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Indexes
i System state
j Control set-point

Symbols
ŷi Prediction of time discrete sample i

uj Values of control set-point j

x Constrained differential state
xi Values describing the system state i

N Horizon length (number of samples)
p Model parameter set
y, ym Output signal obtained by measurements

Acronyms
AC Alternating current
AI Artificial Intelligence
ANN Artificial neural network
AVR Automatic voltage regulator
DAE Differential algebraic equations
DSA Dynamic security assessment
DSO Distribution system operator
DT Digital twin
EMS/DMS Energy management system / Distribution management system
FPR False positive rate
hf high fidelity
HVAC High voltage alternating current
ICT Information and Communications Technology
KF Kalman filter
lf low fidelity
MHE Moving horizon estimation
ML Machine learning
MLP Multi-layer perceptron
PE Parameter estimation
ROC Receiver operator characteristics
SSA Static security assessment
TPR True positive rate
TSO Transmission system operator
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VSC-HVDC Voltage source converter high voltage direct current transmission system
WAMS Wide area monitoring system

4.1 Introduction

This chapter connects techniques from machine learning (ML) and digital twins (DTs)
to provide novel insights into monitoring and control of (dynamic) security for elec-
trical power systems. DTs are validated and verified high-fidelity (hf) models of high
simulation accuracy. They can be applied to simulate the supervised process (e.g.,
power system operation) and provide synthetic data whenever measurement data is
scarce. However, such hf simulation models are not always appropriate for real-time
applications in monitoring and control as they correspond to high computational ef-
fort. The computational effort, i.e., the time required to perform simulations can be
significantly reduced by applying surrogate models, which may be mandatory for
some applications executed in real-time. There, ML can create an application-specific,
low-fidelity (lf) approximation of the hf digital twin. These trained lf models are
promising in real-time applications, where the time to react is scarce and lf informa-
tion is sufficient. This chapter aims at providing a conceptual overview of combining
the advantages of hf and lf models.

The combined framework of hf DT and lf ML is illustrated in Fig. 4.1. The two
models, hf DT and lf ML, collect data from the power system (measurements and
topology) and from the system operator. The hf model processes and generates the
required data for the lf model, where the lf model feeds predictions and relevant study

Figure 4.1 Digital twin and machine learning framework.
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cases for the hf DT. Combining the two can provide helpful information for system
operators to enhance operational security.

The chapter is split into two parts. The first part introduces the individual con-
cepts from ML and DT, and the second part focuses on combining the concepts to
predict dynamic security and analyze operational risks. First, the concept of hf DTs
for online power system studies and their corresponding model parameter tuning from
measurements is introduced. Subsequently, ML approximated lf models and their cor-
responding training frameworks are introduced. The first part concludes with a concept
to apply data from hf models for the training of lf models.

The second part of this chapter introduces concepts for combining hf and lf models
for purpose-driven real-time power system dynamic security assessment (DSA) ap-
plications. Concepts of conventional DSA are reviewed, and real-time DSA with ML
methods are discussed. Finally, both hf and lf models are applied for probabilistic risk
analysis in a didactic example.

4.2 Machine learning and digital twins for power system
analysis

New techniques applying ML or DTs have individual strengths offering opportunities
and limitations for power system analysis. Therefore the two techniques are intro-
duced, and their advantages and disadvantages are discussed.

4.2.1 Machine learning for power system analysis

With the wide availability of measurement data and other information in electric power
grids, learning models from this data with ML is the logical continuation to classical
rule-based knowledge inference in power system management. The promising appli-
cations of ML techniques for power system analysis have been investigated in the
last decades [1–4]. These are embedded in so-called decision support, assistant or
expert systems, which comprise automatic fault diagnosis, isolation, and evaluation
[5], alarm prioritization, fault switching schedules, safety checking, routine switching
schedules, automatic switching, and network optimization [6,7].

Recent developments in computing hardware enable the application of these con-
cepts combined with novel ML techniques [8]. These provide the foundation for power
system engineers to augment their experience and heuristic knowledge with ML pre-
dictions [3]. However, the major limitation of ML is its generalizability, which leads to
low accuracies and may make ML unsuitable. Generalization means that a trained ML
model may be suitable for a specific trained data, but it may be challenging to apply it
beyond that specific data. Thus in case the topology of the observed system changes
or the operating conditions are different, the ML model must be retrained [9]. In ad-
dition, sometimes ambiguity exists about the ML results and their accuracy. Hence,
the trust, accuracy, robustness, and reliability of ML models are of particularly high
importance when developing ML-based task applications; otherwise, operators will
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circumvent the tools and consequently make conservative decisions to avoid security
limit violations [10]. Additionally, the interpretability of some ML and the explanation
of the predicted results may be difficult, e.g., with deep neural networks [11].

4.2.2 Digital twins for power system analysis

“Digital Twins (DT) are software-based abstractions of complex physical systems or
objects which are connected via a communication link to the real object through a
continuous data flow from the real world” [12]. Although other approaches are appli-
cable to create a DT [13], the ideal DT model should be of analytic and deterministic
character, i.e., physics-based (first principles), and sufficiently accurate while capable
in real-time [14]. Thus a major challenge arises to determine the required detail-level.
Whereas a simplified model does not unveil the DT value, a highly accurate approach
may cause unbearable complexity and exhaustive computation times [12].

The term DT epitomizes the general trend of converging information and opera-
tional technology [15], and has been recently identified as a key concept by several
industries [16]. It evolved from the broad concept of cyber-physical systems (CPS),
i.e., physical systems or processes, which integrate computational applications and in-
formation communications technology (ICT). Fig. 4.2 (adapted from [17]) illustrates
the difference to the predecessors of DTs. A digital model does not exchange data or
information automatically. This exchange is usually done manually. A digital shadow
is created by telemetry interrogation, but does not automatically report back to the
physical world. The counterpart of a digital shadow is a digital generator [18], which
can be applied to design systems (e.g., offline planning studies or compliance tests
of control schemes prior to commissioning), or to train ML tools. The digital twin
communicates bidirectionally and automatically reports to the physical world (closed
loop). Thus the main characteristic that distinguishes a digital model and a digital twin
is exchanging data automatically in a bidirectional way with the physical object.

Depending on the purpose of the application, a DT can consist of many executable
models, especially when it comes to a high level of complexity, i.e., considering dif-
ferent timeframes or nonlinearities at runtime. These models can provide insights into
the system and adapt to the system by causal (first principle) connections. Consid-
ering power system models, a high accuracy depends on a hf model. Furthermore, a
high granularity in model components allows flexibility to model different power sys-
tems, topologies, operating conditions, and time-domains. From the user perspective,
a high system model accuracy raises the confidence in the decisions made upon the DT
model or the subsequently applied decision support functions [10]. Taking power sys-
tem models as an example, increasing the level of detail in terms of considered time
frames, such as models, would comprise a steady state representation, a phasor or
average value model representation for electromechanical interactions, and a model
including all necessary components to reflect the electromagnetic timeframes up to
the microsecond scale. A suitable metamodel or interface is required to describe these
interrelated dependencies to avoid redundancy of the model causalities and model pa-
rameters. This seamless integration requires a modular design approach, and suitable
a framework for consistent and flexible modeling.
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Figure 4.2 Difference between digital model (a), digital generator (b), digital shadow (c), and
digital twin (d), adapted from [17].

Limiting factors to the DT approach include high demands in the computation
hardware, i.e., the high computation effort respecting the real-time requirements in
operational environments (e.g., online DSA for large systems). In particular, the ex-
ecution of multiple simulations to find an optimal operating state requires long com-
puting times. Another limiting factor is the expertise required from dedicated power
system engineers and ICT specialists to create a real-time capable, high-fidelity DT.
Tackling these challenges is promising, as DTs in operational systems enable novel
automation routines, and automated system control functions up to autonomous sys-
tems [19].

4.2.3 Application of digital twins for online power system
studies

A DT can estimate a state value, which is not directly observable by sensors, and report
this to the real world. This fundamental property of a DT appears to be a similarity to
the concept of an observer, which is often applied in control engineering (see Fig. 4.3).
According to the control theory, observers apply a mathematical model of the original
system and a function of the measurement noise (i.e., a correction term) to estimate
the system state from measurements [20]. As an ideal, DT represents the case of a
high-fidelity model without uncertainties, in practical application the estimated state
is expected to converge to the true state of the observed entity. These properties of
the DT concept are illustrated in Fig. 4.3. Depending on the applied DT model, the
input signal uj , the measured output yj , and the corresponding model response ŷj is
generic and may comprise a single or an array of values. When the model parameter
set p is unknown, a suitable model parameter identification method is required to ob-
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Figure 4.3 Flowchart illustration of the creation or training of a generic digital twin.

tain a valid model response (see subsection on parameter estimation for continuous
digital twin model tuning).

Apparent fields of application for power system DTs include:

• Continuous system analysis and anomaly detection (e.g., malfunctions or cyber-
attacks)

• Enhanced predictability of future operating conditions, allowing coordinated sys-
tem operation among distribution system operators (DSOs) and transmission sys-
tem operators (TSOs)

• Increased power system observability
• Consideration of system dynamics in network operation to prove control actions
• Reduction of unplanned outages by continuous equipment monitoring
• Provision of a realistic operator training simulator
• Implementation of a higher degree automation schemes and assistant systems for

power system operation

As illustrated in Fig. 4.4, the study model is derived from a steady state real-time
snapshot by conventional state estimation. Thus today’s power system control appli-
cations do not provide a validated time-domain model. Furthermore, the modeling
results derived by screening security-related scenarios, and contingencies are not yet
stored in conventional operational environments (e.g., EMS/DMS long term archives).
An orderly archiving can help to apply ML methodologies to evaluate critical system
states faster and to analyze subordinate mechanisms better. Consequently, DTs provide
the basis for advanced operator assistance systems and decision support functions for
online system operation.

Fig. 4.4 illustrates the state of the art of modern EMS/DMS environments. The real-
time view on the left side of Fig. 4.4 comprises the SCADA, and sometimes WAMS
data, applied to derive a steady-state estimation of the power system state. A snap-
shot from the actual state estimation result is applied by subsequent analytic functions
(e.g., contingency analysis, security assessment, or redispatch). These functionalities
depend on the scenario-based models illustrated on the right side of Fig. 4.4. Today,
the model result and the observed dynamic system response are not considered for
model validation. The proposed DT concept, as illustrated in Fig. 4.3, comprises a
validated model to close this applicational gap.



Machine learning and digital twins: monitoring and control for dynamic security in power systems 85

Figure 4.4 Differences between real-time model and study model.

4.2.4 Combining machine learning and digital twins for power
system analysis

When combining novel ML and DT concepts, their strength can be fully unfolded for
system operation. A DT is a detailed replication (twin) of the real, physical system and
can simulate the system in real-time with a high level of accuracy. The strength of DT
is to simulate the system accurately. Taking the system state xi (obtained from sensor
measurements) and control set-points uj as an input, future system states xi+1, xi+2,
. . . , xi+n are predictable. A limiting factor is the computational time, which depends
on the amount of data, the system size, and the dimensionality of investigated study
cases.

In contrast, the strength of ML is a quick prediction at the cost of a lower accu-
racy score (e.g., resulting from training biases). ML methods train a model from data
without prior knowledge of possible model parametrizations. Therefore one concept
to combine the two individual strengths by using the DT to generate training data
(when computational time is abundant), and then use the data to train the ML model.
The advantage is that a DT can generate data, which is rarely observable, and which
can only be acquired with great effort, or is unobtainable in the real world. Thus com-
bining the strengths of ML and the DT concept can support real-time power system
analysis, whereas ML predictions are fast, but of lower accuracy, DTs can correct the
ML prediction.

Furthermore, ML predictions can be proven or validated by the DT model con-
sidering only a few in-depth studies and suggested control-set points. One possible
application combining ML and DT is a power system perturbation, e.g., caused by an
equipment fault. Then, the ML can immediately predict the power system’s dynamical
response. As illustrated in Fig. 4.5, ML can suggest ad hoc control responses after the
occurrence of the fault at time t1. Subsequently, the proposed primary control actions
can be taken considering the time delay between sending the control signal and the pri-
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Figure 4.5 Combined benefits from ML and DT for accurate and fast control responses to
faults. ML predicts immediately at fault t1 the possible dynamical trajectory and suggests a
control action at t2. Between time t1 and t2, the DT simulates the control action in detail and
confirms the suitability of the action (modified from [21]). Black line (DT ) is available at t2,
yellow line (ML) is available at t1. Blue line is the actual system response.

mary control actions at time t2. In the meantime, the DT can start to execute a detailed
dynamic simulation with higher accuracy. When the hf DT simulation is available, it
can replace the lf ML prediction to improve the system stability and take secondary
control actions. The ML ability to provide a rough prediction of the initial dynamic
trajectory very fast, in combination with the advantage of DT to simulate the dynamic
trajectory accurately to prove the suggested control action in a hf model, raises the
confidence in the control action and maximizes the stabilizing effect of the response
to the fault.

The capability of the power system to anticipate, absorb, adapt, or recover from
faults (and other events), comprises the intra-day operation (handling of disruptions in
real-time operation) and the operational planning (optimized topology and structural
reinforcements). Combining the benefits at their full potential, DT and ML support
the development of novel control schemes. Applying control schemes that are both
corrective and preventive enables operational planning closer to the power system se-
curity boundary, i.e., allowing a higher asset utilization. The control schemes derived
from the combination of ML and DT have the potential to be fast and sophisticat-
edly robust at the same time. They may even provide decision support for cascading
failures by successive and systematic assessments. As shown in Fig. 4.5, following a
disturbance at t1, the ML predicts the system dynamics (yellow dashed line) and the
following control action (red points), while in the meantime the DT computes the dy-
namic trajectory (black line), to correct the control action according to the observed
system state (blue line) towards a full system recovery in Fig. 4.6.
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Figure 4.6 The system response with the implemented control actions. Computing control
actions in nearly real-time has the potential to even consider cascading failures in real-time
(modified from [21]).

4.2.4.1 Parameter estimation for continuous digital twin model tuning

As an accurate and validated high-fidelity dynamic power system model is required,
model validation and parameter estimation methods are necessary. Parametric time-
domain models contain internal parameters, which describe the physical behavior of
the modeled object or control system. These parameters are often unknown and need
to be estimated. This is typically done by fitting the mathematical models to measured
time series data. Some common techniques for parameter estimation from online mea-
surements are the Kalman filter (KF) and its derivatives (e.g., extended KF, unscented
KF, or cubature KF) [22].

Another suitable method is the moving horizon estimation (MHE) [23]. The MHE
approach can handle constraints, which is essential to raise the accuracy and validity
of the estimated states and parameters of nonlinear system models. The general con-
cept of the moving horizon estimation (MHE) methodology is illustrated in Fig. 4.7.
Instead of applying the full information available as input, it only takes a sample of
N values. Thus the MHE approach combines the advantages of full information esti-
mation with a tractable online computation [23]. The MHE’s computational power is
as demanding as the KF and its derivatives. However, in comparison, it can deal with
highly nonlinear estimation problems in the presence of state constraints x. The gen-
eral form to describe an MHE is given in [23], whereas methods for implementation
are discussed in [24].

The fundamental concept of the MHE is to not fit the parameters to the complete
data available at time k, i.e., 0, 1, . . . , k, but rather to only the previous n time steps,
i.e., k – N ; k – N + 1, . . . , k. This concept is illustrated in Fig. 4.7. As the time frame
moves along the captured time series, the objective function as given in [23], is min-
imized to estimate the parameters that fit the model response to the captured values.
Starting from an initial parameter set, the model parameters are varied in such a way
that the objective function reaches a minimum. At each time step k, an optimization
problem is solved to minimize the objective function. It penalizes the deviation of the
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Figure 4.7 Parameter estimation with MHE scheme (adapted from [23]).

Figure 4.8 MHE example with horizon length N = 2.

computed output y from the measured output ym, and the deviations from the system
dynamics. The state and parameter guess is based on the previous time step (as illus-
trated in Fig. 4.7). An example illustrating a MHE parameter estimation result with
N = 2 for the synchronous machine inertia constant H , and the damping coefficient
D is illustrated in Fig. 4.8.

A simplified graphical representation of an analytical time-domain model of a
sixth-order synchronous machine model, based on the equivalent circuit, is given in
Fig. 4.9. The model comprises a dynamic state vector x, including a generic represen-
tation of its controllers (see also Fig. 4.9), and state names can be found in Table 4.1.
In the study model applied for the didactic example (see section 4.5), the excitation
system IEEE AC4A and a simple speed governor IEEE HyGOV are applied. These in-
ternal states, which are hard to obtain by sensors and are not observable from a power
system control room, add valuable information for the ML training procedure, as this
information can be related to system stability.

4.2.4.2 Training the ML model from data

The supervised ML technique can derive purpose-driven surrogate models from data.
These ML models are applicable for classification and regression, and take the feature



Machine learning and digital twins: monitoring and control for dynamic security in power systems 89

Figure 4.9 Simplified analytical model and the dynamic state vector of a synchronous ma-
chine model including governing and excitation system.

Table 4.1 Dynamic system states corresponding to Fig. 4.9.

Symbol System state
δ Rotor angle (rad)
ω Angular frequency (rad s−1)
te Electrical torque (p.u.)
tm Mechanical torque (p.u.)
ψfd Excitation flux (p.u.)
ψ1d Flux in 1d-axis damper winding (p.u.)
ψ1q Flux in 1q-axis damper winding (p.u.)
ψ2q Flux in 2q-axis damper winding (p.u.)
u Control set point

xAVR Automatic voltage regulator state
xGOV Governor state

vector xi as an input to apply the trained function

ŷi = f̂ (xi)

for predicting the output data ŷi . While for the purpose of classification, the function
f̂ predicts discrete values, the values for regression are continuous ∈ R.

To train the function f̂ , a data set of � value pairs (x, y) is required. One sample
corresponds to the pair (xi , yi). As shown in Fig. 4.10, the data should be prepro-
cessed before training the model. This includes the imputation of missing data, and
normalization i.e., the data within each feature’s vector is scaled, so each feature is
between [0,1], as the features may have different dimensions. This can be done by
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Figure 4.10 Framework to train a ML model.

applying

xscaled
ij = xij − min

(
xj

)
max

(
xj

) − min
(
xj

) ,

where min
(
xj

) = min
(
x0j , x1j , . . . , x�j

)
and max

(
xj

)
denote the smallest and

largest value among all data withing �, considering each respective feature j . The
following expression assumes a normalized x and drops the superscript “scaled.” Sub-
sequently, the typical objective of the training procedure is to minimize the training
loss, i.e., the squared difference between predicted and actual labels

loss = 1

�

∑
i

(
yi − f̂ (xi)

)2
.

The function f̂ is a suitable candidate to represent the data when this loss is low.
However, in order to infer the suitability of this function, it is important to consider
that the function may overfit or underfit the data and that the initial candidate param-
eterizations for f̂ must be selected.

For instance, the engineer may decide on an initial way to parameterize the function
f̂ , and the decision could be to select a polynomial function,

f̂ = θ0 + θ1x
1 + θ2x

2 + θ3x
3 + · · · + θnx

n,

which has n terms with n parameters to fit. In case, that n is suboptimally selected,
the function tends to under- and over fitting. An exhaustive overview on selecting
appropriate loss functions, including the parameterization of function f̂ , and the con-
sideration of feature selection, is given in [25]. Different algorithms are applicable to
minimize the loss function . For instance, an iterative algorithm is the gradient descent.
Assuming n = 1, the function f̂ = θ0 + θ1x

1 has only two parameters. Then the loss
function becomes

loss = 1

�

∑
i

(
yi − (θ0 + θ1x

1
i )

)2
,

and the partial derivatives with respect to θ1 and θ0 are

Dθ1 = −2

�

∑
i

x1
i

(
yi −

(
θ0 + θ1x

1
i

))
,

Dθ0 = −2

�

∑
i

yi −
(
θ0 + θ1x

1
i

)
.
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The gradient descent algorithm updates the parameters accordingly to these gradi-
ents:

θk = θk − LDθk
∀k = {0,1} .

These updated parameters result in an updated candidate function f̂ , and the loss
of this candidate function can be computed. This procedure to update the parameters
is repeated iteratively, until the termination criterion is met. An effective design of
ML training and the performance of the trained ML model involves engineering and
selecting the most valuable features and the objective to evaluate and train an effective
model. This feature engineering transforms the data xengineered = g(x) into a more
meaningful representation. For instance, the data may comprise the current xic and
the voltage xiv and the objective is to predict overheating of a device. So an effective
technical feature here can be the power, since it correlates strongly with overheating,
hence the engineered feature may be xengineered = xic xiv . Feature selection can also
enhance the performances and can be based on statistical methods. Many approaches
exist to select features, and their approach can be either to forward or backward select
features. In backward selection, the ML model is trained with all features, and then the
least-relevant feature is removed to retrain the ML model. This iteration repeats until
the ML model does not improve the selected performance metrics. The forward selec-
tion starts with only randomly selected features and adds one feature in each iteration
until the performance metrics for the ML model do not improve anymore.

The approximation capability of ML is determined by the structure of function f̂ .
To illustrate this by an example, a model based on an artificial neural network (ANN)
is described. The ANN constructs the function f̂ out of many chained functions in-
spired by neurons in the human brain. This results in a multi-layer perceptron (MLP),
i.e., a feed-forward type network with a unidirectional information flow. MLP archi-
tectures start with features xi at the input layer, and end at the output layer which
contains the model prediction ŷi . An example MLP is illustrated in Fig. 4.11. There,
neurons are located in the hidden layers between input and output layers. Each neu-
ron contains a weight vector w and a corresponding scalar bias b. The neurons act
like a linear map g (X) = WT X + B. However, linear functions can only construct
a linear relationship between features, and the activation functions generate the non-
linear interactions. The activation functions σ are applied to the resulting output of
each neuron. Popular activation functions are sigmoid, rectified linear unit (ReLU) or
hyperbolic tangent.

Assume a neural network f̂ (x) approximates an unknown function f (x) = y ap-
plying 6 neurons. These are distributed equally to 2 hidden layers with an activation
function σ , where x, y ∈ R. The prediction ŷ then results in

f̂ (x) = ŷ = wy(σ
(
WT

2 σ
(
WT

1 x + b1

)
+ b2

)
) + by.

These neuron weights and biases are optimized during the training. The most basic
parameter update algorithm is the gradient descent algorithm applied to the predefined
loss function. Many variants and improvements (e.g., Momentum, RMSProp, Adam,
etc.) to gradient descent were proposed, such as stochastic gradient descent [26].
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Figure 4.11 Example architecture of a multi-layer perceptron.

There are many other metrics to evaluate the training of the ML model beyond
the mean squared difference. For instance, when the ML task is binary classification
(yi = {0,1}) and not regression, the error may be suitable, which refers to the ratio of
inaccurately predicted values

error = 1

�

∑
i

| yi − ŷi | .

On the other hand, the error might not be suitable for classification problems with
an unbalanced dataset. For example, historical data regarding a power system secu-
rity assessment problem usually contains more secure cases over insecure cases. The
precision metric calculates the ratio of correctly predicted actual values (ŷi = yi = 1)
over all true predictions (ŷi = 1). Similarly, the recall metric or the true positive rate
(TPR) calculates the ratio of correctly predicted true values over all true values yi = 1.
The metric F1 calculates the weighted average of precision and recall.

F1 = 2 × Precision × Recall

P recision + Recall
.

The computational complexity of the ML training depends on the selected model
complexity and size of the training data. The overall training time is in the order of the
computational time of hf DT simulations, but this process can be done offline, without
time limitations. However, the prediction speed is very fast and almost constant, as the
trained ANN model predicts the output with simple algebraic operations.

Besides the model and metrics described in this section, many more ML models
can be applied in combination with DTs.

4.2.4.3 Generating ML training data by digital twin models

The training of ML models is typically performed offline when a DT of the power
system examines possible operating scenarios an related data, which then can be used
to train the ML model. The relevant data typically involves an operating condition as
input feature, and a possible output label, which the ML model later in during aims to
predict, where the output labels could be control actions, a fault analysis, or a classi-
fication of an expected risk-level. The data archive can contain an initial database of
the input and output pairs of historical observations. However, a DT can generate data
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Figure 4.12 The three dimensions of an ideal ML model training database.

beyond these observed and recorded historical system conditions. Thus, it can enrich
the database to enhance generalization capability by extrapolating important data sam-
ples and examine specific scenarios of interest. A suitable approach to sample the data
from a DT balances (i) the data importance with (ii) exploration needs, and (iii) with
data similar to historical observations. Therefore the ideal training database combines
all three dimensions as shown in Fig. 4.12.

The idea behind the generation of data similar to historical observations is that
these consider operating conditions most likely to occur. To generate such similar
data, typically, probability distributions are fitted to the historical data, then Monte
Carlo sampling techniques are applied to sample data that follow this fitted proba-
bility distribution [27]. Suitable probability distributions need to capture the complex
dependency for many variables, which can be nonlinear. Therefore, copula models
can be applied to model such dependencies [28]. For example the canonical vines (C-
vines) copula models, are determined by the following probability density function

f (x1, . . . , xm) =
(

m∏
i=1

fi (xi)

)
× c1...m (F1(x1, . . . ,Fm(xm)) ,

c1...d : [0,1]m → R is an m-dimensional copula, and U = {U1,U2, . . . ,Um}
= {F1 (X1) ,F2 (X2) , . . . ,Fm (Xm)} are uniform marginal distributions. Then, the
product of its marginal distribution and the multivariate copula density functions
builds the joint density function.

The Monte Carlo sampling method can be applied to sample up the historical data
using C-vine copulas. Generated conditions define the input space (xi) for the DT
simulation. Subsequently, the DT emulates the system behavior against the predefined
disturbance scenarios with new operating conditions to obtain the desired labels (yi)
for ML training.

Obtaining an information-rich knowledge base is essential for ML applications.
Therefore, additional samples can be obtained from certain samples with higher in-
formation value to improve the prediction performance. For instance, samples close
to the decision boundary in a classification problem provide more information, and
thus can improve the prediction performance. In power systems security assessment,
the decision boundary corresponds to the system security boundary, which is illus-
trated in Fig. 4.13, with respect to two generators’ power output. However, often the
majority of cases in Fig. 4.13(a) [29] share the same class with their direct neighbors
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so their contributing information to training is low. However, Fig. 4.13(b) shows also
cases located near the security boundary, which are more relevant, and the generation
of these new samples from the interested region improves the prediction performance
of ML models.

Figure 4.13 Uniform random sampling (a) and importance sampling in (b), details in [29],
[30].

One method to obtain influential samples from the original dataset is impor-
tance sampling, as shown in Fig. 4.14. The sample importance is measured by the
trained classifiers to filter out the points with low information value. The DT con-
ducts dynamic simulations for the reduced dataset, hence the overall simulation di-
mensionality, i.e., the computational time is reduced without compromising the ML
performance. Following this procedure, simulated samples are added to the training
database, aiming for a higher prediction or classification accuracy.

Figure 4.14 Example of an importance sampler for DSA applications.

This importance of the samples can be computed using ensemble learning methods,
such as Adaboost, extreme trees, or random forests.

The ensemble models construct multiple learners k ∈ �E . The prediction score
s (xi) is computed from the hypotheses of the individual learners hk (xi) ∈ {0,1} for
sample xi as

s (xi) = 1

| �E |
∑

k∈�E

hk(xi).
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Figure 4.15 Example plot of the entropy vs. score.

The sample importance I (xi) is calculated as the measurement of disagreement,
expressed as the entropy, as illustrated in Fig. 4.15, by the following formula:

I (xi) = − 1

log2 2

[
s (xi) log2 s (xi) + (1 − s (xi)) log2 (1 − s (xi))

]
.

4.2.4.4 Summary of advantages and disadvantages considering the
interaction of digital twins and ML techniques

Table 4.2 summarizes the advantages and disadvantages of traditional modeling and
seeking solutions with assistance by ML methods. When it is possible to formulate the
relationships between the physical variables using mathematical equations, building a
coherent hf DT simulation model of reality has many advantages. On the other hand,
a well-trained neural network can also find correlations that are difficult to investigate
by conventional modeling techniques. Thus to combine both techniques is promising
for decision support systems, where both accuracy and prediction speed are required.

Table 4.2 Comparison of model-based and data driven methodologies.

Digital Twin (hf model) Machine Learning (lf model)

A
dvantages

A simulation model is explainable,
extendable, and reproducible by experts
Verified models are applicable outside
explicitly tested areas
High trust in results

Detailed knowledge of the modeled
system or process is not required
ML has the potential to recognize pattern
or correlations in data that are not
perceptible by a human
Fast execution times

D
isadvantage

The creation of validated models is
time-consuming and requires highly
skilled domain experts
System states that do not correspond to
the normal operating condition are hardly
reproducible with reasonable effort
High execution time

To obtain high quality training data in the
required quantity of data is often difficult
The model can lead to inaccurate
decisions
The solution approach of a neural
networks is not traceable by humans and
the implementation of solutions require
human supervision
Trust in results not always given
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4.3 Purpose driven surrogate models

Following the previous section, where the functionality and possible interactions be-
tween hf DT and lf ML models have been described, this section gives an example
for real-time power system dynamic security applications. Therefore, the previously
discussed concepts are utilized to obtain a purpose-driven surrogate model for DSA
applications.

4.3.1 Dynamic security assessment with digital twins

DSA studies of electric power systems are mainly based on time-domain simulations.
These mathematical models often contain stiff or moderately stiff nonlinear differen-
tial algebraic equation (DAE) systems of high order. The solution of these systems
of equations involves a relatively high computational effort. Additionally, the appli-
cable numerical methods can only approximate the system dynamics. Consequently,
a validation procedure involving real process data is required. One major obstacle for
meaningful DSA implementations in practice is to gather enough data for such vali-
dation, especially for security-related situations (e.g., critical contingencies, dynamic
security boundary violation, severe disturbances). Thus, two main obstacles for online
DSA can be identified:

• Obstacle 1: DAE solver-based solutions for screening of many scenarios in large
power system models must be real-time capable to support online operation.

• Obstacle 2: Validation data sets for security-related conditions are lacking (e.g.,
suitable disturbance records).

4.3.1.1 Security assessment

Following the definition of security given in [31,32], security assessment tools evalu-
ate the ability of the power system to survive perturbations and to work reliable under
adverse conditions.

To analyze power system security, either static or dynamic security assess-
ment tools are applied [37]. Static security assessment (SSA) tools evaluate post-
disturbance conditions, i.e., violation equipment ratings or voltage constraints based
on power flow calculations. Thus, the dynamic transition from pre- to post-contingency
is not considered. Dynamic security assessment (DSA) methodologies also evaluate
the phase of dynamic transition. When the system returns to a secure steady state af-
ter the disturbance, the system is considered as secure. As the conventional concept
of SSA, cannot sufficiently guarantee the system integrity in all situations [38], it is
mandatory for TSOs to assess dynamic stability to identify stability limits [39]. The
criteria applied by DSA systems to evaluate contingencies and their impact on sys-
tem security include rotor angle stability, voltage stability, and frequency stability;
as well as the damping of oscillatory modes within the interconnected power sys-
tem [33,34]. They must comply with boundary definitions from grid codes or other
specified thresholds. Some indices considered in DSA applications for transmission
systems are given in [35,36].



Machine learning and digital twins: monitoring and control for dynamic security in power systems 97

Figure 4.16 Approach of using ML for real-time DSA.

We furthermore distinguish between offline and online DSA. Though offline DSA
is often part of power system planning studies, these offline studies inherit several
uncertainties, as these do not consider all possible operational conditions [40]. These
uncertainties can be eliminated by implementing online DSA. By including real-time
process information, i.e., the actual point of operation and previously unexpected op-
erational conditions can be considered. As online DSA can support decisions during
real-time operation, the ENTSO-E recommends a continuous validation and fine tun-
ing of system models (e.g., by WAMS) to avoid invalid results and, in the worst case,
wrong decisions [38]. As the system modeling requirements vary for DSA studies,
these need to be balanced in terms of model detail and required computation time
[38]. This is one of the main arguments in favor of using a digital twin, as DT models
are suitable for both online and offline DSA studies.

4.3.2 Real-time DSA with ML

Real-time dynamic security assessment (DSA) for system operation becomes im-
portant in the future as power system operation is done closer to operating limits.
However, online DSA has its limits for real-time operation. One idea for an approach
to real-time DSA is to apply a trained ML model to predict the outcome of the simu-
lation.

Offline training requires an extensive dataset, which is generated by DT, as de-
scribed in the section entitled “Generating ML training data by digital twin models.”
There, the operating condition xi is defined by active and reactive power at the gen-
erator node , and voltage magnitude and phase angles given by PMUs. Subsequently,
the security of the operating condition is predicted with the trained ML model for
when the contingency c occurs. As shown in Fig. 4.16, the training of the ML model
includes various x × c combinations within the function f (x) to predict security
label ŷ.

The decision tree shown in Fig. 4.16 is a common, nonparametric ML model. The
model name “decision tree” comes from the upside tree structure that has a single root
node, many terminals (leaf), and internal nodes. Starting from the root node, the train-
ing data is split into 2 subsets based on the decision rule that generates the maximum
homogeneity between subsets. A decision rule is a simple comparison of selected fea-
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Figure 4.17 Decision tree structure for binary classification.

ture Xi to the optimized threshold value αi . The homogeneity is measured by the
impurity functions as an value of entropy or the Gini impurity. The Gini impurity
H (θk) is formulated from the data proportion (pkm) of classm and θk is the subset at
node k as

pkm = 1

Nk

∑
y∈θk

1(y = m)

Gini : H (θk) =
∑
m

pkm(1 − pkm).

The decision tree represents an approximation of a high-dimensional piecewise
constant function. Therefore the decision tree can define nonlinear interactions be-
tween features. Besides the predicted class, the prediction score s(x) ∈ [0,1] can be
retrieved from the decision tree, which is equal to the ratio of the same class training
samples over all samples in the prediction leaf. The binary classification tree model
predicts the class (0–1) by comparing the output score s(xi) with the decision thresh-
old Z. For the security assessment problem, the operation condition xi is classified
as secure (f̂ (xi) = ŷi = 1) when the corresponding prediction score s(x) outperforms
Z, i.e., s(x) ≥ Z. The default threshold value Z = 0.5 is suitable for ideal conditions,
where there is no imbalance between classes in the training database considering equal
costs for misclassification errors.

Furthermore, decision trees can handle high-dimensional feature spaces, as irrele-
vant (low information value) features are excluded automatically in the tree learning
process. A decision tree structure for binary classification is illustrated in Fig. 4.17.

As large scale power system security problems require high-dimensional opera-
tion space, decision trees are suitable to address these. Many applications of decision
trees for power system security problems can be found in the literature, such as the
prediction of stability limits [41], the identification of preventive and corrective ac-
tions against contingencies [42], or security assessment [43]. System operators can
obtain additional information from the tree path of prediction, because the decision
tree is an interpretable white box model [44]. An other advantage of decision trees
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and other ML models in decision making processes is that these do not raise compu-
tational costs (between O(n)–O(1)). As a DT solves high-order nonlinear differential
algebraic equations, the computation effort here is expected to be higher. Thus both
applications can be executed on the same computation platform.

Online DSA can have critical impact on secure power system operation. While
false alarms (false negative) of the DSA can trigger unnecessary or undesired control
actions, any missed alarm (false positive) can jeopardize the secure power system op-
eration. These two types of errors in the assessment process impose different follow-up
costs for system operators, e.g., cost of missed alarms CFP and cost of false alarms
CFN . Undetected insecure cases can cause a power outage that have severe effects
on society, industry, and service facilities, hence the alarm costs must comply to
CFP >> CFN . However, during the training stage of ML models, the main objective
is minimizing the misclassification error or the other commonly used classification
metrics that were introduced in the section entitled “Training the ML model from
data.” However, without considering the error costs, ML models cannot prioritize a
specific class over the others. To approach this problem the receiver operating charac-
teristics (ROC) curve is used; the latter is a visual metric that shows how true positive
rate T PR = T P

π+ and false positive rate FPR = FP
π+ evolves with respect to Z, where

π+ corresponds to positive samples in the dataset. Fig. 4.18 shows the sensitivity of Z

on the ROC of a decision tree model.

Figure 4.18 ROC and decision boundary.
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Figure 4.19 Selection with the ROC curve for IEEE 68 bus system [43].

Model predictions can be altered by changing the value of Z. For example, select-
ing a higher threshold reduces the number of secure predictions, which can reduce
the overall model performance, but reduces the number of missed alarms. Also, the
cost-optimum threshold value Z∗ on the ROC curve is determined by the ratio of in-
secure cases π− and the predefined error costs CFP and CFN . This cost optimal point
is calculated by

Z∗ = π−CFP

π−CFP + π+CFN

.

Power systems have a dynamic structure, where cost of the contingency (cost
of load loss) and probability of the contingency are parameters that can change in
real-time [45]. Fortunately, these parameters can be obtained and updated online to
calculate the new optimal threshold value, without retraining the ML model.

The ROC curve can be further used to analyze several decision tree models with
the optimal threshold. Although decision trees are trained with the same training data,
their interpretabilities are different, because parameters such as maximum depth have
been varied between models.

The ROC curves of four separate decision tree models for a case study conducted
with the IEEE 68 bus test system are illustrated in Fig. 4.19. Here, the dots on the
curve show the optimal cost point Z∗. As the tree grows interpretability, the capabil-
ities are lower. The power system nodes are represented by numbers within the color
bar. Based on such visual graphs, system operators can select the best classifier that
suits the operation [43].

4.3.3 Probabilistic and risk analysis with DT and ML

Most power system disturbances are unforeseeable and highly unpredictable, but their
impact can be modeled with scenario-based probabilistic risk analysis. A probabilis-
tic approach to security assessment is illustrated in Fig. 4.20, where the approach
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Figure 4.20 Use of ML for security assessment.

evaluates the risk in short-term operation range for multiple contingency scenarios si-
multaneously by the corresponding ML classifiers [45]. Estimated high-risk scenarios
are further investigated by DT simulations to reveal overall system response with high
accuracy.

The ML classifier models compute the individual risks of all scenarios s ∈ �S ,
which is equivalent to the Cartesian product of operating conditions �I and contin-
gencies �C , �S = �C × �I . The probability of a scenario is pS

s = pC
c pI

i , or the joint
probability of conditions pI

i and contingencies pC
c . Then, the ML classifiers compute

the scenario risk Rs = Rc(xi) based on the associated security rules.
Subsequently, the scenario set �S is divided into high risk �S,H and low risk �S,L,

where �S = �S,H ∪�S,L. Low-risk samples are excluded from DT simulations, since
these samples are relatively less costly and DT simulations are computationally more
expensive than ML. The total risk (low risk) computed by ML is

RISKML =
∑

s∈�S,L

pS
s Rs.

The size of the high-risk subset is limited by the DT computational capacity C,
which must be greater than the size of high-risk subset C ≥ ∣∣�S,H

∣∣. Thus, the short-
term computational capacity of the DT simulations is determined by the amount of
time domain security assessments. The DT conducts the conventional security as-
sessment for the high-risk scenario samples only. The DT-based risk assessment is
computed as follows

RISKDT =
∑

s∈�S,H

pS
s γs.

The parameter γs represents the severity level of the scenario s security impact,
which is computed by time domain simulations from the DT. The final estimated resid-
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ual risk is computed with the combination of both DT and ML.

RISKT OT = RISKSA + RISKML.

Figure 4.21 Didactic example: base scenario. The time-domain model is adapted from Cigré
Technical Brochure 536 [46].

4.4 Conclusion

Power system operation is a promising example that DT simulations and ML can
complement one another. Combined, the reliability of DT modeling can be met, while
increasing solution speed significantly.

In conclusion, this chapter has revisited concepts from DT and ML and show-
cased the opportunity in combining them for power system operation. The example
of dynamic security assessment has the promise to combine probabilistically the two
approaches, ML and DT. This presents the opportunity to investigate ML and DTs for
other promising applications, such as emergency control, corrective and preventive
control, or congestion management.

4.5 Didactic example

This chapter aimed at providing a strong high-level overview for the reader with refer-
ences to deepen the learnings. Therefore a didactic example is provided that comprises
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a selection of case studies from real-world research. The learning objective of the di-
dactic example is to analyze the simulation data (digital twin results) and the training
of a machine learning model. Therefore the risk assessment example contains data
from a power system model, which is illustrated in Fig. 4.21. The power system
model is adapted from Cigré Technical Brochure 536 [46]. It comprises 17 400-kV
buses connected by several AC transmission lines, 7 synchronous generators, 11 loads,
several shunts, and a VSC-HVDC transmission system connecting bus NC and SC.
Details on the didactic example are outlined in the corresponding Jupyter notebook
“Dynamic_Risk_Assessment.ipynb” and the related files “FeatureMatrix.csv,” “La-
bel.npy” and “SimulationExample.csv” (see Appendix 4.A).

Appendix 4.A Supplementary material

Supplementary material related to this chapter can be found online at https://doi.org/
10.1016/B978-0-32-399904-5.00010-7.
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