
Delft University of Technology
Software Engineering Research Group

Technical Report Series

Sort-based Refactoring of Crosscutting
Concerns to Aspects

Robin van der Rijst, Marius Marin, and Arie van Deursen

Report TUD-SERG-2008-010

SERG



TUD-SERG-2008-010

Published, produced and distributed by:

Software Engineering Research Group
Department of Software Technology
Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology
Mekelweg 4
2628 CD Delft
The Netherlands

ISSN 1872-5392

Software Engineering Research Group Technical Reports:
http://www.se.ewi.tudelft.nl/techreports/

For more information about the Software Engineering Research Group:
http://www.se.ewi.tudelft.nl/

Note: Accepted for publication in the Proceedings of the 4th International Linking Aspect Technology and
Evolution workshop, (LATE 2008), ACM Digital Library, 2008.

c© copyright 2008, by the authors of this report. Software Engineering Research Group, Department of
Software Technology, Faculty of Electrical Engineering, Mathematics and Computer Science, Delft Uni-
versity of Technology. All rights reserved. No part of this series may be reproduced in any form or by any
means without prior written permission of the authors.



Sort-based Refactoring of
Crosscutting Concerns to Aspects

Robin van der Rijst
Delft University of Technology

The Netherlands

rvdrijst@gmail.com

Marius Marin
Accenture

The Netherlands

Marius.Marin@accenture.com

Arie van Deursen
Delft University of Technology

The Netherlands

Arie.vanDeursen@tudelft.nl

ABSTRACT
Crosscutting concerns in object-oriented programming hinder evo-
lution because of their symptoms: tangling and scattering.To ben-
efit from the modularisation capabilities for crosscuttingconcerns
provided by aspect-oriented programming (which prevent tangling
and scattering) aspect-introducing refactoring can be used. The
first step in aspect-introducing refactoring is identifying and doc-
umenting crosscutting concerns in existing code. The second step
is refactoring the identified concerns to aspects.

This paper describes a tool calledSAIR that can perform the sec-
ond step of the aspect-introducing refactoring. For the first step,
documenting,SAIR uses crosscutting concernsorts. Of the various
possible sorts,SAIR currently supports the two most commonly en-
countered ones: Role Superimposition and Consistent Behavior.
The refactoring towards aspects of concerns of these sorts is illus-
trated on an open source application (JHotDraw).

1. INTRODUCTION
The symptoms of crosscutting concerns (CCCs) in object-oriented
systems, tangling and scattering, prevent easy software evolution [4].
Aspect-oriented software development (AOSD) provides a solution
to these symptoms and their problems, by introducing constructs,
such as aspects, that can be used to modularise CCCs [4].

AOSD can be applied to new programs, by incorporating aspects
from the start, thereby preventing tangling and scatteringfrom hap-
pening in the first place. However, in order to benefit from themod-
ularisation capabilities of AOP in existing systems, aspects need to
be introduced into these systems to refactor the implementation of
crosscutting concerns.

Introducing aspects into existing systems by means of refactoring,
is calledaspect-introducing refactoring. Aspect-introducing refac-
toring consists of two steps: (1) the identification of crosscutting
concerns in existing code and (2) the refactoring of those concerns
to aspects, thereby introducing aspects to the (OO) system.

The first step of aspect-introducing refactoring is the process of lo-

cating crosscutting concerns in existing code, calledaspect mining
[5]. The results of aspect-mining indicate crosscutting concerns,
which would ideally be modularised using aspects.

To document crosscutting concerns (identified by aspect-mining),
we employ a concern documentation approach based on crosscut-
ting concernsorts [6]. Concern sorts are aimed at providing a
consistent solution to the documentation of crosscutting concerns,
by organizing concerns based on specific implementation idioms.
Each concern sort represents a class of concerns that share their id-
iom in a typical object-oriented implementation. Sorts areatomic,
i.e. they cannot be divided in smaller concerns, and have associ-
ated a (desired) aspect-oriented modularization solution. Concrete
occurrences of sorts in the code are calledsort instances.

The documentation of concerns as sort instances in Java codeis
supported by a tool called SOQUET [8]. This tool allows the devel-
oper to document the sort instances as queries on the code. These
queries indicate which code elements belong to the sort instance,
and hence make up the crosscutting concern. The relation between
these code elements is defined by the sort, and this relation deter-
mines how the sort instance should be refactored to aspects.

In our earlier work, we have used concern sorts as a starting point
for refactoring crosscutting concerns in the JHotDraw application
to aspects [7]. In this experiment, all refactorings were done man-
ually, resulting in an aspect-oriented version of JHotDrawcalled
AJHotDraw. In the present paper, we look into enabling tool sup-
port for these refactorings.

The remainder of this paper presents a proof-of-concept tool, SAIR,
that performs the second step of aspect-introducing refactoring: the
migration of the documented concerns to aspects. Section 2 intro-
duces the main algorithm ofSAIR. Section 3 and 4 present the sort
specific algorithm details for two supported sorts: Role Superim-
position and Consistent Behavior. Finally, Section 5 presents the
results of a small refactoring experiment.

2. SAIR
SAIR1, short for Sort-based Aspect Introducing Refactoring, is ca-
pable of migrating crosscutting concerns, expressed in terms of sort
instances, to aspects. There are twelve CCC sorts [6], six ofwhich
can be documented using SOQUET. Currently,SAIR supports the
refactoring of two common sorts: Role Superimposition and Con-
sistent Behavior.

The algorithm behindSAIR can be described in two ways: with

1SAIR is available fromhttp://swerl.tudelft.nl/view/AMR/
SAIR

SERG Van der Rijst, Marin & van Deursen – Sort-based Refactoring of Crosscutting Concerns to Aspects

TUD-SERG-2008-010 1



1 public class Example {
2 private int counter = 0;
3 public void someMethod(){
4 // ... [body] ...
5 counter++; // <= invisible in unprivileged aspect
6 }
7 }

Listing 1: Example of visibility problem

a generic, sort-independent description and a sort-specific descrip-
tion. In this section, we will present the generic description and
algorithm.

2.1 Input
The algorithm ofSAIR expects a sort instance as input, and some
input provided by the developer.

The sort instance indicates which elements of the code implement
the crosscutting concern—these are the elements that will be mi-
grated to an aspect. The relation between these elements is de-
fined by the specific sort—this relation indicateshow the elements
should be migrated to an aspect. An example will be shown in the
next section.

The developer needs to provide the target aspect. This can bea
newly created aspect, or an existing aspect containing code. Addi-
tionally, depending on the sort being refactored, the user might be
required to provide additional input.

2.2 Refactoring problems
Refactoring problems are problems that can occur during or after
the refactoring. There can be compile errors after the refactoring,
or certain elements of the concern cannot be migrated to the aspect.

SAIR tries to solve these refactoring problems by determining which
problems will occur as soon as all input is available. For each of
these problems,SAIR also determines a set of suggested solutions
that will resolve the problem.

For each of the detected problems, the developer has to select one
solution, thereby resolving the problem. Not all solutionsmay ac-
tually solve the problem—some solutions explicitly ignoreor ex-
clude part of the context, if the developer wants to manuallysolve
the problem afterwards.

When all problems are resolved,SAIR applies all the selected so-
lutions. This ensures the migration can finish without unexpected
problems.

As an example of a simple problem that can be detected by the
algorithm ofSAIR, consider the code in Listing 1. If the body of
someMethod() is moved to an unprivileged aspect during a refac-
toring, a compile error will occur because the body references the
private fieldcounter, which is invisible from the aspect.

Possible solutions thatSAIR can currently suggest are making the
aspect privileged, making the field public or creating and using get-
ters and setters. Additionally, the problem can be ignored (resulting
in a compile error) and fixed manually afterwards, or the refactor-
ing of the body ofsomeMethod() can be excluded.

1 public interface CommandListener {
2 public void commandExecuted(EventObject e);
3 public void commandExecutable(EventObject e);
4 public void commandNotExecutable(EventObject e);
5 }

Listing 2: Example role-interface

2.3 Algorithm
The main steps of the generic algorithm are:

Start The sort is passed as a parameter to the algorithm.

Collecting input The input of the developer is collected. This is
the target aspect and possibly sort dependent input.

Determining problems SAIR tries to determine the refactoring prob-
lems that will occur with the given sort instance and devel-
oper input. Possible solutions are also determined.

Resolving problems The developer selects one of the solutions for
each of the refactoring problems, resolving the problems.

Applying solutions SAIR applies the selected solutions. This en-
sures the detected problems will not unexpectedly occur.

Migrate sort instance SAIR performs the migration of the sort in-
stance to the target aspect. The concrete algorithm depends
on the sort.

2.4 Implementation
SAIR is implemented as an Eclipse plug-in. It uses the Java De-
velopment Tools (JDT), AspectJ Development Tools (AJDT) and
Language Toolkit (LTK). For sort instance input, SOQUET is used,
which is also implemented as an Eclipse plug-in.2

In particular,SAIR extends SOQUET by adding a refactoring op-
tion to the context menu of sort instances. This option opensa
LTK refactoring wizard, with the look and feel of ordinary Eclipse
refactorings. The JDT and AJDT are used to perform code trans-
formations.

An example of the input page of the LTK wizard ofSAIR is shown
in Figure 1.

3. ROLE SUPERIMPOSITION
One of the two sorts that is supported bySAIR, is the Role Super-
imposition (RSI) sort. This sort indicates the imposition of a sec-
ondary role on the primary role of classes. Sort instances ofthe RSI
sort occur as a set of classes that implement a commoninterface.

An RSI sort instance consists of a set of methods in an interface
that make up the role and the set of classes that implement therole,
called theimposees. An example of a role interface for the Com-
mandListener role is shown in Listing 2. Imposees with this role
implement this interface and therefore have the secondary role of
listening superimposed.

If the methods do not make up one complete interface, the roleis
calledvirtual. An example of a virtual role of an RSI sort instance
is shown in Listing 3. This shows theCommand interface, with a

2http://swerl.tudelft.nl/view/AMR/SoQueT

Van der Rijst, Marin & van Deursen – Sort-based Refactoring of Crosscutting Concerns to Aspects SERG

2 TUD-SERG-2008-010



Figure 1: Providing input for virtual RSI refactoring

1 public interface Command {
2 Undoable getUndoActivity(); // undoable-role
3 void setUndoActivity(Undoable u);// undoable-role
4 Undoable createUndoable(); // undoable-role
5
6 void execute(); // command-role
7 // ... [more command-role methods] ...
8 }

Listing 3: Example interface with virtual role

virtual role of undoability. The undoable-role is virtual because
the undo-related methods are part of a larger interface, that defines
other Command-related methods.

A typical imposee of this virtual role is shown in Listing 4. This
imposeeimplements theCommand interface and because the virtual
undoable role is defined in theCommand interface, this imposee has
the undoable role superimposed.

The desired aspect implementation of the RSI sort instance declares
the role interface a parent of the imposees and implements the role
methods as inter-type methods. When the role is virtual, declaring
the complete interface a parent of the imposees imposes morethan
the virtual role. An option is to abstract the virtual role toa ded-
icated interface. This interface can then be declared parent of the
original interface in the aspect3.

The algorithm ofSAIR for the RSI sort migrates the implementation
to the aspect implementation. This RSI specific algorithm (the last

3Ideally, the abstracted interface is declared a parent on the im-
posees directly, but in Java this will break method calls when the
variable has the original interface as type, which will no longer
have the method after abstraction.

1 public class DeleteCommand implements Command {
2 public Undoable getUndoActivity(){
3 // ... [body] ...
4 }
5 public void setUndoActivity(Undoable u){
6 // ... [body] ...
7 }
8 public Undoable createUndoable() {
9 // ... [body] ...

10 }
11 // methods not related to undoable:
12 public void execute(){
13 // ... [body] ...
14 }
15 // [...]
16 }

Listing 4: Example Undoable imposee

step in the generic algorithm) has the following main steps:

Non-virtual role For normal roles, the role interface is declared a
parent of all the imposees in the aspect. The imposees no
longer implement the interface directly (it is removed from
theimplements clause).
In the example of the role in Listing 2, there will be adeclare
parents: statement in the aspect for all imposees.

Virtual role For virtual roles, the developer can indicate whether
virtual roles should be abstracted to a dedicated interface.
If so, the new interface is declared a parent of the original
interface.
In the example of Listing 3, the role of undoability will be
abstracted to a new interface, e.g.UndoableCommand, which
will be declared parent of the originalCommand interface.

Role members Finally, the implementation of the role methods is

SERG Van der Rijst, Marin & van Deursen – Sort-based Refactoring of Crosscutting Concerns to Aspects

TUD-SERG-2008-010 3



1 public aspect UndoableCommandRole {
2 declare parents: Command extends UndoableCommand;
3
4 // implementation of undo-role for DeleteCommand:
5 public Undoable DeleteCommand.getUndoActivity() {
6 // ... [body] ...
7 }
8 public void DeleteCommand.setUndoActivity(
9 Undoable u) {

10 // ... [body] ...
11 }
12 public Undoable DeleteCommand.createUndoable() {
13 // ... [body] ...
14 }
15 // ... [implementation for other Commands] ...
16 }

Listing 5: Aspect implementation of virtual role superimposi-
tion

1 public class DeleteCommand implements Command {
2 public void execute(){
3 // ... [execute code] ...
4 setUndoActivity(createUndoable());
5 }
6 // ... [other Command methods] ...
7 }

Listing 6: Example Command with consistent behavior

moved from the imposees to the aspect as inter-type meth-
ods. In the example imposee of Listing 4, the undo-related
methods will be moved to inter-type methods in the target
aspect.

For the example virtual role of Listing 3 and imposee of Listing 4,
the target aspect after refactoring will look like Listing 5.

4. CONSISTENT BEHAVIOR
The second sort supported bySAIR, is the Consistent Behavior
(CB) sort. This sort indicates the consistent calling of a method
from several points in the program. Sort instances of the CB sort
therefore occur as a set of methods from which one method is called
consistently.

A CB sort instance consists of the method that is consistently called
(the consistent method) and the set of methods from which it is
called, the context methods (with the consistent call). An example
of a CB sort instance is shown in Listing 6, for the consistentsetting
of undo activities in theexecute() method of Commands.

The desired aspect implementation of the CB sort instance consists
of one or more pointcuts that capture the execution of the context
methods. Advice is applied before or after the joinpoints captured
by these pointcuts, and contains the consistent call.

The algorithm ofSAIR for the CB sort migrates the implementation
to the aspect implementation. This CB specific algorithm (the last
step in the generic algorithm) has the following main steps:

Pointcut creation For each of the context methods, a pointcut is
created in the target aspect that captures the execution of that
pointcut. If the developer indicates that pointcut should be
grouped,SAIR tries to create one pointcut for several context

1 public aspect UndoableCommandRole {
2 pointcut commandExecute(Command c) :
3 target(c) &&
4 (within(DeleteCommand) ||
5 // ... [other Commands] ...
6 within(PasteCommand)) &&
7 execution(public void execute());
8
9 after(Command c) : commandExecute(c){

10 c.setUndoActivity(c.createUndoable());
11 }
12 }

Listing 7: Aspect implementation of consistent behavior

methods if possible.
In the example of Listing 6, a pointcut will be created that
captures theexecute() method ofDeleteCommand.

Advice creation For each of the created pointcuts, advice is cre-
ated in the target aspect that will contain the consistent call.
SAIR determines whether to usebefore or after advice
based on the location of the consistent call in the context
methods4.
In the example of Listing 6,SAIR will createafter advice
for the pointcut that captures theexecute method.

Call migration Finally, the consistent calls are removed from the
context methods and placed in the corresponding advice. The
aspect is now responsible for the consistent behaviour.

For the example in Listing 6, the target aspect after refactoring will
look like Listing 7.

5. CASE STUDY
UsingSAIR, we performed a small case study on JHOTDRAW 6.0b1.
The SOQUET concern model used contained eight sort instances of
RSI and CB sorts, concerning the Command implementation. The
resulting aspects were compared with the manually created aspects
of AJHOTDRAW [7].

Of the eight sort instances, seven were successfully refactored. The
one that was not refactored, was a CB instance that consistently
called a super constructor. This cannot be done from advice in
AspectJ, so the call could not be migrated.

In all refactorings,SAIR detected some problems and provided sat-
isfactory solutions to most. In two cases small manual refinements
afterwards were needed, when the solutions did not provide the
right result. For example, in Listing 8, the consistent callto get-
AffectedFigures() is neither the first nor the last in the context,
making it unclear toSAIR whether to usebefore or after advice.

A good solution would be to createbefore advice and move all the
code preceding the consistent call to the advice as well, since it is
directly related. However,SAIR does not (yet) provide this solution,
so we toldSAIR to useBEFOREadvice explicitly and moved the
related code to the advice manually after refactoring.

Not all Commands in JHOTDRAW were implemented in the same
manner. This led to a situation where some context elements were
4If the call is not first or last in the method, a problem will have
been detected in the problem step and the developer will havecho-
sen how to handle the situation.

Van der Rijst, Marin & van Deursen – Sort-based Refactoring of Crosscutting Concerns to Aspects SERG

4 TUD-SERG-2008-010



1 public void execute() {
2 // @SAIR: super.execute(); moved to advice ...
3 // @SAIR: setUndoActivi... moved to advice...
4 FigureEnumeration fe = view().selection();
5 List affected = CollectionsFactory.current()
6 .createList();
7 // ... [collecting affected figures] ...
8 fe = new FigureEnumerator(affected);
9 getUndoActivity().setAffectedFigures(fe);

10 deleteFigures(getUndoActivity().getAffectedFigures());
11 // @SAIR: view().checkDamage(); moved to advice ...
12 }

Listing 8: Consistent call in DeleteCommand

excluded from the refactoring because they could not be refactored.
Refactoring them would require more pre- and postrefactoring than
SAIR can handle with the current problem-solution framework.

Comparison with AJHOTDRAW showed that the automatically gen-
erated aspects are similar to the manually created aspects.One
problem that was apparent, though, is that whereSAIR always refac-
tored one sort instance to one aspect, the implementation inAJHOT-
DRAW was sometimes spread over multiple aspects, leading to a
cleaner implementation. This is an opportunity for improvement
on SAIR.

Another difference is that the grouped pointcuts that are created by
SAIR list all the classes to capture in an or-statement, as shown in
Listing 7. The AJHOTDRAW pointcut is more advanced, capturing
the complete hierarchy and only excluding those classes that should
not be captured.

If SAIR should create the same structure, it would need to do a far
more thorough analysis of the structure and hierarchy of theclasses
in question. For now, we see the creation of a better pointcutas an
aspect-oriented refactoring, i.e. a refactoring that is concerned with
refactoring only aspect code.

6. RELATED WORK
In this section, we summarize related research in the area ofaspect-
introducing refactoring.

Hannemannet al. have used the notion ofroles being assigned
to classes in design pattern implementations, to create a method
calledrole-based refactoring [3]. These refactorings are limited to
design-pattern related concerns.

A catalogue of aspect-oriented refactorings, among which are ten
aspect-introducing refactorings, has been started by Monteiro and
Fernandes [9]. The refactorings are related to structure ofcode,
not to crosscutting concerns, although they can be used to build
refactorings for crosscutting concerns.

Cole and Borba have described the use oflaws that are guaranteed
to preserve behaviour [2]. Similarly, Binkleyet al. have introduced
rules [1]. The granularity of these refactorings is very small and
they are not directly related to crosscutting concerns, although they
can be used to migrate them.

7. CONCLUSIONS
In this paper, we presentedSAIR, a tool for automatic refactoring
of crosscutting concerns to aspect-oriented programming.The tool

supports the refactoring of instances of two concern sorts:Consis-
tent Behavior and Role Superimposition.

SAIR also implements a problem resolution mechanism that assists
the user in dealing with the complexity of refactoring by providing
a set of predefined solutions to common problems.

Future work will be carried out to identify additional problems that
could occur in automatic refactoring to aspects, and to include so-
lutions to these potential problems in the tool.

We also plan to implement refactoring support for all the sorts
available in SOQUET, for a complete integration of the two tools.

8. REFERENCES
[1] D. Binkley, M. Ceccato, M. Harman, F. Ricca, and P. Tonella.

Automated refactoring of object oriented code into aspects. In
ICSM ’05: Proceedings of the 21st IEEE International
Conference on Software Maintenance (ICSM’05), pages
27–36, Washington, DC, USA, 2005. IEEE Computer Society.

[2] L. Cole and P. Borba. Deriving refactorings for aspectj.In
AOSD ’05: Proceedings of the 4th international conference on
Aspect-oriented software development, pages 123–134, New
York, NY, USA, 2005. ACM Press.

[3] J. Hannemann, G. C. Murphy, and G. Kiczales. Role-based
refactoring of crosscutting concerns. InAOSD ’05:
Proceedings of the 4th international conference on
Aspect-oriented software development, pages 135–146, New
York, NY, USA, 2005. ACM Press.

[4] G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda,
C. Lopes, J.-M. Loingtier, and J. Irwin. Aspect-oriented
programming. InProceedings European Conference on
Object-Oriented Programming, volume 1241, pages 220–242,
Berlin, Heidelberg, and New York, 1997. Springer-Verlag.

[5] M. Marin, A. v. Deursen, and L. Moonen. Identifying
crosscutting concerns using fan-in analysis.ACM
Transactions on Software Engineering and Methodology,
17(1):1–37, 2007.

[6] M. Marin, L. Moonen, and A. van Deursen. An approach to
aspect refactoring based on crosscutting concern types. In
MACS ’05: Proceedings of the 2005 workshop on Modeling
and analysis of concerns in software, pages 1–5, New York,
NY, USA, 2005. ACM.

[7] M. Marin, L. Moonen, and A. van Deursen. An integrated
crosscutting concern migration strategy and its application to
JHotDraw. InProceedings of the IEEE International
Conference on Source Code Analysis and Manipulation
(SCAM), pages 101–110. IEEE, 2007.

[8] M. Marin, L. Moonen, and A. van Deursen. SoQueT:
Query-based documentation of crosscutting concerns. In
Proceedings of the 29th International Conference on Software
Engineering (ICSE), pages 758–761, Washington, DC, USA,
2007. IEEE Computer Society.

[9] M. P. Monteiro and J. M. Fernandes. Towards a catalog of
aspect-oriented refactorings. InAOSD ’05: Proceedings of the
4th international conference on Aspect-oriented software
development, pages 111–122, New York, NY, USA, 2005.
ACM Press.

SERG Van der Rijst, Marin & van Deursen – Sort-based Refactoring of Crosscutting Concerns to Aspects

TUD-SERG-2008-010 5



Van der Rijst, Marin & van Deursen – Sort-based Refactoring of Crosscutting Concerns to Aspects SERG

6 TUD-SERG-2008-010





TUD-SERG-2008-010
ISSN 1872-5392 SERG


