
Learning Efficient
Search Approximation in
Mixed Integer
Branch and Bound
K. Yilmaz

Te
ch
ni
sc
he

U
ni
ve
rs
ite
it
D
el
ft

Learning Efficient
Search

Approximation in
Mixed Integer

Branch and Bound
by

K. Yilmaz
to obtain the degree of Master of Science
at the Delft University of Technology,

to be defended publicly on Thursday July 16, 2020 at 13:45.

Student number: 4385616
Project duration: September 1, 2019 – July 16, 2020
Thesis committee: Dr. N. Yorke-Smith, TU Delft, supervisor

Prof. K. Aardal, TU Delft
Dr. D. Gijswijt, TU Delft

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Abstract
In line with the growing trend of using machine learning to improve solving of combinatorial optimisation
problems, one promising idea is to improve node selection within a mixed integer programming branch-
and-bound tree by using a learned policy. In contrast to previous work using imitation learning, our
policy is focused on learning which of a node’s children to select. We present an offline method to
learn such a policy in two settings: one that is approximate by committing to pruning of nodes; one that
is exact and backtracks from a leaf to use a different strategy. We apply the policy within the popular
open-source solver SCIP. Empirical results on four MIP datasets indicate that our node selection policy
leads to solutions more quickly than the state-of-the-art in the literature, but not as quickly as the state-
of-practice SCIP node selector. While we do not beat the highly-optimised SCIP baseline in terms of
solving time on exact solutions, our approximation-based policies have a consistently better optimality
gap than all baselines if the accuracy of the predictive model adds value to prediction. Further, the
results also indicate that, when a time limit is applied, our approximation method finds better solutions
than all baselines in the majority of problems tested.

iii

Preface
I started this thesis in September 2019 after being inspired by the Vehicle Routing Problem project
done a few months prior in the course Intelligent Decision Making Project at the Technical University of
Delft.

During my research, countless hours were spent figuring out how the open-source solver SCIP worked,
interfacing it with a Python framework, trying different methods and running experiments. Staying up
late to check the results of the experiments became the norm. Ultimately, I found a simple, elegant
method that works and I am proud to present it to you.

I found a new appreciation for researchers who do this for a living, as this work was the hardest test of
my academic life. At the cost of my blood, sweat and tears, doing this research gave me the opportunity
to explore this relatively new field of combining machine learning and mixed integer programming, and
I can say it was more than worth it.

I could not have done this without the guidance of my supervisor Dr. Neil Yorke-Smith. I am grateful
for the detailed feedback by Lara Scavuzzo Montaña and my peers in the Algorithmics group. Last,
but not least, I would like to thank Robbert Eggermont for the university cluster access.

K. Yilmaz
Delft, July 2020

v

Contents

1 Introduction 1
1.1 Research objective . 1
1.2 Contributions . 2
1.3 Organisation . 2

2 Preliminaries 3
2.1 Machine learning . 3
2.2 Imitation learning . 4
2.3 Mixed integer programming . 4
2.4 Branch and bound . 4
2.5 Node selection and pruning . 7
2.6 Problem sets . 8

2.6.1 Set cover . 8
2.6.2 Maximum independent set . 11
2.6.3 Capacitated facility location . 11
2.6.4 Combinatorial auctions . 11

3 Literature Survey 13
3.1 Branching . 13
3.2 Node selection and pruning . 14

4 Approach 15
4.1 Imitation learning . 15
4.2 Sampling . 15
4.3 Neural network architecture . 17
4.4 Policy configuration. 18
4.5 Node pruning policy . 18

5 Experimental setup 21
5.1 Problem sets . 21
5.2 Frameworks. 21
5.3 Training . 21
5.4 Baselines . 21
5.5 Policy configurations . 22
5.6 Experiments . 22

6 Results 23
6.1 Set cover . 23
6.2 Maximum independent set . 24
6.3 Capacitated facility location . 28
6.4 Combinatorial auctions . 30
6.5 Set cover: Hard instances . 31
6.6 Discussion . 33

7 Conclusion 37
7.1 Discussion . 37

Bibliography 39

A Appendix 41

vii

1
Introduction

Hard constrained optimisation problems (COPs) exist in many different applications. Examples include
airlines, that schedule flights, such that profit is maximised and constraints involving aircraft mainte-
nance and crew scheduling are satisfied [6]. Additionally, the experimental multicore CPU of Intel,
called the ”Single-chip Cloud Computing”, consists of 24 dual-core tiles where jobs are mapped to
cores that maximise efficiency and meet the temperature constraints of every core [22]. Perhaps the
most common paradigm for modelling and solving COPs is mixed integer linear programming (MILP,
or simply MIP). State-of-the-art MIP solvers perform sophisticated pre-solve mechanisms followed by
branch-and-bound search with cuts and additional heuristics [15].

A growing trend is to use machine learning (ML) to improve COP solving. Bengio et al. [9] survey
the potential of ML to assist MIP solvers. One promising idea is to improve node selection within a MIP
branch-and-bound tree by using a learned policy [16]. A policy is a function that maps states to actions,
where in this work an action is the next node to select. However, research in ML-based node selection
is scarce, as the only available literature is the work of He et al. [16].

1.1. Research objective
The research goal of this thesis is to find a node selection (exact) and pruning (approximation) policy
to improve over current heuristics. Current heuristics include Depth-First Search (DFS), BestEstimate
and RestartDFS (see Chapter 2). Additionally, we want to improve on the work of He et al. [16], which
is the only ML-based node selection and pruning policy.

Our motivation is that current heuristics are too simplistic to fully assess the richness of the MIP
solving process. Additionally, we want to add to the ML-based node selection literature, as the current
body of literature is inadequate.

The research questions are:

1. Can a node selector be created that uses a policy obtained from machine learning, that
can improve on the solving times of the default SCIP node selector and the current state-
of-the-art?

2. Can a node pruner be created that uses a policy obtained from machine learning, that can
improve on the solving times or solution quality of the default SCIP node selector and the
current state-of-the-art?

3. How does the machine learning model testing accuracy affect the results of the node se-
lector?

4. Is it possible to leverage the obtained ML-based node selector and pruner, which are
trained to solve smaller problems, then used to solve bigger problems, and outperform
the default SCIP node selector and the current state-of-the-art?

1

2 1. Introduction

1.2. Contributions
This thesis contributes a novel approach to improve MIP node selection by using an offline learned
policy. We obtain a node selection and pruning policy with imitation learning, a type of supervised
learning. In contrast to He et al. [16], our policy learns only to choose which of a node’s children it
should select. This encourages finding solutions quickly, as opposed to learning a breadth-first search-
like method. Further, we generalise the expert demonstration process by sampling paths that lead to
the best 𝑘 solutions, instead of only the top single solution. The motivation for this is to obtain different
state-action pairs that lead to good solutions compared to only using the top solution, in order to aid
learning within a deep learning context.

We study two settings: the first is approximate by committing to pruning of nodes. In this way, the
solver might find good or optimal solutions more quickly, however with the possibility of overlooking
optimal solutions. The second setting is exact: when reaching a leaf the solver backtracks up the
branch-and-bound tree to use a different strategy.

We apply the learned policy within the popular open-source solver SCIP [15]. The results indicate
that our node selector finds (optimal) solutions more quickly than He et al. [16], but not as quickly as
the current default SCIP node selector, called BestEstimate. However, the results also indicate that our
approximation method finds better initial solutions than BestEstimate, albeit in a higher solving time.
Overall, our approximation-based policies have a consistently better optimality gap than all baselines if
the accuracy of the predictive model adds value to prediction. Further, when a time limit is applied, our
approximate method finds better solutions than all the baselines in three of the five problem classes
tested and for one problem class not statistically significantly worse than the baseline.

1.3. Organisation
The outline of this thesis is as follows: Chapter 2 contains the preliminaries needed to understand this
thesis, Chapter 3 presents the literature survey, Chapter 4 specifies the imitation learning approach,
Chapter 5 contains the experimental setup, Chapter 6 shows the results, Chapter 7 concludes with
future directions and in Appendix A we include the preprint1 for this thesis.

1The preprint is also published at http://arxiv.org/abs/2007.03948

http://arxiv.org/abs/2007.03948

2
Preliminaries

2.1. Machine learning
Supervised learning, unsupervised learning, a combination of both and reinforcement learning are all
different methods of machine learning. In supervised learning, the goal is to create a model that can
predict a value for a certain input. Creating this model is called training. Training a model is done by
using training data where the value to predict, also called label, is known in advance. Moreover, the
goal is to minimise a loss function, typically expressed as:

𝐿 =min
᎕

1
𝑁

ፍ

∑
።ኻ
𝑙(𝑓(𝑥።; 𝜃), 𝑦።) + 𝜆𝑅(𝑓) (2.1)

where 𝐿 is the loss value, 𝜃 represents model parameters, 𝑙 is the loss function, 𝑓 is the predictor,
𝑥 is the instance, 𝑦 is the label, 𝜆 is the regularisation parameter and 𝑅 is the regularisation function.

Predicting this label is called classification and the algorithm that implements it is a classifier. The
aim is to train the model enough so that it can predict reasonably well on yet unseen data. A popular
performance measure is the root mean square error (RMSE):

RMSE =
√

ፍ
∑
።ኻ
(𝑦። − �̂�።)ኼ

𝑁 (2.2)

where 𝑁 is the sample size, 𝑦። is the actual label and �̂�። is the predicted label. Neural networks are
popular classifiers that are able to successfully model complex non-linear functions. An example on
the application of a neural network is facial recognition.

Reinforcement learning (RL) is based on aMarkov Decision Process (MDP). AnMDP is a framework
for decision making and has an environment, which consists of: states, possible actions, a reward
function and a state transition function. A so-called agent starts in a certain state, can perform actions
that result in the agent being in a different state and the goal for the agent is to be in the terminal state,
such that accumulated reward is maximised. The reward function maps states and possibly actions to
a number, in order to either penalise or reward the agent for the decision he made. The state transition
function maps states, actions and subsequent states to a probability. If this probability for a state and
action to a next state is one, then the decision process is deterministic and if not, it is stochastic.

RL is used to learn an optimal policy, which is a function that maps states to actions, such that the
accumulated reward is maximised. Different methods exist to solve reinforcement learning problems,
such as temporal difference learning [26] and Q-learning [26]. RL can be model-based or model-free,
the former learning the model (transition and reward function) first to find an optimal policy and the
latter not learning the model, but directly computing a policy.

An example of applied RL is AlphaGo [25], which used RL to learn an optimal policy for playing Go
and has beat world champions.

3

4 2. Preliminaries

2.2. Imitation learning
Reinforcement learning is designed to learn an approximately optimal policy: a function that maps
states to actions, such that the accumulated reward is maximised [26]. A problem that can arise in trying
to find a policy using reinforcement learning is that the reward function is unknown. In some cases an
expert or oracle can provide demonstrations. The demonstrations show what action the expert has
taken in a specific state. In this case, a policy can be learned by using inverse reinforcement learning.
This is called imitation learning [1] or apprenticeship learning. Here, supervised learning is used with
the features being the states of the demonstrations and the labels being the action the expert took.

Imitation learning is used in our method extensively to power the training of our classifier, which
results in a policy used in the solving process of mixed integer programming problems.

2.3. Mixed integer programming
Mixed integer programming (MIP) is a familiar approach to constraint optimisation problems. A mixed
integer program requires one or more variables to decide on, a set of linear constraints that need to be
met, and a linear objective function, which produces an objective value without loss of generality to be
minimised. Thus we have:

minimise 𝑦 := 𝑐ፓ𝑥
subject to 𝐴𝑥 ≥ 𝑏

𝑥 ∈ ℤ፤ × ℝ፧ዅ፤ , 𝑘 > 0
(2.3)

where 𝑦 is the objective value and 𝑥 is the vector of decision variables to decide on. In a MIP, at least
one variable has integer domain; if all variables have continuous domains then the problem is a linear
program (LP). 𝐴 is an 𝑚 x 𝑛 constraint matrix with 𝑚 constraints and 𝑛 variables; 𝑐 is a 𝑛 x 1 vector.

Since general MIP problems cannot be solved in polynomial time, a helpful idea is to relax the
integer constraints to allow all variables to take real values: an LP relaxation of the problem (2.3). A
series of LP relaxations can be leveraged in the MIP solving process. For minimisation problems, the
solution of the relaxation provides a lower bound on the original MIP problem.

Equation 2.3 is also referred to as the primal problem. The primal bound is the objective value of a
solution that is feasible, but not necessarily optimal. This is referred to as a ‘pessimistic’ bound. The
dual bound is the objective value of the solution of an LP relaxation, which is not necessarily feasible.
This is referred to as an ‘optimistic’ bound. The integrality gap is defined as:

𝐼ፆ = {
|ፁᑇዅፁᐻ|

min(|ፁᑇ|,|ፁᐻ|)|
, if sign(𝐵ፏ) = sign(𝐵ፃ)

∞, otherwise
(2.4)

where 𝐵ፏ is the primal bound, 𝐵ፃ is the dual bound, and sign(⋅) returns the sign of its argument.
The integrality gap is monotonically reduced during the solving process. The solving process combines
inference, notably in the form of inferred constraints (cuts), and search, usually in a branch-and-bound
framework.

2.4. Branch and bound
Branch and bound [20] is the most common constructive search approach to solving MIP problems.
In this method, the state space of possible solutions is explored with a growing tree. The root node
consists of all solutions. At every node, an unassigned integer variable is chosen to branch on. Every
node has two children: candidate solutions for the lower and upper bound respectively of the chosen
variable. Choosing to branch on variable 𝑖 and choosing the left child is also referred to as branching
on variable 𝑖 on downwards direction. Choosing the right child is also referred to as going in upwards
direction. The main steps of a standard MIP branch-and-bound algorithm are shown in Algorithm 1.

See Figure 2.1 for a branch and bound example solving a real problem.

2.4. Branch and bound 5

Algorithm 1: Algorithm to solve a minimisation MIP problem using branch and bound.
input : Root 𝑅, which is a node representing the original problem
output: Optimal solution if one exists

1 𝑅.dualBound ← −∞ // Initialise dual bound
2 𝑃𝑄 ← {𝑅} // Node priority queue
3 𝐵ፏ ← ∞ // Primal bound
4 𝑆∗ ← null // Optimal solution

5 while 𝑃𝑄 is not empty do
6 𝑁 ← 𝑃𝑄.poll()
7 if 𝑁.dualBound ≥ 𝑃ፁ then

// Parent of N had a relaxed solution worse than current best
integer feasible solution, skip solving relaxation and prune

8 continue
9 end
10 𝑆፫ ← solveRelaxation(𝑁)
11 if 𝑆፫ is not feasible then

// Infeasible relaxation can not lead to a feasible solution
for the original problem

12 continue
13 end
14 𝑂፫ ← 𝑆፫.objectiveValue
15 if 𝑂፫ > 𝐵ፏ then

// This subtree cannot contain any solution better than the
current best (pruning)

16 continue
17 end
18 if 𝑆፫ is integer feasible then
19 𝐵ፏ ← 𝑂፫
20 𝑆∗ ← 𝑆፫

// Found incumbent solution no worse than current best
21 continue
22 end
23 𝑉 ← variableSelection(𝑆፫)
24 𝑎 ← floor(𝑉.value)
25 𝐿 ← copyAndAddConstraint(𝑁, 𝑉 ≤ 𝑎)
26 𝑅 ← copyAndAddConstraint(𝑁, 𝑉 ≥ 𝑎 +1)
27 𝐿.dualBound ← 𝑂፫
28 𝑅.dualBound ← 𝑂፫
29 𝑃𝑄.add(𝐿)
30 𝑃𝑄.add(𝑅)
31 end
32 return 𝑆∗

6 2. Preliminaries

Figure 2.1: Branch and bound example.

2.5. Node selection and pruning 7

Defining a comparator for the node priority queue 𝑃𝑄 is handled by the node selector (used in
𝑃𝑄.poll() and 𝑃𝑄.add() in Algorithm 1). We explain further below.

Choosing on which variable to branch (variableSelection() in Algorithm 1) is not trivial and affects the
time to find solutions and prove optimality. Different approaches to this variable selection are discussed
in Chapter 3. For example, in the SCIP solver1, the default variable selection heuristics (the ‘brancher’)
is: reliability branching on pseudo-cost values. The brancher can inform the node selector which child it
prefers; it is up to the node selector, however, to choose the child. The child preferred by the brancher,
if any, is called the priority child. As described in Chapter 4, the prioChild property is used as a feature
in our work.

In more detail, the left child priority value is calculated by SCIP as:

𝑃ፋ = 𝐼ፋ(𝑉፫ − 𝑉 + 1) (2.5)

and the right child priority value as:
𝑃ፑ = 𝐼ፑ(𝑉 − 𝑉፫ + 1) (2.6)

where 𝐼ፋ (respectively 𝐼ፑ) is the average number of inferences at the left child (right child), 𝑉፫ is the
value of the relaxation of the branched variable at the root node and 𝑉 is the value of the relaxation of
the branched variable at the current node. An inference is defined as a deduction of another variable
after tightening the bound on a branched variable [2]. If 𝑃ፋ > 𝑃ፑ, then the left child is prioritised over
the right child, if 𝑃ፋ < 𝑃ፑ, then the right child is prioritised. If they are equal, then none are prioritised.
Note that while this rule for priority does not necessarily hold for all branchers in general, it does hold
for the standard SCIP brancher.

2.5. Node selection and pruning
In MIP solvers such as SCIP, a node (and its entire sub-tree) is pruned when the solution of the relax-
ation is worse than the current primal bound (line 7 and 15 in Algorithm 1). However, we can further
leverage node pruning to create an approximation algorithm. The goal is then to prune nodes that lead
to bad solutions. Correctly pruning sub-trees that do not contain an optimal solution is analogous to
taking the shortest path to an optimal solution, which obviously minimises the solving time. It is gener-
ally preferred to find feasible solutions quickly, as this enables the node pruner to prune more sub-trees
(due to bounding), with the effect of decreasing the search space. However, we must be aware that
there is no guarantee that the optimal solution is not pruned.

Deciding which node is prioritised over another node to explore is defined by the node selector.
As is the case for branching, different heuristics exist for node selection. Among these are depth-first
search (DFS, see Algorithm 2), breadth-first search (BFS), RestartDFS (restarting DFS at the root after
a fixed amount of newly-explored nodes, see Algorithm 3) and BestEstimate. The latter is the default
node selector in the SCIP solver from version 6. The algorithm is quite involved and for that reason we
did not include the algorithm here, but we do include a brief description2:

• Plunging is defined as successively selecting a child node.

• The plunge depth is the successive times a child is selected as the next node.

• BestEstimate can do two different operations:

– Plunge into the tree as long as the current plunge depth is within the minimum and maxi-
mum plunge depth. These bounds are calculated dynamically. While plunging, prefer chil-
dren over siblings and siblings over leaves. Also, prefer priority children over best estimate
children and priority siblings over best estimate siblings.

– If the plunge depth is not within this range, then select the node with best estimate.

The estimate of a node 𝑝 is defined as:

𝐸(𝑝) = 𝐿፩ + ∑
።∈ፕᑗ

min(𝑐ዅ። (𝑝), 𝑐ዄ። (𝑝)) (2.7)

1scip.zib.de
2BestEstimate is detailed at www.scipopt.org/doc/html/nodesel__estimate_8c_source.php.

scip.zib.de
www.scipopt.org/doc/html/nodesel__estimate_8c_source.php

8 2. Preliminaries

where 𝐿፩ is the lower (dual) bound of node 𝑝, 𝑉 are the fractional variables obtained after solving the
LP of node 𝑝, 𝑐ዅ። (𝑝) (respectively 𝑐ዄ። (𝑝)) is the pseudocost of branching on variable 𝑖 in downwards
direction (upwards direction). Note that a history must be kept to calculate pseudocosts for variables.
The pseudocosts are defined as [4]:

𝑐ዅ። (𝑝) = 𝑓ዅ። (𝑝)
∑

፪∈ፐᎽᑚ
Δ(𝑞)/𝑓ዅ። (𝑞)

|𝑄።|ዅ
(2.8)

and:

𝑐ዄ። (𝑝) = 𝑓ዄ። (𝑝)
∑

፪∈ፐᎼᑚ
Δ(𝑞)/𝑓ዄ። (𝑞)

|𝑄።|ዄ
(2.9)

where 𝑓ዅ። (𝑝) is the fractionality of variable 𝑖 at node 𝑝with relation to the lower bound, 𝑄ዅ። is the history of
nodes where variable 𝑖 was the branched variable in downwards direction, Δ(𝑝) is the gain in objective
value on node 𝑝. Note that if |𝑄ዅ። | = 0, then there is no history of branching on variable 𝑖 in downwards
direction, and so 𝑐።(𝑝) is set to 𝑓ዅ። (𝑝). The value for 𝑐ዄ። (𝑝) is similarly defined.

The fractionalities are defined as:

𝑓ዅ። (𝑝) = 𝑥።(𝑝) − ⌊𝑥።(𝑝)⌋ (2.10)

and:
𝑓ዄ። (𝑝) = ⌈𝑥።(𝑝)⌉ − 𝑥።(𝑝) (2.11)

where 𝑥።(𝑝) is the value of variable 𝑖 at node 𝑝 after solving the LP.
Summarising the node selection heuristics, they can be grouped into two general strategies [5].

The first strategy is choosing the node with the best lower bound in order to increase the global dual
bound. The second strategy is diving into the tree to search for feasible solutions and decrease the
primal bound. The second has the advantage to prune more nodes and decrease the search space. In
this thesis we use the second strategy to develop a novel heuristic using machine learning, leveraging
local variable, local node and global tree features, in order to predict as far as possible the best possible
child to be selected.

2.6. Problem sets
In this section, we present the NP-hard problem definitions with their MIP formulations of set cover,
maximum independent set, capacitated facility location and combinatorial auctions. We evaluate our
node selector by solving instances of these problems, described in Chapter 5.

2.6.1. Set cover
A set cover instance consists of a universe of elements 𝑈, a collection of sets S , such that ⋃

ፒ∈S
𝑆 = 𝑈

and a cost 𝐶(𝑆) for each 𝑆 ∈ S . The objective is to find a subset S ᖣ ⊆ S , such that ⋃
ፒᖤ∈Sᖤ

𝑆ᖣ = 𝑈 and

∑
ፒᖤ∈Sᖤ

𝐶(𝑆ᖣ) is minimised. The MIP formulation is the following [27]:

minimise ∑
ፒ∈S

𝐶(𝑆)𝑥ፒ

subject to ∑
ፒ∶፞∈ፒ

𝑥ፒ ≥ 1 for all 𝑒 ∈ 𝑈

𝑥ፒ ∈ {0, 1} for all 𝑆 ∈ S

(2.12)

where 𝑥ፒ is a decision variable. If 𝑥ፒ = 1, then 𝑆 ∈ S ᖣ.

2.6. Problem sets 9

Algorithm 2: DFS node selection algorithm.

output: Next node 𝑆 to select
1 Function selectNode():
2 S ← getPrioChild()
3 if S does not exist then
4 S ← getPrioSibling()
5 if S does not exist then

// Filters leaves and uses nodeComp() to compare leaves with
each other, selects the best

6 S ← getBestLeaf()
7 end
8 end
9 return S

10 end
input : 𝑁ኻ, 𝑁ኼ to compare
output: −1 if 𝑁ኻ comes before 𝑁ኼ

1 if 𝑁ኻ comes after 𝑁ኼ
0 if equal

11 Function nodeComp(𝑁ኻ, 𝑁ኼ):
12 𝑑ኻ ← 𝑁ኻ.getDepth()
13 𝑑ኼ ← 𝑁ኼ.getDepth()
14 if 𝑑ኻ > 𝑑ኼ then
15 return −1
16 else if 𝑑ኻ < 𝑑ኼ then
17 return 1
18 else

// N.getLowerBound() returns the lower (dual) bound of node N
19 𝑙ኻ ← 𝑁ኻ.getLowerBound()
20 𝑙ኼ ← 𝑁ኼ.getLowerBound()
21 if 𝑙ኻ < 𝑙ኼ then
22 return −1
23 else if 𝑙ኻ > 𝑙ኼ then
24 return 1
25 else
26 return 0
27 end
28 end
29 end

10 2. Preliminaries

Algorithm 3: RestartDFS node selection algorithm.

// Initialise global variables
1 nProcessedLeaves ← 0
2 selectBestFreq ← 100 // Constant in SCIP, every 100 leaves it selects

the node with the smallest lower bound
3

output: Next node 𝑆 to select
4 Function selectNode():
5 S ← getPrioChild()
6 if S does not exist then
7 nProcessedLeaves++
8 nNodes ← getNumberOfNodes()
9 if nNodes > selectBestFreq then
10 selectBestFreq ← 0

// Gets the node with smallest lower bound
11 S ← getBestBoundNode()
12 else
13 S ← getPrioSibling()
14 if S does not exist then

// Filters leaves and uses nodeComp() to compare leaves
with each other, selects the best

15 S ← getBestLeaf()
16 end
17 end
18 end
19 return S
20 end

input : 𝑁ኻ, 𝑁ኼ to compare
output: −1 if 𝑁ኻ comes before 𝑁ኼ

1 if 𝑁ኻ comes after 𝑁ኼ
0 if equal

21 Function nodeComp(𝑁ኻ, 𝑁ኼ):
// Numbers are successively assigned

22 𝑛ኻ ← 𝑁ኻ.getNumber()
23 𝑛ኼ ← 𝑁ኼ.getNumber()
24 if 𝑛ኻ > 𝑛ኼ then

// 𝑁ኻ was created after 𝑁ኼ
25 return −1
26 else if 𝑛ኻ < 𝑛ኼ then

// 𝑁ኻ was created before 𝑁ኼ
27 return 1
28 else

// Can never happen
29 return 0
30 end
31 end

2.6. Problem sets 11

2.6.2. Maximum independent set
Given an undirected graph G = (𝑉, 𝐸), a subset 𝑆 ⊆ 𝑉 is independent if there is no edge 𝑒 = (𝑣። , 𝑣፣) in
𝐸 for every pair 𝑣። , 𝑣፣ ∈ 𝑆. This subset 𝑆 is a maximum independent set if |𝑆| is maximised. Let C be a
collection of cliques of graph G, such that 𝐶 ∈ C is not necessarily a maximal clique and every vertex
𝑣 ∈ 𝑉 is in at least one 𝐶 ∈ C. It is easy to see that for every clique 𝐶 ∈ C, at most one vertex 𝑣 ∈ 𝐶 can
be in the independent set 𝑆 [28]. The MIP formulation is the following:

maximise ∑
፯∈ፕ

𝑥፯

subject to ∑
፯∈ፂ

𝑥፯ ≤ 1 for all 𝐶 ∈ C

𝑥፯ ∈ {0, 1} for all 𝑣 ∈ 𝑉

(2.13)

where 𝑥፯ is a decision variable. If 𝑥፯ = 1, then 𝑣 ∈ 𝑆.

2.6.3. Capacitated facility location
Given a set of facilities 𝐹, a set of customers 𝐶, shipping costs {𝑠፟, ∶ 𝑓 ∈ 𝐹, 𝑐 ∈ 𝐶}, demands {𝑑 ∶ 𝑐 ∈ 𝐶},
facility opening costs {𝑜፟ ∶ 𝑓 ∈ 𝐹} and facility capacities {𝑝፟ ∶ 𝑓 ∈ 𝐹}. The objective is to meet the
demands of every customer, while minimising the total cost. A facility 𝑓 can only supply customers
once it is opened and by opening it incurs an opening cost 𝑜፟. A facility 𝑓 can supply at most 𝑝፟ items
and it can partially supply one customer. Once a facility 𝑓 (partially) supplies a customer 𝑐, it incurs a
(partial) shipping cost 𝑠፟,. The MIP formulation is the following [11]:

minimise ∑
፟∈ፅ

∑
∈ፂ
𝑠፟,𝑑𝑦 ,+∑

፟∈ፅ
𝑜፟𝑥፟

subject to∑
፟∈ፅ

𝑦 , = 1 for all 𝑐 ∈ 𝐶

∑
∈ፂ
𝑑𝑦 , ≤ 𝑝፟𝑥፟ for all 𝑓 ∈ 𝐹

𝑦 , ≥ 0 for all 𝑓 ∈ 𝐹, 𝑐 ∈ 𝐶
𝑥፟ ∈ {0, 1} for all 𝑓 ∈ 𝐹

(2.14)

where 𝑦 , is the fraction of the demand facility 𝑓 supplies to customer 𝑐 and 𝑥፟ is a decision variable,
where 𝑥፟ = 1 means that facility 𝑓 is opened.

2.6.4. Combinatorial auctions
Given a set of items 𝐼, a collection of items as packages J = {𝐽 ∶ 𝐽 ⊆ 𝐼} and a bid for each package
𝑏ፉ. The auctioneer must determine which package to sell, such that total bid of each sold package is
maximised and that sold packages J ᖣ ⊆ J are mutually exclusive, that is: ⋂

ፉᖤ∈J ᖤ
𝐽ᖣ = ∅.

The MIP formulation is the following [23]:

maximise ∑
ፉ∈J

𝑏ፉ𝑥ፉ

subject to ∑
ፉ∈J

𝑎ፉ,።𝑥ፉ ≤ 1 for all 𝑖 ∈ 𝐼

𝑥ፉ ∈ {0, 1} for all 𝐽 ∈ J

(2.15)

where 𝑎ፉ,። is a binary constant which determines that item 𝑖 is in package 𝐽 and 𝑥ፉ is a decision variable.
If 𝑥ፉ = 1, then the auctioneer sells package 𝐽.

3
Literature Survey

In this chapter, we present a literature survey on methods where imitation learning is used to improve
the solving process of MIPs.

3.1. Branching
Deciding on what variable to branch on in the branch and bound process is called branching, as was
mentioned in Section 2.4. Good branching techniques make it possible to reduce the tree size, resulting
in fast solving times. A survey on branching, and the use of learning to improve it, are by Lodi and
Zarpellon [21].

Strong branching [8] is a popular branching strategy, among other strategies such as most infeasible
branching, pseudo-cost branching, reliability branching [4] – used as the default in SCIP – and hybrid
branching [3]. Strong branching creates the smallest trees, as Achterberg et al. [4] reported that strong
branching required around 20 times less nodes to solve a problem than most infeasible branching
and around 10 times less nodes than pseudo-cost branching. However, strong branching is the most
expensive to calculate, because two LP-relaxations are solved for every variable to assign scores.

Nonetheless, exact scores are not required to find the best variable to branch on. Therefore, it is
interesting to approximate the score of strong branching, which can be done using machine learning.
Alvarez et al. [7] were the first to use supervised learning to learn a strong branching model. The
features they used to train the ML model consist of static problem features, dynamic problem features
and dynamic optimisation features. The static problem features derive from 𝑐, 𝐴 and 𝑏 as stated in
Equation 2.3. The dynamic problem features derive from the solution �̂� of the current node in the branch
and bound tree and the dynamic optimisation features derive from statistics of the current variable. They
used the Extremely Randomized Trees (ExtraTree) classifier [14]. The results show that supervised
learning successfully imitated strong branching, being 9% off relative to gap size, but 85% faster to
calculate. Although strong branching was successfully imitated, it was still behind reliability branching
in terms of gap size and runtime.

Khalil et al. [18] extended Alvarez et al. [7] work by adding new features to the machine learning
model and by learning a pairwise ranking function instead of a scoring function. The ranking function
they used is a ranking variant of Support Vector Machine (SVM) classifier [17]. Their algorithm solved
70% more hard problems (over 500,000 nodes, cut-off time 5 hours) than strong branching alone.
However, the time spent per node (18 ms) is higher than pseudo-cost branching (10 ms) and combining
strong branching with pseudo-cost branching (15 ms). This is due to calculating the large number of
features on every node.

To overcome complex feature calculation, Gasse et al. [12] propose features based on the bipartite
graph structure of a general MILP problem. The graph structure is the same for every LP relaxation in
the branch-and-bound tree, which reduces the feature calculation cost. They use a graph convolutional
neural network (GCNN) to train and output a policy, which decides what variable to branch on. Fur-
thermore, they used cutting planes on the root node to restrict the solution space. Their GCNN model
performs better than both Alvarez et al. [7] and Khalil et al. [18] for generalising branching, using few
demonstration examples for the set covering, capacitated facility location, and combinatorial auction

13

14 3. Literature Survey

problems. Moreover, GCNN solved the combinatorial auction problem 75% faster than the method of
Alvarez et al. [7] and 70% faster than the method of Khalil et al. [18], both for hard problems (1,500
auctions).

Seeing their success, we adopt the same variable features as Gasse et al. [12].

3.2. Node selection and pruning
While learning to branch has been studied quite extensively, learning to select and prune nodes has
received insufficient attention in the literature.

He et al. [16] used machine learning to imitate good node selection and pruning policies. The
method of data collection in that work is by first solving a problem and provide its solution to the solver.
Afterwards, the problem is solved again, but now that the solver knows the solution, it will take a shorter
path to the solution. The features for learning the node selection policy are derived from the nodes in
this path and the features for the node pruning policy are derived from the nodes that were not explored
further. This was done for a limited amount of problems as the demonstrations.

He et al. [16] trained their machine learning algorithm on four datasets, called MIK, Regions, Hybrid
and CORLAT. They were able to achieve prune rates of 0.48, 0.55, 0.02 and 0.24 for each dataset
respectively. Prune rate shows the amount of nodes that did not have to be explored further relative
to the total amount of nodes seen. Their solving time reached a speedup of 4.69, 2.30, 1.15 and 1.63
compared to a baseline SCIP version 3 heuristic respectively for each dataset. Note that the lowest
speedup seems to correlate with a low prune rate.

Our work differs from He et al. [16] by constraining the node selection space to direct children only
at non-leaf nodes. Furthermore, we use the top 𝑘 solutions to sample state-action pairs. By using more
than one solution, we can create additional state-action pairs from which the neural network can learn
and create a predictive model. Lastly, we include branched variable features, obtained from Gasse
et al. [12]. As seen in Chapter 6, our approach easily outperforms that of He et al. [16], in both their
original implementation and a re-implementation in SCIP 6.

4
Approach

Recall that our goals are to obtain an exact and approximate MIP node selection policy using machine
learning, and to use it in a MIP solver. The policies should lead to promising solutions more quickly
in the branch-and-bound tree, while the approximate policy should prune as few good solutions as
possible.

4.1. Imitation learning
Our approach is to obtain a node selector by imitation learning. A policy maps a state 𝑠፭ to an action 𝑎፭.
In our case 𝑠፭ consists of features gathered within the branch-and-bound process. The features consist
of branched variable features, node features and global features. The branched variable features are
derived from Gasse et al. [12]. See Table 4.1 for the list of features. Note that we define a separate
left_node_lower_bound and right_node_lower_bound, instead of a general node lower bound, because
during experimentation, we obtained two different lower bounds among the child nodes. We constrain
the action space for 𝑎፭ to only select one child node or both. This leads to the restricted action space
{𝐿, 𝑅, 𝐵}, where 𝐿 is the left child, 𝑅 is the right child and 𝐵 are both children.

4.2. Sampling
In order to train a policy by imitation learning, we require training data from the expert. Our sampling
process of state-action pairs is similar to the prior work of He et al. [16], with two major differences.
The first is that our policy learns only to choose which of a node’s children it should select. This
encourages finding solutions quickly, as opposed to learning a breadth-first search-like method. The
second difference is that we generalise the expert demonstration process by sampling paths that lead
to the best 𝑘 solutions, instead of only the top solution. The reason for this is to obtain different state-
action pairs that lead to good solutions compared to only using the top solution, in order to aid learning
within a deep learning context.

He et al. [16] check whether the current node is in the path to the best solution. In our work, we
check whether the left and right children of the current node are in a path that leads to the best 𝑘
solutions. If that is the case, then we associate the label of the current node as ‘B’; if not, we check the
left child or right child and associate the appropriate label (‘L’ or ‘R’ respectively). If neither are in such
a path, then the node is not sampled.

See Figure 4.1 for a sampling example of a real problem. We assume that the top 𝑘 solutions are
given. For every node, we check whether each of its children are optimal. A child is optimal if it is in
the path to at least one of the best 𝑘 solutions. An easy way to confirm this, is by checking whether the
solution of the branched variable is possible to obtain by the bound set on the branched variable. For
example, at the root node, we know that the two possible solutions for the branched variable 𝑥ኻ ∈ {2, 3}.
Since only the bound 𝑥ኻ ≥ 2 makes it possible to reach at least one of the optimal values for 𝑥ኻ, we set
the action taken at that node to be 𝑅. This also becomes the label (or class) for that node that the ML
model tries to predict. At the second (right) node, the optimal values for 𝑥ኼ ∈ {2, 1} and so both 𝑥ኼ ≤ 1
and 𝑥ኼ ≥ 2 bounds make it possible to reach the top 2 solutions and thus the label is 𝐵.

15

16 4. Approach

Table 4.1: Features that define a state. Variable features from Gasse et al. [13].

Category Feature Description

Variable features

type Type (binary, integer, impl. integer, continuous) as a one-hot encoding.

coef Objective coefficient, normalized.

has_lb Lower bound indicator.

has_ub Upper bound indicator.

sol_is_at_lb Solution value equals lower bound.

sol_is_at_ub Solution value equals upper bound.

sol_frac Solution value fractionality

basis_status Simplex basis status (lower, basic, upper, zero) as a one-hot encoding.

reduced_cost Reduced cost, normalized.

age LP age, normalized.

sol_val Solution value.

inc_val Value in incumbent.

avg_inc_val Average value in incumbents.

Node features

left_node_lb Lower (dual) bound of left subtree.

left_node_estimate Estimate solution value of left subtree.

left_node_branch_bound Branch bound of left subtree.

left_node_is_prio Branch rule priority indication of left subtree.

right_node_lb Lower (dual) bound of right subtree.

right_node_estimate Estimate solution value of right subtree.

right_node_branch_bound Branch bound of right subtree.

right_node_is_prio Branch rule priority indication of right subtree.

Global features

global_upper_bound Best feasible solution value found so far.

global_lower_bound Best relaxed solution value found so far.

integrality_gap Current integrality gap.

gap_is_infinite Gap is infinite indicator.

depth Current depth.

n_strongbranch_lp_iterations Total number of simplex iterations used so far in strong branching.

n_node_lp_iterations Total number of simplex iterations used so far for node relaxations.

max_depth Current maximum depth.

4.3. Neural network architecture 17

Figure 4.1: Node sampling example. The top ፤ solutions are assumed to be given. The left sibling of node ፒᎳ is left out.

Figure 4.2: Operations within a hidden layer of the network.

Pre-processing of the dataset is done by removing features that do not change and standardising
every non-categorical feature. We then feed it to the imitation learning component, described next.

4.3. Neural network architecture
Our machine learning model is a standard fully-connected multi-layer perceptron (MLP) with 𝐻 hidden
layers, 𝑈 hidden units per layer, ReLU activation layers and Batch Normalisation layers after each
activation layer, following a Dropout layer with dropout rate 𝑝፝. See Figure 4.2 for an overview of the
operations within a hidden layer. Our motivation for choosing a neural network is that deep learning
tends to outperform other methods as the amount of data increases. The amount of data is not an
issue, because we can generate possibly unlimited amount of data (see Chapter 5).

We obtain the model architecture parameters and learning rate 𝜌 using the hyperparameter optimi-
sation algorithm hyperopt1 [10]. Since during pre-processing features that have constant values are
removed, the number of input units can change across different problems. For example, in a fully binary
problem, the features left_node_branch_bound and right_node_branch_bound are constants (0 and
1 respectively), while for a general mixed-integer problem this is not the case. The number of output
units is three. The cross-entropy loss is optimised during training with the Adam algorithm [19].

1github.com/hyperopt/hyperopt

github.com/hyperopt/hyperopt

18 4. Approach

4.4. Policy configuration
We define three different settings that need to be set for every ML policy. These are on_both, on_leaf
and prune_on_both, see Table 5.1 for an overview.

During policy evaluation, the action 𝐵 (‘both’) can result in different operations. We define PrioChild,
Second and Random as possible operations for the on_both setting. PrioChild selects the priority child
as indicated by the variable selection heuristic (i.e., the brancher); Second selects the next best scoring
action from the ML policy; Random selects a random child.

Additionally, when the solver is at a leaf and there is no child to select, then we define three more
operations for the on_leaf setting. These are RestartDFS, BestEstimate and Score. The first two are
baseline node selectors from SCIP [15]; Score selects the node which obtained the highest score so
far as calculated by our node selection policy.

Lastly, if we use the node pruning policy and the action 𝐵 (’both’) is selected, then we may not want
to prune the ultimately decided opposing sub-tree. For this, we have the prune_on_both settings, which
can be either set to True or False.

4.5. Node pruning policy
Obtaining the node pruning policy is similar to obtaining the node selection policy. The difference is
that the node pruning policy also prunes the child that is ultimately not selected by the node selection
policy. If prune_on_both = True, then this results in diving only once and then terminating the search.
Otherwise, the nodes initially not selected after the action 𝐵 are still explored. The resulting solving
process is thus approximate, since we cannot guarantee that the optimal solution is not pruned.

To summarise, we use our learned policy in two ways: the first is approximate by committing to pruning
of nodes, whereas the second is exact: when reaching a leaf, we backtrack up the branch-and-bound
tree to use a different strategy. See Algorithm 4 for the general ML policy node selection and pruning
algorithm. The actual pruning only occurs if the user initialises the policy with it, regardless of the flag
(setPruneFlag()). Note that the function nodeComp() is left out here, because the logic of nodeComp()
depends on the on_leaf parameter. For on_leaf ∈ {RestartDFS, BestEstimate}, we use the same rule
as described in Chapter 2. For on_leaf = Score, we return the node with the highest policy score, as a
history of node scores are kept (see setScore() in line 24 and 25 in Algorithm 4).

4.5. Node pruning policy 19

Algorithm 4: ML policy node selection algorithm.

input : Current node 𝑁, String on_both, Function on_leaf, Boolean prune_on_both
output: Next node 𝑆 to select

1 Function selectNode():
2 C ← N.getChildren()

3 if C is empty then
4 return on_leaf(𝑁)
5 end
6 f ← extractFeatures(𝑁)
7 scores ← applyMLPredictor(f)
8 a ← argmax scores // Action with highest score
9 pruneOtherChild ← false

10 if a is 𝐵 then
11 if on_both is ”PrioChild” then
12 a ← getPrioChild()
13 else if on_both is ”Second” then
14 scores’ ← scores ⧵ a // Remove 𝑎 from scores
15 a ← argmax scores’
16 else
17 a ← chooseRandomAction()
18 end
19 pruneOtherChild ← prune_on_both
20 end
21 a’ ← 𝐿 if a is 𝑅 else 𝑅
22 S ← getChild(C, a)
23 S’ ← getChild(C, a’)

24 S.setScore(scores[a])
25 S’.setScore(scores[a’])

26 setPruneFlag(S, false)
27 setPruneFlag(S’, pruneOtherChild)

28 return S
29 end

5
Experimental setup

In this chapter, we explain how we designed our experiments to evaluate our method. We present
the problem sets we use, the frameworks we use to solve them and train our machine learning model.
Moreover, we define the baselines that we compare our method to and then detail the experiments.

5.1. Problem sets
The following standard NP-hard problem instances are tested: set cover, maximum independent set,
capacitated facility location and combinatorial auctions. These problems are derived from the generator
provided by Gasse et al. [12]. The instances are different from each other in terms of constraints
structure, existence of continuous variables, existence of non-binary integer variables, and direction of
optimisation.

5.2. Frameworks
For the MIP branch-and-bound framework we use SCIP version 6.0.2.1 As noted earlier, SCIP is an
open sourceMIP solver, allowing us access to its search process. Further, SCIP is regarded as themost
sophisticated and fastest such MIP solver. The machine learning model is implemented in PyTorch2
[24], and interfaces with SCIP’s C code via PySCIPOpt 2.1.6. For the hard instances, the default SCIP
solver settings are used. For the other instances, pre-solving and primal heuristics are turned off, to
better capture the effect of the node selection policy.

5.3. Training
We train on 200 training instances, 35 validation instances and 35 testing instances across all prob-
lems. These provide sufficient state-action pairs to power the machine learning model. The number
of obtained samples (state-action pairs) differs per problem. For every problem, we use the 𝑘 = 10
best solutions to gather the state-action pairs, as this provides a good balance between high quality
solutions and sampled state-action pairs. Additionally, we use a batch size of 1024, dynamically lower
the learning rate after 30 epochs and terminate training after another 30 epochs if no improvement was
found. During training, the validation loss is optimised. The maximum number of epochs is 200.

5.4. Baselines
We compare the policy evaluation results with various node selectors in SCIP, namely BestEstimate
(the SCIP default), RestartDFS and DFS. Additionally, we compare our results with the node selector
and pruner from He et al. [16], with both the original SCIP 3.0 implementation by those authors (He)
and with the a re-implementation in SCIP 6 developed by us (He6). He et al. [16] have three policies:
selection only (S), pruning only (P) and both (B). For exact solutions, we only use (S). For the first

1Note that SCIP version 7, released after we commenced this work, does not bring any major improvements to its MIP solving.
2www.pytorch.org

21

www.pytorch.org

22 5. Experimental setup

solution found at a leaf, we use (S) and (B). For the experiments with a time limit,
we use (P) and (B).

5.5. Policy configurations
We evaluate a number of different settings for our node selection and pruning policy, as seen in Ta-
ble 5.1. This leads to nine different configurations for the node selection policy and twelve different
configurations for the node pruning policy. Note that for the node pruning policy, when prune_on_both
is true, then optimisation terminates when a leaf is found; thus the parameter value for on_leaf does
not matter. We refer to our policies as ML_{on_both}{on_leaf}{prune_on_both}. For example, ML_PB
denotes the node pruning policy that uses PrioChild for on_both and BestEstimate for on_leaf.

Table 5.1: Parameter settings for our node selection and pruning policy.

Parameter Domain
on_both {PrioChild, Second, Random}
on_leaf {RestartDFS, BestEstimate, Score}
prune_on_both {True, False}

5.6. Experiments
In more detail, we report three different kinds of experiments:

1. We evaluate the policy on every problem by checking the average solving time of each node
selector.

2. We check the solution quality in terms of the optimality gap and the solving time of the first solution
found at a leaf node. Note that it is possible an infeasible leaf node is found, in that case, a
solution is returned that was found prior to the branch-and-bound process, through heuristics
inbuilt in SCIP.

3. We select one ML policy, based on the (lowest) harmonic mean between the solving time and
optimality gap. For each instance, we run the solver on each baseline with a time limit equal to the
solving time of the selected ML policy and present the obtained optimality gaps. We also show
the initial optimality gap obtained by the solver before branch-and-bound is applied, i.e., from the
solver’s pre-solve prior to search.

For each experiment, we apply the policies on two different difficulty levels:

1. Easy instances, which can be solved within 15 minutes.

2. Hard instances, where we set a solving time limit to one hour. Here, for all three experiments we
substitute the optimality gap for the integrality gap, because the optimal solution is not known for
every hard instance. Additionally, for the first experiment, instead of checking the solving time,
we check the integrality gap.

The experiments are run on a machine with an Intel i7 8770K CPU at 3.7–4.7 GHz, NVIDIA RTX
2080 Ti GPU and 32GB RAM. We use the shifted geometric mean (SGM, shift = 1) as the average
across all metrics:

SGM = exp
⎛
⎜

⎝

፧
∑
።ኻ

lnmax(1, 𝑣። + 1)

𝑛
⎞
⎟

⎠

− 1 (5.1)

where 𝑣። is non-negative for all 𝑖. Using SGM is standard practice for MIP benchmarks3.

3See, e.g., plato.asu.edu/bench.html

plato.asu.edu/bench.html

6
Results

Table 6.1 provides an overview of the machine learning parameters and results. The baseline accuracy
(column 2) is what the accuracy would have been if each sample is classified as the majority class. The
test accuracy (column 3) is the classification accuracy on the test dataset. Note that 𝑘 = 40 is included
in the maximum independent set instances, see Section 6.2 for an explanation. The best performing
ML model is the model with the settings that achieve the lowest validation loss.

Table 6.1: Machine learning parameters and prediction results for every problem. The baseline accuracy is predicting everything
as the majority class.

Problem Base acc Test acc H U pd ρ

Set cover 0.575 0.764 1 49 0.445 0.253

Max ind set (10) 0.923 0.922 1 25 0.266 0.003
Max ind set (40) 0.895 0.899 1 42 0.291 0.003

Capacitated facility location 0.731 0.901 3 20 0.247 0.008

Combinatorial auctions 0.570 0.717 1 9 0.169 0.002

6.1. Set cover
These instances consist of 2,000 variables and 1,000 constraints forming a pure binary minimisation
problem. We sampled 17,254 state-action pairs on the training instances, 2,991 on the validation
instances and 3,218 on the test instances. The model achieves a testing accuracy of 76.4%, with a
baseline accuracy of 57.5%.

See Table 6.2 for the average solving time and explored nodes of various node selection strategies.
BestEstimate achieves the lowest average solving time at 26.4 seconds; ML_RB comes next at 35.7
seconds. We conducted a pair-wise t-test between the mean solving time of BestEstimate and the
mean solving time of the other policies. We can only reject the null hypothesis of equal means with
p-value below 0.1 for ML_RR (p-value: 0.08). For the rest of our ML policies, we can not reject the null
hypothesis of equal means.

We have also conducted a pair-wise t-test between the mean number of explored nodes of BestEs-
timate and the mean number of explored nodes of the other policies. We can not reject the null hypoth-
esis of equal means with p-value below 0.05 for any of our ML policies (lowest observed p-value: 0.34).
Recall that the values in the tables are the shifted geometric means, while the t-tests by their nature
compares (arithmetic) means. The difference between the solving time of BestEstimate and any ML
policy here is not statistically significant due to outliers.

See Figure 6.1 for boxplots of the baseline node selectors and our ML node selectors. The boxplots
show that BestEstimate has smaller outliers, resulting in a lower average solving time.

Figure 6.2 shows the average solving time against the average optimality gap of the first solution
obtained by the baselines and ML policies at a leaf node. Note that the only parameter that matters

23

24 6. Results

Table 6.2: Set cover instances: average solving time and explored nodes for various node selection strategies. Pair-wise t-tests:
‘***’ ፩ ጺ ኺ.ኺኺኻ, ‘**’ ፩ ጺ ኺ.ኺኻ, ‘*’ ፩ ጺ ኺ.ኺ, ‘⋅’ ፩ ጺ ኺ.ኻ compared to BestEstimate.

Strategy Solving time (s) Explored nodes

BestEstimate 26.39 4291
DFS 47.10 * 9018 *
He 499.00 *** 47116 ***
He6 85.73 ** 18386 **
ML_PB 36.82 4573
ML_PR 38.82 5241
ML_PS 39.73 5295
ML_RB 35.68 4663
ML_RR 40.09 ⋅ 5666
ML_RS 37.13 4799
ML_SB 35.90 4408
ML_SR 36.64 4776
ML_SS 37.61 4923
RestartDFS 45.30 * 8420 *

Figure 6.1: Set cover instances: optimality gap for each node selection strategy. Note log scale on y-axis.

for the ML solver is the first parameter, namely on_both. The second parameter on_leaf and the third
parameter prune_on_both do not influence the solving time or quality of the first solution as the search
terminates at the first found leaf that is found. The policy of He et al. [16] are not included here, due
to its outliers. We see here that our ML policy obtains a lower optimality gap at the price of a higher
solving time for the first solution.

See Table 6.3 and Figure 6.3 for the average optimality gap of the baselines using a time limit for
each instance. The time limit for each instance is based on the solving time of the ML policy that
achieved the lowest harmonic mean between the average solving time and average optimality gap
across all instances. In this case, ML_SRF has the lowest harmonic mean and also achieves the
lowest average optimality gap. We conducted a pair-wise t-test between the mean optimality gap of
our best ML policy and the mean optimality gap of each baseline. We can reject the null hypothesis of
equal means with p-value below 0.005 for all baselines.

The average optimality gap of the first found feasible solution is 2.746. This shows that applying
branch-and-bound to find a solution has a significant difference.

6.2. Maximum independent set
These instances consist of 1,000 variables and around 4,000 constraints forming a pure binary max-
imisation problem. For this particular problem, we noticed that for 𝑘 = 10, the class imbalance was
significant. To combat this, we increased the value 𝑘 to 40. For 𝑘 = 10, we sampled 29,801 state-action

6.2. Maximum independent set 25

Figure 6.2: Average solving time against the average optimality gap of the first solution found at a leaf node on set cover instances

Table 6.3: Set cover: model with on_both = Second, on_leaf = RestartDFS and prune_on_both = False against baselines, with
equal time limits for each problem. The initial optimality gap obtained by the solver before branch-and-bound is ኼ.ኾዀ. Pair-wise
t-tests: ‘***’ ፩ ጺ ኺ.ኺኺኻ, ‘**’ ፩ ጺ ኺ.ኺኻ, ‘*’ ፩ ጺ ኺ.ኺ, ‘⋅’ ፩ ጺ ኺ.ኻ.

Strategy Optimality gap

BestEstimate 0.1767 **
DFS 0.0718 ***
He6 (prune only) 0.7988 ***
He6 (both) 1.1040 ***
ML_SRF 0.0278
RestartDFS 0.0741 ***

Figure 6.3: Set cover instances: optimality gap for each node selection strategy with a short time limit. Note log scale on y-axis.

26 6. Results

pairs on the training instances, 5,820 on the validation instances and 4,639 on the testing instances.
The class distribution is: (Left: 92%, Right: 4%, Both: 4%). For 𝑘 = 40, we sampled 82,986 state-
action pairs on the training instances, 14,460 on the validation instances and 14,273 on the testing
instances. The class distribution is: (Left: 89%, Right: 4%, Both: 7%). Both the 𝑘 = 10 and 𝑘 = 40
models achieve a testing accuracy that is very close to the baseline accuracy, which results in a model
that is not able to generalise.

See Table 6.4 for the average solving time and explored nodes of various node selection strategies.
We conducted a pair-wise t-test between the mean solving time of BestEstimate and the mean solving
time of the other policies. We can reject the null hypothesis of equal means with p-value below 0.1 for
all our ML policies.

We have also conducted a pair-wise t-test between the mean number of explored nodes of BestEs-
timate and the mean number of explored nodes of the other policies. We can reject the null hypothesis
of equal means with p-value below 0.1 for 12 of 18 of our ML policies.

Table 6.4: Maximum independent set instances: average solving time and explored nodes for various node selection strategies.
Pair-wise t-tests: ‘***’ ፩ ጺ ኺ.ኺኺኻ, ‘**’ ፩ ጺ ኺ.ኺኻ, ‘*’ ፩ ጺ ኺ.ኺ, ‘⋅’ ፩ ጺ ኺ.ኻ compared to BestEstimate.

Strategy Solving time (s) Explored nodes

BestEstimate 158.42 6344
DFS 155.27 6340
He 394.56 ** 30965 **
He6 204.68 7992
ML_PB (10) 260.34 ** 10029 *
ML_PB (40) 227.45 * 8100
ML_PR (10) 255.49 ** 10191 *
ML_PR (40) 222.59 * 8581
ML_PS (10) 245.92 * 10184 ⋅
ML_PS (40) 207.28 ⋅ 7878
ML_RB (10) 274.17 ** 10296 *
ML_RB (40) 222.80 * 8006
ML_RR (10) 244.01 ** 9654 *
ML_RR (40) 213.81 ⋅ 8196
ML_RS (10) 232.67 * 9582 ⋅
ML_RS (40) 207.71 ⋅ 8137
ML_SB (10) 285.21 ** 10661 *
ML_SB (40) 283.02 ** 10491 *
ML_SR (10) 252.59 ** 9936 *
ML_SR (40) 258.68 ** 10120 *
ML_SS (10) 242.37 * 9921 ⋅
ML_SS (40) 274.73 ** 11251 *
RestartDFS 183.24 7854

See Figure 6.4 for boxplots of the baseline node selectors and the top 4 performingML node selector
for 𝑘 = 10 and 𝑘 = 40.

Figure 6.5 shows that the first solution quality and solving time of ML policies are all near each other
and dominated by RestartDFS and DFS. Note that in the plot the suffix (‘**’) is replaced by the value of
𝑘.

Table 6.5 and Figure 6.6 examine how the node pruner compares to the baselines, when the base-
lines have a set time limit. In this case, ML_PRF has the lowest harmonic mean between the average
solving time and average optimality gap of all ML policies. The ML policy has a higher average op-
timality gap than the baselines for this problem. We conducted a pair-wise t-test between the mean
optimality gap of our best ML policy and the mean optimality gap of each baseline. We can reject the
null hypothesis of equal means with p-value below 0.1 for all baselines, except BestEstimate (p-value:
0.33).

The initial optimality gap obtained by the solver before branch-and-bound is 0.999. This shows that
He6 policy prunes aggressively at the start, because the average optimality gap obtained by He6 is

6.2. Maximum independent set 27

Figure 6.4: Maximum independent set instances: optimality gap for each node selection strategy. Note log scale on y-axis.

similar to initial optimality gap. The other policies find significantly better solutions.

Figure 6.5: Average solving time against the average optimality gap of the first solution found at a leaf node on maximum
independent set instances.

Table 6.5: Maximum independent set: model (፤ ኾኺ) with on_both = PrioChild, on_leaf = RestartDFS and prune_on_both
= False against baselines, with equal time limits for each problem. The initial optimality gap obtained by the solver before
branch-and-bound is ኺ.ዃዃዃ. Pairwise t-tests against the ML policy: ‘***’ ፩ ጺ ኺ.ኺኺኻ, ‘**’ ፩ ጺ ኺ.ኺኻ, ‘*’ ፩ ጺ ኺ.ኺ, ‘⋅’ ፩ ጺ ኺ.ኻ.

Strategy Optimality gap

BestEstimate 0.0174
DFS 0.0134 *
He6 (both) 0.9930 *
He6 (prune only) 0.9902 *
ML_PRF 0.0211
RestartDFS 0.0134 *

28 6. Results

Figure 6.6: Maximum independent set instances: optimality gap for each node selection strategy with a short time limit. Note
log scale on y-axis.

6.3. Capacitated facility location
These instances consist of 150 binary variables, 22,500 continuous variables and 300 constraints,
forming a mixed-integer minimisation problem. We sampled 17,266 state-action pairs on the training
instances, 3,531 on the validation instances and 3,431 on the testing instances. The model achieves
a testing accuracy of 90.1%, with a baseline accuracy of 73.1%.

See Table 6.6 for the average solving time and explored nodes of various node selection strategies.
ML_RB achieves the lowest average solving time at 111.7 seconds and ML_SS the lowest average ex-
plored nodes at 1099. We conducted a pair-wise t-test between the mean solving time of BestEstimate
and the mean solving time of the other policies. We can not reject the null hypothesis of equal means
with p-value below 0.1 for any our ML policies (lowest observed p-value: 0.14).

We have also conducted a pair-wise t-test between the mean number of explored nodes of BestEs-
timate and the mean number of explored nodes of the other policies. We can not reject the null hypoth-
esis of equal means with p-value below 0.1 for any our ML policies (lowest observed p-value: 0.18).

Table 6.6: Capacitated facility location instances: average solving time and explored nodes for various node selection strategies.
Pair-wise t-tests: ‘***’ ፩ ጺ ኺ.ኺኺኻ, ‘**’ ፩ ጺ ኺ.ኺኻ, ‘*’ ፩ ጺ ኺ.ኺ, ‘⋅’ ፩ ጺ ኺ.ኻ compared to BestEstimate.

Strategy Solving time (s) Explored nodes

BestEstimate 122.79 1674
DFS 690.40 *** 17155 ***
He 1754.10 *** 5733 ***
He6 373.32 *** 6799 ***
ML_PB 114.41 1189
ML_PR 148.21 1740
ML_PS 118.36 1207
ML_RB 111.67 1163
ML_RR 147.85 1773
ML_RS 125.99 1344
ML_SB 111.69 1109
ML_SR 133.68 1462
ML_SS 115.39 1099
RestartDFS 444.36 *** 9977 ***

See Figure 6.7 for boxplots of the baseline node selectors and our ML node selectors. The box-
plots show that BestEstimate has smaller outliers, resulting in a lower average solving time, but not as
pronounced as with set cover.

6.3. Capacitated facility location 29

Figure 6.7: Capacitated facility location instances: optimality gap for each node selection strategy. Note log scale on y-axis.

Figure 6.8 shows the average solving time against the average optimality gap of the first solution
obtained by the baselines andML policies at a leaf node. We see here that the ML policies are clustered
and obtain a lower optimality gap than the baselines. Note thatRestartDFS andDFS have a very similar
optimality gap and solving time, so they are stacked on top of each other.

See Table 6.7 and Figure 6.9 for the optimality gap of the baselines using a time limit for each
instance. In this case, ML_SST has the lowest harmonic mean between the average solving time
and average optimality gap of all ML policies. ML_SST also achieves a significantly lower average
optimality gap than the baselines. We conducted a pair-wise t-test between the mean optimality gap
of our best ML policy and the mean optimality gap of each baseline. We can reject the null hypothesis
of equal means with p-value below 0.001 for all baselines.

The initial optimality gap obtained by the solver before branch-and-bound is 0.325. All policies find
a significantly better solution than the first found feasible solution.

Figure 6.8: Average solving time against the average optimality gap of the first solution found at a leaf node on capacitated
facility location instances.

30 6. Results

Table 6.7: Capacitated facility location: model with on_both = Second, on_leaf = Score and prune_on_both = True against
baselines, with equal time limits for each problem. The initial optimality gap obtained by the solver before branch-and-bound is
ኺ.ኽኼ. Pairwise t-tests against the ML policy: ‘***’ ፩ ጺ ኺ.ኺኺኻ, ‘**’ ፩ ጺ ኺ.ኺኻ, ‘*’ ፩ ጺ ኺ.ኺ, ‘⋅’ ፩ ጺ ኺ.ኻ.

Strategy Optimality gap

BestEstimate 0.0821 *
DFS 0.0619 *
He6 (both) 0.1516 *
He6 (prune only) 0.1503 *
ML_SST 0.0065
RestartDFS 0.0590 *

Figure 6.9: Capacitated facility location instances: optimality gap for each node selection strategy with a short time limit. Note
log scale on y-axis.

6.4. Combinatorial auctions
These instances consist of 1,200 variables and around 475 constraints forming a pure binary maximi-
sation problem. We sampled 13,554 state-action pairs on the training instances, 2,389 on the validation
instances and 2,170 on the testing instances. The model achieves a testing accuracy of 71.7%, with a
baseline accuracy of 57.0%.

See Table 6.8 for the average solving time and explored nodes of various node selection strategies.
BestEstimate achieves the lowest average solving time at 19.7 seconds. We conducted a pair-wise
t-test between the mean solving time of BestEstimate and the mean solving time of the other policies.
We can reject the null hypothesis of equal means with p-value below 0.05 for all our ML policies.

We have also conducted a pair-wise t-test between the mean number of explored nodes of BestEs-
timate and the mean number of explored nodes of the other policies. We can reject the null hypothesis
of equal means with p-value below 0.1 for ML_PS and ML_RS.

See Figure 6.10 for boxplots of the baseline node selectors and our ML node selectors. The boxplots
show that BestEstimate has significantly smaller outliers and a lower variance, resulting in a lower
average solving time.

Figure 6.11 shows the average solving time against the average optimality gap of the first solution
obtained by the baselines and ML policies at a leaf node. We see here that the ML policies are not as
clustered. The ML_P** strategy is the only strategy that delivers Pareto efficient result, having a both
a lower optimality gap and a lower solving time. Note that BestEstimate, RestartDFS and DFS have a
very similar optimality gap and solving time, so they are stacked on top of each other.

See Table 6.9 and Figure 6.12 for the optimality gap of the baselines using a time limit for each
instance. In this case, ML_PST has the lowest harmonic mean between the average solving time and
average optimality gap of all ML policies. ML_PST achieves a very similar optimality gap compared to
the baselines. We conducted a pair-wise t-test between the mean optimality gap of our best ML policy
and the mean optimality gap of each baseline. We can reject the null hypothesis of equal means with

6.5. Set cover: Hard instances 31

Table 6.8: Combinatorial auctions instances: average solving time and explored nodes for various node selection strategies.
Pair-wise t-tests: ‘***’ ፩ ጺ ኺ.ኺኺኻ, ‘**’ ፩ ጺ ኺ.ኺኻ, ‘*’ ፩ ጺ ኺ.ኺ, ‘⋅’ ፩ ጺ ኺ.ኻ compared to BestEstimate.

Strategy Solving time (s) Explored nodes

BestEstimate 19.68 3489
DFS 23.48 4490
He 40.11 *** 4519
He6 30.44 ** 6358 *
ML_PB 29.77 * 4288
ML_PR 29.82 ** 4419
ML_PS 32.51 ** 4811 ⋅
ML_RB 30.08 * 4494
ML_RR 30.89 ** 4715
ML_RS 32.68 ** 5190 ⋅
ML_SB 28.94 * 4187
ML_SR 29.83 ** 4458
ML_SS 30.52 ** 4567
RestartDFS 22.35 4299

Figure 6.10: Combinatorial auctions instances: optimality gap for each node selection strategy. Note log scale on y-axis.

p-value below 0.05 for BestEstimate and He6, but not DFS (p-value: 0.94) and RestartDFS (p-value:
0.98).

The initial optimality gap obtained by the solver before branch-and-bound is 0.914. All policies find
a significantly better solution than the first found feasible solution.

6.5. Set cover: Hard instances
To assess how the ML policies perform on hard instances, we use the same trained model of the ML
policies that were previously trained on the easier set cover instances. The size of these hard instances
are in terms of 4,000 variables and 2,000 constraints, while the easier set cover instances had 2,000
variables and 1,000 constraints. We evaluated 10 hard instances due to computational limitations, and
focused on BestEstimate as a baseline on the node selection policy.

For the node selection policies, we set the time limit to one hour per problem. Figure 6.13 shows
the number of solved instances per policy, and Figure 6.14 shows boxplots of the integrality gaps
(see Equation 2.4) for each policy. We use integrality gap here, because we do not know the optimal
objective value for all instances.

Table 6.10 shows the average solving time, explored nodes and integrality gap of various node
selection strategies. BestEstimate achieves the lowest average solving time at 2256.7 seconds and
integrality gap at 0.0481. ML_SB has the lowest number of explored nodes at 109298. We conducted

32 6. Results

Figure 6.11: Average solving time against the average optimality gap of the first solution found at a leaf node on combinatorial
auctions instances.

Table 6.9: Combinatorial auctions: model with on_both = PrioChild, on_leaf = Score and prune_on_both = True against base-
lines, with equal time limits for each problem. The initial optimality gap obtained by the solver before branch-and-bound is ኺ.ዃኻኾ.
Pairwise t-tests against the ML policy: ‘***’ ፩ ጺ ኺ.ኺኺኻ, ‘**’ ፩ ጺ ኺ.ኺኻ, ‘*’ ፩ ጺ ኺ.ኺ, ‘⋅’ ፩ ጺ ኺ.ኻ.

Strategy Optimality gap

BestEstimate 0.0174 *
DFS 0.0126
He6 (both) 0.4678 *
He6 (prune only) 0.2873 *
ML_PST 0.0127
RestartDFS 0.0126

a pair-wise t-test between the mean solving time of BestEstimate and the mean solving time of the
other policies. We can not reject the null hypothesis of equal means with p-value below 0.1 for all our
ML policies (lowest observed p-value: 0.64).

We have also conducted a pair-wise t-test between the mean number of explored nodes of BestEs-
timate and the mean number of explored nodes of the other policies. We can reject the null hypothesis
of equal means with p-value below 0.05 for ML_PB, ML_RB and ML_SB.

Lastly, we have conducted a pair-wise t-test between the mean integrality gap of BestEstimate and
the mean integrality gap of the other policies. We can reject the null hypothesis of equal means with
p-value below 0.1 for ML_RS and ML_SS.

For the pruning policies, Figure 6.15 shows the solving time plotted against the integrality gap of
the first solution obtained by the baselines and ML policies. As before, we see the same trend where
the ML policies find a lower gap at the cost of a higher solving time.

See Table 6.11 and Figure 6.16 for the integrality gap of the baselines using a time limit for each
instance. In this case, ML_PST has the lowest harmonic mean between the average solving time
and average integrality gap of all ML policies. ML_PST achieves a significantly lower integrality gap
compared to the baselines. We conducted a pair-wise t-test between the mean optimality gap of our
best ML policy and the mean optimality gap of each baseline. We can reject the null hypothesis of
equal means with p-value below 0.001 for all baselines.

In all instances, the solver could only obtain an integrality gap of infinity on the first feasible solution.

6.6. Discussion 33

Figure 6.12: Combinatorial auctions instances: optimality gap for each node selection strategy with a short time limit. Note log
scale on y-axis.

Table 6.10: Hard set cover instances: average solving time, explored nodes and integrality gap for various node selection
strategies. Pair-wise t-tests: ‘***’ ፩ ጺ ኺ.ኺኺኻ, ‘**’ ፩ ጺ ኺ.ኺኻ, ‘*’ ፩ ጺ ኺ.ኺ, ‘⋅’ ፩ ጺ ኺ.ኻ compared to BestEstimate.

Strategy Solving time (s) Explored nodes Integrality gap

BestEstimate 2256.69 161438 0.0481
ML_PB 2497.56 112869 * 0.0714
ML_PR 2531.32 150055 0.0763
ML_PS 2279.41 157367 0.1152
ML_RB 2441.60 111629 * 0.0683
ML_RR 2552.68 152871 0.0794
ML_RS 2352.93 153727 0.1289 ⋅
ML_SB 2427.25 109298 * 0.0706
ML_SR 2685.09 161825 0.0734
ML_SS 2381.28 163631 0.1278 ⋅

This means we can not compare the initial integrality gap to the found integrality gaps during branch
and bound.

6.6. Discussion
We examined three experiments, namely measuring the solving time for an exact solution, measuring
the solving time and optimality gap for the first solution found at a leaf node in the branch and bound
tree, and setting a low instance-specific time limit to measure what the optimality gap is.

For the first experiment, our method performed better than the baselines for capacitated facility lo-
cation problem, but worse on the three purely binary problems. The best ML policy is ML_RB, although
ML_SB has an almost equal solving time, while still exploring fewer nodes.

For the second experiment, the prioChildML policy (ML_P**) performed Pareto-equivalent on four of
the five problem sets, performing inferior to the baselines only on maximum independent set instances.

For the third experiment, we chose ML_SRF on set cover, ML_PRF on maximum independent set,
ML_SST on capacitated facility location, and ML_PST on combinatorial auctions and hard set cover
instances, in order to measure how well they do against the baselines. These policies were chosen
based on the (lowest) harmonic mean between the solving time and optimality gap as was conducted in
the second experiment. In four of the five problem sets, our policies had a statistically significant lower
optimality gap than the baselines, while on combinatorial auctions, ML_PST did not perform statistically
significantly worse than DFS and RestartDFS.

Overall we conclude that the on_both = Random configuration of the policy usually performs worse
than the other configurations. on_both ∈ {PrioChild, Second} both do well. The policies from both the
on_leaf ∈ {Score, RestartDFS} configurations perform better than those from the on_leaf = BestEs-

34 6. Results

Figure 6.13: Hard set cover instances: Number of solved instances for each node selection strategy. Total number of instances
is ten.

Figure 6.14: Hard set cover instances: integrality gap of each node selection strategy.

6.6. Discussion 35

Figure 6.15: Average solving time against the average integrality gap of the first solution found at a leaf node on hard set cover
instances.

Table 6.11: Set cover (hard): model with on_both = PrioChild, on_leaf = Score and prune_on_both = True against the baselines,
with equal time limits for each problem. Pairwise t-tests against the ML policy: ‘***’ ፩ ጺ ኺ.ኺኺኻ, ‘**’ ፩ ጺ ኺ.ኺኻ, ‘*’ ፩ ጺ ኺ.ኺ, ‘⋅’
፩ ጺ ኺ.ኻ.

Strategy Integrality gap

BestEstimate 1.3678 *
DFS 0.3462 *
He6 (both) 1.8315 *
He6 (prune only) 1.6835 *
ML_PST 0.2445
RestartDFS 0.3489 *

timate configuration. For both prune_on_both configurations, the policy performed well. Recall that
when prune_on_both is True, then the search is terminated after the first leaf, saving solving time but
resulting in a higher optimality gap. That both prune_on_both configurations lead to effective policies
means that it is up to the user to choose between a lower optimality gap and higher solving time or the
other way around.

Our method is effective when the ML model is able to meaningfully classify optimal child nodes
correctly. By contrast, in the case of the maximum independent set problem, the classification was
poor (base acc.: 0.895, test acc.: 0.899, gain: 0.004). Hence, when the predictive model adds value to
the prediction, there is potential for effective decision making using the policy; when it does not, inferior
performance can be expected.

Lastly, we note that the feature extraction was the biggest contributor to the overall solving time.
Applying the predictor had a rather small impact. This means that it is possible to achieve lower solving
times by incorporating the entire process in the original C code of SCIP, avoiding the overhead of the
Python interface.

36 6. Results

Figure 6.16: Hard set cover instances: Integrality gap of various approximation strategies. Note log scale on y-axis. ML_PST
outperforms the compared methods.

7
Conclusion

This thesis shows that approximate solving of mixed integer programs can be improved by a node
selection policy obtained with offline imitation learning. In contrast to previous work using imitation
learning, our policy is focused on learning to choose which of its children it should select. We apply the
policy within the popular open-source solver SCIP, in exact and approximate settings.

To answer our first research question, the empirical results on four MIP datasets indicate that our
node selector leads to solutions more quickly than the state-of-the-art in the literature [16], but not
as quickly as the state-of-practice SCIP node selector. While we do not beat the highly-optimised
SCIP baseline in terms of solving time on exact solutions, our approximation-based policies have a
consistently better optimality gap than all baselines if the accuracy of the predictive model adds value
to prediction; this addresses our third research question. Further, to address our second and fourth
research question, the results also indicate that our approximation method finds better solutions within
a given time limit than all baselines in four of the five problem classes examined, including the harder
set cover instances.

This thesis shows that learned policies can be Pareto-equivalent or superior to state-of-practice MIP
node selection heuristics: heuristics that have been honed by hand over many years. It adds to the
body of literature that demonstrates how machine learning can benefit generic constraint optimisation
problem solvers.

In MIP terminology, our learned policy constitutes a diving rule, focusing on finding a good integer
feasible solution. The performance on non-binary problem classes like capacitated facility location
is particularly noteworthy. This is because, unlike purely binary problems, for non-binary instances,
MIP primal heuristics struggle to obtain decent primal bounds [5]. By contrast, in general for binary
instances, the greater challenge is to close the dual bound, and our learned policy also performs well
here.

7.1. Discussion
For future work, more study could be undertaken for choosing the meta-parameter 𝑘. Values too low
add only few state-action pairs, which naturally degrades the predictive power of neural networks. On
the other hand, values too high add noise, as paths to bad solutions add state-action pairs that are not
useful.

Wementioned that during pre-processing certain features are removed that are constant throughout
the entire dataset. This has the consequence of a differing number of input units in the neural network
architecture for every problem. The bigger issue is that this work focused on training amachine learning
model for every problem. Future work could include a method to unify a machine learning model that
works for all problems. This would makeML-based node selection amore accessible feature for current
MIP solvers, like SCIP.

A limitation of this study is that we only performed experiments with the MIP solver SCIP. We chose
SCIP, because it is open-source and has a rich amount of documentation. However, another MIP solver
Gurobi (proprietary) is generally faster than SCIP and it would be interesting to see how the ML-based
node selection policy compares to Gurobi.

37

38 7. Conclusion

While PySCIPOpt makes it easy to implement and test node selectors, there is a performance
penalty associated to it. This interfacing overhead can play a significant role in the solving time. Im-
plementing our method directly in the C code of SCIP can reduce the solving time we obtained across
all experiments.

Our method on the maximum independent set problem did substantially worse than the other prob-
lems. We are not the first to experience trouble with this problem, since this problem was also the
worst performer for the brancher of Gasse et al. [13]. It might be interesting to study why this problem
is problematic for ML-based solutions.

Lastly, reinforcement learning, in contrast to imitation learning, is an interesting research direction
to create a node selection policy.

Bibliography
[1] Pieter Abbeel and Andrew Y. Ng. Apprenticeship learning via inverse reinforcement learning. In

Proc. of 21st International Conference on Machine Learning (ICML’04), 2004. doi: 10.1145/
1015330.1015430.

[2] Tobias Achterberg. Constraint integer programming. PhD thesis, Technische Universität Berlin,
2007.

[3] Tobias Achterberg and Timo Berthold. Hybrid branching. In Proc. of 6th International Conference
on Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization
Problems (CPAIOR’09), volume 5547 of Lecture Notes in Computer Science, pages 309–311.
Springer, 2009. doi: 10.1007/978-3-642-01929-6_23.

[4] Tobias Achterberg, Thorsten Koch, and Alexander Martin. Branching rules revisited. Operations
Research Letters, 33(1):42–54, 2005.

[5] Tobias Achterberg, Timo Berthold, Thorsten Koch, and Kati Wolter. Constraint integer program-
ming: A new approach to integrate cp and mip. In International Conference on Integration of
Artificial Intelligence (AI) and Operations Research (OR) Techniques in Constraint Programming,
pages 6–20. Springer, 2008.

[6] Claudine Biova Agbokou. Robust airline schedule planning: review and development of optimiza-
tion approaches. PhD thesis, Massachusetts Institute of Technology, 2004.

[7] Alejandro Marcos Alvarez, Quentin Louveaux, and Louis Wehenkel. A supervised machine learn-
ing approach to variable branching in branch-and-bound. In Proc. of 7th European Machine Learn-
ing and Data Mining Conference (ECML-PKDD’14), 2014.

[8] David Applegate, Robert Bixby, Vašek Chvátal, and William Cook. Finding cuts in the TSP (a
preliminary report). Technical Report 5, Center for Discrete Mathematics & Theoretical Computer
Science, 1995.

[9] Yoshua Bengio, Andrea Lodi, and Antoine Prouvost. Machine learning for combinatorial optimiza-
tion: A methodological tour d’horizon. CoRR, abs/1811.06128, 2018. URL http://arxiv.org/
abs/1811.06128.

[10] James Bergstra, Daniel Yamins, and David D. Cox. Making a science of model search: Hy-
perparameter optimization in hundreds of dimensions for vision architectures. In Proc. of 30th
International Conference on Machine Learning (ICML’13), pages 115–123, 2013.

[11] Michele Conforti, Gérard Cornuéjols, Giacomo Zambelli, et al. Integer programming, volume 271.
Springer, 2014.

[12] Maxime Gasse, Didier Chételat, Nicola Ferroni, Laurent Charlin, and Andrea Lodi. Exact combi-
natorial optimization with graph convolutional neural networks. In Proc. of 2019 Neural Information
Processing Systems (NeurIPS’19), pages 15554–15566, 2019.

[13] Maxime Gasse, Didier Chételat, Nicola Ferroni, Laurent Charlin, and Andrea Lodi. Exact combi-
natorial optimization with graph convolutional neural networks. arXiv preprint arXiv:1906.01629,
2019.

[14] Pierre Geurts, Damien Ernst, and Louis Wehenkel. Extremely randomized trees. Machine learn-
ing, 63(1):3–42, 2006.

39

http://arxiv.org/abs/1811.06128
http://arxiv.org/abs/1811.06128

40 Bibliography

[15] Ambros Gleixner, Michael Bastubbe, Leon Eifler, Tristan Gally, Gerald Gamrath, Robert Lion
Gottwald, Gregor Hendel, Christopher Hojny, Thorsten Koch, Marco E. Lübbecke, Stephen J.
Maher, Matthias Miltenberger, Benjamin Müller, Marc E. Pfetsch, Christian Puchert, Daniel Re-
hfeldt, Franziska Schlösser, Christoph Schubert, Felipe Serrano, Yuji Shinano, Jan Merlin Vier-
nickel, Matthias Walter, Fabian Wegscheider, Jonas T. Witt, and Jakob Witzig. The SCIP
Optimization Suite 6.0. Technical report, Optimization Online, 2018. URL http://www.
optimization-online.org/DB_HTML/2018/07/6692.html.

[16] He He, Hal Daumé III, and Jason Eisner. Learning to search in branch and bound algorithms.
In Proc. of 2014 Neural Information Processing Systems Conference (NeurIPS’14), pages 3293–
3301, 2014.

[17] Thorsten Joachims. Training linear SVMs in linear time. In Proc. of 12th International Con-
ference on Knowledge Discovery and Data Mining (KDD’06), pages 217–226, 2006. doi:
10.1145/1150402.1150429.

[18] Elias Boutros Khalil, Pierre Le Bodic, Le Song, George Nemhauser, and Bistra Dilkina. Learning
to branch in mixed integer programming. In Proc. of 30th AAAI Conference on Artificial Intelligence
(AAAI’16), pages 724–731, 2016.

[19] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Proc. of 3rd
International Conference on Learning Representations, (ICLR’15), 2015.

[20] A. H. Land and A. G. Doig. An automatic method of solving discrete programming problems.
Econometrica, 28(3):497–520, 1960.

[21] A. Lodi and G. Zarpellon. On learning and branching: a survey. TOP, 25:207––236, 2017. doi:
10.1007/s11750-017-0451-6.

[22] Michele Lombardi, Michela Milano, and Andrea Bartolini. Empirical decision model learning. Arti-
ficial Intelligence, 244:343–367, 2017.

[23] Mark Michael. Generalized Combinatorial Auction for Mixed Integer Linear Programming. PhD
thesis, University of Toronto, 2014.

[24] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Köpf, Ed-
ward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. PyTorch: An imperative style, high-performance deep
learning library. In Proc. of 2019 Neural Information Processing Systems (NeurIPS’19), pages
8024–8035, 2019.

[25] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driess-
che, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, and et al.
Mastering the game of Go with deep neural networks and tree search. Nature, 529(7587):484,
2016.

[26] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT Press,
Cambridge, MA, 2018.

[27] Vijay V Vazirani. Approximation algorithms. Springer Science & Business Media, 2013.

[28] Abraham Michiel Verweij. Selected applications of integer programming: A computational study.
PhD thesis, Utrecht University, 2000.

http://www.optimization-online.org/DB_HTML/2018/07/6692.html
http://www.optimization-online.org/DB_HTML/2018/07/6692.html

A
Appendix

41

LEARNING EFFICIENT SEARCH APPROXIMATION IN MIXED
INTEGER BRANCH AND BOUND

A PREPRINT

Kaan Yilmaz
Algorithmics group

Electrical Engineering, Mathematics and Computer Science
Delft University of Technology

The Netherlands
M.K.Yilmaz@student.tudelft.nl

Neil Yorke-Smith∗
Algorithmics group

Electrical Engineering, Mathematics and Computer Science
Delft University of Technology

The Netherlands
n.yorke-smith@tudelft.nl

9 July 2020

ABSTRACT

In line with the growing trend of using machine learning to improve solving of combinatorial
optimisation problems, one promising idea is to improve node selection within a mixed integer
programming branch-and-bound tree by using a learned policy. In contrast to previous work using
imitation learning, our policy is focused on learning which of a node’s children to select. We present
an offline method to learn such a policy in two settings: one that is approximate by committing
to pruning of nodes; one that is exact and backtracks from a leaf to use a different strategy. We
apply the policy within the popular open-source solver SCIP. Empirical results on four MIP datasets
indicate that our node selection policy leads to solutions more quickly than the state-of-the-art in the
literature, but not as quickly as the state-of-practice SCIP node selector. While we do not beat the
highly-optimised SCIP baseline in terms of solving time on exact solutions, our approximation-based
policies have a consistently better optimality gap than all baselines if the accuracy of the predictive
model adds value to prediction. Further, the results also indicate that, when a time limit is applied,
our approximation method finds better solutions than all baselines in the majority of problems tested.

Keywords mixed integer programming · node selection · machine learning · approximate pruning · imitation learning ·
SCIP

1 Introduction

Hard constrained optimisation problems (COPs) exist in many different applications. Examples include airline
scheduling [Bayliss et al., 2017] and CPU efficiency maximisation [Lombardi et al., 2017]. Perhaps the most common
paradigm for modelling and solving COPs is mixed integer linear programming (MILP, or simply MIP). State-of-the-art
MIP solvers perform sophisticated pre-solve mechanisms followed by branch-and-bound search with cuts and additional
heuristics [Gleixner et al., 2018].

∗Contact author

A PREPRINT - 9 JULY 2020

A growing trend is to use machine learning (ML) to improve COP solving. Bengio et al. [2018] survey the potential of
ML to assist MIP solvers. One promising idea is to improve node selection within a MIP branch-and-bound tree by
using a learned policy [He et al., 2014]. A policy is a function that maps states to actions, where in this work an action
is the next node to select. However, research in ML-based node selection is scarce, as the only available literature is the
work of He et al. [2014].

This paper contributes a novel approach to improve MIP node selection by using an offline learned policy. We obtain a
node selection and pruning policy with imitation learning, a type of supervised learning. In contrast to He et al. [2014],
our policy learns only to choose which of a node’s children it should select. This encourages finding solutions quickly,
as opposed to learning a breadth-first search-like method. Further, we generalise the expert demonstration process by
sampling paths that lead to the best k solutions, instead of only the top single solution. The motivation for this is to
obtain different state-action pairs that lead to good solutions compared to only using the top solution, in order to aid
learning within a deep learning context.

We study two settings: the first is approximate by committing to pruning of nodes. In this way, the solver might find
good or optimal solutions more quickly, however with the possibility of overlooking optimal solutions. The second
setting is exact: when reaching a leaf the solver backtracks up the branch-and-bound tree to use a different strategy.

We apply the learned policy within the popular open-source solver SCIP [Gleixner et al., 2018]. The results indicate that
our node selector finds (optimal) solutions more quickly than He et al. [2014], but not as quickly as the current default
SCIP node selector, called BestEstimate. However, the results also indicate that our approximation method finds better
initial solutions than BestEstimate, albeit in a higher solving time. Overall, our approximation-based policies have a
consistently better optimality gap than all baselines if the accuracy of the predictive model adds value to prediction.
Further, when a time limit is applied, our approximate method finds better solutions than all the baselines in three of the
five problem classes tested and for one problem class not statistically significantly worse than the baseline.

The outline of this preprint paper is as follows: Section 2 contains preliminaries, Section 3 specifies the imitation
learning approach to node selection and pruning, Section 4 reports the results on benchmark MIP instances, Section 5
reviews related work, and Section 6 concludes with future directions.

2 Background

2.1 Imitation learning

Reinforcement learning is designed to learn an approximately optimal policy: a function that maps states to actions,
such that the accumulated reward is maximised [Sutton and Barto, 2018]. A problem that can arise in trying to find
a policy using reinforcement learning is that the reward function is unknown. In some cases an expert or oracle can
provide demonstrations. The demonstrations show what action the expert has taken in a specific state. In this case, a
policy can be learned by using inverse reinforcement learning. This is called imitation learning [Abbeel and Ng, 2004]
or apprenticeship learning. Here, supervised learning is used with the features being the states of the demonstrations
and the labels being the action the expert took.

2.2 Mixed integer programming

Mixed integer programming (MIP) is a familiar approach to constraint optimisation problems. A mixed integer program
requires one or more variables to decide on, a set of linear constraints that need to be met, and a linear objective function,
which produces an objective value without loss of generality to be minimised. Thus we have:

min y := cTx
s.t. Ax ≥ b

x ∈ Zk × Rn−k, k > 0

(1)

where y is the objective value and x is the vector of decision variables to decide on. In a MIP, at least one variable
has integer domain; if all variables have continuous domains then the problem is a linear program (LP). A is an m x n
constraint matrix with m constraints and n variables; c is a n x 1 vector.

Since general MIP problems cannot be solved in polynomial time, a helpful idea is to relax the integer constraints to
allow all variables to take real values: an LP relaxation of the problem (1). A series of LP relaxation can be leveraged
in the MIP solving process. For minimisation problems, the solution of the relaxation provides a lower bound on the
original MIP problem.

2

A PREPRINT - 9 JULY 2020

Equation 1 is also referred to as the primal problem. The primal bound is the objective value of a solution that is
feasible, but not necessarily optimal. This is referred to as a ‘pessimistic’ bound. The dual bound is the objective value
of the solution of an LP relaxation, which is not necessarily feasible. This is referred to as an ‘optimistic’ bound. The
integrality gap is defined as:

IG =

{
|BP−BD|

min(|BP |,|BD|)| , if sign(BP) = sign(BD)

∞, otherwise
(2)

where BP is the primal bound, BD is the dual bound, and sign(·) returns the sign of its argument. The integrality gap is
monotonically reduced during the solving process. The solving process combines inference, notably in the form of
inferred constraints (cuts), and search, usually in a branch-and-bound framework.

2.3 Branch and bound

Branch and bound [Land and Doig, 1960] is the most common constructive search approach to solving MIP problems.
In this method, the state space of possible solutions is explored with a growing tree. The root node consists of all
solutions. At every node, an unassigned integer variable is chosen to branch on. Every node has two children: candidate
solutions for the lower and upper bound respectively of the chosen variable.

The main steps of a standard MIP branch-and-bound algorithm are shown in Algorithm 1.

Defining a comparator for the node priority queue PQ is handled by the node selector (used in PQ.poll() and PQ.add()
in Algorithm 1). We explain further below.

Choosing on which variable to branch (variableSelection() in Algorithm 1) is not trivial and affects the time to find
solutions and prove optimality. Different approaches to this variable selection are discussed in Section 5. For example,
in the SCIP solver2, the default variable selection heuristics (the ‘brancher’) is: reliability branching on pseudo-cost
values. The brancher can inform the node selector which child it prefers; it is up to the node selector, however, to
choose the child. The child preferred by the brancher, if any, is called the priority child. As described in Section 3, the
prioChild property is used as a feature in our work.

In more detail, the left child priority value is calculated by SCIP as:

PL = IL(Vr − V + 1) (3)

and the right child priority value as:
PR = IR(V − Vr + 1) (4)

where IL (respectively IR) is the average number of inferences at the left child (right child), Vr is the value of the
relaxation of the branched variable at the root node and V is the value of the relaxation of the branched variable at
the current node. An inference is defined as a deduction of another variable after tightening the bound on a branched
variable [Achterberg, 2007]. If PL > PR, then the left child is prioritised over the right child, if PL < PR, then the
right child is prioritised. If they are equal, then none are prioritised. Note that while this rule for priority does not
necessarily hold for all branchers in general, it does hold for the standard SCIP brancher.

2.4 Node selection and pruning

In MIP solvers such as SCIP, a node (and its entire sub-tree) is pruned when the solution of the relaxation is worse
than the current primal bound (line 7 and 15 in Algorithm 1). However, we can further leverage node pruning to create
an approximation algorithm. The goal is then to prune nodes that lead to bad solutions. Correctly pruning sub-trees
that do not contain an optimal solution is analogous to taking the shortest path to an optimal solution, which obviously
minimises the solving time. It is generally preferred to find feasible solutions quickly, as this enables the node pruner to
prune more sub-trees (due to bounding), with the effect of decreasing the search space. However, we must be aware that
there is no guarantee that the optimal solution is not pruned.

Deciding which node is prioritised over another node to explore is defined by the node selector. As is the case for
branching, different heuristics exist for node selection. Among these are depth-first search (DFS), breadth-first search
(BFS), RestartDFS (restarting DFS at the root after a fixed amount of newly-explored nodes) and BestEstimate. The
latter is the default node selector in the SCIP solver from version 6. It uses an estimate of the objective function at a
node to select the next node and it prefers going deep into the search tree.3

2scip.zib.de
3BestEstimate is detailed at www.scipopt.org/doc/html/nodesel__estimate_8c_source.php.

3

A PREPRINT - 9 JULY 2020

Algorithm 1: Algorithm to solve a minimisation MIP problem using branch and bound.
input :Root R, which is a node representing the original problem
output :Optimal solution if one exists

1 R.dualBound←−∞ // Initialise dual bound
2 PQ← {R} // Node priority queue
3 BP ←∞ // Primal bound
4 S∗ ← null // Optimal solution

5 while PQ is not empty do
6 N ← PQ.poll();
7 if N .dualBound ≥ PB then

// Parent of N had a relaxed solution worse than current best integer feasible
solution, skip solving relaxation and prune

8 continue
9 end

10 Sr ← solveRelaxation(N);
11 if Sr is not feasible then

// Infeasible relaxation can not lead to a feasible solution for the original
problem

12 continue;
13 end
14 Or ← Sr.objectiveValue;

15 if Or > BP then
// This subtree cannot contain any solution better than the current best

(pruning)
16 continue;
17 end
18 if Sr is integer feasible then
19 BP ← Or;
20 S∗ ← Sr;

// Found incumbent solution no worse than current best
21 continue;
22 end
23 V ← variableSelection(Sr);
24 a← floor(V .value);
25 L← copyAndAddConstraint(N , V ≤ a);
26 R← copyAndAddConstraint(N , V ≥ a +1);
27 L.dualBound← Or;
28 R.dualBound← Or;
29 PQ.add(L);
30 PQ.add(R);
31 end
32 return S∗;

4

A PREPRINT - 9 JULY 2020

Figure 1: Operations within a hidden layer of the network.

Summarising the node selection heuristics, they can be grouped into two general strategies [Achterberg et al., 2008].
The first strategy is choosing the node with the best lower bound in order to increase the global dual bound. The second
strategy is diving into the tree to search for feasible solutions and decrease the primal bound. The second has the
advantage to prune more nodes and decrease the search space. In this paper we use the second strategy to develop a
novel heuristic using machine learning, leveraging local variable, local node and global tree features, in order to predict
as far as possible the best possible child to be selected.

3 Approach

Recall that our goal is to obtain an approximate MIP node selection policy using machine learning, and to use it in a
MIP solver. The policy should lead to promising solutions more quickly in the branch-and-bound tree, while pruning as
few good solutions as possible.

Our approach is to obtain a node selector by imitation learning. A policy maps a state st to an action at. In our case st
consists of features gathered within the branch-and-bound process. The features consist of branched variable features,
node features and global features. The branched variable features are derived from Gasse et al. [2019]. See Table 1 for
the list of features. Note that we define a separate left node lower bound and right node lower bound, instead of a
general node lower bound, because during experimentation, we obtained two different lower bounds among the child
nodes. We constrain the action space for at to only select one child node or both. This leads to the restricted action
space {L,R,B}, where L is the left child, R is the right child and B are both children.

In order to train a policy by imitation learning, we require training data from the expert. Our sampling process of
state-action pairs is similar to the prior work of He et al. [2014], with two major differences. The first is that our policy
learns only to choose which of a node’s children it should select. This encourages finding solutions quickly, as opposed
to learning a breadth-first search-like method. The second difference is that we generalise the node selection process
by sampling paths that lead to the best k solutions, instead of only the top solution. The reason for this is to obtain
different state-action pairs that lead to good solutions compared to only using the top solution, in order to aid learning
within a deep learning context.

He et al. [2014] check whether the current node is in the path to the best solution. In our work, we check whether the
left and right children of the current node are in a path that leads to the best k solutions. If that is the case, then we
associate the label of the current node as ‘B’; if not, we check the left child or right child and associate the appropriate
label (‘L’ or ‘R’ respectively). If neither are in such a path, then the node is not sampled.

Pre-processing of the dataset is done by removing features that do not change and standardising every non-categorical
feature. We then feed it to the imitation learning component, described next.

Our machine learning model is a standard fully-connected multi-layer perceptron (MLP) with H hidden layers, U
hidden units per layer, ReLU activation layers and Batch Normalisation layers after each activation layer, following a
Dropout layer with dropout rate pd. See Figure 1 for an overview of the operations within a hidden layer.

We obtain the model architecture parameters and learning rate ρ using the hyperparameter optimisation algorithm
hyperopt4 [Bergstra et al., 2013]. Since during pre-processing features that have constant values are removed, the
number of input units can change across different problems. For example, in a fully binary problem, the features
left node branch bound and right node branch bound are constants (0 and 1 respectively), while for a general mixed-
integer problem this is not the case. The number of output units is three. The cross-entropy loss is optimised during
training with the Adam algorithm [Kingma and Ba, 2015].

During policy evaluation, the action B (‘both’) can result in different operations. See Table 2 for an overview. We
define PrioChild, Second and Random as possible operations. PrioChild selects the priority child as indicated by the
variable selection heuristic (i.e., the brancher); Second selects the next best scoring action from the ML policy; Random

4github.com/hyperopt/hyperopt

5

A PREPRINT - 9 JULY 2020

Table 1: Features that define a state. Variable features from Gasse et al. [2019]
Category Feature Description

Variable features

type Type (binary, integer, impl. integer, continuous) as a one-hot encoding.

coef Objective coefficient, normalized.

has lb Lower bound indicator.

has ub Upper bound indicator.

sol is at lb Solution value equals lower bound.

sol is at ub Solution value equals upper bound.

sol frac Solution value fractionality

basis status Simplex basis status (lower, basic, upper, zero) as a one-hot encoding.

reduced cost Reduced cost, normalized.

age LP age, normalized.

sol val Solution value.

inc val Value in incumbent.

avg inc val Average value in incumbents.

Node features

left node lb Lower (dual) bound of left subtree.

left node estimate Estimate solution value of left subtree.

left node branch bound Branch bound of left subtree.

left node is prio Branch rule priority indication of left subtree.

right node lb Lower (dual) bound of right subtree.

right node estimate Estimate solution value of right subtree.

right node branch bound Branch bound of right subtree.

right node is prio Branch rule priority indication of right subtree.

Global features

global upper bound Best feasible solution value found so far.

global lower bound Best relaxed solution value found so far.

integrality gap Current integrality gap.

gap is infinite Gap is infinite indicator.

depth Current depth.

n strongbranch lp iterations Total number of simplex iterations used so far in strong branching.

n node lp iterations Total number of simplex iterations used so far for node relaxations.

max depth Current maximum depth.

6

A PREPRINT - 9 JULY 2020

selects a random child. Additionally, when the solver is at a leaf and there is no child to select, then we define three
more operations. These are RestartDFS, BestEstimate and Score. The first two are baseline node selectors from SCIP
[Gleixner et al., 2018]; Score selects the node which obtained the highest score so far as calculated by our node selection
policy.

Obtaining the node pruning policy is similar to obtaining the node selection policy. The difference is that the node
pruning policy also prunes the child that is ultimately not selected by the node selection policy. If prune on both =
True, then this results in diving only once and then terminating the search. Otherwise, the nodes initially not selected
after the action B are still explored. The resulting solving process is thus approximate, since we cannot guarantee that
the optimal solution is not pruned.

To summarise, we use our learned policy in two ways: the first is approximate by committing to pruning of nodes,
whereas the second is exact: when reaching a leaf, we backtrack up the branch-and-bound tree to use a different
strategy.

4 Results and Discussion

The following standard NP-hard problem instances were tested: set cover, maximum independent set, capacitated
facility location and combinatorial auctions. These problems are derived from the generator provided by Gasse et al.
[2019]. The instances are different from each other in terms of constraints structure, existence of continuous variables,
existence of non-binary integer variables, and direction of optimisation.

For the MIP branch-and-bound framework we use SCIP version 6.0.2.5 As noted earlier, SCIP is an open source MIP
solver, allowing us access to its search process. Further, SCIP is regarded as the most sophisticated and fastest such
MIP solver. The machine learning model is implemented in PyTorch6 [Paszke et al., 2019], and interfaces with SCIP’s
C code via PySCIPOpt 2.1.6.

For every problem, we show the learning results, i.e., how well the policy is learned, and the MIP benchmarking results,
i.e., how well the MIP solver does with the learned policy. We compare the policy evaluation results with various
node selectors in SCIP, namely BestEstimate (the SCIP default), RestartDFS and DFS. Additionally, we compare our
results with the node selector and pruner from He et al. [2014], with both the original SCIP 3.0 implementation by those
authors (He) and with the a re-implementation in SCIP 6 developed by us (He6). He et al. [2014] has three policies:
selection only (S), pruning only (P) and both (B). For exact solutions, we only use (S). For the first solution found at a
leaf, we use (S) and (B). For the experiments with a time limit, we use (P) and (B).

We train on 200 training instances, 35 validation instances and 35 testing instances across all problems. These provide
sufficient state-action pairs to power the machine learning model. The number of obtained samples (state-action pairs)
differs per problem. For every problem, we use the k = 10 best solutions to gather the state-action pairs. Additionally,
we use a batch size of 1024, dynamically lower the learning rate after 30 epochs and terminate training after another
30 epochs if no improvement was found. During training, the validation loss is optimised. The maximum number of
epochs is 200.

We evaluate a number of different settings for our node selection and pruning policy, as seen in Table 2. This leads to
nine different configurations for the node selection policy and twelve different configurations for the node pruning policy.
Note that for the node pruning policy, when prune on both is true, then optimisation terminates when a leaf is found; thus
the parameter value for on leaf does not matter. We refer to our policies as ML {on both}{on leaf}{prune on both}.
For example, ML PB denotes the node pruning policy that uses PrioChild for on both and BestEstimate for on leaf.

In more detail, we report three different kinds of experiments:

1. We evaluate the policy on every problem by checking the average solving time of each node selector.

2. We check the solution quality in terms of the optimality gap and the solving time of the first solution found at
a leaf node. Note that it is possible an infeasible leaf node is found, in that case, a solution is returned that was
found prior to the branch-and-bound process, through heuristics inbuilt in SCIP.

3. We select one ML policy, based on the (lowest) harmonic mean between the solving time and optimality gap.
For each instance, we run the solver on each baseline with a time limit equal to the solving time of the selected
ML policy and present the obtained optimality gaps. We also show the initial optimality gap obtained by the
solver before branch-and-bound is applied, i.e., from the solver’s pre-solve prior to search.

5Note that SCIP version 7, released after we commenced this work, does not bring any major improvements to its MIP solving.
6www.pytorch.org

7

A PREPRINT - 9 JULY 2020

Table 2: Parameter settings for our node selection and
pruning policy.

Parameter Domain
on both {PrioChild, Second, Random}
on leaf {RestartDFS, BestEstimate, Score}
prune on both {True, False}

Table 3: Machine learning parameters and prediction results for
every problem. The baseline accuracy is predicting everything
as the majority class.

Problem Base acc Test acc H U pd ρ

Set cover 0.575 0.764 1 49 0.445 0.253

Max ind set (10) 0.923 0.922 1 25 0.266 0.003
Max ind set (40) 0.895 0.899 1 42 0.291 0.003

Capacitated
facility location 0.731 0.901 3 20 0.247 0.008

Combinatorial
auctions 0.570 0.717 1 9 0.169 0.002

For each experiment, we apply the policies on two different difficulty levels:

1. Easy instances, which can be solved within 15 minutes.
2. Hard instances, where we set a solving time limit to one hour. Here, for all three experiments we substitute

the optimality gap for the integrality gap, because the optimal solution is not known for every hard instance.
Additionally, for the first experiment, instead of checking the solving time, we check the integrality gap.

Table 3 provides an overview of the machine learning parameters and results. The baseline accuracy (column 2) is what
the accuracy would have been if each sample is classified as the majority class. The test accuracy (column 3) is the
classification accuracy on the test dataset. Note that k = 40 is included in the maximum independent set instances, see
Section 4.2 for an explanation. The best performing ML model is the model with the settings that achieve the lowest
validation loss.

The experiments are run on a machine with an Intel i7 8770K CPU at 3.7–4.7 GHz, NVIDIA RTX 2080 Ti GPU and
32GB RAM. For the hard instances, the default SCIP solver settings are used. For the other instances, pre-solving and
primal heuristics are turned off, to better capture the effect of the node selection policy. We use the shifted geometric
mean (shift = 1) as the average across all metrics. This is a standard practice for MIP benchmarks.7

4.1 Set cover

These instances consist of 2,000 variables and 1,000 constraints forming a pure binary minimisation problem. We
sampled 17,254 state-action pairs on the training instances, 2,991 on the validation instances and 3,218 on the test
instances. The model achieves a testing accuracy of 76.4%, with a baseline accuracy of 57.5%.

See Table 4 for the average solving time and explored nodes of various node selection strategies. BestEstimate achieves
the lowest average solving time at 26.4 seconds; ML RB comes next at 35.7 seconds. We conducted a pair-wise t-test
between the mean solving time of BestEstimate and the mean solving time of the other policies. We can only reject the
null hypothesis of equal means with p-value below 0.1 for ML RR (p-value: 0.08). For the rest of our ML policies, we
can not reject the null hypothesis of equal means. We have also conducted a pair-wise t-test between the mean number
of explored nodes of BestEstimate and the mean number of explored nodes of the other policies. Again, we can not
reject the null hypothesis of equal means with p-value below 0.05 for any of our ML policies (lowest observed p-value:
0.34). Recall that the values in the tables are the shifted geometric means, while the t-tests by their nature compares
(arithmetic) means. The difference between the solving time of BestEstimate and any ML policy here is not statistically
significant due to outliers.

Figure 2 shows the average solving time against the average optimality gap of the first solution obtained by the baselines
and ML policies at a leaf node. Note that the only parameter that is influential for the ML solver is the first parameter,
namely on both. The second parameter on leaf and the third parameter prune on both do not influence the solving
time or quality of the first solution as the search terminates at the first found leaf that is found. The policy of He et al.
[2014] is not included here, due to its outliers. We see here that our ML policy obtains a lower optimality gap at the
price of a higher solving time for the first solution.

See Table 5 for the mean optimality gap of the baselines using a time limit for each instance. The time limit for each
instance is based on the solving time of the ML policy that achieved the lowest harmonic mean between the average

7See, e.g., plato.asu.edu/bench.html

8

A PREPRINT - 9 JULY 2020

Table 4: Set cover instances: average solving time and explored nodes for various node selection strategies. Pair-wise
t-tests: ‘***’ p < 0.001, ‘**’ p < 0.01, ‘*’ p < 0.05, ‘·’ p < 0.1 compared to BestEstimate.

Strategy Solving time (s) Explored nodes

BestEstimate 26.39 4291
DFS 47.10 * 9018 *
He 499.00 *** 47116 ***
He6 85.73 ** 18386 **
ML PB 36.82 4573
ML PR 38.82 5241
ML PS 39.73 5295
ML RB 35.68 4663
ML RR 40.09 · 5666
ML RS 37.13 4799
ML SB 35.90 4408
ML SR 36.64 4776
ML SS 37.61 4923
RestartDFS 45.30 * 8420 *

Figure 2: Average solving time against the average optimality gap of
the first solution found at a leaf node on set cover instances

Table 5: Set cover: model with on both = Second, on leaf = RestartDFS
and prune on both = False against baselines, with equal time limits for
each problem. The initial optimality gap obtained by the solver before
branch-and-bound is 2.746. Pairwise t-tests against the ML policy: ‘***’
p < 0.001, ‘**’ p < 0.01, ‘*’ p < 0.05, ‘·’ p < 0.1.

Strategy Optimality gap

BestEstimate 0.1767 **
DFS 0.0718 ***
He6 (prune only) 0.7988 ***
He6 (both) 1.1040 ***
ML SRF 0.0278
RestartDFS 0.0741 ***

9

A PREPRINT - 9 JULY 2020

Table 6: Maximum independent set instances: average solving time and explored nodes for various node selection
strategies. Pair-wise t-tests: ‘***’ p < 0.001, ‘**’ p < 0.01, ‘*’ p < 0.05, ‘·’ p < 0.1 compared to BestEstimate.

Strategy Solving time (s) Explored nodes

BestEstimate 158.42 6344
DFS 155.27 6340
He 394.56 ** 30965 **
He6 204.68 7992
ML PB (10) 260.34 ** 10029 *
ML PB (40) 227.45 * 8100
ML PR (10) 255.49 ** 10191 *
ML PR (40) 222.59 * 8581
ML PS (10) 245.92 * 10184 ·
ML PS (40) 207.28 · 7878
ML RB (10) 274.17 ** 10296 *
ML RB (40) 222.80 * 8006
ML RR (10) 244.01 ** 9654 *
ML RR (40) 213.81 · 8196
ML RS (10) 232.67 * 9582 ·
ML RS (40) 207.71 · 8137
ML SB (10) 285.21 ** 10661 *
ML SB (40) 283.02 ** 10491 *
ML SR (10) 252.59 ** 9936 *
ML SR (40) 258.68 ** 10120 *
ML SS (10) 242.37 * 9921 ·
ML SS (40) 274.73 ** 11251 *
RestartDFS 183.24 7854

solving time and average optimality gap across all instances. In this case, ML SRF has the lowest harmonic mean and
also achieves the lowest average optimality gap. We conducted a pairwise t-test between the mean optimality gap of our
best ML policy and the mean optimality gap of each baseline. We can reject the null hypothesis of equal means with
p-value below 0.005 for all baselines.

The initial optimality gap obtained by the solver before branch-and-bound is 2.746. This shows that applying branch-
and-bound to find a solution has a significant difference.

4.2 Maximum independent set

These instances consist of 1,000 variables and around 4,000 constraints forming a pure binary maximisation problem.
For this particular problem, we noticed that for k = 10, the class imbalance was significant. To combat this, we
increased the value k to 40. For k = 10, we sampled 29,801 state-action pairs on the training instances, 5,820 on the
validation instances and 4,639 on the testing instances. The class distribution is: (Left: 92%, Right: 4%, Both: 4%). For
k = 40, we sampled 82,986 state-action pairs on the training instances, 14,460 on the validation instances and 14,273
on the testing instances. The class distribution is: (Left: 89%, Right: 4%, Both: 7%).

Both the k = 10 and k = 40 models achieve a testing accuracy that is very close to the baseline accuracy, which results
in a model that is not able to generalise. See Table 6 for the average solving time and explored nodes of various node
selection strategies. We conducted a pair-wise t-test between the mean solving time of BestEstimate and the mean
solving time of the other policies. We can reject the null hypothesis of equal means with p-value below 0.1 for all our
ML policies. We have also conducted a pair-wise t-test between the mean number of explored nodes of BestEstimate
and the mean number of explored nodes of the other policies. We can reject the null hypothesis of equal means with
p-value below 0.1 for 12 of 18 of our ML policies.

For both k = 10 and k = 40, DFS achieved the lowest average solving time on node selection at 155.3 seconds, while
the k = 10 ML RS model achieved 232.7 seconds and the k = 40 ML PS model an average solving time of 207.3
seconds.

Figure 3 shows that the first solution quality and solving time of ML policies are all near each other and dominated by
RestartDFS and DFS. Note that in the plot the suffix (‘**’) is replaced by the value of k. Table 7 examines how the
node pruner compares to the baselines, when the baselines have a set time limit. In this case, ML PRF has the lowest

10

A PREPRINT - 9 JULY 2020

Figure 3: Average solving time against the average optimality gap of
the first solution found at a leaf node on maximum independent set
instances.

Table 7: Maximum independent set: model (k = 40) with on both =
PrioChild, on leaf = RestartDFS and prune on both = False against
baselines, with equal time limits for each problem. The initial optimality
gap obtained by the solver before branch-and-bound is 0.999. Pairwise
t-tests against the ML policy: ‘***’ p < 0.001, ‘**’ p < 0.01, ‘*’
p < 0.05, ‘·’ p < 0.1.

Strategy Optimality gap

BestEstimate 0.0174
DFS 0.0134 *
He6 (both) 0.9930 ***
He6 (prune only) 0.9902 ***
ML PRF 0.0211
RestartDFS 0.0134 *

harmonic mean between the average solving time and average optimality gap of all ML policies. The ML policy has a
higher average optimality gap than the baselines for this problem. We conducted a pairwise t-test between the mean
optimality gap of our best ML policy and the mean optimality gap of each baseline. We can reject the null hypothesis of
equal means with p-value below 0.05 for all baselines, except BestEstimate (p-value: 0.334). The initial optimality
gap obtained by the solver before branch-and-bound is 0.999. This shows that He6 policy prunes aggressively at the
start, because the average optimality gap obtained by He6 is similar to initial optimality gap. The other policies find
significantly better solutions.

4.3 Capacitated facility location

These instances consist of 150 binary variables, 22,500 continuous variables and 300 constraints, forming a mixed-
integer minimisation problem. We sampled 17,266 state-action pairs on the training instances, 3,531 on the validation
instances and 3,431 on the testing instances. The model achieves a testing accuracy of 90.1%, with a baseline of 73.1%.

See Table 8 for the average solving time and explored nodes of various node selection strategies. ML RB achieves the
lowest average solving time at 111.7 seconds and ML SS the lowest average explored nodes at 1099. We conducted a
pair-wise t-test between the mean solving time of BestEstimate and the mean solving time of the other policies. We can
not reject the null hypothesis of equal means with p-value below 0.1 for any our ML policies (lowest observed p-value:
0.14). We have also conducted a pair-wise t-test between the mean number of explored nodes of BestEstimate and the
mean number of explored nodes of the other policies. We can not reject the null hypothesis of equal means with p-value
below 0.1 for any our ML policies (lowest observed p-value: 0.18).

11

A PREPRINT - 9 JULY 2020

Table 8: Capacitated facility location instances: average solving time and explored nodes for various node selection
strategies. Pair-wise t-tests: ‘***’ p < 0.001, ‘**’ p < 0.01, ‘*’ p < 0.05, ‘·’ p < 0.1 compared to BestEstimate.

Strategy Solving time (s) Explored nodes

BestEstimate 122.79 1674
DFS 690.40 *** 17155 ***
He 1754.10 *** 5733 ***
He6 373.32 *** 6799 ***
ML PB 114.41 1189
ML PR 148.21 1740
ML PS 118.36 1207
ML RB 111.67 1163
ML RR 147.85 1773
ML RS 125.99 1344
ML SB 111.69 1109
ML SR 133.68 1462
ML SS 115.39 1099
RestartDFS 444.36 *** 9977 ***

Figure 4 shows the average solving time against the average optimality gap of the first solution obtained by the baselines
and ML policies at a leaf node. We see here that the ML policies are clustered and obtain a lower optimality gap than
the baselines. Note that RestartDFS and DFS have a very similar optimality gap and solving time, so they are stacked
on top of each other. See Table 9 for the optimality gap of the baselines using a time limit for each instance. In this case,
ML SST has the lowest harmonic mean between the average solving time and average optimality gap of all ML policies.
ML SST also achieves a significantly lower average optimality gap than the baselines. We conducted a pairwise t-test
between the mean optimality gap of our best ML policy and the mean optimality gap of each baseline. We can reject
the null hypothesis of equal means with p-value below 0.001 for all baselines. The initial optimality gap obtained by the
solver before branch-and-bound is 0.325. All policies find a significantly better solution than the first found feasible
solution.

4.4 Combinatorial auctions

These instances consist of 1,200 variables and around 475 constraints forming a pure binary maximisation problem. We
sampled 13,554 state-action pairs on the training instances, 2,389 on the validation instances and 2,170 on the testing
instances. The model achieves a testing accuracy of 71.7%, with a baseline of 57.0%.

See Table 10 for the average solving time and explored nodes of various node selection strategies. BestEstimate achieves
the lowest average solving time at 19.7 seconds. We conducted a pair-wise t-test between the mean solving time of
BestEstimate and the mean solving time of the other policies. We can reject the null hypothesis of equal means with
p-value below 0.05 for all our ML policies. We have also conducted a pair-wise t-test between the mean number of
explored nodes of BestEstimate and the mean number of explored nodes of the other policies. We can reject the null
hypothesis of equal means with p-value below 0.1 for ML PS and ML RS.

Figure 5 shows the average solving time against the average optimality gap of the first solution obtained by the baselines
and ML policies at a leaf node. We see here that the ML policies are not as clustered. The ML P** strategy is the
only strategy that delivers Pareto efficient result, having a both a lower optimality gap and a lower solving time. Note
that BestEstimate, RestartDFS and DFS have a very similar optimality gap and solving time, so they are stacked on
top of each other. See Table 11 for the optimality gap of the baselines using a time limit for each instance. In this
case, ML PST has the lowest harmonic mean between the average solving time and average optimality gap of all ML
policies. ML PST achieves a very similar optimality gap compared to the baselines. We conducted a pairwise t-test
between the mean optimality gap of our best ML policy and the mean optimality gap of each baseline. We can reject
the null hypothesis of equal means with p-value below 0.05 for BestEstimate and He6, but not DFS (p-value: 0.94) and
RestartDFS (p-value: 0.98). The initial optimality gap obtained by the solver before branch-and-bound is 0.914. All
policies find a significantly better solution than the first found feasible solution.

4.5 Set cover: Hard instances

To assess how the ML policies perform on hard instances, we use the same trained model of the ML policies that were
previously trained on the easier set cover instances. The size of these hard instances are in terms of 4,000 variables and

12

A PREPRINT - 9 JULY 2020

Figure 4: Average solving time against the average optimality gap of
the first solution found at a leaf node on capacitated facility location
instances.

Table 9: Capacitated facility location: model with on both = Second,
on leaf = Score and prune on both = True against baselines, with equal
time limits for each problem. The initial optimality gap obtained by the
solver before branch-and-bound is 0.325. Pairwise t-tests against the
ML policy: ‘***’ p < 0.001, ‘**’ p < 0.01, ‘*’ p < 0.05, ‘·’ p < 0.1.

Strategy Optimality gap

BestEstimate 0.0821 ***
DFS 0.0619 ***
He6 (both) 0.1516 ***
He6 (prune only) 0.1503 ***
ML SST 0.0065
RestartDFS 0.0590 ***

Table 10: Combinatorial auctions instances: average solving time and explored nodes for various node selection
strategies. Pair-wise t-tests: ‘***’ p < 0.001, ‘**’ p < 0.01, ‘*’ p < 0.05, ‘·’ p < 0.1 compared to BestEstimate.

Strategy Solving time (s) Explored nodes

BestEstimate 19.68 3489
DFS 23.48 4490
He 40.11 *** 4519
He6 30.44 ** 6358 *
ML PB 29.77 * 4288
ML PR 29.82 ** 4419
ML PS 32.51 ** 4811 ·
ML RB 30.08 * 4494
ML RR 30.89 ** 4715
ML RS 32.68 ** 5190 ·
ML SB 28.94 * 4187
ML SR 29.83 ** 4458
ML SS 30.52 ** 4567
RestartDFS 22.35 4299

13

A PREPRINT - 9 JULY 2020

Figure 5: Average solving time against the average optimality gap of the
first solution found at a leaf node on combinatorial auctions instances.

Table 11: Combinatorial auctions: model with on both = PrioChild,
on leaf = Score and prune on both = True against baselines, with equal
time limits for each problem. The initial optimality gap obtained by the
solver before branch-and-bound is 0.914. Pairwise t-tests against the
ML policy: ‘***’ p < 0.001, ‘**’ p < 0.01, ‘*’ p < 0.05, ‘·’ p < 0.1.

Strategy Optimality gap

BestEstimate 0.0174 *
DFS 0.0126
He6 (both) 0.4678 ***
He6 (prune only) 0.2873 ***
ML PST 0.0127
RestartDFS 0.0126

2,000 constraints, while the easier set cover instances had 2,000 variables and 1,000 constraints. We evaluated 10 hard
instances due to computational limitations, and focused on BestEstimate as a baseline on the node selection policy.

For the node selection policies, we set the time limit to one hour per problem. Figure 6 shows the number of solved
instances per policy, and Figure 7 shows boxplots of the integrality gaps for each policy. We use integrality gap here,
because we do not know the optimal objective value for all instances. Table 12 shows the average solving time, explored
nodes and integrality gap of various node selection strategies. BestEstimate achieves the lowest average solving time
at 2256.7 seconds and integrality gap at 0.0481. ML SB has the lowest number of explored nodes at 109298. We
conducted a pair-wise t-test between the mean solving time of BestEstimate and the mean solving time of the other
policies. We can not reject the null hypothesis of equal means with p-value below 0.1 for all our ML policies (lowest
observed p-value: 0.64). We have also conducted a pair-wise t-test between the mean number of explored nodes of
BestEstimate and the mean number of explored nodes of the other policies. We can reject the null hypothesis of equal
means with p-value below 0.05 for ML PB, ML RB and ML SB. Lastly, we have conducted a pair-wise t-test between
the mean integrality gap of BestEstimate and the mean integrality gap of the other policies. We can reject the null
hypothesis of equal means with p-value below 0.1 for ML RS and ML SS.

For the pruning policies, Figure 8 shows the solving time plotted against the integrality gap of the first solution obtained
by the baselines and ML policies. As before, we see the same trend where the ML policies find a lower gap at the cost
of a higher solving time. See Table 13 and Figure 9 for the integrality gap of the baselines using a time limit for each
instance. In this case, ML PST has the lowest harmonic mean between the average solving time and average integrality
gap of all ML policies. ML PST achieves a significantly lower integrality gap compared to the baselines. We conducted
a pairwise t-test between the mean optimality gap of our best ML policy and the mean optimality gap of each baseline.
We can reject the null hypothesis of equal means with p-value below 0.001 for all baselines. In all instances, the solver

14

A PREPRINT - 9 JULY 2020

Table 12: Hard set cover instances: average solving time, explored nodes and integrality gap for various node selection
strategies. Pair-wise t-tests: ‘***’ p < 0.001, ‘**’ p < 0.01, ‘*’ p < 0.05, ‘·’ p < 0.1 compared to BestEstimate.

Strategy Solving time (s) Explored nodes Integrality gap

BestEstimate 2256.69 161438 0.0481
ML PB 2497.56 112869 * 0.0714
ML PR 2531.32 150055 0.0763
ML PS 2279.41 157367 0.1152
ML RB 2441.60 111629 * 0.0683
ML RR 2552.68 152871 0.0794
ML RS 2352.93 153727 0.1289 ·
ML SB 2427.25 109298 * 0.0706
ML SR 2685.09 161825 0.0734
ML SS 2381.28 163631 0.1278 ·

Figure 6: Hard set cover instances: number of solved instances for each node selection strategy. Total number of
instances is ten.

Figure 7: Hard set cover instances: integrality gap of each node selection strategy.

15

A PREPRINT - 9 JULY 2020

Figure 8: Average solving time against the average integrality gap of
the first solution found at a leaf node on hard set cover instances.

Table 13: Set cover (hard): model with on both = PrioChild, on leaf =
Score and prune on both = True against the baselines, with equal time
limits for each problem. Pairwise t-tests against the ML policy: ‘***’
p < 0.001, ‘**’ p < 0.01, ‘*’ p < 0.05, ‘·’ p < 0.1.

Strategy Integrality gap

BestEstimate 1.3678 ***
DFS 0.3462 ***
He6 (both) 1.8315 ***
He6 (prune only) 1.6835 ***
ML PST 0.2445
RestartDFS 0.3489 ***

could only obtain an integrality gap of infinity on the first feasible solution. This means we can not compare the initial
integrality gap to the found integrality gaps during branch and bound.

4.6 Discussion

We examined three experiments, namely measuring the solving time for an exact solution, measuring the solving
time and optimality gap for the first solution found at a leaf node in the branch and bound tree, and setting a low
instance-specific time limit to measure what the optimality gap is.

For the first experiment, our method performed better than the baselines for capacitated facility location problem, but
worse on the three purely binary problems. The best ML policy is ML RB, although ML SB has an almost equal
solving time, while still exploring fewer nodes.

For the second experiment, the prioChild ML policy (ML P**) performed Pareto-equivalent on four of the five problem
sets, performing inferior to the baselines only on maximum independent set instances.

For the third experiment, we chose ML SRF on set cover, ML PRF on maximum independent set, ML SST on
capacitated facility location, and ML PST on combinatorial auctions and hard set cover instances, in order to measure
how well they do against the baselines. These policies were chosen based on the (lowest) harmonic mean between the
solving time and optimality gap as was conducted in the second experiment. In four of the five problem sets, our policies
had a statistically significantt lower optimality gap than the baselines, while on combinatorial auctions, ML PST did
not perform statistically significantly worse than DFS and RestartDFS.

Overall we conclude that the on both = Random configuration of the policy usually performs worse than the other
configurations. on both ∈ {PrioChild, Second} both do well. The policies from both the on leaf ∈ {Score, RestartDFS}

16

A PREPRINT - 9 JULY 2020

Figure 9: Hard set cover instances: Integrality gap of various approximation strategies. Note log scale on y-axis.
ML PST outperforms the compared methods.

configurations perform better than those from the on leaf = BestEstimate configuration. For both prune on both
configurations, the policy performed well. Recall that when prune on both is True, then the search is terminated after
the first leaf, saving solving time but resulting in a higher optimality gap. That both prune on both configurations lead
to effective policies means that we offer the user the choice between a lower optimality gap and higher solving time, or
the other way around.

Our method is effective when the ML model is able to meaningfully classify optimal child nodes correctly. By contrast,
in the case of the maximum independent set problem, the classification was poor (base acc.: 0.895, test acc.: 0.899,
gain: 0.004). Hence, when the predictive model adds value to the prediction, there is potential for effective decision
making using the policy; when it does not, inferior performance can be expected.

Lastly, we note that the feature extraction was the biggest contributor to the overall solving time. Applying the predictor
had a rather small impact. This means that it is possible to achieve lower solving times by incorporating the entire
process in the original C code of SCIP, avoiding the overhead of the Python interface.

5 Related Work

5.1 Branching

Deciding on what variable to branch on in the branch and bound process is called branching, as was mentioned in
Section 2.3. Good branching techniques make it possible to reduce the tree size, resulting in fast solving times. A
survey on branching, and the use of learning to improve it, is by Lodi and Zarpellon [2017].

Strong branching [Applegate et al., 1995] is a popular branching strategy, among other strategies such as most infeasible
branching, pseudo-cost branching, reliability branching [Achterberg et al., 2005] – used as the default in SCIP – and
hybrid branching [Achterberg and Berthold, 2009]. Strong branching creates the smallest trees, as Achterberg et al.
[2005] reported that strong branching required around 20 times less nodes to solve a problem than most infeasible
branching and around 10 times less nodes than pseudo-cost branching. However, strong branching is the most expensive
to calculate, because two LP-relaxations are solved for every variable to assign scores.

Nonetheless, exact scores are not required to find the best variable to branch on. Therefore, it is interesting to
approximate the score of strong branching, which can be done using machine learning. Alvarez et al. [2014] was
the first to use supervised learning to learn a strong branching model. The features they used to train the ML model
consist of static problem features, dynamic problem features and dynamic optimisation features. The static problem
features derive from c, A and b as stated in Equation 1. The dynamic problem features derive from the solution x̂ of the
current node in the branch and bound tree and the dynamic optimisation features derive from statistics of the current
variable. They used the Extremely Randomized Trees (ExtraTree) classifier [Geurts et al., 2006]. The results show
that supervised learning successfully imitated strong branching, being 9% off relative to gap size, but 85% faster to
calculate. Although strong branching was successfully imitated, it was still behind reliability branching in terms of gap
size and runtime.

17

A PREPRINT - 9 JULY 2020

Khalil et al. [2016] extended Alvarez et al. [2014] work by adding new features to the machine learning model and by
learning a pairwise ranking function instead of a scoring function. The ranking function they used is a ranking variant
of Support Vector Machine (SVM) classifier [Joachims, 2006]. Their algorithm solved 70% more hard problems (over
500,000 nodes, cut-off time 5 hours) than strong branching alone. However, the time spent per node (18 ms) is higher
than pseudo-cost branching (10 ms) and combining strong branching with pseudo-cost branching (15 ms). This is due
to calculating the large number of features on every node.

To overcome complex feature calculation, Gasse et al. [2019] proposes features based on the bipartite graph structure of
a general MILP problem. The graph structure is the same for every LP relaxation in the branch-and-bound tree, which
reduces the feature calculation cost. They use a graph convolutional neural network (GCNN) to train and output a policy,
which decides what variable to branch on. Furthermore, they used cutting planes on the root node to restrict the solution
space. Their GCNN model performs better than both Alvarez et al. [2014] and Khalil et al. [2016] for generalising
branching, using few demonstration examples for the set covering, capacitated facility location, and combinatorial
auction problems. Moreover, GCNN solved the combinatorial auction problem 75% faster than the method of Alvarez
et al. [2014] and 70% faster than the method of Khalil et al. [2016], both for hard problems (1,500 auctions).

Seeing their success, we adopt the same variable features as Gasse et al. [2019].

5.2 Node selection and pruning policy

While learning to branch has been studied quite extensively, learning to select and prune nodes has received insufficient
attention in the literature.

He et al. [2014] used machine learning to imitate good node selection and pruning policies. The method of data
collection in that work is by first solving a problem and provide its solution to the solver. Afterwards, the problem is
solved again, but now that the solver knows the solution, it will take a shorter path to the solution. The features for
learning the node selection policy are derived from the nodes in this path and the features for the node pruning policy
are derived from the nodes that were not explored further. This was done for a limited amount of problems as the
demonstrations.

He et al. [2014] trained their machine learning algorithm on four datasets, called MIK, Regions, Hybrid and CORLAT.
They were able to achieve prune rates of 0.48, 0.55, 0.02 and 0.24 for each dataset respectively. Prune rate shows the
amount of nodes that did not have to be explored further relative to the total amount of nodes seen. Their solving time
reached a speedup of 4.69, 2.30, 1.15 and 1.63 compared to a baseline SCIP version 3 heuristic respectively for each
dataset. Note that the lowest speedup seems to correlate with a low prune rate.

Our work differs from He et al. [2014] by constraining the node selection space to direct children only at non-leaf nodes.
Furthermore, we use the top k solutions to sample state-action pairs. By using more than one solution, we can create
additional state-action pairs from which the neural network can learn and create a predictive model. Lastly, we include
branched variable features, obtained from Gasse et al. [2019]. As seen in Section 4, our approach easily outperforms
that of He et al. [2014], in both their original implementation and a re-implementation in SCIP 6.

6 Conclusion

This paper shows that approximate solving of mixed integer programs can be improved by a node selection policy
obtained with offline imitation learning. In contrast to previous work using imitation learning, our policy is focused on
learning to choose which of its children it should select. We apply the policy within the popular open-source solver
SCIP, in exact and approximate settings.

Empirical results on four MIP datasets indicate that our node selector leads to solutions more quickly than the state-
of-the-art in the literature [He et al., 2014], but not as quickly as the state-of-practice SCIP node selector. While we
do not beat the highly-optimised SCIP baseline in terms of solving time on exact solutions, our approximation-based
policies have a consistently better optimality gap than all baselines if the accuracy of the predictive model adds value to
prediction. Further, the results also indicate that our approximation method finds better solutions within a given time
limit than all baselines in four of the five problem classes examined.

This paper shows that learned policies can be Pareto-equivalent or superior to state-of-practice MIP node selection
heuristics: heuristics that have been honed by hand over many years. It adds to the body of literature that demonstrates
how machine learning can benefit generic constraint optimisation problem solvers.

In MIP terminology, our learned policy constitutes a diving rule, focusing on finding a good integer feasible solution.
The performance on non-binary problem classes like capacitated facility location is particularly noteworthy. This is

18

A PREPRINT - 9 JULY 2020

because, unlike purely binary problems, for non-binary instances, MIP primal heuristics struggle to obtain decent primal
bounds [Achterberg et al., 2008]. By contrast, in general for binary instances, the greater challenge is to close the dual
bound, and our learned policy also performs well here.

For future work, more study could be undertaken for choosing the meta-parameter k. Values too low add only few
state-action pairs, which naturally degrades the predictive power of neural networks. On the other hand, values too high
add noise, as paths to bad solutions add state-action pairs that are not useful.

We mentioned during pre-processing that certain features are removed that are constant throughout the entire dataset.
This has the consequence of different number of input units in the neural network architecture for every problem. The
bigger issue is that this work focused on training a machine learning model for every problem. Future work could
include a method to unify a machine learning model that works for all problems. This would make ML-based node
selection a more accessible feature for current MIP solvers, like SCIP.

A limitation of this study is that we only performed experiments with the MIP solver SCIP. We chose SCIP, because it
is open-source and has a rich amount of documentation. However, another MIP solver Gurobi (proprietary) is generally
faster than SCIP and it would be interesting to see how the ML-based node selection policy compares to Gurobi.

Lastly, reinforcement learning, in contrast to imitation learning, is an interesting research direction to create a node
selection policy.

Acknowledgements

Thanks to Robbert Eggermont and Lara Scavuzzo.

References
P. Abbeel and A. Y. Ng. Apprenticeship learning via inverse reinforcement learning. In Proc. of 21st International

Conference on Machine Learning (ICML’04), 2004. doi: 10.1145/1015330.1015430.
T. Achterberg. Constraint integer programming. PhD thesis, Technische Universität Berlin, 2007.
T. Achterberg and T. Berthold. Hybrid branching. In Proc. of 6th International Conference on Integration of AI and OR

Techniques in Constraint Programming for Combinatorial Optimization Problems (CPAIOR’09), volume 5547 of
Lecture Notes in Computer Science, pages 309–311. Springer, 2009. doi: 10.1007/978-3-642-01929-6\ 23.

T. Achterberg, T. Koch, and A. Martin. Branching rules revisited. Operations Research Letters, 33(1):42–54, 2005.
T. Achterberg, T. Berthold, T. Koch, and K. Wolter. Constraint integer programming: A new approach to integrate cp

and mip. In International Conference on Integration of Artificial Intelligence (AI) and Operations Research (OR)
Techniques in Constraint Programming, pages 6–20. Springer, 2008.

A. M. Alvarez, Q. Louveaux, and L. Wehenkel. A supervised machine learning approach to variable branching in
branch-and-bound. In Proc. of 7th European Machine Learning and Data Mining Conference (ECML-PKDD’14),
2014.

D. Applegate, R. Bixby, V. Chvátal, and W. Cook. Finding cuts in the TSP (a preliminary report). Technical Report 5,
Center for Discrete Mathematics & Theoretical Computer Science, 1995.

C. Bayliss, G. D. Maere, J. A. D. Atkin, and M. Paelinck. A simulation scenario based mixed integer programming
approach to airline reserve crew scheduling under uncertainty. Annals of OR, 252(2):335–363, 2017. doi: 10.1007/
s10479-016-2174-8.

Y. Bengio, A. Lodi, and A. Prouvost. Machine learning for combinatorial optimization: A methodological tour
d’horizon. CoRR, abs/1811.06128, 2018. URL http://arxiv.org/abs/1811.06128.

J. Bergstra, D. Yamins, and D. D. Cox. Making a science of model search: Hyperparameter optimization in hundreds of
dimensions for vision architectures. In Proc. of 30th International Conference on Machine Learning (ICML’13),
pages 115–123, 2013.

M. Gasse, D. Chételat, N. Ferroni, L. Charlin, and A. Lodi. Exact combinatorial optimization with graph convolutional
neural networks. In Proc. of 2019 Neural Information Processing Systems (NeurIPS’19), pages 15554–15566, 2019.

P. Geurts, D. Ernst, and L. Wehenkel. Extremely randomized trees. Machine learning, 63(1):3–42, 2006.
A. Gleixner, M. Bastubbe, L. Eifler, T. Gally, G. Gamrath, R. L. Gottwald, G. Hendel, C. Hojny, T. Koch, M. E.

Lübbecke, S. J. Maher, M. Miltenberger, B. Müller, M. E. Pfetsch, C. Puchert, D. Rehfeldt, F. Schlösser, C. Schubert,
F. Serrano, Y. Shinano, J. M. Viernickel, M. Walter, F. Wegscheider, J. T. Witt, and J. Witzig. The SCIP Optimization
Suite 6.0. Technical report, Optimization Online, 2018. URL http://www.optimization-online.org/DB_
HTML/2018/07/6692.html.

19

A PREPRINT - 9 JULY 2020

H. He, H. Daumé III, and J. Eisner. Learning to search in branch and bound algorithms. In Proc. of 2014 Neural
Information Processing Systems Conference (NeurIPS’14), pages 3293–3301, 2014.

T. Joachims. Training linear SVMs in linear time. In Proc. of 12th International Conference on Knowledge Discovery
and Data Mining (KDD’06), pages 217–226, 2006. doi: 10.1145/1150402.1150429.

E. B. Khalil, P. Le Bodic, L. Song, G. Nemhauser, and B. Dilkina. Learning to branch in mixed integer programming.
In Proc. of 30th AAAI Conference on Artificial Intelligence (AAAI’16), pages 724–731, 2016.

D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. In Proc. of 3rd International Conference on
Learning Representations, (ICLR’15), 2015.

A. H. Land and A. G. Doig. An automatic method of solving discrete programming problems. Econometrica, 28(3):
497–520, 1960.

A. Lodi and G. Zarpellon. On learning and branching: a survey. TOP, 25:207––236, 2017. doi: 10.1007/
s11750-017-0451-6.

M. Lombardi, M. Milano, and A. Bartolini. Empirical decision model learning. Artificial Intelligence, 244:343–367,
2017.

A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga,
A. Desmaison, A. Köpf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai,
and S. Chintala. PyTorch: An imperative style, high-performance deep learning library. In Proc. of 2019 Neural
Information Processing Systems (NeurIPS’19), pages 8024–8035, 2019.

R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction. MIT Press, Cambridge, MA, 2018.

20

	Introduction
	Research objective
	Contributions
	Organisation

	Preliminaries
	Machine learning
	Imitation learning
	Mixed integer programming
	Branch and bound
	Node selection and pruning
	Problem sets
	Set cover
	Maximum independent set
	Capacitated facility location
	Combinatorial auctions

	Literature Survey
	Branching
	Node selection and pruning

	Approach
	Imitation learning
	Sampling
	Neural network architecture
	Policy configuration
	Node pruning policy

	Experimental setup
	Problem sets
	Frameworks
	Training
	Baselines
	Policy configurations
	Experiments

	Results
	Set cover
	Maximum independent set
	Capacitated facility location
	Combinatorial auctions
	Set cover: Hard instances
	Discussion

	Conclusion
	Discussion

	Bibliography
	Appendix

