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Predicting variant deleteriousness in
non-human species: applying the CADD
approach in mouse
Christian Groß1,2, Dick de Ridder2† and Marcel Reinders1*†

Abstract

Background: Predicting the deleteriousness of observed genomic variants has taken a step forward with the
introduction of the Combined Annotation Dependent Depletion (CADD) approach, which trains a classifier on the
wealth of available human genomic information. This raises the question whether it can be done with less data for
non-human species. Here, we investigate the prerequisites to construct a CADD-based model for a non-human
species.
Results: Performance of the mouse model is competitive with that of the human CADD model and better than
established methods like PhastCons conservation scores and SIFT. Like in the human case, performance varies for
different genomic regions and is best for coding regions. We also show the benefits of generating a species-specific
model over lifting variants to a different species or applying a generic model. With fewer genomic annotations,
performance on the test set as well as on the three validation sets is still good.
Conclusions: It is feasible to construct species-specific CADD models even when annotations such as epigenetic
markers are not available. The minimal requirement for these models is the availability of a set of genomes of closely
related species that can be used to infer an ancestor genome and substitution rates for the data generation.

Keywords: Genomics, Genome annotation, Variant annotation, Sequence annotation, Mouse genetics

Background
With the possibility of determining variation in genomes
at large scale came an interest in predicting the influence
of a mutation on a phenotype, in particular its pathogenic-
ity. Initially, such predictions were restricted to missense
mutations, as these cause a change in the corresponding
amino acid chains and are thus most likely to have imme-
diate functional effects. SIFT [1], PolyPhen2 [2], SNAP2
[3] and Provean [4] are examples of this kind of predic-
tor. Recently, a number of methods for variant annotation
were proposed that assign a single deleteriousness score
to mutations throughout the entire genome, based on
a large collection of genomic and epigenomic measure-
ments. These methods – a.o. CADD [5], GWAVA [6],
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FATHMM-MKL [7] – are based on supervised classifica-
tion. CADD (CombinedAnnotation Dependent Depletion)
takes an interesting approach, in that it trains classi-
fiers to distinguish between observed benign variants and
inferred, putatively deleterious variants, instead of exploit-
ing only known regulatory or disease-associated variants.
This opens up the possibility to reproduce this approach
for other non-human species as well. It shares similarities
with fitCons [8] and LINSIGHT [9] by exploiting evolu-
tionary models, which capture signals of natural selection
over many generations in the generation of training data.
Although the use of CADD is already well-established

in human genetics research and clinical practice
[10, 11], for non-human species the situation is quite
different. While generic predictors such as SIFT, Provean
and SNAP2 can be used, genome-wide variant annota-
tion methods are generally not available. A major reason
is that for non-human genomes fewer genomic anno-
tations are available, complicating the construction of
more advanced models. This is even the case for model
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organisms, such as zebrafish (Danio rerio), drosophila
(Drosophila melanogaster) and mouse (Mus musculus).
Additionally, extensive population studies similar to the
1000 and 100,000 Genomes Projects [12, 13] are lacking
for non-human species, hampering the creation of good
training data sets. Finally, models for non-human species
are much more difficult to evaluate due to a lack of known
disease-associated or phenotype-altering variants such as
ClinVar offers for human [14].
Here, we explore the development of a functional pri-

oritization method for SNVs located across the entire
genome of a non-human species. The species we selected
to investigate is mouse. As a model species it is well stud-
ied, with relatively rich, publicly available, genomic anno-
tation data sets [15–20]. Even though not all annotations
used in the human CADD model are available for mouse,
the large overlap of annotations allows performance eval-
uation and comparison between the original CADD and
our mouse CADD. With this proof-of-principle, we aim
to gain insight into design choices for porting such a
methodology to non-human species.

Results
We trained a CADDmodel on mouse data (mCADD) and
a CADD model on human data (hCADD). Performances
of both are evaluated on test sets of variants located in dif-
ferent genomic regions. In addition, mCADD is evaluated
on three validation sets (Fairfield, Mutagenetix, ClinVar-
ESP data sets). We also compared mCADD to benchmark
metrics such as SIFT and two PhastCons scores based on
two phylogenies of different depth. Further, we trained
mCADD and hCADD on four different annotation sub-
sets to investigate the performance of a CADD-like clas-
sifier for species with fewer known annotations. These
models are referred to as hCADD(n) and mCADD(n),
with n the number of annotations used during training.
To investigate the benefits of developing species-specific
CADD models, we compared mCADD to 1) CADD v.1.3.
C-scores by lifting validation variants from mm10 to
hg19, and 2) a CADD model trained on human data
which, without further adaptation, is applied on mouse
data to evaluate the mouse SNVs (hCADD*).

mCADD performs similarly onmouse as hCADD does on
human
The ROC-AUC performance of mCADD(931) on the
entire test set equals 0.668 (Fig. 1a), which is similar to
the performance of hCADD(1000) applied on human data
(Fig. 2a). Overall, mCADD(931) has a better performance
across all genomic regions, with the most pronounced dif-
ference for the translated missense variants. Both models,
mCADD(931) and hCADD(1000), discriminate between
simulated and derived better than SIFT and PhastCons
scores (see Figs. 1 and 2e-g).

It is known that the distribution of CADD scores differs
between genomic regions, and that the disruptive effect
of variants in exonic regions can be estimated more pre-
cisely than that of variants in non-coding regions [21, 22].
We observe a similar trend for mCADD(931) as well as
hCADD(1000). Most of the performance increase from
genomic regions I, III, V to VII (Fig. 1a-d) is due to the
high performance on correctly classifying missense muta-
tions that become more enriched in these regions. This is
in contrast to the performances in genomic regions II, IV
and VI which do not contain any missense mutations.

Models trained on selected annotation subsets experience
performance drop in coding regions
To see whether models behave differently when less infor-
mation is available, we reduced the number of annotations
to train human and mouse models. The first subset of
annotations (872) was chosen based on the idea that epi-
genetic measurements and species-specific annotations
might not be available for some species. The perfor-
mances of mCADD(931) and hCADD(1000) as well as
mCADD(872) and hCADD(872) are very similar, with
the mCADD models performing slightly better than the
hCADD models (Figs. 1 and 2).
The second subset of annotations consist of 229 annota-

tions derived from sequence only, i.e. conservation scores
and VEP consequences (mCADD(229), hCADD(229)).
The situation is now different. The trend is still that
performance increases from non-coding to coding to mis-
sense mutations. Also, SNVs in non-coding regions can
still be classified with a performance comparable to that
of models with more annotations. However, with the loss
of particular information about coding regions and SIFT
as an annotation, the performance of mCADD(229) to
evaluate missense mutations drops below that of SIFT.
The smallest subset (44 annotations) excludes the VEP

consequences and solely contains conservation scores and
sequence features (mCADD(44), hCADD(44)). Now per-
formances drop even further, but mCADD(44) shows that
a simple combination of sequence based features and con-
servation scores outperforms the PhastCons scores for all
genomic regions.
Interestingly, hCADD* (the human trained model

applied on mouse data) performance lays between
mCADD(229) and mCADD(44) for all translated regions
(see Fig. 1c, d and h V-VII) and is better than the Phast-
Cons scores for those variant sets. On the other hand,
hCADD* shows mostly random performance when non-
translated regions are considered, indicating it is neces-
sary to adapt the CADD model to species-specific data.
Taken together, decreasing the number of available

annotations decreases performance, which drops rela-
tively faster in coding regions than in non-coding regions.
The drop in performance between mCADD(931) and
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Fig. 1 a-d) ROC-AUC scores of the four different mCADD models evaluated on seven different subsets of the mouse held-out test set reflecting
different genomic regions and/or functional annotations. e, f) Seven different subsets of the mouse held-out test set evaluated by glire- and
vertebrate based PhastCons scores, respectively. g) Missense mutations of the mouse held-out test set evaluated by SIFT. h) The sub sets of the
mouse held-out test set evaluated by hCADD*.: I) all data, II), not-transcribed, III) transcribed, IV) transcribed but not translated, V) translated, VI)
translated and synonymous, and VII) translated and missense. The different models are indicated at the top of the panel. All displayed scores are
ROC-AUC

mCADD(872) is, however, negligible, suggesting that epi-
genetic and species-specific annotations can be safely
ignored.

Evaluation of phenotype affecting SNVs by mCADD
To show that mCADD is capable of accurately scoring
real data and not only differentiates between simulated
and derived variants, we evaluated the different mCADD
models on three independent validation sets (see Fig. 3).
mCADD(931) and mCADD(872) perform extremely well
on all three validation sets (ROC-AUC > 0.95) and hardly
differ (see Fig. 3). mCADD(229) performs comparably
well on the ClinVar-ESP data set and shows a drop in
performance on the Fairfield and Mutagenetix data sets.
The drop increases when fewer annotations are con-
sidered for training (mCADD(44)). All mCADD models
and hCADD* perform better than the two conserva-
tion scores, except for mCADD(44) on the Mutagenetix
data. On all validation sets, the hCADD* performance
lays between the performances of mCADD(229) and

mCADD(44) and has relatively good performance on the
ClinVar-ESP data set.

Species-specific CADDmodel improves performance
To learn whether it is necessary to develop a mouse-
specific model, we additionally lifted all three validation
data sets from mm10 to GRCh37 and annotated the vari-
ants with CADD v.1.3 C-scores. We took care to only lift
variants which have the same reference allele, thus dis-
playing the same nucleotide substitution. Some variants
could not be lifted due to a missing homozygous region.
Negative samples were more often not lifted than positive
ones, i.e. the Fairfield data set loses 50 negative samples
and 27 positive ones, the Mutagenetix data set loses 235
positive and 398 negative samples, and for the ClinVar-
ESP data set we had to omit 5 positive sample and 103
negative ones, due to the requirement of having the same
reference allele.
For the Fairfield data set, the performance of all

mCADD models dropped due to the removal of 77
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Fig. 2 a-d) ROC-AUC scores of the four different hCADD models evaluated on the human held-out test set. e, f) Seven different subsets of the
human held-out test set evaluated by primate- and vertebrate based PhastCons scores, respectively. g) Missense mutations of the human held-out
test set evaluated by SIFT. (see caption Fig. 1 for remaining explanation)

samples (see Fig. 4a). The C-scores perform between
mCADD(229) and mCADD(872).
For the Mutagenetix data set, the mCADD models did

not suffer from the removal of 633 SNVs, instead all
computed ROC-AUCs increased (Fig. 4b). The C-scores
perform again between mCADD(229) and mCADD(872).
For the Clinvar-ESP data set, the mCADD model per-

formances are hardly affected (see Fig. 4c). Applied on the
ClinVar-ESP data set, mCADD(229) performs better than
C-scores.
Taken together, the species-specific mCADD model

outperform lifting variants to human and using the
hCADD model to score the variants, especially if consid-
ered that not every SNV can be easily lifted.

Annotation weights are moderately correlated between
mCADD and hCADD
We examined whether different annotations are used by
mCADD and hCADD. The absolutes of weights, assigned
to each annotation by the logistic regressor, were ranked
and the ranks of 595 annotations with a non-zero weight
in bothmodels were plotted against each other (see Fig. 5),
having a Spearman’s rank correlation of 0.4.

Top-ranking mCADD annotations are enriched in com-
binations of DNA secondary structure predictions of
DNAshape [23] (see Additional file 1: Table S4). Further-
more, predictions of intronic and intergenic regions seem
to be important, together with the neutral evolution score
of GERP++ (GERPN) [18].
Top-ranking hCADD annotations are PhastCons and

PhyloP conservation scores, all based on different phy-
logenies. Of these, the most influential annotations are
PhastCons scores based on a primate alignment [5, 19].
The second most important group of annotations are
predictions on intronic regions.
The combination of primate-based PhastCons scores

in hCADD with predicted VEP consequences indicating
intronic and intergenic regions is similar to the combi-
nation of the same VEP consequences and the neutral
evolution score of GERP++ in mCADD. From this, we
conclude that the primate-based PhastCons scores are
replaced by GERPN in mCADD.
Vertebrate-based PhastCons scores are ranked high for

both mCADD and hCADD. Top ranked annotations in
hCADD which are ranked low in mCADD are enriched
in mammalian-based PhastCons and mammalian-based
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Fig. 3 ROC-AUC scores of mCADD models evaluated on three
different validation sets: the a) Fairfield, b) Mutagenetix and c) ClinVar-
ESP data sets. The numbers below the bars indicate the number of
annotations used during model training. Roman numbers indicate: I)
the glire-PhastCons score, II) the vertebrate PhastCons score, and III)
the hCADD* score. The numbers above the bars show the exact
ROC-AUC of that particular model and validation set combination

PhyloP scores. Vice versa, feature combinations with DNA
secondary structure predictions are exclusively used by
mCADD.

Discussion
We demonstrated the possibility of creating a CADD-
based model for the mouse genome, capable of predict-
ing the deleteriousness of variants. We created a model
trained on mouse data (mCADD) and evaluated it on a
held-out test set and validation sets of phenotype alter-
ing SNVs. We compared the performance of our model
to that of other metrics, such as conservation scores
and the variant prioritization tool SIFT, as well as to C-
scores for which we lifted the annotated variant locations
to the human genome. We also compared performances
on mouse test set variants to deleteriousness estimates
of human test set variants, a.o. scored with a human

a

b

c

Fig. 4 ROC-AUC scores of mCADD models and C-scores evaluated on
three different validation sets (a) Fairfield, b) Mutagenetix, c)
ClinVar-ESP) lifted from mouse to human. Arabic numbers
underneath the bars indicate the number of annotations used for
model training. The numbers above the bars show the exact
ROC-AUC of that particular model and validation set combination

CADD model that we trained ourselves (hCADD). As a
final approach we trained a model on human data and
evaluated it on mouse data (hCADD*).
Performances of mCADD and hCADD were very sim-

ilar, with the mouse model performing better on the
hold-out test sets. In addition, validation on three exper-
imentally annotated data sets showed that the mCADD
model is clearly capable of prioritizing deleteriousness
of SNVs. Scoring lifted variants with hCADD performed
reasonably well on these validation data sets, but less
so than mCADD, whereas the generic hCADD* model
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Fig. 5 Comparing the ranks of the absolute weights assigned to
annotations when training mCADD (horizontal axis) with those when
training hCADD (vertical axis). A lower rank indicates an annotation
with larger impact on the log-odds of a model

had a consistent performance between mCADD(229) and
mCADD(44). Together, this shows the importance of gen-
erating species-specific models when more annotations
are available than only sequence specific ones, especially
when lifting is not an option.
Evaluating the trained models on variants located in dif-

ferent genomic regions, we observed that mCADD and
hCADD display the same trend, with increasing perfor-
mance from non-coding to coding variants, and the best
performance for missense mutations. Strikingly, mCADD,
hCADD as well as other metrics all performed poorly on
synonymous variants within coding regions.
We further assessed the annotation weightings in the

human and mouse models. Despite a moderate corre-
lation, both models rely on different annotations. This
may explain the poorer performance of hCADD when
evaluated on mouse data sets (i.e. hCADD*). Among the
most important annotations are different conservation
scores and/or combinations of these scores with VEP
consequence annotations. It seems that hCADD relies
relatively more on conservation scores than mCADD,
while mCADD puts more emphasis on DNA structure
predictions.

Performance depends on genomic region
Previous studies indicated that performance of the CADD
classifier is not constant over the entire genome [21, 22].
We also observed changing performances between the
investigated genomic regions. This may be due to intrin-
sic differences in the SNVs, but it might also be due
to a difference in the number of annotations between
non-coding and coding regions. When evaluating the dis-
tribution of putative deleterious and benign SNVs across
genomic regions (Additional file 1: Table S2), we find an
imbalance in class labels of the held-out test set, but these

do not explain the changes in performance. A striking dif-
ference in performance is found between the translated
missense variants and translated synonymous variants.
Annotations that help to differentiate between positive
and negative missense mutations, such as SIFT, are not
available for synonymousmutations. Hence, themain pre-
dictors for translated synonymous SNVs are the same as
those for non-coding regions, namely different conserva-
tion scores, suggesting that the lack of meaningful annota-
tions available for synonymous and other mutations limits
the performance.
Note that CADD models are trained with putative

benign and deleterious variants, as derived from the
ancestor genome, and not with variants for which their
effect is experimentally established. Although training
variants are proxies, the trained CADD models perform
extremely well on the experimentally validated SNVs as
shown by the good performance on the validation sets.
Apparently, the training variants are informative, and we,
consequently, believe that the performances on the held-
out test set can be interpreted at least qualitatively.
Together, this makes us believe that differences in

observed performance between genomic regions are due
to intrinsic properties of these regions such as the num-
ber of available annotations. This does, however, influence
the applicability of any CADD-like model to prioritize
disruptive SNVs truly genome wide.

Models based on limited numbers of annotations can be
predictive
One of the objectives of this study was to investigate
the predictive power of CADD-like models in the case
of incomplete annotation sets when compared to the
human case. For that purpose, we defined four differ-
ent sub annotation sets: all annotations (mCADD(931),
hCADD(1000)), all but epigenetic and species-specific
annotations (m/hCADD(872)), annotations including
VEP’s (m/hCADD(229)), and annotations including only
conservations scores (m/hCADD(44)).
The general trend is that mCADD models perform

worse with fewer annotations, on the held-out test set
as well as on the three validation sets. This is most pro-
nounced for variants within coding regions. Differences
in performance betweenmCADD(931) andmCADD(872)
are negligible. For the Fairfield and Mutagenetix valida-
tion sets, mCADD(872) even performs better. The biggest
drop in performance is observed between mCADD(872)
and mCADD(229), even though the performance of
mCADD(229) on all three validation sets is still above
ROC-AUC > 0.91. These results indicate that a reliable
model can be built, even if only very few annotations
are known. Moreover, if only conservation scores and
sequence features are available, it is still possible to out-
perform individual conservation scores.



Groß et al. BMC Bioinformatics  (2018) 19:373 Page 7 of 10

hCADD shows a similar, but lower, trend, although
the performance of hCADD(872) improves over that
of hCADD(1000) using all subsets of the held-out test
set. One of the main differences between mCADD
and hCADD is that when generating training variants,
mCADD uses an evolutionary older ancestor genome
than hCADD. Thus, the time window over which mouse-
derived variants have experienced purifying selection is
longer than in the human case. Equally, substitution
rates for the simulated SNVs are derived from evolu-
tionary more distant ancestors, resulting in a larger pro-
portion of deleterious SNVs in mouse than in human
data. The impact of the evolutionary observed differ-
ences is, however, poorly understood and warrants further
investigation.

Limited interpretability of scores mapped between
different species
An established method to evaluate different alleles in the
genome of any species is to compare them with known
orthologous regions in other species for which annota-
tions are known. Although annotating lifted variants with
human-based C-scores worked well , evaluating the same
variants with a species-specific model gave better results.
In addition, not every variant position in the validation
sets could be annotated by C-scores as they have to be
located in sequences that can be aligned to human. Fur-
ther, similar variants in different species may differ in the
phenotype they cause. This has to be considered for any
comparative genomic analysis [24].

Conclusions
We have shown that the CADD approach for prioritiz-
ing variants can be applied to non-human species, and
that it is important to train species-specific models. Inter-
estingly, not all original annotations used by CADD are
necessary to achieve good performance: only conservation
scores and VEP consequences of variants (the set of 229
annotations we explored) may suffice to make meaning-
ful predictions. These annotations are available for many
species. Nevertheless, if possible, adding additional anno-
tations for coding regions will help to improve the trained
models. Altogether, our work has shown that species-
specific CADD models can be successfully trained, open-
ing new possibilities for prioritizing variants in other less
well-studied species.

Methods
Overview of the CADD approach
We construct a CADDmodel for mouse, mCADD, as well
as a CADD model based on human data, here denoted
by hCADD. In contrast to the original CADD approach,
mCADD and hCADD are trained specifically on single
nucleotide variants. We also construct a model trained on

human data and evaluated it on mouse variants, which
will be further referred to as hCADD*. The purpose of this
model is to learn about the performance to be expected if
one wants to evaluate variants for which no model exists
and that cannot be lifted between genomes. The SNVs and
their annotations used for hCADD and hCADD* originate
from the data set used for CADD v.1.3. Annotations that
are specific for insertions or deletions were removed from
the data set. Briefly, the original CADD model [5] is
trained to classify variants as belonging to the class of
simulated or derived variants. To train the CADD model,
simulated and derived variants were generated based on
the human-chimpanzee ancestral genome and mutation
rates derived from a 6-taxa primate alignment [25].
Derived variants are variant sites with respect to the

ancestral genome that are fixed in the human lineage, or
nearly fixed with a derived allele frequency of above 95%
in the 1000 Genomes Project [5]. Due to the purifying
selection they experienced, derived variants are assumed
to be depleted in deleterious variants.
Next to observed derived variants, variants are simu-

lated that do not occur in the human lineage. Hence,
simulated variants did not experience purifying selection,
therefore fitness reducing variants are not depleted in this
group. All variants are annotated with a large number of
genomic features, ranging from sequence features, con-
servation scores, variant effect predictor annotations to
epigenetic measurements.

Derived and simulated variants in mouse
Due to a lack of sufficient sequencing data of large,
freely reproducing mouse populations, we focused on
identifying differences between an inferred mouse-rat
ancestral genome and the most recent mouse reference
assembly (mm10) [26]. The mouse-rat ancestral genome
is based on the EPO 17-eutherian-mammal alignments
[25, 27, 28] (Additional file 1: Figure S2) provided by
Ensembl release 83 [29]. In total we observed 33,622,843
sites with a derived allele in the mouse reference that were
not adjacent to another variant site.
To generate an equal number of simulated variants we

made use of the CADD variant simulator [5]. Based on the
mm10 reference, it uses an empirical model of sequence
evolution derived from the EPO 17-eutherian-mammal
alignments, with CpG di-nucleotide specific rates and
locally estimatedmutation rates within windows of 100kb.
Only SNVs with a known ancestral site were selected. In
this way, we generated 33,615,003 SNVs. The final dataset
contains an equal number of simulated variants, equally
divided over 11 folds (10 for cross-validation and training,
the remaining for testing), yielding a total of 67,229,998
SNVs. Additional file 1: Table S2 gives an overview of
these SNVs and their distribution over different genomic
regions.
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Genomic annotations
An overview of all annotations that we assembled for
mouse can be found in Additional files 2, 3. Histone
modifications, transcription factor binding sites, DNAase
Seq peaks and RNAseq expression measurements were
downloaded from ENCODE [16]. The mm10.60way ver-
tebrate alignment was retrieved from the UCSC Genome
Browser [30]. This multiple sequence alignment was used
to calculate four different PhyloP and PhastCons scores
based on differently sized sub alignments, in particu-
lar an 8-taxa Glire alignment, a 21-taxa Euarchontoglire
alignment, a 40-taxa Placental alignment and a 60-taxa
Vertebrate alignment (Additional file 1: Figure S1). Phy-
loP and PhastCons scores were computed without taking
the mouse reference sequence into account. Further-
more, information about regulatory motifs, micro-RNA
predictions (microRNA binding [31], microRNA tar-
gets [32]) and chromatin state predictions (ChromHMM
[33]) were taken into account. GERP++ neutral evolution
and rejected substitution scores, GERP Elements scores
and GERP Elements p-values were taken from [18] and
mapped from mm9 to mm10 via CrossMap [34]. All 5-
mer combinations of the 4 nucleotides were generated
and based on that the DNA secondary structure was pre-
dicted for each 5-mer [23]. Differences in the predicted
scores for the reference 5-mer and alternative 5-mer at
the investigated positions were used as annotation. Sum-
maries of consequences predicted by the Ensembl Variant
Effect Predictor (VEP v.87 [27]) were used in combina-
tion with other annotations to create additional composite
annotations (Additional file 1: Table S1, and Supplemen-
tary Note, Additional file 2). Additional annotations that
rely on a gene build such as the SIFT protein score,
reference and alternative amino acid, variant position
within a transcript and coding region are also generated
by VEP v.87.
Human annotations were downloaded from the origi-

nal CADD publication v.1.3. [5] (download: 17-2-2016).
Annotations which are by definition only available for
InDels were removed.

Annotation subsets
From the annotations, four subsets were created of
decreasing size and increasing likelihood of availability
in non-human species (see Additional files 3 and 4 for a
complete overview). The first set consists of all available
annotations, i.e. 1000 for hCADD, 931 for mCADD and
902 for hCADD*. The annotations used to train hCADD*
are those which can be meaningfully compared between
mouse and human. The second subset has 872 annota-
tions. It excludes all epigenetic annotations and species-
specific ones, leaving annotations available for both
mouse and human. The third subset incorporates 229
annotations, including conservation scores, nucleotide

sequence features and VEP consequence/annotation com-
binations. Annotations specific for coding regions were
excluded, with the exception of coding region-specific
VEP consequence values. The fourth subset of 44 anno-
tations can be entirely generated from the sequence
information itself. It includes conservation scores and
nucleotide sequence annotations, such as the GC% within
a 75 bp window upstream and downstream of the variant
position.

Training and evaluating the mCADDmodel
The CADD model is centered on a logistic regressor
trained to differentiate between simulated and derived
variants. This was done using the logistic regression mod-
ule of Graphlab v2.0.1 [35], the same tool the CADD
authors have used since CADD v1.1. Before training we
standardized the human and mouse data by dividing each
feature by its standard deviation. We did not center the
features, in order to preserve sparsity. The mouse data set
was split into 11 partitions of equal size (6,111,818 SNVs).
The 11th partition was used as held-out test set. On the
remaining 10 partitions we performed 10-fold cross vali-
dation to determine the number of training iterations for
the logistic regressor and the L2 regularization parameter.
The cross validation results are shown in Additional file 1:
Table S3. The final model was trained on the joined ten
partitions with a maximum number of 100 iterations and
a regularization parameter set to 0.1.
To obtain the human held-out test set, we selected

2,851,642 SNVs. Similar to the mouse case, this amounts
to every 11th SNV from those available in the CADD v.1.3
data set. The hCADD and hCADD* models are trained
with a maximum number of 10 iterations and an L2 regu-
larization parameter of 1, to keep the settings as similar as
possible to CADD v.1.3.
All model performances were evaluated with the area

under the receiver operating characteristic (ROC-AUC).
Trained classifiers were assessed based on their perfor-
mances on their respective held-out test sets. These sets
were further divided according to the genomic regions
from which each variant originates. An overview and
description of the resulting 7 subsets can be found in
Additional file 1: Table S2.
We further evaluated the classifiers on three additional

data sets: (i) 60 SNVs associated with changes in phe-
notype as obtained from an exome sequencing study of
91 mouse strains with Mendelian disorders (Fairfield data
set) [36]; (ii) 481 N-ethyl-N-nitrosourea (ENU) induced
SNVs (Mutagenetix data set) [37]; (iii) 9348 variant sites
lifted from the ClinVar-ESP validation set utilized in
CADD v.1.3 (ClinVar-ESP data set) [5]. Similar to the
training data, all data sets were standardized but not cen-
tered, using the scaling factors for each annotation which
were obtained from the whole mouse data set.
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Data for the Fairfield validation set is provided by
Additional file 1: Table S4 [38] of the Fairfield et al. publi-
cation. TheMutagenetix data set was providedby several labs
and downloaded from the Mutagenetix data base [37, 39].
All data were checked for the reported reference allele
and, in the case of uncertainty, manually verified with the
records on the website. If the reported allele could not be
found in close proximity of the reported genomic location,
the variant was discarded. Both the Fairfield and Muta-
genetix validation sets contain phenotype altering SNVs,
therefore all of these were considered as potentially dele-
terious without differentiating between the exact nature of
the phenotype change (positive data set). To find an equal
number of variants that can be used as a negative data
set, we made use of SNVs identified in 36 mouse strains
from the Wellcome Trust Sanger’s Mouse Genomes
Project [15], filtered for an allele frequency (AF) ≥ 90%.
We sampled to have a matching number of negative
SNVs for both data sets, we took care that the propor-
tions of transcribed, synonymous and non-synonymous
mutations are the same among the positive and
negative SNVs.
The ClinVar-ESP data set contains curated variants from

the ClinVar database [14] that were identified to have a
pathogenic effect in human. As a negative set (5635 SNVs),
variants from the Exome Sequencing Project (ESP) [40]
were selected with a derived allele frequency of ≥ 5%. We
lifted the variants from GRCh37 to mm10 and selected
SNVs which introduce the same amino acid substitution
or stop codon change in human and mouse.

Analysis of model weights
The logistic regressor assigns weights (betas) to each
annotation used for training. These weights indicate the
effect of one unit change on the log odds of success of
the trained model. A zero weight implies that the anno-
tation is not used. We compared the weights assigned
to each annotation by mCADD and hCADD to derive
information about annotations of general importance
for CADD-like models. As different regularization terms
were applied in hCADD and mCADD, causing the beta’s
to be on different scale, we compared ranks instead of
weights. Ranks were computed for non-zero beta’s and
based on the absolute weight. Annotations of mCADD
and hCADD were compared with each other when they
have a non-zero weight in both models. Three types
of annotations were not identical between mouse and
human, but considered comparable:

1 Primate-based PhastCons&PhyloP [19, 20] scores in
hCADD were compared with glire-based
PhastCons&PhyloP scores of mCADD. These are the
smallest alignments used to compute conservation
scores in both species.

2 Mammalia based PhastCons&PhyloP scores in
hCADD were compared to scores based on a
placentalia alignment for mCADD.

3 CHROMHMM [33] chromatin state predictions
were mapped based on the overlap of their predicted
consequences in human and mouse.

Additional files

Additional file 1: Supplementary data. Supplementary data containing
tables and figures with additional information about the used phylogenies
and other data. (PDF 203 kb)

Additional file 2: Annotation Overview. Excel sheet containing all human
and mouse annotations which were used to generate features for model
training. (XLSX 16 kb)

Additional file 3: Annotation Overview. Excel sheet containing all mouse
annotation sub sets which were used to generate features for model
training. (XLSX 15 kb)

Additional file 4: Annotation Overview. Excel sheet containing all human
annotation sub sets which were used to generate features for model
training. (XLSX 15 kb)
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