced horizontal 

482 growth and enhanced vertical accretion of the Jiuduan Shoal from 2002 to 2010 were 

483 also attributed to the navigational works (Jiang et al., 2010).

484 Human activities play a more important role in driving abrupt changes of 

485 estuarine morphology by stabilizing coastlines and narrowing channels in relatively 

486 short time and their impacts can persist for long time, overlapped by slow changes 

487 under natural evolution processes. Overall the Changjiang Estuary is becoming more 

488 constrained and human-influenced due to extensive reclamation, embankment, and 

489 navigational works and the channel-shoal system of the estuary will be more 

490 stabilized under human interventions in the future.

491

492 5. Conclusions

493 We analyzed and interpreted 59-year's morphological evolution of the 

494 Changjiang Estuary as a whole from 1958 to 2016 and inferred the causes and 

495 implications. We see that its channel-shoal pattern featured by meandering and 

496 bifurcated channels does not change over decades though there is strong erosion and 

497 deposition. The Changjiang Estuary exhibits an overall deposition trend but with 



498 strong temporal and spatial variations. The net deposition volume of the whole study 

499 area was 8.3×108 m³ from 1958 to 2016, or a net deposition rate of 14.3×106 m³/year. 

500 Spatially both regions A and B, the inner part of the estuary, turned from 

501 deposition to erosion, i.e., by totally 5×108 m³ and 4.7×108 m³ eroded, respectively, 

502 over 59 years. However, there was 18×108 m³ of deposition in region C, i.e., the 

503 mouth bar zone, from 1958 to 2016. Erosion had been also detected since 2010 in the 

504 MBZ. The strong spatial variability can be explained by the differences in their 

505 hydrodynamic forcing and morphological features owing to along river distribution of 

506 river and tide energy. In the vertical direction, the hypsometric curves showed that 

507 deposition happened over the sand bars and shoals, whereas erosion mainly occurred 

508 in the deep channels since 1958. As a result, the channels of the estuary became much 

509 narrower and deeper.

510 The non-directional deposition and erosion trend of estuarine morphological 

511 changes is consistent with directionally decreasing riverine sediment supply. The 

512 morphological change of the pan-South Branch had a good relationship with riverine 

513 sediment source reduction. We infer that the pan-South Branch is more fluvial 

514 influenced and its morphology is sensitive to riverine sediment supply reduction. The 

515 mouth bar zone is controlled by both river and tides thus its morphology does not 

516 show a clear linkage with sediment supply. Seaward sediment flushing takes time and 

517 there is a time lag between estuarine morphological changes and riverine sediment 

518 source variations in the different regions. The time lag increases in the seaward 

519 direction and it is >10 years in the mouth bar zone. Sediment redistribution has 



520 buffering effect and the estuarine circulation, tidal pumping, waves, etc. can also 

521 explain sediment trapping in the mouth bar zone which has a large morphological 

522 resilience to external source changes. We argue that the time lag effects need to be 

523 considered when examining large scale estuarine morphological changes in response 

524 to riverine sediment supply variations which is not well understood but an important 

525 issue given projection of future changes.

526 Big river flows with long duration and sediment deficiency may also explain the 

527 erosion in periods from the late 1990s to early 2000s. 

528 Human activities such as the Deep Waterway Channel Project, reclamation, and 

529 embankment play an important role in driving morphological evolution in the estuary 

530 by stabilizing coastlines and narrowing channels. Overall the Changjiang Estuary is 

531 becoming more constrained and man-influenced due to extensive reclamation, 

532 embankment, and the navigational works and the channel-shoal system of the estuary 

533 will be more stabilized in the future.

534 Future work by using morphodynamic modeling is needed to better quantify the 

535 time lag and explain the controls of spatial morphological variability. 
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