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Abstract: This paper deals with buckling aspects of the design of stepped columns in heavy 
mill buildings. In these structures, columns have to carry significant axial loads that usually act 
eccentrically and strength reducing bending moments due to lateral loads. A simple physical 
model for buckling behaviour analysis is proposed and formulated using the differential equa-
tions of equilibrium. The exact solution of the governing equations is found by using symbolic 
computation. Effective buckling length coefficients and the corresponding critical loads are ob-
tained and the results are presented in the form of design charts. The structural response is then 
evaluated and discussed for a number of practical cases for sway and sway prevented columns.  
 
 
1 Introduction 
 
Mill buildings are heavy industrial structures within which machinery, materials and products 
are lifted and moved in a large work area by overhead travelling cranes. These industrial fa-
cilities are usually designed with rigid steel-framed structures and are characterized by long 
roof spans and high floor-to-floor and floor-to-roof heights. The structure comprises common 
steel components used in roof and wall framing (e.g. roof trusses), wall systems and crane run-
way beams supported by columns. Several different column configurations can be used for the 
crane carrying structure [1]. Designers frequently choose stepped columns, with a single heavy 
wide-flange section as the lower segment and a lighter wide-flange section that supports the 
roof structure. The upper segment has to carry the roof and upper wall loads. The lower seg-
ment has to be designed for the extra load from the crane beam reaction, lower wall loads and 
self-weight. A typical geometry for crane buildings is shown in Fig. 1a. The column is ex-
tended up to the top of the truss and connected to the top and bottom truss chords. The roof 
truss can be regarded as an infinitely stiff horizontal member and it provides lateral support to 
columns. The column base may be fully fixed although pinned bases are often adequate. 
 This paper is an analysis of the stability behaviour of stepped columns of such mill build-
ings. The model is formulated in the context of the classical equilibrium approach. A set of 
equations governing equilibrium along with the appropriate boundary conditions are derived. 
This derivation is based on the following assumptions: 

1. The analysis is purely elastic (the stress-strain relationship is completely linear),  
2. Residual stresses are ignored, 
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Fig. 1: Typical cross-section of a heavy mill building 
 

3. No local type of instability occurs, 
4. The column is considered transversely supported so that the possibility of buckling 

about the weak axis is precluded, 
5. Lateral torsional buckling is prevented, 
6. The cut surfaces at the column splice are in perfect contact, in the case of bearing 

splices, 
7. No appreciable initial curvature exists, 
8. The effect of transverse shear on deformations is negligible. 

 This physical model is first formulated and the critical buckling load of the stepped column 
is investigated using eigen-boundary-value analysis. The corresponding effective buckling 
length is also computed. A main interest of the present paper is to derive rational effective 
length charts that may be readily used as a simple design tool. 
 Imperfections in the form of column segments misalignment and load eccentricities are 
also considered. It is shown that the imperfections can produce highly unstable behaviour. 
These findings are important for designers aiming to achieve safer and more efficient and 
economic designs for stepped columns in mill buildings. Some guidelines to represent this 
information in a suitable form for subsequent inclusion in a maximum elastic strength column 
analysis are also proposed.  
 
 
2 Model formulation 
 
Consider an isolated stepped column in the frame illustrated in Fig. 1b. The crane loads 
dominate the design of the column. These are essentially axial compressive loads that act 
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eccentrically and thus produce moments in the column. The analysis of such columns requires 
a buckling analysis. By solving the equilibrium equations, the critical loads and the corre-
sponding effective length coefficients are determined. The results depend on (i) the end fixi-
ties, (ii) the ratio of the end axial load to the intermediate axial load (parameter γ), (iii) the 
ratio of the length and moment of inertia of the upper segment to the lower segment, and (iv) 
the splice mechanical properties [2,3]. 

The column ends are restrained by base and roof beam connections, respectively, that usu-
ally exhibit an elastic initial response (partially restrained connections). The roof truss fram-
ing into the top column segment also provides some kind of restraint against lateral deflec-
tion. In this paper, the two following cases are considered: (i) the top end is prevented from 
translating during buckling (sway prevented model) and (ii) the top end is free to translate 
during buckling (sway model). The two basic mechanical models are shown in Figs. 2 and 3. 
The stepped columns in Figs. 2 and 3 consist of two independent members, I and II, connected 
by a spring at point S. Kθc is the tangent elastic stiffness coefficient for this spring. Member I has 
a length L1 = αL, where L is the column length and 0 ≤ α ≤ 1. Member II has two segments of 
length L2 = (1−α)L−Htr and L3 = Htr, where Htr is the truss height. Each member has a constant 
bending stiffness EII and EIII. The upper column segment is loaded axially by a compressive 
load γNEd, 0 ≤ γ ≤ 1 that is applied with an eccentricity e0. The crane load (1−γ)NEd is eccentri-
cally applied to the lower segment at a distance e1. The column is also subjected to a concen-
trated lateral load H = ξNEd at the step. The forces retain their direction as the column deflects. 

This model offers a clear physical illustration and solid grounds in the mechanics of the 
problem. The fourth-order equilibrium equations for an initially straight stepped column 
loaded axially by compressive loads are derived below using the equilibrium method. In this 
classical approach, the problem is reduced to an eigen-boundary-value problem and the criti-
cal conditions are the eigenvalues. The governing differential equation of equilibrium is writ-
ten in the following form [4]: 

 
2 2

2 2 0− =i i
i

i i

d M d wN
dx dx

 (1) 

where w is the lateral displacement and i = 1, 2, 3. For linearly elastic materials, the bending 
moment M and the column curvature are related as follows: 

 
2

2= − i
i i

i

d wM EI
dx

 (2) 

From Eqs. (1) and (2) we obtain the general fourth-order differential equilibrium equation: 
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where μi is given by: 
 2 2 2Ed Ed

1 2 3and γμ μ μ= = =
I II

N N
EI EI

 (4) 

The general solution of this equation is: 

 
1 1 1 2 1 3 4

2 1 2 2 2 3 4

3 1 3 2 3 3 4

Member 1: sin cos
Member 2: sin cos
Member 3: sin cos

μ μ
μ μ
μ μ

= + + +
= + + +
= + + +

w A x A x A x A
w B x B x B x B
w C x C x C x C

 (5) 

where Aj, Bj and Cj are constants (j = 1, 2, 3, 4). This solution must satisfy the prescribed 
boundary conditions, which are described in the following sections. This requirement leads to 
twelve linear algebraic equations in the twelve constants Aj, Bj and Cj. 
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Fig. 2: Column model: sway prevented case  
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Fig. 3: Column model: sway case 
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2.1 Sway prevented column 
 

The boundary conditions in this case are given by: 

( )

( )
( ) ( )

1 2

1 2

2 2 1

1 2

1

1 θa 1

1 2 0

1 2 Ed 1 Ed 20

2 θc 2 10 0

1 Ed 1 2 Ed 2 Ed0

at section A 0

at the splice location

1 0

at se

α

α

α

α

γ γ

γ ξ

= =

= =

= = =

= =

=
′′ ′− = −
=

′′ ′′− + + − + =

′′ ′ ′− = − −

′′′ ′ ′′′ ′− − = − − +

I

x L x

I IIx L x

II x x x L

I IÌx L x

w
EI w K w

w w

EI w EI w N e N e

EI w K w w

EI w N w EI w N w N

( )

( )

( )

2 tr 3

2 tr 3

2 tr 3

1 2 31 0

2 31 0

2 31 0

2 3

3 Ed 0

ction B 0

at section B 0

α

α

α

γ

= − − =

= − − =

= − − =

= =

′ ′=

′′ ′′=

=
′′− = −

x L H x

x L H x

x L H x

II

w w

w w

w w

w
EI w N e

 (6) 

 
2.2 Sway column 
 

The boundary conditions are now given by: 
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2.3 Critical buckling 
 

A nontrivial solution to Eq. (3) exists if any of the twelve constants is not equal to zero. 
This happens if the determinant of coefficients Aj, Bj and Cj vanishes. The expansion of this 
determinant leads to the characteristic equation. The smallest positive root yields the buckling 
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load Ncr and the shape of the deflection curve, Eq. (5) (first eigenvector). Analysis is run 
within the algebraic manipulator Mathematica [5]. 
 To demonstrate this procedure, consider a sway prevented column similar to that depicted in 
Fig. 2. The column has a pinned base. The step is located at α = 0.6. The roof truss has a height 
of 0.1L. The two column segments are rigidly connected (Kθc

 = ∞). The ratio between the ap-
plied loads is γ = 0.1 and the ratio between second moment of area II/III

 = 2.5. The smallest root 
of the characteristic equation leads to the critical condition and Ncr = π2EII/0.386L2.  
 Critical loads and corresponding effective lengths are important parameters in the stability 
analysis of stepped columns in mill buildings, and also for estimating second order load effects 
by approximate methods. These methods are still very useful tools in the design office, despite 
the increased availability and capacity of computational methods. In order to provide the struc-
tural engineer with simple design tools, equivalent length charts are appended to this paper.  
 
2.4 Effect of column moments 
 

The eccentric loads and lateral forces produce end moments at each column segment. The 
maximum load sustained by the column is a function of the bending moment and is deter-
mined from a load-deflection approach to column analysis.  

The load-deflection response corresponds to the solution to the fourth-order differential 
equilibrium equation, Eq. (3). The column now starts to deform laterally from the com-
mencement of loading and the deflection increases progressively and rapidly with the load. 
The load-deflection curve approaches the critical buckling asymptotically. 

Where the bending effect is secondary compared to the axial force effect, the structural 
analysis involves the features of a stability problem. In these cases and for design purposes, it 
is usual to express column strength directly by means of column curves based on elastic limit 
analysis [6,7]. If both bending and axial effects are significant, as in most practical columns in 
mill buildings, the column segments have to be treated as beam-columns. For in plane flexural 
bending, the interaction formula based on the attainment of first yield fy in an initially stress-
free member can be written as follows: 
 Ed, Ed,

b,R, R,

1κ+ ≤i i

i i

N M
N M

 (8) 

where NEd,1 = NEd, NEd,2 = γNEd = NEd,3, Nb,R is the buckling resistance in the plane of the ap-
plied moments, given by: 
 

b,R, yχ=i iN A f  (9) 

A is the area of cross section and χ is the reduction factor for flexural buckling [8]. MEd is the 
maximum bending moment and MR is the in-plane flexural capacity. MEd is a function of the 
applied load producing moments (primary moments). In the context of an elastic limit 
strength criterion, the in-plane flexural capacity is taken as: 
 

R, el, y=i iM W f  (10) 

Wel = Ai2/c is the section modulus corresponding to the fibre with maximum elastic stress (i: 
radius of gyration, c: distance from neutral axis to extreme fibre). The interaction factor κ is 
defined by the following general expression: 
 m,

Ed, cr,1
κ =

−
i

i i

C
N N

 (11) 

that assumes that the out-of-plane displacements are prevented. For columns subjected to lin-
ear distribution of first-order moments, the interaction factor κ can be written as follows [9]: 
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The moment magnifier Cm depends on the loading type and end conditions. Appropriate expres-
sions for this equivalent moment factor are adopted in EN 1993 [10]. Consider again a column 
subjected to linear distribution of first-order moments. Let M1 and ψM1 be the column segment 
end moments, with 1 ≤ ψ ≤ 1. In this case, the EN 1993 adopts the following expression: 
 ( )m, Ed, cr,0.79 0.21 0.36 0.33ψ ψ= + + −i i iC N N  (13) 

The margin between the actual maximum bending moment – Mactual, Eq. (2), and the design 
amplified bending moment, Mmax, 
 

max, Ed,κ=i iM M  (14) 

is illustrated in several practical cases in the following section. 
 
 
3 Applications 
 
Having formulated the equilibrium equations, the critical buckling load of the stepped column 
is first investigated using the design tables in the Appendix. The equilibrium paths are then 
evaluated with respect to the additional column moments. The two basic configurations con-
sidered below are shown in Fig. 4. The examples are chosen so as to represent the isolated 
effect of (i) the magnitude of the horizontal load acting at the step and (ii) roof truss height. 
They are considered to be influential factors for the stepped columns. 
 
3.1 Column configurations and parameters 
 

The geometries of the analysis configurations utilized in this research are derived from the 
geometry of the heavier-loaded column of the steel framework of the Turbine House at Lidell 
Power Station, New South Wales, Australia [11]. Different analysis configurations are created 
by changing some of the attributes. Important geometric and mechanical parameters are varied 
over a practical range of interest in order to evaluate the behaviour of a stepped mill column. 
Specific characteristics and attributes modelled in these studies are as follows (see also Fig. 4): 
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Fig. 4: Basic stepped column configurations 
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Column length   L = 34 m 
Columns base conditions  Sway prevented case  Pinned end (Fig. 4a) 

Sway case   Fully fixed end (Fig. 4b) 
Member cross-section  Member I: flanges 1067×38 mm2 and web 686×38 mm2 

Member II: flanges 610×82.5 mm2 and web 686×38 mm2 
Splice location   α = 0.588 (L1 = 20 m) 
Splice rotational stiffness  Kθc → ∞ (rigid splice) 
Roof truss height    Htr/L = 0.1, 0.2 
Loading coefficients  γ = 0.1 and ξ = −0.05, 0, 0.05 
Load eccentricities   e0 = 0  
     e1 = 0 
     e2 = −0.1905 (segments aligned vertically to the flanges) 
Young’s modulus   E = 210×103

 N/mm2 
Steel grade    S355 (fy = 335 N/mm2) 

 
3.2 Analysis results 
 

The effect of the magnitude of the horizontal force H and the roof truss height on the col-
umn carrying capacity are analysed in this section. The effect of the load eccentricity e0 and e1 
and the column segments eccentricity e2 are not considered in this work. This subject has 
been discussed in previous work of the authors [12]. 

Fig. 5 shows load-deflections curves that help in assessing the isolated effect of a lateral 
force by means of a variable load factor ξ. (Naturally, the eccentric axial loads would also 
produce moments in the column.) The plots in Fig. 6 show the effect of the truss height.  

The following trends can be observed from these plots: 
1. When the column is subjected to a combination of axial loads and primary bending 

moments, the maximum load carrying capacity falls below the critical load.  
2. The variations in the factor load ξ have a smaller influence on the load-deflection re-

sponse in the case of sway-prevented columns. 
3. The restraining effects of the truss height have a smaller influence on the load-

deflection response in the case of sway prevented columns. 
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Fig. 5: Effect of factor load ξ on the column carrying capacity (Htr/L = 0.1) 
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Fig. 6: Effect of roof truss height on the column carrying capacity (ξ = +0.05) 
 
 
4 Design implications 
 
The most relevant aspect in design is the practical application of the interaction formula that 
has the following form [10]: 
 ( ) Ed, max,

y el, y

,
χ

= +i i

i i

N M
F N M

A f W f
 (15) 

According to EN 1993-1-1, the designer has to ensure F(N,M) ≤ 1, see Eq. (8). The actual col-
umn moment distribution along the length of the member is obtained from Eq. (2). The mar-
gin between the actual maximum bending moment (Mactual), Eq. (2), and the design amplified 
bending moment, Eqs. (11), (12) and (14), is illustrated in two representative cases selected 
from the parametric study. Fig. 7 plots the moment vs. axial force response in no dimensional 
form for the selected examples, for the critical column member I. Key points are: 

1. Column moments are more significant in the case of sway-permitted columns. 
2. There are no significant variations in the prediction of the interaction factor κ given by 

Eqs. (11) or (12). 
3. The design amplified moment computed by Eqs. (11) and (14) or by Eqs. (12) and (14) 

gives a good estimation of the actual bending moment for low axial load levels. 
4. For axial load levels of 20%NEd/Ncr and above, the design amplified moments are not 

good predictors of the actual bending moment acting at the column segment. 
The moment calculations presented above are now included in the design interaction for-

mula F(N,M). Fig. 8 shows plots of the axial load level against F(N,M). It can be appreciated 
that the design approach indicates satisfactory results in assessing the column carrying capac-
ity. Although the preceding analysis has shown that the amplified moment anticipated by EN 
1993 – Eqs. (11) and (14) – does not give an accurate prediction of the actual column mo-
ments, the design interaction expression does provide a reliable assessment of the column car-
rying capacity, as observed in the (limited) range of tests analysed above. The following ob-
servations are also made: 

1. The member axial force is limited to 22%NEd/Ncr in the case of sway prevented col-
umns when the primary bending moments are not significant (ξ = 0). 

2. This percentage increases to 46% in the case of columns that are able to sway. 
3. The predominant influence of primary bending moments is observed in the significant 

load capacity reduction, that can be as high as 20% in the case of sway columns. 
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Fig. 7: Column moments: member I  
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Fig. 8: Interaction formula: member I  
 
 
5 Concluding remarks 
 
The main conclusions are briefly summarized: 

1. In spite of the widespread of computer-assisted design techniques, there is still a role 
for simple hand calculation methods. This paper is a contribution to that philosophy 
with respect to the evaluation of the critical buckling loads of stepped crane columns in 
mill buildings (see Appendix). 

2. The restraining effect of the truss has a beneficial effect on the critical load of the col-
umn. Comparisons between the above results and the results presented in [12] support 
this statement. 

3. The adequacy of the simple strength design method adopted in EN 1993 to predict the 
stepped column capacity is assessed and verified. In the light of this discussion it fol-
lows that proper consideration of the interaction effect between both column segments 
has to be incorporated in the design approach. 

4. Designers and steel fabricators would potentially be interested in the outcomes of this 
study and the authors are further extending this topic to set up sound design criteria re-
garding the requirements for stiffness and strength of column splices in this type of 
construction. 
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Appendix. Design tables 

 
The design table presented below contain effective length factors K1, K2 and K3 for stepped 
columns, in terms of practical values of the ratio II/III, the step location α, the ratio between 
the applied axial loads at the top of the column and at the stepped level γ, the ratio Htr/L and 
the splice non-dimensional rotational stiffness kθc

 = KθcL/EII. The column base conditions are 
those encountered in practical non-sway and sway mill building systems: pinned base for 
sway prevented columns and fully fixed connections for sway columns. 
 The following definitions are adopted (C is the global end-fixity factor): 

Critical load of the system    
2

cr 2

π
= IC EIN

L
 

Critical load of the lower segment  
( )

2

cr,1 cr2
1 1

π
= =IEIN N

K L
 

Critical load of the upper segments  
( ) ( )

2 2

cr,2 cr,3 cr2 2
2 2 3 3

π π γ= = = =II IIEI EIN N N
K L K L

 

Effective length factor of the lower segment 1 1 α=K C  

 Effective length factor of the upper segments ( ) 2
2 tr tr1 α γ⎡ ⎤⎡ ⎤= − −⎣ ⎦ ⎣ ⎦I IIK L L H H C I I  

3 tr γ⎡ ⎤= ⎣ ⎦I IIK L H C I I  
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Table: Equivalent length chart (example) 
     Sway prevented column Sway column 
II/III α γ Htr/L kθc C K1 K2 K3 C K1 K2 K3 

1 2.63 1.03 41.38 13.79 0.88 1.78 71.58 23.86
5 2.66 1.02 41.13 13.71 1.02 1.65 66.52 22.17

10 2.66 1.02 41.10 13.70 1.05 1.63 65.46 21.820.1 
∞ 2.66 1.02 41.10 13.70 1.09 1.60 64.23 21.41
1 2.88 0.98 6.59 6.59 0.90 1.76 11.82 11.82
5 2.91 0.98 6.55 6.55 1.07 1.61 10.79 10.79

10 2.92 0.98 6.55 6.55 1.12 1.57 10.56 10.56

0.10 

0.2 
∞ 2.92 0.97 6.54 6.54 1.18 1.53 10.29 10.29
1 2.47 1.06 30.21 10.07 0.87 1.78 50.77 16.92
5 2.57 1.04 29.61 9.87 1.00 1.67 47.47 15.82

10 2.58 1.04 29.55 9.85 1.03 1.64 46.80 15.600.1 
∞ 2.58 1.04 29.50 9.83 1.06 1.62 46.04 15.35
1 2.84 0.99 4.69 4.69 0.89 1.76 8.37 8.37
5 2.85 0.99 4.68 4.68 1.06 1.62 7.67 7.67

10 2.86 0.99 4.68 4.68 1.10 1.59 7.52 7.52

0.6 

0.20 

0.2 
∞ 2.86 0.99 4.68 4.68 1.16 1.55 7.35 7.35
1 2.18 0.97 30.26 15.13 0.69 1.72 53.90 26.95
5 2.27 0.95 29.65 14.83 0.86 1.54 48.26 24.13

10 2.29 0.94 29.53 14.76 0.91 1.50 47.01 23.500.1 
∞ 2.32 0.94 29.38 14.69 0.97 1.45 45.50 22.75
1 2.23 0.96 3.75 7.49 0.71 1.70 6.66 13.31
5 2.42 0.92 3.59 7.19 0.93 1.48 5.80 11.60

10 2.48 0.91 3.55 7.11 1.00 1.43 5.59 11.19

0.10 

0.2 
∞ 2.55 0.89 3.50 7.00 1.09 1.37 5.34 10.69
1 2.18 0.97 21.44 10.72 0.69 1.72 38.15 19.08
5 2.25 0.95 21.09 10.54 0.85 1.55 34.26 17.13

10 2.27 0.95 21.01 10.51 0.90 1.51 33.40 16.700.1 
∞ 2.28 0.95 20.93 10.47 0.95 1.46 32.38 16.19
1 2.22 0.96 2.65 5.30 0.70 1.70 4.71 9.42
5 2.41 0.92 2.55 5.10 0.93 1.48 4.11 8.22

10 2.46 0.91 2.52 5.04 0.99 1.43 3.97 7.93

2 

0.7 

0.20 

0.2 
∞ 2.53 0.90 2.49 4.98 1.09 1.37 3.79 7.59
1 2.33 1.09 35.92 11.97 0.85 1.81 59.55 19.85
5 2.50 1.05 34.63 11.54 0.93 1.73 56.83 18.94

10 2.52 1.05 34.52 11.51 0.95 1.71 56.32 18.770.1 
∞ 2.53 1.05 34.42 11.47 0.97 1.70 55.75 18.58
1 2.79 1.00 5.47 5.47 0.87 1.79 9.81 9.81
5 2.79 1.00 5.47 5.47 0.98 1.68 9.23 9.23

10 2.79 1.00 5.47 5.47 1.00 1.66 9.11 9.11

0.10 

0.2 
∞ 2.79 1.00 5.47 5.47 1.04 1.64 8.97 8.97
1 2.09 1.15 26.80 8.93 0.84 1.82 42.32 14.11
5 2.38 1.08 25.10 8.37 0.91 1.75 40.66 13.55

10 2.41 1.07 24.95 8.32 0.92 1.74 40.36 13.450.1 
∞ 2.44 1.07 24.81 8.27 0.94 1.72 40.03 13.34
1 2.70 1.01 3.93 3.93 0.86 1.80 6.96 6.96
5 2.71 1.01 3.92 3.92 0.96 1.70 6.58 6.58

10 2.71 1.01 3.92 3.92 0.99 1.68 6.50 6.50

0.6 

0.20 

0.2 
∞ 2.71 1.01 3.92 3.92 1.01 1.66 6.42 6.42
1 2.14 0.98 24.95 12.48 0.66 1.75 44.78 22.39
5 2.18 0.97 24.74 12.37 0.78 1.62 41.38 20.69

10 2.18 0.97 24.71 12.35 0.81 1.59 40.68 20.340.1 
∞ 2.19 0.96 24.66 12.33 0.84 1.56 39.87 19.93
1 2.20 0.96 3.08 6.15 0.69 1.73 5.51 11.03
5 2.32 0.94 3.00 5.99 0.85 1.55 4.96 9.92

10 2.35 0.93 2.98 5.95 0.89 1.51 4.84 9.68

0.10 

0.2 
∞ 2.40 0.92 2.95 5.89 0.95 1.47 4.69 9.39
1 2.12 0.98 17.72 8.86 0.66 1.76 31.72 15.86
5 2.15 0.97 17.62 8.81 0.77 1.63 29.41 14.71

10 2.15 0.97 17.61 8.80 0.80 1.60 28.95 14.470.1 
∞ 2.15 0.97 17.59 8.79 0.82 1.57 28.43 14.21
1 2.19 0.96 2.18 4.36 0.68 1.73 3.90 7.81
5 2.30 0.94 2.13 4.25 0.84 1.56 3.52 7.04

10 2.33 0.94 2.11 4.23 0.88 1.52 3.44 6.87

3 

0.7 

0.20 

0.2 
∞ 2.36 0.93 2.10 4.20 0.93 1.48 3.34 6.68 
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