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Abstract

Commonsense knowledge plays a key role in human intelligence. It is

knowledge possessed by most humans that helps them in everyday situ-

ations. One possible way is to store the knowledge in four types. Each

piece is either positive or negative, and generative or discriminative. For

e�cient retrieval and storage, a uniform model is needed. Existing mod-

els for commonsense knowledge are not �t for negative and discriminative

knowledge. The aim of this paper is to create a uniform model to store

both positive and negative generative and discriminative knowledge tu-

ples. Models are evaluated on a set of generalized queries as well as on

the storage they require. Four possible models were evaluated of which

two were the most promising: the generative model and the combined

model. The generative model is e�cient in storage and retrieving gen-

erative knowledge for concepts, but relatively slow in distinguishing con-

cepts. Combining the generative model with discriminative tuples gives

the combined model, a model that is the most e�cient for all queries but

expensive in storage. Which of the two models is most suitable depends

on the application and the available resources.

1 Introduction

Commonsense knowledge is information possessed by most humans that helps
them make sense of everyday situations [1], [2] The grass is green, an apple can
be eaten, and a ball is circular in shape. Commonsense knowledge comes in
many types. There is generative knowledge which gives commonsense knowl-
edge on a concept and a relation [3]. For example an apple is a fruit is generative
knowledge. Apart from generative knowledge there is also discriminative knowl-
edge which tells whether two concepts can be di�erentiated on a relation. An
example of discriminative knowledge is A dog is an animal and a car is not, we
can di�erentiate a dog and a car here. Apart from generative and discrimina-
tive knowledge a distinction can also be made between positive and negative
knowledge. The examples above are both of positive knowledge. However, the
discriminative example already shows that just having positive knowledge isn't
enough [4]. The part A car is not an animal is an example of negative (genera-
tive) knowledge. It states that a relation does not hold for a concept. Without
negative knowledge it is not known whether a relation does not hold for a con-
cept or whether it is unde�ned (missing) [5]. Negative discriminative knowledge
is de�ned as the case were two concepts can't be di�erentiated for a certain
relation. An example of that: A pear is a fruit and so is an apple, the two
concepts can't be di�erentiated on the relation that something is a fruit since
both are. Each piece of generative or discriminative knowledge is either positive
or negative.

An important task of AI systems is to quickly query commonsense knowl-
edge. To facilitate this, commonsense knowledge needs to be stored e�ciently
so that minimal storage space is used whilst queries can be executed at maxi-
mum speed. Existing data structures for commonsense knowledge are not �t for
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negative knowledge and discriminative knowledge. Therefore there is need for a
model to support these types of knowledge. This paper will develop a uniform
model to represent both positive and negative generative and discriminative
knowledge.

In the next section, some preliminary knowledge will be given about com-
monsense knowledge as well as an existing tuple structure that will be used
throughout the paper. After that in section 3 it will be explained how a model
will be developed and how one is evaluated. Before the models are given a set
of queries will be de�ned in section 4 where the models will later be tested on.
In section 5 possible models will be created. Using the queries of section 4 the
models will be evaluated in section 6. After the evaluation of each model, the
models will be compared in section 7. Finally in section 8 conclusions will be
made and possibilities for future work are given.

2 Preliminary Knowledge

Commonsense knowledge is used for commonsense reasoning, which is the pro-
cess of interpreting and making assumptions about everyday situations [6], [7].
For example when a person grabs some food one could reasonably argue the
food is going to be eaten. Because of the implicit characteristic of commonsense
knowledge, it is di�cult to acquire for machines. This task together with rep-
resenting the knowledge and reasoning with it is a major continuous challenge
in AI [1], [8]. In encyclopedic knowledge machines do not have problems, ask
them about a term and they can easily retrieve much information about that
term [9]. However, asking a machine �the simple task� to distinguish between a
truck and an overpass it may lag; leading to fatal incidents and thus illustrating
the need for commonsense knowledge so that machines are able to better dis-
tinguish di�erent things [9]. More speci�cally there is a need for more positive
discriminative (and thus negative generative) so that AI machines perform bet-
ter at discriminating concepts [10]. Commonsense knowledge can be classi�ed
into di�erent types and taxonomies. In-depth characterizations of knowledge
have not yet been given [11].

Knowledge engineering is the research area of developing methods to gather
commonsense knowledge [12]. For example, this can be done by interrogating
humans through games with a purpose (GWAP) [13]. One such game is the
game FindItOut! [11]. In the game, which is based on "Guess Who!" each
player is presented with a set of cards containing random concepts and a single
card containing the concept their opponent has to guess. Alternating, they have
to ask the other player a question so they can remove the concepts that do not
match the question's answer. The player who �rst guesses the other's card wins.

The game generates commonsense knowledge data in the form of tuples
which are classi�ed into two dimensions. Tuples are either generative or dis-
criminative and either positive or negative. Positive-generative and negative-
generative tuples take the form of +/-<concept, relation, input> where the
relation and input apply to the concept and the sign says whether it is correct
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or not. For example, to say an apple is a fruit the tuple would become +<apple,
isA, fruit>. Discriminative knowledge tuples consist of two concepts as well as
a relation and an input, and have a positive sign if the two concepts can be
distinguished using the relation and input, and a negative sign otherwise. For
example, an apple and a banana can't be distinguished on the relation and in-
put isA fruit, and will therefore be in a negative discriminative tuple: -<apple,
banana, isA, fruit>. If a discriminative tuple is positive the relation and input
hold for the �rst concept [14]. This tuple structure de�ned by Balayn, He, Hu,
et al. [11] will be used as a basis for this paper.

3 Methodology

In this section the process of developing possible models will be explained as
well as the method that will be used to evaluate the models.

3.1 Model creation

The target of creating a model is to de�ne a tuple structure which can be trivially
used in database systems. Not all tuples have to be of the same type. A possible
structure could for example consists of both triples and quadruples. The data
within a single type should however be consistent. The possible models will be
created using the tuple structure of Balayn, He, Hu, et al. [11] combined with
intuitive ideas.

3.2 Evaluating the models

To create a possible model one needs to know how it can be evaluated. In this
paper, the focus for evaluation will be on both time complexity and storage. For
the time complexity, a set of generalized queries will be created. Every query
will be evaluated for every model. The time complexity will be given in the
Big-Oh notation. Because the worst-case time complexity is likely to not be
relevant (this would be given for example if all relations are related to a single
concept), the average time complexity will be used. For the storage usage of a
model, the number of tuples needed to store a model will be used.

4 Queries

To later evaluate the models that will be given in section 5, a set of queries
is necessary to �nd the e�ciency of the models. For the de�nition of queries
a set of queries for both generative knowledge and discriminative knowledge
will be de�ned. The queries are chosen intuitively based on the generative
and discriminative knowledge tuples. It is assumed that for every query the
concept(s) on which the query applies is known.
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4.1 Generative queries

For generative knowledge, the most important queries consist of getting infor-
mation about a certain concept. The �rst two queries query the characteristics
of a concept: what relations and inputs are associated with a concept. The
third query is used to check if a speci�ed sign, relation and input apply to a
concept.

1. Given a concept and a sign, what are the relations and inputs?

2. Given a concept, relation and a sign, what are the inputs?

3. Given a concept, relation, sign and input does it exist?

As can be seen, some of the queries can be expressed in some other of these
queries. For example query 3 can easily be obtained from query 1 with an extra
check whether the inputs of query 3 are in the result set of 1. However, since
some models might be able to outperform this trivial way of substituting queries
they are included in the evaluation set.

4.2 Discriminative queries

For the discriminative knowledge, the �rst two queries request the di�erences
between two concepts. For the sixth query, the relation and input are known
and the question is whether two concepts can be di�erentiated by this.

4. On what relation-input combinations do two concepts di�er?

5. On what relation-input combinations don't two concepts di�er?

6. Can we di�er two concepts for a speci�c relation and input?

Also for the discriminative queries it is the case that they could be written in
terms of other queries with an extra check. But again some models might be
more e�cient than that.

5 Models

After having de�ned the queries, in this section, some possible models will be
given where the queries are later evaluated on. For every model, a tuple struc-
ture will be given as well as a visualization in the form of a graph. For the
visualizations, a small set of sample data is used which can be seen in Table 1.
The source for the graph generation can be found on GitHub1.

1https://github.com/HarmHoog/CS-Graph-Generator
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apple isA fruit
pear isA fruit
fruit isA food
apple isA fruit
dog isA animal
fruit contains vitamins
dog isA pet
dog eats food
pet atLocation home
car has wheels
car has horn
human eats food
human drives car

pet isA food
dog isA food
dog drives car
car atLocation home
dog has wheels
human has wheels
fruit has wheels

Table 1: Sample data for the model visualizations, positive tuples are in the left
table and negative tuples in the right

5.1 Generative model

The �rst model that will be discussed is the generative model. This model
is based on the tuples discussed by Balayn, He, Hu, et al. [11]. In this case,
only the generative tuples are used. Note that the discriminative tuples can
be retrieved from combinations of generative tuples. For example if two con-
cepts have the same sign, relation and input a negative discriminative tuple
can be formed. The same goes for positive discriminative tuples except for
that the sign has to be di�erent. The tuples for this model thus look like
< sign, concept, relation, input >. In �gure 1 the Generative model is shown
in a graph.
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Figure 1: The Generative model visualized. Green arrows represent positive
signs and red arrows negative. The direction of the arrow is given by the relation.

5.2 Discriminative model

Just like generative tuples, discriminative tuples as described by Balayn, He,
Hu, et al. [11] can also be used to store the knowledge. Following the example
of the previous section the tuples for this model look like:
< sign, concept#1, concept#2, relation, input >. If the sign is positive
(e.g. we can discriminate) then the �rst concept is the one corresponding to the
positive of the relation and input. In �gure 2 a visualization of this model is
given. Note that the amount of nodes in this visualization is clearly less than the
amount seen in �gure 1 of the Generative model. This is because discriminative
knowledge is dependent on combinations of generative knowledge, and if such
combinations aren't available no discriminative knowledge is available.
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Figure 2: The Discriminative model visualized. The blue edges represent pos-
itive discriminative knowledge and the orange edges the negative. Only the
positive edges are directional since for the negative edges both concepts have
the same sign for the corresponding relation and input.

5.3 Combined model

Another possibility is to combine the two previous models. Instead of using one
type of tuple two types are then used. Both the generative:
< sign, concept, relation, input > tuples as well as the discriminative:
< sign, concept#1, concept#2, relation, input > tuples are then used. In
�gure 3 a visualization can be seen.

Figure 3: The Combined model visualized. The edges follow the same structure
as in �gure 1 and 2
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5.4 Hypergraph model

Another possible optimization can be given by combining the edges of the gen-
erative model. This could be done by using so-called hypergraphs which consist
of hyperedges. Each hyperedge in a hypergraph can contain multiple vertices as
start and end point [15]. If in a normal directed graph multiple vertices point
to the same vertex, in a hypergraph this could be combined into one hyperedge.

Using a hypergraph for the generative knowledge, tuples can be combined by
using the tuple form: < sign, relation, input, Set(Concept) >. Every concept
that has a generative tuple with the same sign, relation and input as another is
then combined into a single edge. In �gure 4 the hyperedge form can be seen.

Figure 4: The Hypergraph model visualized. Every pentagon represents a hy-
peredge where all the incoming edges are in the Set(Concept) and the one
outgoing edge points to the input. The color of pentagon corresponds to its
sign.

6 Analyzing the models

Since for all the models the tuples are based on the existing structure given by
Balayn, He, Hu, et al. [11] the following sets will be used:
G : the set of generative tuples
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D : the set of discriminative tuples
H : the set of hyperedge tuples

Because the interest is on the average time complexity the following con-
stants are also de�ned:
E : The average number of generative edges a node has
L : The average number of discriminative edges a node has
A : The average number of concepts in the set of a hyperedge.
N : The number of concepts

For every model, the time complexity will be given for all queries de�ned in
section 4. One important factor that needs to be dealt with is the time it takes
to retrieve a tuple. This time is dependent on the database system that is used
and the way a tuple is retrieved. For example for a set of n tuples, this could
take O(N) time if it just goes through all the tuples, O(logn) time if a system
uses for example a binary search system or even O(1) if some sort of hashing
is used. In this paper, it is assumed that retrieving one or more tuples from a
database using its key, which will be de�ned for every model, takes O(1) time.
The choice of using the O(1) time was made because then the query time in
Big-Oh does not depend on the tuple retrieval and therefore the query execu-
tion time can be more explicitly stated. In the generative model, the key is
the concept and in the discriminative model, it is either one of the concepts.
More explicitly: getting all generative tuples of a single concept takes O(1) time.
The same goes for the discriminative model but then for both concepts. For
the combined model a combination of the two applies. The only model that is
slightly di�erent is the hypergraph model. The hypergraph model uses the sign,
relation and input combined as a key to retrieve tuples.

6.1 Generative model

Given that retrieving a set of tuples related to a concept is done in O(1) time
the time complexities for the generative model are mostly trivial. For the �rst
three queries, the tuples are retrieved for a concept and �ltered in O(E) time.
For the next two queries, it is necessary to retrieve the tuples of both concepts
and �nd combinations of the two which can be done in O(E2) time. For the
last query for both concepts, it needs to be checked whether the relation and
input hold which can be done in O(E +E) time. Since the number of tuples is
the same as the number of generative tuples the storage is |G|.
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QUERY TIME
Given a concept and a sign, what are the relations and inputs? O(E)
Given a concept, relation and a sign, what are the inputs? O(E)
Given a concept, relation, sign and input does it exist? O(E)
On what relation-input's do two concepts di�er? O(E2)
On what relation-input's don't two concepts di�er? O(E2)
Can we di�er two concepts for a speci�c relation and input? O(E + E)

Table 2: time complexity results for the generative model

6.2 Discriminative model

Finding the time complexities for the discriminative model is more complex.
For the �rst three queries, the problem arises that not all knowledge can be
retrieved using only discriminative tuples. This can easily be seen from the
negative discriminative tuples. For two concepts it is known that in terms of
generative knowledge the combination of the relation and input is either positive
or negative for both concepts but it is unknown which it is. Therefore the �rst
three queries can't be executed on the discriminative model. For the last three
queries, the time complexity is more trivial in terms of the number of edges, it
consists of looping through the discriminative tuples, that a concept has, and
�ltering out the right ones. Therefore the time complexity for these queries is
O(L). In an ideal situation, the constant L could be compared to the number of
generative edges E. This is the case when for all tuples of generative knowledge
every concept has either a positive or negative equivalent of that tuple. Then
there exists a tuple of discriminative knowledge for every relation and input
between all concepts. Therefore L can be at a maximum n ∗ E (where n is the
number of concepts).

Just like the generative model the storage for the discriminative model is
|D| since only discriminative tuples are used. The amount of discriminative
tuples is usually very high compared to the number of generative tuples. This is
because one generative tuple can be used to create N−1 discriminative tuples if
there exists a generative tuple with the same relation and input for every other
concept.

QUERY TIME
Given a concept and a sign, what are the relations and inputs? -
Given a concept, relation and a sign, what are the inputs? -
Given a concept, relation, sign and input does it exist? -
On what relation-input's do two concepts di�er? O(L)
On what relation-input's don't two concepts di�er? O(L)
Can we di�er two concepts for a speci�c relation and input? O(L)

Table 3: time complexity results for the discriminative model
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6.3 Combined model

Since the combined model uses tuples from both the generative and discrimi-
native models, the best of both the models can be selected. The discriminative
model is not conclusive for the �rst three queries so the results of the generative
model will be selected. For the last three queries, it has to be known whether
L < E2. Because not all combinations of generative knowledge between con-
cepts are de�ned on average it can be assumed this is indeed the case. Therefore
for the last three queries, the discriminative model will be selected. For the stor-
age, it uses both the generative and discriminative tuples so this will be equal
to |G|+ |D|.

QUERY TIME
Given a concept and a sign, what are the relations and inputs? O(E)
Given a concept, relation and a sign, what are the inputs? O(E)
Given a concept, relation, sign and input does it exist? O(E)
On what relation-input's do two concepts di�er? O(L)
On what relation-input's don't two concepts di�er? O(L)
Can we di�er two concepts for a speci�c relation and input? O(L)

Table 4: time complexity results for the combined model

6.4 Hypergraph model

For the hypergraph model, the tuples use a di�erent structure and because of
that, the queries are processed much di�erently. For the �rst two queries, there
has to be looped over all the hyperedges and included concepts which will take
O(HA) (where H is the number of hyperedges and A the average number of
concepts per hyperedge) time. For the third query the hyperedge is known and
only the set of concepts needs to be checked in O(A) time. For the fourth
and �fth query for every hyperedge, it needs to be checked whether the second
concept exists also in either the same hyperedge or in the equivalent hyperedge
with only a di�erent sign. This can be done in O(HA). For the last query the
speci�c hyperedge is known and therefore only the set of concepts needs to be
checked.

The storage in terms of the number of tuples is logically much smaller than
the previous models since all relations and inputs are combined. The tuples on
themselves are larger now since they store a set of concepts. It is comparable to
the generative knowledge in storage however every combination of sign, relation
and input is only stored once. Therefore the storage of the hypergraph model
is less than |G|.
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QUERY TIME
Given a concept and a sign, what are the relations and inputs? O(HA)
Given a concept, relation and a sign, what are the inputs? O(HA)
Given a concept, relation, sign and input does it exist? O(A)
On what relation-input's do two concepts di�er? O(HA)
On what relation-input's don't two concepts di�er? O(HA)
Can we di�er two concepts for a speci�c relation and input? O(A)

Table 5: Time-complexity results for the hypergraph model

7 Comparison and Discussion

Considering that the discriminative model cannot execute the �rst three queries
it will not be further considered. It might only be suitable for applications where
the sole purpose is to distinguish concepts, but even then the combined model
will give the same results for slightly more storage (the set of discriminative
tuples is usually much larger than that of the generative).

For the other three models, there seems to be a trade-o� between storage
and query time. The generative and hypergraph models are using less storage
than the combined model but are less e�cient in query execution. Because the
checking of every hyperedge and associated concepts is an expensive operation
the generative model outperforms the hyperedge model in query execution whilst
the hyperedge model only uses slightly less storage. This makes the generative
model preferable.

Between the generative model and the combined model, the choice needs to
be made whether one cares more about query execution speed or storage. The
generative model uses little storage compared to the combined model. However,
the combined model is better in distinguishing concepts. Which one is more
suitable depends on the application and the available resources.

8 Conclusion and Future Work

The goal of the paper was to create a uniform model for generative and dis-
criminative commonsense knowledge tuples. The research has resulted in two
possible models: the generative model and the combined model. The genera-
tive model is e�cient in storage but relatively slow in executing discriminative
queries whilst the combined model is the fastest in query execution but rela-
tively more expensive in storage. Which one is more suitable depends on the
application as well as on the available resources.

Another solution that might be worth looking into in future research is a
complex model. Using graphs with generative knowledge on the axis, discrimi-
native knowledge could be represented as combinations of generative knowledge.
Such a solution requires a more mathematical basis to analyze. For the hyper-
edge model, one could also consider using di�erent types of edges where for
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example the relations and inputs are accumulated in one edge for a concept
instead of the other way around.

In conclusion, it can be said that the best model depends mostly on the
application as on the available resources. Both the generative and combined
model are good candidates for a uniform model and which has to be used can
be best decided on which suits best for a speci�c application.

9 Responsible Research

The research is done in a way such that it is reproducible. Before the creation
of the models a background on the tuples and knowledge base has been given on
which the models were going to be based. The possible models were thoroughly
explained as well as the manner in which the models were evaluated. The data
and code for the graphs have been made available for reproducibility as well.
The models were then analyzed on the evaluation methods and compared to
each other. Finally, conclusions have been made and explained.
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