

Delft University of Technology

FlowSpec
A declarative specification language for intra-procedural flow-Sensitive data-flow analysis
Smits, Jeff; Wachsmuth, Guido; Visser, Eelco

DOI
10.1016/j.cola.2019.100924
Publication date
2020
Document Version
Final published version
Published in
Journal of Computer Languages

Citation (APA)
Smits, J., Wachsmuth, G., & Visser, E. (2020). FlowSpec: A declarative specification language for intra-
procedural flow-Sensitive data-flow analysis. Journal of Computer Languages, 57, 1-39. Article 100924.
https://doi.org/10.1016/j.cola.2019.100924

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1016/j.cola.2019.100924
https://doi.org/10.1016/j.cola.2019.100924

Contents lists available at ScienceDirect

Journal of Computer Languages

journal homepage: www.editorialmanager.com/cola/default.aspx

FLOWSPEC: A declarative specification language for intra-procedural flow-
Sensitive data-flow analysis
Jeff Smits⁎,a, Guido Wachsmuthb, Eelco Vissera

a Programming Languages Research Group, Delft University of Technology, Van Mourik Broekmanweg 6, XE Delft 2628, the Netherlands
bOracle Labs, Prime Tower, Floor 17, Hardstrasse 201, Zürich 8005, Switzerland

H I G H L I G H T S

• Data-flow analysis is the static analysis of programs to estimate their approximate run-time behavior or approximate intermediate run-time values. It is an integral
part of modern language specifications and compilers. In the specification of static semantics of programming languages, the concept of data-flow allows the
description of well-formedness such as definite assignment of a local variable before its first use. In the implementation of compiler back-ends, data-flow analyses
inform optimizations.

• Data-flow analysis has an established theoretical foundation. What lags behind is implementations of data-flow analysis in compilers, which are usually ad-hoc.
This makes such implementations difficult to extend and maintain. In previous work researchers have proposed higher-level formalisms suitable for whole-
program analysis in a separate tool, incremental analysis within editors, or bound to a specific intermediate representation.

• In this paper, we present FlowSpec, an executable formalism for specification of data-flow analysis. FlowSpec is a domain-specific language that enables direct
and concise specification of data-flow analysis for programming languages, designed to express flow-sensitive, intra-procedural analyses.

• We define the formal semantics of FlowSpec in terms of monotone frameworks. We describe the design of FlowSpec using examples of standard analyses. We also
include a description of our implementation of FlowSpec.

• In a case study we evaluate FlowSpec with the static analyses for GreenMarl, a domain-specific programming language for graph analytics.

A R T I C L E I N F O

MSC:
68N15

A B S T R A C T

Data-flow analysis is the static analysis of programs to estimate their approximate run-time behavior or ap-
proximate intermediate run-time values. It is an integral part of modern language specifications and compilers.
In the specification of static semantics of programming languages, the concept of data-flow allows the de-
scription of well-formedness such as definite assignment of a local variable before its first use. In the im-
plementation of compiler back-ends, data-flow analyses inform optimizations.

Data-flow analysis has an established theoretical foundation. What lags behind is implementations of data-
flow analysis in compilers, which are usually ad-hoc. This makes such implementations difficult to extend and
maintain. In previous work researchers have proposed higher-level formalisms suitable for whole-program
analysis in a separate tool, incremental analysis within editors, or bound to a specific intermediate re-
presentation.

In this paper, we present FLOWSPEC, an executable formalism for specification of data-flow analysis. FLOWSPEC is a
domain-specific language that enables direct and concise specification of data-flow analysis for programming
languages, designed to express flow-sensitive, intra-procedural analyses. We define the formal semantics of
FLOWSPEC in terms of monotone frameworks. We describe the design of FLOWSPEC using examples of standard
analyses. We also include a description of our implementation of FLOWSPEC.

In a case study we evaluate FLOWSPEC with the static analyses for GREEN-MARL, a domain-specific programming
language for graph analytics.

https://doi.org/10.1016/j.cola.2019.100924
Received 11 August 2019; Accepted 20 September 2019

⁎ Corresponding author.
E-mail addresses: j.smits-1@tudelft.nl (J. Smits), guido.wachsmuth@oracle.com (G. Wachsmuth), e.visser@tudelft.nl (E. Visser).

Journal of Computer Languages 57 (2020) 100924

Available online 23 November 2019
2590-1184/ © 2019 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/BY/4.0/).

T

http://www.sciencedirect.com/science/journal/25901184
https://www.editorialmanager.com/cola/default.aspx
https://doi.org/10.1016/j.cola.2019.100924
https://doi.org/10.1016/j.cola.2019.100924
mailto:j.smits-1@tudelft.nl
mailto:guido.wachsmuth@oracle.com
mailto:e.visser@tudelft.nl
https://doi.org/10.1016/j.cola.2019.100924
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cola.2019.100924&domain=pdf

1. Introduction

Nielson et al. define program analysis as follows: Program analysis
offers static compile-time techniques for predicting safe and compu-
table approximations to the set of values or behaviors arising dynami-
cally at run-time when executing a program on a computer [1, p. 1].
Data-flow analysis can answer questions such as if and when data in a
variable is accessed, or if certain invariants hold on the data. Data-flow
analyses are used to provide static guarantees in the form of compiler
warnings and errors, to inform optimizations, to identify security pro-
blems, or problematic code style.

1.1. Uses of data-flow analysis

Data-flow analyses may be part of the static semantics of a language.
For example, in Java a final field in a class must be initialized for an
object of that class by the end of its construction [2, ch. 16]. Since
constructor code can have conditional control-flow, a data-flow ana-
lysis is necessary to check that all possible execution paths through
constructors actually assign a value to the final field. For another ex-
ample, the compiler for Rust gives warnings on code paths that are
unreachable [3].

Data-flow analyses are commonly used to inform optimizations in
compilers. Live variables analysis provides information on which vari-
ables will be used with their current value, which can be used by a form
of dead code elimination called dead store elimination [4, p. 24]. This
optimization removes assignments to variables which are not observed.
Available expressions analysis identifies expressions that have already
been computed, which can be used for common subexpression elimina-
tion.

In some compilers, and in separate tools, data-flow is used to
identify security problems. A common approach is taint analysis, which
can analyze where data from relevant sources flow. For example, a
source of data could be untrusted data from user input. User input
should not be used directly in the text of an SQL query, as this opens the
possibility of SQL injections.

Data-flow analysis is also applied in code style tools that check for
code patterns which are hazards to maintenance or likely to be a logic
error. Examples are analyses such as a switch case in Java which has
some code, but then falls through to the next case. Although a case that
directly falls through is likely intentional, one that has some code may
be missing a break statement. Another style lint, as these analyses are
often called, is the definition of a non-final variable that is only assigned
once. Both of these lints are part of the CheckStyle [5] tool for Java.

1.2. Implementation of data-flow analysis

Data-flow analyses are important for the specification and im-
plementation of programming languages and domain-specific lan-
guages (DSLs). However, they are expensive to implement, especially in
a general purpose programming language. The compiler for GREEN-
MARL [6], a graph analytics DSL from industry, requires more than 2000
lines of C++ code for a data-dependence analysis that takes the do-
main concepts of the language into account. Since DSLs typically have a
relatively small audience, this is reflected in their development team
size. The implementation cost of even the most common data-flow
analyses can become prohibitive in such a situation.

Language workbenches aim to facilitate high-level language defi-
nition and generation of implementations, thereby improving the si-
tuation for DSL development. For example, the Spoofax language
workbench [7] provides declarative meta-languages for the concise
specification of a programming language. An SDF3 [8] specification is
used by Spoofax to generate a parser. An NaBL2 [9] specification of the
static semantics of the language is used to generate a type checker.

The goal of this work is to provide the same benefits of concise,
executable specification for data-flow analysis. In this paper, we present

FLOWSPEC, a specification language for intra-procedural, flow-sensitive
data-flow analysis. FLOWSPEC is integrated in the Spoofax language
workbench and makes use of the provided ecosystem. The analysis that
is generated from FLOWSPEC consumes analyzed abstract syntax trees, and
turns these trees into a control-flow graph using the control-flow rules.
The control-flow graph is then used as input for data-flow analysis,
based on the data-flow rules in a FLOWSPEC specification. When the data-
flow analysis requires names or types, these can be referenced directly
in the specification.

We evaluate FLOWSPEC with specifications of analyses, and we present
case studies in static analysis definitions for GREEN-MARL, an industrial
DSL for high performance, concurrent graph analytics, and STRATEGO, a
term transformation language.

In summary, the contributions of this paper are:

• The language design of FLOWSPEC, a language parametric, domain-
specific language for the definition of intra-procedural, flow-sensi-
tive data-flow analysis.

• The formal semantics of FLOWSPEC in terms of Monotone Frameworks,
a solid mathematical foundation that has been used for decades for
sound approximation of data-flow information beyond sets.

• The implementation of FLOWSPEC, including the integration into the
Spoofax language workbench, a fixed-point solving algorithm, and
an adapted Strongly Connected Component (SCC) algorithm with
extra ordering guarantees within the SCCs. The use of SCCs and their
ordering is not novel, but we are not aware of a published algorithm
that gives this directly.

• The evaluation of FLOWSPEC on the GREEN-MARL graph analytics DSL,
which shows that the language can concisely and cleanly express
analyses separately from the definition of transformations.

• The evaluation of FLOWSPEC on the STRATEGO term transformation
language, which shows that the language can express interesting
non-standard analyses on more languages than a typical imperative
language.

• The performance evaluation of FLOWSPEC on different size STRATEGO

strategies, which show that the speed of FLOWSPEC is reasonable for
use within an optimizing compiler.

This paper extends the initial SLE 2017 paper on FlowSpec [10]. We
describe the FlowSpec design and implementation in more depth and
provide evidence of its expressiveness by means of a significantly ex-
tended set of examples. We give a more complete definition of the
syntax and semantics of the FlowSpec core language including its
connection to name analysis using NaBL2. We describe the im-
plementation of FlowSpec, including an adapted SCC algorithm and
worklist algorithm, and discuss its integration in the Spoofax language
workbench. We extend the case study of the application of FlowSpec to
the specification of data-flow analyses for the Green-Marl data analytics
DSL with more and more complete specfications of analyses, demon-
strating that FlowSpec can be used to concisely define data-flow ana-
lyses that can be used to replace ad hoc implementations of these
analyses in the Green-Marl compiler. We present a new case study,
applying FlowSpec to the specification of reaching definitions analysis
for the Stratego rewriting language. We evaluate the performance of
FlowSpec analyses for GreenMarl and Stratego.

Outline: In the next section we discuss background on data-flow
analyses and monotone frameworks. In Section 3 we introduce FLOWSPEC

by example. We present the semantics of FLOWSPEC in Section 4. In
Section 5 we describe the implementation of FLOWSPEC, both its in-
tegration into Spoofax and the independent solver algorithm. In
Section 6 we present the first part of our evaluation of FLOWSPEC through
data-flow analyses specified for the GREEN-MARL programming language.
We present some benchmarks that show that these analyses are prac-
tically usable. In Section 7 we present the second part of our evaluation
of FLOWSPEC through a data-flow analysis for the STRATEGO term trans-
formation language. This section includes a comparative performance

J. Smits, et al. Journal of Computer Languages 57 (2020) 100924

2

evaluation with the same data-flow analysis as currently implemented
in the STRATEGO compiler. In Section 8 we compare against related work,
in Section 9 we discuss future research directions, and finally Section 10
concludes the paper.

2. Background: data-flow analysis and monotone frameworks

In this section we introduce data-flow analysis in general and
monotone frameworks as a mathematical framework for sound, termi-
nating data-flow analysis.

2.1. Data-flow analysis by example

We start this introduction to data-flow analysis with two examples.
Consider the live variables analysis in Fig. 1. Live variables analysis
provides the set of variable names, where the value currently bound to
that variable may be read further along in the program. The figure
shows an example program, the results of live variables analysis for
each statement, both before and after the effect of the statement, and
the control-flow graph of the program. The control-flow graph shows
how the program will execute either statement 5 or statement 6 based
on whether condition 4 holds. Note how the variable x is only read in
one branch of the if statement. Before the if statement, in the LV∘ set,
x is still in the set as the analysis approximates the behavior of both
branches.

When a variable is not in the set of live variables after the statement
that assigns a value to that variable, that means that the value assigned
is not actually read. This information can be used by an optimization to
safely remove that assignment from the program. In the example, the
assignment to x in statement 1 is such a redundant assignment, which
can be recognized by the absence of x in the LV• set of that first
statement. This is consistent with the program, which does not read x
until statement 6, and yet the variable is unconditionally reassigned in
statement 3.

For comparison, we now discuss another data-flow analysis, avail-
able expressions, shown in Fig. 2. Available expressions analysis provides
the set of expressions that have already been computed. Expressions
become unavailable again when a variable used in the expression is
assigned a new value. Note that for an expression to be available, it
needs to be available in all paths. At the start of the while loop, we can
only consider expressions available that are available right before the
loop and at the end of the body of the loop. Therefore a*b is not
available in AE∘ of condition 3, whereas a+b is.

The information from available expressions analysis can be used to
remove redundant recomputations of expressions. We can save a re-
peated expression in a separate variable and use that variable instead of

the expression, which is known as common subexpression elimination. In
our example this would be expression a+b which can be replaced by x
in condition 3.

In general, we note that for live variables analysis we need to know
the behavior in the next part of the program, whereas for available
expressions we need to know the expressions computed earlier.
Therefore the computation of an analysis may need to propagate in-
formation either forward or backward. We also need to approximate the
behavior of the program when there are multiple paths to a program
point. In live variables analysis we consider variables read in any path,
whereas in available expressions we consider only expressions com-
puted in all paths. It is useful to model these paths of control-flow with
a control-flow graph, to abstract from concrete language constructs.

2.2. Taxonomy of data-flow analysis

The example analyses are both flow-sensitive analyses. These ana-
lyses take the control-flow of the program into account, i.e. the order in
which effects occur. Flow-insensitive analysis is less accurate, but also
computationally cheaper. This can be a useful trade-off for whole-pro-
gram analysis, where procedure calls are taken into account. A refined
form of flow sensitivity is the path-sensitive data-flow analysis, which
derives information from conditionals as it takes one path or another.
Information from conditionals is also used in the type systems of some
programming languages [11–13], where the terminology is flow-sen-
sitive types. In programming languages these flow-sensitive types are
primarily used for conveniences such as tracking null-safety of point
types, as well as more general structural sub-typing support.

The data-flow analyses we just presented are intra-procedural, i.e.
they only consider code within procedures, and not procedure calls. By
contrast, inter-procedural analysis takes calls into account. Since pro-
cedures can be called from multiple places, a sound analysis must either
approximate over all contexts in which a procedure can be called, or the
analysis must be context-sensitive. Different forms of context sensitivity
exist. For example, call-site sensitivity is a form of context sensitivity that
keeps a string of calls through which the current procedure was
reached. A well-known control-flow analysis, is k-CFA [14].

When a programming language allows dynamic dispatch, e.g.
through function pointers, higher-order functions, or inheritance, the
control-flow from a call site can depend on run-time values. At this
point inter-procedural data-flow analysis becomes interdependent with
a dynamic control-flow analysis. This interaction between control-flow
and data-flow is difficult to handle, as more approximation in one
analysis, which speeds up that analysis, will result in more work for the
other analysis. In object-oriented languages, the context sensitivity that
shows potential for these analyses is object-sensitivity, which tracks the
allocation sites of objects [15]. Generally, finding the right contexts
with a good trade-off in efficiency and accuracy are a topic of active
research.

Fig. 1. An illustration of live variables (LV) analysis. On the left is an example
program in the WHILE language, with added brackets to number program frag-
ments. On the right is the control flow graph (CFG) of the program. In the
center is the analysis result. The LV∘ and LV• are respectively before and after
the variable accesses of the CFG node.

Fig. 2. An illustration of available expressions (AE) analysis. On the left is an
example program in the WHILE language, with added brackets to number pro-
gram fragments. On the right is the control flow graph (CFG) of the program. In
the center is the analysis result. The open and closed dots on the analysis ab-
breviation are before and after a CFG node’s effect, respectively.

J. Smits, et al. Journal of Computer Languages 57 (2020) 100924

3

We aim to support flow-sensitive, intra-procedural data-flow ana-
lysis in FLOWSPEC as a start, which provides language designers with the
tools to accurately analyze local properties.

2.3. Monotone frameworks

Monotone frameworks [16] is a formal method for describing data-
flow analyses. We give a short introduction to the framework here.
Throughout this paper we use the notation from Nielson et al. [1], which is
the dual notation of the original publication (e.g. ⊔ instead of ∧).

In short, monotone frameworks is a general lattice theoretic fra-
mework for the definition of data-flow analyses. It captures the com-
monalities of intra-procedural, flow-sensitive data-flow analyses, and
requires a number of components to be plugged in for any specific
analysis. Given the correct components, this framework not only gives a
clear, terminating semantics to a data-flow analysis, but also a simple
worklist algorithm that can perform the analysis. The components re-
quired to instantiate a monotone framework are:

• The control-flow graph of a program in the form of a label set, an
edge list of label pairs, and the starting labels.

• The type of data gathered by the data-flow analysis, along with its
complete lattice instance of finite height. The framework uses lattice
theory to guarantee a sound and terminating semantics.

• Transfer functions for every label in the control-flow graph, where
the functions are monotone increasing with respect to the lattice.

• An initial value for the data-flow analysis at the starting labels.

2.4. Control-flow graphs

In order to make a data-flow analysis flow-sensitive, we need the
control-flow of a program. In monotone frameworks program fragments
are labelled (ℓ ∈ Lab) to distinguish different parts of the program. A
control-flow graph F is a set of edges (a subset of Lab× Lab) between
different labels.

For a forward propagating data-flow analysis, this graph can be used
as is. For a backward propagating analysis the edges of the graph are
simply flipped. The framework also takes the ‘extremal labels’
E Lab(), which are the start nodes of the analysis.

2.5. Data-flow type and transfer functions

Each control-flow graph node has an effect. An analysis specifies
how this effect influences the analysis through a transfer function

>f L L: , where L is the type of the information the data-flow analysis
propagates. At the extremal labels, this information is initialized with
the extremal value ι.

An established factorization of these transfer functions is the kill and
gen sets approach. For set based analyses, a kill set is defined separately
from a gen set for each control-flow node of interest. The transfer
function is then generic: first remove the kill set, then add the gen set.

Fig. 3 shows the monotone framework instance for available ex-
pressions analysis. The transfer function takes the set of available ex-
pressions, first removes any expressions containing the variable that is
assigned (or nothing if it is not an assignment), then it adds any new
expressions that do not contain the variable that is assigned. Note how
the gen set has to repeat the conditions of the kill set. The reason for
this repetition is that the right-hand side of the expression, that gen-
erates available expressions, happens before the assignment effect of
the left-hand side. In a backward analysis this would not be the case,
therefore on first glance independent kill and gen sets are sometimes
dependent. We argue that this subtlety can be a source of analysis bugs.

2.6. Control-flow and lattices

If a control-flow graph node ℓ has the information Analysis∘(ℓ) be-
fore the effect of ℓ then we can use its transfer function fℓ to compute
Analysis•(ℓ). However, when multiple control-flow paths join at a cer-
tain node, we need to merge the data from those different paths. We use
the ⊔ operator for this to reach these equations:

=

=

=

F

E
E

f

Analysis () {Analysis () | (,) }

where if
if

Analysis () (Analysis ())

E

E

•

•

The open dot is the analysis result before the effect of ℓ, and the
closed dot is for after the effect of ℓ. The transfer function fℓ is used to
compute the effect of ℓ. The ⊔ operator is used to combine the analysis
data after the previous nodes ℓ′ as the analysis data right before the
current node ℓ. We use the initial value ι for the initial labels E and a ⊥
value elsewhere, where = =d d d .

Finding the fixed point to these equations may not be possible
though, as loops in the control-flow graph make the equations re-
cursive. Therefore we need stronger guarantees, for which lattices are
used.

Monotone frameworks require a complete lattice instance (⊤, ⊥, ⊑,
⊔, ⊓) for the type L of the data-flow property. The intuition is that ⊤ is
the value of L that reads as “could be anything”, the coarsest approx-
imation available. By using the least upper-bound operator (⊔) we
combine the information from two paths in the control-flow so it
soundly approximates both (upper bound), while keeping as much in-
formation as possible (least upper bound).

In Fig. 3, the monotone frameworks instance of available expres-
sions uses a powerset lattice. Available expressions analysis is a must
analysis, which only keeps information that must be true for all paths.
Therefore the analysis applies set intersection at join-points.

Now that we have a clearer definition of the ⊔ operator, we can
resolve the issue of finding a fixed point to the equations. Monotone
frameworks have two particular requirements. First, the transfer func-
tions fℓ need to be monotone increasing with respect to the lattice. This
means that in a loop either the information becomes more approximate,

Fig. 3. The monotone framework instance for available expressions. An l∈ L is
an element of the lattice. Two of those elements can be compared with ⊑, and
joined with ⊔. ⊥ is the bottom of the lattice. The framework operates on the
forward control-flow F, from the set of labels E, where the initial analysis in-
formation is ι. Prog is the entire program, blocks collects all labelled blocks, FV
collects all free variables, init gives the initial label, and flow gives the control
flow of the argument. AExp gives all arithmetic expressions.

J. Smits, et al. Journal of Computer Languages 57 (2020) 100924

4

or it stays the same, in which case we have a fixed point. Secondly, the
lattice must adhere to the ascending chain condition. In other words,
the lattice must have a finite height. This way when the information on
a loop keeps increasing, it takes a finite number of steps to reach ⊤,
which is a fixed point for monotone increasing transfer functions.

Of course ⊤ is the coarsest approximation available. Although some
approximation is necessary to keep the analysis computable, we can
usually do better than ⊤ everywhere. The fixed point of the Analysis
that we want is the least fixed point. This fixed point has enough in-
formation to be valid, with as little approximation as necessary. The
accuracy of this fixed point is still dependent on the choice of lattice L
and transfer functions f.

In the original work on monotone frameworks [16] the dual notion
with meets (greatest lower bounds) and greatest fixed points was used.
There, the authors give the Meet Over all Paths (MOP) as the desired
solution, but show that this solution can be undecidable to calculate. In
cases where it can be calculated, the greatest fixed point coincides with
it, in cases where it is undecidable, the greatest fixed point safely ap-
proximates the MOP solution [1, sect. 2.4.2]. Therefore a correct in-
stantiation of a monotone framework gives a computable, safe ap-
proximation of the run-time behavior of a program.

2.7. Worklist algorithm

Given an instance of a monotone framework, we can compute the
fixed point of the recursive equations iteratively with a worklist algo-
rithm, such as the one in Fig. 4. This algorithm works in three steps.
First it initializes the analysis result Analysis∘ to what comes down to

,E and the worklist to all nodes in the control-flow graph. Second, it
loops over the worklist, taking out one node at a time, and propagates
transferred analysis information to successors in the control-flow graph.
If that information is new (⋢) the ⊔ operator is used to add the in-
formation to the analysis information of the successor, and that suc-
cessor is added to the worklist again. Once no more new information is
discovered, the worklist becomes empty. The third step computes
Analysis• as defined in its formula.

2.8. Monotone frameworks recap

To summarise, to specify a data-flow analysis with monotone fra-
meworks, we need the following ingredients:

1. A finite flow, ×F Lab Lab().
2. Labels ℓ ∈ Lab, which reference program fragments.
3. A set of extremal labels, E Lab(), typically the initial label(s) of

the flow.
4. A type L of the data-flow property, which is a complete lattice of

finite height.
5. Monotone transfer functions fℓ for every label ℓ in the control-flow

graph.
6. An extremal value, ι ∈ L, for the extremal labels.

Monotone frameworks give a design pattern for correct data-flow
analysis, and an implementation for such an analysis. However, direct
instantiations of worklists for different analyses, especially analyses
that use the results of other analyses can result in a complex im-
plementation that is difficult to update or adapt.

In language workbenches we want to specify a data-flow analysis
and get the implementation ‘for free’, i.e. we abstract from the im-
plementation method. The iterative algorithm can still be used under
the hood, but is no longer directly seen. The specification should be
easy to understand and avoid pitfalls such as we saw in the gen and kill
set definition of available expressions. In short, we need a domain-
specific language for data-flow analysis specification.

3. FLOWSPEC by example

FLOWSPEC is a domain-specific language for specifying data-flow
analysis, that builds on the theory of monotone frameworks. A FLOWSPEC

specification only includes the analysis-specific elements, and from this
specification we generate an implementation for that analysis. In this
section we introduce FlowSpec by a number of examples.

3.1. Requirements

In language workbenches we want to specify a data-flow analysis
and get the implementation ‘for free’, i.e. we abstract from the im-
plementation method. The specification should be easy to understand
and avoid pitfalls such as we saw in the gen and kill set definition of
available expressions for monotone frameworks.

Within the context of a language workbench, we need a language
that reuses information that is already available within a language
specification of the workbench. We do not need to define a data-flow
analysis directly on source text of a program, as we can obtain the
abstract syntax of that program within the workbench. We can also
reuse name and type analysis that is available. Our domain-specific
language does not need to support the specification of such analyses, it
should only support the use of the analysis results.

What we need then is a language that uses the concepts of abstract
syntax, names and types, and provides features to define what is dis-
tinctly part of the domain of data-flow analysis. FLOWSPEC provides the
features to define the relation between the control-flow and the abstract
syntax of a programming language, and what effects control-flow nodes
of the programming language have for different data-flow analyses.

3.2. Concrete and abstract syntax

In Spoofax the concrete and abstract syntax of a programming
language are defined in SDF3. As an example, we provide the SDF3
definition of the syntax of our running example language in Fig. 5.

Fig. 4. A worklist algorithm to iteratively solve the equations of a monotone
framework instance. W is the worklist. Lab is the set of labels used in the
control-flow graph F.

J. Smits, et al. Journal of Computer Languages 57 (2020) 100924

5

This SDF3 grammar uses templates to specify grammar rules along
with some basic formatting hints. Within the outer brackets (either
square or angled), are terminals, within another pair of brackets are
non-terminals. The first rule defines that a statement can be a sequence
of two statements. The annotation right disambiguates this rule by
making the rule right-associative. In other words, a sequence of three
statements S1 S2 S3 is parsed as S1 (S2 S3). In this example grammar we
define statements as sequences of statements, assignment statements, if
statements and while loop statements.

We define expressions within conditions and assignment right-hand
sides. Expressions include a number of binary and unary operations

which have associativity and priority to disambiguate. The lexical
syntax for identifiers and integer literals is defined at the end with some
regular expressions.

The abstract syntax of our running example is already written as
part of the SDF3 grammar, in the form of constructor names on the
rules. A sequence of statements uses Seq, an addition uses Add, et ce-
tera. From the grammar we can generate the signatures of the abstract
syntax, as shown in Fig. 6. The first two sections of signatures define the
shape of the abstract syntax tree (AST) as defined in the grammar.
However, we have desugared unary and binary operations to common
constructors that have a separate operator field. These constructor
signatures are hand-written, and some simple transformation rules can
translate the original AST to this desugared version that we will operate
on throughout the examples.

In Fig. 7 we give an example program along with its abstract syntax
tree. The different Spoofax meta-languages, including FLOWSPEC, work
with these ASTs by pattern matching against parts of the tree.

Fig. 5. The SDF3 grammar for the running example language WHILE.

Fig. 6. The abstract syntax definitions of our running example language WHILE.

Fig. 7. An example program (top) with its desugared abstract syntax tree
(bottom).

J. Smits, et al. Journal of Computer Languages 57 (2020) 100924

6

3.3. Name and type analysis

Name and type analysis is extracted from an NaBL2 specification.
This analysis annotates the entire tree with unique numbers, so dif-
ferent occurrences of a name can be distinguished from each other. All
information of names and types is then attached to these occurrences.

The reason we care about name and type analysis, is that data-flow
analysis commonly gathers information about names. Many program-
ming languages allow shadowing of names, i.e. definition of a name in
an inner scope when the same name is present already in an outer
scope. Therefore the name of a variable is not unique enough when
data-flow analysis collects information on that name.

In FLOWSPEC we operate on analyzed ASTs, in which name occur-
rences have unique numbers. Within FLOWSPEC we borrow the NaBL2
notation Namespace{name} for name occurrences. In FLOWSPEC, such
an occurrence denotes names after name analysis. That is, names re-
presented by the same occurrence, correspond to the same declaration.
Thus, name capture is not a concern in FLOWSPEC.

3.4. Control-flow graphs

For flow-sensitive data-flow analysis we require a control-flow
graph. Control-flow graphs are a finite representation of a possible in-
finite set of paths through a program. For example, as statements of a
program are executed, control flows from one statement to the next.
However, as soon as a program has a loop, control can flow around the
loop or at some point exit the loop. A control-flow graph is a finite
model that show where control could flow. Thereby a loop in a program
become in a loop in a control-flow graph. Examples of control-flow
graphs can be found back in Figs. 1 and 2.

3.5. Mapping from abstract syntax to control flow

In FLOWSPEC we build control-flow graphs between occurrences in the
AST. Not only a string occurrence as is usually used for names, but also
entire subtrees of the AST can be control-flow graph nodes. The FLOWSPEC

specification defines which AST nodes should be considered control-
flow graph nodes, and how control flows within and between different
AST nodes.

Consider Fig. 8 where we have defined some example mapping

rules. The rules are defined case-by-case using patterns to match the
signature from Fig. 6. Each rule uses the contextual entry and exit
nodes to connect the sub-graph of the matched AST node to the outer
graph. These nodes do not show up in the final control-flow graph.
When the AST node matched by the pattern should be included as a
control-flow node, we use the this keyword to denote that. The di-
rect use of a pattern variable from the AST pattern is substituted with
the subgraph of that AST node in accordance with other control-flow
rules.

Fig. 9 shows how control-flow rules can be applied to a program in
a number of steps. First the sequence rule is used to create an edge
between the two statements. Then the assignment rule is used to
create nodes of the assignments, with the expression preceding it.
Then the binary operation rule creates a node for the operation and
its operands, and finally the operands are turned into nodes them-
selves.

The rules of IfThenElse shows that multiple chains of edges in the
control-flow graph may be defined. This allows us to express conditions.
The sub-graph of condition c is followed by both the subgraph of the
then-branch and subgraph of the else-branch. Each of the branches
connect to the exit of the construct. Multiple uses of the c sub-graph

Fig. 8. Control-flow graph rules for the WHILE language. Each rule can have one
or more chains of edges, where entry and exit represent the connection
between the local control flow the rest of the graph.

Fig. 9. Control-flow graph rules applied to a piece of abstract syntax, where
double square brackets show parts of the AST that are not processed yet.

J. Smits, et al. Journal of Computer Languages 57 (2020) 100924

7

refer to the same subgraph. This is also used in the While rule, where
multiple uses of condition c construct the loop.

In these rules binary and unary operations, i.e. expressions, are also
considered part of the control-flow graph. This is not a restriction in
FLOWSPEC, we define the control-flow this way to the benefit of our data-
flow analysis definitions later. One could also use node c within the
chain of edges to make condition expression c a node in the control-
flow graph1

The rules for variable references and integer literals are a shorthand
to define that this is a node in the control-flow graph and it has no
further control-flow inside. The following would be equivalent to the
variable reference rule:

VarRef(_) = entry -> this -> exit

3.6. Data-flow type and transfer functions

FLOWSPEC defines data-flow analyses as properties on the control-flow
graph. During analysis, the data of this property is propagated along the
control-flow graph. Every node in the control-flow graph has an asso-
ciated effect on this data.

In Fig. 10 we show FLOWSPEC’s analogue of transfer functions for live
variables analysis: property rules. Property rules show both the direc-
tion of the data-flow analysis, in this case backward, and define the
data-flow property in terms of itself. We have a rule for assignments,
which only applies the effect of the assignment itself and disregards the
right-hand side expression. A separate rule for the variable reference
expression handles the effect of reading a variable. We are able to split
these two effects because earlier we defined control-flow in expressions
too.

The FLOWSPEC specification of available expressions is given in
Fig. 11. We use an external property refs from NaBL2 to extract re-
ferences from expressions. The effects of the assignment and its right-
hand side expression are split over multiple rules again. The assignment
filters out those expressions that use the variable that is being assigned
to. We can express this as a direct filter instead of relying on global
program information of all expressions, as was the case in the monotone
frameworks definition in Fig. 3. Since our control-flow graph includes
the expressions in an assignment separately, it models the ordering of
effects directly. Therefore the FLOWSPEC specification does not suffer from
the subtle interdependence that the traditional kill-gen definitions
have.

3.7. Lattices and termination

The control-flow can split and join because of conditional control-flow
such as an if statement. We can propagate data along both edges of a
split, but need to merge the data coming from multiple directions at a join.
The data is merged before the property rule of the join-point node is ap-
plied. We require a lattice instance (⊤, ⊥, ⊑, ⊔, ⊓) for the type of the data-
flow property, and use the least-upper bound ⊔ at join points in the
control-flow. In our examples the MaySet and MustSet are lattice in-
stances that use the Set type:

A MaySet performs set unions at control-flow join points and
compares with non-strict subset comparison. A MustSet uses inter-
section and non-strict superset comparison. It uses a symbolic bottom
element to represent the full set of possible values in the analysis.

3.8. Very busy expressions

Very busy expression analysis provides the set of expressions which

Fig. 10. Live Variables specification in FLOWSPEC. Note how the rule for assign-
ments does not inspect the right-hand side expression. Instead the control-flow
is defined within expressions (not in this figure), and a separate rule for the
variable reference expressions adds live variables. Names are added to the live
variables as names within a namespace Var. External name information is used
to handle name issues such as shadowing.

Fig. 11. Available Expressions specification in FLOWSPEC. We consider references
in expressions a separate concern based on names, not flow and therefore out of
scope for our language. Note how the assignment rule only handles the as-
signment effect, expressions are visited separately.

Fig. 12. Very Busy Expressions specification in FLOWSPEC.

1 In fact this is syntactic sugar for nodet where t is the whole AST node
matched by the pattern of the rule.

J. Smits, et al. Journal of Computer Languages 57 (2020) 100924

8

will definitely be calculated in the future. This information can be used
to hoist an expression out of an if statement if it is calculated in both
branches. In Fig. 12 we provide the definition of very busy expressions
analysis in FLOWSPEC. Note how similar this analysis is to the available
expressions analysis.

3.9. Reaching definitions

Reaching definition analysis is an analysis that provides the posi-
tions in the program where a variable was last assigned a value. This
can be multiple positions since a variable may be assigned in different
conditional paths in the control-flow. See Fig. 13 for the FLOWSPEC de-
scription of reaching definitions. To preserve the information from all
branches, we use a MaySet. The occurrence is used to denote the
position in the program where the assignment occurred.

The sole rule for reaching definitions analysis of our example lan-
guage is that of the assignment. There we remove any previously
reaching definitions of the currently assigned variable. We add the pair
of the name and the occurrence of the assignment.

3.10. Constant propagation and folding

Constant propagation is the name of both an analysis and the cor-
responding optimization. The optimization replaces uses of a variable
with its value if that value is guaranteed to be constant. Constant
folding is the optimization that computes constant expressions and

replaces those expressions with the computed result. We combine these
two optimizations and make them part of our constant propagation, to
improve the accuracy of the analysis results. Because of constant
folding, more constants can be found. Because more constants can be
found, and filled into expressions, more constant expressions can be
folded.

In Figs. 14 and 15 we give the definition of this combined constant
propagation analysis in FLOWSPEC. The constant propagation property
had a Map type. A FLOWSPEC Map forms a lattice if the value type forms a
lattice. Any key not bound in the map, instead maps to the top of the

Fig. 13. Reaching Definitions specification in FLOWSPEC.

Fig. 14. Constant propagation specification in FLOWSPEC. CP holds the map of
names to constants and 0, 1 or 2 constants from previous computations.

Fig. 15. The type, function and lattice definitions for constant propagation
specification in FLOWSPEC.

J. Smits, et al. Journal of Computer Languages 57 (2020) 100924

9

lattice of the value type. The ⊔ and ⊑ operators are defined point-wise.
This means that if a variable is only constant in one condition branch,
when it joins with another branch the variable will no longer be con-
sidered constant.

The constant value lattice has a symbolic top and bottom, and
constants which are not ordered. Therefore when two branches in the
control-flow join, and different constant values for the same variable
are found, that variable is no longer constant at the join point. The
constant propagation property rule takes assignment into account and
applies the foldConst function, which computes constant expressions.

3.11. Sign analysis

Sign analysis is a data-flow analysis that computes the possible sign
of integers typed variables. This can be used to detect if a comparison
condition will always evaluate to a constant, which makes further
analysis more accurate as a branch of control-flow is eliminated. Sign
analysis is similar in definition to constant propagation as illustrated in
Fig. 16.

3.12. Definite assignment

Definite assignment analysis keeps a set of variables which have
definitely been assigned a value. This information can be used to give
warnings or error upon the use of a possibly uninitialized variable. The
FLOWSPEC specification of definite assignment is in Fig. 17.

4. The semantics of FLOWSPEC

In this section we present the semantics of FLOWSPEC. For brevity we
only show rules for the novel parts of the language, and use monotone
frameworks as the semantic model for the language. We will discuss the
language in roughly the same order as in the last section. Please refer to
Fig. 18 for a small syntax definition of the language, from which we will
use non-terminals to introduce judgements of the semantics.

Note that the this construct in FLOWSPEC is syntactic sugar for a
node t where t refers to the entire AST that was matched with pattern
p.

Fig. 16. Sign Analysis specification in FLOWSPEC.

Fig. 17. Definite Assignment specification in FLOWSPEC.

Fig. 18. The core grammar of FLOWSPEC.

J. Smits, et al. Journal of Computer Languages 57 (2020) 100924

10

4.1. Control-Flow rules

The control-flow rules, that map the abstract syntax of a language to
its control-flow, are defined case-wise with AST patterns. To model the
behavior of the virtual entry and exit nodes in these rules, we employ a
constraint based semantics, given in Fig. 19. The smallest set that sa-
tisfies these constraints is the control-flow graph that the rules define.
We use =p a to abstract over pattern matching, where p is the
pattern, aℓ is the labeled AST node, and Γ is the environment with
bindings that come from the match. The extremal labels are all possible,
valid bindings of ℓ∘ and ℓ• for [rulei] where aℓ is the whole program.

In general the four labels left of the turnstile are the virtual entry
and exit labels, and the start and end labels. The entry and exit labels
are mostly left to be inferred by the rules. The chain rule [noedge]
connects the labels in a chain by using an inference variable as a label to
connect the two judgements. The chain rule [edge] connects the labels

by using two inference variables and adding an edge between these
variables to the graph.

For the chain element rules [en] and [ex] we assume that entry
nodes are only on the left-most end of a chain, and exit nodes are only
on the right-most end of a chain. The entry and exit rules simply equate
the two labels left of the turnstile, without putting any constraints on
the two labels. The [end] and [start] rules are similar, except these use
the downward propagated startℓ and endℓ nodes that are created by the
root rule. The [lab] rule looks up the label of the AST node, and re-
quires that both labels left of the turnstile are equal to this label. This
rule is the one that adds an actual label to the system of rules, instead of
an inference variable. This forces the [edge] rule to be used between two
AST nodes, resulting in actual edges in the constraints. Lastly the [cfg]
rule handles the recursive call of cfg, where it will use any cfg rule
from the program which matches the AST node that the variable refers
to.

4.2. Transfer functions

Transfer functions for properties come from the property rules in
FLOWSPEC. These rules define Analysis•(ℓ) in terms of Analysis•(ℓ′).
However, there can be multiple matching edges, multiple ℓ′. Therefore,
we use =Analysis () Analysis ()F(,) • for recursive calls instead.
This means that we can map our property rules onto mathematical

Fig. 19. Semantic constraints of the control-flow rules in FLOWSPEC.

Fig. 20. Mapping of transfer functions in FLOWSPEC to Monotone Frameworks.

Fig. 21. Big-step semantics of a subset of expressions in FLOWSPEC. An occurrence
can only be found on expressions that evaluate to terms from the program,
which have an occurrence number i. The static components used are: the set of
references and declarations , the scope graph , and the type relation .

J. Smits, et al. Journal of Computer Languages 57 (2020) 100924

11

transfer functions, which is what we do in Fig. 20. Again, we abstract
over pattern matching, and we translate expressions into lambda terms
to fit the mathematical framework.

We use for the transfer function space. The property rules are
translated by pattern matching on the AST, then substituting all re-
cursive calls with l, the argument name of the transfer function, and
finally translating the functional code into a single mathematical ex-
pression.

A mapping from expressions to lambda terms would be a tedious
exercise, therefore we separately define the big-step semantics of the
interesting part of the expressions in Fig. 21. In particular we have
describe to lookup of occurrences, types and names. The occurrence
lookup extracts the occurrence index from a term that originated from
the program. Type lookup uses the occurrence index to uniquely
identify a term in the program and looks up the type in globally
available type relation . Next to type information, we also have access
to name information from static analysis, such as scope graph , set of
reference , and set of declarations . This provides the information
necessary for the two name lookup rules, which together normalize
names to their declaration. A declaration is directly found in the ,
while a reference in is resolved using the scope graph. These nor-
malized names give an intuitive equality semantics for names in FLOW-

SPEC: names that resolve to the same declaration are the same.
In the rules for transfer functions we saw that a property rule can

use the property information from the neighboring node. A property
can also make use of other properties that have already been calculated.
Note that this means that properties cannot depend on each other cy-
clically. As long as no cyclic dependency exists, we can define a prop-
erty lookup that uses the property information after the effect of the
node ([property]).

4.3. Lattices

Users of FLOWSPEC can define their own algebraic data types and

lattice definitions on these types. Of the 5-tuple (⊤, ⊥, ⊑, ⊔, ⊓), ⊓ and ⊤
are not actually used by the implementation and may be left out of the
lattice definition. The other three elements are called bottom, leq and
lub. The grammar for this part of the language can be found in Fig. 22.
The lattice definition contains an associated type to that it can be used
in any place where a type can be used. We provide an example of a
constant propagation lattice in Fig. 23. Lattices are required in the type
position of a data-flow property definition. External property defini-
tions, which may give access to other analysis information such as name
sets and type are not required to hold lattices.

4.4. Built-in types and functions

FLOWSPEC has the built-in types Set, Map and List, and a number of
built-in functions on these types. The MaySet and MustSet can
technically be defined within FLOWSPEC. However, the MustSet needs a
symbolic bottom value to represents the largest possible set. For ease of
use we make MustSet built-in so values from the lattice can be con-
sidered sets instead of a union type of sets and the symbolic bottom
value.

5. Implementation

We integrated our implementation of FLOWSPEC in the Spoofax [7]
language workbench. Spoofax provides domain-specific meta-languages
to declaratively specify a programming language. In this section we
provide an overview of how FLOWSPEC is integrated into Spoofax and
what the different parts of the FLOWSPEC implementation are.

5.1. Architecture

Consider Fig. 24. SDF3 is used for the specification of the grammar
and abstract syntax, from which a parse table and different editor ser-
vices are extracted [17]. The parse table is used by the parser in Spoofax
to parse program text into an abstract syntax tree (AST). NaBL2 [9] is
used from specifying name and type rules, based on the scope
graphs [18] model that can handle many different binding patterns.
With an NaBL2 specification, Spoofax can extract constraints from a
program AST, which are fed to a custom constraint solving engine that
builds the scope graph.

Fig. 22. The types and function part of FLOWSPEC’s grammar.

Fig. 23. A constant propagation type and lattice in FLOWSPEC. The ⊑ operation is
derived from the ⊔ operation by default, although we allow both to be defined.

Fig. 24. Architecture diagram of FlowSpec within the context of the Spoofax
language workbench. A program from an object language is first parsed using a
grammar in SDF3. Then we use an NaBL2 static semantics definition to analyze
the names and types in the program. The same machinery is used to build the
control flow graph, based on the FlowSpec control flow graph rules. A separate
fixed point solver is the new addition that computes data-flow information
based on the FlowSpec specification.

J. Smits, et al. Journal of Computer Languages 57 (2020) 100924

12

FLOWSPEC is active in this same stage. Based on a FLOWSPEC specifica-
tion, in particular the control-flow rules, we can automatically extract
more constraints from the program AST to build the control-flow graph
(CFG). The same constraint solving engine is used, which we adapted to
be able to build a control-flow graph. At this point each CFG node is
also associated with a transfer function.

The transfer functions, derived from the property rules, are passed
to a separate fixed-point solver that we built for FLOWSPEC, along with the
CFG and scope graph. Remember that name information from the scope
graph is also used by FLOWSPEC. The end result is the computed data-flow
properties, which can be queried in a later stage. These properties are
connected to CFG nodes, which are in turn AST nodes, therefore you
need only the AST node and the name of the property to request the
information.

5.2. Control flow graph construction

The control-flow graph is built in two steps. First the CFG rules from
a FLOWSPEC specification are used to extract edges from the program AST.
The edge list is used to create the control-flow graph. At this point the
control-flow graph still uses explicit artificial nodes for every entry
and exit.

5.3. Data-flow solver

The data-flow solver takes in the CFG, the scope graph and the
transfer functions. We apply the transfer functions through an inter-
preter written in the Truffle [19] framework.

The simplest version of a solving algorithm for monotone frame-
works is a worklist algorithm. All nodes of the CFG are added to the
worklist algorithm. When the algorithm computes a new value for a
node from the worklist, all out-neighbors of that node in the CFG get re-
added to the worklist. Although this is a correct algorithm, it may
compute information in an inefficient order when the graph has loops.
See Fig. 25 for a visual example of efficient and inefficient order.

5.3.1. Strongly connected components
We first compute a topological ordering of strongly connected

components (SCCs) in the control-flow graph [20,21]. Within each SCC
we use a reverse post-order of the depth first spanning forest [22]. This
ordering is more efficient in that we can compute fixed points per SCC
and only propagate information to other SCCs in the graph afterwards.

It is also designed so the initial ⊥ value of the lattice is not given to
the user-defined transfer functions, it only occurs in lattice operations
¬ and ⊔. This can be important as in general a must analysis has the set
of all possible values as the bottom of the lattice. This can of course be
restricted to a set with all possible values from the program, but such a
set would then have to be provided by the analysis author. Instead we
can make sure this is not a concern by not exposing ⊥ to user-defined
transfer functions, which allows us to describe ⊥ symbolically for must
analysis. The lattice operations have clearly defined laws around ⊥

Fig. 25. An illustration of efficient and inefficient order in a backward analysis
that requires two round through loop 3,4,5 before reaching a fixed point. The
inefficient order always propagates from 3 to 2,1 first, whereas the efficient
order first propagates from 3 to 5,4.

Fig. 26. The adapted version of Tarjan’s strongly connected components, which
gives topologically ordered strongly connected components (SCCs) where the
SCCs have reverse postorder in their depth-first spanning tree.

J. Smits, et al. Journal of Computer Languages 57 (2020) 100924

13

without needing to look into the set, so we can implement the opera-
tion’s cases with ⊥ symbolically.

The computation of the ordering uses a slightly adapted version of
Tarjan’s strongly connected components (SCCs) algorithm [23] in
Fig. 26. Tarjan’s algorithm already gives the strongly connected com-
ponents in reverse topological order. To get the topological order out,
we use a stack instead of an array to add the SCCs to when they are
discovered. We also keep an extra stack where nodes of an SCC are
added in postorder, in contrast to the set or boolean flag which is added
in preorder. Since the algorithm already does a depth-first search, this
gives us a reverse (because of the stack) postorder over the depth-first
spanning forest of the SCC.

5.3.2. Solving algorithm
As our data-flow properties may (non-cyclically) depend on each

other, we order the properties topologically and then solve each one in
turn. The algorithm is given in pseudo-code in Fig. 27.

The first inner loop initializes the property analysis. The extremal
labels starts of the control-flow graph F′ are initialized with the ex-
tremal value Prop.initial, everything else with ⊥.

The main loop traverses the topologically ordered strongly con-
nected components (SCCs), and uses a while loop to recompute the
SCC if the previous iteration changed something. No worklist is ne-
cessary as any node can influence any other node.

The SCC itself is traversed in its reverse post-order. For each node ℓ
in the SCC we traverse the outgoing edges (ℓ, ℓ′) and use the transferred
version of the property at ℓ to see if it would contribute to ℓ′. If so, the
transferred property of ℓ is added to the property for ℓ′ with the least-
upper-bound operator.

After the main loop, the final loop uses the transfer function one

more time to calculate the property just after the effect of each control-
flow graph node.

5.3.3. Filtering the control-flow graph
For every data-flow property, the control-flow nodes have an asso-

ciated transfer function. Most nodes in the graphs have the identity
transfer function, especially entry and exit nodes. Before the solving
algorithm runs, we traverse the graph once to reduce it to only the
nodes that actually contribute to the solution. This is especially cheaper
when we can remove nodes from a cycle in the graph. Values computed
for the previous control-flow graph are propagated to those nodes
which have an identity transfer function at the end of the solving phase.

6. Case study of GREEN-MARL

We evaluate the expressiveness and conciseness of FLOWSPEC with a
number of case studies. So far we have presented our example analyses
on a simple imperative language WHILE [1, p. 3–4]. In our first case
studies we expand this toy imperative language to the full language of
GREEN-MARL [24], a domain specific language for graph processing. First
we introduce the domain concepts and the GREEN-MARL language.

6.1. The domain of graph analysis

In principle any relational data can be considered a graph, although
binary relations are easiest to map onto nodes and edges of a graph. For
higher arity relations one may employ a property graph representation,
where nodes and edges can be labeled with extra information. The
benefit of considering data as a graph is that standard graph algorithms
can be applied to extract useful information from the data.

Large datasets from the big data world can be seen and processed as
property graphs. But this requires high-performance processing, to
handle the large amount of data within a reasonable amount of time.
Here the issues that crop up is that a straight-forward implementation
of a classic graph algorithm in a general purpose programming lan-
guage usually is not able to fully exploit modern hardware for com-
putation on large data. Both multi-core processor parallelism and multi-
machine parallelism that is usually used for larger data processing re-
quires that algorithms are mixed with bookkeeping and interoperation
code, or the algorithm has to be manipulated to fit a framework.

6.2. An introduction to green-Marl

GREEN-MARL is a domain-specific language for efficient graph ana-
lysis [24]. To support its efficiency goal it provides domain-specific and
non-domain specific language features so the user can expose oppor-
tunities of data-parallelism to the compiler. The style of the language is
imperative so graph analysis algorithms can be written in their natural
form using graph specific features and imperative loops. The compiler
then applies static analysis and outputs highly optimized code for the
specified graph analysis.

GREEN-MARL operates on property graphs, by accepting graphs, node-
properties and edge-properties as inputs to its programs, as well as
primitive data such as integers, strings and floating point numbers and
collections such lists, sets and maps. While the input graph cannot be
mutated in GREEN-MARL, properties can, and new properties can be cre-
ated on the graph.

The graph can be iterated over using domain-specific ranges, such as
the nodes or edges of the graph, or the neighbors of a node. It can also
be queried for neighborhood information. Besides a standard for loop
over such ranges, the language provides the parallel foreach loop, and
depth- and breadth-first search traversals over graph ranges.

6.3. An example green-Marl program

Consider the GREEN-MARL program in Fig. 28. This program computes

Fig. 27. Worklist algorithm used in the implementation of FLOWSPEC.
Properties is the list of dataflow properties. F is the control flow graph. f Prop

is the transfer function of property Prop for control flow graph node ℓ. Lattice
operations and values are those corresponding to the lattice of Prop.

J. Smits, et al. Journal of Computer Languages 57 (2020) 100924

14

the Closeness Centrality [26] measure on a graph, assuming all edges
are the same length. Closeness Centrality of a node in a graph is the
reciprocal (Line 31) of the sum of the shortest paths to every other node
in the graph. For unit length edges this can be found by using breadth-
first search (28–30) to visit all nodes, using the “level” of the breadth-
first search as the shortest path length. Before the centrality measure is
computed, a simplified version of Kosaraju’s algorithm for strongly
connected components [27] is used to check that the input graph is
strongly connected. This check initializes a boolean flag for each node.
Then using that flag it checks that every node can be reached from a
randomly picked node using a depth-first search. The flag is reset and
used again, but now the depth-first search is done on the reverse graph.

Within parallel regions, such as the foreach loop and the breadth-
first search, the operations are statically checked not to contain data
races. The add-and-assign operator is called a reduce-assignment and is
explicitly safe to perform in parallel. The language does require that no
other writes or reductions with different operators are done within the
same parallel section (in this case the breadth-first search).

Next to reduce-assignments, there are reduction expressions. In the
example program these are used in the strongly connected check, the
any expression used in the if conditions is a parallel combinator of
boolean values.

6.4. The current green-Marl compiler

The current implementation of GREEN-MARL already uses the Spoofax
language workbench. The GREEN-MARL compiler uses SDF3 for its
grammar definition, and the older NABL name binding and TS type
system languages for its static semantics implementation. The compiler
uses the Stratego transformation language to analyze, optimize and
generate code.

The current implementation of optimizations often have the en-
abling analysis embedded in that code. This makes it hard to find out
what analysis is necessary, whether some analysis can be reused by
other optimizations, and whether the optimization and analysis are
correct. In our search for analyses and optimizations that benefit most
from FLOWSPEC, we have found dead code elimination, constant propa-
gation and loop unswitching2. Constant propagation is not im-
plemented in the GREEN-MARL compiler yet because of time constraints on
the compiler development team.

6.5. Control-flow graph

The whole of GREEN-MARL requires 77 control-flow rules. The rules
span 165 lines of code, including comments and empty lines. Fig. 29
shows a sample of the control-flow graph code. The full list of rules can
be found in Appendix A.

By comparison, back in Fig. 8 we saw 10 control-flow rules for the
WHILE language, which took 18 lines of code (again including empty
lines). This makes sense, given that on average most language struc-
tures have very simple control-flow expressed on a single line, followed
by a blank line for readability.

In GREEN-MARL expressions are not desugared to binary and unary
operations that share the same abstract syntax. We chose not to do this
desugaring ourselves, which would lead to changes throughout the rest
of the compiler. However, if such a change were made, 15 control-flow
rules would be reduced to two, and expression related analyses would
also shrink in size.

6.6. Live variables

Live variables analysis can be used to perform dead code elimina-
tion in the GREEN-MARL compiler in a more principled way. Currently
dead code is discovered in an ad-hoc manner where only variables that
are completely unused are removed. These variables are discovered by
performing multiple tree traversals over the abstract syntax of a pro-
cedure, one to collect all local variables, and then one per variable to
check that the variable is not referenced.

The FLOWSPEC implementation of live variables analysis for GREEN-MARL

in Fig. 30 is the full analysis. The analysis tracks variables and property
variables. A VarAssign is a variable reference on the left-hand side of
an assignment.

Note that the control-flow rules for GREEN-MARL grew to 77 rules,
compared to the 10 of WHILE, but the rules for live variables analysis only
grew from 3 rules to 7 rules.

Fig. 29. A sample of the control flow graph rules for GREEN-MARL.

Fig. 28. Closeness Centrality (Unit Length) – Simplified.

2 Loop unswitching is an optimization that pulls a conditional program
fragment out of a loop when the condition is loop-independent. After the op-
timization the conditional wraps two modified versions of the loop, one to be
executed if the condition is true, the other if the condition is false.

J. Smits, et al. Journal of Computer Languages 57 (2020) 100924

15

6.7. Constant propagation

The definition of constant propagation follows the approach from
Section 3.10. The full analysis implementation is available in
Appendix F. Our implementation is 21 rules, each of which takes up 4
lines of code and 1 blank line for readability. Although the im-
plementation is adequate, we find the repetition of similar match
clauses less concise than ideal. This is an area where we believe we can
still improve on the design of FLOWSPEC.

6.8. Reaching definitions

Reaching definitions analysis can be used for many applications
where some form of data dependence is required. In this case we define
this analysis for GREEN-MARL for the use case of loop unswitching [28].
This optimization pulls an if statement out of a loop when the condition
of the if statement does not depend on the loop, something that can be
discovered with reaching definitions analysis. By interchanging the if
statement and loop, the loop does need to be duplicated. One version of
the loop for when the if condition is true, and one for when the if
condition is false.

This saves the overhead of conditional branching inside the loop,
and enables the recognition of other optimization patterns for the loop.
For GREEN-MARL a particular pattern, that is important when the program
is compiled to a distributed setting, is the transfer of data from every
node to every neighbor node. This pattern is a loop over all nodes in the
graph, and within it only a loop over all neighbors of the node.
Therefore if the inner loop is nested in an if statement, loop unswitching
can help.

In Fig. 31 we show the rules of an enhanced Reaching Definitions
analysis that explicitly tracks uninitialized variables too. This enhanced
analysis would be three rules in an extended version of WHILE with
variable declaration. For GREEN-MARL we have 9 rules, one of which
tracks the writing to an output channel instead of a variable to keep
track of data dependencies induced by the effect of printing messages.

6.9. Definite assignment

We can use definite assignment analysis in GREEN-MARL for the code
generation task of initialization. When a variable is defined, it is not
necessarily initialized. This is particularly of interest for variables that
have a collection type, such as a set. Within GREEN-MARL the semantics is

that a defined variable of type set holds an empty set. However, if the
variable is later definitely assigned a set, the variable does not need to
be initialized.

We can use the results of reaching definitions analysis for this de-
finite assignment analysis. The reaching definitions analysis we defined
previously tracks variables from definition, marking these as unin-
itialized. Wherever a (n, None()) pair is in the set, n is not definitely
assigned there.

6.10. Available and very busy expressions

Available expressions and very busy expressions are very similar in
definition, as we observed previously. We present available expressions
analysis for GREEN-MARL in Fig. 32. The definition of the analysis is not
particularly short, since all expressions have distinct abstract syntax
that needs to be handled in a separate rule. Compared to the definition
for WHILE, which needed only 3 rules, this is a rather steep increase to 24
rules. However, as we have noted before, this is due to the shape of the
AST that the GREEN-MARL compiler works with, which was outside of our
control.

Fig. 31. Reaching definitions analysis for GREEN-MARL.

Fig. 30. Live variables analysis for GREEN-MARL.

J. Smits, et al. Journal of Computer Languages 57 (2020) 100924

16

6.11. Performance measurement

Although we do not have analyses to compare against, we can
measure the current performance of the analyses we presented on ty-
pical GREEN-MARL. FLOWSPEC was designed to be a concise, executable spe-
cification language, where we would like the execution to be of prac-
tical use. Therefore we are not after best-in-class performance, but
FLOWSPEC should have a reasonable performance for typical programs.

6.11.1. Setup
Our test machine has a 2.8 GHz Intel Core i7 processor, with 16 GB

for main memory. It runs MacOS 10.14.2. The Java version is
1.8.0_152-b16, run on the HotSpot VM 25.152-b16. We use JMH, the
OpenJDK benchmark harness library, version 1.21. Each benchmark is
run with JVM arguments -Xms512m -Xmx2g -Xss16m, meaning the
initial JVM heap size is 512 mebibytes, the maximum JVM heap size is
2 gibibytes and the JVM thread stack size is 16 mebibytes.

We run 5 warmup iterations, 10 seconds each, after which we run 5
measurement iterations. The benchmark sets up all required de-
pendencies beforehand.

6.11.2. Inputs
We gathered three typical size GREEN-MARL programs: Closeness

Centrality3, Closeness Centrality with edge weights, and Betweenness
Centrality4. The characteristics of these inputs are in Fig. 33, where
lines of code (LOC) are measured without blank lines and comments,
and the bytes of input are in the intermediate representation on disk
from which they are read for input to the benchmarks.

6.11.3. Results
We present the measurement results in Fig. 34, where each number

is the arithmetic mean of the five measurements for that benchmark.
Given the low analysis time for these typical size inputs, we are con-
fident that FLOWSPEC analyses can be effectively used within the GREEN-
MARL compiler. In Section 7.4 we mention some more optimization op-
tions we have to improve the performance of FLOWSPEC even further.

7. Case study of STRATEGO

We evaluate the expressiveness and conciseness of FLOWSPEC with a
number of case studies. So far we have only presented example analyses
for typical imperative programming languages. In this section we pre-
sent a case study of an analysis written in FLOWSPEC for a programming
language with a different paradigm: the STRATEGO [30] term rewriting
language. We show how we specified a reaching definitions analysis in
FLOWSPEC and compare it to the existing implementation of reaching
definitions in the STRATEGO compiler, which is itself written in STRATEGO.
We compare not only the implementation from a source code per-
spective but also give a performance comparison between the FLOWSPEC

implementation and the implementation in STRATEGO.
First we introduce the domain concepts and the STRATEGO language.

7.1. Term rewriting and STRATEGO

STRATEGO is a language for program transformation. The language has
features for defining rewrite rules, and strategies for the application of
those rewrite rules. Given an Abstract Syntax Tree that presents a
program, a Stratego program can transform terms from the tree with
rewrite rules and apply them in the right places in the right order with
strategies.

Any rule or strategy can fail to apply. Special strategy combinators
allow recovery from failure, which looks similar to an if-else but based
on failure or success instead of a boolean value. Rewrite rules can be
expressed as strategies, and in fact the STRATEGO compiler desugars all
features down to a core language that consists only of strategies.

STRATEGO Core
STRATEGO core consists of a list of strategy definitions. Each strategy

definition has zero or more strategy arguments (functions, making the
strategy higher-order), zero or more term arguments (data), and an
implicit argument: the current term. The body of a strategy definition is
a strategy expression, which can consist of:

1. fail, the primitive strategy that fails
2. id, the primitive strategy that succeeds and does nothing to the

current term
3. pattern-match, matches a pattern against the current term, possibly

failing or binding variables when it succeeds

Fig. 34. Analysis time in milliseconds for implementations of Live Variable and
Reaching Definitions in FLOWSPEC on typical GREEN-MARL programs.

Fig. 32. Available expressions analysis for GREEN-MARL.

Fig. 33. Benchmark inputs and their characteristics.

3 as previously shown in Fig. 28.
4 Gathered from [29].

J. Smits, et al. Journal of Computer Languages 57 (2020) 100924

17

4. pattern-build, replaces the current term with another term, possibly
failing when using an unbound variable

5. scope, defines a scope with a list of fresh (unbound) variables
6. sequence, apply one strategy expression after the other
7. guarded choice, the if-then-else lookalike based on failure instead

of boolean values
8. one, some, all, three language constructs that take a strategy

argument and apply that strategy on one, some or all of the children
of the current term.

9. strategy call, to call another named strategy
10. let, to define local strategies

7.2. Control-Flow

With the list of constructs, we are able to define the control-flow of
STRATEGO core, as seen in Fig. 35.

Note how the guarded choice rule specifies two paths, one for the
condition and then branch, one for the else branch without the condi-
tion. This is something particular to Stratego, where variable bindings
from the condition are backtracked when the condition fails at some
point.

All call-like constructs have control-flow that optionally goes into
the strategy arguments. This models the uncertainty of whether those
strategy expressions are executed or not.

7.3. Reaching definitions

Reaching definitions is used in a number of places in the current
STRATEGO compiler, which is written in STRATEGO. Whether a variable is
guaranteed to be bound or unbound at some point in a STRATEGO program
is valuable to given errors messages (e.g. on build a pattern with an
unbound variable) and to generate efficient code (e.g. elide a check and
variable binding code when pattern matching against an always bound
variable).

Our reaching definitions analysis for STRATEGO, written in FLOWSPEC is
given in Fig. 36. We start without bindings, add reaching definitions for
arguments to strategies, add uninitialized variables for scopes, and re-
place uninitialized variables with their initialization when they are first
matched.

For comparison, the original analysis consists of 232 lines of
STRATEGO code (provided in Appendix G) that implement reaching defi-
nitions analysis under the name bound-unbound-vars in the current
STRATEGO compiler. Our implementation in FLOWSPEC is only 19 lines.

The STRATEGO implementation uses a feature called dynamic
rules [31] to implement both the data-flow analysis and specify the
name and scope rules for STRATEGO in an ad-hoc fashion. Other analyses
in the STRATEGO compiler repeat this name and scope structure in a si-
milar way. Notably, this code analyzes a subset of STRATEGO but slightly
more than STRATEGO core. This is most likely a legacy code issue. Cur-
rently this analysis is called within the compiler at a point where the
AST has been reduced to STRATEGO core already.

7.4. Performance comparison

Since we have a STRATEGO implementation and FLOWSPEC im-
plementation of the same analysis, we can do a performance compar-
ison.

7.4.1. Setup
Our test machine has a 2.8 GHz Intel Core i7 processor, with 16 GB

for main memory. It runs MacOS 10.14.2. The Java version is
1.8.0_152-b16, run on the HotSpot VM 25.152-b16. We use JMH, the
OpenJDK benchmark harness library, version 1.21. Each benchmark is

Fig. 36. Reaching definitions analysis for STRATEGO.

Fig. 35. Most of the control flow graph rules for STRATEGO.

J. Smits, et al. Journal of Computer Languages 57 (2020) 100924

18

run with JVM arguments -Xms512m -Xmx2g -Xss16m, meaning the
initial JVM heap size is 512 mebibytes, the maximum JVM heap size is
2 gibibytes and the JVM thread stack size is 16 mebibytes.

We run 5 warmup iterations, 10 seconds each, after which we run 5
measurement iterations. The benchmark sets up all required de-
pendencies beforehand. The actual measured code is the STRATEGO

strategy in the STRATEGO case and the FLOWSPEC analysis in the FLOWSPEC

case.

7.4.2. Inputs
We gathered input program of different size, from the typical size

for the incremental STRATEGO compiler (a single strategy), up to the
largest STRATEGO library we know of. The characteristics of these inputs
are in Fig. 37, where lines of code (LOC) are measured without blank
lines and comments, and the bytes of input are in the intermediate
representation on disk from which they are read for input to the
benchmarks.

7.4.3. Results
We present the benchmark results in Fig. 38, where each number is

the arithmetic mean of the five measurements for that benchmark.
FLOWSPEC has reasonable execution times for typical workloads. We

do see the execution time grow rather quickly of very large workloads.
We see that from the libspoofax input to the libstratego input is a 7x
growth in raw bytes of input, the STRATEGO implementation of the ana-
lysis spends 8x the time on that input, but the FLOWSPEC implementation
spends 26x milliseconds.

We are aware of some of the causes for this behavior. FLOWSPEC builds
up and saves all control-flow graphs to save these as part of the analysis
results, as well as the data-flow analysis information. In contrast, the
STRATEGO implementation is manually written in such a way that the
analysis information is used and forgotten as soon as possible. FLOWSPEC

also currently runs an AST interpreter for the data-flow rules, which
takes a majority of time. The STRATEGO implementation is compiled en-
tirely.

Correctness: We compared the outcomes of the two analyses to each
other. The STRATEGO implementation immediately transforms the AST by
annotating each variable use with its estimated state: bound, unbound,
or maybe bound. Once the FLOWSPEC analysis is finished, the code to add
such annotations based on the FLOWSPEC analysis is trivial5.

7.4.4. Threats to validity
Although this is a small benchmark, more for the sake of curiosity

than validation, we still address the threats to validity of the

measurements.
External Validity: A threat to the generalizability of these mea-

surements is how we compared only a single analysis (Reaching
Definitions) with a single language (STRATEGO). In fact, intra-procedural
analysis of STRATEGO gives rise to acyclic control-flow graphs. This is not
at all representative of typical control-flow graphs. However, this was
the analysis and language that were easily available for comparison
against an older implementation.

Internal Validity: The comparison we make here is that of end-goal
usage, not exactly the same analysis. The STRATEGO analysis is both
analysis and transformation, combined by hand. This combination is a
specialization that does well in performance, although we argue that it
is not good for maintainability. On the other hand, FLOWSPEC computes
and returns a control-flow graph, and computes and returns all
Reaching Definitions information for the entire program. This is more
work, more information that can be used for multiple purposes. And yet
the result is not the transformed program.

Construct Validity: Finally, we measure performance on the JVM
and need to consider JIT compilation and garbage collection.
Thankfully the JMH framework takes care of warmup for the JIT and
garbage collection between iterations. We could not eliminate back-
ground noise entirely, but all measurement iterations looked to be close
to each other. The biggest open question is that of the three phases
benchmarked separately which do not sum up to the whole benchmark.

8. Related work

We will shortly discuss the history of monotone frameworks which
underlies our work, and some other systems and formalisms for im-
plementing data-flow analysis. Some of the aspects we discuss are
summarized in Fig. 39.

8.1. Monotone frameworks

Monotone data-flow analysis frameworks [16] were first introduced
as a generalization over Killdall’s lattice theoretic approach to data-flow
analysis [32]. By replacing the distributivity requirement with a
monotonicity requirement for the transfer function, Kam and Ullman
found a way to describe more flow problems in a framework with a
clear solution by maximal fixed point. This maximal fixed point can be
iteratively computed with a simple worklist algorithm. As mentioned in
Section 2, FLOWSPEC is based on this analysis framework.

8.2. Attribute grammars

JastAdd: The JASTADD system [33] supports attribute grammars [34]
extended with a number of special attributes which allows a declarative
intra-procedural control- and data-flow analysis specification [35]. In
particular, these are reference attributes [36] for control-flow graph
(CFG) edges, higher-order attributes [37] for virtual CFG nodes, used
for entry/exit of methods, circular attributes [38] for fixed points of
data-flow equations, and collection attributes [39] e.g. for the CFG
where there are multiple successors.

Note that each feature can be used for data-flow analysis but is not
specifically designed for it. Therefore JASTADD is a much more general
computation system that has much more expressive power than
FLOWSPEC. The downside of this generality, versus the domain-specific
nature of FLOWSPEC, is the verbosity. Whereas in FLOWSPEC our specifica-
tions are small and the language provides domain terms for each of the
features, JASTADD requires an encoding in the different attributes. It is
also not clear to us whether higher-order attributes are enough to en-
code arbitrary lattices. If not, JastAdd’s Java integration would be re-
quired to implement the lattice.

Silver: SILVER [40] is another attribute grammar system and specifi-
cation language that supports similar features to the JASTADD system.
However, for control- and data-flow analysis, it provides dedicated

Fig. 37. Benchmark inputs and their characteristics.

Fig. 38. Analysis time in milliseconds for our implementation in FLOWSPEC and
the optimized STRATEGO implementation in the current STRATEGO compiler.

5 We used 23 lines of code of STRATEGO code.

J. Smits, et al. Journal of Computer Languages 57 (2020) 100924

19

syntax which translates to a control-flow graph and temporal logic
formulae (CTL-FV) that are offloaded to a model checker (NuSMW).
Temporal logic can express reasoning in terms of time, which can be
used to express data-flow properties in a declarative manner.

Temporal logic is a very terse notation for data-flow specification,
and is subjectively not very easy to read. Our language design for
FLOWSPEC is a very different approach which is not rooted in logic for-
mulae. Instead we use domain names for keywords and provide a de-
clarative approach to specification which borrows from functional
programming.

The Silver publication did not report on the performance of their
data-flow analysis approach. Model checkers have a sweet spot where
their heuristics perform well, but ultimately cannot cover the entire NP-
Hard problem space. As such, it may suddenly perform poorly for the
problems that Silver generates for it based on the translation Silver
uses, the temporal logic formula in the Sivler specification, or the
particular input program.

Aster: The STRATEGO strategic programming language was extended
with attribute grammars in ASTER [41]. ASTER allows for attribute dec-
orators that allow the user to program different attribute grammar
extensions, which allows it to support declarative flow analysis similar
to JASTADD.

Stratego: The STRATEGO programming language was also directly
applied to data-flow analysis by leveraging its dynamic rewrite
rules [31]. In this paper the authors apply a combination of rewrite
rules and dynamic rules for dynamic propagation of information. Dy-
namic rules can use either union or intersection to follow control-flow
that splits and merges. At the splitting point the dynamic rule is copied
to both branches. In all other places dynamic rules are mutated, which
is not an issue as the rewrite based on the dynamic information is done
immediately. Fixed point calculation can also be done with a similar
choice of union or intersection.

In FLOWSPEC we treat data-flow analysis as a separate concern. In
contrast an analysis in STRATEGO is usually interspersed in the transfor-
mation code, which makes the code more difficult to read and under-
stand. This code style also brings frustrations when an analysis already
interleaved in a transformation turns out to be more generally useful in
other transformations. Extracting and reusing such an analysis is not
well supported by dynamic rules. FLOWSPEC is built around the idea of
simple, separate specifications of data-flow analysis. The analysis re-
sults can be used to inform an arbitrary amount of transformations.

Kiama: Kiama [42] is a language processing library in Scala, based
on attribute grammars and strategic programming. The interesting
property Kiama has over ASTER is the provisions for updating analyses
after transformation, a concern we currently do not address in FLOWSPEC.
The tree transformations done with strategic programming can

invalidate the values of certain attributes that are dependent on the
parents of a tree node (e.g. inherited attributes), or some other context.
To easily combine attribute grammars with strategic programming,
Kiama provides tree-indexed attribute families. The root of the parti-
cular tree is used for indexing whenever an attribute is context-de-
pendent.

8.3. Relational programming

Doop: The DOOP framework [43] uses a DATALOG dialect for a de-
clarative specification of static analyses such as context-sensitive
pointer analysis. In a recent tutorial [44, p. 46], Smaragdakis and Ba-
latsouras explain different techniques specific to pointer analysis with
DATALOG examples. These mostly focus on whole-program, flow-in-
sensitive may-analyses. Flow-sensitive analyses and must-analyses are
significantly more complex and harder to ensure soundness of.

FLOWSPEC focusses on a complementary set of data-flow analysis.
Instead of whole-program (inter-procedural) flow-insensitive may-
analyses, FLOWSPEC provides support for local (intra-procedural) flow-
sensitive analyses with arbitrary lattices.

Flix: The FLIX programming language [45] is a new contender that
extends DATALOG to a language with user-defined lattices, and monotonic
transfer and filter functions on these lattices. These allow Flix to express
data-flow analysis with infinite value domains while keeping guaran-
teed termination with a unique minimal model; under the assumption
that the user-defined lattices and functions are defined correctly.

User-defined types and lattices in FLIX and FLOWSPEC are very similar.
FLOWSPEC benefits from the larger Spoofax ecosystem, to develop features
such as the (experimental) automatic name abstraction. One may be
able to provide name and scope information along with an input pro-
gram in FLIX, and use explicit filtering, but to our knowledge there is no
way to automatically filter names that go out of scope.

8.4. Other analysis approaches

MPS-DF: The MPS language workbench6 has MPS-DF, an extensible
framework for definition of data-flow analyses [46]. MPS-DF has sup-
port for building data-flow graphs (control-flow graphs with read and
write primitives), and a syntax for writing transfer and confluence op-
erators. These operators form the ingredients that allows MPS-DF to
apply a classical monotone frameworks solution. The analysis can be
done in an intra-procedural fashion by correctly implementing the
operators to abstract over the possible effects of a procedure call, or
inter-procedurally by inlining method calls. To support this variability,

Fig. 39. Related work summary table.

6 https://www.jetbrains.com/mps/

J. Smits, et al. Journal of Computer Languages 57 (2020) 100924

20

https://www.jetbrains.com/mps/

two different data-flow graph builders need to be implemented for a
procedure call element in the AST.

IncA: Another MPS related language is INCA [47], a DSL for incre-
mental program analysis. This DSL is built upon the InQuery engine
which supports incremental computations using first order logic ex-
tended with the least fixed point operator. The language originally only
worked for analyses that can be modeled with relations (i.e. may- and
must-analysis). It did not support the generation of data that is not
directly from the program, such as building intervals in an interval
analysis. This was remediated by extending the incremental algorithm
for lattice based values [48]. The language design of the INCA DSL
evokes a procedural style, whereas FLOWSPEC uses a declarative style with
domain terms.

FLOWSPEC makes a different trade-off than INCA. We do not support
incremental analysis, thereby also avoiding the prohibitive memory
overhead of INCA, which the authors mention as a concern for future
work. The benefit of INCA is that data-flow analysis can be used for rapid
feedback to a user in an IDE setting. This fits well with inter-procedural
analysis. With FLOWSPEC our focus has been on analyses that inform
optimization, which are done in a compiler backend.

Rascal: RASCAL [49] provides a facility for control-flow graph con-
struction with DCFLOW [50], a domain-specific language. It simplifies the
definition of simple control-flow constructions, but does not support
abrupt termination such as exceptions. To implement these constructs
the user needs to fall back on the DCFLOW library in RASCAL. Similarly, the
actual implementation of data-flow algorithms on top of a CFG is still
done in the RASCAL language, without a special library or framework for
the use-case.

FLOWSPEC support both control-flow graph construction and data-flow
analysis within the domain-specific language. RASCAL, as a general-pur-
pose language, can support anything, but without extra support for the
use case of data-flow analysis.

CAnDL: The domain specific language CANDL [51] provides a con-
straint based approach to compiler analysis for LLVM. It is specifically
designed for the LLVM intermediate representation, which is in single
static assignment (SSA) form. The focus is on programmer productivity,
and in their evaluation the authors show several real world use cases
where analyses were expressed more briefly in CANDL than in the original
C++ of LLVM or in Polly, a polyhedral optimization framework.

FLOWSPEC makes no assumptions on the representation of the program
or intermediate representation it analyses. We provide a language
parametric analysis DSL, where we cannot make assumptions about a
representation such as SSA form. Instead of the specific constraints of
CANDL, we provide property rules where the user can propagate in-
formation of their choosing.

9. Future work

Currently we describe control-flow with purely local rules that can
be solved before the start of data-flow analysis. To allow breaks from
loops and jumps to labels we would like to extend the specification, so it
may use properties and name resolution to gain access to non-local
jump targets. This could also be used for static dispatched procedure
calls, although this could result in rather large control-flow graphs.

In general the interaction between names, control- and data-flow,
and types is of interest. We integrated FLOWSPEC in Spoofax, which has
domain specific support for name binding [52]. The theoretical foun-
dation for the newest name binding support [18] gives an interesting
model of scope graphs. The combination of scope graphs and control-
flow graphs may be enough to fully describe a program to the point that
we no longer need the abstract syntax tree.

At the same time the constraint language for scope graphs [9] can
also model types of a programming language. If we can fully integrate
our control- and data-flow work in this framework we can extend the
expressiveness of the system to have name resolution or types that
depend on control- and data-flow.

Data dependencies can be discovered with data-flow analysis. We
believe this data dependency information can be used to relax the strict
ordering in the control-flow graph, and that this will improve discovery
of optimizable patterns and reasoning about optimizations.

The safety of the user-defined lattices and property rules is an im-
portant issue. On lattices of infinite height or with non-monotone
transfer functions, we cannot guarantee termination of our im-
plementation. There may be opportunities to generate proof obligations
to be proven by the user, or even pass it an automatic theorem prover.
The proof obligations may also be usable for randomized testing.

Another opportunity for further research would be to verify the
correctness of control- and data-flow specifications relative to a dy-
namic semantics specification.

10. Conclusion

We have presented FLOWSPEC, a declarative specification language for
the domain of data-flow analysis. We have shown its static semantics,
and its dynamic semantics as a mapping onto monotone frameworks.
The implementation of FLOWSPEC is integrated into the Spoofax language
workbench where it can access name information to take into account
during analyses. We have demonstrated a number of example specifi-
cations in FLOWSPEC. We have also demonstrated FLOWSPEC in a case study
of an industrial domain-specific language with domain-specific analyses
and a case study of a term transformation language.

In short, FLOWSPEC provides domain-specific, integrated support for
data-flow analysis in compilers. With it, we can remove ad-hoc analyses
and provide more maintainable compilers in the future. [25]

Declaration of Competing Interest

The authors declare that they do not have any financial or non-
financial conflict of interests.

Acknowledgements

We would like to thank Peter Mosses, the anonymous reviewers of
SLE’17 and the anonymous reviewers of COMLAN’18 for their valuable
feedback and suggestions. This research was partially funded by the
NWO VICI Language Designer’s Workbench project (639.023.206) and
by a gift from the Oracle Corporation.

Appendix A. Control-flow graph rules for GREEN-MARL

The control-flow graph rules are roughly ordered by the corresponding SDF3 files that define the abstract syntax that we match. The file starts
with a module definition and the import of the external signature definitions. Then we define general rules for Cons and Nil, control-flow in lists

J. Smits, et al. Journal of Computer Languages 57 (2020) 100924

21

assume that each element of the list can control-flow and threads the control-flow through the list from left to right. The root of a control-flow graph
in GREEN-MARL is at the procedure level. Blocks have lists of statements, so their control-flow is that of the list. In all kinds of assignments, such as the
reduce assignment and the arg-min assignment, the right-hand side expressions are executed before the left-hand side. Loops and traversals show up
as loops in the control-flow graph as well. The bounds stand in for the decision to go into the body or go on with the program that follows the loop/
traversal.

Rules like the one for NoInReverse() do not contribute nodes to the control-flow graph. Procedure calls execute their expressions, then do the call
itself by using the matched AST node as a control-flow graph node with the this keyword. Printing has side-effects and is therefore also itself put in
the control-flow graph. Returns use the end keyword instead of the local exit to connect to the end of the procedure enclosing (since it declared itself
a root). When an AST node is directly a control-flow graph node and has no further control-flow inside, we can use the shortcut rule node followed
by the AST pattern.

Fig. A1. The control-flow graph rules for GREEN-MARL (1/4).

J. Smits, et al. Journal of Computer Languages 57 (2020) 100924

22

Fig. A2. The control-flow graph rules for GREEN-MARL (2/4).

J. Smits, et al. Journal of Computer Languages 57 (2020) 100924

23

Fig. A3. The control-flow graph rules for GREEN-MARL (3/4).

J. Smits, et al. Journal of Computer Languages 57 (2020) 100924

24

Appendix B. Live variables analysis rules for GREEN-MARL

In the figure is a definition of a live variables that tells you which variables may be read before being re-assigned. The Set contains the term that is
the name string from the AST. At any assignment the name is removed. At a reading point the name is added. Information is propagated backwards
so that you can look into the future of the program when reading the analysis results.

Fig. A4. The control-flow graph rules for GREEN-MARL (4/4).

J. Smits, et al. Journal of Computer Languages 57 (2020) 100924

25

Appendix C. Reaching definitions analysis rules for GREEN-MARL

Reaching Definitions is similar to the previous analysis but records writes to a variable and passes these forwards. Therefore you can use this
analysis at a point where a variable is read to see where the value read there may have originated from. Because local variable declarations are given
a “write” of None, you can use this information to track down places where a variable may be uninitialized as well. As a separate analysis this is
usually known as Definite Assignment analysis.

Fig. B1. A live variables analysis for GREEN-MARL.

J. Smits, et al. Journal of Computer Languages 57 (2020) 100924

26

Fig. C1. A Reaching Definitions analysis for GREEN-MARL.

J. Smits, et al. Journal of Computer Languages 57 (2020) 100924

27

Appendix D. Available expressions analysis rules for GREEN-MARL

Fig. D1. Available expressions analysis for GREEN-MARL (1/2).

Fig. D2. Available expressions analysis for GREEN-MARL (2/2).

J. Smits, et al. Journal of Computer Languages 57 (2020) 100924

28

Appendix E. Very Busy expressions analysis rules for GREEN-MARL

Fig. E1. Very Busy Expressions analysis for GREEN-MARL (1/2).

Fig. E2. Very Busy Expressions analysis for GREEN-MARL (2/2).

J. Smits, et al. Journal of Computer Languages 57 (2020) 100924

29

Appendix F. Constant propagation analysis specification for GREEN-MARL

The full rules for constant propagation in GREEN-MARL. This showcases how much the analysis is really an abstract interpreter that is indeed just a
lifted concrete interpreter.

Fig. F1. Constant propagation property rules for GREEN-MARL (1/2).

J. Smits, et al. Journal of Computer Languages 57 (2020) 100924

30

Fig. F2. Constant propagation property rules for GREEN-MARL (2/2).

Fig. F3. Type definitions for constant propagation in GREEN-MARL.

J. Smits, et al. Journal of Computer Languages 57 (2020) 100924

31

Fig. F4. Constant propagation functions for GREEN-MARL (1/2).

J. Smits, et al. Journal of Computer Languages 57 (2020) 100924

32

Fig. F5. Constant propagation functions for GREEN-MARL (2/2).

Fig. F6. Lattice definitions for constant propagation in GREEN-MARL.

J. Smits, et al. Journal of Computer Languages 57 (2020) 100924

33

Appendix G. Reaching definitions analysis for STRATEGO

Named bound-unbound-vars in the STRATEGO compiler. Used on STRATEGO core but, due to legacy reasons, is defined on a larger subset of
STRATEGO. Uses dynamic rewrite rules to encode name binding, mixed with data-flow analysis. Source: https://github.com/metaborg/strategoxt/blob/
76689003f94bcd51c84712bf4509b706dd34d9ab/strategoxt/stratego-libraries/strc/lib/stratego/strc/opt/bound-unbound-vars.str.

Fig. G1. Reaching Definitions as implemented in the STRATEGO compiler, written in STRATEGO using the dynamic rules feature. (1/5).

J. Smits, et al. Journal of Computer Languages 57 (2020) 100924

34

https://github.com/metaborg/strategoxt/blob/76689003f94bcd51c84712bf4509b706dd34d9ab/strategoxt/stratego-libraries/strc/lib/stratego/strc/opt/bound-unbound-vars.str
https://github.com/metaborg/strategoxt/blob/76689003f94bcd51c84712bf4509b706dd34d9ab/strategoxt/stratego-libraries/strc/lib/stratego/strc/opt/bound-unbound-vars.str

Fig. G2. Reaching Definitions as implemented in the STRATEGO compiler, written in STRATEGO using the dynamic rules feature. (2/5).

J. Smits, et al. Journal of Computer Languages 57 (2020) 100924

35

Fig. G3. Reaching Definitions as implemented in the STRATEGO compiler, written in STRATEGO using the dynamic rules feature. (3/5).

J. Smits, et al. Journal of Computer Languages 57 (2020) 100924

36

Fig. G4. Reaching Definitions as implemented in the STRATEGO compiler, written in STRATEGO using the dynamic rules feature. (4/5).

J. Smits, et al. Journal of Computer Languages 57 (2020) 100924

37

References

[1] F. Nielson, H.R. Nielson, C. Hankin, Principles of Program Analysis (2. corr. print),
Springer, 2005. http://www.springer.com/computer/theoretical+computer
+science/book/978-3-540-65410-0

[2] J. Gosling, B. Joy, G. Steele, G. Bracha, The Java Language Specification, third
edition, Prentice Hall PTR, Boston, Mass., 2005.

[3] The Rust Project Developers, librustc – builtin lints, 2018. Accessed on 2018-04-10.
[4] M.A. Auslander, M. Hopkins, An overview of the pl.8 compiler, Proceedings of the

SIGPLAN Symposium on Compiler Construction, (1982), pp. 22–31, https://doi.
org/10.1145/800230.806977.

[5] The checkstyle team, checkstyle – coding, 2018. Accessed on 2018-04-10.
[6] S. Hong, M. Sevenich, J. Lugt, gm_comp, a compiler for green-marl written in c++,

2014. Accessed on 2018-04-10.
[7] L.C.L. Kats, E. Visser, The Spoofax language workbench: rules for declarative spe-

cification of languages and IDEs, in: W.R. Cook, S. Clarke, M.C. Rinard (Eds.),
Proceedings of the 25th Annual ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications, OOPSLA 2010, ACM, Reno/
Tahoe, Nevada, 2010, pp. 444–463, https://doi.org/10.1145/1869459.1869497.

[8] T. Vollebregt, L.C.L. Kats, E. Visser, Declarative specification of template-based
textual editors, in: A. Sloane, S. Andova (Eds.), Proceedings of the International
Workshop on Language Descriptions, Tools, and Applications, LDTA ’12, ACM,
2012, pp. 1–7, https://doi.org/10.1145/2427048.2427056. Tallinn, Estonia, March
31, - April 1, 2012

[9] H. van Antwerpen, P. Néron, A.P. Tolmach, E. Visser, G. Wachsmuth, A constraint
language for static semantic analysis based on scope graphs, in: M. Erwig, T. Rompf
(Eds.), Proceedings of the ACM SIGPLAN Workshop on Partial Evaluation and
Program Manipulation, PEPM, ACM, 2016, pp. 49–60, https://doi.org/10.1145/
2847538.2847543. St. Petersburg, FL, USA, January 20, - 22, 2016

[10] J. Smits, E. Visser, FlowSpec: declarative dataflow analysis specification, in:
B. Combemale, M. Mernik, B. Rumpe (Eds.), Proceedings of the 10th ACM SIGPLAN
International Conference on Software Language Engineering, SLE, ACM, 2017, pp.
221–231, https://doi.org/10.1145/3136014.3136029. Vancouver, BC, Canada,
October 23–24, 2017

[11] D.J. Pearce, J. Noble, Structural and Flow-sensitive types for Whiley, Technical
Report, School of Engineering and Computer Science, Victoria University of
Wellington, 2011.

[12] Jetbrains, Type checks and casts: ’is’ and ’as’ - kotlin programming language, 2018.
Accessed on 2018-04-12.

[13] Red Hat, Inc., Eclipse ceylon: Quick introduction, 2018. Accessed on 2018-04-12.
[14] O. Shivers, Higher-order control-flow analysis in retrospect: lessons learned, lessons

abandoned (with retrospective), in: K.S. McKinley (Ed.), Proceedings of the ACM
SIGPLAN Conference on Programming Language Design and Implementation, ACM,
1988, pp. 257–269, https://doi.org/10.1145/989393.989421. 1979–1999, A
Selection

[15] Y. Smaragdakis, M. Bravenboer, O. Lhoták, Pick your contexts well: understanding
object-sensitivity, in: T. Ball, M. Sagiv (Eds.), Proceedings of the 38th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL,
ACM, 2011, pp. 17–30, https://doi.org/10.1145/1926385.1926390. 2011, Austin,
TX, USA, January 26–28, 2011

[16] J.B. Kam, J.D. Ullman, Monotone data flow analysis frameworks, Acta Informatica
7 (1977) 305–317.

[17] L.C.L. Kats, K.T. Kalleberg, E. Visser, Domain-specific languages for composable
editor plugins, Electron Notes Theor. Comput. Sci. 253 (7) (2010) 149–163, https://
doi.org/10.1016/j.entcs.2010.08.038.

[18] P. Néron, A.P. Tolmach, E. Visser, G. Wachsmuth, A theory of name resolution, in:
J. Vitek (Ed.), roceedings of the 24th European Symposium on Programming
Languages and Systems, ESOP 2015, Held as Part of the European Joint Conferences
on Theory and Practice of Software, Lecture Notes in Computer Science, 9032
Springer, 2015, pp. 205–231, https://doi.org/10.1007/978-3-662-46669-8_9.
ETAPS 2015, London, UK, April 11–18, 2015. Proceedings

[19] C. Wimmer, T. Würthinger, Truffle: a self-optimizing runtime system, in:
G.T. Leavens (Ed.), Proceedings of the Conference on Systems, Programming, and
Applications: Software for Humanity, ACM, 2012, pp. 13–14, https://doi.org/10.
1145/2384716.2384723. SPLASH ’12, Tucson, AZ, USA, October 21–25, 2012

[20] S. Horwitz, A.J. Demers, T. Teitelbaum, An efficient general iterative algorithm for
dataflow analysis, Acta Informatica 24 (6) (1987) 679–694.

[21] M. Jourdan, D. Parigot, Techniques for improving grammar flow analysis, in:
N.D. Jones (Ed.), Proceedings of the 3rd European Symposium on Programming,
Copenhagen, Denmark, Lecture Notes in Computer Science, 432 Springer, 1990, pp.
240–255. May 15–18, 1990, Proceedings

[22] J.B. Kam, J.D. Ullman, Global data flow analysis and iterative algorithms, J. ACM
23 (1) (1976) 158–171, https://doi.org/10.1145/321921.321938.

[23] R.E. Tarjan, Depth-first search and linear graph algorithms, SIAM J. Comput. 1 (2)
(1972) 146–160.

[24] S. Hong, H. Chafi, E. Sedlar, K. Olukotun, Green-Marl: a DSL for easy and efficient
graph analysis, in: T. Harris, M.L. Scott (Eds.), Proceedings of the 17th International
Conference on Architectural Support for Programming Languages and Operating
Systems, ASPLOS, ACM, 2012, pp. 349–362, https://doi.org/10.1145/2150976.
2151013. London, UK, March 3–7, 2012

[25] Oracle Corporation, PGX 1.1.0 Documentation – Closeness Centrality, 2015.
Accessed on 2018-02-27.

[26] A. Bavelas, Communication patterns in task-oriented groups, J. Acoust. Soc. Am.

Fig. G5. Reaching Definitions as implemented in the STRATEGO compiler, written in STRATEGO using the dynamic rules feature. (5/5).

J. Smits, et al. Journal of Computer Languages 57 (2020) 100924

38

http://refhub.elsevier.com/S2590-1184(19)30047-4/sbref0001
http://refhub.elsevier.com/S2590-1184(19)30047-4/sbref0001
http://www.springer.com/computer/theoreticalomputer+cience/book/978-3-540-65410-0
http://refhub.elsevier.com/S2590-1184(19)30047-4/sbref0002
http://refhub.elsevier.com/S2590-1184(19)30047-4/sbref0002
https://doi.org/10.1145/800230.806977
https://doi.org/10.1145/800230.806977
https://doi.org/10.1145/1869459.1869497
https://doi.org/10.1145/2427048.2427056
https://doi.org/10.1145/2427048.2427056
https://doi.org/10.1145/2847538.2847543
https://doi.org/10.1145/2847538.2847543
https://doi.org/10.1145/3136014.3136029
https://doi.org/10.1145/3136014.3136029
http://refhub.elsevier.com/S2590-1184(19)30047-4/sbref0008
http://refhub.elsevier.com/S2590-1184(19)30047-4/sbref0008
http://refhub.elsevier.com/S2590-1184(19)30047-4/sbref0008
https://doi.org/10.1145/989393.989421
https://doi.org/10.1145/989393.989421
https://doi.org/10.1145/1926385.1926390
https://doi.org/10.1145/1926385.1926390
http://refhub.elsevier.com/S2590-1184(19)30047-4/sbref0011
http://refhub.elsevier.com/S2590-1184(19)30047-4/sbref0011
https://doi.org/10.1016/j.entcs.2010.08.038
https://doi.org/10.1016/j.entcs.2010.08.038
https://doi.org/10.1007/978-3-662-46669-8_9
https://doi.org/10.1007/978-3-662-46669-8_9
https://doi.org/10.1145/2384716.2384723
https://doi.org/10.1145/2384716.2384723
http://refhub.elsevier.com/S2590-1184(19)30047-4/sbref0015
http://refhub.elsevier.com/S2590-1184(19)30047-4/sbref0015
http://refhub.elsevier.com/S2590-1184(19)30047-4/sbref0016
http://refhub.elsevier.com/S2590-1184(19)30047-4/sbref0016
http://refhub.elsevier.com/S2590-1184(19)30047-4/sbref0016
http://refhub.elsevier.com/S2590-1184(19)30047-4/sbref0016
https://doi.org/10.1145/321921.321938
http://refhub.elsevier.com/S2590-1184(19)30047-4/sbref0018
http://refhub.elsevier.com/S2590-1184(19)30047-4/sbref0018
https://doi.org/10.1145/2150976.2151013
https://doi.org/10.1145/2150976.2151013

(1950).
[27] S.R. Kosaraju, Strong-connectivity algorithm, 1978.
[28] F. Allen, J. Cocke, A catalogue of optimizing transformations, in: R. Rustin (Ed.),

Design and Optimization of Compilers, 1st, Prentice-Hall, Englewood Cliffs, N.J.,
1971, pp. 1–30.

[29] Oracle Corporation, PGX 1.1.0 Documentation – List of Built-in Algorithms, 2015.
Accessed on 2018-02-27.

[30] M. Bravenboer, K.T. Kalleberg, R. Vermaas, E. Visser, Stratego/XT 0.17. a language
and toolset for program transformation, Sci. Comput. Program. 72 (1–2) (2008)
52–70, https://doi.org/10.1016/j.scico.2007.11.003.

[31] M. Bravenboer, A. van Dam, K. Olmos, E. Visser, Program transformation with
scoped dynamic rewrite rules, Fundam. Inform. 69 (1–2) (2006) 123–178. https://
content.iospress.com/articles/fundamenta-informaticae/fi69-1-2-06

[32] G.A. Kildall, A unified approach to global program optimization, POPL, (1973), pp.
194–206.

[33] T. Ekman, G. Hedin, The jastadd system - modular extensible compiler construction,
Sci. Comput. Program. 69 (1–3) (2007) 14–26, https://doi.org/10.1016/j.scico.
2007.02.003.

[34] D.E. Knuth, Semantics of context-free languages, Theory Comput. Syst. 2 (2) (1968)
127–145. http://www.springerlink.com/content/m2501m07m4666813/

[35] E. Söderberg, T. Ekman, G. Hedin, E. Magnusson, Extensible intraprocedural flow
analysis at the abstract syntax tree level, Sci. Comput. Program. 78 (10) (2013)
1809–1827, https://doi.org/10.1016/j.scico.2012.02.002.

[36] G. Hedin, Reference attributed grammars, Informatica (Slovenia) 24 (3) (2000).
[37] H. Vogt, S.D. Swierstra, M.F. Kuiper, Higher-order attribute grammars, Proceedings

of the PLDI, (1989), pp. 131–145.
[38] E. Magnusson, G. Hedin, Circular reference attributed grammars - their evaluation

and applications, Sci. Comput. Program. 68 (1) (2007) 21–37, https://doi.org/10.
1016/j.scico.2005.06.005.

[39] E. Magnusson, T. Ekman, G. Hedin, Extending attribute grammars with collection
attributes–evaluation and applications, Proceedings of the IEEE International
Workshop on Source Code Analysis and Manipulation, (2007), https://doi.org/10.
1109/SCAM.2007.13.

[40] E.V. Wyk, D. Bodin, J. Gao, L. Krishnan, Silver: an extensible attribute grammar
system, Sci. Comput. Program. 75 (1–2) (2010) 39–54, https://doi.org/10.1016/j.
scico.2009.07.004.

[41] L.C.L. Kats, A.M. Sloane, E. Visser, Decorated attribute grammars: Attribute eva-
luation meets strategic programming, in: O. de Moor, M.I. Schwartzbach (Eds.),
Proceedings of the 18th International Conference, CC 2009, Held as Part of the Joint
European Conferences on Theory and Practice of Software, Lecture Notes in
Computer Science, 5501 Springer, 2009, pp. 142–157, https://doi.org/10.1007/
978-3-642-00722-4_11. York, UK, March 22–29, 2009. Proceedings

[42] A.M. Sloane, M. Roberts, L.G.C. Hamey, Respect your parents: How attribution and
rewriting can get along, in: B. Combemale, D.J. Pearce, O. Barais, J.J. Vinju (Eds.),
Proceedings of the 7th International Conference Software Language Engineering,
Lecture Notes in Computer Science, 8706 Springer, 2014, pp. 191–210 , https://doi.
org/10.1007/978-3-319-11245-9_11. Västeras, Sweden, September 15–16, 2014.

Proceedings
[43] M. Bravenboer, Y. Smaragdakis, Strictly declarative specification of sophisticated

points-to analyses, in: S. Arora, G.T. Leavens (Eds.), Proceedings of the 24th Annual
ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages,
and Applications, OOPSLA, ACM, 2009, pp. 243–262, https://doi.org/10.1145/
1640089.1640108.

[44] Y. Smaragdakis, G. Balatsouras, Pointer analysis, Found. Trends Program. Lang. 2
(1) (2015) 1–69, https://doi.org/10.1561/2500000014.

[45] M. Madsen, M.-H. Yee, O. Lhoták, From datalog to flix: a declarative language for
fixed points on lattices, in: C. Krintz, E. Berger (Eds.), Proceedings of the 37th ACM
SIGPLAN Conference on Programming Language Design and Implementation, PLDI,
ACM, 2016, pp. 194–208, https://doi.org/10.1145/2908080.2908096. Santa
Barbara, CA, USA, June 13–17, 2016

[46] T. Szabó, S. Alperovich, M. Völter, S. Erdweg, An extensible framework for variable-
precision data-flow analyses in mps, in: D. Lo, S. Apel, S. Khurshid (Eds.),
Proceedings of the 31st IEEE/ACM International Conference on Automated
Software Engineering, ASE, ACM, 2016, pp. 870–875, https://doi.org/10.1145/
2970276.2970296. Singapore, September 3–7, 2016

[47] T. Szabó, S. Erdweg, M. Völter, Inca: a dsl for the definition of incremental program
analyses, in: D. Lo, S. Apel, S. Khurshid (Eds.), Proceedings of the 31st IEEE/ACM
International Conference on Automated Software Engineering, ASE, ACM, 2016, pp.
320–331, https://doi.org/10.1145/2970276.2970298. Singapore, September 3–7,
2016

[48] T. Szabó, M. Völter, S. Erdweg, Incal: A dsl for incremental program analysis with
lattices, Proceedings of the International Workshop on Incremental Computing (IC),
(2017). Talk proposal; full article not published yet

[49] P. Klint, T. van der Storm, J.J. Vinju, EASY meta-programming with Rascal, in:
J.M. Fernandes, R. Lämmel, J. Visser, J. Saraiva (Eds.), Generative and
Transformational Techniques in Software Engineering III - International Summer
School, GTTSE, Lecture Notes in Computer Science, 6491 Springer, 2009, pp.
222–289, https://doi.org/10.1007/978-3-642-18023-1_6. Braga, Portugal, July
6–11, 2009. Revised Papers

[50] M. Hills, Streamlining control flow graph construction with dcflow, in:
B. Combemale, D.J. Pearce, O. Barais, J.J. Vinju (Eds.), 7th International
Conference on Software Language Engineering, SLE, Lecture Notes in Computer
Science, 8706 Springer, 2014, pp. 322–341 , https://doi.org/10.1007/978-3-319-
11245-9_18. Västeras, Sweden, September 15–16, 2014. Proceedings

[51] P. Ginsbach, L. Crawford, M.F.P. O’Boyle, Candl: a domain specific language for
compiler analysis, in: C. Dubach, J. Xue (Eds.), Proceedings of the 27th
International Conference on Compiler Construction, ACM, 2018, pp. 151–162,
https://doi.org/10.1145/3178372.3179515. February 24–25, 2018, Vienna,
Austria

[52] G. Konat, L.C.L. Kats, G. Wachsmuth, E. Visser, Declarative name binding and scope
rules, in: K. Czarnecki, G. Hedin (Eds.), Proceedings of the 5th International
Conference on Software Language Engineering, SLE, Lecture Notes in Computer
Science, 7745 Springer, 2012, pp. 311–331, https://doi.org/10.1007/978-3-642-
36089-3_18. Dresden, Germany, September 26–28, 2012, Revised Selected Papers

J. Smits, et al. Journal of Computer Languages 57 (2020) 100924

39

http://refhub.elsevier.com/S2590-1184(19)30047-4/sbref0021
http://refhub.elsevier.com/S2590-1184(19)30047-4/sbref0021
http://refhub.elsevier.com/S2590-1184(19)30047-4/sbref0021
https://doi.org/10.1016/j.scico.2007.11.003
http://refhub.elsevier.com/S2590-1184(19)30047-4/sbref0023
http://refhub.elsevier.com/S2590-1184(19)30047-4/sbref0023
https://content.iospress.com/articles/fundamenta-informaticae/fi69-1-2-06
http://refhub.elsevier.com/S2590-1184(19)30047-4/sbref0024
http://refhub.elsevier.com/S2590-1184(19)30047-4/sbref0024
https://doi.org/10.1016/j.scico.2007.02.003
https://doi.org/10.1016/j.scico.2007.02.003
http://refhub.elsevier.com/S2590-1184(19)30047-4/sbref0026
http://refhub.elsevier.com/S2590-1184(19)30047-4/sbref0026
https://doi.org/10.1016/j.scico.2012.02.002
http://refhub.elsevier.com/S2590-1184(19)30047-4/sbref0028
http://refhub.elsevier.com/S2590-1184(19)30047-4/sbref0029
http://refhub.elsevier.com/S2590-1184(19)30047-4/sbref0029
https://doi.org/10.1016/j.scico.2005.06.005
https://doi.org/10.1016/j.scico.2005.06.005
https://doi.org/10.1109/SCAM.2007.13
https://doi.org/10.1109/SCAM.2007.13
https://doi.org/10.1016/j.scico.2009.07.004
https://doi.org/10.1016/j.scico.2009.07.004
https://doi.org/10.1007/978-3-642-00722-4_11
https://doi.org/10.1007/978-3-642-00722-4_11
https://doi.org/10.1007/978-3-319-11245-9_11
https://doi.org/10.1007/978-3-319-11245-9_11
https://doi.org/10.1007/978-3-319-11245-9_11
https://doi.org/10.1145/1640089.1640108
https://doi.org/10.1145/1640089.1640108
https://doi.org/10.1561/2500000014
https://doi.org/10.1145/2908080.2908096
https://doi.org/10.1145/2908080.2908096
https://doi.org/10.1145/2970276.2970296
https://doi.org/10.1145/2970276.2970296
https://doi.org/10.1145/2970276.2970298
https://doi.org/10.1145/2970276.2970298
http://refhub.elsevier.com/S2590-1184(19)30047-4/sbref0040
http://refhub.elsevier.com/S2590-1184(19)30047-4/sbref0040
http://refhub.elsevier.com/S2590-1184(19)30047-4/sbref0040
https://doi.org/10.1007/978-3-642-18023-1_6
https://doi.org/10.1007/978-3-642-18023-1_6
https://doi.org/10.1007/978-3-319-11245-9_18
https://doi.org/10.1007/978-3-319-11245-9_18
https://doi.org/10.1145/3178372.3179515
https://doi.org/10.1145/3178372.3179515
https://doi.org/10.1007/978-3-642-36089-3_18
https://doi.org/10.1007/978-3-642-36089-3_18

	FlowSpec: A declarative specification language for intra-procedural flow-Sensitive data-flow analysis
	Introduction
	Uses of data-flow analysis
	Implementation of data-flow analysis

	Background: data-flow analysis and monotone frameworks
	Data-flow analysis by example
	Taxonomy of data-flow analysis
	Monotone frameworks
	Control-flow graphs
	Data-flow type and transfer functions
	Control-flow and lattices
	Worklist algorithm
	Monotone frameworks recap

	FlowSpec by example
	Requirements
	Concrete and abstract syntax
	Name and type analysis
	Control-flow graphs
	Mapping from abstract syntax to control flow
	Data-flow type and transfer functions
	Lattices and termination
	Very busy expressions
	Reaching definitions
	Constant propagation and folding
	Sign analysis
	Definite assignment

	The semantics of FlowSpec
	Control-Flow rules
	Transfer functions
	Lattices
	Built-in types and functions

	Implementation
	Architecture
	Control flow graph construction
	Data-flow solver
	Strongly connected components
	Solving algorithm
	Filtering the control-flow graph

	Case study of Green-Marl
	The domain of graph analysis
	An introduction to green-Marl
	An example green-Marl program
	The current green-Marl compiler
	Control-flow graph
	Live variables
	Constant propagation
	Reaching definitions
	Definite assignment
	Available and very busy expressions
	Performance measurement
	Setup
	Inputs
	Results

	Case study of Stratego
	Term rewriting and Stratego
	Control-Flow
	Reaching definitions
	Performance comparison
	Setup
	Inputs
	Results
	Threats to validity

	Related work
	Monotone frameworks
	Attribute grammars
	Relational programming
	Other analysis approaches

	Future work
	Conclusion
	mk:H1_69
	Acknowledgements
	Control-flow graph rules for Green-Marl
	Live variables analysis rules for Green-Marl
	Reaching definitions analysis rules for Green-Marl
	Available expressions analysis rules for Green-Marl
	Very Busy expressions analysis rules for Green-Marl
	Constant propagation analysis specification for Green-Marl
	Reaching definitions analysis for Stratego
	References

