Delft University of Technology
Software Engineering Research Group
Technical Report Series

Sort-based Refactoring of Crosscutting
Concerns to Aspects

Robin van der Rijst, Marius Marin, and Arie van Deursen

Report TUD-SERG-2008-010

%
TUDelft SE[p@

TUD-SERG-2008-010

Published, produced and distributed by:

Software Engineering Research Group

Department of Software Technology

Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology

Mekelweg 4

2628 CD Delft

The Netherlands

ISSN 1872-5392

Software Engineering Research Group Technical Reports:
http://www.se.ewi.tudelft.nl/techreports/

For more information about the Software Engineering Research Group:
http://www.se.ewi.tudelft.nl/

Note: Accepted for publication in the Proceedings of the 4th International Linking Aspect Technology and
Evolution workshop, (LATE 2008), ACM Digital Library, 2008.

(© copyright 2008, by the authors of this report. Software Engineering Research Group, Department of
Software Technology, Faculty of Electrical Engineering, Mathematics and Computer Science, Delft Uni-
versity of Technology. All rights reserved. No part of this series may be reproduced in any form or by any
means without prior written permission of the authors.

SERXE

Van der Rijst, Marin & van Deursen — Sort-based Refactoring of Crosscutting Concerns to Aspects

Sort-based Refactoring of
Crosscutting Concerns to Aspects

Robin van der Rijst
Delft University of Technology
The Netherlands

rvdrijst@gmail.com

ABSTRACT

Crosscutting concerns in object-oriented programmingéri@vo-
lution because of their symptoms: tangling and scattefMogoen-
efit from the modularisation capabilities for crosscuttocancerns
provided by aspect-oriented programming (which prevemgltag
and scattering) aspect-introducing refactoring can bel.usehe
first step in aspect-introducing refactoring is identityiand doc-
umenting crosscutting concerns in existing code. The skstep
is refactoring the identified concerns to aspects.

This paper describes a tool callsdir that can perform the sec-
ond step of the aspect-introducing refactoring. For the §isp,
documentingSAIR uses crosscutting concesorts. Of the various
possible sortssAIR currently supports the two most commonly en-
countered ones: Role Superimposition and Consistent Bahav
The refactoring towards aspects of concerns of these soittag-
trated on an open source application (JHotDraw).

1. INTRODUCTION

The symptoms of crosscutting concerns (CCCs) in objeetrted
systems, tangling and scattering, prevent easy softwataten [4].
Aspect-oriented software development (AOSD) provided@ism

to these symptoms and their problems, by introducing coatsty
such as aspects, that can be used to modularise CCCs [4].

AOSD can be applied to new programs, by incorporating aspect
from the start, thereby preventing tangling and scatterimm hap-
pening in the first place. However, in order to benefit fromrtioal-
ularisation capabilities of AOP in existing systems, aspaeed to

be introduced into these systems to refactor the implertientaf
crosscutting concerns.

Introducing aspects into existing systems by means of t@fag,
is calledaspect-introducing refactoring. Aspect-introducing refac-
toring consists of two steps: (1) the identification of congsng
concerns in existing code and (2) the refactoring of thoseems
to aspects, thereby introducing aspects to the (OO) system.

The first step of aspect-introducing refactoring is the pssof lo-

TUD-SERG-2008-010

Marius Marin

Accenture
The Netherlands

Marius.Marin@accenture.com

Arie van Deursen
Delft University of Technology
The Netherlands

Arie.vanDeursen@tudelft.nl

cating crosscutting concerns in existing code, cadgsct mining
[5]. The results of aspect-mining indicate crosscuttingossns,
which would ideally be modularised using aspects.

To document crosscutting concerns (identified by aspeotrg),

we employ a concern documentation approach based on ctosscu
ting concernsorts [6]. Concern sorts are aimed at providing a
consistent solution to the documentation of crosscuttomrerns,

by organizing concerns based on specific implementatiamigi
Each concern sort represents a class of concerns that bearilt

iom in a typical object-oriented implementation. Sorts at@mic,

i.e. they cannot be divided in smaller concerns, and hawecass
ated a (desired) aspect-oriented modularization solut@ancrete
occurrences of sorts in the code are called instances.

The documentation of concerns as sort instances in Javaisode
supported by a tool calledd®QUET [8]. This tool allows the devel-
oper to document the sort instances as queries on the coéseTh
queries indicate which code elements belong to the sorriost
and hence make up the crosscutting concern. The relatiarebat
these code elements is defined by the sort, and this relagin-d
mines how the sort instance should be refactored to aspects.

In our earlier work, we have used concern sorts as a startimg p
for refactoring crosscutting concerns in the JHotDraw igpgibn
to aspects [7]. In this experiment, all refactorings weresedman-
ually, resulting in an aspect-oriented version of JHotDiadled
AJHotDraw. In the present paper, we look into enabling tag-s
port for these refactorings.

The remainder of this paper presents a proof-of-concept$aer,
that performs the second step of aspect-introducing i@fact the
migration of the documented concerns to aspects. Sectioti@® i
duces the main algorithm afalr. Section 3 and 4 present the sort
specific algorithm details for two supported sorts: Role e3ump-
position and Consistent Behavior. Finally, Section 5 pnes¢he
results of a small refactoring experiment.

2. SAIR

SaIr®, short for Sort-based Aspect Introducing Refactoringais ¢
pable of migrating crosscutting concerns, expressed iingef sort
instances, to aspects. There are twelve CCC sorts [6], suhmh
can be documented usingpQUET. Currently, SAIR supports the
refactoring of two common sorts: Role Superimposition aod-C
sistent Behavior.

The algorithm behindsAIR can be described in two ways: with

Isalr is available fromht tp: // swer | . tudel ft. nl /vi ew AVR/
SAIR

Van der Rijst, Marin & van Deursen — Sort-based Refactoring of Crosscutting Concerns to Aspects SEiE

~NoOgbhwWNRE

public class Example { 1 |public interface CommandLi stener {
private int counter = 0; 2 public void commandExecut ed(Event Object e);
public void someMet hod() { 3 public void commandExecut abl e(Event Obj ect e);
/Il ... [body] ... 4 public void commandNot Execut abl e(Event Obj ect e);
counter++; // <= invisible in unprivileged aspect 5 1}

Listing 2: Examplerole-interface

Listing 1. Example of visibility problem
2.3 Algorithm

.) o o The main steps of the generic algorithm are:
a generic, sort-independent description and a sort-spelgécrip-

tion. In this section, we will present the generic descoiptand
algorithm. Start The sort is passed as a parameter to the algorithm.

Callecting input The input of the developer is collected. This is
2.1 Input the target aspect and possibly sort dependent input.

The algorithm ofSAIR expects a sort instance as input, and some

input provided by the developer. Determining problems SAIR tries to determine the refactoring prob-

lems that will occur with the given sort instance and devel-

The sort instance indicates which elements of the code immghe oper input. Possible solutions are also determined.

the crosscutting concern—these are the elements that evithib Resolving problems The developer selects one of the solutions for
grated to an aspect. The relation between these elemenés is d each of the refactoring problems, resolving the problems.
fined by the specific sort—this relation indicatesv the elements

should be migrated to an aspect. An example will be shownen th Applying solutions SAIR applies the selected solutions. This en-
next section. sures the detected problems will not unexpectedly occur.

Migrate sort instance SAIR performs the migration of the sort in-
stance to the target aspect. The concrete algorithm depends
on the sort.

The developer needs to provide the target aspect. This can be
newly created aspect, or an existing aspect containing. obdiei-
tionally, depending on the sort being refactored, the usghiie
required to provide additional input. .
2.4 Implementation
SAIR is implemented as an Eclipse plug-in. It uses the Java De-

2.2 Refactoring problems velopment Tools (JDT), Aspectd Development Tools (AJDTJ an
Refactoring problems are problems that can occur duringter a Language Toolkit (LTK). For sort instance inputpQUET is used,
the refactoring. There can be compile errors after the teffisg, which is also implemented as an Eclipse plug-in.

or certain elements of the concern cannot be migrated tosfheca

In particular,SAIR extends ®QUET by adding a refactoring op-
SAIR tries to solve these refactoring problems by determiningivh tion to the context menu of sort instances. This option opens
problems will occur as soon as all input is available. Forheafc LTK refactoring wizard, with the look and feel of ordinary lse
these problemssAlIr also determines a set of suggested solutions refactorings. The JDT and AJDT are used to perform code trans
that will resolve the problem. formations.

For each of the detected problems, the developer has td selec An example of the input page of the LTK wizard ®AIR is shown
solution, thereby resolving the problem. Not all solutionay ac- in Figure 1.
tually solve the problem—some solutions explicitly ignameex-

clude part of the context, if the developer wants to manusdlye 3. ROLE SUPERIMPOSITION

the problem afterwards. One of the two sorts that is supported &R, is the Role Super-
imposition (RSI) sort. This sort indicates the impositidracsec-
ondary role on the primary role of classes. Sort instancésedRSI
sort occur as a set of classes that implement a conminterface.

When all problems are resolvegalr applies all the selected so-
lutions. This ensures the migration can finish without ueexed
problems.

An RSI sort instance consists of a set of methods in an irderfa
that make up the role and the set of classes that implementlthe
called theimposees. An example of a role interface for the Com-
mandListener role is shown in Listing 2. Imposees with tloie r
implement this interface and therefore have the secondaeyof
listening superimposed.

As an example of a simple problem that can be detected by the
algorithm of SAIR, consider the code in Listing 1. If the body of
someMet hod() is moved to an unprivileged aspect during a refac-
toring, a compile error will occur because the body refeesritie
private fieldcount er, which is invisible from the aspect.

Possible solutions thaalr can currently suggest are making the
aspect privileged, making the field public or creating aridgiget-
ters and setters. Additionally, the problem can be ignoresiting
in a compile error) and fixed manually afterwards, or theatefia
ing of the body ofoneMet hod() can be excluded. 2http://swerl.tudel ft.nl/view AVR SoQueT

If the methods do not make up one complete interface, theisole
calledvirtual. An example of a virtual role of an RSI sort instance
is shown in Listing 3. This shows theommand interface, with a

TUD-SERG-2008-010

O~NO U WN R

SERXE

Van der Rijst, Marin & van Deursen — Sort-based Refactoring of Crosscutting Concerns to Aspects

& Aspect-introducing Refactoring

Role Superimposition

Migration of Role Superimposition Concern to aspect

Enter the fully qualified name of the target aspect:

[

] Browse...

up the virtual role:
+ Undoable getUndoActivity()

Do you want to:
® Leave these members in Command

() Abstract the role methods to a new interface:

The role that will be migrated is virtual. The following members of org.jhotdraw .util.Command make

« void setUndoActivity(Undoable newlUndoableActivity)

MNew Aspect...

Cancel

Figure 1. Providing input for virtual RSI refactoring

public interface Command { 1
Undoabl e get UndoActivity(); /1 undoabl e-rol e 2
voi d setUndoActivity(Undoable u);// undoable-role 3
Undoabl e createUndoabl e(); /1 undoabl e-rol e 4

5

voi d execute(); /1 command-rol e 6

/'l ... [nore command-rol e nmethods] 7

} 8
9

Listing 3: Exampleinterface with virtual role 11

12

13

14

. - o 15
virtual role of undoability. The undoable-role is virtuaédause 15
the undo-related methods are part of a larger interfacedtfaes
other Command-related methods.

A typical imposee of this virtual role is shown in Listing 4.hi§
imposeemplements the Command interface and because the virtual
undoable role is defined in tf@nmand interface, this imposee has
the undoable role superimposed.

The desired aspect implementation of the RSI sort instaeckacks
the role interface a parent of the imposees and implemeatota
methods as inter-type methods. When the role is virtualadeg
the complete interface a parent of the imposees imposestireme
the virtual role. An option is to abstract the virtual rolegaed-
icated interface. This interface can then be declared pafethe
original interface in the aspett

The algorithm ofSAIR for the RSI sort migrates the implementation
to the aspect implementation. This RSI specific algorithme (ast

S|deally, the abstracted interface is declared a parent erirth
posees directly, but in Java this will break method calls e
variable has the original interface as type, which will nader
have the method after abstraction.

TUD-SERG-2008-010

public class Del eteCommand i npl ements Command {
public Undoabl e getUndoActivity(){
/1 ... [body]

}
public void setUndoActivity(Undoable u){
/1 ... [body]

}
public Undoable createUndoable() {
/1 ... [body]

/1 nmethods not related to undoabl e:
public void execute(){
/1 ... [body]

}
1o

Listing 4: Example Undoabl e imposee

step in the generic algorithm) has the following main steps:

Non-virtual role For normal roles, the role interface is declared a
parent of all the imposees in the aspect. The imposees no
longer implement the interface directly (it is removed from
thei npl ement s clause).

Inthe example of the role in Listing 2, there will beec! ar e
parents: statement in the aspect for all imposees.

Virtual role For virtual roles, the developer can indicate whether
virtual roles should be abstracted to a dedicated interface
If so, the new interface is declared a parent of the original
interface.
In the example of Listing 3, the role of undoability will be
abstracted to a new interface, elpdoabl eConmand, which
will be declared parent of the originGbmmand interface.

Role members Finally, the implementation of the role methods is

Van der Rijst, Marin & van Deursen — Sort-based Refactoring of Crosscutting Concerns to Aspects SEiE

O©CO~NOUTAWNPE

e el
ol WN P O

~NoobhwNE

public aspect Undoabl eCommandRol e { 1 |public aspect Undoabl eCommandRol e {
decl are parents: Command extends Undoabl eCommand; 2 poi ntcut commandExecut e(Command c) :
3 target (c) &&
/1 inplementation of undo-role for Del et eCommand: 4 (wi thin(Del eteCommand) ||
public Undoabl e Del et eCommand. get UndoActivity() { 5 /1 ... [other Comnmands]
/Il ... [body] ... 6 wi t hi n(Past eCommand)) &&
7 execution(public void execute());
public void Del eteCommand. set UndoActi vity(8
Undoabl e u) { 9 after (Command c¢) : commandExecute(c){
/Il ... [body] ... 10 c.setUndoActivity(c.createUndoable());
11 }
public Undoabl e Del et eCommand. creat eUndoabl e() { 12 |}
/1 ... [body] ...
}
/1 ... [inplenmentation for other Comands] ... Listing 7: Aspect implementation of consistent behavior
}
I_'isting 5: Aspect implementation of virtual role superimposi- methods if possible.
tion In the example of Listing 6, a pointcut will be created that
captures thexecut e() method ofDel et eConmand.
publ i cbIC! ass _Dsl eteCommand i npl ements Command { Advicecreation For each of the created pointcuts, advice is cre-
P }/C VOI [Zi:gﬂltg()cgde] o ated in the target aspect that will contain the consistelht ca
set UndoActivity(createUndoable()); SAIR determines whether to usefore or after advice
} based on the location of the consistent call in the context
) /1 ... [other Conmand nethods] ... methodé.
In the example of Listing 6sAIR will createaf t er advice

.) . . for the pointcut that captures tl@ecut e method.
Listing 6: Example Command with consistent behavior P P

Call migration Finally, the consistent calls are removed from the
context methods and placed in the corresponding advice. The

moved from the imposees to the aspect as inter-type meth- aspect is now responsible for the consistent behaviour.
ods. In the example imposee of Listing 4, the undo-related
methods will be moved to inter-type methods in the target

For the example in Listing 6, the target aspect after refawjawill
aspect. P 9 9 P aw

look like Listing 7.

For the example virtual role of Listing 3 and imposee of lrigt#, 5. CASE STUDY

the target aspect after refactoring will look like Listing 5 UsingsAIR, we performed a small case study on@i#DRAW 6.0b1.
The SOQUET concern model used contained eight sort instances of
4. CONSISTENT BEHAVIOR RSI and CB sorts, concerning the Command implementatior. Th

resulting aspects were compared with the manually createects

The second sort supported IR, is the Consistent Behavior
PP DAIR, of AJHOTDRAW [7].

(CB) sort. This sort indicates the consistent calling of &hoé
from several points in the program. Sort instances of the @B s
therefore occur as a set of methods from which one methodiésica
consistently.

Of the eight sort instances, seven were successfully mett The
one that was not refactored, was a CB instance that contjsten
called a super constructor. This cannot be done from adwvice i

A CB sortinstance consists of the method that is consisteatled AspectJ, so the call could not be migrated.

(the consistent method) and the set of methods from whicé it i
called, the context methods (with the consistent call). Raneple

of a CB sort instance is shown in Listing 6, for the consisserting

of undo activities in thexecut e() method of Commands.

In all refactorings SAIR detected some problems and provided sat-
isfactory solutions to most. In two cases small manual refems
afterwards were needed, when the solutions did not provide t
right result. For example, in Listing 8, the consistent taljet -

Af f ect edFi gures() is neither the first nor the last in the context,

The desired aspect implementation of the CB sort instancsists A .
making it unclear tsAIR whether to uséef or e oraf t er advice.

of one or more pointcuts that capture the execution of théesbn
methods. Advice is applied before or after the joinpointsteeed

by these pointcuts, and contains the consistent call. A good solution would be to creabef or e advice and move all the

code preceding the consistent call to the advice as wetiesiris
directly related. HowevegAIR does not (yet) provide this solution,
so we toldsAIR to useBEFORE advice explicitly and moved the
related code to the advice manually after refactoring.

The algorithm ofsAIR for the CB sort migrates the implementation
to the aspect implementation. This CB specific algorithne (#st
step in the generic algorithm) has the following main steps:

Not all Commands in JHTDRAW were implemented in the same
Pointcut creation For each of the context methods, a pointcut is mManner. This led to a situation where some context elemeeits w
created in the target aspect that captures the executitaioft 4 the call is not first or last in the method, a problem will kav

pointcut. If the developer indicates that pointcut shouwd b been detected in the problem step and the developer will ¢ae
grouped SAIR tries to create one pointcut for several context sen how to handle the situation.

TUD-SERG-2008-010

SE[iE Van der Rijst, Marin & van Deursen — Sort-based Refactoring of Crosscutting Concerns to Aspects

1 [public void execute() { supports the refactoring of instances of two concern s@tsisis-
2 /1 @A R super.execute(); noved to advice ... tent Behavior and Role Superimposition.
3 /'l @Al R setUndoActivi... noved to advice...
4 Fi gureEnumeration fe = view().selection();
5 List affected = CollectionsFactory. current() SAIR also implements a problem resolution mechanism that assist
6 .createlist(); the user in dealing with the complexity of refactoring byyiding
7 00 ooo [[@E]EER] Y ETTEEREE FIEIES] oo a set of predefined solutions to common problems.
8 fe = new FigureEnumerator(affected);
9 get UndoActivity().setAffectedFigures(fe);
10 del et eFi gures(get UndoActivity(). getAffectedFigures()); Future work will be carried out to identify additional prebhs that
i; ; Il @GAR view().checkDamage(); moved to advice ... could occur in automatic refactoring to aspects, and taioklso-
lutions to these potential problems in the tool.
Listing 8: Consistent call in Del et eConmand We also plan to implement refactoring support for all thetsor
available in ®QUET, for a complete integration of the two tools.
excluded from the refactoring because they could not betefed. 8. REFERENCES
Refactoring them would require more pre- and postrefangdiian [1] D. Binkley, M. Ceccato, M. Harman, F. Ricca, and P. Toaell
SAIR can handle with the current problem-solution framework. Automated refactoring of object oriented code into aspéuts
ICSM ' 05: Proceedings of the 21% | EEE International
Comparison with AJléTDRAW showed that the automatically gen- Conference on Software Maintenance (ICSM’ 05), pages
erated aspects are similar to the manually created asp€xis. 27-36, Washington, DC, USA, 2005. IEEE Computer Society.
problem that was apparent, though, is that wissye always refac- [2] L. Cole and P. Borba. Deriving refactorings for aspelctj.
tored one sort instance to one aspect, the implementatiddttoT- AOSD '05: Proceedings of the 41 international conference on
DRAW was sometimes spread over multiple aspects, leading to a Aspect-oriented software development, pages 123-134, New
cleaner implementation. This is an opportunity for improeat York, NY, USA, 2005. ACM Press.
on SAIR. [3] J. Hannemann, G. C. Murphy, and G. Kiczales. Role-based
refactoring of crosscutting concerns.AQSD ' 05:
Another difference is that the grouped pointcuts that eeated by Proceedings of the 41" international conference on
SAIR list all the classes to capture in an or-statement, as shown i Aspect-oriented software development, pages 135-146, New
Listing 7. The AJHFObTDRAW pointcut is more advanced, capturing York, NY, USA, 2005. ACM Press.
the complete hierarchy and only excluding those classéslioald [4] G.Kiczales, J. Lamping, A. Menhdhekar, C. Maeda,
not be captured. C. Lopes, J.-M. Loingtier, and J. Irwin. Aspect-oriented
. programming. IrProceedings European Conference on
If sAIR should create the same structure, it would need to do a far Object-Oriented Programming, volume 1241, pages 220-242,
more thorough analysis of the structure and hierarchy offdeses Berlin, Heidelberg, and New York, 1997. Springer-Verlag.
in question. For now, we see the creation of a better poirsan [5] M. Marin, A. v. Deursen, and L. Moonen. Identifying
aspect-oriented refactoring, i.e. arefactoring that is concerned with crosscutt’ing concerns u’sing fan-in analys€M
refactoring only aspect code. Transactions on Software Engineering and Methodol ogy,
17(1):1-37, 2007.
6. RELATED WORK [6] M. Marin, L. Moonen, and A. van Deursen. An approach to
In this section, we summarize related research in the araspefct- aspect refactoring based on crosscutting concern types. In
introducing refactoring. MACS’05: Proceedings of the 2005 workshop on Modeling
and analysis of concerns in software, pages 1-5, New York,
Hannemanret al. have used the notion ables being assigned NY, USA, 2005. ACM.
to classes in design pattern implementations, to createthoche [7] M. Marin, L. Moonen, and A. van Deursen. An integrated
calledrole-based refactoring [3]. These refactorings are limited to crosscutting concern migration strategy and its appbeetd
design-pattern related concerns. JHotDraw. InProceedings of the | EEE International
Conference on Source Code Analysis and Manipulation
A catalogue of aspect-oriented refactorings, among whietten (SCAM), pages 101-110. IEEE, 2007.
aspect-introducing refactorings, has been started by &tanand [8] M. Marin, L. Moonen, and A. van Deursen. SoQueT:
Fernandes [9]. The refactorings are related to structureodé, Query-based documentation of crosscutting concerns. In
not to crosscutting concerns, although they can be usedikd bu Proceedings of the 29th International Conference on Software
refactorings for crosscutting concerns. Engineering (ICSE), pages 758-761, Washington, DC, USA,

2007. IEEE Computer Society.
Cole and Borba have described the ustawis that are guaranteed [9] M. P. Monteiro and J. M. Fernandes. Towards a catalog of

to preserve behaviour [2]. Similarly, Binkley al. have introduced aspect-oriented refactorings. ADSD ’ 05: Proceedings of the
rules [1]. The granularity of these refactorings is very kraad 4N international conference on Aspect-oriented software
they are not directly related to crosscutting concernbpaljh they development, pages 111-122, New York, NY, USA, 2005.
can be used to migrate them. ACM Press.

7. CONCLUSIONS

In this paper, we presentezhir, a tool for automatic refactoring
of crosscutting concerns to aspect-oriented programniihg.tool

TUD-SERG-2008-010 5

Van der Rijst, Marin & van Deursen — Sort-based Refactoring of Crosscutting Concerns to Aspects SEiE

6 TUD-SERG-2008-010

TUD-SERG-2008-010 S E(I
ISSN 1872-5392

