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Summary 

Objective 

The objective of the study is the characterization of the non-uniform geometry of a 
mountain river and the development of a method that identifies this geometry. 
Identification of the geometry enables simplification of a certain river section in 
modelling, which can be applied in a wide range of applications, for example the 
prediction of water levels. 

Approach 

Identification is based on the tracer methodology, which means that a non-disinte­
grating substance is released upstream of a river reach and water levels and 
concentrations are continuously measured. Therefore attention has been paid to the 
flow and transport processes in a mountain stream with irregular geometry. 

The non-uniformity of the geometry of a mountain river affects the flow and 
transport processes. In the study the non-uniformity is modelled by the use of 
correction coefficients in the hydraulic model and the application of the stagnant 
zone concept in the transport model. The coefficients represent corrections for the 
influence of the non-uniformity of the depth and velocity profiles over the cross-
section. The stagnant zone concept is based on the assumption of mass exchange 
between a zone with no net flow besides a main stream. A coupling can be found 
between the two concepts, which enables rewriting of the identified correction 
coefficients in a percentage of stagnant zones, relative to the total cross-section. 

Based on those principles, a flow and transport simulating numerical model is 
developed. The applicability of the identification system is limited to streams with 
moderate Froude numbers. The determination of the parameters in a system, in 
this study the geometrical and hydraulic coefficients, is an identification problem. 
Integration of the numerical model with the parameter identification procedure 
DUD results in a system that identifies a geometry for which the produced 
observations of water levels and concentrations coincide with the measurements. 
An additional result is the reconstruction of the upstream, unsteady, discharge. 
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Conclusions 

A river geometry and an upstream discharge can be identified yielding observations 
that coincide with the measurements. Besides values for the geometry-related 
parameters, values are identified for hydraulic and correction coefficients. 

Test-cases verify the applicability of the identification system in two different 
situations. The system proved to be useful in a test-case that uses measurements 
based on instantaneous release of a tracer in a natural river under steady discharge 
conditions. The accuracy of the identification system was studied by means of 
'synthetic' measurements, produced by numerical models. These measurements are 
based on continuous release of a tracer under flood wave conditions. 

It is concluded that the system is well applicable for the identification of an 
unsteady discharge. Regarding the objective of the study some problems occurred. 
It turned out that the exactly 'true' geometry is never identified. Moreover, 
different combinations of parameter-values exist that produce, more or less, the 
same observations. This means that the uniqueness of the solution is questionable. 
While the accuracy of the identified geometry cannot be evaluated in the case of a 
natural river, one has to be cautious if the results are applied to simplify a river 
section. 
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Introduction 

O B J E C T I V E O F T H E STUDY 

After urbanization of low-land regions, the development of natural resources shifts 
to less-accessible areas. This has led to an increasing exploration of land and water 
in mountainous regions. Concerning river engaged projects in these regions, 
knowledge is required of the fluvial processes in the streams. 

However, in contrast to low-land rivers, the description of the fluvial processes in 
mountain rivers is much more complicated. Mountain streams mostly have very 
irregular shapes, with big rocks, high turbulence, large Froude numbers and dead 
zones. Geometrical parameters such as depth, width, bottom slope and bottom 
roughness are time and place dependent. Flow velocities are distributed irregularly 
in the longitudinal direction, throughout each cross-section and in time. This 
means that, in the management of river engaged projects in mountainous regions, 
problems arise regarding a correct representation of the flow processes. 

The objective of the study is the characterization of the non-uniform geometry of a 
mountain river and the development of a method that identifies this geometry. 
Identification of the geometry enables simplification of a certain river section in 
modelling, which can be applied in a wide range of applications, for example the 
prediction of water levels under flood wave conditions. 

Identification of the geometry is based on the tracer methodology. Therefore 
attention has been paid to the theoretical and numerical description of flow and 
transport processes in mountain streams with a non-uniform geometry. A numeri­
cal flow and transport simulating model is developed. Integrated with a parameter 
identification procedure, the system identifies the geometry of a particular river 
section, merely based on measurements of water levels and concentrations. Based 
on several test-cases the applicability of the suggested method in natural mountain 
streams is discussed. 

OUTLINE O F T H E R E P O R T 

Chapter 2 describes the principles that underlie the modelling of the non-uniformi­
ty of a mountain river: the use of correction coefficients and the stagnant zone 
concept. The method that is used to identify the irregular geometry, the dilution 
method, and preceding studies based on this method, are discussed. 
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In chapter 3 the basic equations describing the flow and transport processes in a 
mountain river are derived. The non-uniformity of the geometry affects phenome­
na of a propagating flood wave. Adjusted to the basic equations applied in this 
study, expressions are given for properties, such as the wave propagation speed 
and characteristic celerity. 

Chapter 4 deals with the numerical aspects of the modelling. Numerical schemes 
are chosen to enable discretization of the basic equations. Properties of the 
schemes, such as numerical stability and accuracy, are discussed. 

The parameter identification system is described in chapter 5. The system contains 
a flow and transport simulating model, based on the numerical approach discussed 
in chapter 4, and a parameter identification procedure, DUD. This procedure is 
used to find an optimal set of parameter-values describing the geometry of a 
mountain river. Because a numerical model can only be run i f values for the 
system parameters are known, expressions are derived that can be used to find 
first order estimates of these values. 

For a situation of continuous release of the tracer substance under flood wave 
conditions, the numerical identification system is tested in chapter 6. Using 
different sets of measurements, first the model is verified. Then cases are carried 
out to identify the geometry of a particular river section. Concluding remarks are 
made about the applicability of the identification system. 

Finally, in chapter 7 a field case is discussed. Measurements are based on an 
instantaneous release of the tracer and are taken under steady discharge conditions, 
using a conductivity metre. Because the identification system discussed so far was 
based on measurements under unsteady discharge conditions, the method is slightly 
adapted. The numerical identified geometry is compared with the resulting 
geometry from an analytical approach. 

Conclusions and recommendations are treated in chapter 8. 

2 Characterization of the geometry of mountain rivers 



2 Principles of the study 

2.1 T H E DILUTION METHOD FOR DETERMINATION O F T H E D I S C H A R G E 

2.1.1 Steady flow 

Observation of the dispersion of a dissolved tracer is a method used to determine a 
steady discharge. At an upstream point x=0 a. tracer solution M (volume AQ) is 
introduced in a river at a constant rate (Fig.l) . At the downstream point x=L the 
concentration <p is measured. I f M is released for a sufficiently long time, then at 
x=L the equilibrium concentration <pe is reached. I f M and 4>0 (natural background 
concentration) are known then the discharge Q can be determined using the mass 
balance of the tracer. The method has been standardised (ISO, 1983) for a constant 
discharge Q. 

(2.1) 

Fig. 1 Dilution method 

A simplified method is to use an NaCl-solution and a conductivity meter. Measu­
rements obtained in this way are used in chapter 7. One condition is that the 
distance between the injection point and observation point (L) has to be sufficiently 
large to enable complete mixing to occur. Following minimum length is recom­
mended: 

L * 0 . 1 3 K ^ (2-2) 
a 
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Where the dimensionless dispersion coefficient K is given by: 

K = C(0.7C + 2y£) (2.3) 

8 

It has been shown that this value for L is too pessimistic. Van Mazijk and de 
Vries (1990) proposed, on basis of the dispersion equations, that it is better to use: 

L >. 0.55 — (2.4) 
Ky 

in which is the transversal dispersion coefficient, according to Fischer et. al. 
(1979). 

K = 0,15a«^£ ( 2 - 5 ) 
y C 

2.1.2 Unsteady flow 

Discharge measurements are especially interesting during flood wave conditions. 
Meijer (1992) showed the possibility to use the dilution method to determine an 
unsteady discharge, based on following data: 

Continuous measurements of: 

• h(0,t) : water level a t*=0 [m] 
• h{L,i) : water level at x=L [m] 
• 4>(L,t) : concentration at x=L [kg/m 3] 

Additional data: 

• L : length of river section [m] 
• (j)0 : background concentration for x < 0 [kg/m3] 
• M : quantity of tracer release [kg/s] 

A numerical model was developed that evaluated the measurements, estimated the 
river parameters and reconstructed the flood wave. I f an upstream discharge and a 
set of river parameters were found that yielded results equal to the measurements, 
then one could have confidence in the determined river discharge. 
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2.2 APPROACH O F PRESENT STUDY 

2.2.1 General 

Due to high rates of turbulence relatively short mixing-lengths of transversal and 
vertical dispersion of injected solutes are exhibited in mountain streams. This adds 
to the applicability of the dilution method. However, it is now difficult to predict 
how the measured concentrations depend on the discharge. Longitudinal dispersion 
is a disturbing spreader of information and dead zones have a damping effect on 
the concentration cloud. 

In the present study the dilution method is used to characterize the non-uniform 
geometry of a mountain stream. Based on the same data Meijer (1992) used, 
subsection 2.1.2, it is now the aim not only to identify the unsteady discharge but 
also values for parameters that characterize the irregular geometry of a mountain 
stream. Succeeding in this enables simplification of the geometry of a particular 
river section in modelling. 

To enable indirect measurement of a geometry, a numerical flow and transport 
simulating model is developed, integrated with a parameter identification procedu­
re. This system identifies a river geometry and an upstream unsteady discharge 
that yield observations of water levels and downstream concentrations that coincide 
with the measurements. The model is based on a coupling of a "transient-storage" 
model for the behaviour of the solute, and a hydraulic model corrected for the 
effects of a non-uniform geometry by introduction of correction coefficients. This 
means that, besides values for coefficients such as the width, roughness and 
bottom slope, values for additional coefficients have to be identified. 

2.2.2 Use of correction coefficients 

Simplification of the geometry of a river often results in a one-dimensional model, 
where cross-sectionally averaged values of the variables are used. This yields a 
correct representation of the flow processes when uniformity of the profiles is 
assumed. In the case of non-uniformity of the profiles, correction coefficients are 
introduced when the basic equations are integrated over the cross-section. The 
coefficients represent corrections for the fact that the product of mean values of 
variables is not equal to the mean of the product of these values (Jansen et. al., 
1979). 

Following variables are used in this study: 
u = u(y,z) = time-averaged velocity in flow direction [m/s] 
a = fl(y) = depth [m] 

The cross-sectionally averaged values of the variables are defined as 
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ƒ u(y)dy fu(y,z)dz (2.6) 

B ' v ' a(y) 

3V 
ƒ a(v)dv (2.7) 

B 

Where: 
zw - z6 = a. 
ü = cross-sectionally averaged value of velocity in flow direction [m/s] 
a = mean depth of the flow [ m ] 

While integration over the cross-section is carried out in two steps, the introduced 
coefficients are derived in two steps as well. The first step is a correction for the 
non-uniformity of the profiles over the depth, the second step results in correction 
over the total cross-sectional area. The definitions of the correction coefficients are 
given below. 

A better understanding in which way these coefficients correct the non-uniformity 
can be gained by assuming a hypothetical distortion of the time mean value from 
the time and cross-sectionally mean value in each variable. Suppose: 

u(y,z) = u + eu(yj) => u(y,z) = u ; eu(y,z)=0 ( 2 - 8 ) 

aiy) = a + ea(y) => a~(yj = a ; e / > ^ 0 ( 2 - 9 ) 

The mean deviation is zero by definition. This yields the following expressions for 
the correction coefficients: 

f f u ( y j ) d z d y ( 2 1 0 ) 

y^b = 1 + 6 q € " 
uaB au 
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u2(y,z)dzdy — — 
2e e. e„ e„e„ 

P = ̂  = 1 + 
u aB au u u a 

Bu is called the Momentum or Boussinesq coefficient. 

The correction coefficients are introduced in the model when the basic equations 
describing the flow processes are integrated over the cross-section in order to 
obtain a one-dimensional model. Additionally to the coefficients defined above, a 
correction coefficients Ba will occur in the equations due to integration over the 
cross-section. The definition will be given after introduction in the equations. 

2.2.3 The stagnant zone concept 

Stagnant zones, parts of the cross-section that do not carry any net flow, can be 
found in mountain rivers behind obstacles as boulders. Due to exchange of 
dissolved substance between the main flow and the stagnant zones the convective 
velocity of the dissolved matter becomes smaller than the mean flow velocity (77). 
This causes a delay in the downstream arrival time and skewness in the observed 
downstream concentration curve (Fig.2). The effects are described by the distinc­
tion in the model of a storage width with zero mass-flux besides a main stream. 

time 

Fig. 2 Difference between measured and predicted concentrations (Thackston and 
Schnelle, 1970) 

Related to the total cross sectional area (A=aB) the portion of stagnant zones is 
As=fis'A, where fis is the stagnant zone coefficient. The occurrence of these zones 
on the length of the river section (L) is defined by the fraction ƒ. In the main 
stream zone (subscript ms), the variables are assumed to be uniformly distributed. 
In figure 3 the simplification of the geometry is schematized: 
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Fig. 3 Coupling between stagnant zone concept and correction coefficients 

The image in the middle represents the approach of introduction of the correction 
coefficients. The image on the right hand side represents the stagnant zone 
concept. The cross-sectional convection of mass and momentum is equal for the 
two approaches, which yields a coupling between the stagnant zone concept and 
the introduction of correction coefficients (Sieben, 1995): 

It is assumed that the depth in the main stream (ains) equals the mean depth (a), 
which yields a relation between the use of correction coefficients and the stagnant 
zone concept: 

u a ( l - B ) f i 
"ms msK rs* 

auuaB (2.12) 

(2.13) 

u ms 
(2.14) 

(2.15) 
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3 Flow and Transport processes 

3.1 G E N E R A L 

In transport processes the flowing water is the carrier of the transported substance. 
The water movement influences transport of the dissolved substance, but the 
dissolvant is assumed not to influence the water movement (no density currents). 

In the next sections the flow and transport processes are described separately. 
Later on the processes are merged into a model describing transport processes in 
mountain rivers. The flow processes are described by the differential equations 
based on conservation of mass and momentum. The transport processes are 
described by the mass balances of the dissolved substance in the main stream and 
in the stagnant zone. 

3.2 F L O W PROCESSES 

3.2.1 Conservation of mass and momentum 

• Definitions 

In the co-ordinate system the j-axes is assumed parallel to the main flow direction. 
This means that the acceleration due to gravity has two components: gx and gz. 

down 

Fig. 4 Definition sketch 
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In this turned co-ordinate system an average bottom slope ib is introduced, given 
by: 

7 — 7 (3.1) 

In the horizontal plane the width of the river is allowed to be variable. Analogous­
ly to the definition of the average bottom slope, Eq. (3.1), a linear dependency of 
the width with the ^-coordinate is introduced: 

B(x) B0 + x-
B -B 

down up (3.2) 

Fig. 5 Variation in width 

• Basic equations 

Generally river flow is turbulent. This means that velocity components and 
pressure consist of a time-averaged part and a fluctuation caused by turbulence. 

U = u + u " ( 3 - 3 ) 

V + V 
(3.4) 

W = w + w (3.5) 

The equations describing the flow of the water are the equations of the conservati­
on of mass and momentum. For a three dimensional model these equations are 
given by: 
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du + dv + dw = 0 (3.6) 
dx dy dz 

d u + ^ + dm + d ^ + ± ^ + l ^ + l ^ = g x (3.7) 
dt dx dy dz p dx p dy p dz 

c ^ + < ^ + ö ^ + 3 ( y w ) = g (3.8) 
3f 3x dy dz p 3* p dy p 3z y 

3 w + _aOwO + 3(VMO + ö ( w 5 + I ^ £ + l ^ V + I ^ P = g (3.9) 
9f dx dy dz p dx p dy p dz z 

Where: 
U,V,W = flow velocity components in x, v and z-direction [m/s] 
w,v,W = time-averaged velocity-components in x, y and z-direction [m/s] 
M " ) V " , w " = turbulent flow velocity components in x, y and z-direction [m/s] 

The shear stresses are caused by turbulence and velocity gradients: 

= piPV' - p v | = p ^ V ' - P v - | (3.10) 

t = p^w7' - P v ^ = pu"w" - p v ^ (3.H) 
• a z ax 

x = p v V - p v ^ = p v ' V - p v ^ (3-12) 
dz dy 

Where: 
v — kinematic viscosity of the water [m /s] 
r f , = shear stress in ij-plane [N/m ] 

3.2.2 Integration over the cross section 

In order to obtain a one-dimensional flow model that uses cross-sectionally 
averaged values, the equations of motion have to be integrated over the cross 
section. Assuming that the influence of the local velocities v and w is included in 
the shear stresses, integration over the cross-section of equations (3.6) and (3.7): 

Flow and Transport processes 11 



daB + dauuaB = q (3.13) 
dt dx 

dt dx pJJ 3x pJJ 3y ( 3 1 4 ) 

1 c r dz 
+ 1 h r d y d z = g* 

We notice that, due to integration over the cross-section, the correction coeffi­
cients representing the non-uniform distribution of the velocity and the depth 
profiles over the cross-section (subsection 2.2.2) are introduced in the equations. 
The four last terms of (3.14) are analysed separately. 

The pressure p is assumed to consist of a hydrostatic pressure distribution and a 
fluctuation due to turbulence: 

P = Pgz(a+zb-z) + p" <3-15) 

This means that the third term of (3.14) can be rewritten: 

I f f & i y i z - +gzaB^*±±ty<aB) (3.16) 
p J J dx 2 z dx dx p dx 

The correction coefficient Ba is defined analogously to the definitions presented in 
subsection 2.2.2, where e„ is defined as the deviation of the depth from the mean 
value a. This coefficient represents the non-uniformity of the depth profile over 
the cross-section. 

j V ( y ) d y - ( 3 1 7 ) 

h=- = 1 + -
° c?B a 2 

It is obvious that Ba > 1. Hereafter the overbars over the cross-sectionally 
averaged values wil l be omitted as no unaveraged quantities will be used. 

The difference between the two hydrostatic forces on the cross-sections x=x and 
x=x+dx is compensated by the forces on the water of the inclining bottom and of 
the deviation in width. This last force can be defined as: 
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The influence of a variable width on the resulting pressure is counterbalanced by 
the borders themselves (pressure of the borders on the water equals the pressure of 
the water on the borders, due to variation in width). This can be shown by the 
first term on the right hand side of equations (3.16) and (3.18): 

It is now assumed that the last term of (3.16), due to pressure fluctuations, equals 
zero. When the average bottom slope ib is used, dz6/dx=0 and therefore the third 
term of (3.16) equals zero as well. 

The fourth and fifth term of equation (3.14) can be rewritten into: 

f f K . Z ^ ) A y i z . I2i . * W (3.20) 

A 

Where: 
P = wetted perimeter M 
Tb = mean bottom stress [N/m ] 

Integration of the term on the right hand side of the momentum equation yields: 

ƒƒ*» = 8X»B = gzibaB (3.21) 
A 

Because the effect of a non-uniform geometry is described with the stagnant zone 
concept, a term has to be added to the equation of momentum that accounts for the 
exchange of momentum between main stream and stagnant zone: 

fEula (3-22) 

Where: 
ƒ = fraction of stagnant zones relative to river section length L [-] 
E = entrainment coefficient H 
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The resulting system of equations describing the water movement: 

daB + dauuaB = q q 2 3 ) 

dt dx 

± ^ * £ ^ j , . f l a f i . g i i b a B - ^ t m - f E u l a m (3.24, 
dt dx dx p 

We notice that, of the terms representing production of momentum with opposite 
sign, the resistance due to bottom stress (equation 3.20) is proportional to the main 
stream width (l-j3s)-B. The momentum exchange represented by (3.22) on the 
other hand is proportional to the contact length of the stagnant zone and the main 
stream, approximately a, and to the velocity difference between main stream and 
stagnant zone («„„- 0 = u„J. 

The resulting equations can be written as a system with A and Q as the dependent 
variables, defined as: 

A = aB (3-25) 

a.uaB (3-26) 
u 

Under following assumptions the last two terms of (3.24) can be rewritten: 
constant Chézy parameter representing the bottom roughness 
uniform velocity distribution (assumed in main stream zone) 
prismatic channel (assumed in main stream zone). 

t b ( l - P s ) B gz 2 

C 2 

l ± h a - p ) Q l B = -Ao U^B 
C 2

a

4 A2 C2 "A2 

u 

(3.27) 

2 
-fEu2

msa = - f E ^ & - = -fEo2

u& (3.28) 
m s 4 AB AB 

For the sake of simplicity of the equations a coefficient au has been defined: 

a = 1± = 1 = A (3.29) 
a.2 1 -P, A-As 
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Notice that this coefficient represents the coupling between the modelling of non­
uniform effects by means of correction coefficients, and the stagnant zone concept. 
The terms (3.27), frictional effects and (3.28), momentum exchange, are together 
responsible for the total energy dissipation: 

Finally the following equations of continuity and momentum are found describing 
the flow processes: 

M + ÊQ. = o (3.31) 
dt dx 

A ) g z ? a dx{B) g x C2 UA2 AB 

3.2.3 Comments on the resulting flow equations 

The momentum equation presented above slightly differs from the momentum 
equation that can be found in, for example, Jansen et al. (1979). Apart from the 
introduction of two components of the gravitation constant, due to turning of the 
co-ordinate system, the appearance of an extra term and additional coefficients is 
obvious. The last term of equation (3.32) is additional compared to the traditional 
momentum equation and represents, as explained before, the momentum exchange 
between main stream and stagnant zones. 

The additional coefficient Ba is a correction coefficients which corrects the 
influence of the non-uniformity of the depth over the width. The coefficient au 

represents the coupling between the use of correction coefficients and the stagnant 
zone concept Eq. (3.29). This means that the identified value for au corrects the 
flow processes for the presence of dead zones and for the effects of non-uniform 
distribution of the flow-velocity in main stream direction over the cross-sectional 
area. This coefficient can be compared with the coefficient a that is introduced in 
Jansen et al., in this respect that than au (Eq. 2.10) equals one by definition. 

Values for the correction coefficients can be found by measuring the velocity and 
the depth profiles. The method discussed in this study provides in indirect identifi­
cation of values for the parameters and coefficients of the hydraulic equations. 

(3.30) 
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Appendix A gives two examples of hypothetical depth and velocity profiles with 
the coefficients au and Ba to match. The image is merely taken up for illustrative 
reasons. The value of the stagnant zone coefficient Bs is calculated from the value 
of au, which illustrates the possibility to express corrections for the non-uniformity 
of the profiles in a geometrical coefficient. 

3.3 WAVE PROPAGATION PHENOMENA 

3.3.1 General 

Equations (3.31) and (3.32) describe the flow processes in a mountain river. 
Because the non-uniformity of the geometry is described by the use of correction 
coefficients and the stagnant zone concept, additional coefficients are introduced in 
the equations (ƒ, E,au and Ba). To show the influence of the introduced coefficients 
on the flow processes, some wave propagation phenomena, valid in this study, are 
derived below. Some of the results wi l l be used further in the study (section 5.2). 

3.3.2 Critical flow 

In steady flow the time derivatives are omitted from the continuity equation (3.31) 
and from the equation of momentum (3.32). In this case an expression can be 
found for the backwater curve: 

From this expression it can be concluded that the slope of the water surface 
becomes infinite i f 

dA 
dx 

(3.33) 

o u 
L = 1 (3.34) 

Or, using equations (3.25), (3.26) and (3.29) 

ËüJLl = hip1 (3.35) 
8 a P a 

This means that critical flow occurs for Fr

2=J3Jj3u, where F2 = u2/(gza). 
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3.3.3 Characteristic celerities 

The physical meaning of the characteristic celerities is the propagation speed of 
infinite small disturbances at the water surface. Assuming a uniform width, the 
momentum equation (3.32) is rewritten to be able to find these celerities: 

^ + 2 o £12 + 
dt u A dx 

2\ 
a A Q dA 

dx 
R (3.36) 

Where R is the right-hand side of equation (3.32). Also the equations of the total 
differentials are available: 

d (32 + . d < ? 

dt dx 
(3.37) 

d ,M + d x dA = d A 

dt dx 
(3.38) 

Hence four equations are available which are linear in the partial derivatives: The 
continuity equation (3.31), the momentum equation (3.32) and the equations (3.37) 
and (3.38). 

For small disturbances the derivatives are different at both sides of the disturban­
ce. In other words the system of equations must allow two solutions for partial 
derivatives. Because the system of equations is linear it allows only one solution 
unless the system becomes indeterminate. This is the case i f the determinant of the 
system matrix becomes zero: 

0 1 1 0 

1 2auQJA 0 gfi^lB-o&lA2 

dt dx 0 0 

0 0 dt dx 

Given the definition c=óx/ót this gives for the celerities: 

=0 (3.39) 

Q a ft i+-2!(a 2-o ) 
B A2 

(3.40) 

Or, using again equations (3.25), (3.26) and (3.29) 
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In flow with uniformly distributed variables (au = l, j8„=l and B=\) and stagnant 
zone coefficient Bs=0, the defined parameter au=\ (3.29). In this case the 
expression of the propagation velocity (3.40) simplifies into: 

'1,2 
Q 
A \ B 

= u + 
(3.42) 

Now three possibilities occur, using the results of subsection 3.3.2: 
subcritical flow (F2 <A/A)'- o n e positive and one negative value for c 
critical flow (F2=fijflu): c,=0; c2=2u; 
supercritical flow (F2 > fialfiu): both values for c are positive. 

The celerities are the slopes of the lines in the x,r-plane. Along these characteristic 
lines information propagates. This means that in the case of subcritical flow, 
supposed in this study, information can as well travel upstream as downstream. 
This imposes restrictions on the boundary conditions: as well an upstream as a 
downstream boundary-condition has to be given. 

We can conclude that correction coefficients affect the behaviour of the flood 
waves. There is a shift of the point on which critical flow occurs and an adaption 
of the expression of the propagation speed. 

3.3.4 Classification of long waves 

In rivers most kind of waves, except wind waves, can be considered to be long. In 
long waves a characteristic length, for example the wave length, is much larger 
than the depth. 

Theoretical considerations on long waves are based on the relevance of the friction 
term in the momentum equation. Two approaches are considered in which the 
frictional effects are either predominating, or negligible with respect to the inertial 
effects. For an estimation of the relevance of the friction term we use the follo­
wing approach 

» = M m a x C 0 S ( " ' ) i <•> = - y ( 3 - 4 3 ) 

In this way the relevance of the frictional effects with respect to the inertial effects 
is represented by fi and depends on the flood wave period T: 
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Q = 8 z U m a x 

C2ua 

3.3.5 Inertia predominating friction 

These kind of waves, in which the inertia is predominating the friction (0 < 1), 
are called seiches. Typical features of these waves are a relatively small wave 
period (T is in the order of ten minutes) and a small amplitude of the water level 
compared to the depth of the stream. When convective acceleration (F,< 1) and 
frictional effects are neglected and a constant width is assumed, the system of 
equations simplifies into: 

M + 12 = o (3.45) 
dt dx 

1 2 + g B ^ M = 0 (3-46) 
dt z a B d x 

Differentiating Eq. (3.45) with respect to t and Eq. (3.46) with respect to x 
enables elimination of Q or A. This yields two second order differential equations 
in x and t which are called the chord-equations. 

#A _ 8AA$A = 0 ^ A = A ( x + C t ) + A ( x . c t ) (3.47) 
dt2 B dx2 

#Q _ SthAiQ = 0 ^ Q = Q f x + ct)+QJx-ct) (3-48) 
dt2 B dx2 

The solution consists of two components, (AltQj) and (A2,Q2), which are defined 
by conditions on the two spatial boundary's of the computational domain. As 
explained in subsection 3.3.3, because Fr<\, one of the components propagates 
in the negative, the other in the positive x-direction, both with a celerity c Eq. 
(3.40). 

In this approach the propagation velocity of the wave equals the propagation speed 
of small disturbances in the water surface. Examples of this kind of waves can be 
found in bores, low translatory waves, which can develop when emptying a lock-
chamber. 

(3.44) 
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3.3.6 Friction predominating inertia 

Examples of these kind of waves in which the friction is dominant (Q, Eq. (3.44) 
> 1) can be found in flood waves on rivers. A typical time-scale for the wave 
period T is 4*103 minutes, in which the water surface in one point of the river 
gradually rises and drops. Three approaches will be dealt with. 

• Dynamic wave model: 

This model is called dynamic because inertia is still taken into account. Solving 
the problem is based on the non-simplified momentum equation. Reasons why the 
inertia is not neglected can be found in faster propagating disturbances, superposed 
on the flood wave. Also on the upstream river reach of tropical rivers (banjirs) the 
inertia cannot be neglected in the flood wave itself. 

• Kinematic approach: 

The phenomena are so slow that inertial effects can be neglected. I f the flow is 
considered quasi-steady and uniform, the surface slope is approached by the 
bottom slope, or 

da 
dx 

<ib (3-49) 

The momentum equation reduces to: 

GIA-S£j>Q-B = 0 (3-50) 
6 z b r>% At 

In this case the depth adjusts itself to the discharge according to the rating curve. 
In this study this algebraic expression is given by: 

C f f i (3.51) 

Only the continuity equation remains as differential equation, and represents the 
kinematic relations. Substitution of Eq. (3.51) in the continuity equation results in 

Ê* + C^L + Q.ÊÊ. = o (3.52) 
dt dx B2 dx 

Where 
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u u = CJiba (3.53) 

In this approximation no wave attenuation occurs and the influence of the flood 
wave propagates slowly, compared to translatory waves. But, because the flow 
velocity u is a function of the depth a, there will be transformation of the wave. In 
higher parts of the wave u and, according to (3.53), also the propagation speed c 
will be larger. 

• Diffusion analogy: 

I f the damping is important the surface slope has to be included in the momentum 
equation (Jansen et al., 1979). When the inertial effects are neglected, the flow is 
considered quasi-steady but non-uniform. The momentum equation reduces into an 
equilibrium equation, in which inertial effects counterbalance the force of the 
surface slope. It follows that 

'N 
a 

da' 
dx, 

(3.54) 

Substitution in the continuity equation yields an equation of the parabolic or 
diffusive type 

* ^ - D ^ - + = o 
dt dx dx2 B2 dx 

(3.55) 

Where: 

c = 
3 u 

'N 
a 

da 
'~dx 

(3.56) 

and 

D = (3.57) 

The third term of Eq. (3.55) represents the diffusion and causes damping. 

For both the kinematic and the diffusion approach, the propagation velocity can be 
rewritten in terms of the stagnant zone coefficient Bs, which yields: 
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(3.58) 

This shows that a delay in the arrival time of the concentration cloud appears 
when a stagnant zone is present. 

It must be understood that fast surface waves (c represented by Eq. (3.40)) 
propagate continuously from each point of the flood wave. However these waves 
are damped by the predominating frictional term and the result is a slow wave, 
propagating with a velocity c Eq. (3.56). 

The difference between the kinematic approach and the diffusion analogy can be 
shown by means of the 'hysteresis effect'. I f the water surface slope is taken into 
account (diffusion analogy), then there are two possible values for the discharge 
for only one value of the depth. A consequence is that, during the passage of a 
flood wave, first the discharge and then the depth takes it maximum value. The 
rating curve is transformed into a loop. The relationship between Q and a is 
described by the Jones formula, obtained from Eq. (3.54): 

<? = <?„ 

Where Qs is the rating curve for steady flow Eq. (3.51). The figure below shows 
the hysteresis effect. 

h 

«- O 

Fig. 6 Hysteresis effect 

Kda 
ibc dt 

(3.59) 
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3.4 TRANSPORT PROCESSES 

3.4.1 Basic equations 

For the description of the transport processes we use the mass balances of the 
dissolved matter in the main stream and in the stagnant zone. 

Convection is the longitudinal transport of a dissolved substance, caused by the 
flow. Meanwhile, mixing takes place in three dimensions, caused by: 

molecular diffusion 
turbulent diffusion 
dispersion 

The influence of molecular diffusion is negligible with regard to turbulent diffusi­
on and dispersion, and therefore usually not taken into account. 

The mass balance of a control volume of water is given by: 

S . + ** + ÏL + = 0 ( 3 - 6 ° ) 
dt dx dy 

The last term accounts for the disintegration of the dissolved substance i f the 
matter is not conservative. In this study it is assumed that the dissolved substance 
is conservative. fx and fy are the time- and depth averaged values of the mass-
fluxes in longitudinal and transversal direction, given by 

ƒ + -Uu'^dz +~u~W' ( 3 - 6 1 ) 

f = v$ + - ({v'tfdz + v"4>" ( 3 " 6 2 ) 

y ao 

with the overbars indicating depth-averaged, before cross-sectionally averaged, 
values. In these definitions we recognize three transport processes. The first terms 
on the right hand side are due to convection with the depth-averaged flow velocity. 
The second terms represent the dispersive part of the transport due to a variation 
in the time-averaged convection over the depth. The third terms represent the 
turbulent diffusive transport. In figure 7 these components are depicted: res­
pectively as ü (time and depth-averaged velocity); u' (time-averaged local deviati­
on of Ü); u" (turbulent fluctuation). The concentration <f> is assumed to consist of 
components analogous to the components of the velocity U. 
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Fig. 7 Components of the velocity in flow direction 

It is common to assume that, analogously to molecular diffusion, both the turbu­
lent diffusive transport and the dispersive transport are proportional to the gradient 
in the concentration of the dissolved matter. This assumption was first made by 
Taylor (1953,'54), and is only valid on a certain distance from the release-point of 
the matter, when the depth-averaged concentration curve has reached a symmetric 
profile. 

'//}//,VW////////s//////, V777777777777777777777777. V y > ^ / / / / / / / f / / / / / / / / / / / / / / / / / / / A 

—A" ^ X 

<fi 

Fig. 8 Dispersion mechanism (after Fischer, 1966) 
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The depth-averaged flux in x-direction becomes: 

f x = M> - K x f (3-63) 
dx 

Where Kx is the longitudinal dispersion-coefficient. Likewise the depth-averaged 
flux in y-direction can be written as: 

ƒ = v$ - K & (3-64) 
J y T y dy 

Where K is the transversal dispersion-coefficient. 

By definition the time- and depth averaged value of v (velocity-component 
perpendicular to the main flow direction) equals zero, and therefore also the first 
term of Eq.(3.64), equals zero. Due to cross-sectional variation of the bottom level 
and riverbends the transversal dispersive flux-term is commonly unequal to zero. 

The mass balance, Eq. (3.60), can now be rewritten into : 

3$ + e g g _ K ^ ± _ K ^ ± = 0 (3.65) 
dt dx x dx2 y dy2 

When the dissolved matter is not only well mixed over the depth, but also well 
mixed over the width of the stream near the point of release, a one-dimensional 
model is satisfying, which means that Ky=0. This assumption is justified in a 
turbulent mountain river. 

S . + d ( S - = 0 (3.66) 
dt dx dx2 

Where K is the one-dimensional longitudinal dispersion coefficient that gives the 
total dispersion, due to velocity and concentration differences over the entire 
cross-section. Now the overbars indicate cross-sectionally averaged values of the 
variables. Again, the overbars wil l be omitted as no unaveraged quantities wil l be 
used. 

Release of a substance in the flow can be added to the balance by an extra term. 
In this study this release term wil l not be added, the tracer release will be taken as 
an upstream boundary condition in the numerical model. 

An analytical solution can be found for the case of an instantaneous release of a 
pollutant with mass M in a river with steady, uniform flow and a constant cross-
sectional area and dispersion coefficient. The mass balance simplifies for this case 
into: 
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W + uJ* _ = o 
dt dx dx2 

(3.67) 

The analytical solution is given by: 

a MIA / - ( x - « f ) 2 N 

AKt 
(3.68) 

3.4.2 Integration over the cross-section 

To achieve a one-dimensional model in the same dependent variables as the flow-
model (cross-sectional area A and discharge Q) the resulting continuity equation 
(3.65) has to be integrated over the cross-section. While cross-sectionally averaged 
values are used, a correction coefficient is again introduced in the equation. 

d<\>aB + d<bauuaB _ BaBK~dx~ = Q (3.69) 

dt dx dx 

Because the effect of a non-uniform geometry is also described by the presence of 
stagnant zones, an extra term describing the mass flux between the main stream 
and the stagnant zones has to be added: 

y=yr 

Where: 
E = entrainment coefficient between main stream and stagnant zone [-] 
ƒ, = mass flux between main stream and stagnant zones [kg/m3s] 

Using equation (2.14) this yields for the continuity equation: 

3 » " * , 34» *U«*B d a B K f x ) f E K u a 0 (3-71) 
dt dx dx au 

Fischer (1979) suggested the following expression for the longitudinal dispersion 
coefficient: 
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2 D 2 
K = 0.0066 u

zB 
K 

2 D 2 
0.011 ulB 

au. 
(3.72) 

For a river with a stagnant zone this expression can be rewritten into 

K = [i 
2 R2 

au. 
C U

ms

B,nS (3.73) 

when the friction velocity is defined as 

(3.74) 

Using the definitions for uins, Bs, A, Q, au (respectively Eqs. (2.14), (2.15), (3.25), 
(3.26), (3.29)), the third term of Eq. (3.71) can be rewritten into: 

daBK d± 
dx 

dx 
d_ 
dx 

( 
aB C UmsBms 3(j> 

H s 3x1 dx) 
\iC d 

dx 
I 

dx 
QB3 3(1) 

i, i4 3xJ 

(3.75) 

Substitution of Eq. (3.75) into Eq. (3.71) finally yields 

3f 3x 3x ^ A dx) 
+ (<j> - ^ ^ = 0 (3-76) 

Notice that the first two terms can be simplified by satisfying the continuity 
equation. For the sake of the discretization the continuity equation is slightly 
rewritten: 

A — + 
dt dx 

I 

QB 

{ A ) 

\i C 

3$ 
dx 

QB3 

{ A ) 

(3.77) 

dx1 a 

We can also formulate an equation that uses the mass balance of the dissolved 
matter in the stagnant zones. Integrated over the cross-sectional area we find: 
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d^QfaB p u 

dt oc„ 
(3.78) 

Rewriting (3.78) in terms of the dependent variables Q and A: 

(3.79) 

• The use of correction coefficients in the transport model 

The one-dimensional longitudinal dispersion coefficient K represents the total 
dispersion due to velocity and concentration differences over the entire cross-
section. In stead of adding the dispersive term to the equation, it is possible to 
correct the transport of substance due to non-uniformity of the profiles by intro­
duction of a correction coefficient B^ (analogously to Bu used in the flow model). 

This coefficient is introduced when the mass balance is integrated over the cross-
sectional area and cross-sectionally averaged values are used (3.69): 

/ — \ 

— 4>oc uaB-aBK— 
dx{ dx) 

= ± f f (4>u)dzdy = -f(p^d) uaB) 0-80) 
dxJ i dxx 

The definitions of j80 is analogous to the definitions given before. A better under­
standing in which way this coefficient corrects the non-uniformity can again be 
gained by assuming hypothetical distortions of the time-averaged values from the 
time and cross-sectionally averaged values. Additionally to the definitions of e„ and 
eu is defined: 

te) = $ + =* = * ; e ^ ^ O O - 8 1 ) 

This yields following expression for B^. 

yra 
ffu(y,z)<k(yz)dzdy ( 3 8 2 ) 

* §uaB au a$ u<$> au<\> 

The dispersion coefficient can now be expressed in terms of the deviations e: 
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K ö<j> 
dx 

e e. e e. e e e, 
a è , H 4* _l a " <P 

+ T 
W<J) (3.83) 

It can be noticed that, in case of uniform distribution of the concentration over the 
cross-section (ê  = 0), /30 = au (3.82) and the dispersive transport equals zero 
(3.83). 

3.5 F L O W AND TRANSPORT SIMULATING M O D E L 

Eventually flow and transport are described by following equations. In the next 
chapter these equations are incorporated in numerical schemes. 

M + W - o 
dt dx 

(3.84) 

dQ d —- + o — 
dt "dx 

( Q 2 \ 

[ A ) 

d_(A 

dx\B) 
-QA — —— o —B-fEau-^— 

C 2 A2 AB 

(3.85) 

A ^ 
A— + 

dt 

d QB3 d<$> 
dx { A j dx 

* (d)-4)) /£a ^ 
c*2 * "B 

0 

(3.86) 

1- (3.87) 

In the one-dimensional model following variables, parameters and coefficients are 
defined: 

4 variables: Q(x,t), A(x,f), 4>{x,t), 4>£x,t) 
4 equations (3.84) through (3.87) make the system determined. 

parameters: 
coefficients: 

Bupi Bdown, ib, a 
C,fE,f, n, au,fia 

4 
6 

10 unknowns 
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While the parameter E only appears in the equations together with the parameter f 
it is obvious to identify a parameter fE, defined as f-E, in stead of E. 

Identification of values for the ten unknown characterizes the irregular geometry of 
a particular river section of a mountain stream. It has to be reminded that the main 
objective is the determination of the geometry, the results of which can be applied 
in simplification of a particular river section. This means that the accuracy of the 
identified values for Bup, Bdown, ib, a and C determines the applicability of the 
identification system, where a is the downstream depth under steady flow conditi­
ons and ib is the average bottom slope. 

Additionally values wil l be identified for fia, au, \i, fE and/. While the identified 
value of Ba merely gives an indication of the non-uniformity of the depth over the 
width of the stream (Appendix A), the value of au is more important. This value, 
as explained before, represents the coupling between the use of correction coeffi­
cients and the stagnant zone concept Eq. (3.29). This means that the identified 
value of au corrects the flow processes for the presence of dead zones and for the 
effects of non-uniform distribution of the flow-velocity in main stream direction 
over the cross-sectional area. Moreover, the possibility exists to rewrite the value 
of this coefficient into a value of the stagnant zone coefficient Bs, which illustrates 
the possibility to express corrections for the non-uniformity of the profiles in a 
geometrical coefficient. 

The identified value of fi can be rewritten into an over-all dispersion coefficient K 
(Eq. (3.72)) that can be applied in a transport simulating model. The identification 
of values for the coefficients ƒ and fE is the least important. The value of ƒ 
indicates the fraction of dead zones on the length of the river reach L. The 
parameter fE that appears in the momentum equation can be understood as an 
over-all entrainment coefficient with respect to the exchange of momentum and 
dissolved matter between main stream and stagnant zone. This value too can be 
used in a transport simulating model. 
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4 Numerical approach 

4.1 N U M E R I C A L ASPECTS 

4.1.1 General 

Increased computational capacity together with progress made with respect to 
numerical analysis has meant that in the recent years more river problems have 
been tackled using numerical models. To achieve satisfactorily results, a good 
mathematical description of the physical processes is an absolute prerequisite. 

The mathematical description of the flow and transport processes is derived in 
chapter 3. In this chapter the resulting system of equations (3.84) to (3.87) wi l l be 
incorporated in numerical schemes. These discretisized equations form the basis of 
a numerical model capable of describing unsteady flow and transport processes. 

The choice of the numerical schemes has to be carried out with great care. Criteria 
like accuracy and stability are very important. First some characteristics of 
discretization are treated and a choice will be made for the numerical schemes to 
be used in this study. 

4.1.2 Implicit and explicit schemes 

Different methods exist for the transformation of a differential equation into a 
numerical algorithm. Numerical schemes can be roughly divided in explicit and 
implicit schemes. An initial value problem is considered: 

In these equations ƒ is a general function, t0 and y0 are constants. Note that fore a 
numerical solution equation (4.2) is a necessary condition. Numerical methods can 
only deal with problems with unique solutions, unlike analytical methods where a 
general solution can be presented. 

(4.1) 

with 

y(t0) = y0 

(4.2) 

Numerical approach 31 



• Explicit methods 

The derivative (4.1) is estimated by the difference form: 

dy yn - y , - i = - } (4.3) 
dt At J^"-v n~lJ 

This means that the solution at each time step is calculated straight forward, 
because for the evaluation of the function ƒ only known y-values are used. 

• Implicit methods 

I f for the evaluation of the function ƒ values of y at the new time step (unknown 
values) are used, an implicit method results. In this case the calculation of y0 is no 
longer straight forward but an algebraic expression needs to be solved. An 
example of such a method is: 

I - y^rr± - eycw + (i -Wy-^) (4-4) 

dt At 

The parameter 0 is a weighing factor, O<0< 1. I f 0>O.5 the weight is mainly put 
on the new time level, n. 0<O.5 puts the weigh mainly on the old time level n-l. 
The case that 0=0 results in an explicit method. 

Although, for the general case, the implicit method is more difficult to handle and 
requires more computational efforts, it has advantages concerning the stability of 
the computation. 

4.1.3 Stability 

I f some error is introduced during the numerical computation, e.g. due to the 
round off error of the computer, this error wil l grow with the amplification factor 
p. Demanding that this error is kept limited yields the condition for stability: 

| p | * l ( 4 - 5 ) 

• Explicit methods 

The Courant-Friedrichs-Lewy stability analysis shows that in case of explicit 
methods the Courant number is important: 

o = ^ s l (4.6) 
Ax 
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When this condition is satisfied, the value of a variable at a new time level can be 
interpolated between known values on the old time level. In the case that a> 1, the 
point on the new time level is outside the numerical influence area which leads to 
instability. 

• Implicit methods 

For implicit methods it can be shown that the stability condition is fulfilled i f 
O.5<0<1. This means that no restriction is put on the time step, which is an 
important advantage of implicit methods. This is especially interesting for systems 
of differential equations with very different relaxation times (the problem of 
stiffness). The behaviour of such a system is determined by large relaxation times, 
but when an explicit method is used the smallest time scale determines the time-
step restriction due to stability conditions. 

.4 Staggered or unstaggered grid 

In the flow model two system variables are to be integrated: Q and A. Usually a 
staggered grid is used for the numerical integration. This means that the grid 
points are divided into Q points and A points. In many cases a staggered grid is 
very efficient because the continuity equation contains a time differential in A and 
a space differential in Q. The equation of motion contains a time differential in Q 
and a space differential in A. In a staggered grid in space the unknown variables 
on the new time level can be calculated in every grid point, by connecting the 
integration molecules. 

• Staggered grid 

An example of an implicit scheme with a staggering grid is the Crank-Nicholson 
method. The grid should be chosen such that the correct type of points are on the 
boundaries, where conditions are given. In figure 9 the staggered grid is demon­
strated for the Crank-Nicholson molecules. 

• Unstaggered grid 

In this study a staggered grid can not be used, in the first place because the 
equations describing the transport processes would not fi t in a staggered grid. 
Another problem is that the momentum equation defined by (3.85) needs Q and A 
values in every grid point. An alternative implicit scheme is the Preissmann 
scheme, or four-point method. The lay-out of the grid is depicted in figure 10. 

The Preissmann method has the advantage that the grid size can be changed easily 
from one region to another. Moreover, modification of the scheme at the bounda­
ries, where only two grid points are available, is not necessary. 
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Fig. 10 Grid for the Preissmann method 
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4.1.5 Choice of the numerical schemes 

The use of implicit schemes is chosen. These methods are unconditionally stable 
for O .5<0<1 . This means that no restriction is put on the time step, which is 
especially interesting for systems of differential equations. 

Because an unstaggered grid has to be used for discretization of the flow-equations 
the Preissmann scheme is chosen. The second order derivative in the dispersive 
term of the continuity equation of the dissolved matter needs at least three spatial 
grid points. Therefore we use the Crank-Nicholson scheme for discretization of the 
transport equations. For the case without friction, following expressions can be 
found for the amplification factors for the two numerical schemes applied in this 
study: 

• l±2 ( l -6 )0 i tanc ; / 2 f A 0 T . 
Preissmann: p = * — (4.UA) 

l ± 2 6 a i t a n £ / 2 

Crank-Nicholson: p = 1 ± ( 1 " e ) o ; s i n ^ (4.08) 
1 ±6 oisint; 

The unknown variables are defined below. Given these amplification factors, some 
parameters can be defined that indicate the accuracy of the numerical approach. 

4.1.6 Accuracy 

Accuracy of numerical models can be analysed by investigating properties of a 
propagating wave, such as numerical wave celerity and numerical wave damping. 
These properties can be expressed in the complex amplification factor p of a 
numerical scheme. 

During one time step the numerical solution is multiplied by the amplification 
factor. This means that the amplitude of the wave is multiplied by | p | and that 
a phase shift by arg(p) occurs. In the transport prediction the difference between 
the concentration and its equilibrium value is multiplied by | p \ . 

Some parameters can be defined that characterize the accuracy of the flow- and 
transport model. 
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• Flow model 

Discretization of the flow model is based on the Preissmann scheme. The complex 
amplification factor p is defined by (4.07). The flood wave parameters in the 
expression of p are defined by: 

flood wave celerity = c = (dQ/dh)/B [m/s] 
flood wave period = T [s] 
length of flood wave = L = cT [m] 
Courant number = o = cAt1'Ax [-] 
wave number = k = 2-KIL [nr 1 ] 
relative grid size = f = kAx [-] 

The numerical flood wave damping is given by the damping factor dn. 

d, = I pC (4-9) 

in which n is the number of time steps. The error in wave propagation speed is 
represented by cr. This is the ratio of the of the numerical and analytical wave 
celerity. 

c = Mgfo) (4.10) 
2-nAtlT 

For accuracy reasons the numerical flood wave damping and the numerical flood 
wave celerity should not be too deviating from the analytical (true) values. In an 
ideal model both dn and cr tend to unity. 

• Transport model 

Now a propagating concentration cloud is considered. Discretization of the 
transport equations is based on the Crank-Nicholson scheme. The amplification 
factor is now defined by (4.08) where some of the parameters are re-defined: 

flow velocity = u [m/s] 
length of the cloud = L [m] 
flood wave period = T = Liu [s] 
Courant number = a = uAtlAx [-] 
wave number = k — 2-ir/L [m~ ] 
relative grid size = £ = kAx [-] 

Even i f the diffusion-/dispersion coefficient (K, Eq. (3.72)) equals zero, diffusion 
in the model may occur due to numerical effects. A parameter that indicates these 
numerical effects on the transport of substance is the numerical diffusion coeffi­
cient, given by: 
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K =(e- -V 2 A* 
mm y 2 J 

(4.11) 

This value is positive i f 0>O.5. 

4.1.7 Wiggles 

In some cases the numerical solution of the convection-diffusion equations shows 
wiggles, short waves with wave length 2Ax. This is a form of inaccuracy but not 
of instability because the waves do not grow in time. Wiggles are usually caused 
by large concentration gradients and therefore often occur with a sudden change at 
the boundary (for example a sudden start or stop of a dissolved matter release). 
These oscillations can be prevented by satisfying the condition: 

P = 0** ±2 (4.12) 
K 

In which P is the Cell-Péclet number. Wiggles do not necessarily occur i f P>2. 
This strongly depends on the boundary conditions. For a continuous release of a 
dissolvant the concentration gradients wi l l be small, which makes the system more 
immune to wiggles. In the case of an instantaneous tracer release larger gradients 
in the concentration curve, and therefore wiggles, are more likely to occur. 

4.2 NUMERICAL MODEL 

4.2.1 Discretization of the flow equations 

Solutions of differential equations are usually continuous functions in the time-
space domain. In solving the equations numerically it is attempted to find solutions 
at a finite number of grid points. This is done by replacing the differential 
equations by difference equations. 

For the discretization of the two equations of the flow model (3.84) and (3.85) the 
Preissmann scheme was used. For the continuity equation this yields: 

^ i n + l - A " A n + 1 - A n 

At At 
+ 0 

n + l 

Ax 
< + ( 1 - 6 ) M i = o ( 4 - 1 3 ) 

Ax 

In order to simplify the momentum equation the friction and the exchange term 
(together responsible for the total energy dissipation) are taken together as in Eq. 
(3.30). Discretization of the equation of motion: 
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At At 

QTl-
,4" 

+ o.(l-0) 

<?; n n - <?A O" 
A". 

<4» 

Ax 

^ a ^ 
l 2 ) 

A n+l 

Ax 
+ (1-6) 

Ax 

+ (1-6)[A/_1 +A/]) 

1 
+ — 

2 
— a, J?. ,+ZEo2. 

2 H 7-i J « 

/ . n \ 

A 2 
(eo^+a-e)^)-

A2 
(0<?;+1+(i-e)Q/) - o (4.14) 

4.2.2 Boundary conditions of the flow model 

Computation of the system variables on a new time step means solving the system 
of equations. I f the spatial grid has m points and two boundary conditions are 
given, then there are 2*m-2 unknown values (for Q and A) at the new time level. 
We have a continuity and a momentum equation for every cell. This means there 
are 2*(m-l) equations available, equalling the number of unknown. This makes the 
system determined and can be solved using the Thomas algorithm. 

In the flow model subcritical flow is assumed. This means that an upstream and a 
downstream boundary condition are necessary (subsection 3.3.3). The downstream 
condition can be a steady discharge relationship (Q-h curve), for example the 
simple wave formula 
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dA dA _ . — +c— = Bcib 

dt dx 
(4.15) 

in which c is the celerity of the flood wave. However, i f the discharge Q and the 
water level h do not have a unique relationship during a flood wave (hysteresis-
effect), the Jones formula has to be applied Eq. (3.59): 

In which Qs is the steady discharge. Discretization of this equation can be based 
on the Preissmann scheme. The upstream boundary condition is the measured 
unsteady river discharge. 

4.2.3 Discretization of the transport equations 

For the discretization of the continuity equations of the dissolved matter in the 
mainstream and in the stagnant zones the Crank-Nicholson scheme was used. 

Continuity equation (3.86) of the dissolved matter in the main stream: 

(4.16) 

+ 

• n+l .n+l 

fc"(l-6) + 
2Ax 2Ax 

,n+l o x " + 1 

4>;+l -2<j); 
n+l 

V-i £„"(1-0) 
( l ) ; n + l - 2 ( t > " + ^ 

Ax 2 

n 

+ 
Ax 2 

+ 8 ( * ; + 1 - * f ; + 1 ^ + (i-e)(4>;-vK £ o«ffl n 0 (4.17) 
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Where: 

\xC 

QB3^ 
{ A j , 

2Ax 

(4.18) 

1 ^ (4.19) 

Continuity equation (3.87) of the stagnant zones: 

n+l A N+1 

i - J - f 1 J- + 
At 

- 6(d>;+1 - ^ y ^ r - ( i - e ) ( o 4 ^ ° " = 0 (4.20) 

4.2.4 Boundary conditions of the transport model 

At the upstream grid point the concentration is a boundary condition, determined 
by the tracer release: 

. n+l 
<t>i <l>o + 

M 

Ql 
n+l 

(4.21) 

A constant release (M [kg/s]) of the trace is assumed in a river with a natural 
background concentration 4>0. Because of the second order derivative in the 
dispersive term, a numerical scheme is used (Crank-Nicholson) that requires at 
least three spacial grid points. At the downstream boundary only two grid points 
are available, which means that a second order derivative cannot be incorporated 
in this last cell. In this boundary, gridpoint j=m, the equation simplifies and can 
be discretisized i f the Neumann condition is used 

1*1 
dx l j = m 

*m * m - l 

Ax 
const. (4.22) 
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5 The parameter identification system 

5.1 DESCRIPTION O F T H E MODELS 

5.1.1 General 

In chapter 3 equations were derived describing the flow and transport processes in 
an irregular mountain stream under flood wave conditions. In chapter 4 the flow 
and transport description was approached numerically. The discretisized equations, 
together with initial and boundary condition, enable numerical computation of the 
system variables Q and A, on discrete intervals of a certain river section and time 
interval. 

The numerical approach of chapter 4 is the basis of two numerical models: Identify 
and Simulate. The models are written in the programming language MATLAB, 
which is a powerful tool in algebraic computation. 

Because a numerical model can only be run i f values for the system-parameters are 
given, first order estimates are necessary. Based on wave propagation phenomena, 
discussed in section 3.3, expressions for the system-parameters are given in 
section 5.2. 

First in subsection 5.1.2 the two numerical models are described. Both models are 
based on the same flow and transport description and use the same numerical 
approach. Both contain two elementary modula: A flow and a transport module. In 
subsection 5.1.3 the parameter identification system is described, developed to 
characterize a non-uniform geometry, the purpose of this study. 

5.1.2 Flow and transport simulating models 

• Identify 

An upstream measured water level is used as a boundary condition in the flow 
model. As a downstream boundary condition the simple wave, or Jones formula 
can be applied. This has the advantage that an observation of the downstream 
water level is produced. The transport module produces an observation of the 
downstream concentration curve. The length of the river section and the amount of 
tracer release have to be given. First order estimates of the parameter-values, 
necessary to run the model, are based on the expressions given in section 5.2. 
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Both produced downstream observations (water level and concentration) can be 
compared with measured curves. The alikeness of the observed (produced by Iden­
tify) and measured curves gives an indication of the quality of the parameter-
values. The model is called Identify because this is the first step in the identifica­
tion of values for the system-parameters describing the irregular river geometry. 
Resulting values of this first identification step can be updated to find a best set of 
parameter-values. This is a parameter identification problem, described in subsecti­
on 5.1.3. 

An additional result of this model is a first indication of the upstream discharge 
curve. I f the values of the system variables are updated, also a better approach of 
the upstream discharge wil l be obtained. 

• Simulate 

To run the model Identify, measurements of water levels and of a downstream 
concentration curve are needed. These measurements can, of course, be taken 
from a natural river. But to test the model it is convenient to be able to produce 
measurements numerically: Synthetic measurements. This model provides in this. 

The model uses a known upstream discharge curve as a boundary condition in the 
flow module. Again the Jones formula is used as a downstream condition. This 
makes the downstream water level a result of the computation. 

Again values of the system parameters are necessary to run the model. Now the 
user of the model has the possibility to define the upstream unsteady discharge and 
the river geometry, as well as values for the hydraulic and correction coefficients. 
In this way it is possible to simulate flow and transport in a fictive river under 
flood wave conditions. Results of this model are synthetic measurements of the 
upstream and downstream water level and downstream concentration curve, conti-
nously in time for a period longer than the wave period. These measurements can 
be used to test the model Identify and the parameter identification system. 

5.1.3 The parameter identification system 

• General 

The purpose is to develop a method that identifies values for parameters describing 
a non-uniform river geometry, for example that of a mountain river. The determi­
nation of the parameter-values of a system of equations is an identification 
problem. The identification is merely based on following information: 
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Continuous measurements of: 
• h(0,t) : water level at x = 0 [m] 
• h(L,t) : water level at x = L [m] 
• 4>(L,t) : concentration at x = L [kg/m 3] 
Additional data: 
• L : length of river section [m] 
• 4>0 : background concentration for x < 0 [kg/m 3] 
• M : quantity of tracer release [kg/s] 

Based on this data first order estimates of the parameter values are found and an 
identification of the best set of parameter-values is carried out. The identified set 
of parameter-values characterizes the irregular geometry of a particular river 
section. For a general consideration following variables are defined: 

9 = vector containing the parameters to be identified 
p = number of elements in 9 
/ (0 ) = vector containing the observations produced by Identify 
Y = vector containing the measurements 
n = number of elements in Y and fQ) 
7(9) = || Y-f[Q) || 2 = cost function to be minimized 

The observations are a function of the parameter-values and therefore the observa­
tion vector fQ) is a function of the parameter vector 9. The identification is based 
on finding values for the parameters of the vector 9 that yield observations f[Q) 
that coincide with the measurements Y. In other words: The alikeness of the 
vectors fQ) and Y indicates the quality of the parameter-values in 9. This is 
expressed by the cost function 7(9). I f this function is minimized, the observation-
vector / ( 9 ) converges to the measurement-vector Y. The values of the parameter-
vector 9 for which the cost function is minimized, characterize the geometry of a 
particular river section. 

In this study the variables are defined by: 

0 =[Bup Bdown ib a,xBaau C f f E ] T (5.1) 
p = 1 0 (5.2) 
7(9) = [ h(L,0) ... h(L,T) <t>(L,0) ... 4>(L,T) ] T ; observations (5.3) 
Y = [ h(L,0) ... h(L,T) </>(L,0) 4>(L,T) ] T ; measurements (5.4) 
77 = 2(7/At +1) = 2 x number of time steps (5.5) 
7(9) = S [ Y i - f (9 ) J 2 ; i = l , . . , 7 ? (5.6) 

The relevance of identification of the different parameters is explained in section 
3.5. Where the observations are generated by Identify. The measurements are 
taken from a natural river or can be synthetically generated, for example with the 
model Simulate. 
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Usually parameter identification systems investigate the influence of each parame­
ter on each observation (i.e. the influence of each 6-element on each /^0)-ele-
ment). The heart of such a procedure is the derivative 3/(0)/d0. This is a Jacobian 
matrix, which determination is a significant time and memory consuming opera­
tion. For one iteration, p function evaluations are required. In the identification 
problem of this study, one function evaluation means a complete time loop of the 
flood wave reconstruction. 

• DUD (Doesn't Use Derivatives) 

An attractive alternative for parameter identification is the procedure DUD 
(Doesn't Use Derivatives, Ralston and Jennrich 1978). DUD is a derivative free 
algorithm, that gives a parameter improvement iteration for each function evalu­
ation (instead of p evaluations). 

DUD needs p+l function evaluations (p + l vectors f[Q) and values 7(0)), genera­
ted using different parameter-vectors 6 (non-singular, stretching a ^-dimensional 
space), before a new 9 (improved parameter-vector) can be created. The p+l 
parameter-vectors to start with are one parameter vector that contains first order 
estimates of the parameter-values (based on expressions that will be given in 
section 5.2), and p vectors that are based on this vector including an arbitrary 
deviation. The vectors 0 and f(Q) must be stored in matrices, such that the 
requirement is fulfilled that: 

J jBJ > ... * J(&k) >- ... * J(© p + 1 ) (5.7) 

Implying that iteration p+l is the evaluation with the lowest cost function (the 
best). To enable computation of an improved parameter-vector two more matrices 
are defined: 

A 0 = [ A 0 1 ... A 0 p ] ; A © . = 0 . - 0 ^ ; i = l...p (5.8) 

A F = [ A F j ... AFpj ; A F, = ƒ(©,.) -f(&p+1) • i = l...p (5.9) 

Where: 
0,- = parameter-vector 0, defined by Eq. (5.1), underlying the z'th iteration. 

JXQ;) = observation-vector f(Q), defined by Eq. (5.3), resulting from the ith 
iteration. 

Which means that A0, and A/(0,) are columns containing respectively p and n 
elements and that the sizes of the matrices are pxp and nxp. DUD's linear 
approximation of a new parameter vector is written as a function of a (a vector in 
the /^-dimensional 0-space): 
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0 = 0 , + A0oc 
new p + l 

(5.10) 

The linear approximation / o f f is given by: 

/(«) = /(V) + A F a (5.11) 

The residue of the linear approximation has to be minimized: 

4w = \ \ Y - K « ) f 
(5.12) 

The solution is given by: 

a (AF / AF)" 1 AF / (y- / (0 / > + 1 ) ) (5.13) 

The algorithm of the identification procedure can be described by: 

Executed by Identify: 
1. Compute the first order parameter vector 0 (expressions section 5.2) 
2. Generate p + l 0-vectors (5.1), non-singular, stretching a p-dimensional space 
3. Generate the corresponding observations f[Q) Eq. (5.3) 
4. Compute their cost functions / ( 0 ) by Eq. (5.6) 
5. Store the vectors 0 and J\Q) in matrices, satisfying Eq. (5.7) 
6. Define A0 and AF by equations (5.8) and (5.9) 

Executed by the DUD parameter identification procedure: 
7. Find the vector a from the linear system Eq. (5.13) 
8. Compute the new 0-vector (0 n e w ) by Eq. (5.10) 
9. Execute Identify1, resulting in a function evaluation / ( 0 n e J 
10. Compute the cost function J n e w Eq. (5.6) 
11. Renumber the vectors 0 and/(0) according to Eq. (5.7) 

now p + l function evaluations (0- and/(0)-vectors) are available 
12. Erase 0! a n d / ^ ) (the vectors with the highest cost function) 

now p function evaluations (0- and /(0)-vectors) are available 
13. Compute A 0 and AFby equations (5.8) and (5.9) 
14. Return to step 7, until a specific convergence criterion is satisfied 

1 The flow- and transport-modula of Identify generate new observations of a 
downstream water level and concentration curve. 

When the convergence criterion is satisfied, the vector 0 p + i represents the river 
geometry for which the cost function is minimized. This means that the observati­
ons / ( 0 p + i ) are the best approach of the measurements (Y). 
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The structure of the parameter identification procedure is depicted in the figure 
below. The numbers in the figure agree with the steps of the identification 
procedure. 

Identify 

Measurements 
vector: V 

DUD parameter 
improvement 
steps 7, 8, 10 - 14 

Fig. 11 Parameter identification structure 

First order estimation: 
steps 1 and 2 

Flow and transport 
simulation: 
steps 3 - 6, 9 

Observations 
vector: f (9) 

5.2 FIRST ORDER P A R A M E T E R - V A L U E ESTIMATION 

Based on the relevance of the friction, different approaches of flood wave pheno­
mena were discussed in section 3.3. In order to run a numerical model, values for 
the system-parameters have to be given. In this section expressions are derived for 
the system-parameters, based on the same two extreme cases distinguished before: 
The case of negligible and the case of predominating frictional effects, with 
respect to inertial effects. 

A first estimate of the unsteady river discharge is given by the steady state formula 
(compare with (2.1))) 

QJf) 
M (5.14) 

Qm is considered a 'measured' discharge replacing the measured downstream 
concentration that contains a phase shift with regard to the unknown 0(0,0-
Besides, its shape is distorted by dispersion, unsteady velocities and dead zones. 

Reasonable first order approximations can be found in: 

(5.15) 
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< ? « - » « ( < ? . ) ( 5 - 1 6 ) 

= min(ft(0,fl) -min(ft(£,0) (5.17) 

(5.18) 
f[max(/i(Z,,*))] -t[max(h(0,t))] 

u = (5.19) 
*[max«?m(0)] - *[max(/*(O,0)] 

Because, until now, values for the parameters are not yet available, based on trial 
and error and some common sense, the relevance of the frictional effects has to be 
estimated. 

• Approach 1: Negligible friction 

In this first order estimation, a value for the water depth in steady flow is derived 
from the propagation speed of the flood wave which approaches the speed c of 
small disturbances in the water surface. In case that the variables are uniformly 
distributed over the width (ce„ = l and /3„=1) and no stagnant zone is present 
(Bs=0), the defined variable au=\ and c is defined by Eq. (3.43), subsection 
3.3.3: 

c - u + fify - a0 = ^ (5.20) 
St 

This yields: 

Z d o w n = mm(h(L,t))-a0 (5-21) 

• Approach 2: Predominating friction 

In this approach the water depth is derived from the kinematic approach (subsecti­
on 3.3.6). This meas that, in spite of the hysteresis effect, a direct relationship 
between the discharge and the depth is supposed: the rating curve for steady flow 
Eq. (3.51). In case of uniformly distributed variables this relation is given by: 
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Q(L,t) = BnisCfb[h(L,t)- 3/2 (5.22) 

In other words, change in the depth results in a proportional change in discharge. 
From this point of view an other expression can be found for the depth down­
stream. First a variable ratio is defined: 

\2/3 

ratio (5.23) 

The value of ratio is known from Eqs. (5.15) and (5.16). Substitution of Eq. 
(5.22) in (5.23) yields an expression for the unknown downstream bed-level: 

max(/t(L,f)) - ratio • mm(h(L,t)) ^ 24) 
d o w n ~ I-ratio 

a0 = min(/t(I,0) - zdown (5-25) 

Using either one of the approaches to find a first order estimate for the down­
stream water depth a0, following expressions yield values for the other parameters. 

z = z a + ihL (5.26) 
up down b 

B = O?!* (5.27) 

BA = B (5.28) 
down up 

Although based on the kinematic approach, a good first order estimate of the 
friction coefficient can be found in 

(5.29) 
[ib(m*<KL,t)) -Zdawn)] 1/2 

First order estimates for the other parameters are based on the following assumpti­
ons: 
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|x = 0.011 (5.30) 

B = 1.00 (5-31) 
r a 

In literature values can be found for the stagnant zone coefficient. For a mountain 
stream with large boulders, a stagnant zone of 5 %, relative to the total cross 
sectional area, seems reasonable. 

B = 0.05 - au = —!— - 1.05 (5.32) 

Analogously to Q Eq. (3.44) (ratio between frictional and inertial effects) we can 
define a coefficient which represents the ratio of the maximum values of the 
exchange term and the local inertia 

s = f E ° l M m a x (5.33) 
co B 

This shows the dependency between the stagnant zone parameters Jis (stagnant zone 
coefficient), ƒ (stagnant zone fraction on the length L) , and E (entrainment coeffi­
cient). I f the effects of momentum exchange are assumed to be in the same order 
of magnitude as the inertial effects, this relation yields values for these parameters. 

For example: A flood wave with a period of 4000 minutes, in a mountain stream 
with a width 5=10 [m] and a mean velocity w=0.15 [m/s] yields: 

ƒ = 0.10 ( 5 - 3 4 ) 

fE = 0.0015 ( 5 - 3 5 ) 
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6 Numerical experiments 

6.1 INTRODUCTION 

To test the parameter identification system (the model Identify integrated with the 
parameter identification procedure DUD), several cases are carried out. Although 
the objective is to characterize the unknown river geometry, an additional result 
wil l be the reconstruction of the upstream unsteady discharge, unknown so far. 

As explained in chapter 5, the upstream measured water level h(0,t) is an upstream 
boundary condition in the flow module. As a downstream boundary condition 
h(L,t) can be taken, or the simple wave or Jones formula. Using either one of the 
formula has the great advantage that a new observation of h(L,t) is generated. This 
observed downstream water level, together with the observed downstream concen­
tration-curve, are compared with the measurements. The alikeness of the observa­
tions, generated by Identify, and the measurements indicates how well the original 
geometry is reconstructed. The result of the identification procedure is a best 
parameter-vector whose values characterize the geometry of a particular river 
section. 

Before testing the ability of the system to identify a river geometry, verification 
tests have to be carried out. These tests verify i f the flow and transport processes 
are modelled correctly and i f the system is capable of finding a discharge and a 
geometry that yield observations equal to the measurements. Because the observa­
tions produced by the model Identify are based on the same mathematical descripti­
on and on the same numerical schemes as the measurements that are generated by 
Simulate, measurements have to be used in the verification that are generated by 
other numerical models. In section 6.2 these verification-tests are described. 

In section 6.3 test-cases are described that are carried out to identify a river 
geometry. Values of the identified parameter-vector are compared with values of 
the original vector underlying the 'true' measurements. 
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6.2 V E R I F I C A T I O N O F T H E M O D E L 

6.2.1 General 

Two verification-tests are performed. In the first testcase measurements are used 
that were generated by a flow and transport simulating model with place and time 
dependent variables written by Meijer (1992). The measurements were used to 
reconstruct an unsteady discharge. The observed discharge, reconstructed by the 
identification system, will be compared with the 'true' discharge that was used as 
a boundary condition. 

After that a testcase is carried out that uses measurements that are generated by 
TRISULA (Delft Hydraulics). This program simulates a dilution test under 
unsteady flow conditions using unknown numerical schemes and an unknown river 
geometry. The measurements were used by Meijer to verify his numerical model. 

6.2.2 Model performance 

• First verification-test 

The reconstructed unsteady upstream discharge agrees well with the discharge that 
was used as a boundary condition in the simulation model written by Meijer 
(Appendix B). This is a first indication that we can have confidence in the 
identification procedure. An additional result is now the optimized river geometry. 
But because the 'true' geometry is unknown, it is not possible to compare the 
results. 

• Second verification-test 

In this case the reconstructed discharge deviates more from the discharge that was 
used as a boundary condition in TRISULA to simulate measurements, but still we 
can have confidence in the procedure. Appendix C shows the reconstructed and 
measured discharge. The reconstructed discharge agrees even better i f it is 
compared with the discharge identified by Meijer (1992). 

6.3 C H A R A C T E R I Z A T I O N O F T H E NON-UNIFORM G E O M E T R Y 

6.3.1 General 

Now verification of the model has shown that the parameter-identification system 
is able to reconstruct satisfactory an unknown unsteady discharge, we can perform 
tests with the purpose to characterize an unknown geometry. The unsteady 
discharge will be an additional result. 
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In the subsections 6.3.2 and 6.3.3 the flow- and transport simulating model Simu­
late (chapter 5), is used to generate measurements. Identification results in best 
values of the parameter-vector describing the geometry and a reconstructed upstre­
am unsteady discharge. The identified parameter-values are compared with the 
'true' parameter-values and the reconstructed discharge is compared with the 
discharge that is used as a boundary condition in the model Simulate. 

Subsections 6.3.4 and 6.3.5 describe independent cases to test the robustness of 
the parameter identification system. The tests are based on measurements genera­
ted by the model TRISULA (Delft Hydraulics). 

In the subsections 6.3.2 and 6.3.3 first order estimates of the parameter values are 
found based on the assumption of predominating frictional effects (section 5.2). It 
turns out that this approach is not useful for the testcase described in subsection 
6.3.4. In this case a negligible friction is assumed to gain first order estimates of 
the parameter values. 

6.3.2 Case 1 based on measurements generated by Simulate 

• Description 

This case tests the influence of the hydraulic and correction coefficients on the 
behaviour of the flow and the transport processes. A moderate geometry is defi­
ned: a mild bottom slope, uniform width and moderate bed roughness. I f a 
parameter value is identified that agrees well with the value that underlies the 
measurements, then the influence of this parameter is proportional. 

• Results 

The system succeeds in identification of a geometry and reconstruction of a 
discharge yielding observations that match the measurements. The reconstructed 
unsteady discharge matches the measured discharge very well (Appendix D). 

In the schedule the resulting parameter-vector is given. The largest deviations 
occur in the values that are found for the parameters ƒ and fE. It has to be notified 
that the parameter ƒ only ones occurs independent in a term of the transport 
equation which explains its limited influence on flow and transport processes. This 
means that it is difficult to define a fraction of dead zones on the length of a river 
section. With respect to the use of the identified values in a flow model this 
parameter has no importance. The difficulty in the identification of fE can be 
explained by the contribution of the exchange term to the total energy dissipation 
Eq. (3.30), which is twenty times smaller than the contribution of the friction. 

The results show that the correction coefficients ou and fiu, as well as the dispersi­
on coefficient fi, have a proportional influence on the hydraulic processes. 
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6.3.3 Case 2 based on measurements generated by Simulate 

• Description 

The geometry defined in this case has a better resemblance with a 'real' mountain 
stream: steeper bottom slope, larger stagnant zone fraction and bed roughness. 

• Results 

Appendix E shows that the system succeeds in identification of a geometry 
whereby the produced observations of the downstream water level and concentrati­
on and upstream discharge equal the measurements. Nevertheless we can conclude 
from the schedule that larger deviations occur in the identified geometry from the 
'real' geometry than in the first testcase. While the river bottom in this case is 
even rougher than in the first case, it is obvious that the largest deviations again 
occur in the identified values fo r / and fE. 

An interesting image is taken up in Appendix F and shows successive iterations in 
convergence of the DUD-procedure. 

6.3.4 Case 1 based on measurements generated by TRISULA 

• Description 

In this case the downstream water level is used as a boundary condition. This 
means that the generated downstream water level gives no longer an indication of 
the quality of the reconstructed geometry. 

• Results 

Results of two runs of the identification procedure can be found in Appendix G. 
The two runs are based on different first order estimates of the parameter-vector. 
The graphical results show that both observed concentration curves satisfactorily 
approach the measurement and that the reconstructed flood waves coincide with 
the unsteady discharge that was used as a boundary condition. 

The schedule summarizes the identified parameter-values. It can be noticed that 
one of the identified geometries coincides very well with the true geometry. The 
deviation in this identification is expressed in percentages. The other identification, 
on the other hand, results in a very inaccurate approach, although the quality of 
the matching reconstructed discharge is satisfying. 
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The bad representation of the geometry is a result of the first run of the identifica­
tion system, in which first order estimates are based on expressions that are 
derived in chapter 5 (by assuming a negligible friction). When comparing of the 
identified with the true geometry turned out that the results were inaccurate, the 
second testcase was run. The first order estimates that are used in this second run 
are based on the true parameter-values including arbitrary deviations of 15 %. The 
results show that the identification procedure in this case converges towards the 
true geometry. 

The additional parameters f fE and Ba are not explicitly defined in TRISULA. The 
'true' value o f f equels one by definition, which indicates an over-all pressence of 
stagnant zones on the lenght L. The identified value deviates in an extreme way 
because of the limited influence of this parameter. The identified value for au can 
be rewritten in a stagnant zone coefficient Bs (Eq. 3.29), which enables comparing. 
The identified value matches well with the input-value used in TRISULA. 

To enable comparing of the dispersion-coefficients, the identified value for p is 
rewritten into a coefficient K (Eq. 3.72). The identified values for this coefficient 
deviate in an extreme way from its input-value. This may be explained by the 
order of magnitude of the dispersion term with respect to the magnitude of the 
advection term (Eq. 3.86): the dispersional effects are 5250 times smaller. 

Apparently, depending on the first order estimated geometry, the identification 
procedure is able to converge towards different parameter-sets. This means that 
the uniqueness of the solution is questionable. Obviously, in this case the alikeness 
of the reconstructed and true discharge does not give a good indication of the 
quality of the identified geometry. This can be explained by the nature of the DUD 
parameter identification procedure (section 6.4.2). 

6.3.5 Case 2 based on measurements generated by TRISULA 

• Description 

The testcase described in subsection 6.3.4 shows the possibility that the identifica­
tion procedure converges towards the wrong parameter-set. The question arises 
how it can be ensured that the true geometry is identified. The adoption of 
additional data from the river might be a solution. This case tests whether measu­
rement of the width B, which is assumed to be uniform in this case, ensures 
identification of the true parameter-set. 

Again two different runs are performed. In the first run the true value of B is not 
only used as a first order estimate but also kept constant during the identification. 
Thereafter the influence of inaccurate measurement or estimation of the width is 
traced. A first order estimate of B is taken that has a deviation of 10 % from the 
true geometry. 
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• Results 

Results of this case are taken up in Appendix H. In the first place it can be 
concluded that the upstream discharge is identified very accurately. The numerical 
results show that the true value of the depth is identified. Nevertheless, the 
identified values of the parameters ib and C do not coincide with the true values. 
Especially the identified value for the mean bottom slope is very inaccurate. 

The second run of the identification procedure shows that, also when the width is 
estimated inaccurately, the procedure still converges towards a geometry that is 
comparable to the geometry identified before. But the accuracy of the identified 
parameter-values does, of course, not increase. 

Again the identified value of the dispersion coefficient deviates in an extreme way 
from its input-value. In this case the ratio between the advective and the dispersive 
transport mechanisms, is about 1800. This means that the influence of the dispersi­
on is small, which explains the difficulty in the identification of the value of the 
value of K. 

It has to be concluded that measuring, or estimating, the width still does not 
provide the system the extra information it requires to identify the exact geometry. 

6.4 CONCLUSIONS 

6.4.1 About the results 

Results of the test-cases show that a river geometry and an upstream discharge can 
be identified that yield observations that coincide with the measurements. The 
quality of the identified (unsteady) discharge is satisfying in all cases. Neverthe­
less, regarding the objective of the study, identification of the non-uniform 
geometry, some problems occurred. 

The testcase treated in subsection 6.3.4 showed the possible identification of a 
parameter-set that matches the true parameter-set in no way. This can be imputed 
to the first order estimates of the parameter-values. These were based on expressi­
ons derived in chapter 5 and turned out to be extremely deviating from their true 
values. 

In section 6.3.5 it has been shown that even i f the width is measured, or estima­
ted, the identified values still proportionally deviate from the true values. It has to 
be concluded that estimating the width still does not provide the system the 
information it requires to identify the exactly 'true' geometry. This means that 
different combinations of parameter-values exist that underlie observations that are 
very much alike. 
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Even i f the identified geometry resembles the exactly 'true' geometry (subsections 
6.3.2 and 6.3.3), deviations occur in the identified values from the true values in 
the order of magnitude of percentages. This means that, for the identification of a 
natural river, one can never be sure of the accuracy of the identified geometry. 
This imposes restrictions on the application of the results for further use. Based on 
the identified geometry, observations of water levels produced by a flow model 
under different circumstances (another flood wave; period and amplitude) wil l 
most likely differ from the measurements. In section 6.5 the prediction of water 
levels is discussed. 

It can be concluded that the identification system is capable of identification of an 
unsteady discharge, whose quality is satisfying in all cases. But it is obvious that 
the quality of the identified discharge does not give a good indication of the 
identified geometry. Apparently, the number of parameters is that large that it is 
not possible to identify their exact values from the information that can be gained 
from the given measurements. 

The accuracy of identified values for hydraulic and correction coefficients depends 
on the influence of the accessory mechanisms on the flow and transport processes. 
When, for example, the dispersional transport of matter is small compared to the 
advective transport, the accuracy of the identified value for the dispersion coeffi­
cient is small. And so, i f the share of the momentum exchange in the total energy 
dissipation is small compared to the share of the bottom friction, the accuracy of 
the identified value for the entrainment coefficient is small. The identified values 
for these parameters should therefore be seen as indicative values. 

It also has to be notified that it is not sure that, for one river section, the same 
geometry will be identified i f the identification procedure is run twice, based on 
measurements taken under different circumstances. 

In subsection 6.4.2 possible explanations for the behaviour of the system are 
given. 

6.4.2 Comments on the DUD-procedure 

The DUD-procedure seems to be a powerful tool in solving a problem, defined as 
minimizing the difference between reconstructed observations and 'true' measure­
ments. Nevertheless some problems did occur using DUD in this study. 
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On the uniqueness of the solution 

Problem: 

• It turns out that different combinations of parameter-values exist that have 
no resemblance but do underlie observations that are very much alike. This 
means that, for the identification of a natural river, one can never be sure 
that the identified geometry coincides with the true geometry. 

Explanation: 

The DUD-procedure is a 'local optimisation method'. Best values of a parameter-
vector are identified when a cost function, defined as the difference between an 
observation and a measurement vector, is minimized. The possibility exists that the 
/7-dimensional manifold, spanned by values of the cost function produced by 
different parameter-vectors, has different local minima. Although the procedure is 
able to 'walk' out of the domain that is spanned by the p+l first order estimates, 
the search of the DUD-procedure might collapse into a subplain of the parameter 
space (a local but not the absolute minimum is found). This means that the 
identified geometry matches the true geometry in no way although the quality of 
the produced observations is satisfying. An example of which is given in subsecti­
on 6.3.4. 

On the accuracy of the identification 

Problems: 

• Even i f a geometry is identified that resembles the true geometry, this 
geometry still does not exactly coincide with the true geometry, that 
underlies the measurements. A deviation remains in the identified values 
from the true values that is in the order of percentages. 

• It turns out that different combinations of parameter-values exist that all 
have a large resemblance with the true values and underlie observations 
that are very much alike. 

Explanation: 

Since derivatives are not used the improved vector Q„m, is not necessarily in a 
"downhill" direction from the best parameter-vector so far, Qp+1. I f the residue of 
the identification reaches a (local) minimum, it is possible that the slope of the 
manifold that represents the cost function (i.e. the residue) becomes very flat. This 
means that different combinations of parameter-values exist that have a large 
resemblance and produce observations that are very much alike. This results in 
inaccurate improvement of the parameter vector, which determines the accuracy of 
the identified geometry. 
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Further converging of the procedure and improvement of the parameter-vector can 
be obtained by the use of a step-shortening procedure: 

0 = d& + (1 -d)@ „ (6.1) 
new new v ' p+i 

Where: 

d = (0.5)' < 6 - 2 ) 

With i = 0 for the first ten steps in the iteration procedure, i = 1 for the second 
ten steps, and so on. 

Different runs of the procedure, based on the same first order estimate but 
including different p parameter vector differences, converge towards the same 
minimum in the cost function. But because the course of the improvements of the 
parameter-vector is different and the true geometry is not found, the optimized 
parameter-vectors (i.e. geometries) are slightly different. Section 6.5 shows the 
influence of the difference of the results of two runs of the identification system on 
the prediction of water levels. 

6.5 PREDICTION O F FLOOD WAVES 

6.5.1 General 

This case tests the influence of the accuracy of the identification on the application 
of the results for further use: the prediction of water levels under different 
circumstances. As explained in section 6.4, the result of two runs of the identifi­
cation procedure may slightly differ. It was notified that the deviation of the 
identified parameter-vector from the 'true' vector increases when a more complica­
ted geometry has to be identified. Than it is no surprise to notice that, in this case, 
the variation in the identified vectors increases as well. 

For the testcase with the more-complicated geometry, described in subsection 
6.3.3, water levels of a flood wave are predicted based on two identified parame­
ter-vectors and on the 'true' vector. In Appendix H the two identified vectors are 
given. It has to be notified that these vector-values deviate in an extreme way. 

The circumstances are different than those under which the geometries are 
identified. In the schedule below the data are given of the wave that is used in the 
identification and of the wave for which the water levels are predicted. 
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Wave-data: Identification: Water-level prediction: 

T 
wave 

[s] 2000 8000 

Qmin [m3/s] 20.00 50.00 

Qmax [rnVs] 40.00 150.00 

Fig. 12 Wave-data from identification and prediction cases 

6.5.2 Results 

Resulting water levels can be found in Appendix I . The deviation in the water 
levels produced using the identified and the 'true' parameter-vectors is in the order 
of decimeters. It is obvious that this deviation decreases i f the identified parame­
ter-vectors agree better. This is the case for milder slopes, less stagnant zone and 
more uniform flow- and depth profiles. 

6.6 APPLICATION O F T H E IDENTIFICATION S Y S T E M 

From this we can conclude that the system is well applicable for identification of 
the unsteady discharge. Identification of the geometry seems to be more difficult. 

It has been shown that different combinations of parameter-values may be the 
result of the identification. Moreover, even i f the identified geometry resembles 
the true geometry, there always remains a deviation in the identified geometry 
from the true geometry. This means that one can never be sure of the accuracy of 
the results. Especially in mountain streams with steep slopes and large stagnant 
zones, one has to be cautious i f the resulting, optimized, geometry is used in a 
flow model, for example to predict water levels under flood wave circumstances. 
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7 Characterization of a natural river 

7.1 G E N E R A L 

The ISMES institute at Bergamo, Italy, performed discharge measurements with 
the tracer methodology. Measurements were taken in the Stabina river section with 
the purpose to quantify a discharge under steady conditions, for evaluations related 
to water quality analyses. An instantaneous release of the tracer was applied. 
Nevertheless these measurements are used as a test-case to identify the geometry 
of the river section. 

The water levels were not measured but are supposed to be constant during the 
measurement. As well the distance between the points of release and measuring 
was not exactly measured, but was estimated about 30 [m]. Photos are used for a 
first indication of the superficial width. The release consisted of 30 [1] NaCl-
solution. The measurements were performed using a conductivity meter. The 
conductivity curve can be converted in a concentration curve using a conversion 
table (see Appendix J). 

Data: 
River Stabina 
Section Ponte Mulino 
Date 24 March 1995 
Water levels unknown, though constant [m] 
NaCl-solution 30.00 [1] 
Solution conductivity 124400.00 [^S/cm] 
Background conductivity 109.30 [jitS/cm] 
Estimated distance 30.00 [m] 
Estimated width 5.00 [m] 

Converted: 
Solution amount 3 [kg] 
Background concentration 0.05 [kg/m 3] 

Section 7.3 discusses the numerical identification of the geometry. The first order 
estimation is adjusted to steady flow conditions and to an instantaneous, in stead of 
continuous, release. First in section 7.2 an analytical approach is discussed. Both 
approaches result in an optimized parameter-vector, whose values describe the 
geometry of the river section. The results of the two approaches can be compared, 
which gives an impression of the quality of the numerical identification. 
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First some parameters are defined 

A-As 1-p 
P = ^ = - ^ (7.1) 

(7.2) 
t[mZx(<b(L,t))]-treUase 

« = (1 + B)v c (7-3) 

Where 6 = the ratio of the stagnant zone area relative to the area of the main 
stream; vc = convective velocity of the dissolved matter [m/s]. Equation (7.3) 
shows a delay in the arrival time of the concentration cloud due to the presence of 
a stagnant zone. 

7.2 A N A L Y T I C A L APPROACH 

7.2.1 Solution according to Taylor/Fischer 

Because an instantaneous release was applied under steady conditions, the analyti­
cal solution given by Eq. (3.68) can be used to reconstruct the downstream 
concentration measurement. 

. y v MjA 
<J)(x,0 = — exp 

t 

(-(x-ut)2) 
4Kxt 

(7.4) 

This solution is based on the one-dimensional dispersion equation according to 
Taylor. The expression for the longitudinal dispersion coefficient (Kx) can be used 
that was suggested by Fischer Eq. (3.72). The analytical solution has the character 
of a Gauss-curve. Conditions for using the analytical solution are a steady, 
uniform flow and a distance between the points of measuring and release that is 
that large that a linear increase of the variance ax

2 of the concentration-curve 
occurs in time, where: 

a2

x=2Kxt (7-5) 

This condition is satisfied for x > L, where the minimum distance L is already 
defined by (2.4). For smaller values of x the profile of the concentration curve 
adapts itself to the velocity profile over the cross-section and the influence of the 
dispersion is negligible. In this 'convective period' skewness occurs: The concen­
tration profile as a function of the time has a relatively steep front and a long tail. 

62 Characterization of the geometry of mountain rivers 



7.2.2 Stagnant zone model 

The analytical solution by Eq. (7.4) does not give a correct reconstruction of the 
measured downstream concentration in a natural river. These curves have a 
characteristic asymmetric, skewed, profile (see Fig.2), which cannot be explained 
by the skewness that occurs in the convective period. The main cause of this 
skewness has to be found in the presence of stagnant zones. 

A better reconstruction of the measured concentration in a point x=L can be 
produced by including the effects of the stagnant zone. There is no analytical 
solution but an improved approach can be found by means of the Edgeworth-form 
of the Gram-Charlier series of the Type A (Chatwin, 1980). A reasonable recon­
struction of these series can be found in (Van Mazijk and Bolier, 1993): 

Where: 
H3(z) = z3 - 3z = third Hermiet polynomial 

The moments of the approach 4>E{L,t), Eq. (7.6), equal the moments of the analyti­
cal solution (p(x,t), Eq. (7.4). Wen x is that large that the condition is satisfied that 

4>B(4*)« +... (7.6) 

(7.7) 

simplified expressions can be found for the moments: 

T 
mt = f (4>(I,f)-4>0)df (7.8) 

o 

(1 + P) (7.9) 

(7.10) 

(7.11) 
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Where: 
m, 
ft 

g, 

zero-order moment 
first-order moment 
second-order moment 
third-order moment 

= mean 
= variance 

[kgs/m3] 
[s] 

[s2] 
[s3] 

Adjusted to the system of equations used in this study, the remaining parameters 
are defined as: 

C uB2 

fg a 

(7.12) 

Ps = B+2a (7.13) 

s s 
(7.14) 

p 
D = — Eu 

(7.15) 

0) = u 
LD 

(7.16) 

(1 + P) 
2 uL(s>B 

K 
(7.17) 

(7.18) 

Where: P = contact-length of mean stream and stagnant zone [m]; Ps = wetted 
perimeter [m]; D = exchange velocity [1/s]; oj = relative stay in stagnant zone 
[_]; KX = longitudinal dispersion coefficient according to Fischer [m 2/s]; KXS = 
stagnant zone dispersion coefficient [m 2/s]; G, = skewness-coefficient according to 
Abramowitz and Stegun (1965); 0 < as < 1 = a constant. 

In the case for Bs = 0 (no stagnant zone) and G, = 0 (no skewness), the series 
approach produces a concentration curve identical to the analytical solution in the 
point x = L. 
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7.2.3 Results of the identification 

The stagnant zone model is used to identify the river geometry. Although not all 
the parameters of the numerical identification system are included in the series-
approach, it gives reasonable comparable results. 

Appendix J shows the identified downstream concentration that gives the best 
approach of the measurement. The analytical solution after Taylor/Fischer has 
been plotted in the same figure for the same parameter values. It is obvious that 
the series-approach gives a better approach of the measured curve than the 
analytical solution of the Taylor model. The schedule summarizes the values of the 
identified parameter-vector. We notice that the value for the stagnant zone 
coefficient is small. The results are compared with the numerical identification in 
section 7.4. 

Using equation (7.3) a value for the flow velocity u is found. A value for the 
steady discharge can be found when the identified values of the depth a and the 
width B are used. This value of the discharge can be compared with the value 
identified by the numerical system. 
u =0.163 [m/s] by (7.3) 
Q = 0.765 [m3/s] = u-a-B-(l-Bs) 

By means of the identified geometry it is possible to verify i f condition (7.7), that 
imposed a restriction on the use of the simplified expressions for the moments, 
was indeed fulfilled. Substitution of the identified parameter-values in equations 
(7.7) and (7.12) yields the condition x > 0.53 [m], which is fulfilled by the 
distance of 30 [m]. 

7.3 NUMERICAL APPROACH 

7.3.1 First order estimation 

Estimates of the values of the system parameters, needed to run the numerical 
model, are now based on steady-flow conditions and an instantaneous release of 
the tracer. Following expressions are used to gain first estimates of the parameter-
values: 

O- -
(7.19) 

f(<KL,t)-$0)dt 
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A (7.20) 
s u 

B 

. u2 

it 

(7.21) 

(7.22) 
CLa 

Qs and As are the steady state values of the discharge and the cross sectional area. 
Values for the coefficients Ba, Bs, f and fE are defined as in section 5.2 
(equations (5.30) through (5.35)). Based on photographs, the following assumpti­
ons are made: 

B =B„ =B=5 (7.23) 
up down 

C = 30 (7-24) 

7.3.2 Results of the identification 

The identification system, described in chapter 5, is adapted to the expressions 
given above. Identification results in a geometry of the river section and a steady 
discharge that underlie the observation of a downstream concentration curve that 
has a good resemblance with the measured curve (Appendix J). Parameter values 
of the identified geometry are summarized in the schedule. It can be noticed that, 
again, the identified value for the stagnant zone coefficient Bs is small. 

An additional result of the identification is the steady discharge: 
Q, = 0.58 [mVs], 

7.4 COMPARISON O F IDENTIFICATIONS 

The results of the numerical identification system and the best reconstruction by 
the series-approach can be compared. In Appendix J the graphical and numerical 
results are summarized. In the first place we notice that the reconstructed concen­
tration curves look very much alike. The identified steady discharges Qs differ 
slightly but have the same order of magnitude (analytical: 0.76; numerical: 0.58 
[m 3/s]). 
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It can be noticed that both the numerical and the series-approach identify a 
relatively small stagnant zone coefficient. This can be explained by the short 
distance between measuring point and point of release. On this short interval there 
is a limited exchange of tracer-substance between stagnant zone and main stream. 
This causes only a small delay in the downstream arrival time of the concentration 
cloud and has limited influence on the skewness of the concentration curve. 

It has to be notified that the value of Bs for the numerical approach is based on the 
identified value for au, which also contains the effects of the non-uniform distribu­
tion of the depth and flow profiles. 

The analytical, series-approach, is based on a uniform width. The numerical 
identification system on the other hand, identifies a narrowing width that agrees 
reasonably with this uniform width. Also the identified values for the dispersion 
coefficient fx agree well. 

Larger deviations occur in the identified values for the Chézy-coefficient C, the 
depth a and the bottom slope ib. A possible explanation is that the bottom slope for 
the analytical solution is not a direct result of the computation but was calculated 
using the Chezy-formula Eq. (7.22) and the identified value for the flow velocity u 
Eq. (7.3). 

The largest deviations occur in the values for the coefficients ƒ and E. Before a 
coefficient fE (representing ƒ• E) was used in stead of the entrainment coefficient 
E. Now it is possible to compare the numerical with the analytical value for the 
entrainment coefficient, using Eq. (7.15). These large deviations may be explained 
by the nature of the series-approach, which is entirely different than the numerical 
model. As concluded before (chapter 6), the parameter ƒ only ones occurs indepen­
dent a term of the transport equations, which explains its limited influence. 
Moreover, identification of this value is not important regarding the use of the 
results in a flow model. The deviation in the identified values for E may be 
explained by the contribution of the exchange term to the total energy dissipation 
Eq. (3.30), which is negligible with respect to the contribution of the frictional 
effects (a large bottom roughness is identified: C = 30 [m'^/s] ). Because E only 
occurs in this exchange term, its influence on the flow processes is limited. 

Because the correction coefficient Ba is not included in the series-approach, it is 
not possible to compare the value identified by the numerical identification system. 

The identified values for the geometrical parameters (Schedule) give a reasonable 
indication of the geometry of the Stabina river section. The values can be used to 
simplify the river section. The correction coefficients give a first indication of the 
non-uniformity of the flow over the cross-section. 
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8 Conclusions and recommendations 

8.1 CONCLUSIONS 

• Objective and approach 

The objective is the characterization of the non-uniform geometry of a mountain 
river and the development of a method that enables identification of this geometry 
of a particular river section. Identification of the geometry enables simplification 
in modelling, which can be applied in a wide range of applications. 

Identification is based on the tracer methodology, which means that a non-disinte­
grating substance is released upstream of a river section and water levels and 
concentrations are continuously measured. Therefore attention has been paid to the 
flow and transport processes in a mountain stream with irregular geometry. A flow 
and transport simulating numerical model is developed. Integrated with the 
parameter identification system DUD, this system identifies the geometry that 
yields observations that coincide with the measurements. An additional result is the 
reconstruction of the upstream, unsteady, discharge. 

• On the results of the characterization of an irregular geometry 

Results of the test-cases show that the system is able to identify a river geometry 
and an upstream discharge yielding observations that coincide with the measure­
ments. 

Besides values for the geometry-related parameters, values are identified for 
hydraulic and correction coefficients. The identified value for the coefficient au 

corrects the influence of the non-uniformity of the flow and depth profiles over the 
cross-section on the flow processes. A coupling of the use of correction coeffi­
cients and the stagnant zone concept enables rewriting of au into a coefficient Bs, 
representing a ratio of stagnant zones relative to the total cross section. The 
identified value of Ba merely indicates the non-uniformity of the depth over the 
width of the stream. Identified values of the parameters fE and fx represent an 
over-all entrainment coefficient for the exchange of momentum and matter and a 
dispersion coefficient. These values may be applied in transport models. The 
parameter ƒ indicates the fraction of stagnant zones on the river length L. 
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• General restrictions of the system 

The flow model is only applicable in flows with moderate Froude numbers. A 
further limitation is that the model is not capable of handling internal transitions 
between subcritical and supercritical flow. 

While identification is based on fitting observed and measured concentration 
curves, the system is applicable in two different situations. The first situation is 
the continuous release of a tracer substance for sufficiently long time. A concen­
tration curve is obtained when a flood wave enters the river section with equilibri­
um downstream concentration. A second possibility is the instantaneous release of 
a tracer substance in steady flow conditions. 

• On the applicability of the identification system 

It can be concluded that the system is well applicable for the identification of an 
unsteady discharge. Regarding the objective of the study, the identification of the 
geometry, some problems occurred. 

On the uniqueness of the solution: 

It turns out that different combinations of parameter-values exist that have no 
resemblance but do underlie observations that are very much alike. This means 
that a geometry can be identified that matches the true geometry in no way 
although the quality of the reconstructed observations and unsteady discharge 
satisfies. For the identification of a natural river one can never be sure that the 
identified geometry coincides with the true geometry. 

On the accuracy of the identification: 

Even i f a geometry is identified that resembles the true geometry, this geometry 
still does not exactly coincide with the true geometry, that underlies the measure­
ments. A deviation remains in the identified values from the true values that is in 
the order of percentages. 

On the identification of hydraulic and correction coefficients: 

The accuracy of identified values for hydraulic and correction coefficients depends 
on the influence of the accessory mechanisms on the flow and transport processes. 
When, for example, the dispersional transport of matter is small compared to the 
advective transport, the accuracy of the identified value for the dispersion coeffi­
cient is small. And so, i f the share of the momentum exchange in the total energy 
dissipation is small compared to the share of the bottom friction, the accuracy in 
the identified value for the entrainment coefficient is small. The identified values 
for these parameters should therefore merely be taken as indicative. 
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Recommendations 

Improvement of the results: 

• Further converging of the procedure and improvement of the parameter-
vector can be obtained by the use of a step-shortening procedure. 

• Another possibility is the identification in two steps: first identification of 
the geometrical parameters, than identification of the hydraulic and correc­
tion coefficients. 

On the application of the identification system: 

• The system is very well capable of identification of an unsteady discharge. 
The accuracy of the identified discharge satisfies in all test-cases. 

• The system is capable of identification of a geometry that underlies obser­
vations that coincide with the measurements of the dilution method. The 
accuracy of the identified geometry determines the applicability of the 
results for further use. 

It has been shown that the exact geometry is never identified. Moreover, 
the uniqueness of the solution is questionable. This means that one has to 
be cautious i f the identified geometry is used to simplify the studied river 
section. Observations of water levels produced by a flow model under 
different circumstances (another flood wave; period and amplitude) wi l l 
most likely differ from the measurements. 

Enlargement the applicability of the system: 

• The restrictions that are put on the identification system are most likely due 
to the nature of the used parameter-identification system, DUD: Doesn't 
Use Derivatives. Improvement of the accuracy of the identified geometry 
wil l most likely be obtained by the use of an other identification system 
that is based on the determination of the influence of each parameter on 
each observation. Be aware that these methods are significant time and 
memory consuming. 

o The applicability of the system will be enlarged when the flow model is 
enabled to handle supercritical flow and internal transitions. 
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Recommendations for further study: 

• Field measurements are recommended to investigate the applicability of the 
identification system. While the uniqueness of the solution is questionable, 
it may be interesting to investigate the accuracy of water level predictions 
based on different identified parameter-sets. 

• Another question that remains is i f , for one section of a natural river, the 
same geometry is identified i f the identification system is run twice based 
on performance of the dilution method under different circumstances. 
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Symbols 

Symbol Description Dimension 

a river depth over the width [L] 
a mean depth W 
anis river depth in main stream [L] 
a0 first order estimate of the river depth [L] 
A cross-sectional area [L ] 
As cross-sectional area of the stagnant zones [L 2 ] 
B width of the river [L] 
Bm width of the main stream [L] 
Bdown width at downstream measuring point [L] 
Bup width at upstream measuring point [L] 
c characteristic celerity of small disturbances [ L T 1 ] 

flood wave propagation speed [ L T 1 ] 
cr ratio of analytical and numerical flood wave celerity [-] 
C Chézy friction coefficient [L'^T 1 ] 
dn relative numerical damping factor H 
D exchange velocity I T ] 
E entrainment coefficient between mainstream and stagnant zone [-] 
ƒ fraction of stagnant zones on length L [-] 
fx time and depth averaged mass flux in longitudinal direction [ M L 2 T _ 1 ] 
ƒ time and depth averaged mass flux in transversal direction [ M L ^ T 1 ] 
fy mass-flux between main stream and stagnant zones [ M L ^ T 1 ] 
f[Q) system evaluation, observation vector [-] 
Fr Froude number = uh/(g • a) [-] 
g gravitation constant 

[ L T 2 ] 
g. acceleration due to gravity in j-direction [LT 2 ] 
gt third-order moment [T ] 
G, skewness-coefficient according to Abramowitz and Stegun [-] 
h water level [L] 
ib average bottom slope H 
j space step number H 
J(O) cost function of system evaluation [-] 
k wave number 2 t / L [rad • T ] 
K = K longitudinal dispersion coefficient [ L 2 T l ] 
Kxs stagnant zone dispersion coefficient [L T" ] 
Ky transversal dispersion coefficient [ L 2 T L ] 
K numerical diffusion coefficient [ L 2 T ] 
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Symbol Description Dimension 

Kot) linear approximation oïf(Q) [-] 
L length of the river section [L] 

length of flood wave [L] 
length of concentration cloud [L] 

m, zero-order moment [MT-L- 3 ] 
M tracer release [ M r 1 ] 
n number of elements in Y and f{Q) [-] 

time step number [-] 

P pressure [ML _ 1 T' 2 ] 
number of parameters in parameter vector 6 [-] 

P" fluctuation in pressure due to turbulence [ M L 4 T 2 ] 
P wetted perimeter [L] 

Cell Péclet number [-] 
contact-length of mean stream and stagnant zone [L] 

Ps wetted perimeter [L] 
Q river discharge [ U T 1 ] 

Q„, 'measured' discharge using steady state formula [ L 3 T X ] 
T flood wave period [T] 
U cross sectionally averaged velocity [ L T 1 ] 

time-averaged velocity-component in flow direction (ü+u') [ L T 1 ] 
ü depth-averaged velocity-component in flow direction [ L T 1 ] 

cross-sectionally averaged velocity-component in flow direction [ L T 1 ] 
U' time-averaged local deviation of the depth averaged velocity ü [ L T 1 ] 
u" fluctuation in longitudinal velocity due to turbulence [ L T 1 ] 
U total velocity-component in flow direction [ L T 1 ] 

Umax maximum flow velocity during flood wave [ L T 1 ] 
velocity in the main stream [ L T 1 ] 

U* friction velocity [ L T 1 ] 
V velocity component in direction perpendicular to flow ( v+v ' ) [ L T 1 ] 
V depth-averaged velocity [ L T 1 ] 
V' time-averaged local deviation of the depth averaged velocity v [ L T 1 ] 
V" fluctuation in transversal velocity due to turbulence [ L T 1 ] 
vc 

convective velocity of the dissolved matter [ L T 1 ] 
V total velocity-component in transversal direction [ L T 1 ] 
w vertical flow velocity [ L T 1 ] 
w" fluctuation in vertical velocity due to turbulence [ L T 1 ] 
w total velocity-component in vertical direction [ L T 1 ] 
Y vector containing the measurements [-] 
zb 

bottom level [L] 
bed level in downstream measuring point [L] 

Z bed level in upstream measuring point [L] 
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Symbol Description Dimension 

a 
au 

B 
A 
A 
fis 

A 
Ax 
At 

solution vector in identification procedure [-] 
coefficient correcting the distribution of u over the cross-section [-] 
coefficient correcting the distribution of <p over the cross-section [-] 
the ratio of the stagnant zone area relative to the area of the main stream [-] 

e 
e 
\X 

V 

p 

a 

'ij 

+. 

C O 

0 

coefficient correcting the non-uniform distribution of a-a 
coefficient correcting the distribution of u2 over the cross-section: 
momentum or Boussinesq coefficient 
stagnant zone area relative to cross-sectional area 
coefficient correcting the distribution of 4> • u over the cross-section: 
numerical space step 
numerical time step 
hypothetical distortion of the time-mean value of the velocity from 
the time and cross-sectionally averaged value 
hypothetical distortion of the time-mean value of the concentration 
from the time and cross-sectionally averaged value 
hypothetical distortion of the depth a from the mean depth a 
numerical weighing factor 
vector containing the parameters to be identified 
empirical factor in dispersion coefficient 
first-order moment = mean 
relative grid size 
ratio of exchange effects and inertial effects 
kinematic viscosity 
density of the water 
numerical amplification factor 
Courant number 
second-order moment = variance 
correction coefficient 
shear stress in i,j-plane of water particle 
average bottom shear stress 
average concentration in main stream 
equilibrium concentration 
average concentration in stagnant zone 
natural background concentration 
2tt/T 

relative stay in stagnant zone 
ratio of frictional and inertial effects 

[-] 

[-] 
[-] 
[-] 

[L] 
[L] 

[ L T 1 ] 

[ M L 3 ] 
[L] 
[-] 
[-] 
[-] 

[T] 
[-] 
[-] 

[L 2 T _ 1 ] 
[ M L 3 ] 

[-] 
[ ] 

[T 2 ] 
[-] 

[ M L _ 1 T 2 ] 
[ML _ 1 T - 2 ] 

[ M L 3 ] 
[ M L 3 ] 
[ M L 3 ] 
[ M L 3 ] 

[ rad-T 1 ] 
[-] 
[-] 
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Appendix 
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A The use of correction coefficients 

Straight river section River bend 

water level 

-

bottom level 
-aO 
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1 ° 

m -0.5 sz 
Q. 
<D 
T -1 
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1 • • 

water level 
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• 
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• 

0 
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First verification-test B 

Calculated (..) and measured (--) downstream water level 

0.5 1 1 1 1 i 1 1 

0 500 1000 1500 2000 2500 3000 
t ime (s) 

Calculated (..) and measured (--) concentrat ion downstream 

0 2 ' 1 1 1 1 1 i 
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C Second verification test 

0.015 

t 0.01 
D ) 

^ 0 . 0 0 5 

600 

Calculated (..) and measured (--) downst ream water level 

200 400 800 1000 600 
t ime (min) 
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Reconstructed (..) and measured discharge (--) 
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Characterization of the geometry case 1 D 

Calculated (..) and measured ( - ) downstream water level 

1.5 

0 

0.04 

E 0.03 
D ) 

"0.02 

0.01 

500 1000 1500 2000 2500 3000 3500 
t ime (s) 

Calculated (..) and measured (--) concentrat ion downstream 

500 

500 

1000 1500 2500 3000 2000 
t ime (s) 

Reconstructed (..) and measured discharge (--) 

1000 1500 2000 
t ime (s) 

2500 3000 

3500 

3500 

4000 

4000 

4000 
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D Characterization of the geometry case 1 

Results testcase 1 based on Simulate 

Subsection 6.3.2 INPUT RESULTS Deviation (%) 

Geometry K [m] 20.00 20.18 0.90 

"down [m] 20.00 20.36 1.80 

h H ïo.oono-4 9.77*10"4 2.30 

c [m'A/s] 40.00 39.54 1.15 

a [m] 1.1200 1.1245 0.40 

Hydraulic fE [-] 5.00*10"3 5.25*10"3 5.00 

f [-] 1.00*10"2 1.12*102 12.00 

[-] 1.100 1.087 1.18 

A [-] 1.300 1.262 2.94 

n [-] 5.00*10"3 4.84*103 3.20 

Data: T 
wave 

[s] 2000 

[m] 1000 

Qmin [m3/s] 30.00 

Qmax [m3/s] 60.00 

M [kg/s] 1.00 

4>0 
[kg/m3] 0.00 
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Characterization of the geometry case 2 E 

Calculated (..) and measured ( - ) downstream water level 

11 i i i i i i i i 
0 500 1000 1500 2000 2500 3000 3500 4000 

time (s) 
Calculated (..) and measured (--) concentrat ion downstream 

0.061 1 1 1 1 1 1 1 1 

3500 4000 

- j Q l I I I I I I I I 
0 500 1000 1500 2000 2500 3000 3500 4000 

time (s) 
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E Characterization of the geometry case 2 

Results testcase 2 based on Simulate 

Subsection 6.3.3 INPUT RESULTS Deviation (%) 

Geometry K [m] 10.00 9.87 1.30 

D 
down 

[m] 5.00 5.32 6.40 

h [-] ïo.oono-3 9.89*10'3 1.10 

C [m*/s] 30.00 29.71 0.97 

a [m] 1.4650 1.5611 6.56 

Hydraulic fE [-] l.OO^lO"2 1.16*10-2 16.00 

f [-] l.OO^lO1 3.36*101 236.00 

[-] 1.100 1.075 2.27 

A [-] 1.150 1.114 3.13 

li [-] ïo.oono-2 9.66*10"2 3.40 

Data: T 
wave 

[s] 2000 

^river [m] 1000 

Qmin [mVs] 20.00 

Qmax [m3/s] 40.00 

M [kg/s] 1.00 

</>o [kg/m3] 0.00 
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Performance of the identification procedure F 
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G Measurements generated by TRISULA case 1 
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Measurements generated by TRISULA case 1 G 

Results testcase 1 based on TRISULA 

Subsection 
6.3.4 

INPUT 
TRISULA 

RESULTS 
2nd run 

Devia­
tion (%) 

RESULTS 
1st run 

Geometry K [m] 129.00 134.26 4.07 182.25 

Boo™ [m] 129.00 131.76 2.14 193.24 

h [-] 2.95*10 s 3.39*10"5 14.92 7.31*10'6 

C [m*/s] 100.00 103.55 3.55 155.60 

a [m] 11.00 11.05 0.45 6.98 

Hydraulic fE [-] 0.00 7.76*10"5 2.26*10"4 

f [-] 1.00 9.97*10"2 90.0 1.26*10"2 

A [-] 1.00 1.0141 1.14 1.0084 

K [-] 10.00 501 4900 423 

Stagnant zone ft [-] 0.00 0.0108 (*) 0.2565(*) 

Data: 7965 

M [kg/s] 1000 

$0 [kg/m3] 0.00 

Remarks: 

The first run is based on first order estimates for the parameter-values calculated from the 
expressions derived in section 5.2. First order estimates used in the second run are based 
on the true geometry, including arbitrary deviations. 

C uB1 

K = u. 
v £ a 

(*) The identified value for au is rewritten into a value for the parameter Bs. 
(**) Impossible to compare in terms of percentages. 

Appendix 89 



H Measurements generated by TRISULA case 2 

Measurements used in identif ication 

E / 
JZ 

> 1 

0 
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CO 
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CO 
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0.8 
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0 
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200 400 1000 600 800 
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Calculated (..) and measured (--) concentrat ion downstream 
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1000 1200 

1400 

1400 
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Measurements generated by TRISULA case 2 H 

Results testcase 2 based on TRISULA 

Subsection 
6.3.5 

INPUT 
TRISULA 

B correctly 
measured 

(150 m) 

Devia­
tion (%) 

Uncorrect 
measured 
B (135 m) 

Geometry B [m] 150.00 150.00 B given 152.31 

h [-] 2.31*10-5 6.66*105 190 ! 4.97*10"5 

C [m*/s] 50.00 52.41 4.82 53.33 

a [m] 7.00 7.04 0.57 6.828 

Hydraulic fE [-] 0.00 7.68*10"5 3.25*10'4 

f [-] 1.00 4.06*101 59.4 8.12*10"2 

fia [-] 1.00 1.00 0.00 1.00 

K [-] 20 94.76 375 86.25 

Stagnant zone ft [-] 0.00 0.00 (*) 0.00 (*) 

Data: rivet [m] 14400 

M [g/s] 1000 

00 [g/m3] 0.0 

Results of the identification depicted in the first column are based correct measurement of 
the width. The second column summarizes the results of identification of the complete 
geometry, including the width. The first order estimation of B may be based on inaccura­
te measurement or estimation. 

(*) The identified value for au is rewritten into a value for the parameter Bs. 
(**) Impossible to compare in terms of percentages. 
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I Prediction of water levels 

Predicted (.) and measured (-) water levels 

2 e 1 i i i i i i i i I 

0 20 40 60 80 100 120 140 160 180 200 
time (min) 

•\ -j i i i i i i i i i i I 

0 20 40 60 80 100 120 140 160 180 200 
t ime (min) 
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Prediction of water levels I 

Optimized parameter-sets underlying the flood-wave prediction 

Section 6.5 INPUT A: INPUT B: 

Geometry K [m] 9.87 9.376 

D 
down [m] 5.32 5.23 

h [-] 9.89*10-3 9.93*10-3 

C [m*/s] 29.71 31.41 

a [m] 1.561 1.488 

Hydraulic fE [-] 1.16*10-2 1.03*10-2 

ƒ [-] 33.60*102 8.65*10-2 

[-] 1.075 1.150 (*) 

A [-] 1.114 1.278 

r1 [-] 9.66*10"2 22.70*10"2 

Data T 
wave 

[s] 8000 

[m] 1000 

Qmin [m3/s] 50.00 

Qmax [m3/s] 150.00 

M [kg/s] 1.00 

4>0 
[kg/m 3] 0.00 

(*) Equals the maximum value set for this parameter. 
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J Characterization of the geometry in Steady flow 

Conduct iv i ty, volume: 30 [I] NaCI Concentrat ion, volume: 30 [I] NaCI 
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50 100 
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Characterization of the geometry in steady flow J 

Solut ions after Taylor /F ischer and stagnant zone model (-) and measured concentrat ion (.) 
0.14 

0.12 
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0.06 

0.04 
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900 1000 
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J Characterization of the geometry in Steady flow 

Numerical and analytical identified geometry 

Schedule Ch. 7 NUMERICAL: ANALYTICAL: 

Geometry K [m] 2.817 2.800 

Bttown [m] 4.196 2.800 

h H 4.837*10'4 1.720*10"5 (*) 

c [m*/s] 19.95 30 

a [m] 0.605 1.70 

Hydraulic E [-] 5.980*10'3 0.170 

f [-] 1.629*102 1 (**) 

A [-] 1.123 n.a. 

V- [-] 1.547*10"2 1.200*10"2 

Skewness: G, [-] n.a. 1.000 

Stagnant zone: A [-] 1.6 % 2.7 % 

Steady discharge: [m3/s] 0.582 0.765 

Data: driver [m] 30 30 

M [kg] 3 3 

<t>0 [kg/m3] 0.05 0.05 

(*) Based on the Chézy-formula. The flow velocity u was computed as 0.163 [m/s] 
(**) Overall presence. 

The numerical identified value for au is rewritten into a value for the stagnant zone 
coefficient 6S. 
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