

Delft University of Technology

Java Unit Testing Tool Competition - Eighth Round

Devroey, Xavier; Panichella, Sebastiano; Gambi, Alessio

DOI
10.1145/3387940.3392265
Publication date
2020
Document Version
Final published version
Published in
Proceedings - 2020 IEEE/ACM 42nd International Conference on Software Engineering Workshops, ICSEW
2020

Citation (APA)
Devroey, X., Panichella, S., & Gambi, A. (2020). Java Unit Testing Tool Competition - Eighth Round. In
Proceedings - 2020 IEEE/ACM 42nd International Conference on Software Engineering Workshops, ICSEW
2020 (pp. 545-548). ACM DL. https://doi.org/10.1145/3387940.3392265

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1145/3387940.3392265
https://doi.org/10.1145/3387940.3392265

Java Unit Testing Tool Competition - Eighth Round

Xavier Devroey
x.d.m.devroey@tudelft.nl

Delft University of Technology

Delft, The Netherlands

Sebastiano Panichella
panc@zhaw.ch

Zurich University of Applied Science

(ZHAW)

Zurich, Switzerland

Alessio Gambi
alessio.gambi@uni-passau.de

University of Passau

Passau, Germany

ABSTRACT

We report on the results of the eighth edition of the Java unit testing

tool competition. This year, two tools, EvoSuite and Randoop, were

executed on a benchmark with (i) new classes under test, selected

from open-source software projects, and (ii) the set of classes from

one project considered in the previous edition. We relied on an

updated infrastructure for the execution of the different tools and

the subsequent coverage and mutation analysis based on Docker

containers. We considered two different time budgets for test case

generation: one an three minutes. This paper describes our method-

ology and statistical analysis of the results, presents the results

achieved by the contestant tools and highlights the challenges we

faced during the competition.

CCS CONCEPTS

• Software and its engineering → Search-based software engi-

neering; Automatic programming; Software testing and de-

bugging.

KEYWORDS

tool competition, benchmark, software testing, test case generation,

unit testing, Java, JUnit

ACM Reference Format:

Xavier Devroey, Sebastiano Panichella, and Alessio Gambi. 2020. Java Unit

Testing Tool Competition - Eighth Round. In IEEE/ACM 42nd International

Conference on Software Engineering Workshops (ICSEW’20), May 23–29, 2020,

Seoul, Republic of Korea. ACM, New York, NY, USA, 4 pages. https://doi.org/

10.1145/3387940.3392265

1 INTRODUCTION

This year is the eighth edition of the Java unit testing tool com-

petition. This year’s participants are EvoSuite [10] and Randoop

[8]. Each tool has been executed with a time budget of one and

three minutes on 70 classes under test: 10 classes coming from

last years’ edition [6], and 60 classes taken from three projects

never considered in past editions of the competition. We compare

the tools for each time budget using well-established structural

statement and branch coverage metrics, and mutation analysis to

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICSEW’20, May 23–29, 2020, Seoul, Republic of Korea

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7963-2/20/05. . . $15.00
https://doi.org/10.1145/3387940.3392265

assess the fault revealing the potential of the generated test suites.

The evaluation was carried out using our dockerized infrastruc-

ture that includes tooling to execute the different tools, compute

code coverage metrics, and performmutation analysis. Additionally,

the infrastructure includes statistical analysis scripts to compare

and rank the different test case generation tools. This year, we im-

plemented several improvements to our infrastructure, including

parallelizing the execution of mutation analysis, fixing the issues

reported during last year’s edition of the competition [6], and im-

plementing a novel Docker image to execute the Java unit test

case generators. The infrastructure is open-source and available on

GitHub at https://github.com/JUnitContest/junitcontest.

In the remainder of this report, Section 2 presents the benchmark

and selection procedure, Section 3 briefly describes the participating

tools, Section 4 presents the methodology, Section 5 reports this

year’s results, and Section 6 concludes with remarks and ideas of

future improvements.

2 THE BENCHMARK SUBJECTS

Choosing subjects for benchmarking unit test case generators should

take into consideration several factors. The classes under test should

be (i) a representative sample of real-world software covering dif-

ferent application domains [4]; (ii) preferably open-source to ease

replicability of the study; and, (iii) should be not trivial [11] (e.g.,

classes should have branches in their methods and should require

different types of input).

Taking these aspects into account, and considering also the need

to automate the analysis, we focused on GitHub repositories that

satisfy the following criteria: the project (i) can be built usingMaven

or Gradle, and (ii) includes JUnit 4 test suites. In addition to those,

we included classes from a project selected in last year’s edition

which were particularly challenging for the competing tools. As a

result, we selected the following projects:

• Fescar/Seata (https://github.com/seata/seata), an easy-to-use,

high-performance, open source distributed transaction solu-

tion.

• Guava (https://github.com/google/guava), a set of core Java

libraries extending the standard Java API.

• PdfBox (https://github.com/apache/pdfbox), an Apache Java

API to work with PDF documents.

• Spoon (https://github.com/INRIA/spoon/), a library for ana-

lyzing and transforming Java source code, also used in last

year’s edition of the competition [6].

Considering all the classes in each project is not possible as it

would require an extensive amount of time and resources for the

competition. Following the lead of past editions [6], we sampled

a limited number of Classes under test (CUTs) using a two-step

545

2020 IEEE/ACM 42nd International Conference on Software Engineering Workshops (ICSEW)

Table 1: Characteristics of the benchmark.

Project Cand. 1m 3m Filt. Samp.

Fescar/Seata 43 43.0m 2.2h 26 20
Guava 275 4.6h 13.8h 114 20
PdfBox 303 5.1h 15.2h 242 20
Spoon 437 7.3h 21.9h N.A. 10

Total 1094 17.7h 53.3h 382 70

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●●●

●

●

●

●

●●

●

●

●

● ●●

●

●●

●

●

●●

●

●

●
●

●

●

●●●●

●

●

●

●

●

●

●●

●

●●

●

●

●

●●

●

●

●

●

●

● ●● ●●
●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●
●

●

●

●● ●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●
●

● ●

●

●

●

● ●●

●

●

●●

●

● ●

●

●●

●
●

● ●

●
●

●

●

●●

●

●

●

●

●

●
● ●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●●●●●●

●

●

●

●

●

●● ●

●

●

●

●● ●

●

●

●

●

●
●

●

● ●

●

●

●
●

●

●

●

●

●●

●●

●●

●

●

●

●●

●

●●

●

●

●

●

●

●

● ●●●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●●●

●

●

●●

●

●

●

●●

●

●

●●

●

●

●●●

●

●

●

●

Candidate Sampled

0 25 50 75 100 0 25 50 75 100

0

25

50

75

100

Line coverage

M
ut

at
io

n
sc

or
e

0

25

50

75

100
Branch

Figure 1: Line coverage, branch coverage andmutation score

for the candidate and selected CUTs.

procedure. In the first step, we computed McCabe’s cyclomatic

complexity for all methods and classes in each project using Ja-

vaNCSS1 and filtered out classes that contain only methods with

a complexity lower than five. Removing those classes reduces the

chances to sample classes with few branches that can easily be cov-

ered by randomly generated tests [11]. This gave us a set of 1,094

candidate CUTs. In the second step, we executed Randoop with a

time budget of 10 seconds against each candidate CUT (except for

Spoon classes) and filtered out classes for which Randoop could

not generate a single test. This reduces the chances of running

into technical difficulties during the execution of the different tools.

After filtering, this resulted in a set of 382 classes (Spoon classes

excluded) from which we randomly selected 20 CUTs from each

project. We considered 10 classes from Spoon which were used in

the past edition of the competition [6].

Table 1 reports the main characteristics of the selected projects

with the number of classes under tests. For each project, Table 1

details the number of candidate CUTs (Cand.), and, to give an idea

of the time required for test case generation, the total estimated

test case generation time when considering budgets of 1 (1m) and 3

minutes (3m) per candidate class. Finally, Table 1 gives the number

of CUTs after filtering out CUTs for which Randoop could not

generate a single test (Filt.), and the number of sampled CUTs

(Samp.). Figure 1 reports the line and branch coverage, and the

mutation score for the test cases generated by Randoop for all

candidate CUTs (on the left), and the 60 sampled CUTs (on the

right).

3 THE TOOLS

Two tools are competing in this eighth edition: Randoop [8], and

EvoSuite [2, 10, 11]. Randoop relies on a feedback-driven random

1Available at https://github.com/codehaus/javancss.

testing strategy [9], collecting information from the execution of

the tests as they are generated to avoid redundant and illegal tests,

to generate regression tests capturing how the system behaves as-is.

EvoSuite uses an evolutionary algorithm to evolve a set of unit tests

satisfying a given set of test objectives (for instance, covering the

different branches of a CUT, or weakly killing a set of mutants) [4].

4 THE CONTEST METHODOLOGY

The methodology adopted in this year’s edition is similar to the

one adopted last year [6]. However, due to delays in the agenda,

time constraints, and engineering concerns, we decided to drop the

combined analysis of the results (evaluating the complementary

of the different tools), and the comparison of the generated test

cases with the manually written test suites. The following para-

graphs described the main steps and modifications of the contest

methodology.

Public contest repository. The complete contest infrastruc-

ture is released under a BSD3 license and is available on GitHub

https://github.com/JUnitContest/junitcontest/. We improved the

infrastructure by highly parallelizing the mutation analysis execu-

tion and stopping the test execution as soon as a mutant is killed,

correcting several bugs related to coverage computation which

were reported during last year’s edition of the competition [6], and

revising the procedure to update the Docker image readily usable to

execute the Java unit test case generators. Additionally, the reposi-

tory hosts the benchmarks, detailed reports and data of this year’s

as well as previous years’ editions.

Execution environment. The infrastructure performed a total

of 2,800 executions (4,560 in the previous edition): 70 CUTs × 2

tools × 2 time budgets × 10 repetitions for statistical analysis. The

executions were run in parallel using Docker on two servers: one

Linux Ubuntu (v 4.4.0-174-generic) with 40 CPU cores (Intel(R)

Xeon(R) CPU E5-2650 v3 @ 2.30GHz) and 128 GB memory, and one

with one Linux Ubuntu (version id 19.10) with 8 CPU cores (Intel

Core Processor (Broadwell, no TSX, IBRS) CPU v6 @ 2.49GHz) and

160 GB memory.

Test generation and time budget. Each tool was executed ten

times against each CUT for each time budget to take randomness

of the generation processes into account [1]. We considered two

different time budgets: 1 and 3 minutes.

Metrics computation. As for last year, we kept the strict muta-

tion analysis time budget of 5 minutes per CUT, and a timeout of 1

minute for each mutant, and we sampled the mutants generated by

PITest 2. We applied a random sampling of 33% for CUTs with more

than 200 mutants, and a sampling of 50% for CUTs with more than

400 mutants. This year, however, we did not encounter difficulties

while computing coverage metrics, thanks to the fixes applied to

the competition infrastructure. We updated JaCoCo to the latest

version (version 0.8.5) to compute line and branches coverage.

Combined analysis and comparison with manually writ-

ten tests. Due to delays and time constraints for the execution

of the combined analysis and publication of the present report,

we could not perform the combined analysis and the comparison

with manually written tests. The combined analysis gathers all the

tests generated by the different tools and performs a coverage and

2http://pitest.org/

546

Table 2: Overall scores and rankings obtainedwith the Fried-

man test

Tool Score Ranking

EvoSuite 406.14 1.26
Randoop 310.75 1.74

mutation analysis, but requires an extensive amount of time to be

performed as it re-executes all the tests. One possible improvement

to the existing infrastructure would be to collect the full cover-

age and mutation analysis reports from JaCoCo and PIT to avoid

re-executing all the combined test suites.

The comparison between automatically generated and manually

written tests represents a great source of information for research.

Unfortunately, this process is largely manual in the current com-

petition infrastructure and poses several challenges. For instance,

Google Guava contains several and diverse extensions to the Java

standard API and therefore constitutes a great candidate for the

evaluation of the unit test generation capabilities of a tool. How-

ever, the developers chose to keep Guava’s test suite in a dedicated

Maven module to allow for the tests to depend on Guava itself,

posing several challenges (e.g., dependencies management) to the

competition infrastructure. Those limitations should be investigated

further to (partially) automate the comparison.

Statistical analysis. Similarly to previous editions [6], we used

statistical tests to support the results: the Friedman test to assess

whether the scores over the different CUTs and time budgets (70

CUTs × 2 budgets = 140 data points) achieved by alternative tools

differ significantly from each other; and the post-hoc ConoverâĂŹs

test for pairwise multiple comparisons to determine for which pair

of tools the significance actually holds. We used the confidence

level α = 0.05, and p-values obtained with the ConoverâĂŹs test

were further adjusted with the Holm-Bonferroni procedure, which

is required in case of multiple comparisons.

5 RESULTS

Figure 2 presents the results of the coverage and mutation analysis

for EvoSuite and Randoop for the two time budgets considered.

Mutants coverage denotesmutated statements that could be covered

by at least one test, while the mutation score is the classical ratio

between mutants that were killed by at least one test to the total

number of mutants.

Out of 700 executions (70 CUTs × 10 executions), EvoSuite

achieved, on average, a higher coverage and mutation score for all

the projects compared to Randoop. The average coverage and muta-

tion score of the tests generated by EvoSuite slightly increase (from

55.9% to 57.0% for line coverage, 50.8% to 51.7% for branch coverage,

from 32.6% to 33.8% for the mutation score) when increasing the

time budget from one to three minutes. For Randoop, the average

coverage and mutation score of the test cases remain stable (from

42.4% to 42.7% for line coverage, from 32.6% to 33.1% for branch

coverage, and from 30.9% to 31.1% for the mutation score).

Table 2 presents the final score and ranking achieved by the tools

at different search budgets as well as the ranking produced by the

Friedman test. The total score is split in (resp.) 199.73 (standard

deviation 33.72) and 206.40 (standard deviation 45.64) for EvoSuite,

●●●●●●●●●● ●●●●●●●●●●

●●●●●

●

●●

●

●

●●●

●

●●●●

●

●

●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●

●

●●●

●

●●●●

●

●

●

●

●
●

●

●

●●●

●

●●

●●●●

●

●●

●●●●

●●

●
●

●

●

●

●●

●

●●●

●

●●●

●

●●●●

●

●

●

●

●

●

●●

●

●

●

●●●

●

●●

●●●●

●

●●

●●●●

●●

●

●

●

●

●

●

●

●●

●

●●●

●

●●●

●

●●●●

●

●

●

●●●

●

●

●●●

●

●●

●●●●

●

●●

●●●●

●●

●

●

●

●

●

●

●●

●●

●

●●

●

●

●●●

●

●

●

●●●●●

●

● ●

●●●

●

●●●●

●

FESCAR GUAVA PDFBOX SPOON (all)

Line coverage
B

ranch coverage
C

overed m
utants

M
utation score

R.1 E.1 R.3 E.3 R.1 E.1 R.3 E.3 R.1 E.1 R.3 E.3 R.1 E.1 R.3 E.3 R.1 E.1 R.3 E.3

0

25

50

75

100

0

25

50

75

100

0

25

50

75

100

0

25

50

75

100

Figure 2: Line, branch and mutants coverage, and mutation

score for EvoSuite (E.) and Randoop (R.) with a time bud-

get of one (1) and three (3) minutes on the different CUTs,

grouped by project.

and (resp.) 152.77 (standard deviation 1.55) and 157.98 (standard

deviation 3.44) for Randoop, for time budgets of (resp.) one and

three minutes. Figure 3 presents the detailed score achieved by the

547

●

●

●●●●●●●●●●

●
●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

FESCAR GUAVA PDFBOX SPOON (all)

R.1 E.1 R.3 E.3 R.1 E.1 R.3 E.3 R.1 E.1 R.3 E.3 R.1 E.1 R.3 E.3 R.1 E.1 R.3 E.3

0

2

4

6

Figure 3: Scores achieved by EvoSuite (E.) and Randoop (R.)

with a time budget of one (1) and three (3) minutes on the

different CUTs, grouped by project.

generated tests for each execution of EvoSuite and Randoop. The p-

values produced by the post-hoc Conover’s procedure is lower than

0.006. Those results are consistent with other independent evalua-

tions [4, 11], as well as previous results of the competitions [7], and

show that bugs discovered both in the competition infrastructure

[6] and in the EvoSuite implementation [3] could be fixed.

The full results are available in the contest infrastructure reposi-

tory at https://github.com/JUnitContest/junitcontest/tree/master/

publications.

6 CONCLUSIONS AND FINAL REMARKS

This year was the eighth edition of the Java unit testing tool com-

petition. EvoSuite was improved compared to last year and showed

several improvements in the results.

Among the several improvements made to the competition in-

frastructure, we parallelized the execution of the mutation analysis

for the different CUTs. We also corrected several bugs reported

during the seventh edition of the competition, leading to an im-

provement in the results of the various tools. Finally, we revised the

procedure to update the readily usable Docker image. The two-steps

procedure used to select the different CUTs proved to be useful

again this year. It allowed us to discover configuration issues in

the competition infrastructure (e.g., wrong class-paths) and avoid

several of the difficulties encountered last year. Unfortunately, the

configuration (and validation of the configuration) of the competi-

tion infrastructure remains mainly a manual process and should be

partially automated in the future.

The dockerized version of the infrastructure allowed us to dis-

tribute the execution on two different servers. Of course, this could

have side effects on the performance of the individual tools run-

ning on different hardware. However, the impact could be toned

down by limiting the amount of resources used by the executions.

Future editions of the competition should include those limits in

the Docker image configuration file to bring reproducibility of the

results one step further in future evaluations.

Future directions for future unit testing tool competitions go

toward (i) the comparison of tools by considering additional criteria

than the coverage and mutation analysis [5]; (ii) exploring the

possibility to consider other languages (e.g., Python) in further

competitions; (iii) extend even further the dockerized version of

the infrastructure, making it available as service to researchers of

the community.

ACKNOWLEDGMENTS

Special thanks to Mitchell Olsthoorn for his help with the setup

of the server. This research was partially funded by the EU Hori-

zon 2020 ICT-10-2016-RIA âĂĲSTAMPâĂİ project (No.731529). We

thank all participants of the unit-test tool competition of this and

previous years, which continuously sustain the evolution and ma-

turity of automated testing strategies.

REFERENCES
[1] Andrea Arcuri and Lionel Briand. 2014. A HitchhikerâĂŹs Guide to Statistical

Tests for Assessing Randomized Algorithms in Software Engineering. Softw. Test.
Verif. Reliab. 24, 3 (May 2014), 219âĂŞ250. https://doi.org/10.1002/stvr.1486

[2] Andrea Arcuri, Jose Campos, and Gordon Fraser. 2016. Unit Test Generation Dur-
ing Software Development: EvoSuite Plugins for Maven, IntelliJ and Jenkins. In
2016 IEEE International Conference on Software Testing, Verification and Validation
(ICST). IEEE, 401–408. https://doi.org/10.1109/ICST.2016.44

[3] Jose Campos, Annibale Panichella, and Gordon Fraser. 2019. EvoSuite at the
SBST 2019 Tool Competition. In 2019 IEEE/ACM 12th International Workshop on
Search-Based Software Testing (SBST). IEEE, 29–32. https://doi.org/10.1109/SBST.
2019.00017

[4] Gordon Fraser and Andrea Arcuri. 2014. A Large-Scale Evaluation of Automated
Unit Test Generation Using EvoSuite. ACM Transactions on Software Engineering
and Methodology 24, 2 (dec 2014), 1–42. https://doi.org/10.1145/2685612

[5] G. Grano, C. Laaber, A. Panichella, and S. Panichella. 2019. Testing with Fewer
Resources: An Adaptive Approach to Performance-Aware Test Case Generation.
IEEE Transactions on Software Engineering (2019), 1–1.

[6] Fitsum Kifetew, Xavier Devroey, and Urko Rueda. 2019. Java Unit Testing Tool
Competition - Seventh Round. In 2019 IEEE/ACM 12th International Workshop on
Search-Based Software Testing (SBST). IEEE, 15–20. https://doi.org/10.1109/SBST.
2019.00014

[7] Urko Rueda Molina, Fitsum Kifetew, and Annibale Panichella. 2018. Java unit
testing tool competition. In Proceedings of the 11th International Workshop on
Search-Based Software Testing - SBST ’18. ACM Press, 22–29. https://doi.org/10.
1145/3194718.3194728

[8] Carlos Pacheco and Michael D Ernst. 2007. Randoop: Feedback-Directed Random
Testing for Java. In Companion to the 22nd ACM SIGPLAN conference on Object
oriented programming systems and applications companion - OOPSLA ’07, Vol. 2.
ACM Press, 815. https://doi.org/10.1145/1297846.1297902

[9] Carlos Pacheco, Shuvendu K. Lahiri, Michael D. Ernst, and Thomas Ball. 2007.
Feedback-Directed Random Test Generation. In 29th International Conference on
Software Engineering (ICSE’07). IEEE, 75–84. https://doi.org/10.1109/ICSE.2007.37

[10] Annibale Panichella, JosÃľ Campos, and Gordon Fraser. 2020. EvoSuite at the
SBST 2020 Tool Competition. In IEEE/ACM 42nd International Conference on
Software Engineering Workshops (ICSEW’20). Seoul, Republic of Korea. https:
//doi.org//10.1145/3387940.3392266

[11] Annibale Panichella, Fitsum Meshesha Kifetew, and Paolo Tonella. 2018. Auto-
mated Test Case Generation as a Many-Objective Optimisation Problem with
Dynamic Selection of the Targets. IEEE Transactions on Software Engineering 44,
2 (2018), 122–158. https://doi.org/10.1109/TSE.2017.2663435

548

