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Data-Driven Substation Energy Minimization
for Train Speed-Profile and
Dwell-Time Optimization

Xiao Liu™, Zhongbei Tian™, Member, IEEE, Yuan Gao"~, Member, IEEE, Lin Jiang"™, Member, IEEE,
and Rob M. P. Goverde"™, Member, IEEE

Abstract— As regenerative braking systems become more
widespread in railways, rising attention is paid to collaborative
train operations under optimized timetables to enhance regen-
erative braking efficiency. The effective usage of regenerative
braking energy (RBE) is determined by the dynamic nature of
the traction power supply network, driven by constant changes
in train power and positions. Solving the power flow with mul-
tiple trains significantly, however, increases the computing time
required to solve the optimization model. Most existing methods
have to solve optimization problems neglecting the dynamic
power flow analysis, which sacrifices the accuracy of regeneration
efficiency. In order to address this challenge, we propose a
data-driven model that emulates the power flow analysis and
reduces the computational demands. Initially, data from both
single and multitrain simulators are collected and stored in a
database, from which critical information regarding train posi-
tion, power, and substation power is extracted. A neural network
is then used to develop a data-driven model that predicts the
power of a substation in a power supply network based on train
positions and powers. Case studies with Beijing Yizhuang Metro
line data show that the calculation time of the data-driven model
is 0.33% of the power flow simulation while keeping the accuracy
above 99%. Based on this data-driven model, by optimizing train
speed profile and dwell time, the energy supplied by substations
can be reduced by up to 13% compared to traction optimization.

Index Terms— Data-driven, energy saving, headway, railway
energy supply, speed profile.

I. INTRODUCTION
USTAINABLE railway technologies have gained signif-
Sicant attention in recent years due to the environmental
and economic benefits associated with energy efficiency [1].
With railway energy consumption increasing, researchers have
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explored strategies for integrating renewable energy sources,
such as wind power [2] and hydrogen [3], into the railway
power supply system to reduce carbon emissions and enhance
sustainability. Renewable energy sources depend on external
generation and are, however, subject to weather-related vari-
ability, making them less predictable for real-time railway
operations. In contrast, regenerative braking energy (RBE)
offers an immediate, self-sustained energy source, recovering
kinetic energy from braking trains and either reusing it within
the system or storing it for later use [4]. Effectively harnessing
RBE, however, requires accurate power flow modeling and
efficient optimization of train operations, both of which pose
significant challenges.

Existing studies have explored various methods to enhance
RBE usage. For a single train, Scheepmaker and Goverde [4]
compared the optimal speed profiles considering solely
mechanical braking to those that account for both mechanical
braking and RBE simultaneously. Yang et al. [5] developed
an integer programming model to optimize train timetables
by defining overlapping time between motoring and braking
trains. Other works [6] extended these approaches to integrate
train driving strategies and timetables, while onboard energy
storage systems have been explored as another means to
improve RBE recovery efficiency [7]. In spite of these efforts,
practical challenges, especially related to power transmission
losses, remain a critical concern that could undermine the
effectiveness of these methods. In order to address this,
Pefia-Alcaraz et al. [8] proposed a power-saving factor to
quantify the total amount of RBE transferred to the motoring
trains. Su et al. [9] developed a distance-based RBE usage
model. Pan et al. [14] enhanced RBE usage through an overlap
current method, and Ning et al. [15] introduced a linear
regression model to simplify the calculation process of sub-
station energy consumption. These simplifications, however,
do not fully account for the complexities of the power supply
network. In order to achieve a more accurate representation
of transmission losses and ensure the energy provided by
braking trains is effectively used by motoring trains, a more
comprehensive modeling of the entire power supply system is
suggested [10].

Recognizing these limitations, Chen et al. [11] modeled the
coupling mechanism between one train and two reversible sub-
stations and then adopted a pseudospectral method to achieve
the optimal energy-efficient train control and schedule under
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dc traction power supply system. Meanwhile, Zhang et al. [12]
developed the operation section method to analyze the power
flow of multiple trains and substations, thereby improving
RBE usage efficiency by optimizing dwell times and head-
ways. Both methods, however, struggle with nonlinear power
supply components and cannot effectively manage undervolt-
age or overvoltage conditions in railway power networks.
In order to address these issues, an iterative power flow
analysis method has been introduced [13], offering a more
accurate representation of dynamic power distribution and
voltage fluctuations. Additionally, Pan et al. [14] extended
this iterative framework by developing an integrated train
speed profile and timetable optimization model for ac railway
networks. In spite of these advancements, iterative power
flow analysis remains computationally demanding, making
it impractical for large-scale, real-time railway operations.
Although specific times are not mentioned in these references,
our preliminary experiments indicate that the computational
demands are substantial. For instance, consider a metro line
with two directions and 14 stations, supporting 20 running
trains simultaneously. Approximately 40 h are required to
solve this train schedule and speed profile optimization model.

Given the high computational cost of iterative power flow
simulations, machine-learning (ML) techniques have emerged
as a promising alternative for energy-efficient train control.
Ning et al. [15] proposed a deep deterministic policy gradient
approach for optimal train speed profiles, while Su et al. [16]
employed a soft actor-critic method for energy-efficient train
control. Extending these methods, an echo state neural network
has been used for cooperative train control [17], and a multia-
gent cooperative actor-critic reinforcement learning strategy
was introduced for multitrain scheduling [11]. While these
ML applications have demonstrated efficiency improvements,
they primarily focus on train movement optimization and
largely ignore the complexities of railway power supply con-
straints and substation dynamics. A few studies have explored
ML-based strategies for railway energy management, such as
deep reinforcement learning for supercapacitor energy storage
systems [18] and power quality regulation in railway traction
power supply systems [19]. Existing ML research, however,
does not integrate train dynamics, substation energy prediction,
and railway power supply network modeling into a unified
optimization framework.

Overall, while significant progress has been made in meth-
ods such as timetable adjustments and cooperative train
control, existing approaches often suffer from two key
limitations.

1) Computational Inefficiency: Iterative power flow simula-
tions are time-consuming, making them impractical for
real-time large-scale applications.

2) Limited Integration of Train and Power Supply Models:
Most research focuses either on train control or power
supply modeling, but not both simultaneously.

In order to overcome these challenges, we propose a
novel data-driven framework that is the first to employ ML
for predicting traction substation power demand in railway
operations. Unlike previous ML methods that focus solely
on train speed control or energy management, our approach
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Fig. 1. Integration of train trajectory, timetable, and power supply system.

integrates real-time substation power constraints, ensuring that
train operations do not exceed power availability. This article
makes the following key contributions.

1) ML-Based Substation Power Prediction Model: A neural
network-based model is developed to emulate power
flow simulations, reducing computation time to just
0.33% of traditional methods while achieving over 99%
accuracy.

2) Integrated Train-Power Supply Optimization: By cou-
pling the neural network-based model with GA, we opti-
mize train speed profiles and dwell times to minimize
substation energy supply under varying operational
conditions.

3) Real-World Validation: The proposed method is eval-
uvated using data from Beijing Yizhuang Metro line,
demonstrating energy savings of up to 13% and flex-
ibility under headway fluctuations.

This article outline is as follows. Section II introduces the
fundamentals of train operation and substation energy calcu-
lations. Section III discusses the methodology of data-driven
modeling and the optimization process using GA. Section IV
presents case studies on the application of data-driven opti-
mization in fixed and flexible headway scenarios. This article
concludes with a summary of the findings in Section V.

II. FUNDAMENTALS OF INTEGRATED TRAIN OPERATION
AND POWER SUPPLY SYSTEM

A. Architecture of Railway Energy System

The railway system is dynamic in real-time, i.e., the location
and speed of a train are changing all the time, which leads to
variations in the transmission resistance value and distribution.
Additionally, train power levels may also vary sharply and fast.
In order to assess the overall energy consumption of the power
supply system, trains in the same line must all be taken into
account. The operation of the multitrain power network will
be introduced in Section II-C.

As illustrated in Fig. 1, train operation is shaped by factors
such as route data, train characteristics, driving strategy, and
the timetable. This information feeds into the single train
model, determining the trajectory of a single train along the
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Fig. 2. Topology of a typical dc power network with multiple trains.

whole journey. Then, the single train trajectory, the dwell time,
and headway in the timetable are used to generate the power
and position of multiple trains at every time index. When this
data is integrated into the multitrain power network model, the
power supplied from all the substations can be derived. Here,
we assume the power supplied by the substations can always
meet the trains’ requirements, since the substations are always
designed according to the peak power [20]. In this research,
the optimal train trajectory and dwell times that can minimize
the substation energy for a given period will be identified.

B. Single Train Simulation

Assuming the train as a mass point, its movement can be
expressed using the Newtonian equations [21]

(1 +A)Md—” = f(s) — Mgtan(6(s)) — r(v) (1)

dt
ds
dt = —
v

2)
where A is the rotary allowance [22], M is the mass of
the rolling stock, s is the position, v is the speed, t is
the time, f(s) is the tractive or braking force, g is the
acceleration due to gravity, 6(s) is the angle of the route slope,
r(v) = A + Bv + C(v)2 is vehicle resistance where A, B,
and C are Davis constants, which are determined by the
attributes of the rolling stock [23].

The mechanical power of this train at position s can be
represented by

pmech(t) = f(S) - V. 3

When the train is motoring, pmecn(s) is positive, indi-
cating the required power. Conversely, when the train is
braking, pmecn(s) is negative, converted into regenerative
energy. Assuming the efficiency between mechanical power
and electrical power is 7, the electric power required by the
train and the regenerative braking power derived by the train
can be expressed as

pmech(t) .
- f mec _O
py=1" 1 i Pmech(t) = @)

Pmech(?) - if pmecn(?) < 0.

C. Multitrain Power Network Simulation

A typical metro power network with multiple trains is
depicted in Fig. 2. There are two parallel tracks designated
for upward and downward operation, encompassing J stations
and K rectifier substations. Stations 1 and J serve as the
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Fig. 3. DC traction power network equivalent circuit.

turnaround stations, allowing trains to switch directions. The
train power supply system consists of contact lines and return
rails. These lines form a closed circuit with trains running on
them. Power is either transferred from substations to trains,
or from trains using regenerative braking to those that are
motoring.

In order to analyze the power flow of the metro system,
an equivalent circuit is constructed based on the topology
of the power network and the distribution of trains. Fig. 3
shows the equivalent circuit for four trains and two sub-
stations. In this circuit, the substations are represented as
ideal voltage sources, the motoring trains are modeled as
loads, and the braking trains are modeled as power sources.
Additionally, the contact lines and return rails are represented
as resistive components to reflect their inherent electrical resis-
tance characteristics. The movement of the trains affects the
length of the transmission paths, which, in turn, changes the
resistance values.

According to the Nodal Voltage Equation, Y x V = I, the
relationship between the variables in Fig. 3 can be expressed
with (5), as shown at the bottom of the next page. At each
time ¢, the line resistance can be calculated according to the
distance between the corresponding nodes. The power required
or generated by the trains, denoted as p(t), is derived from
the power profiles obtained through the simulation described in
Section II-B. Our goal is to determine the current and voltage
at each node so that we can calculate the power supplied by
the substations.

In order to calculate the voltage and current of every node
at time ¢, we employ an iterative method. First, V() is
initialized with the no-load voltage, and the substation resis-
tance, RSS(¢), is set to a constant value. We define V.(¢) as
the voltage vector of all trains. In the subsequent iteration,
the train current, I(¢), is calculated using (6). Similarly,
Vsub(?), representing the voltage of all the substations allows
us to compute the substation current in the next iteration
using (7). The current Iq () and Igp(¢) are arranged in
ascending order based on their physical positions along the
track to form the total current I (¢), as depicted in Fig. 3. Then,
I(¢) is used to derive the voltage of the same iteration as shown
in (9). Equations (7)—(9) are repeated until I(f) © V- (¢) of
motoring trains is approximately equal to p(¢). Here, © is the
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Hadamard product

VO(t) = Viglowd:  RSS(1) = Ringial (6)
I (1) = p(t)/ V() 7
1501 = VE, (1) /RSSK (1) (8)
VL) =Y @) x I (@), 9)

Following this iteration process, the total effective regener-
ated braking power of the whole network, Prg(?), is calcu-
lated by:

Peg() = D Vielt) © Ie(d). (10)

I (1)<0

The efficiency of converting braking energy into RBE is
expressed by

i Prg(t)dt
foT (Zp(t)<0 P(t))dt

The sum of all the substations’ power and the energy
supplied by the substations over a specific period T are
given by

Y

Nreg =

Pab(t) = D~ V() © Taup (1) (12)

T
Eup = / Po(0)d. (13)
0

III. DATA-DRIVEN MODELING AND OPTIMIZATION

The simulation models become complicated when inte-
grating multiple trains into the power supply system. For a
typical metro line, there are often more than ten substations,
with roughly 20 trains operating in both directions simul-
taneously. In order to determine the power supplied by all
the substations at any moment, it is necessary to analyze
the power flow involving more than 30 components in the
network. Such a simulation process results in significant com-
putational demands. In order to address this issue, we propose
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a data-driven model to replace the multitrain power network
simulator, thereby substantially reducing the computational
cost of subsequent calculation, evaluation, and optimization.
In this study, the term simulator refers to two in-house
MATLAB-based tools developed by the authors.

A. Database Establishment

For a metro line with J stations, there will be 2(J — 1)
interstations for the up and down directions and 2(J — 2)
dwell times in the timetable. Assume the train starts from the
station on the far left in Fig. 4 The time interval between the
departures of two consecutive trains from this station is usually
called the headway, 7},. Theoretically, 7}, is fixed for a certain
period. But it may fluctuate around the fixed values because
of various unexpected disturbances. The time distribution for
a single journey is illustrated in Fig. 4, where Ty, and T,,; are
the dwell times for the up and down directions, T, and Tj4
are the interstation running times in each direction. The station
index in the up direction goes from left to right. At the station
on the far right, the train will reverse direction. The duration
that the train remains at this station is known as the turnaround
time, denoted by T},. For the purposes of this research, T;, is
assumed to be a constant.

The power profiles are generated using the single-train
motion simulator introduced in Section II-B. Here, we assume
that the speed profile of the train at each interstation is
composed of full power acceleration, cruising, coasting,
and full braking. The cruising speed is the maximum allowable
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speed of this route; therefore, only by adjusting the coasting
speed (the switching speed from coasting to braking) at each
interstation, the power profiles for each interstation that can
meet the time constraint can be obtained. These power profiles
are subsequently stored in a database for future reference,
as shown in Fig. 5. The coasting speed for an interstation in the
up direction, V,,, varies within an allowable range set by Veymin
and Veumax, based on the permitted interstation running time.
Similarly, the coasting speed in the down direction V.4 can
range between Vigmin and Vegmax. The maximum and minimum
dwell times at each station are determined according to the
allowable range based on the prescribed times in the timetable.

After all the required data are saved in the basic database,
we randomly select indexes corresponding to the power pro-
files and dwell times for a single train’s entire route. The
relevant data are then retrieved from the database. Assuming
all the trains follow the same speed profiles, similar to other
research on train trajectory and timetable optimization [14],
[24], [25], the data obtained above can be combined with the
headway information for the data process. This data process
is explained in Fig. 6, where the power and position of each
train at every given moment is pinpointed. After this data
process, the power and position of all the trains at time ¢ are
input into the multitrain power supply simulator to obtain the
substation power. The database for ML is built by executing
the multitrain power network simulator repeatedly for different
inputs. This database must be rebuilt for different railway
networks. The data collection process, however, remains the
same as described above.

The selection of train power and position as input fea-
tures was based on their fundamental role in determining
train dynamics and the overall power flow within the rail-
way system. Train power inherently encapsulates both train
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acceleration and regenerative braking efficiency, as power
consumption increases during acceleration and decreases (or is
fed back into the grid) during braking. Explicit inclusion of
acceleration and braking efficiency as separate features was,
therefore, deemed unnecessary. Additionally, train position
plays a crucial role in defining the topology of the rail-
way power network. The relative positions of trains affect
how power is distributed across substations and overhead
lines, impacting system-wide energy flow. By combining train
power and position, we can effectively model power demand
and energy distribution throughout the network, making
these two features sufficient for predicting substation power
consumption.

B. Algorithms for ML

Neural networks, which are inspired by the structure of
animal brains, have been widely used in railway research.
Value regression based on neural networks has been used
to predict the urban rail transit safety performance [26],
predict track geometry degradation [27], model the energy
consumption of electric metro trains [28], and more. These
regression models based on a neural network have achieved
good results. In this research, the neural network is, therefore,
employed to train the regression model from the position and
power of each train at a certain time to the substation power.
Then, the substation energy can be calculated according to the
substation power.

We consider the substation power regression model as
transient, meaning it does not require the time variable ¢ for
Pirn(t) and sy ,(t). Consequently, both the power p, and
position s;., as well as the count of trains n, can vary over
time. The regression model can then be formulated as

p~sub == fp (ptr,] s Str,1s Ptr,2s Str,2s -« Ptrons Str,n)- (14)

In order to approximate this function, we employ a
feed-forward multilayer perceptron (MLP), as shown in Fig. 7.
The MLP was chosen for its ability to effectively model com-
plex nonlinear relationships while maintaining computational
efficiency, which is crucial for large-scale simulations. The
network comprises three main components.

1) Input Layer: This layer takes a vector x, formed by
concatenating the power and position of each train at a given
time step

/
X = [Pir1s Sirts Pir2s Str2s -+ Pirns Strn - (15)

2) Hidden Layers: The MLP contains ¢ fully connected
hidden layers. Each layer i includes N (i) neurons. The output
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of each hidden layer is computed by

yi =01 (657 ) (16)
where the parameter set ; = [W;, b;] consists of weights and
biases, and the input vector is augmented as y’ | = [yi_1, 177,

For the first hidden layer, the input is defined as y; = [x, 7.
3) Output Layer: The final output pg,, is generated using
an activation function

Psub = 0y (9(/ : y;_l)' (17)

In order to train the network, we apply a mean-square
error (MSE) loss function between the predicted and simulated
substation power values

1

NT
~ 2
lloss == NT Jzzl: (psub,j - psub,j) (18)

where NT is the total number of training samples, and Py, j
and pgy,, ; denote the predicted and simulated substation power
values for the jth sample, respectively. The simulated power
values are obtained from the simulation system described in
Sections II-B and II-C.

C. Substation Energy Optimization Based on GA

Minimizing the substation energy, presented as fg in (19) is
the main objective of this research. The inputs of this function
are the indexes of power profiles of every interstation and
the dwell time at each station. These indexes are divided
into four parts. The first part, I;~I, includes the speed
profile indexes of the up-direction interstations. The second
part, I;111~1,, are the dwell time indexes of the up-direction
stations. I;>41~13 are the speed profile indexes of the down-
direction interstations. Ig3,.1~I4 are the dwell time indexes
of the down-direction stations. The indexes are positive inte-
gers constrained within the maximum number of indexes,
as presented in (20)—(23). In order to avoid achieving energy
savings simply by increasing the interstation running time
(IRT), a penalty term PN has, however, been added. The
objective function is presented in (19), where PN is cal-
culated in (24) and (25). The threshold, denoted as PNy,
is established by calculating the total IRT in the timetable.
For each individual in the GA, the total IRT, denoted as T7,;,
is derived by the sum of T (), where T (/) represents the
IRT associated with the power profile index /. Meanwhile, the
penalty coefficient, PN,,, is established through experimental
trials, considering the magnitude of substation energy

, Iy Iy L o I,
min g ) e
st1<1ly,... Iy < IS1™ (20)
1< Lgr, .. I < 1827 @n
1< Loyt ..., Iy < 1S3™ (22)
1 <Igy1,..., Ly < 154™F (23)
pn = | PNo—T) - PNeg, if PNy — T > 0 (24)
0, else

T, =T+ +TU) +TUpp) + -+ T(I3).

(25)
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Fig. 8. Substation energy optimization with GA.

Based on the decision variables and the objective func-
tion, the GA is employed to obtain the minimum substation
energy supply. Assume that there are M chromosomes in the
initial population, the schematic GA optimization procedure
is shown in Fig. 8. The indexes, I;~Iy, are the genes of
each chromosome. The substation energy fr is calculated
by the data-driven based process, where the power profiles
and dwell times are obtained from the database according
to the indexes. For every iteration, several sets of headways
are randomly generated, with the number of sets equal to
the number of individuals. Each set of headways assigns
unique intervals to successive train pairs. These headways are
uniformly distributed, and their range is determined before
the optimization process to meet the specific needs of the
research. Then, the data process is carried out to obtain the
position and power for each train at each time, which would be
the input of the data-driven substation power model obtained
in Section III-B, and then derive the substation power. The
substation energy can then be calculated with the substation
powers. After the fitness value is calculated by using the
substation energy and the IRT penalty, the optimization end
requirement will be checked. If this is not the last generation,
selection, crossover, and mutation will be applied to generate
the next generation.

IV. CASE STUDY
A. Training of Data-Driven Model

The data of Beijing Yizhuang metro line is employed to
illustrate the performance of the data-driven method. The
length of this metro line is 22.73 km, containing 14 stations
and 12 rectifier substations. The maximum speed of the
line is 80 km/h. Fig. 9 shows the distribution of stations
and substations. The parameters of the traction system are
presented in Table I. In this research, the passenger mass and
the auxiliary power are assumed to be 0. These assumptions
are made to investigate the energy-saving performance of the
power supply system more effectively, isolating it from the
influence of passenger flow and other environmental factors.
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TABLE I
PARAMETERS OF THE TRACTION SYSTEM [24]

Category Parameters Values
Electrical Substation no-load voltage [V] 850
parameters Substation source resistance [Q] 0.02
Overvoltage limitation [V] 950
Power supply type DC
Mechanical Maximum service acceleration [m/s?] 0.8
parameters Maximum service deceleration [m/s?] 0.55
Maximum tractive effort [kKN] 160
Maximum braking effort [kN] 160
Train mass [tonnes] 199
Maximum traction power [MW] 2.65
Maximum braking power [MW] 2.65
Operational Maximum operation speed [km/h] 80
parameters

TABLE II
ALLOWABLE RANGE BASED ON THE CURRENT TIMETABLE

Dwell time
+5s

Interstation time
+5s

headway
+20s

Permissible range

Similar assumptions are also present in other studies focusing
on energy-efficient timetable optimization [9], [29], [30].

The database in this research is built based on the cur-
rent timetable of the Beijing Yizhuang metro line, with the
allowable ranges presented in Table II. Given that the fixed
headway is 254 s, the actual headway can vary randomly
within £20 s.

The computer used for ML is equipped with an Intel
Core i5-10210U processor, which has a base clock speed
of 1.60 GHz and a boost speed of 2.11 GHz. It includes
16 GB of installed RAM (15.8 GB usable) and operates
on a 64-bit system with an x64-based processor. The neural
network incorporates two hidden layers, each equipped with
ten neurons. The activation function used for these two hid-
den layers is the hyperbolic tangent sigmoid (tansig), which
facilitates nonlinear transformations. For the output layer,
the linear (purelin) activation function is selected, enabling
the network to produce outputs across a continuous range.
This configuration allows the model to effectively capture the
dynamics of train movements and power levels.

During training, we employed the Levenberg—Marquardt
algorithm (trainlm) with full-batch updates—meaning the
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entire training set was processed as a single batch each
epoch—and set the number of epochs to 150. A total of
1275000 training samples were collected from the simula-
tor. Before splitting, we used MATLAB’s built-in random
permutation function to shuffle the data, ensuring a random
selection of subsets. We then adopted a holdout validation
approach: the dataset was randomly divided into three parts,
with 70% used for training, 15% for validation, and 15%
reserved for testing. The training set was used to optimize
the model parameters, while the test set was used to evaluate
the model’s generalization capability. We monitored the data
distribution to confirm that the feature ranges were appropriate
for the neural network. The model’s performance was assessed
using the MSE, as shown in Fig. 10. After about 50 epochs,
the MSE of the substation power converged below 1072,

B. Case 1 (fixed headway)

1) Accuracy Test: For a fixed headway of 254 s, the
performance of the ML model can be seen in Fig. 11. For
50 000 sets of randomly selected speed profiles and dwell
times, the predicted substation power with the data-driven
model and the corresponding recorded power from the sim-
ulator is illustrated in Fig. 11(a). Each point on the plot
represents a pair of predicted and corresponding recorded
power values. It is clear that all the points cluster around the
line y = x. The correlation coefficient between the predicted
and recorded power can reach 0.999, indicating a strong agree-
ment. Additionally, to analyze the prediction error—defined
as the difference between predicted and recorded substation
power—we generate 1000 evenly spaced points between the
minimum and maximum values of this error. The probability
density of these errors, modeled using a fit normal distribution,
is calculated at each point. These calculations are represented
in Fig. 11(b). From this figure, we can see that the probability
density around O is the highest. Nearly all predicted values fall
within an error margin of £0.025 MW. While there are outliers
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TABLE III
TIME CONSUMPTION COMPARISON
Data-driven Linear regression Simulator
method method
Time [s] 4233 180 1,250,000

Intel Core i5-10210U processor, 16GB RAM, and Windows 10 operating system

with errors ranging from [—0.94, —0.025] to [0.025, 1.09];
their frequency is minimal and can be overlooked.

The proposed data-driven model is used to calculate the
energy consumption during a headway period and is then
compared with the linear regression method. Fig. 12 shows
the predicted power versus recorded power by the data-driven
method and linear regression method in [24], respectively.
In Fig. 12(a), the points all concentrate near the line of
equality. In contrast, the points are more dispersed in (b). The
correlation coefficient between recorded substation energy and
predicted substation energy can reach 0.998 by using the data-
driven method, which is much higher than that of 0.8615 by
the linear regression method.

The cumulative error of the predicted substation energy
with the data-driven method and with the regression method
are compared in Fig. 13. The data-driven approach nearly
guarantees an absolute error below 2.5 kWh, with a likelihood
approaching 100%. In contrast, the linear regression method
exhibits roughly a 95% probability of keeping the absolute
error below 10 kWh.

2) Calculation Time and Optimization Results: The com-
putational time required by the traditional simulation method,
linear regression method, and data-driven method for 500 000
headway periods is detailed in Table III. All three methods
are run on the same laptop independently. Because of the
simulator’s excessive time consumption, we adopt the average
computation time of 2.5 s for each headway period as a
basis for estimating the total time requirement. In contrast,
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the time required by the linear regression model and the
data-driven model is significantly less. Notably, the linear
regression model demands the least amount of time, while the
data-driven model’s time requirement is approximately 0.33%
of that of the simulator.

Because of the enormous computational time required, the
simulation method is impractical for optimizing speed profiles
and dwell times. For the two alternative methods, their results
are compared with those of the traction optimization method
(Trac_opt) [21]. Trac_opt is a method that does not account
for the power supply system or RBE. Instead, it minimizes
energy consumption solely by optimizing train speed profiles
to reduce traction energy.

In order to assess the electrical impact of these methods,
we input the optimized speed profile and dwell time indices
obtained from each approach into the power network simu-
lator. The simulator then produced the voltage, current, and
power curves shown in Fig. 14. Since the Beijing Yizhuang
metro line has 12 substations, displaying all of them would
make the figure overly complex and difficult to interpret.
Only the voltage and current of the Rongjing substation
are, therefore, shown to highlight the differences among the
optimization results. Additionally, the total power of all the
substations is summed at each time step for comparison. This
figure illustrates that the peak voltage of the data-driven and
linear regression methods is lower than that of the Trac_opt
method [Fig. 14(a)]. Additionally, Trac_opt exhibits higher
current peaks than the other two methods [Fig. 14(b)]. Further
calculations show that both the data-driven and linear regres-
sion approaches reduce substation energy consumption and
increase RBE by approximately 13% compared to Trac_opt
[Fig. 14(c)].

In order to further examine train-level power dynamics,
we use the optimized speed and dwell time indices from
the data-driven method and simulate the power profiles of
individual trains during a headway period. A total of 17 trains
operated in this period, and their power consumption is shown
in Fig. 15. For clarity, trains are separated by direction,
and gray dashed lines mark station positions (S1-S14) to
support analysis of interstation behavior. This representation
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provides both spatial and temporal insights into energy usage
at the individual train level, complementing the system-wide
assessment shown in Fig. 14.

C. Case 2 (flexible headway)

1) Headway Fluctuation Setting: For the Beijing Yizhuang
metro line, the headways at the peak time on weekdays and
weekends are about 254 and 600 s, respectively. In this case
study, the energy-saving performance of DD_GA and Trac_opt
are compared with headway fluctuating within [234, 274 s]
and [580, 620 s]. The substation energy supply and the regen-
erative braking efficiency during two hours are calculated.
The timetables during this period with headways randomly
fluctuating within £20 s are illustrated in Fig. 16. In order to
evaluate the results with different headway settings, we must
standardize the substation energy supply measurement. Using
the timetables in Fig. 16, we estimate the number of complete
journeys within a 2-h period, where a complete journey entails
a single train traversing from the start station through both
directions and returning to the start. These counts enable us
to calculate the average energy supply per train for a journey.
Specifically, Fig. 16(a) reveals 28 total complete journeys at
254 s headway, while Fig. 16(b) shows 12 at 600 s headway.

2) Headway Fluctuates Around 254 s: For the Beijing
Yizhuang metro line, the headway at the peak time during
weekdays is about 254 s. A headway time between 234 and
274 s for every two consecutive trains is, therefore, randomly
generated. The predicted power with the data-driven model and
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the recorded power by the simulator are shown in Fig. 17. The
correlation coefficient between recorded substation power and
predicted substation power can reach 0.993.

During the optimization process, the GA is configured with
a single-point crossover at a rate of 0.7, complemented by a
mutation rate set to 0.02 for each variable within an individual,
and the selection of individuals is facilitated through the
roulette wheel selection method. The maximum iteration num-
ber is 250. For the case when the headway randomly changes
within +20, +10, +5, and *1 s, the iteration processes
are shown in Fig. 18. The “mean subenergy” represents the
average energy supply from substations, calculated across all
individuals over 2-h intervals for each generation. For each
headway fluctuation scope, the iterations do not converge on a
specific value. This is because the objective is to minimize the
mean substation energy rather than minimizing the substation
energy of one particular individual in order to address the
random headway of each individual in every generation. This
figure, however, still shows a clear tendency of convergence.
Additionally, when the headway fluctuation is constrained
within 1 s, the convergence value is the lowest.

The optimization results of DD_GA are assessed against
Trac_opt. Our analysis compares DD_GA with Trac_opt over
two hours, focusing on substation energy and regenerative
braking across random headways. In order to mitigate the
impact of randomness on the outcomes, all results are obtained
by averaging the calculations from ten sets of randomly
generated headways. Considering that there are approximately
28 complete journeys during two hours, the results for one
single train over a complete journey are then calculated.

The key findings are summarized in Table IV. Because of
the introduction of PN in Section IV-C, the IRT of DD_GA
consistently remains less than or equal to that of Trac_opt
regardless of the headway changes. This makes sure that the
energy saving of DD_GA is not caused by extending the
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TABLE IV

ENERGY SAVING PERFORMANCE WITH HEADWAY
FLUCTUATING AROUND 254 s

Headway fluctuation +20s +10s +5s +1s
Trac_opt 3271 3271 3271 3271

Total IRT [s] DD GA 3271 3270 3271 3271

Substation  ener Trac_opt 3279 3255 3258 3247

[kWh] & DD GA 3228 3073 3032 3000

Difference  -5.1 -18.2 -22.6 -24.7

Traction ener Trac_opt 4424 4421 4427 4430

(KWh] gy DD_GA 4443 4403 440.8 4418
Difference 1.9 -1.8 -1.9 -1.2

Regenerative Trac_opt 1457 1479 1485 1494

braking energy DD GA 1525 160.9 1649 168.6
[kWh] Difference 6.8 13.0 164  19.1
Substation loss Ergcg}:t i } 3 (1) 13'2 }lg 18'3 é068
(kwh] Difference  -0.4  -18 2.5 22
. Trac_opt 19.8 20.1 203 20.4
Transmission  loss DD GA 20.0 186 185 182
(kWh] Difference 02 -15  -1.8 22

running times. The impact of headway fluctuation on traction
energy, substation loss, and transmission loss is quite small.
With traction optimization, the changes in these three variables
do not exceed 1 kWh. The differences between these variables
in the DD_GA results and the corresponding traction optimiza-
tion remain within 2.5 kWh for a single train over a complete
journey. In contrast, when headway fluctuations are maintained
within different ranges, the substation energy and RBE values
can change significantly. Specifically, implementing stricter
control over the variance in train headway can improve the
energy efficiency of optimized train speed profiles and dwell
times. When the headway fluctuations are constrained to £1 s,
DD_GA results in the most significant energy savings. Com-
pared to the Trac_opt strategy, it can reduce substation energy
by 24.7 kWh and increase RBE by 19.1 kWh.

The regenerative braking efficiency of Trac_opt and
DD_GA over different headway fluctuations is illustrated
in Fig. 19. The headway set index represents the index
of ten random headways varying within the correspond-
ing range. Data series 1-4 correspond to the optimization
results of DD_GA, with the headway randomly varying
within +20, 410, &5, and =1 s, respectively. Mean-
while, data series 5-9 correspond to the optimization
results of Trac_opt, with the headway randomly varying
within £20, +10, £5, and %1 s, respectively. Fig. 19 shows
that DD_GA'’s regenerative efficiency, s, consistently outper-
forms Trac_opt with headway fluctuations of 10, 5, and 1 s.
With headway fluctuations of 20 s, DD_GA’s n.g, however,
aligns closely with Trac_opt’s results, indicating negligible
energy savings for the optimal speed profile within this
fluctuation range.

3) Headway Fluctuates Around 600 s: Since the headway
at the peak time during weekends is about 600 s for Beijing
Yizhuang metro line, the headway fluctuation between 580 and
620 s is studied. By employing a random generation of
headway times within this interval for every pair of con-
secutive trains, we analyze the substation power prediction
performance of the data-driven model. The outcomes of this
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analysis are detailed in Fig. 20. The correlation coefficient
between recorded substation power and predicted substation
power can reach 0.998.

The parameter setting of the GA is the same as that in
Section II). For the case when the headway randomly changes
within 20, +10, 5, and *1 s, the iteration processes are
shown in Fig. 21. Although the degree of dispersion of the
points and the convergence values corresponding to different
headway fluctuations are different, the convergence trends are
the same as in Fig. 18.

The energy-saving performance of DD_GA and Trac_opt
are compared in Table V. Similar to the results in Table IV,
the IRT of DD_GA consistently remains less than or equal to
that of Trac_opt regardless of the headway changes. Substation
energy and RBE, moreover, vary significantly with different
headway fluctuation constraints. Implementing stricter con-
trol over train headway fluctuations can enhance the energy
efficiency of DD_GA’s optimization results. Among the four
headway fluctuation magnitudes, DD_GA saves the most
energy when the headway fluctuations are limited to +1 s.
Specifically, it reduces the substation energy by 41.2 kWh
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TABLE V

ENERGY SAVING PERFORMANCE WITH HEADWAY
FLUCTUATES AROUND 600 s

Headway fluctuation +20s  +10s +5s +1s
Trac_opt 3271 3271 3271 3271
Total IRT s] DD GA 3271 3269 3271 3271
Substation  ener Trac_opt 3613 3549 3533 355.6
[kWh] & DD GA 3575 3431 3311 3145
Difference  -3.8 -11.8 222 -41.2
Traction ener Trac_opt 436.8 436.7 436.8 4369
(kWh] & DD GA 4397 4386 4384 4372
Difference 2.9 1.9 1.6 0.3
Regenerative Trac_opt 1043 1109 1132 1109
braking energy DD GA 1104 1245 1359 1513
[kWh] Difference 6.1 13.6 22.7 40.3
Substation loss Elgcggt gg gg gg 22
[kWh] Difference 0.4 04  -14 2.1
. Trac_opt 19.2 19.7 20.1 20.0
Transmission loss DD GA 19.1 20.1 20.4 20 9
[kWh] Difference 02 04 03 09
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Fig. 22. Regenerative braking rate for each set of headway.

and increases the RBE by 40.3 kWh. Comparing Table V
with Table IV, we can find that the substation energy supply
for one single train over the whole journey has increased,
which means that longer headway increases the average energy
consumption for a single train. Additionally, when the head-
way is strictly controlled to less than 1 s, a baseline headway of
600 s achieves maximum energy savings that are almost twice
as high as those with a 254-s headway. This indicates that
longer headways, when tightly managed, offer substantially
greater energy savings than shorter ones.

Consistent with the results above, when headway fluctuates
by 1 s, DD_GA’s regenerative braking efficiency remains
stable at around 90%. This efficiency is about 10% higher than
when the headway fluctuation is within 5 s, and significantly
exceeds all results from Trac_opt as illustrated in Fig. 22.
As the headway fluctuation range widens, however, DD_GA’s
Nreg becomes more erratic, as illustrated by the orange dashed
line. Similar to Fig. 19, DD_GA’s n,, lies within that of
Trac_opt when the headway fluctuation magnitude is 20 s.
Comparing Figs. 19 and 22, it becomes evident that imposing
stricter constraints on headway results in significantly higher
energy savings, particularly when the baseline headway is
longer.
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V. CONCLUSION

This article proposes a data-driven substation power predic-
tion model to simplify the power flow simulation of the railway
power network and reduce the computational demands. In this
research, a neural network is used to develop the data-driven
model, which maps train position and power to substation
power. This model is then integrated with GA to minimize
substation energy. We conducted a comparative assessment of
its time requirements and accuracy under both fixed and flexi-
ble headways. The results show that the calculation time of the
data-driven model is only 0.33% of the power flow simulation
while keeping the accuracy above 99%. For fixed headway,
the energy supplied by the substations can be reduced by 13%
compared to Trac_opt. The case study on headway fluctuating
around 254 and 600 s shows that the greater the fluctuation
in headway, the poorer the energy savings of the optimization
results. When the fluctuation reaches 20 s, it is not possible
to find a set of speed profiles and dwell times that achieve
energy savings for all headways.

While the proposed model effectively predicts substation
power and reduces computation time, it assumes stable oper-
ations with limited headway fluctuations. This may limit its
performance in scenarios involving major delays, extended
dwell times, or significant passenger flow variations. The cur-
rent model also lacks real-time adaptability. Future work will
focus on integrating real-time data and adaptive algorithms,
such as reinforcement learning, to enhance its robustness and
energy efficiency under dynamic operating conditions.
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