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Abstract
Autonomous robots are increasingly used in more and more applications, such as warehouse robots,
searchandrescue robots and autonomous vacuum cleaners. These applications are often in environ
ments where the GPS signals are denied or inaccurate, which makes it difficult to localize the robot in
an unknown environment. To overcome this problem the framework of Simultaneous Localization and
Mapping (SLAM) is typically used. This solution constructs a map of the environment with the use of
cameras or range sensors, while keeping track of the location of the robot in it.

To extend the exploration time of these battery powered robots, the energy consumption of the SLAM
algorithm could be reduced. It is assumed that if the computational load of an algorithm reduces, the
energy consumption of the algorithm reduces as well.

An existing paradigm to solve SLAM is the use of a particle filter, which tracks the trajectory of the robot
and simultaneously maps the environment. The question answered in this thesis is how to make this
algorithm more energyefficient to be able to deploy this framework in more applications and make the
existing robots more sustainable.

In this thesis two methods are investigated. In the first method, the information about the landmarks is
incorporated in the trajectory estimation as spatial constraints, to try to achieve a higher accuracy with
less particles and thus subsequently a smaller computational load. The proposed method is validated
by simulations on synthetic datasets. This method shows improvements in terms of the estimation
accuracy. However, it is more computational complex than the existing algorithms, so it is considered
less energyefficient. The second method researched in this thesis, is the implementation of a paral
lelized particle filter. This method processes the observation measurements in parallel for the different
particles and communicates the information between the particles efficiently. It should reduce the com
putational time, to enable partial computation of the algorithm to reduce the computational load. This
method is validated on the same datasets as the first method using simulations. This method shows
improvements on the run time and thus on the computational load, especially for a larger number of
particles and is therefore more energyefficient.

The two separate methods have been analyzed and compared with state of the art methods. Both
methods deliver equally good or better results in terms of accuracy. However, the computation time
of constrained FastSLAM does not outweigh the improvement in accuracy. On the other hand, the
parallelized particle filter shows significant improvement over the existing solutions.
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1
Introduction

In a world where tasks are increasingly being replaced by robots (like mowing, vacuum cleaning or
delivering the mail) we expect the robots to take care of themselves and complete their tasks au
tonomously. It is impossible nowadays to imagine our society without these autonomously navigated
robots. Hereby we expect robots to work faster and better than we do ourselves. The downside is that
the robots require a growing amount of resources like hardware and energy. In this thesis, the focus
will be on reducing the energy consumption of these robots to reach their full potential.

In this thesis, two improved algorithms for autonomous navigation of mobile robots are proposed to
reach this goal. In this chapter the need for improved algorithms in autonomous navigated robots is
explained. The stateoftheart in autonomous navigation is explained in Section 1.1 followed by the
problem definition in Section 1.2. The last section introduces the organization of the rest of this thesis.

1.1. Background
If a vehicle or robot is capable of planning and executing a path without intervention of people, it is able
to navigate autonomously [31]. To do so, the robot needs sensors aboard to base its decisions on. In
addition, some prior knowledge might be available, such as information of the environment or a goal
that needs to be reached. The input of the sensors needs to be processed by the robot to localize itself
and to be able to avoid obstacles and collisions with moving obstacles or people. This information is
then used for the planning of the path and/or to build a map of the environment. The final step is that
the robot needs to be able to control the actuators, such as steering and braking to reach the goal or to
explore an unknown environment. This process is visualized in Figure 1.1. The inputs of the robot are
visualized in the first block, processing these inputs fall under the perception of the robot. Using this
processed data the navigation part can map the environment and plan a path for the robot. Finally, this
information is used in the vehicle interface part of the robot to control itself.

One of the many challenges with autonomous navigation, is that the robot first needs to know where it
is located within the environment to be able to localize itself, only then the planning of a path is possible.
But on the other hand, if the robot does not move, it cannot explore the environment outside its obser
vation range. An existing solution to this autonomous navigation problem is simultaneous localization
and mapping (SLAM). This method explores a new environment, typically where global positioning sys
tems (GPS) are denied or inaccurate, such as indoors on Earth, or in distant spacemissions on other
planets. By using this method the robot observes and maps the environment, using sensors, such as
cameras or LIDAR, and localizes itself simultaneously in the map using the observations. With every
observation the map and trajectory estimation of the robot is expected to be more accurate, because
the uncertainty about the observed environment decreases with every measurement.

1.2. Problem definition
Robots that use SLAM to explore the environment are nowadays not only used to explore unknown
environments, but also to vacuum clean houses or to mow the grass. Whether the robots work closer

1
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Figure 1.1: Block diagram of processes in autonomous navigation [25]

to home, or farther away, keeping the energy consumption of the robots as low as possible is crucial,
since they run on small batteries. These batteries are either charged by solar panels, which can be a
bottleneck for the performance of the robot, or by charging systems.

The research in energyefficient software development is still immature and incorporating this metric
during the whole development of software is often overlooked [12]. A proper metric that defines the
resource and sustainability of an algorithm does not exist yet. However, broadly speaking, the metrics
that influence energy consumption of an algorithm can be divided into multiple categories;

• Hardware; related to how the hardware consumes energy for different components

• Code; related to the dynamics of the code itself

• Process; related to the energy consumption during the development of the algorithm

Finding an overall metric is a subjective matter and out of the scope of this thesis. The algorithms
in this thesis will be considered to be language and platform independent, so the energy consumption
of the hardware will not be taken into account in this thesis, as well as the process energy consumption.

In this thesis the focus will be onmetrics that are directly related to the code. Amajor part of the research
done in this field is summarized in Ergasheva et al. [12]. This paper describes that for example the
number of functions, the number of executed instructions and the number of accesses to the memory
have shown to influence the energy consumption of a code [3]. These metrics are summarized in
this thesis by looking at the computational complexity of the algorithms. The research question of this
thesis is: What is an energyefficient way of implementing a SimulatenousLocalizationandMapping
algorithm? The question is split into two key subquestions:

• How can the available information of the landmarks be used more efficiently?

• How can the computational complexity and run time be reduced without compromising the accu
racy of the algorithm?

1.2.1. Scope
The research question is broad and can be infinitely complex without any constraints. To focus the
results of the thesis to a meaningful realistic situation, the scope is defined by introducing some bounds.
Some constraints are defined because going outside that box would have negligible effect on the energy
consumption of the algorithm. Other constraints have been defined to keep the simulations tractable,
because a Monte Carlo simulation is done for every algorithm. Without these constraints the run time
of the algorithms would be too long to complete all simulations during this research. In this thesis the
following constraints are used:

Single agent system In this thesis, the environment will be explored by one robot.
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Landmarks The number of landmarks for the simulations are up to 100 landmarks, similar to for
example trees in a park [24].

Particles The number of particles used for the simulations is up to 1000 particles.

Environment Since the original SLAM solution assumes a static world, this thesis will only focus on
nondynamical objects. So the static world assumption will hold throughout this thesis.

Data association It is assumed that the measurement of a landmark is always associated with the
correct landmark. Even though this problem is not arbitrary, there has been done a lot of research to
tackle this problem efficiently [22, 34]. Besides that, it is assumed that the research on energyefficient
SLAM can be done independent of this problem.

Known starting position It is assumed that the starting position is known, such that the positions of
the robot and landmarks can be defined relative to the starting position. The robot will also not been
picked up and placed at an arbitrary location during the exploration. There has been done research on
the so called ’kidnapped robot’, where the starting position or an intermediate position after relocating
the robot to another location also needs to be estimated.

1.3. Organization of this thesis
In the remainder of this thesis the organization is as follows.

In Chapter 2 the background of autonomous navigation is presented. A state space model is presented,
which will later be used for the robot model, necessary to solve the SLAM problem. Also the types of
inputs of a robot are summarized. The mathematical derivation of SLAM will be given, as well as a
short description of the known solutions for SLAM.

Chapter 3 gives an inside in the robot model that is used during the remainder of the thesis and the
stateoftheart of particle filters used for SLAM, known as FastSLAM. A simulation in this chapter of
the FastSLAM algorithm will show which parameters play a role in the performance of the algorithm.
And finally, some performance measures are presented, which will be used to compare the simulations
in the subsequent chapters.

In Chapter 4 the first method is introduced, namely constrained FastSLAM. This method incorporates
the information of the landmark observations to the FastSLAM algorithm as spatial constraints. By
means of simulations on synthetic datasets, the performance of this method is discussed.

The second method is discussed in Chapter 5, the parallelized particle filter. A graph Laplacian particle
filter is used to share information between particles. The performance of this method is also tested
using simulations, which are discussed in this chapter as well.

In Chapter 6 the conclusions of both methods are drawn and compared with each other. The short
comings of the methods are discussed and recommendations to improve the methods are proposed.





2
Autonomous navigation

To design a robot that can navigate autonomously, the design of the algorithm depends on the dynamics
of the robot and the type of input sensors. A general framework of an typical autonomous robot will
be discussed in this chapter, mainly focused on the sensors of the robot. Besides that, the framework
to solve the SLAM problem is explained, including the three popular paradigms to solve the SLAM
problem.

2.1. State space model
In general, the autonomous navigation problem for one robot can be written as a state space model,
like the following representation.

𝐱𝑘 = 𝑓(𝐱𝑘−1, 𝐮𝑘) + 𝐯𝑘
𝐳𝑘 = ℎ(𝐱𝑘) + 𝐞𝑘

(2.1)

In this representation 𝐱𝑘 is the state of the robot at time 𝑘, this can be for example the position, orien
tation and velocity of the robot. 𝑓 models the dynamics of the robot and is a function of the previous
state and the control input 𝐮𝑘, which is for example the acceleration and steering angle of the robot.
Typically, the states of the robot are not measured, but other properties are measured, which are de
noted by 𝐳𝑘. ℎ is the measurement model and is a function of the states of the robot. In practice, this
model is subject to noise, which is modeled as process noise 𝐯𝑘 and measurement noise 𝐞𝑘, which
affect the accuracy of the localization and mapping estimation. These types of noise can have arbitrary
properties, but is conventionally assumed to be white Gaussian.

2.2. Inputs
The type of information that is contained in the measurements 𝐳𝑘 and the form of function ℎ depend on
the input sensors of the robot. The input sensors can be divided into two types of sensors. The first
class of sensors can be used to estimate the relative position with respect to the starting position of
the robot, this information is typically encapsulated in the input vector 𝐮𝑘 to calculate the next state of
the robot. The second class of sensors are those that can sense the environment, such as cameras or
LIDAR, these measurements are denoted by 𝐳𝑘.

2.2.1. Odometry
The first class of sensors are the odometry sensors. For mobile robots, such as wheeled or legged
robots, odometry is the use of motion sensors to estimate the position of the robot relative to a known
position. This known position can for example be the starting position or known waypoints, such as the
charging station. Examples of odometry sensors are rotary encoders or an inertial measurement unit.
The early odometry sensors introduced errors due to unequal ground or slip, which typically induced
a drift [31, Ch. 4.1]. Consequently, nowadays visualaided encoders are more commonly used, which
compensate for the errors using visual aids [30].

5
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Rotary encoder The change of position can be estimated on the legged joints of a legged robot or
wheels of a wheeled/tracked robot by using rotary encoders for example. This can be an encoder that
measures the angular position of a shaft or uses the magnetic field of a electric motor to estimate the
velocity of the motor. However, this method integrates the velocity to determine the position of the
robot, which is sensitive to the introduction of errors [31, Ch. 4.1]. This can only be eliminated using
regular calibration of the sensors. Another problem with rotary encoders is that it does not compensate
for slip of the wheels or differences in height. This will lead to the believe that the robot is in another
position than the actual case.

Visual odometry In case of a less conventional mobile robot, e.g. a combination of legs and wheels
on the robot, the rotary encoders may not be usable, so another type of odometry sensors is needed,
such as visual odometry. Besides this case, visual odometry also offers a solution to reduce the error of
rotary encoders. Most robots already contain some visual sensors, such as cameras or range sensors,
which can then also be used to overcome the problem of the inaccuracy of the wheel encoders. Visual
odometry uses the images from the environment to match the odometry measurements to get a more
precise estimation of the location of the robot. The estimated trajectory computed by visual odome
try is more accurate than wheel encoders with a relative position error that ranges from 0.1% to 2% [30].

Since the developments in odometry sensors is continuously increasing, the question remains whether
SLAM becomes unnecessary in the future. The answer depends on the application it is needed for.
Especially in challenging setups, e.g. no GPS available or low quality visual sensors, SLAM can still
provide a better solution than just odometry measurements [1]. Visual odometry only considers local
consistency , whereas SLAM considers global consistency [30]. This means that a robot using visual
odometry is not able to recognize places it has been before, in SLAM a principle called loop closure is
introduced to overcome this problem. This will be further elaborated in subsection 2.3.2.

2.2.2. Perception
The second class of sensors is needed to get a better understanding of the environment. This can
serve two goals, the first is to avoid obstacles or avoid collisions with other moving obstacles. The
second goal here is to map the environment for exploration.

The perception sensors can be roughly divided into groups: range sensors and visual sensors. Range
sensors transmit a wave into a medium and measure the time of flight after receiving the echo back.
The distance can then be calculated using prior knowledge of the transmitted wave and medium [31,
Ch. 4.1]. A relative velocity with other moving obstacles can also be obtained with this type of sensors
by doing multiple measurements. The other type of perception sensor, the visual sensors, uses images
to sense obstacles or moving objects. This can either be a camera in the visual range, or outside the
visual range, depending on the application. This type of sensor is not very useful in dark environments
or bright lights, like a sunset [10]. Besides these two classes, other available signals, such as wifi, or
sensors, e.g. tactile sensors, can be used for exploration or combined with other sensors to improve
the accuracy of the map estimation.

The different classes of sensors can be used for different purposes. For example two robots are iden
tical, except the first uses a laser scanner and the second uses a camera. They are both used to map
an office, with similar rooms and corridors. The first robot might often think that two rooms look iden
tical and mark them as the same room, which highly influences the performance of localization and
mapping. However, the second robot with a camera might discern those two rooms, from visual cues,
such as different paintings on the wall or a different wall color. So the choice of the perception sensors
might effect the performance of the map estimation depending on the type of perception sensors.

The different types of sensors are compared in Table 2.1.
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Table 2.1: Comparison perception sensors for autonomous navigation

Type of sensor Description Typical
range [15]

Advantages Challenges

Range sensors
Sonar/ultrasonic up to 4m Not very useful

for detection in
a narrow angle

RADAR Transmits radio waves up to 200m
LiDAR Transmits beams of

light
up to 200m more accurate

than ultrasonic
Visual sensors up to 80m
Monocular [10] This setup only has

one camera. It ei
ther assumes that big
ger objects are closer
by or it estimates the
distance to an obstacle
by the relative move
ment

Quite easy
method to iden
tify objects and
classify it

High complexity
to compute the
distance to an
obstacle.

Stereo vision [10] Setup of two cameras
with known distance
between them, which
capture each a frame
simultaneous.

The distance to
an obstacle can
be calculated.

Miscellaneous Other kind of sensors
are also possible, but
not commonly used,
due to limitations of the
techniques

WiFi [13] Very helpful for
loop closure

Only works if
wifi is available
and usually
combined with
other sen
sors to ensure
precision

Tactile [14] A tactile sensor makes
direct contact with the
environment

no range Useful in en
vironments
where visual or
range sensors
are useless,
like smoke
filled search
andrescue
operations or
covert sensing
is required

It takes a lot of
time to explore
the environment
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(a) Feature based map. The red line is the estimated robot tra
jectory and the blue dots are estimated landmarks in the Victoria
Park, in this case trees [34, p. 430].

(b) Occupancy grid map [34, p. 291]. Black squares correspond to
occupied cells with a high probability. White squares correspond
to a free cell with high probability. The gray cells are still uncertain.

Figure 2.1: Different representations of an output map.

2.3. SLAM
The goal of a SLAM algorithm is to construct a map of the environment and estimate the trajectory of
the robot in the map. So the output of the algorithm is a global map, where the representation of the
map depends on the environment.

In the case of an outdoor environment with landmarks, such as trees or rocks, a featurebased map
is a natural choice, as visualized in Figure 2.1a. This representation is compact and after multiple ob
servations of the same landmark, the estimation improves [34, Ch. 6]. In practical cases, however, a
feature detector is needed, which classifies whether an object is a feature or not.

On the other hand, when exploring urban or indoor environments, a grid map (2D) or volumetric map
(3D) is a more useful representation, as shown in Figure 2.1b. This representation is useful for larger
landmarks, such as building, walls etc. It discretizes the world into cells, where each cell is either oc
cupied, free or notobserved. Therefore a feature detector is not needed. The disadvantage of this
technique is that is requires a big memory, which needs to be bigger compared to a featurebased map
for large areas.

Constructing the unknownmap has two advantages besides exploring the environment itself [1]. First, it
improves the performance of the trajectory estimation. The other advantage is that it helps planning the
optimal trajectory if autonomous environment exploration is needed. When a new environment needs
to be explored autonomously, this is called active SLAM. In contrast with passive SLAM, where the
robot either moves randomly or is controlled remotely. Active SLAM normally yields better localization
results than passive SLAM, however, requires more autonomy of the robot and thus more computation
power [34, Ch. 7.1].

2.3.1. Formulation
To construct a map with a number of unknown landmarks the input sensors of the robot are used. Prior
knowledge of the location or type of landmark is not necessary. Simultaneously, the trajectory of the
robot is estimated. The formulation to solve this problem is defined as follows [11]:

• 𝐱𝑘 is the state vector at time step 𝑘 containing the pose (both the location and the orientation) of
the robot. Other states of interest might also be included in this vector, such as the velocity of the
robot or parameters needed for calibration of the sensors.

• 𝐮𝑘 is the control vector, this is the input applied at time 𝑘 − 1 to the robot, which has driven it to
state 𝐱𝑘 at time step 𝑘.
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• 𝐦𝑖 is a vector containing the true location of the 𝑖th landmark.
• 𝐳𝑖𝑘 is an observation of landmark 𝑖 by the perception sensor(s) of the robot at time step 𝑘. This
is either the distance from the sensor on the robot to a landmark or the relative distance between
two landmarks.

These vectors are commonly stacked into the following matrices:

• 𝐗0∶𝑘 = [𝐱0, 𝐱1, … , 𝐱𝑘], in other words the history of the vehicle locations. This information needs
to be estimated.

• 𝐔1∶𝑘 = [𝐮1, 𝐮2, … , 𝐮𝑘], in other words, the history of the control inputs.
• 𝐦 = [𝐦1, 𝐦2, … , 𝐦𝑛], which is the information of all landmarks. If there is no prior information
about the landmarks, the information in this matrix and the dimensions of the matrix are unknown
and need to be estimated.

• 𝐙1∶𝑘 = [𝐳1, 𝐳2, … , 𝐳𝑘], which is the information of all landmark observations. The individual obser
vation 𝐳𝑘 is a stacked vector of all landmark observations 𝐳𝑖𝑘.

To solve the SLAM problem three paradigms exist, a Kalman filter (KF), FastSLAM based on a particle
filter and graphbased SLAM. These paradigms differ in the filter design to represent the robot, but the
theory behind these paradigms is for all three the same. Due to inherent noise in both the sensors of
the odometry and the observations, the solution of SLAM is formulated using the probability distribution;
the distribution of the robot’s trajectory and map of the environment, given the observations and the
controls:

𝑝(𝐱𝑘, 𝐦|𝐙1∶𝑘, 𝐔1∶𝑘, 𝐱0), (2.2)

this is the probability that the robot at time 𝑘 is in a certain state 𝐱𝑘 in a map 𝐦 given the observations
𝐙1∶𝑘 and input controls 𝐔1∶𝑘 upto time step 𝑘 and the starting pose 𝐱0. This distribution needs to be
computed for all time steps 𝑘, where it is assumed that the starting pose 𝐱0 is known and certain. This
is split into two parts: the observation (or measurement) model and the motion model. The observation
model assumes that the pose of the robot and the location of the landmarks are known and can be
described in the following form:

𝑝(𝐳𝑘|𝐱𝑘, 𝐦) (2.3)

On the other hand, the motion model only considers the previous state and the current input, so it is a
state transition, which is assumed to be a Markov process. In a Markov process, the future states only
depend on the past through the current state. So it can be described in the following form:

𝑝(𝐱𝑘|𝐱𝑘−1, 𝐮𝑘) (2.4)

The solution to this problem is implemented in a recursive twostep form. The first step is a timeupdate,
a prediction of Equation 2.2. The second step is the correction step, which uses the observations 𝐳𝑘 of
the robot at time step 𝑘.

Time update

𝑝(𝐱𝑘, 𝐦|𝐙1∶𝑘−1, 𝐔1∶𝑘, 𝐱0) = ∫ 𝑝(𝐱𝑘|𝐱𝑘−1, 𝐮𝑘)𝑝(𝐱𝑘−1, 𝐦|𝐙1∶𝑘−1, 𝐔1∶𝑘−1, 𝐱0)𝑑𝐱𝑘−1 (2.5)

Measurement update

𝑝(𝐱𝑘, 𝐦|𝐙1∶𝑘, 𝐔1∶𝑘, 𝐱0) = 𝑝(𝐳𝑘|𝐱𝑘, 𝐦)𝑝(𝐱𝑘, 𝐦|𝐙1∶𝑘−1, 𝐔1∶𝑘, 𝐱0)
𝑝(𝐳𝑘|𝐙1∶𝑘−1, 𝐔1∶𝑘) (2.6)

Since the information of the robot pose and the landmark observations is noisy, the exact locations are
hard to estimate. However, the relative location between two measured landmarks is known with high
accuracy if they are observed at the same time step. So the error in the location of the landmarks are
highly correlated [11]. An important realization in the solution of SLAM is that the correlations between
the estimation of landmarks increase monotonically [8]. Thus, the map converges to the real map by
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Figure 2.2: Dynamic Bayesian Network of the SLAM process. Each node represents a random variable and an edge represents
the conditional dependence between the two nodes. The colored circular nodes are the measurements and the white circular
nodes are the hidden variables that need to be estimated. [16]

obtaining more observations at different locations, which are considered as nearly independent mea
surements.

To solve the SLAM problem two important assumptions are made, the assumption that the robot is a
Markov process and the static world assumption [1]. The second assumption assumes that there are
no moving obstacles in the world. This assumption is hard to fulfill in urban environments or ware
houses, tackling this problem is a big research topic [17, 20, 35], but is outside the scope of this thesis.

The solutions to the SLAM problem can be divided into two classes: online SLAM and full SLAM.

Online SLAM The approach to solve online SLAM estimates only the most recent location and ori
entation of the robot:

𝑝(𝐱𝑘, 𝐦|𝐙1∶𝑘, 𝐔1∶𝑘, 𝐱0) (2.7)

With the Markov assumption and static world assumption, the complexity of online SLAM can be de
creased, which results in a particular structure named dynamic Bayesian network (DBN), which is
visualized in Figure 2.2. This structure describes a stochastic process as a directed graph. The known
variable 𝐱0 is positioned in a square. There is a circular node for each random variable, the blue nodes
are the observed variables (the measurements of the landmarks 𝐳𝑘 and the odometry measurements
𝐮𝑘), the white circular nodes are the hidden variables 𝐱𝑘 and 𝐦, which need to be estimated. Between
the nodes the directed edges indicate a dependence between two nodes. This model is in particular
used for filtering methods [11], such as the Kalman filter (discussed in subsection 2.4.1) or a particle
filter (discussed in subsection 2.4.2).

Full SLAM In a full SLAM algorithm the entire trajectory of the robot is estimated at once:

𝑝(𝐗0∶𝑇 , 𝐦|𝐙1∶𝑇 , 𝐔1∶𝑇 , 𝐱0), (2.8)

where 𝑇 is the final time step of the robot. This type of SLAM is used in graphbased SLAM (discussed
in subsection 2.4.3).

So the difference between the two methods is that the trajectory and map construction in online SLAM
is done during the exploration, while the construction in full SLAM is done after the exploration is fin
ished. A full SLAM solution requires an inversion of the whole information matrix, which requires a
comparatively big computational load at the end of the exploration. This matrix contains the 𝑥 and 𝑦
positions of the whole trajectory (𝑇 ) of the robot and the 𝑥 and 𝑦positions of the observed landmarks
(𝑀 ) on the diagonal, so it is a (2𝑇 + 2𝑀) × (2𝑇 + 2𝑀) matrix. To inverse this matrix a computational
complexity of 𝒪((2𝑇 + 2𝑀)3) is required.
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Figure 2.3: Left: map constructed from odometry data. Right: map build from SLAM [1]

2.3.2. Loop closure
The concept of loop closure ensures that the robot does not think it will drive through an endlessly long
corridor [1]. Using the measurements SLAM ensures that a loop is detected and implemented in the
estimated map. This principle is illustrated in Figure 2.3. The principle is inherently different than the
visual odometry as described in Section 2.2.1, since in both cases the observations are not stored, so
the exact observations cannot be matched with previous observations to predict whether a location has
already been observed before. A SLAM algorithm associates measured data with already observed
data to see if a feature has already been seen before, this is called data association. If the robot
recognizes a feature it has returned to, it closes the loop, which results in a reduction of the uncertainty
in the map estimation. Without loop closure the uncertainty of the exploration only increases. In this
thesis the landmark observations are associated with certainty to the right landmark. A lot of research
has already been done on data association and loop closure [38, 39], but will be considered outside
the scope of this thesis.

2.4. Filter design for SLAM
To solve the SLAM problem an optimal filter can be designed. This filter estimates the state of the
timevarying system, where the states are indirectly observed by noisy measurements. The states
should be estimated using the observed measurements. In a Bayesian framework, this means that the
posterior distribution in (2.9) needs to be computed [33, Ch. 4].

𝑝(𝐗0∶𝑇 , 𝐦|𝐙1∶𝑇 , 𝐔1∶𝑇 , 𝐱0) = 𝑝(𝐙1∶𝑇 |𝐗0∶𝑇 , 𝐦)𝑝(𝐗0∶𝑇 , 𝐦)
𝑝(𝐙1∶𝑇 ) , (2.9)

where

• 𝑝(𝐗0∶𝑇 , 𝐦) is the prior distribution defined by the dynamic model and the available landmark
information,

• 𝑝(𝐙1∶𝑇 |𝐗0∶𝑇 , 𝐦) is the likelihood model for the measurements given the information about the
trajectory and the landmarks,

• 𝑝(𝐙1∶𝑇 ) is the normalization constant defined as

𝑝(𝐙1∶𝑇 ) = ∫ 𝑝(𝐙1∶𝑇 |𝐗0∶𝑇 , 𝐦)𝑝(𝐗0∶𝑇 , 𝐦)𝑑𝐗0∶𝑇 (2.10)

Solving this full posterior distribution every time a new observation comes in requires a lot of compu
tational power. One way to solve this problem is to only compute this posterior distribution after the
exploration of a whole map, which is done in full SLAM. How this is solved will be discussed in Section
2.4.3. The second solution to this computational problem is to relax the full posterior distribution, this is
done in online SLAM. A solution of online SLAM with a closed form solution is the Kalman Filter (KF).
The Kalman Filter is a method to solve a linear Gaussian filtering problem.

However, if a closed form solution is not available, because the problem is not linear or the noise is
not Gaussian for example, optimal filtering equations are computationally intractable. Other methods
then approximate the closed form solution. The extended Kalman Filter or unscented Kalman Filter are
approximations based on the Kalman Filter that can deal with nonlinear and nonGaussian models.
How these methods can solve SLAM problems is discussed in Section 2.4.1.
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Type Linearization Parametrization
EKF Taylor approximation moments
UKF Unscented transformation moments
EIF Taylor approximation / un

scented transformation
canonical

Table 2.2: Comparison between Kalman filter algorithms

Another filtering technique is based on a particle filter, also called a sequential Monte Carlo method.
This method represents the distribution as weighted samples, so this method can be used for any
arbitrary distribution [33, Ch. 4]. This method is also used to solve SLAM problems, which is discussed
in more detail in Section 2.4.2 and Chapter 3. In the next three sections the three paradigms will be
discussed in more detail and will be concluded in Section 2.4.4.

2.4.1. Kalman filter
The first solution to the online SLAM problem is the Kalman filter, which is a Bayesian filter. It assumes
that both the process noise on the motion model and the measurement noise on the observation model
is Gaussian distributed [33, 34]. The most commonly used Kalman filter for SLAM is the extended
Kalman filter (EKF), which accounts for nonlinear functions by local linearization using the Taylor ex
pansion. An improved approximation for nonlinear models can be achieved by using the unscented
Kalman filter (UKF), which makes use of the unscented transformation instead of the Taylor expansion
[34, Ch. 7.7]. However, computationally speaking, this algorithm is slower than the EKF. A third method
is the extended information filter (EIF), which uses the information matrix (inverse of covariance matrix)
and information vector instead of the covariance matrix and mean vector [34, Ch. 12]. The information
vector and information matrix are called the canoncial parametrization, in contrast to the moments,
which contain the mean and covariance. Conversion between the moments and canonical matrices
are expensive, so this makes the EKF more popular for application compared to the EIF.

The different types of Kalman filters are summarized in Table 2.2 and will be compared with the other
paradigms in Section 2.4.4, to be able to choose one of the algorithms as a baseline for the proposed
algorithm.

2.4.2. Particle filter
A particle filter is a nonparametric implementation of a Bayes filter to approximate the posterior by a
finite number of samples, also called particles. The key idea is to represent the posterior distribution
by a set of randomly drawn samples. Every particle predicts the current state given the previous state
and input, so every particle represents an estimation of the state of the robot. After the prediction step
every particle updates its prediction with a likelihood weight that represents the probability of being
correct. This update step uses the odometry and perception measurements to generate a probability
density function, where the likelihood weights are derived from. All particles together represent the
distribution of the estimated state, whereas with an increasing number of particles, the actual distribu
tion is depicted more closely. To avoid particle degeneracy resampling can be used. This method can
deal with any arbitrary posterior distribution. Another advantage of this method is its ability to represent
nonlinear models [34, Ch. 13].

Thismethodology has already been used a lot for SLAM, where it is referred to as FastSLAM. FastSLAM
is discussed in more detail in Chapter 3.

2.4.3. Graphbased
Graphbased SLAM is a full SLAM solution, which means that the map and trajectory estimation is
done after the whole exploration has been finished. In this case, the SLAM problem is represented by
a graph, where the nodes represent the poses of the robot at different time steps and the links between
them represent constraints between the nodes. These constraints are introduced by the odometry and
perception measurements. The goal of this method is to build the map, represented by a graph, that
minimizes the error that is introduced by the constraints [16]. The problem can be translated to a least
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squares problem.

This method makes no distinction between the motion and observation model, unlike online SLAM.
In this method, the problem is divided into two parts; the frontend and the backend. The frontend
interprets the observations made by the sensors and does some data association, such as loop closure.
This part is thus based on the kind of sensor used and is also called graph construction. The backend
then uses this abstract data to estimate the states of the robot and the location of the obstacles. This
part is sensor agnostic and determines the most likely graph given the constraints of the frontend,
so this part is called the graph optimization. This estimation is typically done using the Maximum a
Posteriori (MAP) estimation. In case there is no prior knowledge available about the pose of the robot
and the location of the landmarks, this MAP estimation reduces to a Maximum Likelihood Estimation
(MLE) [16].

2.4.4. Comparison
These three algorithms have their own advantages and drawbacks, also depending on the type of en
vironment and application. They will be compared in this section.

The advantage of a Kalman filter is the relatively easy implementation of a linear or linearized system
with Gaussian noise, especially if the features are distinct. However, the robustness of the EKF is
low, since a faulty data association will result in an error in the future. Furthermore the computational
complexity increases cubic with the number of landmarks.

A particle filter is less sensitive to wrong data associations due to the particle based algorithm. The
disadvantage of a particle filter is the computational load of the algorithm [33, Ch. 7]. However, for the
SLAM application a so called RaoBlackwellized particle filter (RBPF) can be used to reduce this load.
This will be further discussed in Section 3.3.

Also graphbased SLAM is more robust to wrong data associations, since it can revisit data associ
ations and reexamine them [1]. For environments with many landmarks, this method requires a big
computational load and memory, since the stored data of the landmarks needs to be inverted, so this
method is in particular interesting if the robot only explores the environment and a separate computer
will do the computations afterwards.

The three paradigms are summarized in Table 2.3, where the computational efficiency for all three
methods are shown. The computational complexity of all methods depends on the number of landmarks
(𝑀 ). The computation of the particle filter also depends on the number of particles (𝑁 ). In Figure 2.4
the complexity is visualized as function of the number of landmarks. This shows that for a large amount
of landmarks a particle filter is most efficient.

Table 2.3: Comparison between the three paradigms for SLAM [26]

Method Pros Cons Efficiency [34] References
Kalman filter Works well when

features are dis
tinct.

Adding new features
requires quadratic
time.

𝒪(𝑀3) DurrantWhyte and
Bailey [11]

Particle filter Adding features
only requires
logarithmic time
and there is no
dependence on
parametrization of
motion model.

Loop closure per
formance depends
highly on the particle
set.

𝒪(𝑁𝑙𝑜𝑔(𝑀)) DurrantWhyte and
Bailey [11]

Graph based Also previous
poses of the robot
are updated for
postprocessing.

Computationally
more expensive.

𝒪(𝑀2) Cadena et al. [1]
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Figure 2.4: Computational complexity for different solutions of SLAM; Kalman filter, particle filter and Graphbased SLAM as a
function of the number of landmarks.
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FastSLAM

In this thesis two improved algorithms based on a particle filter SLAM method are proposed to explore
an unknown environment using an autonomous robot that is energyefficient. In this chapter the robot
models that will be used, will be discussed, as well as the FastSLAM algorithm that will be used as a
baseline.

The motivation for choosing a particle filter will be discussed in the next section, after which a robot
model will be introduced. This model entails the dynamics of the robot and the physics of the measure
ment model, which is both needed to solve the SLAM problem. In the third section the mathematical
derivation of a particle filter is shown, which will be used for the simulation in the next section. This
chapter concludes with a section about the performance metrics that are used to measure how good
the proposed algorithms will perform compared to FastSLAM.

3.1. Motivation
SLAM can be used for active exploration of new environments, for example in caves, on the moon or
Mars. It is also often used indoors for vacuum cleaners or warehouse robots. To achieve the goals
of these robots, the autonomous robot needs active SLAM to map the environment and localize itself.
These applications yield for an online SLAM solution, since the autonomous navigation and localization
can be done simultaneously on the robot. The online SLAM solutions are either an extended Kalman
filter or a particle filter.

An advantage of FastSLAM over EKFSLAM and graphbased SLAM is the lower computational com
plexity of the algorithm with an increasing number of landmarks, as shown in Table 2.3. The high
computational complexity of EKFSLAM is due to the enormous measurement updates every time step
for all landmarks that have been observed so far [34, Ch. 10]. In FastSLAM these measurement up
dates are only done for the observed landmarks, which requires a smaller computational complexity.
This difference in update step yields for a solution with FastSLAM to build an energyefficient SLAM
algorithm.

The first idea to improve SLAM with a particle filter is to incorporate the landmark observations in the
trajectory as spatial constraints. The robot is namely not controlled remotely and need to be able to
plan its own trajectory. To plan this path, the robot needs to avoid obstacles, which may lead to an
advantage for the localization problem. The robot can use the information about landmarks to improve
the performance of the SLAM algorithm. To do so, spatial constraints can be added to the SLAM algo
rithm. However, this leads to nonGaussian posterior distribution. Since a particle filter can better deal
with any arbitrary distribution compared to the EKF, the FastSLAM algorithm is used as starting point
for this improved constrained problem.

A disadvantage of FastSLAM is the memory needed for the number of particles [34, Ch. 13]. Since
all particles store their own map, too many particles can cause problem in memory load. On the other
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Figure 3.1: Threedimensional rotations described in roll, pitch, yaw [19, p. 97].

hand, too little particles will not give an accurate map of the environment as result. This drawback will
be discussed in more detail in Section 3.5.5.

The output map of the algorithm does not depend significantly on the algorithm of a SLAM problem.
For all algorithms either a feature based map or a grid map can be used as map representation. Since
a feature based map requires less computation and less memory of the SLAM algorithm, this type of
map is used.

3.2. Robot model
As described in Section 2.1, a model for a mobile robot can be written as the statespace model in
(2.1). This model can be separated into a motion model, describing the dynamics of the robot, and an
observation model, describing the perception measurements of the robot. Both models are needed to
solve the SLAM problem and will be discussed in more detail in the next sections.

3.2.1. Motion model
The dynamics of the robot are modeled in the motion model, where the robot obeys the following
dynamics:

𝐱𝑘 = 𝑓(𝐱𝑘−1, 𝐮𝑘) + 𝐯𝑘 (3.1)

where the state vector 𝐱𝑘 of the robot contains the 𝑥position, 𝑦position, 𝑧position and the orientation
𝛾, 𝛽, 𝛼 with respect to the three axes, as denoted in Figure 3.1. So the state vector can be written
as (3.2). These states can be controlled by the actuators of the robot. The input vector is written as
velocities in four degrees of freedom; the linear velocity 𝑣 and the angular velocities in every orientation
̇𝛾, ̇𝛽 and ̇𝛼. The assumption is that the velocities are constant during a time period. The input vector
can be written as (3.3).

𝐱𝑘 = (𝑥𝑘 𝑦𝑘 𝑧𝑘 𝛾𝑘 𝛽𝑘 𝛼𝑘)⊤ (3.2)

𝐮𝑘 = (𝑣 ̇𝛾 ̇𝛽 ̇𝛼)⊤
(3.3)

In the simulations, the robot is assumed to be holonomic. Mathematically, this means that the dynamics
of a robot can be described without nonholonomic kinematic constraints. A nonholonomic kinematic
constraint requires a differential relationship, such as the velocity. Informally, this means that the robot
can move sideways and can reach any point in space in any way in any orientation [31, pp. 7577]. This
assumption is not really realistic, but will give a good inside in the operation of the algorithm without
getting lost in the details of the robot dynamics.
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Figure 3.2: 3D motion model of robot, where the linear velocity 𝑣 and angular velocities �̇�, ̇𝛽 and �̇� are denoted.

The function 𝑓(⋅) in (3.1) is a linear function that translates the linear and angular velocities into the
robot states. The next state can be written as a function of the previous state and inputs as shown in
(3.4).

⎛⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝑥𝑘
𝑦𝑘
𝑧𝑘
𝛾𝑘
𝛽𝑘
𝛼𝑘

⎞⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝑥𝑘−1
𝑦𝑘−1
𝑧𝑘−1
𝛾𝑘−1
𝛽𝑘−1
𝛼𝑘−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟
⎠

+

⎛⎜⎜⎜⎜⎜⎜⎜⎜
⎝

cos(𝜃) cos(𝛽) 0 0 0
sin(𝜃) cos(𝛽) 0 0 0

sin(𝛽) 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎛⎜⎜⎜⎜
⎝

𝑣
̇𝛾
̇𝛽
̇𝛼

⎞⎟⎟⎟⎟
⎠

𝑇 + 𝐯𝑘 (3.4)

where 𝑇 is the sampling time [21].

The process noise of the linear and angular velocity is assumed to be white Gaussian 𝐯𝑘 ∼ 𝒩(𝟎, 𝐐),
where the correlation between the linear and angular velocities is assumed to be zero [31]. So the
covariance matrix 𝐐 looks like (3.5).

𝐐 =
⎛⎜⎜⎜⎜
⎝

𝜎2
𝑣 0 0 0

0 𝜎2
�̇� 0 0

0 0 𝜎2
̇𝛽 0

0 0 0 𝜎2
�̇�

⎞⎟⎟⎟⎟
⎠

(3.5)

where 𝜎{⋅} is the standard deviation of the velocity.

3.2.2. Observation model
The measurements of the perception sensors are modeled in the observation model of the robot [28],
which looks like (3.6)

𝐳𝑖𝑘 = ℎ(𝐱𝑘) + 𝐞𝑘, (3.6)
where

ℎ(𝐱𝑘) = (𝑟𝑖𝑘
𝜙𝑖𝑘

) = ( ||(𝑥𝑘, 𝑦𝑘)||2
tan−1(𝑥𝑘, 𝑦𝑘)) (3.7)

Both the distance 𝑟𝑖𝑘 and the bearing 𝜙𝑖𝑘 from the robot to a landmark 𝑖 is measured at a time step 𝑘.
Using a range sensor, these metrics are the output of the sensor measurements. If a camera is used, it
is assumed that this is the output after the image processing, which is outside the scope of this report.
The measurement noise is assumed to be white Gaussian 𝐞𝑘 ∼ 𝒩(𝟎, 𝐑) with covariance matrix:

𝐑 = (𝜎2
𝑟 0

0 𝜎2
𝜙
) , (3.8)

where 𝜎𝑟 is the standard deviation of the distance measured from the sensor to the landmark and 𝜎𝜙
is the standard deviation of the bearing measured from the sensor to the landmark. These parameters
are sensor dependent, so are constant over time.
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3.3. Particle Filter
The robot model can then be incorporated in the algorithm to solve the SLAM problem, in this case a
particle filter SLAM. A particle filter is a Monte Carlo method. These types of methods refer to methods
where samples (also called particles) are drawn from a distribution to estimate the state by certain
quantities that the samples contain. In a perfect approximation 𝑁 independent particles are drawn
from a distribution 𝐱(𝑗) ∼ 𝑝(𝐱𝑘|𝐗0∶𝑘−1, 𝐙1∶𝑘, 𝐮𝑘), 𝑗 = 1, ..., 𝑁 . However, in general it is not possible
to draw samples from the distribution 𝑝, due to the arbitrary form of this distribution. A solution to this
problem is to propose a known importance distribution 𝜋(𝐱𝑘|𝐗0∶𝑘−1, 𝐙1∶𝑘, 𝐮𝑘), from which samples can
easily be drawn [33]:

𝐱(𝑗)
𝑘 ∼ 𝜋(𝐱𝑘|𝐗0∶𝑘−1, 𝐙1∶𝑘, 𝐮𝑘), 𝑗 = 1, … , 𝑁 (3.9)

The particles are then weighted with the target (true) distribution. This weight represents the likelihood
to what extent the estimated state is correct. The weight is then considered as the fraction between
the target distribution and the proposal distribution:

𝑤(𝑗)
𝑘 = target(𝐱(𝑗)

𝑘 )
proposal(𝐱(𝑗)

𝑘 )
= 𝑝(𝐱(𝑗)

𝑘 |𝐗0∶𝑘−1, 𝐙1∶𝑘, 𝐮𝑘)
𝜋(𝐱(𝑗)

𝑘 |𝐗0∶𝑘−1, 𝐙1∶𝑘, 𝐮𝑘)
(3.10)

This method is known as importance sampling (IS) and is visualized in Figure 3.3. The target (blue)
distribution is an arbitrary distribution. There will be sampled from the (red) proposal distribution, which
is a Gaussian distribution, commonly chosen as proposal distribution.

When this importance sampling is done every time step, a sequential version of the importance sam
pling is used, so called sequential importance sampling (SIS). At time step 𝑘 a weight 𝑤(𝑗)

𝑘 is computed
for each particle 𝑗 = {1, … , 𝑁}, which is then used in the next time step to compute an updated weight.
In this case a particle is represented as a weighted set 𝒳 = {(𝑤(𝑗)

𝑘 , 𝐱(𝑗)
𝑘 ) ∶ 𝑗 = 1, … , 𝑁}. The algorithm

for SIS in the SLAM problem is shown in Algorithm 3.1.

Algorithm 3.1 Sequential Importance Sampling [33]
1: Draw 𝑁 samples 𝐱(𝑗)

0 from the prior and set weight to 1/𝑁
2: for 𝑗 = 1 to 𝑁 do
3: 𝐱(𝑗)

0 ∼ 𝑝(𝐱0)
4: 𝑤(𝑗)

0 = 1/𝑁
5: end for
6: At every time step draw a sample from proposed distribution
7: for 𝑘 = 1 to 𝑇 do
8: 𝐱(𝑗)

𝑘 ∼ 𝜋(𝐱𝑘|𝐗0∶𝑘−1, 𝐙1∶𝑘, 𝐮𝑘), 𝑗 = 1, … , 𝑁
9: 𝑤(𝑗)

𝑘 ∝ 𝑤(𝑗)
𝑘−1

𝑝(𝐳𝑘|𝐱(𝑗)
𝑘 )𝑝(𝐱(𝑗)

𝑘 |𝐱(𝑗)
𝑘−1)

𝜋(𝐱(𝑗)
𝑘 |𝐗0∶𝑘−1,𝐙1∶𝑘,𝐮𝑘)

10: end for

While using the sequential importance sampling principle almost all particles will converge to a weight
of nearly zero. This degeneracy problem can be solved by resampling the particles. In this procedure
𝑁 new samples are drawn from the old particle set 𝒳, where the weight of a particle represents the
probability it will be redrawn. The old set is then replaced by the new set of 𝑁 particles with weight 1/𝑁 .
This procedure is not necessarily done every time step, but might depend on various requirements. This
will be discussed in more detail in Section 3.3.2.

3.3.1. RaoBlackwellized particle filter
The SLAM problem is a high dimensional problem, which makes it computationally infeasible to directly
implement a particle filter [11]. To improve the efficiency of a particle filter as discussed in Section
2.4.2 RaoBlackwellization can be used. If possible, some of the filtering equations can be computed
analytically and others by sampling. This reduces the computational complexity and improves the per
formance of a particle filter, since an estimator with less variance can be achieved [33].
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Figure 3.3: Importance sampling for particle filter. Samples are drawn from the proposal distribution 𝜋 (red line) and weighted
with the target distribution 𝑝 (blue line). The weight of the sample is the importance (𝑝(𝑥(𝑗)

𝑘 )/𝜋(𝑥(𝑗)
𝑘 )). The weighted samples

are shown in the lower half part of the figure,where the weight of the samples is represented by the height of the sample. [34,
p. 101]

To achieve this increase in performance, a part of the distribution needs to be calculated analytically.
To be able to separate the problem into two parts, (2.9) can be partitioned according to the product rule
[33]:

𝑝(𝐱𝑘, 𝐦|𝐙1∶𝑘, 𝐔1∶𝑘, 𝐱0) = 𝑝(𝐦|𝐗0∶𝑘, 𝐙1∶𝑘)𝑝(𝐗0∶𝑘|𝐙1∶𝑘, 𝐔1∶𝑘, 𝐱0) (3.11)

The RaoBlackwelltheorem states that if the second term 𝑝(𝐗0∶𝑘|𝐙1∶𝑘, 𝐔1∶𝑘, 𝐱0) can be represented
analytically, only the first term 𝑝(𝐦|𝐗0∶𝑘, 𝐙1∶𝑘) needs to be sampled.

This RaoBlackwellized particle filter is commonly used to solve the SLAM problem and is the basis for
the FastSLAM algorithm, explained next.

3.3.2. Algorithm
The FastSLAM algorithm consists of 3 steps:

• Sampling from proposal distribution

• Weighting with measured distribution

• Resampling of particles

As discussed in Section 2.4.2, the 𝑗th particle maintains information on the estimated state of the robot
(�̂�(𝑗)

𝑘 ) as a weighted (𝑤(𝑗)
𝑘 ) set 𝒳. Besides the weight and estimated state, the estimated landmark

information is also stored in every particle, so every particle maintains its own map. This information is
stored as a 2×2EKF, whichmeans that the estimated 𝑥 and 𝑦position asmean𝝁 and the covariance𝚺
are stored for every observed landmark 𝑖. In conclusion a particle 𝑗 maintains the following information
in a set at time step 𝑘:

𝒳𝑘 = {(𝑤(𝑗)
𝑘 , �̂�(𝑗)

𝑘 , �̂�(𝑗)
𝑘 , 𝚺(𝑗)

𝑘 ) ∶ 𝑗 = 1, … , 𝑁} (3.12)

The FastSLAM algorithm is shown in Algorithm 3.2. The sensor model ℎ(⋅) is described in (3.7) and
the covariance matrix 𝐑 is defined in (3.8).

It is assumed that the robot knows whether it has detected a landmark before or not, so there is no
data association needed. In the case that it has detected a new landmark 𝑖, the robot initializes the
mean (𝝁(𝑗)

𝑖𝑘 ) and covariance matrix (𝚺(𝑗)
𝑖𝑘 ) for every particle, which is described in Algorithm 3.3, with

the mean and Jacobian as described in (3.13) and (3.14) respectively, where ℎ−1 is the inverse of the
observation model ℎ and ℎ′ is the derivative of the observation model ℎ with respect to the estimated
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Algorithm 3.2 FastSLAM [23, 34]
1: Initialization starting point robot 𝐱0, time step 𝑘 = 0
2: 𝒳0 = {𝑤(𝑗), �̂�(𝑗), �̂�(𝐣), 𝚺(𝑗)} = {1/𝑁, 𝐱0, 𝟎, 𝟎}, 𝑗 = 1, … , 𝑁 ▷ Initialize the first particle set
3: while true do
4: for 𝑗 ∶= 1 to 𝑁 do ▷ For all particles
5: �̂�(𝑗)

𝑘 ∼ 𝑝 (𝐱(𝑗)
𝑘−1, 𝐮𝑘) ▷ Sample new robot pose 𝐱(𝑗)

𝑘
6: 𝐳(𝑗)

𝑖𝑘 = ℎ (𝐱(𝑗)
𝑘 ) ▷ Observe landmarks

7: if 𝐳(𝑗)
𝑖𝑘 is never observed before then

8: add_new_landmark(𝐳(𝑗)
𝑖𝑘 , 𝐱(𝑗)

𝑘 , 𝐑)
9: else
10: update_landmark(𝝁(𝑗)

𝑖,𝑘−1, 𝚺(𝑗)
𝑖,𝑘−1, 𝐱(𝑗)

𝑘 , 𝐳(𝑗)
𝑖𝑘 , 𝐑)

11: end if
12: end for
13: 𝒳𝑘 = Resample({𝑤(𝑗), �̂�(𝑗)

𝑘 , �̂�(𝑗)
𝑘 , 𝚺(𝑗)

𝑘 }𝑗=1,2,...,𝑁 ) ▷ Resample particles
14: 𝑘 = 𝑘 + 1
15: end while

landmark position 𝝁 and the estimated robot pose 𝐱.

𝝁(𝑗)
𝑖𝑘 = ℎ−1(𝐳(𝑗)

𝑖𝑘 , 𝐱(𝑗)
𝑘 ) = ( ̂𝑥(𝑗)

𝑘 + 𝑟𝑖𝑘 ⋅ cos(𝜙𝑖𝑘)
̂𝑦(𝑗)
𝑘 + 𝑟𝑖𝑘 ⋅ sin(𝜙𝑖𝑘)) (3.13)

𝐇 = ℎ′(𝝁(𝑗)
𝑖𝑘 , 𝐱(𝑗)

𝑘 ) = (cos(𝜙𝑖𝑘) −𝑟𝑖𝑘 ⋅ sin(𝜙𝑖𝑘)
sin(𝜙𝑖𝑘) 𝑟𝑖𝑘 ⋅ cos(𝜙𝑖𝑘) ) (3.14)

Algorithm 3.3 Add new landmark
1: function add_new_landmark(𝐳(𝑗)

𝑖𝑘 , 𝐱(𝑗)
𝑘 , 𝐑𝑘)

2: 𝝁(𝑗)
𝑖𝑘 = ℎ−1(𝐳(𝑗)

𝑖𝑘 , 𝐱(𝑗)
𝑘 ) ▷ Initialize mean

3: 𝐇 = ℎ′(𝝁(𝑗)
𝑖𝑘 , 𝐱(𝑗)

𝑘 ) ▷ Calculate Jacobian
4: 𝚺(𝑗)

𝑖𝑘 = 𝐇−1𝐑𝑘(𝐇−1)⊤ ▷ Initialize covariance
5: return 𝝁(𝑗)

𝑖𝑘 , 𝚺(𝑗)
𝑖𝑘

6: end function

In case the robot has seen the landmark before, the landmark is updated for every particle. This update
step also uses a Jacobian matrix :

𝐇 = (
Δ𝑥
𝑑

Δ𝑦
𝑑

− Δ𝑦
𝑑2

Δ𝑥
𝑑2 ,

) (3.15)

where Δ𝑥 and Δ𝑦 are the 𝑥 and 𝑦distances from the robot to the observed landmark and 𝑑 is the
distance between the estimated robot pose and estimated landmark position. The update step is de
scribed in Algorithm 3.4

Resampling is not performed every time step, but only when needed. The criteria for when it is needed
depends on the implementation of the SLAM algorithm. Onemethod of resampling is to resample every
𝑖th time step, with a fixed 𝑖. This method is unbiased, but might be computationally inefficient, since it is
not always needed. A second method is adaptive resampling, where the number of effective particles
determines whether resampling is needed. This number is calculated as:

𝑁𝑒𝑓𝑓 = 1
∑𝑁

𝑗=1 (𝑤(𝑗)
𝑛𝑜𝑚,𝑘)

2 (3.16)

where the weights 𝑤(𝑗)
𝑛𝑜𝑚,𝑘 are the normalized weights such that the weights of all particles sum up

to 1. Resampling is then performed if this number is lower than a predefined threshold, for example
𝑁𝑒𝑓𝑓 < 0.75𝑁 [33]. The algorithm of resampling is shown in Algorithm 3.5.
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Algorithm 3.4 Update landmarks
1: function update_landmark(𝝁𝑗

𝑖,𝑘−1, 𝚺(𝑗)
𝑖,𝑘−1, 𝐱(𝑗)

𝑘 , 𝐳(𝑗)
𝑖𝑘 , 𝐑)

2: ̂𝐳(𝑗) = ℎ(𝝁(𝑗)
𝑖,𝑘−1, 𝐱(𝑗)

𝑘 ) ▷ Predict measurement
3: 𝐇 = ℎ′(𝝁(𝑗)

𝑖,𝑘−1, 𝐱(𝑗)
𝑘 )

4: 𝐑 = 𝐇𝚺(𝑗)
𝑖,𝑘−1𝐇⊤ + 𝐑

5: 𝐊 = 𝚺(𝑗)
𝑖,𝑘−1𝐇⊤𝐑−1

6: 𝝁(𝑗)
𝑖𝑘 = 𝝁(𝑗)

𝑖,𝑘−1 + 𝐊(𝐳𝑖𝑘 − ̂𝐳(𝑗))
7: 𝚺(𝑗)

𝑖𝑘 = (𝐈 − 𝐊𝐇)𝚺(𝑗)
𝑖,𝑘−1

8: 𝑤(𝑗) = |2𝜋𝐑|−1/2 exp [− 1
2 (𝐳𝑖𝑘 − ̂𝐳(𝑗))⊤𝐑−1(𝐳𝑖𝑘 − ̂𝐳(𝑗))]

9: return 𝝁(𝑗)
𝑖𝑘 , 𝚺(𝑗)

𝑖𝑘 , 𝑤(𝑗)

10: end function

Algorithm 3.5 Resample [33]
1: function resample(⟨𝑤(𝑗), �̂�(𝑗)

𝑘 , �̂�(𝑗)
𝑘 , 𝚺(𝑗)

𝑘 ⟩𝑗=1,…,𝑁 )
2: 𝑁𝑒𝑓𝑓 = 1/ ∑𝑗(𝑤(𝑗))2

3: if 𝑁𝑒𝑓𝑓 < threshold then
4: 𝒳 = Resample 𝐱(𝑗)

𝑘 from 𝒳 with probability 𝑝 = 𝑤(𝑗)
𝑘

5: end if
6: 𝑤(𝑗)

𝑛𝑒𝑤 = 1/𝑁, 𝑗 = 1, … , 𝑁
7: return 𝒳𝑛𝑒𝑤
8: end function

3.4. Simulation FastSLAM
The models described before (the robot model and SLAM algorithm) will be validated using simulations.
To research the performance of a new algorithm, the behavior of the robot is simulated. The robot
model is now projected on a 2D map, so the state vector is simplified to only the 𝑥 and 𝑦position and
orientation 𝜃 of the robot. The input vector is then the linear velocity 𝑣 and angular velocity 𝜔 of the
robot. In Figure 3.4 the simulation is visualized for a particle filter with 10 particles, where both the true
trajectory (red robot) and predicted trajectory (blue robot) are visualized. The environment contains
five landmarks that need to be mapped. To map the landmarks, the robot navigates to an endpoint
via three different waypoints (red crosses), while it localizes itself in the map. For this simulation the
number of dimensions, described in Section 3.2, is reduced from 3 dimensions to 2 dimensions. So
the state space and input space are reduced as follows:

𝐱𝑘 = (𝑥𝑘 𝑦𝑘 𝜃𝑘)⊤ (3.17)

𝐮𝑘 = (𝑣 𝜔)⊤ (3.18)

where 𝜃𝑘 is the orientation at time 𝑘 and 𝜔 is the angular velocity. This also results in a reduction of 𝐐,
which is now written as:

𝐐 = (𝜎2
𝑣 0

0 𝜎2
𝜔
) (3.19)

The simulation parameters are listed in Tab. 3.1, where 𝑣 is the linear velocity, 𝑑𝑡 is the sampling time
and 𝑁𝑒𝑓𝑓 is the number of effective particles, needed for the resampling criteria.

3.5. Performance measures
To measure the performance of the algorithm, different metrics of the algorithm will be measured. The
types of errors that are induced for FastSLAM can be divided into two classes: the estimation error for
both the trajectory and the landmark positions, and the error related to the variation inherent in random
sampling. The position estimation error of the trajectory estimation will be measured using the time
averaged root mean squared (ARMS) error, discussed in Section 3.5.1. The position estimation error
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Table 3.1: Parameters used for the simulation

Parameter Description Value
𝑣 Velocity robot 30𝑚/𝑠
obs_range Observation range of the sensors of the robot 30𝑚
𝑑𝑡 Sampling time 0.25𝑠
𝑁𝑒𝑓𝑓 Effective number of particles 7.5
𝜎𝑣 Standard deviation velocity robot 1.2𝑚/𝑠
𝜎𝜃 Standard deviation angle robot 12𝜋/180∘

𝜎𝑟 Standard deviation distance measurements 0.5𝑚
𝜎𝜙 Standard deviation bearing measurements 20𝜋/180∘

Figure 3.4: Estimated trajectory and landmark positions using FastSLAM with 10 particles. The red trajectory is the groundtruth
and the blue trajectory is the estimated trajectory.
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of the landmark estimation will be measured using the root mean squared (RMS) error, discussed in
Section 3.5.2. The variation error will be expressed using the KullbackLeibler Divergence, discussed
in Section 3.5.3.

However, these metrics are not the only measures that expresses the efficiency of a SLAM algorithm.
Other indices that should be taken into account while verifying the performance of the algorithm are:

• Processing time, discussed in Section 3.5.4

• Memory, discussed in Section 3.5.5

The metrics used to verify the simulations in the next chapters are explained in the following sections.

3.5.1. Error of the trajectory estimation
The position error is inherent to the SLAM problem. This is induced by the noise in the measurements.
A useful measure to express the performance of the trajectory estimation in the SLAM algorithm is the
timeaveraged root mean squared error given as

ARMS =
√√√
⎷

1
𝑇

𝑇
∑
𝑘=1

||𝐱𝑘 − �̂�𝑘||2, (3.20)

where 𝑇 is the total number of time steps needed to complete the trajectory, 𝐱𝑘 is the true robot state
at time step 𝑘 and �̂�𝑘 is the estimated robot state at time step 𝑘 [29]. In this metric the difference in
length of robot trajectories is compensated.

3.5.2. Error of the map estimation
The position error of the map estimation is expressed using the root mean squared error of the positions
of the landmarks

RMS =
√√√
⎷

𝑀
∑
𝑚=1

||𝝁𝑚 − �̂�𝑚||2, (3.21)

where 𝑀 is the total number of observed landmarks, 𝝁𝑚 is the true location of landmark 𝑚 and �̂�𝑚 is
the estimated location of landmark 𝑚.

3.5.3. KullbackLeibler Divergence
While using a particle filter for SLAM, this induces a new type of error, specifically for this filter design.
A finite number of samples is drawn, so the statistics of these samples differ from the statistics of the
original density. For example the mean and variance of the drawn samples are slightly different than
the mean and variance of the original density. The more samples are drawn, the smaller the error is.
This variability due to random sampling is called the variance [34, Ch. 4.3.4].

A method to analyze the performance of a particle filter is in general done using the mean squared error
between point estimators. In the case of a nonGaussian distribution, this metric can be a meaningless
number. Another metric to compare particle filters with each other is the KullbackLeibler Divergence
(KLD) [4].

Let 𝑝 and 𝑞 be two densities on ℝ𝑑, the KLD 𝐷𝐾𝐿(𝑝, 𝑞) is then defined as the expected value of the log
likelihood ratio between 𝑝 and 𝑞:

𝐷𝐾𝐿(𝑝, 𝑞) ∶= 𝔼𝑝 [log 𝑝(𝐱)
𝑞(𝐱)] (3.22)

If 𝐷𝐾𝐿 has a small value, the densities are close together and in case it is zero the densities are equal.
The number on its own does not have a significant meaning, it should be evaluated to a benchmark.

For comparing two clouds this metric is combined with the 𝜅Nearest Neighbor (𝜅NN) [37]. Using this
metric, two clouds with different numbers of samples can be compared and thus an optimal number of
particles can be found using this method. Assume that the simulations will be run twice with a different
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number of particles, the first time with the set of samples {𝑋1, … , 𝑋𝑁1
} are drawn and the second

simulation every time step the samples {𝑌1, … , 𝑌𝑁2
}, where 𝑁1 and 𝑁2 are the number of particles

in the first and second simulations respectively. Let then 𝜈𝑘𝑖
(𝑖) be the Euclidean distance from 𝑋𝑖

to its 𝑘𝑖NN in {𝑌𝑗} and 𝜌𝑙𝑖
(𝑖) the Euclidean distance between 𝑋𝑖 to its 𝑙𝑖NN in {𝑋𝑗}𝑗≠𝑖. In [37] an

asymptotically unbiased and meansquare consistent estimator �̂�𝐾𝐿(𝑝, 𝑞) is presented as

�̂�𝐾𝐿(𝑝, 𝑞) = 𝑑
𝑁1

𝑁1

∑
𝑖=1

log
𝜈𝑘𝑖

(𝑖)
𝜌𝑙𝑖

(𝑖) + 1
𝑁1

𝑁1

∑
𝑖=1

[𝜓(𝑙𝑖) − 𝜓(𝑘𝑖)] + log 𝑁2
𝑁1 − 1, (3.23)

where 𝜓 is the Digamma function, the logarithmic derivative of the Gamma function.

3.5.4. Time complexity
The time complexity of an algorithm can be expressed in the big O notation (𝒪). This notation expres
sion is normally a function of the input parameters and denotes the time to run an algorithm up to a
constant factor.

Representing the time complexity of an algorithm in the big O notation can be difficult, in that case, the
run time of an algorithm can also be taken as a measure for the time complexity. However, the run
time of an algorithm is highly language and platform dependent, but it provides a measure to compare
two algorithms in the same language and platform.

Thismetric will play the biggest role to determine whether the proposed algorithms use less computation
and therefore less energy.

3.5.5. Memory
A disadvantage of using a particle filter for the SLAM problem is the multiple storage for the same data:
every particle stores the whole map. Using EKFSLAMmight soundmore beneficial in terms of memory
load, however, in EKFSLAM covariance matrices grow quadratically with the number landmarks. So
for a large number of landmarks, the memory needed and computational load grows much faster than
for FastSLAM. Every particle only stores the last known pose and all landmarks and is therefore in both
memory and computation more efficient. In addition, the use of memory can be tweaked, depending on
the application, by choosing a different number of particles. This method is not possible for EKFSLAM.
This metric will not be measured for the proposed algorithms, but there will be reflected on what effect
the new algorithms have on the memory.



4
Constrained FastSLAM

In this chapter the first improved algorithm will be derived, based on FastSLAM. In this proposed algo
rithm, constrained FastSLAM, spatial constraints will be added. A derivation will be proposed, which
will be validated by simulations of the constrained FastSLAM and unconstrained FastSLAM on four
synthetic datasets, to compare the results in the last section.

4.1. Introduction
The idea behind this proposed algorithm is that the observed landmarks will be incorporated into the
trajectory estimation as spatial constraints. In the unconstrained FastSLAM algorithm, the landmark
information is only used to estimate the pose of the robot relative to the landmarks. In this proposed
algorithm, the information about the landmarks will also be used to improve the sampling of uncon
strained FastSLAM. The hypothesis is that the proposed algorithm requires more computations than
unconstrained FastSLAM, because it processes the observed landmark information as spatial con
straints. However, using the proposed algorithm might result in a more accurate estimation. If this is
the case, the number of particles can be reduced to reduce the computation load without loss of accu
racy compared to unconstrained FastSLAM. To verify whether this is the case, the proposed algorithm
is simulated for a few different numbers of particles.

4.2. Mathematical derivation
To improve FastSLAM for autonomous navigation, the idea is to add spatial constraints to the uncon
strained FastSLAM algorithm. The robot will navigate itself through a new environment and thereby it
will need to avoid obstacles. The downside of using the unconstrained FastSLAM algorithm is that it
might still sample particles at a point where an obstacle is already observed. So the idea of the pro
posed algorithm is to not only use the observation measurements for map estimation, but also for a
more efficient method to sample during the unconstrained FastSLAM algorithm.

The first step is to implement constraints in the unconstrained FastSLAM algorithm. These constraints
are on a subset of the states of the robot, namely the position of the robot. The constraints obeyed by
the robot are represented as an area where the robot may sample its particles from, so the states need
to be within an admissible set 𝐂𝑘:

𝐱𝑘 ∈ 𝐂𝑘 (4.1)

This set 𝐂𝑘 is a region where no obstacles are observed, this set changes every time step.

Implementing spatial constraints in a particle filter can be done in multiple stages of the algorithm. A
general solution, proposed in Challa et al. [2], is rejection sampling. This method draws samples from
an unconstrained proposal distribution as described in (3.9). If it does not belong to the constrained set,
the sample will be redrawn, otherwise the sample will be accepted and continue. The advantage of this
method is that it will always continue with a feasible sample. The downside, however, is that it can be
computational expensive if it needs to redraw a lot of samples. Due to this possible high computational

25
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load, this method will not be used.

A second solution is given in Pirard et al. [28], where the constraints are introduced in the update step.
A generalized likelihood is given as:

𝑝(𝐂𝑘|𝐱𝑘) = {1 𝐱𝑘 ∈ 𝐂𝑘
0 otherwise

(4.2)

Adding these constraints in (2.6) gives the following measurement update:

𝑝(𝐱𝑘, 𝐦|𝐙1∶𝑘, 𝐔1∶𝑘, 𝐱0, 𝐂𝑘) = 𝑝(𝐳𝑘|𝐱𝑘, 𝐦)𝑝(𝐂𝑘|𝐱𝑘)𝑝(𝐱𝑘, 𝐦|𝐙1∶𝑘−1, 𝐔1∶𝑘, 𝐱0, 𝐂𝑘−1)
𝑝(𝐳𝑘|𝐙1∶𝑘−1, 𝐔1∶𝑘, 𝐂𝑘)𝑝(𝐂𝑘|𝐂𝑘−1) (4.3)

This is the same measurement update, however, the constraints are incorporated. This posterior distri
bution is either zero if the states are outside the feasible set, or 𝑝(𝐱𝑘, 𝐦|𝐙1∶𝑘, 𝐔1∶𝑘, 𝐱0) if the states are
admissible. This method uses an unconstrained proposal distribution, which makes it easy to sample
from. The disadvantage of this technique is that there is no guarantee that a sample is drawn which
lays within the constrained area. Due to this uncertainty about a feasible solution, this method will not
be used to build on.

A third proposed technique, focused on the RaoBlackwellized particle filter, is proposed in Pirard et
al. [28]. The principles of the RaoBlackwellized particle filter, as discussed in Section 3.3 is combined
with the spatial constraints. These constraints are implemented in the proposal distribution, where the
state is drawn from. This method is explored in the remainder of this chapter, since it is closest to
already existing unconstrained FastSLAM algorithm [28].

4.2.1. Proposal distribution
The constraints are incorporated in the proposal distribution. To make sure that the samples are drawn
from an admissible set, the proposal distribution is altered. First an approximate support 𝑆𝑘 for the robot
positions need to be found. In this case the support is a function of the previous state and the odometry
measurements: 𝐒𝑘(𝐱𝑘) = 𝑝(𝐱𝑘|𝐱𝑘−1, 𝐮𝑘). The support is equal to the confidence region, corresponding
to an onesigma ellipse of the robot position. This support is then intersected with the feasible set. This
feasible set is the area in which the robot has not detected any landmarks. Since the observation
of the landmarks is noisy as well, there is no guarantee where a landmark is located. To tackle this
problem, the robot cannot be in the area associated with confidence region of the covariance matrix of
a certain landmark. This admissible set is the set 𝐂𝑘 as described in (4.1). After every observation,
the confidence region of an observed landmark gets smaller, which makes the admissible set more
accurate. The proposed distribution is then the intersection between the support and the admissible
set 𝐃𝑘 = 𝐒𝑘 ∩ 𝐂𝑘. The weight of the sample is then calculated as a function of the volume of set 𝐃𝑘.
The proposal distribution 𝜋 can be computed as Algorithm 4.1.

Algorithm 4.1 Proposal distribution 𝜋 for constrained FastSLAM [28]
1: for 𝑗 ∶= 1 to 𝑁 do
2: Find appropriate support 𝐒𝑘
3: Calculate 𝐃𝑘 = 𝐒𝑘 ∩ 𝐂𝑘
4: Calculate the volume 𝑉 (𝐃𝑘)
5: Draw a uniform sample from 𝐃𝑘
6: Calculate importance weight 𝑝(𝐱(𝑗)

𝑘 |𝐱(𝑗)
𝑘−1, 𝐳𝑘, 𝐂𝑘) = 1/𝑉 (𝐃𝑘)

7: return feasible particle 𝑗
8: end for

4.3. Simulation setup
For this simulation a ground robot (in 2D) is used, so the state space, input space and covariance matrix
is the same as (3.17), (3.18) and (3.19) respectively. The simulations are done both for unconstrained
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Table 4.1: Parameters used for the simulation

Parameter Description Value
𝑣 Velocity robot 3𝑚/𝑠
obs_range Observation range of the sensors of the robot 30𝑚
𝑑𝑡 Sampling time 0.25𝑠
𝑁𝑒𝑓𝑓 Effective number of particles 0.75𝑁
𝜎𝑣 Standard deviation velocity robot 1𝑚/𝑠
𝜎𝜃 Standard deviation angle robot 12𝜋/180∘

𝜎𝑟 Standard deviation distance measurements 0.8𝑚
𝜎𝜙 Standard deviation bearing measurements 12𝜋/180∘

FastSLAM as discussed in Section 3.4 and constrained FastSLAM to be able to compare the perfor
mance. In this thesis, the focus of the results is mostly in finding opportunities to make the algorithms
more energyefficient. Therefore the simulations will be run with a varying limited number of particles
𝑁 = {10, 100, 1000} to keep the run time as low as possible while still being able to see the trend in the
outcomes. This way, a lot of simulations can be run to find out the trends of the algorithm in the results.
The setup will be run for 100 Monte Carlo runs, after which the results have converged to a level where
the outcomes of the different algorithms and parameters are distinguishable. The parameters used for
the simulations are listed in Table 4.1.

To determine the performance of the two methods, the following error metrics will be used, as described
in Section 3.5:

• RMS error of landmark estimation compared to the groundtruth.

• ARMS error of the poses of the robot compared to the groundtruth.

• Mean and variance of the performance of the particle filters using KLD.

Also the following performance indicators are investigated to be able to compare the algorithms with
respect to their energy efficiency:

• Computational complexity

• Memory

4.3.1. Datasets
To verify in what kind of environment the algorithm performs best, the simulations are run on different
datasets, visualized in Figure 4.1. The field covers in all cases an area of 100𝑚 × 100𝑚. The trajectory
(blue line) is the same, all starting from point (0, 0), but the number of landmarks (red stars) and their
positions is different. The number of landmarks and the placement of the landmarks effect the perfor
mance of unconstrained FastSLAM, because a lot of landmarks in the observation range of the robot
improves the localization performance. Due to this dependence the number and configuration of the
landmarks is varied.

4.4. Results
In this section the simulation results will be presented using the simulation setup described in the
previous section. The accuracy and performance of the unconstrained and constrained FastSLAM are
compared. Each simulation contains 100 Monte Carlo runs. The simulations are done using MATLAB
R2019b.

4.4.1. Dataset 1
Dataset 1 contains 10 landmarks, this dataset can be found in Figure 4.1a. The hypothesis is that the
algorithms will give similar results, since the effect of the constraints will be minimal. The ARMS error
for the trajectory of the robot is shown in Figure 4.2 as well as the RMS error for the landmark esti
mation. These results show that the performance of the unconstrained FastSLAM algorithm increases
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(a) Dataset with 10 landmarks (b) Dataset with 50 landmarks

(c) Dataset with 100 landmarks (d) Dataset with 100 landmarks in an organized way

Figure 4.1: Datasets used for the simulations. The trajectory (blue line) is the same, starting from point (0,0). The number of
landmarks (red stars) differ.

monotonically with an increasing number of particles. However, for 1000 particles the performance of
constrained FastSLAM is even better than for unconstrained FastSLAM looking at the map estimation.
Overall these datasets give similar results for both algorithms.

(a) RMS error of the map estimation containing 10 landmarks av
eraged over 100 Monte Carlo runs.

(b) ARMS error of the trajectory estimation in a map containing 10
landmarks averaged over 100 Monte Carlo runs.

Figure 4.2: Comparison of the performance of unconstrained and constrained FastSLAM on the first dataset containing 10
landmarks averaged over 100 Monte Carlo runs.

4.4.2. Dataset 2
The second dataset contains 50 landmarks, as visualized in Figure 4.1b. The hypothesis is that the
simulations on this dataset will provide better results than the first dataset, because the environment
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Table 4.2: Comparison performance between unconstrained FastSLAM and constrained FastSLAM for 10 landmarks

N = 10 N = 100 N = 1000
ARMS error trajectory [m] Unconstrained 2.57 2.50 2.45

Constrained 2.52 2.71 2.47
RMS error map [m] Unconstrained 2.35 2.09 1.72

Constrained 2.38 2.35 1.69

is more dense. The errors for a simulation averaged over 100 Monte Carlo runs is shown in Figure
4.3 and Table 4.3. These results show that unconstrained FastSLAM is better for a lower number of
particles, however, for 1000 particles the performance of constrained FastSLAM is clearly better both
for the trajectory estimation as the map estimation. This is in line with the results of the first dataset. The
results also show that overall the error is smaller than the simulations with 10 landmarks as expected.

(a) RMS error of the map estimation containing 50 landmarks av
eraged over 100 Monte Carlo runs.

(b) ARMS error of the trajectory estimation in a map containing 50
landmarks averaged over 100 Monte Carlo runs.

Figure 4.3: Comparison of the performance of unconstrained and constrained FastSLAM on the second dataset containing 50
landmarks averaged over 100 Monte Carlo runs.

Table 4.3: Comparison performance between unconstrained FastSLAM and constrained FastSLAM for 50 landmarks

N = 10 N = 100 N = 1000
ARMS error trajectory [m] Unconstrained 1.35 1.25 1.34

Constrained 1.40 1.35 1.26
RMS error map [m] Unconstrained 1.69 1.55 1.58

Constrained 1.71 1.61 1.48

4.4.3. Dataset 3
The third dataset contains 100 landmarks in an arbitrary position, as shown in Figure 4.1c. The results of
this dataset can be found in Figure 4.4 and Table 4.4. The overall error is slightly smaller than the errors
of the second dataset as expected. For this dataset, the constrained FastSLAM is slightly better than
unconstrained FastSLAM for most cases, but the differences between the errors are closer together
than in the previous two cases. The trend that constrained FastSLAM is better for 1000 particles also
continues in this case.

4.4.4. Dataset 4
The last dataset also contains 100 landmarks, however, in a structured order along the trajectory,
visualized in Figure 4.1d. Comparing the results in Table 4.5 with the previous dataset show that the
performance of constrained FastSLAM is slightly worse for the structured dataset, especially for 1000
particles. The decrease in performance might be caused by the fact that the algorithm is sometimes
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(a) RMS error of the map estimation containing 100 landmarks
averaged over 100 Monte Carlo runs.

(b) ARMS error of the trajectory estimation in a map containing
100 landmarks averaged over 100 Monte Carlo runs.

Figure 4.4: Comparison of the performance of unconstrained and constrained FastSLAM on the third dataset containing 100
landmarks averaged over 100 Monte Carlo runs.

Table 4.4: Comparison performance between unconstrained FastSLAM and constrained FastSLAM for 100 landmarks

N = 10 N = 100 N = 1000
ARMS error trajectory [m] Unconstrained 1.02 0.99 1.08

Constrained 1.05 1.00 1.03
RMS error map [m] Unconstrained 1.49 1.45 1.47

Constrained 1.49 1.42 1.43

too constrained and is therefore giving worse results. This problem of being too constraint is the result
of a lot of overlapping confidence regions per time step, which makes the admissible set too small and
thus unreliable. The performance of this dataset is also visualized in Figure 4.5.

(a) RMS error of the map estimation containing 100 landmarks
along the trajectory averaged over 100 Monte Carlo runs.

(b) ARMS error of the trajectory estimation in amap containing 100
landmarks along the trajectory averaged over 100 Monte Carlo
runs.

Figure 4.5: Comparison of the performance of unconstrained and constrained FastSLAM on the fourth dataset containing 100
landmarks along the trajectory averaged over 100 Monte Carlo runs.

4.4.5. KullbackLeibler Divergence
Since the results are not conclusive, another metric is used to see whether the number of particles to
represent the robot is of influence on the performance. To do so, the KullbackLeibler Divergence as
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Table 4.5: Comparison performance between unconstrained FastSLAM and constrained FastSLAM for 100 landmarks in a
structured way

N = 10 N = 100 N = 1000
ARMS error trajectory [m] Unconstrained 1.15 1.05 1.05

Constrained 1.07 1.03 1.12
RMS error map [m] Unconstrained 1.48 1.39 1.36

Constrained 1.41 1.34 1.38

(a) Dataset with 10 landmarks (b) Dataset with 50 landmarks

(c) Dataset with 100 landmarks (d) Dataset with 100 landmarks in an organized way

Figure 4.6: Estimated mean of the KullbackLeibler Divergence estimator. The KLD is an average calculated over 100 Monte
Carlo runs.

discussed in Section 3.5.3 is used. A particle swarm containing 5000 particles is used as a reference
swarm, which is assumed to represent the true distribution. Only the first nearest neighbour is consid
ered, so both 𝑙𝑖 and 𝑘𝑖 are 1. The results of this KLD estimator are shown as mean in Figure 4.6 and
as variance in Figure 4.7.

The mean value of the KLD estimator show similar results with the results of the trajectory and map
estimations. In the case of 10 landmarks, the difference between the means of the KLD estimator of
the two algorithms is negligible. This result follows from the fact that the influence of the spatial con
straints in constrained FastSLAM is small due to little landmarks in the dataset. For 50 landmarks the
gap between the two algorithms is already visible, but still small. For 100 landmarks the difference in
mean becomes clearly visible. Especially for 1000 particles, the difference between the constrained
and unconstrained algorithm is significant. This follows from the fact that the spatial constraints have
a bigger effect on constrained FastSLAM than for a lower number of landmarks, which is clearly a sig
nificant improvement.

The variance of the KLD estimator shows different results than the mean of the KLD. With an increasing
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(a) Dataset with 10 landmarks (b) Dataset with 50 landmarks

(c) Dataset with 100 landmarks (d) Dataset with 100 landmarks in an organized way

Figure 4.7: Estimated variance of the KullbackLeibler Divergence estimator. The KLD is calculated over 100 Monte Carlo runs.

number of particles, the variance is expected to reduce, this would mirror the reduction of error of the
random sampling. However, for the constrained FastSLAM algorithm this is not the case. This means
that the variance of the calculated distribution of the constrained FastSLAM is significantly higher than
the calculated distribution for unconstrained FastSLAM compared to the ’true’ distribution. This would
mean that the constrained FastSLAMwith a high number of particles is less ’certain’ about the estimated
trajectory. This means that a higher number of particles is not particularly more certain than a lower
number of particles.

4.4.6. Computational complexity
The complexity of the algorithm increases with the addition of constraints for unconstrained FastSLAM.
The complexity of the unconstrained FastSLAM algorithm is 𝒪(𝑁𝑙𝑜𝑔𝑀), whereas the complexity of
the constrained FastSLAM increases to 𝒪(𝑀o𝑁𝑙𝑜𝑔𝑀), where 𝑀o is the average number of observed
landmarks per time step. This average number of observed landmarks depends on the observation
range of the robot, which is 30𝑚 for this robot. In a area that covers 100𝑚 × 100𝑚, this means that
the robot can approximately sense a quarter of the field. That would mean that the computational load
of the robot is 2.5 upto 25 times higher depending on the dataset used. So the addition of spatial
constraints to unconstrained FastSLAM results in a higher computational load than for unconstrained
FastSLAM in the case of the same number of particles and landmarks.

4.4.7. Memory
This algorithm reuses information about the estimated landmark position and certainty of this estima
tion. This does not require a bigger memory, however, building the proposed distribution every time
step requires a little more memory per particle, so that will have an influence on the memory resources
needed.
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4.5. Conclusion
The constrained FastSLAM algorithm has shown potential to make autonomous robots more energy
efficient. The improvement is in particular visible for dense environments, in terms of landmarks. The
performance of the unconstrained and constrained FastSLAM is around the same level in terms of
accuracy for a lower level of particles. For 1000 particles, the trend is clearly visible that constrained
FastSLAM gives a better accuracy than unconstrained FastSLAM. The mean of the KLD estimator
shows that the potential of this algorithm. The trend shows that for a larger number of landmarks and
particles constrained FastSLAM comes closer to true distribution, which shows that less particles are
needed to realize the same accuracy as unconstrained FastSLAM.

However, the complexity of the proposed algorithm is higher and dependent on the number of ob
served landmarks. The contradiction of this algorithm in terms of computations, and therefore energy
efficiency, is that the new algorithm performs better with more landmarks, but also demands a higher
computational load with more landmarks. Even though the performance in terms of accuracy shows a
great potential in this algorithm, the increasing computational load prevents constrained FastSLAM to
be more energyefficient than unconstrained FastSLAM.

4.6. Future work
The simulations that validated this algorithm have shown that there is potential in constrained Fast
SLAM. This potential could be sorted out by running more simulations with a higher number of land
marks and a higher number of particles. However, the significant increase in computational complexity
is a problem that still needs to be tackled before constrained FastSLAM will become more energy
efficient than unconstrained FastSLAM.

If this problem has been solved, a more accurate version of constrained FastSLAM could be developed.
In this thesis, the assumption has been used that the confidence region of the landmarks is a non
admissible region for the sampling of the particles. However, this is overconstrained and might make
the algorithm less accurate in case of a lot of landmarks. This challenge can be tackled by adding
chanceconstrained optimization. This will add more complexity to the algorithm, but will probably also
result in a more accurate estimation.
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Parallelized particle filter

Another method of reducing the processing power is to reduce the computations. To do so, the com
putation of the measurements will be processed by a parallelized particle filter (PPFSLAM). The idea
is that after the observation a particle will only update one landmark in its map at a time and not all the
observed landmarks at once. Every particle will pick a random landmark to update. After this update
the information is communicated with the other particles to pass through the processed information.
The particles are still maintaining its own map and trajectory. By implementing this method, the com
munication complexity between the particles needs to be taken into account, because there will always
be a tradeoff between the communication overhead, computational power and accuracy.

This type of algorithm has been used in literature before, so those methods will be listed. Afterwards
the robot model will be revisited. Then the mathematical derivation will be shown in Section 3. This
algorithm will be validated by simulations, using the same dataset as in Chapter 4 and the results of
those simulations will be discussed in this chapter as well. After which a conclusion will be drawn and
some ideas for future work will be given.

5.1. State of the art
Several papers have already implemented a form of distributed/decentralized/parallelized FastSLAM;
most of those methods are actually a parallelized particle filter, since it is all for a single agent system,
where the update step to spread out the computational load is parallelized. One method of splitting this
computation is execute the localization task and mapping task concurrently [18, 36]. These methods
show improvement in accuracy, but with a higher computational load as result.

Other proposed methods split the observation measurements into feature measurements, so the mea
surement vector is represented as 𝐳 = (𝐳1, 𝐳2, … , 𝐳𝑚)⊤. Each of these observations can then be
computed using a local filter [27, 40, 41]. This method shows major improvement, especially if done in
a practical setup. This will also be used in the new proposed algorithm.

In the mentioned papers, the computation time decreases at the expense of the accuracy and com
munication overhead. In this chapter a new method will be proposed, based on a graph Laplacian
Distributed Particle Filter, as used in Rabbat et al. [29]. The goal is to design an algorithm that reduces
the computational load, thus reducing the needed energy, while keeping the communication overhead
between the particles as low as possible.

5.2. Robot model
The goal is to explore a feature based map 𝐦 using a single robot. The robot motion model is the same
as (3.1), so it will be denoted by:

𝐱𝑘 = 𝑓(𝐱𝑘−1, 𝐮𝑘) + 𝐯𝑘, (5.1)

35
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where 𝐱𝑘 is the state of the robot at time 𝑘, 𝐮𝑘 is the input vector and 𝐯𝑘 is the process noise. The
measurements follow the model:

𝐳𝑘 = ℎ(𝐱𝑘) + 𝐞𝑘, (5.2)

where 𝐳𝑘 is the observation of the landmarks, ℎ(⋅) is the sensor model as defined in (3.7) and 𝐞𝑘 is the
measurement noise. The first step to reduce the computation load is to split the observation model into
landmark observations. So for every time step the observation model can be written as:

𝐳𝑘 =
⎛⎜⎜⎜
⎝

𝐳1,𝑘
𝐳2,𝑘

⋮
𝐳𝑚,𝑘

⎞⎟⎟⎟
⎠

=
⎛⎜⎜⎜
⎝

ℎ(𝐱𝑘, 𝐦1) + 𝐞𝑘
ℎ(𝐱𝑘, 𝐦2) + 𝐞𝑘

⋮
ℎ(𝐱𝑘, 𝐦𝑚) + 𝐞𝑘

⎞⎟⎟⎟
⎠

(5.3)

Every particle only uses one randomly picked feature observation used to estimate the trajectory and
the landmark position. This information is then shared over a graph with the other particles, which will
be explained in the following section.

5.3. Mathematical derivation
Now that the robot model has been adjusted, the particle filter itself also needs to be adjusted to make
sure that the information between the particles can be shared efficiently. A small communication over
head leads to a small extra computational load, which means that the filter will be more energyefficient
than the particle filter described in Section 3.3.

The following derivation of the parallelized particle filter will be used. Algorithm 3.1 functions as a
starting point for this algorithm. The weight update as explained in Algorithm 3.1 is written as follows:

𝑤(𝑗)
𝑘 ∝ 𝑤(𝑗)

𝑘−1
𝑝(𝐳𝑘|𝐱(𝑗)

𝑘 )𝑝(𝐱(𝑗)
𝑘 |𝐱(𝑗)

𝑘−1, 𝐮𝑘)
𝜋(𝐱(𝑗)

𝑘 |𝐗0∶𝑘−1, 𝐙1∶𝑘, 𝐮𝑘)
, (5.4)

where 𝑤(𝑗)
𝑘 is the weight of particle 𝑗 at time 𝑘, 𝑝(𝐳𝑘|𝐱(𝑗)

𝑘 ) is the distribution of the measurements given
the position of the robot. 𝑝(𝐱(𝑗)

𝑘 |𝐱(𝑗)
𝑘−1, 𝐮𝑘) is the distribution of the estimated position of particle 𝑗 at

time 𝑘 given the estimated position of the previous time step and the odometry measurement 𝐮𝑘 [29].
𝜋(𝐱(𝑗)

𝑘 |𝐗(𝑗)
0∶𝑘−1, 𝐙1∶𝑘, 𝐮𝑘) is the proposal distribution of the estimated position of particle 𝑗, which canmake

use of the information of the trajectory 𝐗0∶𝑘−1, observations 𝐙1∶𝑘 so far and the odometry measurement
𝐮𝑘.

To be able to implement a parallelized particle filter, a bootstrap particle filter is used [9, Ch. 4]. In this
filter the proposal distribution 𝜋(𝐱(𝑗)

𝑘 |𝐗0∶𝑘−1, 𝐙1∶𝑘, 𝐮𝑘) is taken to be 𝑝(𝐱(𝑗)
𝑘 |𝐱(𝑗)

𝑘−1, 𝐮𝑘), that simplifies the
unnormalized weight update to

𝑤(𝑗)
𝑘 = 𝑤(𝑗)

𝑘−1𝑝(𝐳𝑘|𝐱(𝑗)
𝑘 ) (5.5)

Let 𝛾(𝑗)
𝑘 be the loglikelihood of the measurements, so 𝛾(𝑗)

𝑘 = log 𝑝(𝐳𝑘|𝐱(𝑗)
𝑘 ). The normalized weight

update is then expressed as

𝑤(𝑗)
𝑘 = 𝑤(𝑗)

𝑘−1 exp{𝛾(𝑗)
𝑘 }

∑𝑁
𝑖=1 𝑤(𝑖)

𝑘−1 exp{𝛾(𝑖)
𝑘 }

(5.6)

where the denominator is the normalization factor. By stacking these loglikelihoods a vector 𝜸𝑘 is
obtained.

5.3.1. Graph theory
Particles with similar state estimation have typically similar weights. This assumption is used to built an
adjacency matrix for the particles. For 𝑁 particles, the adjacency matrix 𝐀 denotes the symmetrized 𝜅
nearest neighbor graph. In this case 𝜅 is a fixed number, where 𝜅 ≪ 𝑁 , that denotes whether an edge
is placed in the adjacency matrix between particles. If particle 𝑗 has particle 𝑖 as 𝜅 nearest neighbor an
edge is placed, between the particles, which means that 𝐴𝑖𝑗 = 𝐴𝑗𝑖 = 1. Note that for some particles
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the number of edges is bigger than 𝜅, because it will not necessarily mean if particle 𝑗 is the 𝜅 near
est neighbor of particle 𝑖 that automatically particle 𝑖 is also the 𝜅 nearest neighbor of particle 𝑗. But it
is assumed that if information can flow from particle 𝑖 to particle 𝑗, the other way around is also possible.

The degree matrix 𝐃 denotes the number of neighbors, on the diagonal it contains the number of
neighbors of particle 𝑖, otherwise it is zero. So the diagonal entries can be calculated by𝐷𝑖𝑖 = ∑𝑁

𝑗=1 𝐴𝑖𝑗.
The Laplacian matrix 𝐋 is then denoted as 𝐋 = 𝐃 − 𝐀. This matrix has an eigendecomposition,
because it is symmetric and real, so it can be written in the form 𝐋 = 𝐅𝚲𝐅⊤, where 𝐅 is an 𝑁 × 𝑁
matrix containing the eigenvectors and 𝚲 is an 𝑁 ×𝑁 diagonal matrix of eigenvalues. The eigenvalues
are ordered in ascending order, so

𝜆1 ≤ 𝜆2 ≤ ⋯ ≤ 𝜆𝑁

5.3.2. Laplacian decomposition
The columns of 𝐅 have some interesting properties to understand the graph on a signal processing
basis [29]. A column 𝐟𝑖, denoting the 𝑖th column of 𝐅, can be interpreted as a Fourier basis for signals
supported on the graph. The information contained in vector 𝜸 is shared between neighboring nodes,
so the scalars are so called signals on the graph 𝐀. However, sending this information over the whole
graph might nullify the benefits of a parallelized particle filter due to the high communication overhead.
First, 𝜸𝑘 can be approximated by

�̂�𝑘 =
𝑐

∑
𝑗=1

𝐟⊤
𝑗 𝜸𝑘𝐟𝑗, (5.7)

where 𝑐 ≤ 𝑁 and the eigenvalues {𝐟1, … , 𝐟𝑐} correspond to the 𝑐 smallest eigenvalues. This ap
proximation makes sense since most of the energy of the graph is associated with the eigenvectors
corresponding with the smallest eigenvalues. Besides using an approximation, the dimension of the
shared information is also reduced, by transforming 𝜸 using the Fourier basis matrix 𝐅: 𝜶𝑘 = 𝐅⊤𝜸𝑘,
where 𝜶𝑘 is referred to as the vector containing Laplacian transform coefficients [29]. In Algorithm 5.1
the SLAM algorithm is explained using a parallelized particle filter.

Algorithm 5.1 PPFSLAM (based on [29])
1: 𝒳0 = {𝑤0, 𝐱0, �̂�, 𝚺}
2: while true do
3: 𝐳𝑖𝑘 = ℎ(𝐱𝑘, 𝐦𝑖)
4: if 𝐳(𝑗)

𝑖𝑘 is never observed before then
5: add_new_landmark(𝐳(𝑗)

𝑖𝑘 , 𝐱(𝑗)
𝑘 , 𝐑)

6: else
7: update_landmark(𝝁(𝑗)

𝑖,𝑘−1, 𝚺(𝑗)
𝑖,𝑘−1, 𝐱(𝑗)

𝑘 , 𝐳(𝑗)
𝑖𝑘 , 𝐑)

8: end if
9: for 𝑗 = 1 to 𝑁 do
10: Sample �̂�(𝑗)

𝑘 ∼ 𝑝 (𝐱(𝑗)
𝑘−1, 𝐮𝑘)

11: end for
12: Compute 𝐀 as the 𝜅 nearest neighbor graph of the particles
13: Calculate the Laplacian matrix 𝐋 and do the eigendecomposition 𝐋 = 𝐅𝚲𝐅⊤

14: Calculate Laplacian transform coefficients 𝜶𝑘 = 𝐅⊤
𝑐 𝜸𝑘

15: �̂�𝑘 = mean(𝜶𝑘)
16: Calculate �̂�𝑘 = 𝐅𝑐�̂�𝑘
17: for 𝑗 = 1 to 𝑁 do
18: 𝑤(𝑗)

𝑘 = 𝑤(𝑗)
𝑘−1 exp{𝛾(𝑗)

𝑘 }
∑𝑁

𝑖=1 𝑤(𝑖)
𝑘−1 exp{𝛾(𝑖)

𝑘 }
19: end for
20: 𝒳𝑘 = Resample(𝒳𝑘−1)
21: 𝑘 = 𝑘 + 1
22: end while

In theory, this algorithm should reduce the computation time and thus the computational power, which
makes it more energyefficient. However, the number of particles does not have a linear effect on the
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Figure 5.1: Comparison of the eigendecomposition and power method for 100 iterations of the PPFSLAM algorithm for 𝑐 = 7.

Table 5.1: Comparison between FastSLAM and PPFSLAM

FastSLAM PPFSLAM
Proposal distribution 𝑝(𝐱(𝑗)

𝑘 |𝐱(𝑗)
𝑘−1, 𝐮𝑘, 𝐳𝑘−1) 𝑝(𝐱(𝑗)

𝑘 |𝐱(𝑗)
𝑘−1, 𝐮𝑘)

Weight update 𝑤(𝑗) = |2𝜋𝐑|−1/2 exp [− 1
2 (𝐳𝑘 − ̂𝐳(𝑗))⊤𝐑−1(𝐳𝑘 − ̂𝐳(𝑗))] 𝑤(𝑗)

𝑘 = 𝑤(𝑗)
𝑘−1𝑝(𝐳𝑘|𝐱(𝑗)

𝑘 )
Complexity Dominated by number of measurements Dominated by number

of particles

computation time of this algorithm. Computing the 𝜅 nearest neighbor graph and the eigendecomposi
tion take up a significant part of the computation time as the number of particles increases.

The computational time of the eigendecomposition is up to 𝒪(𝑁3) depending on the form of the matrix
and expected accuracy [6]. The sparsity of the matrix can be exploited to compute the first 𝑐 eigenvec
tors of 𝐅 using a power method [32]. Such a power method is for example the Lanczos algorithm. This
algorithm finds the 𝑐 most useful eigenvalues and eigenvectors of a Hermetian matrix. The most useful
is for example the first 𝑐 eigenvectors with the highest or lowest eigenvalues, or the first 𝑐 eigenvalues
with the smallest or biggest absolute value. By using this method, the computational time is drastically
lowered, especially for a high number of particles. To show the difference between the eigendecompo
sition and the Lanczos method, the run time is plotted in Figure 5.1 for 100 iterations of the PPFSLAM
algorithm for 𝑐 = 7. For a small number of particles, the difference is not significant, the power method
is less consistent than the eigendecomposition, but especially for a higher number of particles, the dif
ference in run time is clearly visible. For this reason the power method will be used for the simulations
instead of the eigendecomposition.

5.3.3. Comparison
The differences between FastSLAM and PPFSLAM are summarized in Table 5.1. As shown in the
table, the main difference in the computation of the two algorithms lay in the proposal distribution and
the weight update of the different particle filters. This then results in a different kind of computational
complexity, one dominated by the number of measurements, the other dominated by the number of
particles.

5.4. Simulations
The simulations are done on the same datasets (shown in Fig. 4.1) as explained in Chapter 4 and
with the same set of particles 𝑁 = {10, 100, 1000}. The performance of a parallelized particle filter is
compared to FastSLAM. The parameters of these simulations are shown in Table 5.2.
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Table 5.2: Parameters used for the simulation

Parameter Description Value
𝑣 Velocity robot 1𝑚/𝑠
obs_range Observation range of the sensors of the robot 30𝑚
𝑑𝑡 Sampling time 0.25𝑠
𝑐 10
𝜅 Number of neighbors 7
𝑁𝑒𝑓𝑓 Effective number of particles 0.75𝑁
𝜎𝑣 Standard deviation velocity robot 0.1𝑚/𝑠
𝜎𝜃 Standard deviation angle robot 12𝜋/180∘

𝜎𝑟 Standard deviation distance measurements 0.8𝑚
𝜎𝜙 Standard deviation bearing measurements 12𝜋/180∘

To determine the performance of the two methods, the following error metrics will be used, as described
in Section 3.5:

• RMS error of landmark estimation compared to the groundtruth.

• ARMS error of the poses of the robot compared to the groundtruth.

Also the following performance indicators are investigated to be able to compare the algorithms with
respect to their energy efficiency:

• Run time of the algorithms

• Memory

5.5. Results
In this section the simulation results will be presented using the simulation setup described in the
previous section. Besides the estimation accuracy of the algorithms, also the computation time is
taken into account. This reflects the effect on the energy efficiency of the algorithm. Each simulation
contains 100 Monte Carlo runs. The simulations are done using MATLAB R2019b.

5.5.1. Dataset 1
The first dataset contains 10 landmarks. The hypotheses is that splitting the observation model into
different landmark observations does not have major impact in the simulations, since there are not a lot
of landmarks that can be seen at once. This will thus not influence the accuracy and the computation
time. However, computing the adjacency matrix every time step takes probably more time than the
time that is gained with computing the rest parallelized.

The ARMS error of the trajectory estimation and the RMS error for the map estimation for FastSLAM
and PPFSLAM is shown in Figure 5.2 for different number of particles averaged over 100 Monte Carlo
runs. From these results it is clear that FastSLAM gives a more consistent result. The accuracy of
PPFSLAM follows no clear trend with thus amount of landmarks.

The other metric of interest is the run time of the two algorithms for different numbers of particles. This
result is shown in Figure 5.3. From these results it is clear that the PPFSLAM is for all three cases
significantly slower than the FastSLAM algorithm. This is due to the computation time of the adjacency
matrix every time step including computing the eigenvalue decomposition of the Laplacian.

5.5.2. Dataset 2
The second dataset contains 50 landmarks. The hypothesis is that the time complexity of the PPF
SLAM simulations is significantly lower than the time complexity of FastSLAM, since the reduction
in processing time of the distributed landmark observations is more significant compared to the first
dataset.
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(a) RMS error of the map estimation containing 10 landmarks av
eraged over 100 Monte Carlo runs.

(b) ARMS error of the trajectory estimation in a map containing 10
landmarks averaged over 100 Monte Carlo runs.

Figure 5.2: Comparison of the performance of PPFSLAM and FastSLAM on the first dataset containing 10 landmarks averaged
over 100 Monte Carlo runs.

Figure 5.3: Comparison between the run time of FastSLAM and PPFSLAM for the first dataset containing 10 landmarks over
100 Monte Carlo runs.

The results of the second dataset are shown in Figure 5.4. The accuracy of the map estimation is in
all three cases a little bit better for PPFSLAM, but this improvement is not visible yet in the error of the
trajectory estimation.

The time complexity is visualized in Figure 5.5. As expected, the run time of PPFSLAM for 10 and
100 is shorter than for FastSLAM. Interesting, however, is that the run time for 1000 particles is for
both algorithms almost equal. So also in the case of 50 landmarks, the gain in computation time is not
visible yet, whereas the accuracy stays more or less equal for both algorithms.

5.5.3. Dataset 3
The third dataset contains 100 landmarks randomly distributed over the map. The hypothesis is that
the run time for this dataset will be lower for PPFSLAM than for FastSLAM, because of the parallel
computed landmark observations.

The performance of the map estimation and trajectory estimation are shown in Figure 5.6. For this
dataset the two algorithms have the similar performance in terms of accuracy, it even is slightly in favor
of the PPFSLAM. Especially for the trajectory estimation with 1000 particles the difference is signifi
cantly visible.
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(a) RMS error of the map estimation containing 50 landmarks av
eraged over 100 Monte Carlo runs.

(b) ARMS error of the trajectory estimation in a map containing 50
landmarks averaged over 100 Monte Carlo runs.

Figure 5.4: Comparison of the performance of PPFSLAM and FastSLAM on the second dataset containing 50 landmarks
averaged over 100 Monte Carlo runs.

Figure 5.5: Comparison between the run time of FastSLAM and PPFSLAM for the second dataset containing 50 landmarks
over 100 Monte Carlo runs.

Another improvement of PPFSLAM is the run time, as shown in Figure 5.7. In all three cases the run
time of PPFSLAM is lower than the run time of FastSLAM. So with improvement of both the accuracy
and run time of PPFSLAM, the increase of landmarks and particles looks like a trend that will lead to
a more energyefficient algorithm.

5.5.4. Dataset 4
The fourth dataset contains 100 landmarks as well, however, in this dataset the landmarks are placed
along the trajectory. This would probably not influence the run time compared to dataset 3, but might
influence the performance.

The performance of the two algorithms is shown in Figure 5.8. This figure shows that the performance
of PPFSLAM has not significantly improved compared to the third dataset. So this particular type of
dataset has no advantage for PPFSLAM over an arbitrary distributed map.

The run time of the two algorithms for this dataset is shown in Figure 5.9. As expected, the run time
is similar to the run time for the third dataset. So also in this case PPFSLAM is more beneficial over
FastSLAM, but this particular structured dataset has no influence on the performance compared to
arbitrarily distributed landmarks.
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(a) RMS error of the map estimation containing 100 landmarks
averaged over 100 Monte Carlo runs.

(b) ARMS error of the trajectory estimation in a map containing
100 landmarks averaged over 100 Monte Carlo runs.

Figure 5.6: Comparison of the performance of PPFSLAMand FastSLAMon the third dataset containing 100 landmarks averaged
over 100 Monte Carlo runs.

Figure 5.7: Comparison between the run time of FastSLAM and PPFSLAM for the third dataset containing 100 landmarks over
100 Monte Carlo runs.

(a) RMS error of the map estimation containing 100 along the tra
jectory landmarks averaged over 100 Monte Carlo runs.

(b) ARMS error of the trajectory estimation in a map containing
organized 100 landmarks averaged over 100 Monte Carlo runs.

Figure 5.8: Comparison of the performance of PPFSLAM and FastSLAM on the fourth dataset containing 100 landmarks along
the trajectory averaged over 100 Monte Carlo runs.
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Figure 5.9: Comparison between the run time of FastSLAM and PPFSLAM for the fourth dataset containing 100 landmarks
along the trajectory over 100 Monte Carlo runs.

5.5.5. Time complexity
As seen in the results of the algorithm, the time complexity of PPFSLAM is dominated by other pa
rameters than in the case of FastSLAM. The time complexity of FastSLAM compared to PPFSLAM is
increasing faster with an increasing number of landmarks, whereas the time complexity of PPFSLAM
is more dominated by the number of particles. The bottleneck for PPFSLAM is mostly the computa
tion of the adjacency matrix and its eigendecomposition, so this scales faster with a larger number of
particles than the time complexity of FastSLAM.

5.5.6. Memory
To run this algorithm, a bigger memory is required for the robot, since it needs to compute the adjecency
matrix and do the eigendecomposition. These operations generate information that is not used in Fast
SLAM, whereas the information for FastSLAM is also required for PPFSLAM and therefore requires
more memory than FastSLAM.

5.6. Conclusion
The accuracy of PPFSLAM, measured as the RMS error of the map estimation and ARMS error of the
trajectory estimation, is in most cases similar to the accuracy of FastSLAM. In some cases, there is a
slightly better result for PPFSLAM, especially for a higher number of particles.

On the other hand, in terms of time complexity of the two algorithms there is a significant difference
between the two algorithms. Only for a dataset with just 10 landmarks, FastSLAM is faster, but in all
other cases PPFSLAM computes the map and trajectory estimation significantly faster. So without loss
of accuracy, even with a little in gain in accuracy sometimes, but with a huge gain in computation time,
this algorithm has shown big potential to become an energyefficient solution to the SLAM problem.

5.7. Future work
The results shown in this chapter are only theoretical results that can be gained by the proposed al
gorithm. These results are still language and platform independent. Choosing a suitable platform and
language might be even more beneficial for the performance of this algorithm. Both the FastSLAM and
PPFSLAM algorithms can perform tasks in parallel for the different particles. A part of the PPFSLAM
that can be parallel computed is the building of the 𝜅 nearest neighbor graph every time step [5, 7].
However, this will not directly effect the energy consumption, since the number of memory accesses
and number of instruction will stay constant, but it will reduce the run time.

This method would be beneficial for a multiagent system, since the information that is shared between
the agents is kept as small as possible. In theory, only the Laplacian transform coefficients𝜶 need to be
communicated between the agents. This can be done using a gossip protocol [29]. A gossip protocol
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will keep the communication overhead between the multiple agents as low as possible, such that the
extra power consumption for communication will outweigh the lower energy consumption and memory
load per robot for exploring the whole environment. However, this method computes the adjacency
matrix every time step and to do so, it is assumed that every agents know the map estimation and
weights of all particles of all other agents, this is a problem that still needs to be overcome.



6
Conclusion and future work

This chapter concludes the two proposed algorithms compared to the existing FastSLAM algorithm.
The focus of these results will be on the computational complexity, as measure of the energy efficiency
of the algorithms. Also some recommendations for future work building onto these algorithms are made
in this chapter.

6.1. Conclusion
The goal of this research was to improve a particle filter based SLAM algorithm to reduce the energy
needed to run the algorithm. This question is answered through two subquestions:

• How can the available information about the landmarks be used more efficient?

• How can the computational complexity and run time be reduced without compromising the accu
racy of the algorithm.

The work in this thesis is platform and language independent and is only focused on the overall perfor
mance indicators, such as run time, memory and estimation accuracy.

The baseline of this thesis is a FastSLAM algorithm for a single robot simulated on a landmarkbased
environment. These options are chosen because they require in general less resources than other well
known SLAM paradigms. The FastSLAM algorithm is in this thesis compared with two new algorithms;
constrained FastSLAM and parallelized particle filterSLAM.

6.1.1. Constrained FastSLAM
The first algorithm, constrained FastSLAM, uses the available information of the landmark positions to
formulate a constrained problem for the trajectory estimation. These spatial constraints lead to a more
accurate region to sample from. The simulations of constrained FastSLAM compared to unconstrained
FastSLAM show that a higher number of particles generate a more accurate estimation of the trajec
tory and environment. Also the KLD estimator shows an improvement in accuracy for a high number
of particles and a high number of landmarks.

Regarding the overall performance of the proposed algorithm, the constrained FastSLAM algorithm pro
vides similar results as unconstrained FastSLAM considering the accuracy of the algorithm. However
the time complexity of constrained FastSLAM is higher than in the case of unconstrained FastSLAM.
The simulations show that there is a trend that more particles will give a more accurate estimation.
But even though there is no major difference in accuracy, the constrained FastSLAM algorithm is not
considered more energy efficient than FastSLAM, since the time complexity increases.

6.1.2. Parallelized Particle Filter SLAM
The second algorithm is the parallelized particle filter. This method splits the observation model into
multiple landmark observations. These measurements are then used in parallel to compute an estima
tion of the map and trajectory. The weights are obtained by sharing this information in a graphbased
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method. Even though not every particle has access to all information every time step, the accuracy
of the trajectory and map estimation is not influenced by it, due to an efficient communication system
where the information is shared between the particles.

This proposed algorithm has reduces the computation time of the algorithm significantly. This results
in less computation time and thus less energy consumption. The performance has slightly improved
in terms of accuracy for this proposed algorithm. Especially with an increasing number of particles,
the accuracy of PPFSLAM starts to outperform FastSLAM. So without loss of estimation accuracy, the
computational time and thus the energy efficiency has been decreased considerably. So PPFSLAM
is considered to be more energyefficient than FastSLAM without the loss of accuracy.

6.1.3. Energy efficiency
In the absence of a good metric to measure the power consumption of an algorithm, the two proposed
algorithms in this thesis have been tested on their computation times as a measure for the energy effi
ciency of the algorithms. Except for this metric, the algorithms have also been tested on their accuracy,
to see whether the reduction in computation time will not influence the accuracy of the algorithms.

The constrained FastSLAM has a higher complexity than FastSLAM, without major improvement in the
accuracy of the algorithm. Thus this algorithm does not lead to a lower energy consumption.

On the other hand, PPFSLAM has a lower time complexity without compromising on the accuracy of
the estimation.

6.2. Future work
The proposed algorithms have been tested under on four synthesized datasets under certain assump
tions, such as a single robot system with limited number of landmarks and particles and the data asso
ciation and loop closure has been out of the scope of this thesis. So there are possible improvement
alternatives for future research to increase the performance of the algorithm.

6.2.1. Constrained FastSLAM
The bottleneck to make constrained FastSLAMmore energyefficient is the computational complexity of
the algorithm. This increases faster than unconstrained FastSLAM with an increasing number of land
marks. When this challenge is tackled, the algorithm can be expended by adding chanceconstrained
optimization where the uncertainty of the landmark position is taken into account in the spatial constraint
optimization. This will result in a more accurate algorithm.

6.2.2. PPFSLAM
PPFSLAM has shown big improvement in run time compared to FastSLAM. This results in a more
energyefficient algorithm. This algorithm has now been simulated in theory, but can perform even
better if it is implemented on the right platform, because a lot of the computations, such as the eigen
decomposition and computing the adjacency matrix can be done in parallel.

6.2.3. Multiagent system
Both algorithms have now been tested on a single agent system, but could be expanded to amultiagent
system. This would extent the exploration area without changing the energy consumption of a single
robot too much. Especially the PPFSLAM algorithm is suitable for a multiagent system, because the
information that needs to be distributed over the agents is kept small. This advantage can be used to
keep the communication overhead using a gossip protocol as low as possible. However, this method
assumes that all agents have knowledge over the trajectory and map estimation of the other agents,
which is a problem that should be overcome, to be able to gain from the advantages.

6.2.4. Active autonomous exploration
The algorithms have been tested on a dataset with a given trajectory for the robot. This passive explo
ration has provided a measure to compare the different algorithms, however, both algorithms will be
even more beneficial if they are incorporated in an active exploration algorithm.
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6.2.5. Implementing on a platform
Whether these algorithms will provide the performance that is reached in theory, could be tested in
practice by implementing it on a test robot. This also has the advantage that, as discussed before,
some computations can be done in parallel to reduce the computation time, however, this does not
necessarily reduce the energy consumption, but makes the overall computation faster.
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