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Abstract

Human prion diseases are rare, transmissible and often rapidly progressive dementias. The

most common type, sporadic Creutzfeldt-Jakob disease (sCJD), is highly variable in clinical

duration and age at onset. Genetic determinants of late onset or slower progression might

suggest new targets for research and therapeutics. We assembled and array genotyped

sCJD cases diagnosed in life or at autopsy. Clinical duration (median:4, interquartile range

(IQR):2.5–9 (months)) was available in 3,773 and age at onset (median:67, IQR:61–73

(years)) in 3,767 cases. Phenotypes were successfully transformed to approximate normal

distributions allowing genome-wide analysis without statistical inflation. 53 SNPs achieved

genome-wide significance for the clinical duration phenotype; all of which were located at

chromosome 20 (top SNP rs1799990, pvalue = 3.45x10-36, beta = 0.34 for an additive

model; rs1799990, pvalue = 9.92x10-67, beta = 0.84 for a heterozygous model). Fine map-

ping, conditional and expression analysis suggests that the well-known non-synonymous

variant at codon 129 is the obvious outstanding genome-wide determinant of clinical dura-

tion. Pathway analysis and suggestive loci are described. No genome-wide significant SNP

determinants of age at onset were found, but the HS6ST3 gene was significant (pvalue =

1.93 x 10−6) in a gene-based test. We found no evidence of genome-wide genetic correla-

tion between case-control (disease risk factors) and case-only (determinants of phenotypes)

studies. Relative to other common genetic variants, PRNP codon 129 is by far the outstand-

ing modifier of CJD survival suggesting only modest or rare variant effects at other genetic

loci.

Introduction

Human prion diseases are rare and often rapidly progressive dementia disorders with no

known treatments that slow the disease process. The most common type, sporadic Creutz-

feldt-Jakob disease (sCJD), occurs at a relatively uniform annual incidence of 1-2/million,

equating to a lifetime risk of approximately 1:5000 [1]. The clinical presentation and progres-

sion of the disorder is remarkably variable both in terms of the initial symptoms and signs, age

at onset and clinical duration [2–4]. Patients typically present in late middle or old age but

have been reported in adolescence and early adulthood, and at the extremes of old age [5–7].

The median clinical duration is usually reported as five months with a range of only a few

weeks to several years [2]. Ability to estimate the likely clinical duration could help with timely

decisions about care [8].

Prions are proteinaceous pathogens formed of host prion protein (PrP) which cause mam-

malian prion diseases like bovine spongiform encephalopathy, sheep scrapie, chronic wasting

disease of cervids, and the human disorders [9]. The recently determined structures of mouse

and hamster prions reveals assemblies of PrP in a parallel in-register beta sheet structure with

two domains [10, 11], in marked contrast to the predominant alpha-helices of normal cellular

PrP [12]. Prions are thought to replicate by a process of binding of normal cellular PrP, confor-

mational change and subsequently aggregate fission. In several model systems, incubation

time of prion disease is influenced by PrP gene expression, primary sequence and polymor-

phisms, as well as prion strains [13], thought to be conferred by structural variation of the

pathogen [14]. Experiments using animal or cellular model systems have led to proposals of
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several possible non-PrP mechanisms of toxicity in prion diseases, involving PrP binding part-

ners on the cell surface and downstream intracellular changes [15–17]; however, their rele-

vance to the human diseases is yet to be determined.

Human epidemiological and genetic studies have identified factors that associate with sur-

vival time in sCJD [2, 8, 18, 19], including demographic factors, prion protein genotype,

molecular strain typing of protease-resistant prion protein by Western blot analysis, and a

range of biofluid, tissue, imaging, and neurophysiological biomarkers [20]. Many biomarkers

simply measure the rate or extent of neuronal injury, loss, or dysfunction, or immune cell or

glial responses, whereas genetic associations are implicitly causal of modified clinical pheno-

types. In this study, we sought to determine the effects of genome-wide common genetic varia-

tion on key clinical phenotypes of sCJD, to develop evidence of modifiers relevant to human

prion diseases that might benefit understanding of disease processes and generate new ideas

for therapeutics.

Materials and methods

Diagnosis and clinical phenotypes

Details of the contributing sites and diagnostic criteria were given in a previous publication

[19]. In short, all patient participants were deceased and gained a diagnosis in life of probable

CJD or definite CJD after a post-mortem examination (using contemporary epidemiological

criteria which changed over the recruitment period 1990–2019). “Probable CJD” is an epide-

miological term that now equates to an almost certain diagnosis of CJD post-mortem (e.g.

[21]). Age at clinical onset was given to the nearest month. Clinical duration was based on the

examining physician’s impression of the date of onset of the first symptom that subsequently

was thought to be a component of the disease syndrome until death in months.

Samples used in this study were obtained over several decades and the data were accessed

from January 2023 until now.

Genotyping and quality control

In addition to 4110 samples previously reported, genotyped on an Illumina OmniExpress

array [19], 819 new samples were genotyped using Illumina’s Global Screening Array. Stan-

dard sample and genotyping quality control was performed using PLINK v1.90b3v, which gen-

erated 6,308,901 autosomal SNPs of high quality. Samples with a call rate below 98% and

population outliers identified via multidimensional scaling were removed. Additionally,

related samples (Pi_Hat > 0.1875) were discarded. Only autosomal SNPs with a genotyping

rate of>99%, a minor allele frequency� 0.01 and SNPs not deviating from the Hardy-Wein-

berg equilibrium (P>10−4) were retained. SNPs of A/T or G/C transversion or those which

showed deviation from heterozygosity mean (±3 SD) were excluded. To ensure consistency

with the Michigan Imputation Server pipeline the target VCF files were checked against the

1000 Genomes Project reference panel (https://faculty.washington.edu/browning/conform-gt.

html/). Genotypes were imputed using the Michigan Imputation Server (using Minimac4

assuming a mixed population, HRC r1.1 2016 (Haplotype Reference Consortium) as reference

panel and Eagle 2.4 for phasing) [22]. A post-imputation QC analysis was carried out and

SNPs with an r2 threshold lower than 0.3 (removing 70% of poorly imputed SNPs) were

excluded.
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Statistical analysis

SNPTEST (v2.5.2) was used to perform association and conditional analysis with an additive

and heterozygous logistic regression model, using sex, contributing site and 10 population

covariates generated with PLINK (v1.90b3v; www.cog-genomics.org/plink/1.9/). Genetic cor-

relation between this (using duration as phenotype) and the previously conducted sCJD case-

control study [19] was performed using LDSC [23], a software tool for linkage disequilibrium

(LD) score and heritability estimation using summary statistics. Meta-analysis was performed

using METAL combining the previously published GWAS case-control data [19] and the case-

only data described here using summary test statistics as input (6,314,883 SNPs in the union

list) and adopting the sample-based approach by combining z-scores across samples in a

weighted sum proportional to study sample sizes. FUMA [24], using an integrated Magma

gene-based and gene-set analysis on the GWAS summary data, was utilised to perform path-

way analysis to identify genes and pathways associated with sCJD risk. FUMA also provides

information about chromatin interaction, expression patterns and shared molecular functions

between genes. MAGMA software was also utilised for gene-based / gene-set analysis [25].

Power analysis was performed using R functions taken from the Github site https://github.

com/kaustubhad/gwas-power provided by Kaustubh Adhikari (UCL Division of Biosciences,

University College London).

Ethics

The research project has approval from the NHS Health Research authority (London—Harrow

Research Ethics Committee, London, UK); the REC reference is 05/Q0505/113. Written

informed consent has been obtained.

Results

We performed the association analysis with 3773 (duration as phenotype; median:4.0,

IQR:2.5–9 (months)) and 3767 (age at onset as phenotype; median:67, IQR:61–73 (years)).

cases of probable or definite sCJD by contemporary diagnostic criteria either included in a pre-

vious paper from the collaborative group [19], or newly genotyped on Illumina’s Global

Screening Array (Table 1). All patients were deceased.

Table 1. Number of samples used in the association test from 12 countries (duration / age) with interquartile range and median.

Country N (duration) N (age) Median (duration) IQR (duration) Median (age) IQR (age)

Australia 22 22 2.05 1.87 67 12.5

Austria 44 44 4.5 5.87 72 7

Canada 133 133 4 5 67 14

France 95 95 4 4 68 13

Germany 798 792 6 8 66 12

Italy 554 554 5 7 67 13

Netherlands 126 126 3.94 4.02 66.5 13

Poland 42 42 3 2.88 63.5 9.25

Spain 74 74 3.45 4.25 69 13.75

Switzerland 35 35 2.69 2.91 70 13.5

UK 951 951 5 6.95 67 12

USA 899 899 3 5 67 13

Total 3773 3767

https://doi.org/10.1371/journal.pone.0304528.t001
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Genotype doses were imputed using the Michigan Imputation Server [22], resulting in

6,308,901 SNPs passing quality control.

The median age / duration for men was 67 years and 3.8 months respectively and 67 years

and 4.0 months for women. Median clinical duration (2.0–6.0 months) and age at onset (63.5–

72 years) varied by site, so this was included as a covariate in the analysis. Phenotypes were

modelled as normally distributed quantitative traits following transformation using methods

developed by Box and Cox [26] illustrated as histograms and QQ plots (Figs 1 and 2; S1 Fig).

Association analysis omitting sex, age or country or any combination as covariates did not

show any significant difference in terms of outcome. Principal components analysis was used

to exclude cases with distinct ancestry (n = 54) and did not suggest any strong effects of ances-

try on the outcomes of interest (S2 and S3 Figs).

Additive and heterozygous genetic models were run genome-wide in SNPTEST with sex,

contributing site and genetic ancestry covariates (see Methods) without any statistical inflation

(lambda = 1.000 / 1.000 for clinical duration / age) as illustrated with QQ plots in Fig 3 (dura-

tion phenotype) and Fig 4 (age phenotype). 53 SNPs achieved genome-wide significance

(P<5x10-8) for the clinical duration phenotype (additive model) (Fig 5 and S1 Table), all at the

PRNP locus (top SNP rs1799990, pvalue = 3.45x10-36, beta = 0.34 for additive model;

Fig 1. Histograms for phenotypes duration before (A) and after (B) Box-Cox transformation and age before (C) and

after (D) Box-Cox transformation.

https://doi.org/10.1371/journal.pone.0304528.g001
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rs1799990, pvalue = 9.92x10-67, beta = 0.84 for heterozygous model, Figs 6 and 7). PRNP
rs1799990 was the obvious outstanding genome-wide candidate determinant of clinical duration.

Of 68 cis-eQTL SNPs associated with PRNP expression in various brain tissues (obtained

from GTEx); none were present in the list of 53 SNPs achieving genome-wide significance

(duration phenotype). 50 of these eQTL SNPs for PRNP passed QC, all were P>0.001 (duration

phenotype). No genome-wide significant SNPs remained after conditioning for rs1799990

codon 129 (Fig 8 and S4 Fig). There were 51 suggestive associated SNPs (5x10-8 >

pvalue<1x10-5, including at regions near toHDHD5 (chromosome 22), FHIT (chromosome 3)

and EREG (chromosome 4) (S2 Table and S5–S7 Figs). There were no significant gene-based

associations of clinical duration apart from PRNP (MAGMA and FUMA) (Tables 2 and 3).

Age-based analysis did not identify any genome-wide significant SNP associations (Fig 9).

Two suggestive associations were identified on chromosome 15 near NEDD4 and chromo-

some 13 near UGGT2 (S8 and S9 Figs). Gene-based analysis for age at onset with MAGMA

identified HS6ST3 (pvalue = 1.93 x 10−6), with similarly significant association detected using

FUMA (S3 and S4 Tables).

Fig 2. Quantile-Quantile plots for phenotypes duration before (A) and after (B) Box-Cox transformation and age

before (C) and after (D) Box-Cox transformation.

https://doi.org/10.1371/journal.pone.0304528.g002
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Gene-set analysis for clinical duration using FUMA (including PRNP locus) identified

binders of type-5 metabotropic glutamate receptors (GO Molecular Function ontology

n = 1738, pvalue = 1.85 x 10−5) (Tables 4 and 5). Gene-set analysis for age at onset using

MAGMA revealed intracellular oxygen homeostasis as a significant term (pvalue = 1.89 x

10−6) (S5 Table). Genetic correlation between clinical duration GWAS and the previously pub-

lished case-control GWAS resulted in a non-significant genetic correlation of 0.1467 (pva-

lue = 0.79, 95% CI 0.92,1.21; S6 Table). Meta-analysis of the two GWAS (case-only and case-

control) resulted in the same strong codon 129 effect as described above whilst removing the

suggestive locus on chromosome 22 theHDHD5 locus (S10 Fig).

We also calculated the power of the study based on 3773 samples and a genome-wide signif-

icance level of 5x10-8 using the additive model with a range of effect sizes and minor allele fre-

quencies. Plotting the most significant SNP (PRNP; rs1799990) and the lead SNPs of the

suggestive association signals (HDHD5, rs4819962; FHIT, rs2366847; EREG, rs11727991)

resulted in rs1799990 achieving full power and the three lead SNPs being borderline achieving

a power value of ~0.7–0.8 (S11 Fig).

Interestingly, there was no evidence that the sCJD genetic susceptibility genes, STX6 or

GAL3ST1, which were identified in the previously published case-control study [19], modify

clinical phenotypes. The identification of these genes in the case-control GWAS implicated

Fig 3. Quantile-Quantile plot with duration as phenotype.

https://doi.org/10.1371/journal.pone.0304528.g003
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intracellular trafficking and sphingolipid metabolism respectively as causal disease mecha-

nisms. To further investigate the roles of these pathways in disease phenotypes, we compiled a

comprehensive, bespoke gene list including genes related to these pathways, which have been

implicated in neurodegenerative diseases, and performed MAGMA analysis (S7 and S8

Tables). This highlighted UGGT2, a sphingolipid metabolism linked gene, to be associated

with sCJD age of onset.

Discussion

We describe the first well-powered GWAS for phenotypic traits in sporadic human prion dis-

ease. The only clearly identified risk locus was the PRNP gene itself, more specifically the well-

known common variant at codon 129, for the clinical duration phenotype. Conditioning for

the codon 129 polymorphism at this locus removed all evidence of association at the locus,

implicating the coding sequence of PRNP and not PrP expression in controlling this pheno-

type. We found a number of suggestive risk loci with P<10−5, which should require additional

genetic evidence before being considered further. Pathway analysis identified binders of type-5

metabotropic glutamate receptors, which are known to mediate the downstream effects of

amyloid beta bound to prion protein, as a top hit for clinical duration [27, 28]. Importantly

however, since this small gene set (n = 5) was non-significant after removing PRNP, these data

Fig 4. Quantile-Quantile plot with age as phenotype.

https://doi.org/10.1371/journal.pone.0304528.g004
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Fig 5. Manhattan plot with clinical duration as phenotype. (red line indicating genome-wide significance of 5x10-8;

blue line indicating suggestive genome-wide significance (5x10-8 > pvalue< 1x10-5)).

https://doi.org/10.1371/journal.pone.0304528.g005

Fig 6. Regional association plot at PRNP locus with clinical duration as phenotype (additive model).

https://doi.org/10.1371/journal.pone.0304528.g006
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should be interpreted with caution. Overall, this work further establishes the key importance

of the PrP coding sequence relative to other potential mechanisms and genetic loci in determi-

nation of CJD survival.

For age at onset there were no genome-wide significant SNPs, but we identified theHS6ST3
in a gene-based test and intracellular oxygen homeostasis by pathway analysis (S3–S5 Tables).

HS6ST3 or Heparan Sulfate 6-O-Sulfotransferase 3 catalyses the transfer of sulfate from 3’-

phosphoadenosine 5’-phosphosulfate (PAPS) to position 6 of the N-sulfoglucosamine residue

(GlcNS) of heparan sulfate (HS), thus potentially modifying the interactions of this molecule

with cell surface proteins. There is a vast literature on a role for polyanionic compounds,

including HS in prion disease pathogenesis, as they colocalise with PrPC on the cell surface

and with aggregated PrPSc [29], act as potential co-factors in prion replication, and there is

potent inhibitory activity of HS and related compounds on prion propagation [30]. A role for

intracellular oxygen homeostasis is less clearly linked to prion disease. Both associations were

borderline in significance taking into account multiple testing. We found no evidence of

genetic correlation between the case-only and published case-control GWAS analyses. We

observed only a moderate heritability (h2
SNP = 0.18–0�26, using different methods) for the

Fig 7. Regional association plot at PRNP locus with clinical duration as phenotype (heterozygous model).

https://doi.org/10.1371/journal.pone.0304528.g007

Fig 8. Regional association plot at PRNP locus for conditional analysis on SNP rs1799990 with clinical duration as

phenotype (additive model).

https://doi.org/10.1371/journal.pone.0304528.g008
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case-control GWAS [19], and low heritability for the duration phenotype (h2
SNP = 0.09 using

LDSC). Common SNPs measured in these studies therefore explain only a small proportion of

disease phenotypes. The only locus common to both GWAS studies is PRNP, with no evidence

that SNPs at the STX6 or GAL3ST1 loci have any effect on clinical phenotypes in lead SNP

association, gene-based or pathway analyses. It is possible that larger sample sizes, with addi-

tional risk factor discovery, will uncover shared determinants, but the current evidence sug-

gests that beyond PRNP, distinct mechanisms and/or stochasticity determines disease risk, age

at onset and clinical duration.

Absence of an association between PRNP cis-eQTL SNPs and clinical duration/age of onset

should not deter the pursuit of methods to reduce PrP as a therapeutic strategy. There is a

wealth of evidence for the safety and potential effectiveness of this approach from animal mod-

els [31–35]. PRNP cis-eQTL SNPs are predominantly associated with localised tissue expres-

sion of PrP, typically in cerebellum or cerebellar hemispheres, and are relatively modest

effects. Therapeutic strategies aim for more profound protein knock-down, which will be criti-

cal to achieve across a wide range of central nervous system tissues and cell types [36].

Poleggi et al. (2018) [37] aimed to identify additional genetic modifiers in a GWAS study

with a small cohort of patients (E200K mutation only). In this study, two SNPs were identified

Table 2. Top 10 genes identified by MAGMA (standalone) gene analysis (including genome-wide significant SNPs) with duration as phenotype.

Gene NCBI Gene ID Chr Start (hg19) Stop (hg19) NSNPS N ZSTAT Pvalue Bonf. corr. Pvalue

PRNP 5621 20 4641797 4707235 189 3773 6.11 5.00 x 10−10 9.02 x 10−6

ANP32E 81611 1 150165717 150233504 82 3773 4.15 1.64 x 10−5 0.31

CA14 23632 1 150204554 150262478 59 3773 3.92 4.38 x 10−5 0.79

TMEM121B 27439 22 17572189 17627257 148 3773 3.90 4.81 x 10−5 0.87

HDHD5 27440 22 17593410 17671177 299 3773 3.89 5.10 x 10−5 0.92

IL17RA 23765 22 17540849 17621584 185 3773 3.85 5.98 x 10−5 1

CNTN3 5067 3 74286719 74688587 845 3773 3.58 1.70 x 10−4 1

APH1A 51107 1 150212799 150266609 57 3773 3.54 2.03 x 10−4 1

U2SURP 23350 3 142695366 142804567 170 3773 3.50 2.36 x 10−4 1

FZD8 8325 10 35902177 35955362 83 3773 3.47 2.58 x 10−4 1

(NSNPS = number of SNPs annotated to a gene; N = number of samples; ZSTAT = Z-score for the gene, based on its p-value)

https://doi.org/10.1371/journal.pone.0304528.t002

Table 3. Top 10 genes identified by FUMA gene analysis (including genome-wide significant SNPs) with duration as phenotype.

Gene Chr Start (hg19) Stop (hg19) NSNPS N ZSTAT Pvalue Bonf. corr. Pvalue

PRNP 20 4666882 4682236 27 3773 7.02 1.12 x 10−12 2.03 x 10−8

CECR5 22 17618401 17646177 81 3773 4.28 9.42 x 10−6 0.17

ANP32E 1 150190717 150208504 19 3773 3.86 5.63 x 10−5 1

CA14 1 150229554 150237478 3 3773 3.79 7.60 x 10−5 1

AL356356.1 1 150521897 150524367 1 3773 3.67 1.23 x 10−4 1

AC006946.15 22 17602476 17612994 40 3773 3.51 2.20 x 10−4 1

CCDC174 3 14693271 14714166 66 3773 3.51 2.26 x 10−4 1

KCNJ3 2 155554811 155714863 453 3773 3.45 2.82 x 10−4 1

VRK3 19 50479724 50529203 115 3773 3.38 3.56 x 10−4 1

U2SURP 3 142683339 142779567 154 3773 3.38 3.61 x 10−4 1

(NSNPS = number of SNPs annotated to a gene; N = number of samples; ZSTAT = Z-score for the gene, based on its p-value)

https://doi.org/10.1371/journal.pone.0304528.t003
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within the CYP4X1 gene locus indicating that this gene modulates onset of disease in sCJD.

The top SNP identified in the Poleggi analysis (rs9793471) had a pvalue of 0.08 in our analysis.

A number of GWAS studies reporting genetic modifiers in other neurological diseases of in

relation to the age at onset phenotype have been reported. One example is the case-only study

of Li et al. [38] where a number of novel genes for age-at onset in Alzheimer’s disease were

identified. Blauwendraat et al. [39] described several modifier loci in an age-at-onset GWAS

analysis of Parkinson’s disease.

It was imperative to transform the non-normal distribution of the duration phenotype data

as the GWAS association model requires Gaussian distributed phenotype data to avoid model

misspecification, which could lead to false conclusions. A number of data transformations

were tested (log, rank inverse, square root) for transformation of the phenotype data (duration

and age) and the Box-Cox transformation was found to be the best option for establishing the

optimal correlation coefficient ensuring a normal distribution and reduction of data noise to a

minimum.

This study was limited by sample size and was restricted to the examination of age at

onset and clinical duration phenotypes that are almost universally collected, whereas the

diversity of clinical phenotypes in CJD is well known (including variable involvement of

Fig 9. Manhattan plot with age at onset as phenotype. (red line indicating genome-wide significance of 5x10-8; blue

line indicating suggestive genome-wide significance (5x10-8 > pvalue< 1x10-).

https://doi.org/10.1371/journal.pone.0304528.g009
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cognitive, ataxic, psychiatric, sleep and motor aspects). In biochemical aspects and bio-

markers, we see diversity of PrPSc types, and different imaging, neurophysiological and

fluid biomarker associations. These parameters are only collected in smaller subsets of data.

Genetic studies in a rare disease like sCJD benefit from national investment and collabora-

tion in prion disease surveillance [40]. Future work of the collaborative group might focus

on building larger sample collections for increased power, exome or genome studies to

ascertain rare and structural variants and extension of these type of analyses to other pheno-

types (e.g., the well-known subtypes of CJD based on major symptom at presentation

(ataxia, visual processing disorder etc.)).

Table 4. Top 10 pathways identified by MAGMA (standalone) gene-set analysis (including genome-wide SNPs) using duration as phenotype.

Category Pathway NGENES BETA Pvalue Bonf. Corr.

Pvalue

Gene

ontology

regulation of calcium ion import across plasma membrane 2 2.86 2.57 x

10−6
0.04

Gene

ontology

regulation of T-lymphocyte activation via T cell receptor contact with MHC-bound antigen 5 1.58 5.41 x

10−6
0.09

Gene

ontology

cellular response to copper 11 1.04 2.55 x

10−5
0.43

Gene

ontology

proteosomal ubiquitin-independent protein catabolic process 4 1.51 6.25 x

10−5
1.00

Gene

ontology

anchored component of external side of plasma membrane 18 0.77 1.06 x

10−4
1

Gene

ontology

response to iron ion 30 0.61 1.11 x

10−4
1

Gene

ontology

obsolete intrinsic component of external side of plasma membrane 23 0.69 1.16 x

10−4
1

Gene

ontology

T cell activation via T cell receptor contact with antigen bound to MHC molecule on antigen

presenting cell

8 1.06 1.27 x

10−4
1

Gene

ontology

CD4-positive, CD25-positive, alpha-beta regulatory T cell differentiation 4 1.33 3.44 x

10−4
1

Gene

ontology

positive regulation of T cell activation via T cell receptor contact with antigen bound to MHC

molecule on antigen presenting cell

2 1.67 3.52 x

10−4
1

(NGENES = number of genes in the gene-set dataset; BETA = regression coefficient of the gene set)

https://doi.org/10.1371/journal.pone.0304528.t004

Table 5. Top 10 pathways identified by FUMA gene-set analysis (including genome-wide SNPs) using duration as phenotype.

Category Pathway NGENES BETA Pvalue Bonf. corr. Pvalue

Gene ontology type_5_metabotropic_glutamate_receptor_binding 5 1.92 1.85 x 10−5 0.29

Gene ontology ureteric_bud_elongation 9 1.00 8.58 x 10−5 1

Gene ontology negative_regulation_of_cell_maturation 8 0.89 1.53 x 10−5 1

Gene ontology mechanosensory_behavior 13 0.85 1.55 x 10−5 1

Gene ontology actin_filament_based_transport 8 0.90 3.84 x 10−5 1

Gene ontology learned_vocalization_behavior_or_vocal_learning 8 0.97 3.99 x 10−5 1

Gene ontology peptidyltransferase_activity 3 1.70 5.78 x 10−5 1

Gene ontology pyrimidine_containing_compound_transmembrane_transport 10 0.79 7.38 x 10−5 1

Curated gene sets smid_breast_cancer_relapse_in_pleura_dn 24 0.49 7.89 x 10−5 1

Gene ontology vitamin_binding 128 0.23 8.75 x 10−4 1

(NGENES = number of genes in the gene-set dataset; BETA = regression coefficient of the gene set)

https://doi.org/10.1371/journal.pone.0304528.t005
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