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Abstract
The close proximity of wind turbines to one another
in a wind farm can lead to inefficiency in terms of
power production due to wake effects. One tech-
nique to mitigate the losses is to veer from their in-
dividual optimal direction. As such, the wakes can
be steered away from downstream turbines in order
to increase the overall power output. Multi-Agent
Reinforcement Learning (MARL) models the inter-
actions between wind turbines and determines an
optimal control strategy through agents that learn
the collective consequences of their actions. To
analyse the benefit of multi-agent cooperation and
centralised critic evaluation, I investigated the ef-
fect of Counterfactual Multi-Agent Policy Gradi-
ents (COMA) on Active Wake Control. Ultimately,
experiments on wind farms of three and sixteen tur-
bines indicate that the algorithm performs moder-
ately, yet worse than single-agent Reinforcement
Learning. In addition, high computation costs hin-
der its application on real-life environments.

1 Introduction
In an effort to mitigate climate change, governments are in-
creasingly shifting towards renewable energy. Especially in
the following transition years, wind plays a crucial role in
terms of energy production [1].

As wind farms grow in size, it is important to optimise en-
ergy production. However, wind farms face a significant issue
– when wind turbines are placed directly in line after each
other, their total power output is decreased. This is due to
wake effects – areas of high turbulence and lower wind speed
– caused by the extraction of wind by the first turbine [2] [3].
Managing and mitigating the negative consequences of wake
effects can generate increased energy efficiency and improved
renewable energy production. That, in turn, plays a pivotal
role in reducing the dependency on fossil fuels, thereby con-
tributing to combating climate change. Additionally, the cur-
rent inefficiency caused by wake effects leads to decreased
revenues that could otherwise be allocated to create a more
sustainable society.

These implications can be tackled through an Active Wake
Control (AWC) method - rotating the turbine in the horizon-
tal plane in order to redirect the wake away from downstream
turbines [4]. In this way, while the power output of the first
turbine is lower, the total output is increased. Even though it
would be also possible to take a passive approach and adapt
the turbine and wind farm design based on specific local in-
formation [5], this research concentrates on the active ap-
proach of altering the direction of the wake.

To determine how and how much to adapt the orientation
of the wind turbines in order to maximise the total output, we
can turn to Reinforcement Learning (RL), and more specifi-
cally Multi-Agent Reinforcement Learning (MARL). Rein-
forcement Learning focuses on agents interacting with the
environment and learning to make decisions through the re-
wards and penalties received. MARL, unlike single-agent

RL, involves multiple agents that observe the collective envi-
ronment. While single-agent RL has already been previously
applied on wind farms in various contexts with remarkable
achievements [2] [6] [7], it also faces a set of limitations. The
training process needed to learn effective control policies can
be time-consuming and computationally demanding, making
it challenging to apply RL to real-time or large-scale AWC
problems. [8].

Multi-Agent Reinforcement Learning (MARL) has the po-
tential to address some of the limitations for AWC of single-
agent RL. MARL can leverage the knowledge and expertise
of multiple agents to improve the accuracy of models [9]. It
enables agents to learn from each other’s experiences by shar-
ing their policies and observations, thus accelerating the pro-
cess.

Out of the numerous existing MARL algorithms, I opted to
investigate the Counterfactual Multi-Agent Policy Gradients
(COMA) because of its ability to use a centralised critic along
with distributed execution [10]. This feature allows agents to
share information about the global state, which can lead to
more effective coordination of their behaviour. Although us-
ing a centralised critic may increase the complexity of the
algorithm, J. Foerster argues that COMA has a performance
that is comparable to other cooperative algorithms [10]. As
such, it is relevant to analyse the trade-off between centralised
and decentralised critics, the limits of a centralised critic in
terms of the number of agents, and whether it actually pro-
vides a relevant improvement compared to single-agent Re-
inforcement Learning.

Therefore, this paper focuses on the research question
”What is the effect of COMA on the problem of AWC com-
pared to single-agent RL algorithms?” with the following
subquestions:

1. What is the difference in performance between COMA
and TD3?

2. What are the limitations of COMA?

The remainder of this paper is organised as follows. Sec-
tion 2 provides the background information on both Single-
Agent and Multi-Agent Reinforcement Learning. Section 3
dives into the problem of AWC, while Section 4 presents the
COMA algorithm in detail. The experiments are displayed
in Section 5 and the results in Section 6. After that, Sec-
tion 7 highlights some discussion points on responsibility and
ethics. Lastly, the conclusions are presented in Section 8.

2 Background
2.1 Reinforcement Learning
Reinforcement learning (RL) is a branch of Machine Learn-
ing concerned with decision-making and control. Unlike su-
pervised learning, where agents learn from labelled data, or
unsupervised learning, which focuses on extracting patterns
from unlabelled data, RL emphasises learning through inter-
action with an environment and receiving rewards as feed-
back [11]. This feedback guides the agent’s behaviour to-
wards maximising long-term rewards.

Reinforcement Learning is an evolving field, with ongoing
research addressing various challenges. Relevant algorithms



such as Q-learning, Proximal Policy Optimisation (PPO) and
Deep Deterministic Policy Gradient (DDPG) have demon-
strated noteworthy achievements in game-playing or robotics
[12].

Another state-of-the-art algorithm is TD3 (Twin Delayed
DDPG), which Grigory Neustroev et al. use to tackle Active
Wake Control through single-agent Deep RL [2]. It is an ex-
tension of DDPG with improved stability and performance,
that addresses the overestimation of Q-values [13].

2.2 Multi-Agent Reinforcement Learning
Multi-Agent Reinforcement Learning (MARL) is an exten-
sion of RL that focuses on learning optimal policies for mul-
tiple interacting agents. In MARL, agents learn to make de-
cisions based on their interactions with the environment and
other agents. In general, MARL can be classified into three
main approaches: fully cooperative, fully competitive and
a combination of the two. Cooperative MARL maximises
collective performance by promoting collaboration among
agents, while in Competitive MARL agents aim to outper-
form each other [14].

Sharing experiences is a valuable mechanism of Multi-
Agent Reinforcement Learning that can enhance the learn-
ing process and improve the performance of agents tackling
similar tasks. This can be achieved through various means,
such as communication between agents or imitation learn-
ing between observers and more proficient agents [14]. Be-
sides, leveraging the decentralised structure of the task, par-
allel computation can significantly increase the pace of learn-
ing [14]. Moreover, MARL is inherently robust and facilitates
the seamless insertion of new agents, which allows for high
scalability and adaptability [14].

3 Active Wake Control
Wind turbines’ proximity to one another in a wind farm af-
fects the power production and mechanical stress due to the
high turbulence created by the wake effects. Currently, the
common practice is for each turbine to maximise its own
power capture without taking into consideration the impact
on neighbouring turbines [4]. However, this approach is not
optimal for the total power production of the wind farm. In
recent years, researchers have been developing a cooperative
approach called Active Wake Control (AWC) to maximise the
power production of the entire wind farm while reducing fa-
tigue loading on the turbines.

Figure 1: Turbine nomenclature designed by Ion Plămădeală.

There are two main types of AWC techniques. The first
type intends to reduce the wake effect downstream by ”re-
ducing the axial induction factor of the upstream turbines,
known as axial induction control or pitch-based AWC” [4].
This is achieved by increasing the blade pitch angle of the tur-
bines on the windward side. Initial experiments have shown
promising results in terms of increased power production, but
recent simulations and tests have not confirmed these find-
ings conclusively [4]. The second type of AWC, also known
as yaw-based AWC, focuses on redirecting the wakes away
from downstream turbines, which can be achieved by adjust-
ing the yaw misalignment of the wind turbines. This research
project aims to improve the latter.

4 COMA
Counterfactual Multi-Agent Policy Gradients (COMA) is an
actor-critic Multi-Agent Reinforcement Learning (MARL)
algorithm that uses a counterfactual baseline. COMA com-
pares for each agent the global reward for the joint action
with a counterfactual baseline, that ”marginalises out a sin-
gle agent’s action while keeping the other agents’ actions
fixed” [10]. This way it learns more effectively and rapidly
the real impact of different actions, and optimises the strat-
egy [10].

While it would be simpler for each agent to be completely
independent, by having its own actor and critic that con-
sider only the agent’s own action-observation history, COMA
makes use of a centralised critic [10]. This decision encour-
ages communication and coordination. As such, it allows the
agents to deal with complex scenarios that require coopera-
tion, and to understand the global consequences of their ac-
tions. In fact, the centralised critic is employed solely during
the learning process, while during execution only the actor is
required. The algorithm’s architecture and information flow
are illustrated in Figure 2.

COMA computes using the following formula an advan-
tage function A on the joint action u and central state s for
each agent a. On one hand, the critic adapts based on the
global state, that encompasses the joint action-observation
histories. On the other hand, while sharing parameters, each
actor π(ua|τa) is conditioned on its own action-observation
history τa. COMA learns a centralised critic Q(s,u) and
compares the Q-value of the current action ua to a counter-
factual baseline [10].

Aa(s,u) = Q(s,u)−Σu′aπa(u′a|τa)Q(s, (u−a, u′a)) (1)

To address the concerns of a high network size and expen-
sive evaluations of the critic, COMA includes the actions of
other agents as input to the neural network. Hence, ”the coun-
terfactual advantage can be calculated efficiently by a single
forward pass of the actor and critic, for each agent” [10].

Therefore, given that agents in the Active Wake Control
problem have interdependent objectives, this centralised ap-
proach can be particularly beneficial. However, that is not
limited to AWC but, by design, COMA can be a good appli-
cation in cooperative settings in general. By contrast, it would
not be a suitable option for competitive scenarios.



Figure 2: In (a), information flow between the decentralised actors, the environment and the centralised critic in COMA; red arrows and
components are only required during centralised learning. In (b) and (c), architectures of the actor and critic [10].

5 Experimental Setup
Based on the explanations in the previous chapter, the hy-
pothesis was that COMA can be applied to the Active Wake
Control (AWC) problem through the wind farm environment
developed by Grigory Nustroev et al. [15], and that it per-
forms better than single-agent Reinforcement Learning and
the AWC baseline. Nonetheless, it was expected that it would
face difficulties as the wind farms increase in size, due to
computational and communication costs of the centralised
critic.

To analyse the performance, COMA was compared to the
current state-of-the-art AWC as a baseline, which signifies
turbines facing the wind directly, to TD3 as a single-agent
RL algorithm, and to FLORIS – a wake-modelling frame-
work with high accuracy in the optimisation of the wind farm
layout by virtue of having complete information over the sys-
tem [2] [13].

Hence, the prediction was that the algorithm performs for
three turbines nearly as well as FLORIS, and that for 16
turbines it performs better than the baseline but worse than
FLORIS and TD3.

Figure 3: Visualisation of a ”wind tunnel” of three turbines through
the wind farm environment developed by Grigory Nustroev et al.
[15].

In order to answer the research questions and test the hy-
potheses mentioned above, experiments were pursued in two
different contexts: a basic one with only three turbines and a
four-by-four grid of 16 turbines. The first scenario of three
turbines in a row, also called a ”wind tunnel” setup, was cho-
sen aiming to model the extreme adversarial conditions [16].
The second one represents a larger wind farm, intended to be
a threshold in terms of the capacity to handle complex situa-
tions and scalability.

All experiments were run using 5000 episodes with a max-
imum of 100 steps each. So, the agents (i.e. the wind tur-
bines) take up to a hundred actions per learning experience.
After that set of different changes in yaw, each agent learns
their impact through the centralised critic, and this process is
repeated 5000 times. It is important to mention that this im-
plementation of COMA makes use of a discount factor value
(gamma) of 0.99, which implies that future rewards are given
higher importance compared to immediate rewards. More-
over, such a high value provides stability to the learning pro-
cess, as the agent becomes less sensitive to variations in the
immediate rewards.

6 Results
As can be seen from Figure 4, the agents are able to learn
and increase the reward, i.e. the energy output, on the ”wind
tunnel” of three turbines. It is plausible that an even higher
discount factor value could have led to even less sensitivity to
noise in rewards, however, that possibility was not explored.
COMA performs better than the AWC baseline, as it deter-
mines a policy that produces a higher energy output, however,
the growth is still unsatisfactory in comparison with TD3.
Therefore, in contrast to the hypothesis, the multi-agent coop-
eration with a centralised critic did not provide any significant
improvement from single-agent Reinforcement Learning.

Similarly, Figure 5 shows that the 16 turbines arranged in
a 4-by-4 grid perform modestly. As predicted in the begin-
ning, COMA was capable of learning a policy that increases
the energy output compared to the baseline, however, the re-
sults show that the improvement is far from the desired target
of FLORIS and that TD3 still outperforms COMA. As such,
since it did not manage to learn efficiently on a wind farm of
16 turbines, it is clear that COMA is unfit for large-scale wind
farms.

The experiments demonstrated a series of limitations that
COMA faces. Even with only 5000 episodes of 100 steps
each, the algorithm takes a large amount of time to perform
all the operations. The ”wind tunnel” of 3 turbines requires



Figure 4: Learning curve of the energy produced by a ”wind tunnel”
of 3 turbines visualised with a moving average of window size 50.

Figure 5: Learning curve of the energy produced by a 4-by-4 grid of
16 turbines visualised with a moving average of window size 50.

on average more than eight hours to finish, while the 4-by-
4 grid needs almost 32 hours, which shows how computa-
tionally expensive COMA is. Consequently, there was not
enough time to run the TD3 experiments, which is why the
TD3 data presented in Figures 4 and 5 was used with the per-
mission of Jasper van Selm. During this research, it was at-
tempted to also test COMA on the ”Princess Amalia” wind
farm [17]. However, that was abandoned due to the substan-
tial duration of the experiment, caused by additional personal
technical constraints - running the algorithm on the Central
Processing Unit (CPU) - which is considerably slower com-
pared to a Graphics Processing Unit (GPU). Hence, based on
COMA’s behaviour on two simulation environments of lim-
ited size, its application in large environments would require
days to complete even a short training period. It does not
provide the necessary scalability for real-world wind farms,
confirming the initial hypothesis.

7 Responsible Research
The COMA algorithm is available in multiple variants on
GitHub. While the original version was published by Oxford
University, the most compatible implementation for the AWC
problem, which was used during this research project, was
developed by Matteo Karl Donati [18]. The wind farm envi-
ronment created by Grigory Neustroev et al. is also openly
accessible through the repository of Delft University of Tech-
nology [15]. As such, anyone can build upon their algorithm
in a similar manner to the one I pursued. Furthermore, the
placement of the ”Princess Amalia” wind farm is available
through the ”Hollandse Kust Nord B” data set of the Nether-
lands Enterprise Agency (RVO) [17]. As all the components
are open source, they are ”findable, accessible, interoperable
and reusable” (FAIR) [19]. Therefore, the research is com-
pletely reproducible and verifiable by any individual.

From an ethical point of view, the research does not raise
any significant concerns in terms of societal prejudices. The
data revolves around inanimate objects that have no direct in-
teraction with humans. Hence, the eventual biases are solely
technical. However, as the data was published by a govern-
mental agency, it is important to mention that, out of time
constraints on the research project, it was not possible to as-
sess whether the data represents the real case situation.

8 Conclusion and Future work
Active Wake Control remains an important challenge to be
solved and a promising real-life application for Multi-Agent
Reinforcement Learning (MARL) algorithms. Nonetheless,
COMA’s centralised-critic approach combined with counter-
factual comparisons did not perform well in any wind farm
environment. The algorithm poses significant computation
constraints that do not guarantee an advancement from single-
agent Reinforcement Learning.

Still, the experiments have been limited to uncomplicated
settings and have not included real-life scenarios, such as
wind coming from different directions or the placements of
already existing wind farms. Therefore, to properly deter-
mine whether MARL is a solution for Active Wake Control,
it is vital for future researchers to continue investigating the
potential of COMA by applying it on a real wind farm envi-
ronment, such as ”Princess Amalia” or ”Gemini”.

Besides the fact that there was no investigation of real-life
settings, the research was pursued as part of a bachelor’s de-
gree thesis. Taking into account the lack of prior knowledge
and experience, it is recommended that the research is repro-
duced and that COMA shall be researched further. While the
experiments provided relevant information, it is not possible
to draw a complete conclusion yet regarding COMA’s poten-
tial for Active Wake Control.
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