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Abstract

Availability studies aim at modeling and quantifying the relation between system design
and production effectiveness. Once this relation is modeled, different designs and operating
strategies can be compared and ranked. Usually, the objective is to estimate and minimize
losses that are due to equipment failures and planned shutdowns. Future performance of each
unit/component may be modeled by the availability functionthat gives the probability that
the unit is functioning at timet. Those functions are then combined together to assess future
availability of a plant.
The main aim of this project was to improve existing methods for computing the availability
functions on a component level. Formulation of the problem in a general framework allowed
to obtain extra availability metrics that include the present condition of a component. Different
methods for computing availability functions were tested and compared with respect to speed
and accuracy. The best method was selected based on the performance on different problem
families. For the purpose of the comparison the explicit formulas for the availability functions
in case of Gamma alternating renewal process were derived. Additionally some new bounds
on the availability functions were obtained. The last part presents a new approach for modeling
the availability of a component in situation when some failures are not visible (so called ”grace
periods”).
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Chapter 1

Introduction

When designing a new production plant a key aspect is to analyze and predict the
production availability. Production systems may be interpreted as the systems that
convert raw product (for instance crude oil) into finished product (i.e. gasoline) in a
continuous process. The production systems usually consist of a number of connected
components such as pumps, compressors, tanks which are required to perform cer-
tain functions. Components fail occasionally sometimes ina fully random process,
sometimes in a process governed by ageing. The impact of the components on the
production depends on the structure of the system and criticality of the failure. The re-
lation between component reliability and system reliability is important for decisions
in the design as well as in the operation phase. For instance in the design phase, before
the system is being built, one can compare different configurations of the components
and check the impact on the system as a whole in order to choosethe optimal design
structure. In the operation phase information about the unreliable components may
help in optimizing maintenance strategies.

In practice the analysis starts from transforming the process flow to the reliability
block diagrams (RBD) that represent the logical structure of the system. Figure 1.1 il-
lustrates an example process flow scheme and corresponding reliability block diagram
for sub-sea water injection system. The next step is to gather specific characteristics
about each component. The most relevant information is the expected functioning time
without a failure and also the information about the repair time. Since in most of the
situations those quantities are uncertain they have to be modeled by random variables.
The choice of proper distributions is very often difficult, especially when data is lack-
ing or scarce. Once the distributions and parameters are known one can predict the
performance of each component separately and then combine this information, taking
into account the structure of the system, in order to assess the performance of the sys-
tem.
One of the most important performance measures of repairable units is the availability
since it takes into account both failure and repair information. Availability is defined
as the probability that an item is available for operation ata specified time

A(t) = P(component is available at timet)

1



1.1 Objective of the Thesis Introduction

An alternative interpretation ofA(t) is that if we have a very large numbernof identical
and independent components that have been put into operation at the same time,n·A(t)
is the expected number of components that will be functioning at timet. The avail-
ability of the system is defined in the same manner. The availability of the component
(or system) depends on its initial condition and both the failure and repair distributions
specified for modeling its failure and repair processes. It is a common practice to as-
sume that the system is initially in a good condition and thatit is as good as new. In
this thesis, however, we consider a more general situation where not necessarily new
components at the initial state are also allowed.

Figure 1.1: From process flow scheme to reliability block diagram: sub-sea water
injection system.

1.1 Objective of the Thesis

The aim of this project was to come up with an accurate, robustand fast method for
computing different renewal and availability functions ona component level. Particu-
lar emphasis was placed on the realistic choices of parameters for life time and repair
distributions.

It has to be stressed that there was no intention to analyze the availability on a
system level and also there was no statistical analysis regarding the proper choice of
the distributions and their parameters.

1.2 Outline of Thesis

This document is structured as follows. Chapter 2 presents basic definitions from
renewal theory and also introduces notation for specific renewal and availability func-
tions. Here also the equations for the functions are derivedand the analytical solution

2



Introduction 1.2 Outline of Thesis

for exponential case is given. Chapter 3 is the main part of the thesis and it presents
the process of selection of the best method for computing thefunctions introduced in
Chapter 2. The next chapter deals with problem of ”grace periods” and can also be
read separately. The conclusions and recommendations are presented in Chapter 5

3





Chapter 2

Description of the problem

In this chapter we introduce the mathematical statement of the problem and the nota-
tion that will be used in next chapters. This chapter is organized as follows. Section
2.1 gives the basic definitions related to the general renewal theory. In Section 2.2 we
derive possible equations for the renewal functions of two renewal processes: ordi-
nary and delayed. Next, the four different availability functions are introduced and the
corresponding equations are derived.

2.1 Introduction and Notation

Renewal theory is a key tool in reliability modeling. We willnow summarize the most
important ideas and results of the renewal theory that are needed for later reference.
Most of the general theory is given in [41, 15].

Definition 2.1.1. Given the sequence(Tj : j ≥ 1,2, . . . ) of positive random variables
let Sn be the sequence of partial sums

Sn = T1+ · · ·+Tn , n≥ 1

with the conventionS0 = 0. The process{N(t), t ≥ 0} is called acounting process
associated to(Tj : j ≥ 1,2, . . . ) if:

N(t) = k ⇐⇒ Sk ≤ t < Sk+1 (2.1)

In relation with definition 2.1.1 there are two processes that are of particular inter-
est.

Definition 2.1.2. Let the variables in the sequence(Tj : j ≥ 1,2, . . . ) be independent
and identically distributed thenN(t) defined in 2.1.1 is called anordinary renewal
processor shortlyrenewal process.

Definition 2.1.3. Let the variables in the sequence(Tj : j ≥ 1,2, . . . ) be independent,
but suppose onlyT2,T3, . . . are identically distributed with distribution functionFT ,
while T1 has possibly a different distribution functionG, thenN(t) defined in 2.1.1 is
called adelayed renewal processand denoted byND(t).

5



2.1 Introduction and Notation Description of the problem

The latter process is a generalization of an ordinary renewal process, that is for
G = F the processND(t) becomesN(t). The principal objective of renewal theory
is to derive properties of certain variables associated with N(t). In this thesis it is of
significance and relevance to compute the expected number ofrenewals in the time
interval(0, t].

Definition 2.1.4. The renewal functionis defined as

M(t) = E[N(t)] and MD(t) = E[ND(t)]

Definition 2.1.5. For differentiable renewal functionM we define therenewal density
as

m(t) =
dM(t)

dt
In reliability applications renewal density is sometimes called the rate of occur-

rence of failuresor shortly ROCOF and it may be regarded as the mean number of
failures per time unit at timet or as the frequency of a unit failures at timet. Thus if
m(t) is increasing then the component is deteriorating. On the other hand ifm(t) is
decreasing the component is improving.
From Definition 2.1.5 it follows that

M(t) =

Z t

0
m(t)dt (2.2)

Definition 2.1.6. Let X andY be independent life lengths with distribution functions
FX andFY and corresponding densitiesfX and fY. Then the distribution of the sum
X +Y is called theconvolutionof FX andFY, and is defined by

FX+Y(t) =

Z t

0
FX(t −x)dFY(x) =

Z t

0
FY(t −x)dFX(x) (2.3)

And similarly in case of densities

fX+Y(t) =

Z t

0
fX(t −x) fY(x)dx=

Z t

0
fY(t −x) fX(x)dx (2.4)

The convolution of two functions is denoted by ’⊛’: FX+Y(t) = FX ⊛ FY(t) and
fX+Y(t) = fX ⊛ fY(t).

Remark2.1.7. The convolution defined in (2.3) is also called Riemann-Stieltjes con-
volution and is not commutative for functions that are not equal zero att = 0. The
convolution defined by (2.4) is always commutative (it can beshown by simple change
of variables). LetF andG be two functions defined on[0,∞) then

Z t

0
F(t −x)dG(x) =

Z t

0
F(t −x)G′(x)dx=

Z t

0
F(x)G′(t −x)dx

=
Z t

0
F ′(x)G(t −x)dx− (F(t)G(0)−F(0)G(t))

=

Z t

0
G(t −x)dF(x)− (F(t)G(0)−F(0)G(t))

where in the second line the integration by parts was used. Generalization of the
convolution ton identically distributed random variables is straightforward.

6



Description of the problem 2.2 Renewal functions

Definition 2.1.8. If T1, . . . ,Tn are iid with common distributionFT then distribution of
the sumT1 + · · ·+Tn is calledn-fold convolutionof FT and is defined by

F(n)(t) =
Z t

0
F(n−1)(t −x)dFT(x) (2.5)

with F (1)(t) = FT(t). And similarly in case of densities

f (n)(t) =
Z t

0
f (n−1)(t −x) fT(x)dx (2.6)

with f (1)(t) = fT(t).

In case whenT1 has a different distribution function, sayG, then

F (n)(t) = G⊛F(n−1)(t)

2.2 Renewal functions

From definition 2.1.1 it follows that

N(t) =
∞

∑
n=1

1{Sn≤t}

where1{A} denotes indicator function of the setA. Therefore the renewal function for
ordinary renewal process becomes

M(t) = E[N(t)] =
∞

∑
n=1

P(Sn ≤ t) =
∞

∑
n=1

F(n)
T (t) (2.7)

We next show that the renewal functionM(t) satisfies the equation

M(t) = FT(t)+
Z t

0
M(t −x)dFT(x) (2.8)

or in convolution notation

M(t) = FT(t)+FT ⊛M(t)

Using directly formula (2.7) we get

M(t) =
∞

∑
n=1

F(n)
T (t) = FT(t)+

∞

∑
n=2

F (n)
T (t)

= FT(t)+
∞

∑
n=1

F (n+1)
T (t) = FT(t)+

∞

∑
n=1

FT ⊛F(n)
T (t)

= FT(t)+FT ⊛

∞

∑
n=1

F(n)
T (t)

= FT(t)+FT ⊛M(t)

and relation (2.8) is established. This equation is known asthe fundamental renewal
equationand sometimes may be solved forM(t).

7



2.2 Renewal functions Description of the problem

Immediately by differentiation of (2.8) we obtain similar integral equation for the re-
newal densitym(t)

m(t) =
dM(t)

dt
= fT(t)+

d
dt

(

Z t

0
M(t −x) fT(x)dx

)

(2.9)

= fT(t)+

Z t

0

d
dt

(M(t −x) fT(x))dx+M(0) fT(t) (2.10)

= fT(t)+
Z t

0
m(t −x) fT(x)dx+M(0) fT(t) (2.11)

(see also Remark 2.2.1) and including thatM(0) = 0, by its definition, it follows

m(t) = fT(t)+

Z t

0
m(t −x) fT(x)dx (2.12)

or

m(t) = fT(t)+

Z t

0
m(t −x)dFT(x) (2.13)

Remark2.2.1. Alternative argument may be given in terms of Laplace transforms.
Define

h(t) =

Z t

0
M(t −x) fT(x)dx

ThenL [h(t)] = L [M(t)] ·L [ fT(t)]. Sinceh(0) = 0, the Laplace transform of the deriva-
tive h′ is

L
[

h′(t)
]

= sL [M(t)] ·L [ fT(t)] = (sL [M(t)]−M(0))L [ fT(t)]+M(0)L [ fT(t)]

= L
[

M′(t)
]

L [ fT(t)]+M(0)L [ fT(t)]

So

h′(t) =

Z t

0
m(t −x) fT(x)dx+M(0) fT(t)

and relation (2.11) is established.

Note also that by differentiating (2.7) the renewal densitycan also be expressed as

m(t) =
∞

∑
n=1

f (n)
T (t) (2.14)

where f (n)
T is n-fold convolution of the renewal density. Renewal functionmay be

also expressed in terms of Laplace transform of underlying distribution. According to
Appendix B the Laplace transform of (2.8) is

M∗(s) = F∗
T (s)+sM∗(s) ·F∗

T (s)

Solving forM∗(s) gives

M∗(s) =
F∗

T (s)
1−sF∗

T (s)
(2.15)

or

M∗(s) =
f ∗T(s)

s(1− f ∗T(s))
(2.16)

8



Description of the problem 2.2 Renewal functions

where in last expression we usedF∗
T (s) = f ∗T(s)/s. If the Laplace transform of densities

or distributions are known, one can also find the renewal function from

M(t) = L
−1 [M∗(s)] = L

−1
[

F∗
T (s)

1−sF∗
T (s)

]

(2.17)

or

M(t) = L
−1 [M∗(s)] = L

−1
[

f ∗T(s)
s(1− f ∗T(s))

]

(2.18)

whereL−1 is the inverse Laplace operator.
The following theorem will be useful when deriving the integral equations for the
renewal function in delayed case and also for the availability functions:

Theorem 2.2.2. Suppose H is a bounded function. There exists one and only one
function r bounded on finite intervals that satisfies

r(t) = H(t)+
Z t

0
r(t −x)dF(x)

This function is

r(t) = H(t)+

Z t

0
H(t −x)dM(x)

where M(t) = ∑∞
n=1 F(n)(t) is the renewal function (of the ordinary renewal process).

Proof may be found in e.g. [26]. Repeating the argument from ordinary case it is
easy to show that the renewal functionMD(t) satisfies

MD(t) = E

[

∞

∑
n=1

1{Sn≤t}

]

= P(T1 ≤ t)+
∞

∑
n=2

P(Sn ≤ t)

= G(t)+
∞

∑
n=2

G⊛F(n−1)
T (t) = G(t)+G⊛

∞

∑
n=1

F(n)
T (t)

= G(t)+G⊛M(t)

= G(t)+
Z t

0
G(t −x)dM(x) (2.19)

Based on Theorem 2.2.2 equation (2.19) is the solution of thefollowing integral equa-
tion

MD(t) = G(t)+

Z t

0
MD(t −x)dFT(x) (2.20)

Similarly as for the functionM one can use Laplace transforms to obtain additional
representation for functionM. By taking Laplace transforms of both sides of (2.20)
and solving forM∗(s) gives

MD∗
(s) =

G∗(s)
1−sF∗

T (s)
(2.21)

or

MD∗
(s) =

g∗(s)
s(1− f ∗T(s))

(2.22)

whereg is the density function of the first renewal time.

9



2.3 Availability Functions Description of the problem

2.2.1 Asymptotic expansion for the Renewal Function

The first one who introduced asymptotic representations of the renewal function was
W.L. Smith [40]. He showed that linear asymptotic approximation for the renewal
function is:

M(t) ∼ t
E[T]

−1+
E[T2]

2E[T]2
, t → ∞ (2.23)

It is also possible to derive more accurate approximations.Assuming that at least the
first three moments of the interval distribution are finite ref [10] showed that:

M(t) =
t

E[T]
−1+

E[T2]

2E[T]2
S(t)

E[T]2
+

E[T2]

E[T]3
·R(t) (2.24)

+o(t−q log(t)), t → ∞

R(t) =
Z ∞

t
(1−F(y))dy

S(t) = −
Z ∞

t
R(t)dy

whereq is the highest-order finite moment of the distribution. Thishigher order ap-
proximation is not very useful in practice since for each value oft one has to compute
a double integral of the renewal distribution (in case of availability the distributionF
is a convolution and has to be approximated as well). Therefore despite the fact that
renewal function converges fairly rapidly to (2.24) due to simplicity of (2.23) we keep
it as most practical approximation for large values oft.
The asymptotic value for the renewal function may also be derived in delayed case.
Ref [33] showed that

MD(t) ∼ t
E[T]

+
E[T2]−2E[T1]E[T]

2E[T]2

whereT ∼ F andT1 ∼ G.

2.3 Availability Functions

We consider a component that can be put into operation and perform its functions for
a random period of time. Due to the process of ageing the component may fail and
stop to operate, also for a random period of time. It is assumed that after failure the
component is repaired and restored to the state ”as good as new” (we do not include
imperfect repairs). Therefore the component may be in two states either functioning
(1) or being repaired (0). Let the sequence(Ui, i = 1,2, . . . ) denote the successiveup-
timesof the component. Assume that that up-times are independentand identically
distributed with common distribution functionFU(t) = P(Ui ≤ t) and meanE[U1] =
MTTF (mean time to failure). Likewise we assume that the corresponding down-times
(Di , i = 1,2, . . . ) are independent and identically distributed with distribution function
FD(t) = P(Di ≤ t) and meanE[D1] = MTTR(mean time to repair). We will assume
that the initial state of the component can be either 0 or 1.
Although a renewal process is defined by the distributions ofits inter-arrival times, it

10



Description of the problem 2.3 Availability Functions

is more convenient to use a binary indicator variableXi(t) which takes the value 1 if
the component is operating at timet and 0 otherwise, wherei = 0 if the component
is initially down andi = 1 when it is initially up. If we define the completed repairs,
in the processX1(t), to be the renewals we obtain an ordinary renewal process with
renewal periodsUi +Di for i = 1,2, . . . . This process is calledan alternating renewal
processand denoted byN1R(t) (initial state is one and it counts completed repairs). An
example of a realization of the processX1(t) is presented in Figure 2.1.

In order to define another renewal process related toXi(t) we need to assume that

Figure 2.1: Example realization of the processX1(t)

the variablesUi and Di are also independent for alli. This assumption, usually, is
not realistic (see also Section 4.3) however it is crucial inderiving equations for the
availability functions. Now if we define the moments the failures occur, in the process
X1(t), to be the renewal moments we obtain a delayed renewal process with renewal
periodsUi +Di−1 for i = 2,3, . . . and first renewal equal toU1. This renewal process is
denoted byN1F (initial state is one and it counts failures). In a similar way we define
the processes in case when the initial state is 0, see also Figure 2.3. LetN0R(t) denote
the counting process associated to completed repairs in theprocessX0(t), and also let
N0F(t) denote the process that counts failures in the processX0(t).

Figure 2.2: Example realization of the processX0(t)

Definition 2.3.1. The point availability or time dependent availabilityat timet of a
component is defined as the probability that the component isfunctioning at timet

Ai(t) = P(Xi(t) = 1) = E[Xi(t)], i = 0,1 (2.25)

The existence of this limit follows from an application of the Basic Renewal The-
orem 2.2.2 toAi, assuming that all functionsH(t) (see Table 2.4) are directly Riemann
integrable. Other availability measures:

11



2.3 Availability Functions Description of the problem

• The limiting availability or steady-state availability Aof the component is de-
fined by

A = lim
t→∞

Ai(t), i = 0,1 (2.26)

• The average availabilityor interval availability of the component in the time
interval(t1, t2) is defined by

Ai
av(t1, t2) =

1
t2− t1

Z t2

t1
Ai(t)dt (2.27)

It can be interpreted as the expected fraction of a given interval of time that the
component will be able to operate.

• The interval reliability or mission reliabilityis defined as the probability that at
specified time timet, the component is operating and will continue to operate
for an interval of durationx:

Ri(t,x) = P(Xi(u) = 1, t ≤ u≤ t +x)

(Note that in case of an ordinary renewal process this quantity corresponds to
P(γ(t) > x)), whereγ(t) is the remaining lifetime of the item operating at time
t. For a clear explanation of the variableγ(t) see [26].)

• The joint availability, see [6], is the probability that the component is function-
ing at timest1 andt2

Ai(t1, t2) = P(Xi(t1) = 1,Xi(t2) = 1)

• The joint interval availability, see [6], is the probability that the component is
functioning in the intervals[t1, t1 +x1] and[t2, t2 +x2]

Ri(t1,x1, t2,x2) = P(Xi(u) = 1, t1 ≤ u≤ t1 +x1,Xi(z) = 1, t2 ≤ z≤ t2 +x2)

The latter two quantities can be expressed in terms of two availability functionsA1(t),
A0(t) andR(t,x). The interval reliabilityR(t,x) may be found by solving an integral
equation of renewal type. Due to the fact that the point availability functions occur
directly or indirectly in all quantities mentioned above (except the interval reliability)
they are the most relevant in availability studies.
However complete analysis of the availability requires also two additional functions.

2.3.1 The reason for four different availability functions

From the practical point of view it is important to predict the component’s future per-
formance based on its present condition. Let us consider an example.

Example 2.3.2.Suppose that in a plant there are four identical and independent com-
ponents that had been put into operation two months ago. Within this time there were
repeated cycles of failures and repairs of each component. At this moment in time the
components are in the following conditions:

12



Description of the problem 2.3 Availability Functions

Case 1: Repair of the first component has just finished

Case 2: Second component has just failed

Case 3: Third component is up and running for last x hours

Case 4: Fourth component is in repair for last y days

The situation is presented in Figure 2.3. Obviously, the fact that the components

Figure 2.3: States of the components from Example 2.3.2. Components are labeled
starting from the top. Crosses denote the time of the last event.

started functioning at the same tame does not have any influence on the prediction
because each repair/replacement brings the component to the state as good as new.
The only important information is that when the last event (failure or completed re-
pair) occurred.
We are interested in the availability functions for all 4 components.

Note that the cases presented in the example are complete anddescribe any pos-
sible situation that may occur. The reader immediately realizes that Cases 1 and 2
correspond to the processesX1(t) andX0(t) respectively defined above. Therefore the
future performance of the components one and two may be measured by the availabil-
ity functions A1(t) andA0(t). Cases 3 and 4 are delayed versions of cases 1 and 2
and will be considered in details in separate sections wherewe derive equations for
delayed equivalents ofA1(t) andA0(t).
Nevertheless it is clear that four availability functions associated with the cases from
Example 2.3.2 will cover all possible situations that may occur in practice. In most of
the situations the modeling is done starting at any timet and very often it is not the
time of the event therefore the delayed availability functions are very important.

2.3.2 The functionA1

Recall that the availability functionA1 is defined as

A1(t) = P(X1(t) = 1).

13



2.3 Availability Functions Description of the problem

The processesN1R(t) andN1F(t) count the number of completed repairs and number
of failures respectively. LetM1R(t) and M1F(t) be the renewal functions of those
processes, i.e.

M1R(t) = E[N1R(t)] andM1F(t) = E[N1F(t)] (2.28)

Note that the number of repairs equals the number of failureswhen the component
is functioning, see Figure 2.1. On the other hand when the component is down the
number of failures equals the number of repairs plus one. Thus

X1(t) = 1 ⇐⇒ N1R(t) = N1F(t)

X1(t) = 0 ⇐⇒ N1R(t)+1 = N1F(t)

Using above equivalences we can easily derive the relation between the renewal func-
tions and the availability function. Namely

M1F(t)−M1R(t) = E[N1F(t)−N1R(t)]

= E[N1F(t)−N1R(t)|X1(t) = 1]P(X1(t) = 1)

+E[N1F(t)−N1R(t)|X1(t) = 0]P(X1(t) = 0)

= 1−P(X1(t) = 1)

Therefore
A1(t) = M1R(t)−M1F(t)+1 (2.29)

Now we present how to obtain an integral equation forA1. FunctionM1R(t) corre-
sponds to the ordinary renewal processN1R that has renewals defined to be the sum
Ui + Di for i = 1,2, . . . . Thus the underlying distribution of this process is the convo-
lution of FU andFD (see Definition 2.1.6)

FU+D(t) = FU ⊛FD(t)

From (2.8) it follows thatM1R(t) satisfies the following integral equation

M1R(t) = FU+D(t)+
Z t

0
M1R(t −x)dFU+D(x) (2.30)

On the other hand functionM1F(t) corresponds to the delayed renewal processN1F

that has renewals defined to be the sumUi + Di−1 for i = 2,3, . . . with first renewal
equal toU1. Since the variablesUi and Di−1 for i = 2,3, . . . are independent with
distributionsFU andFD respectively the underlying distribution of the process isthe
convolution ofFU andFD and is the same as in previous case. The distribution of the
first arrival is just the distribution the of up-timeFU .
From (2.20) it follows thatM1F(t) satisfies the following integral equation

M1F(t) = FU(t)+

Z t

0
M1F(t −x)dFU+D(x) (2.31)

Subtracting (2.31) from (2.30) gives

M1R(t)−M1F(t) = FU+D(t)−FU(t)+
Z t

0
(M1R(t −x)−M1R(t −x))dFU+D(x)

14
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or equivalently

A1(t) = 1+FU+D(t)−FU(t)+

Z t

0
(A1(t −x)+1)dFU+D(x).

Therefore

A1(t) = 1−FU(t)+
Z t

0
A1(t −x)dFU+D(x) (2.32)

As a result of Theorem 2.2.2 the solution of (2.32) is

A1(t) = 1−FU(t)+
Z t

0
(1−FU(t −x))dM1R(x). (2.33)

The functionA1 can also be expressed in terms of Laplace transform. It is straight-
forward to show by taking Laplace transforms on both sides of(2.32) and solving for
A∗

1(s) that

A∗
1(s) =

1− f ∗U(s)
s(1− f ∗U+D(s))

(2.34)

2.3.3 The functionA0

The derivation of equations for the functionA0 is almost exactly the same as in case of
A1. Recall that availability functionA0 is defined as

A0(t) = P(X0(t) = 1)

The processesN0R(t) andN0F(t) count the number of completed repairs and number
of failures respectively. LetM0R(t) and M0F(t) be the renewal functions of those
processes, i.e.

M0R(t) = E[N0R(t)] andM0F(t) = E[N0F(t)] (2.35)

Note that the number of repairs equals the number of failureswhen the component
is down, see Figure 2.3. On the other hand when the component is functioning the
number of repairs equals the number of failures plus one. Thus

X0(t) = 0 ⇐⇒ N0R(t) = N0F(t)

X0(t) = 1 ⇐⇒ N0R(t) = N0F(t)+1

Using above equivalences it is easy to derive the relation between the renewal functions
and the availability function. Namely

M0R(t)−M0F(t) = E[N0R(t)−N0F(t)]

= E[N0R(t)−N0F(t)|X0(t) = 1]P(X0(t) = 1)

+E[N0R(t)−N0F(t)|X0(t) = 0]P(X0(t) = 0)

= P(X0(t) = 1)
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2.3 Availability Functions Description of the problem

Therefore
A0(t) = M0R(t)−M0F(t) (2.36)

Similarly as in previous case we present how to obtain an integral equation forA0.
FunctionM0F(t) corresponds to the ordinary renewal process (N0R) that has renewals
defined to be the sumDi +Ui for i = 1,2, . . . . Thus the underlying distribution of this
process is the convolution ofFD andFU (see Definition 2.1.6)

FU+D(t) = FU ⊛FD(t)

Since the renewal process is completely determined by the distribution of the inter-
arrivals it follows that

N0F(t)
d
=N1R(t)

Therefore
M0F(t) = M1R(t)

However for completeness we also write an integral equationfor M0F(t)

M0F(t) = FU+D(t)+

Z t

0
M0F(t −x)dFU+D(x) (2.37)

On the other hand functionM0R(t) corresponds to the delayed renewal processN0R that
has renewals defined to be the sumUi−1+Di for i = 2,3, . . . with first renewal equal to
D1. Since the variablesUi−1 andDi for i = 2,3, . . . are independent with distributions
FU andFD respectively the underlying distribution of the process isthe convolution of
FU andFD and is the same as in previous case. The distribution of the first arrival is
just the distribution of the down-timeFD.
From (2.20) it follows thatM0R(t) satisfies the following integral equation

M0R(t) = FD(t)+

Z t

0
M0R(t −x)dFU+D(x) (2.38)

Subtracting (2.37) from (2.38) gives

M0R(t)−M0F(t) = FD(t)−FU+D(t)+

Z t

0
(M0R(t −x)−M0F(t −x))dFU+D(x)

Therefore

A0(t) = FD(t)−FU+D(t)+

Z t

0
A0(t −x)dFU+D(x) (2.39)

As a result of Theorem 2.2.2 the solution of (2.39) is

A0(t) = FD(t)−FU+D(t)+

Z t

0
(FD(t −x)−FU+D(t −x))dM0F(x) (2.40)

The functionA0 can also be expressed in terms of Laplace transform. It is straightfor-
ward to show that by taking Laplace transforms on both sides of (2.39) and solving for
A∗

0(s) gives

A∗
0(s) =

f ∗D(s)− f ∗U+D(s)

s(1− f ∗U+D(s))
(2.41)
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To model the availability when the component is not new (see Case 3 in Example
2.3.2) or when the repair is in progress (see Case 4 in Example2.3.2) we need to de-
fine new state variables. If the component has been functioning forx time units then its
remaining lifetime has a different distribution than the lifetime of a new component of
the same type. For the exponential case it will make no difference since this distribu-
tion possesses so calledmemoryless property. However in general, the distribution of
the remaining lifetime is a conditional distribution. Similarly with the repair time. It
is not the purpose now to specify this distribution, but it isimportant to emphasize that
the distribution of the time to the first event may differ fromthe distributions of next
up and down events. Therefore it is convenient to call these cases delayed versions of
cases 1 and 2 from Example 2.3.2. We introduce the following notation.
The cases when the component is initially up and initially down are considered sepa-
rately.
The system is initially up. LetR,U2,U3, . . . be the sequence of independent up-times.
Similarly as before assume that variablesU2,U3, . . . are identically distributed with
common distribution functionFU(t) = P(Ui ≤ t). Let FR(t) denote the cumulative dis-
tribution function of the first up timeR. The sequence of down timesD1,D2,D3, . . .
remains unchanged. LetXD

1 (t) denote the state of the component at timet (an example
of a realization of the processXD

1 (t) is presented in Figure 2.4).

Figure 2.4: Example realization of the processXD
1 (t)

The system is initially down. LetS,D2,D3, . . . be the sequence of independent
down-times. Similarly as before assume that variablesD2,D3, . . . are identically dis-
tributed with common distribution functionFD(t) = P(Di ≤ t). Let FS(t) denote the
cumulative distribution function of the first down timeS. The sequence of up times
U1,U2,U3, . . . remains unchanged. LetXD

0 (t) denote the state of the component at time
t (an example of a realization of the processXD

0 (t) is presented in Figure 2.5).

Figure 2.5: Example realization of the processXD
0 (t)
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2.3 Availability Functions Description of the problem

2.3.4 The functionAD
1

Let AD
1 be the availability function related to the processXD

1 (t), namely

AD
1 (t) = P(XD

1 (t) = 1)

In a similar manner as in previous sections we define an associated processes. Let
ND

1R(t) be the renewal process that counts completed repairs in processXD
1 (t) and sim-

ilarly let ND
1F(t) be the renewal process that counts failures. The renewal functions of

these processes are denoted as

MD
1R(t) = E[ND

1R(t)] andMD
1F(t) = E[ND

1F(t)] (2.42)

Since the renewal processesND
1R(t) andND

1F(t) are equivalent respectively toN1R(t)
andN1F(t) (they count the same events) one can use the same reasoning asin Section
2.4 to derive the relation between the availability function and the renewal functions.
Therefore

AD
1 (t) = MD

1R(t)−MD
1F(t)+1 (2.43)

Since the distribution of the first lifetime is different from any other distribution in the
model both processesND

1R(t) andND
1F(t) are delayed (see also Figure 2.4). The first

distribution of the processND
1R(t) is the convolution ofFR andFD. Next renewals are

formed by the sequenceUi + Di, i = 1,2, . . . . Thus the underlying distribution of this
process is the convolution ofFU andFD. In the same manner we obtain that the first
renewal in the processND

1F(t) has the distributionFR and the underlying distribution is
also the convolution ofFU andFD.
Now we present how to obtain the integral equation forAD

1 . Since both renewal func-
tions correspond to the delayed renewal processes from (2.20) it follows that:

MD
1R(t) = FR+D(t)+

Z t

0
MD

1R(t −x)dFU+D(x) (2.44)

and

MD
1F(t) = FR(t)+

Z t

0
MD

1F(t −x)dFU+D(x) (2.45)

Subtracting (2.44) from (2.45) we obtain that the availability function AD
1 (t) satisfies

the following integral equation

AD
1 (t) = 1−FR(t)+FR+D(t)−FU+D(t)+

Z t

0
AD

1 (t −x)dFU+D(x) (2.46)

Note that if the first up-time has the same distribution as thenext ones , i.e.FR(t) =
FT(t), then equation (2.46) reduces to the equation (2.32) for theavailability function
A1.
FunctionAD

1 can also be expressed in terms of Laplace transforms. It is straightforward
to show that by taking Laplace transforms on both sides of (2.46) and solving for
AD

1
∗
(s) that

AD
1
∗
(s) =

1− f ∗R(s)+ f ∗R+D(s)− f ∗U+D(s)

s(1− f ∗U+D(s))
(2.47)
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2.3.5 The functionAD
0

Let AD
0 denote the availability function of the processXD

0 (t)

AD
0 (t) = P(XD

0 (t) = 1).

Similarly as in previous sections we define the renewal process that counts the number
of completed repairs and number of failures. LetND

0R(t) be the renewal process that
counts completed repairs in processXD

0 (t) and similarly letND
0F(t) be the renewal

process that counts failures. The renewal functions of these processes are denoted as

MD
0R(t) = E[ND

0R(t)] andMD
0F(t) = E[ND

0F(t)] (2.48)

Since the renewal processesND
0R(t) andND

0F(t) are equivalent respectively toN0R(t)
andN0F(t) (they count the same events) one can use the same reasoning asin Section
2.3.3 to derive the relation between the availability function and the renewal functions.
Therefore

AD
0 (t) = MD

0R(t)−MD
0F(t) (2.49)

Since the distribution of the first downtime is different than any other distribution in
the model both processesND

0R(t) andND
0F(t) are delayed (see also Figure 2.5). The first

distribution of the processND
0F(t) is the convolution ofFS andFU . Next renewals are

formed by the sequenceDi +Ui, i = 1,2, . . . . Thus the underlying distribution of this
process is the convolution ofFU andFD. In the same manner we obtain that the first
renewal in the processND

0R(t) has the distributionFS and the underlying distribution is
also the convolution ofFU andFD.
Now we present how to obtain the integral equation forAD

0 . Since both renewal func-
tions correspond to the delayed renewal processes from (2.20) it follows that:

MD
0R(t) = FS(t)+

Z t

0
MD

0R(t −x)dFU+D(x) (2.50)

and

MD
0F(t) = FS+U(t)+

Z t

0
MD

0F(t −x)dFU+D(x) (2.51)

Subtracting (2.50) from (2.52) we obtain that the availability function AD
0 (t) satisfies

the following integral equation

AD
0 (t) = FS(t)−FS+U(t)+

Z t

0
AD

0 (t −x)dFU+D(x) (2.52)

Note that if the first down-time has the same distribution as the next ones , i.e.FS(t) =
FD(t), then equation (2.52) reduces to equation (2.39) for the availability function A0.
FunctionAD

1 can also be expressed in terms of Laplace transforms. It is straightforward
to show that by taking Laplace transforms on both sides of (2.32) and solving for
AD

0
∗
(s) gives

AD
0
∗
(s) =

f ∗S(s)− f ∗S+U(s)

s(1− f ∗U+D(s))
(2.53)
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2.3.6 Planned Maintenance with variable duration – function APM

This section presents an additional application of the function AD
0 that is related to

planned maintenance. Let us assume that there is a planned maintenance scheduled
at fixed timetPM in the future. The choice oftPM is determined based on the main-
tenance strategy (for instance block replacement, age replacement, condition-based
maintenance etc.) and it is not of our interest. For the overview of the maintenance
strategies and optimal choice oftPM (maintenance optimization) we refer to[?]. Usu-
ally planned maintenance actions have constant duration, however there are some sit-
uations in which the time to complete the maintenance is not known upfront and has
to be modeled by a random variable, sayS. Additionally assume that the maintenance
is carried out regardless of the state of a component at timetPM (it can be up or down).
After the maintenance is completed a component is subject again to its own rhythm
of lifetimes (Ui) and repair times (Di). It should be emphasized that the distribution
of the planned maintenanceS may be different from the distribution of usual repair
time Ri. This situation corresponds to the processXD

0 (t) introduced above: it starts
from down and the time to the first event has a different distribution than the other
events. Therefore the renewal and availability functions presented in Section 2.3.5 can
be used directly. To distinguish those two cases we denote the availability function for
the planned maintenance byAPM(t). (The difference lies only in the interpretation of
the first down time. If it represents the remaining repair time, then it corresponds to
the functionAD

0 , and if it represents planned maintenance then it corresponds toAPM,
but from the mathematical point of view both functions satisfy the same equations,as
introduced in Section 2.3.5).

2.3.7 Steady state availability

Similarly as in case of the renewal functions the asymptoticbehavior of the availability
functions is known. The following theorem presents the asymptotic behavior of the the
general solution to the renewal integral equation.

Theorem 2.3.3. (The Basic Renewal Theorem). Let F be the distribution function of
a positive random variable with finite mean µ. Suppose that H is directly Riemann
integrable and that r is the solution of the renewal equation

r(t) = H(t)+

Z t

0
r(t −x)dF(x)

Then

lim
t→∞

r(t) =
1
µ

Z ∞

0
H(x)dx

Thesteady state availabilityor limiting availability is defined as a the asymptotic
value for an availability function. It can be show that, steady the state availability is
the same for all four availability functions and is equal to

A = lim
t→∞

Ai(t) = lim
t→∞

AD
i (t) =

E[U1]

E[U1]+E[D1]
, i = 1,2 (2.54)

This follows from the fact that the initial distribution of the renewal process does not
have influence on its asymptotic behavior.
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2.4 Analytical solution for the exponential case

Let FU(t) = 1−e−λt andFD(t) = 1−e−µt be the distributions of up-times and down-
times respectively. We use technique of Laplace transformsto obtain all renewal and
availability functions for the exponential case. For properties of Laplace transforms see
Appendix B. For the exponential case it is straightforward to show that the Laplace
transforms of the densities ofU andD are

f ∗U(t) =
λ

λ+s
and f ∗D(t) =

µ
µ+s

1. Function A1

Based on equations (2.22) and (2.30) the Laplace transform of M1R is

M∗
1R(s) =

f ∗U(t) · f ∗D(t)
s(1− f ∗U(t) · f ∗D(t))

Substituting and simplifying we obtain

M∗
1R(s) =

λµ
(λ+µ+s)s2

Since above representation is a fraction of two polynomialsit can be easily in-
verted. We obtain

M1R(t) =
λµ

λ+µ

(

t − 1−e(λ+µ)t

λ+µ

)

(2.55)

Similarly for the functionM1F . Based on the equations (2.16) and (2.31) it is
straightforward algebra to show that

M∗
1F(s) =

f ∗U (t)
s(1− f ∗U(t) · f ∗D(t))

=
(µ+s)λ

(λ+µ+s)s2

Inverting gives

M1F(t) =
λµ

λ+µ
· t +

(

1−e(λ+µ)t
)

λ2

(λ+µ)2 (2.56)

Therefore it follows from the relation (2.29) between the renewal functions and
the availability function that

A1(t) =
µ

λ+µ
+

λ
λ+µ

·e−(λ+µ)t (2.57)

2. Function A0

We proceed exactly in the same manner as in the case above. TheLaplace
transform ofM0R is

M∗
0R(s) =

f ∗D(t)
s(1− f ∗U(t) · f ∗D(t))

=
(λ+s)µ

(λ+µ+s)s2
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2.4 Analytical solution for the exponential case Description of the problem

Inverting gives

M∗
0R(s) =

λµ
λ+µ

· t +
(

1−e(λ+µ)t
)

µ2

(λ+µ)2 (2.58)

As it was remarked in Section 2.3.3M0F(t) = M1R(t) therefore based on relation
(2.36) the availability function for the exponential case is

A0(t) =
µ

λ+µ
− µ

λ+µ
·e−(λ+µ)t (2.59)

3. Function AD
1

If we assume that the component has the exponential lifetimethen the distri-
bution of the remaining lifetime (given that the component is functioning forx
time units) is again exponentially distributed with the same parameterλ (due
to the memoryless property). Therefore the formulas for thefunction A1 apply
directly. However, we could consider a case when the distribution of the first
life time is exponential but with different parameter, sayζ. But since the case
with the distribution that does not represent remaining lifetime does not have
any practical application we omit it.

4. Function AD
0 (APM)

Similarly as in case ofAD
1 if the downtimes are exponentially distributed the

remaining repair time has again exponential distribution with the same param-
eter and formulas forA0 apply directly. To the contrary with previous situation
there is an application of the case when the first down-time has exponential dis-
tribution but with a different parameter. As the example letus take planned
maintenance which duration is exponentially distributed with FS(t) = 1−e−ηt ,
see also Section 2.3.6. We proceed in the same manner as in previous cases (with
slightly more complicated inversion of the transforms). Since f ∗S(t) = η/(η+s)
the Laplace transform ofMD

0R is

MD
0R

∗
(s) =

f ∗S(t)
s(1− f ∗U(t) · f ∗D(t))

=
η (λ+s)(µ+s)

(η+s)s2 (λ+µ+s)

Inverting gives

MD
0R(t) =

1

(−η+ λ+µ)η (λ+µ)2

[

3λµ2η+e−ηt (µ−η)(λ−η)(λ+µ)2

+ µ3 (−λ+ η+ η tλ)−µ
(

µ+ λ
(

1+ tµ+e−(λ+µ)t
))

η2

+ (−µ+ η+µtη)λ2(λ+2µ−η)
]

(2.60)

Similarly for MD
0F the Laplace transform is

MD
0F

∗
(s) =

f ∗S(t) f ∗U(t)
s(1− f ∗U(t) · f ∗D(t))

=
(µ+s)λη

(λ+µ+s)s2 (η+s)

After inverting we obtain
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Renewal functions Availability functions
H(t) r(t) H(t) r(t)

FU+D(t) M1R(t) 1−FU(t) A1(t)
FU(t) M1F(t)

FU+D(t) M0F(t) FD(t)−FU+D(t) A0(t)
FD(t) M0R(t)

FR+D(t) MD
1R(t) 1−FR(t)+FR+D(t)−FU+D(t) AD

1 (t)
FR(t) MD

1F(t)
FS+U(t) MD

0F(t) FS(t)−FS+U(t) AD
0 (t)

FS(t) MD
0R(t)

Table 2.1: Combination of possible cases for the renewal andavailability functions

MD
0F(t) =

λ2

(λ+µ)2 +
λ

η (λ+µ)2(−η+ λ+µ)

[

µ2η+e−ηt (λ+µ)2 (µ−η)

+
(

−tµ2 +
(

e−(λ+µ)t − tµ
)

λ
)

η2

+ µ
(

λ (2µtη−2µ+ η)+ (η t −1)
(

µ2 + λ2))] (2.61)

Therefore, based on relation (2.49), the availability function AD
0 or betterAPM

for the exponential case is

APM(t)=−−λe−ηtη+e−ηtλµ+ ληe−(λ+µ)t −λµ−e−ηtµη+µη−µ2+e−ηtµ2

(−η+ λ+µ)(λ+µ)
(2.62)

Note that all three functions converge to the same limit

lim
t→∞

A1(t) = lim
t→∞

A0(t) = lim
t→∞

APM(t) =
µ

µ+ λ

as it is expected.
The equations for all renewal and availability functions introduced in this chapter

can be written in general as the following integral equation

r(t) = H(t)+
Z t

0
r(t −x)dFU+D(x) (2.63)

where the functionr is unknown andFU+D, H are given (in most of the casesFU+D

has to be approximated). The specific choices ofH for the renewal and availability
functions are gathered in Table 2.4. Equation (2.63) is called an integral equation of
renewal type.
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Chapter 3

Overview of concepts and methods

In previous chapter we have introduced four different availability functions and related
renewal functions. The exact analytical solution for thosefunctions may be found only
in very simple cases, see for instance exponential case in Section 2.4. Therefore the
availability and renewal functions have to approximated byusing numerical methods.
In this chapter we present the review of the literature that deals with this problem. Al-
though the number of publications that deal with approximation of the renewal func-
tions is rather large there are only few methods that deal with the availability function
directly. As it was shown in Chapter 2 all availability functions may be founds via re-
newal functions therefore the methods for renewal functions are also important. There
are two possibilities to find availability function from renewal functions:1:

A1(t) = M1R(t)−M1F(t)+1 (3.1)

A1(t) = 1−FU(t)+
Z t

0
(1−FU(t −x))dM1R(x) (3.2)

The drawback of the first approach is that it requires double effort for computing two
renewal functions. The second method is even less efficient while taking into consid-
eration the fact that for each timet, one has to integrate overM1R. For instance let
us say thatA1 is required atN grid points, then using (3.1) one needs to compute two
renewal functions in total on 2N points. Using (3.2) it is even worse and it requires
kN points, for some largek. Due to these issues we decide to classify the available
methods on those that can compute availability functions and those that can compute
renewal functions. The advantage of using the method for availability is that they can
also be used for renewal function, opposite relation is not always possible. Therefore
based on the available literature review we classify the methods as follows:

• Availability function

– Direct solution of the renewal equation

1This also applies to the other availability functions.
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3.1 The requirements Overview of concepts and methods

– Laplace transforms

– Spline approximation

– Bounds

• Renewal function

– All methods for computing availability function

– Series expansion

– Approximations

It is not possible to analyze and compare carefully all methods. Before approaching
the stage of description and selection of the methods, the requirements that will help
in making the decision should be specified.

3.1 The requirements

In this section we present the requirements that are used forselecting the method(s)
for computing the availability and renewal functions. Different approaches lead to
various difficulties and it is sometimes not possible to select the method that is capable
to deal with all possible situations. To exemplify the method of [42] proposed to
compute renewal function for Weibull case is quite fast but inappropriate for larger
arguments, on the other hand approach suggested by [22] is simple but it requiresnth

derivative of the distributions. Other problems that may arise are: the error estimation,
difficulties with different ranges of parameters or complexity of the algorithm and its
implementation. For the propose of this project we decide tochoose the following
requirements based on which the selection is made:

1. Realistic values of the parameters. In practice we are interested in components
that have a good reliability. So either their time to failureis long or their repair
time is short (and preferably both). For instance sub-sea equipment is designed
to operate without a failure for few decades, but if a seriousproblem occurs
a repair time lasts for few months. On the other hand a pump in aplant may
trip a few times per year, but recovery is a matter of hours. Inthe context of
applicability to oil & gas equipment we are interested in components for which

MTTF∈ [0.1,100] years andMTTR∈ [1,4000] hours (3.3)

under the constraint:

A =
MTTF

MTTF+MTTR
∈ [0.95,1] (3.4)

WhereA is the limiting availability defined in Chapter 2. Obviouslythe higher
the availability the more valuable the component, hence very oftenA is close to
one. The method should work for as many choices of the parameters as possible.

2. Distributions of interest. In principle any distribution defined for non-negative
values can represent life time or repair time. It is hardly probable to find a
method that works well for all distributions, and this is notrequired. But it is
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Overview of concepts and methods 3.2 Selection of the methods

required to find a method that can take as an input a generic distribution and be
able to produce some results. The proper choice of the distributions is not easy
and it is behind the scope of this report. However a particular emphasis is put on
the following realistic distributions:

a) Life time: Weibull distribution with constraint on the shape parameterβ ∈
[0,32].

b) Repair time: exponential distribution, constant, Lognormal distribution

For description and characteristics of those distributions see Appendix A.

3. It is significant to have one method that can compute both renewal and availabil-
ity functions.

4. Accuracy. This is the key factor and at the same time the most difficult to asses.
We require the method to give reasonable results and also it is valuable to have
some error estimate. However it is sometimes better to have amethod that gives
more accurate results and poor error estimation than to havea method that gives
poor approximation and good error estimate.

5. Speed. We require the method to be reasonably fast. Practical use of the avail-
ability models requires above 100 components (sometimes even 2000). There-
fore the speed of calculations for one failure mode is a very important factor. If
the computations for one component are slow but acceptable it may appear that
the waiting time for the calculations of the whole system of components is not
acceptable.

6. The method should work without predefined end point. This requirement is
related to the numerical steady-state detection see Section 3.7.3

7. The last but also very important requirement is that the method should be robust
on the choices of parameters and relatively simple in implementation.

Next section presents an overview of the available approaches and discusses the most
suitable methods for the problem.

3.2 Selection of the methods

3.2.1 Laplace transforms

Laplace transforms are a valuable tool in theoretical studyof renewal processes and
several algorithms are available for their inversion, (see[1] for an overview). As it was
shown in the previous chapter all availability and renewal functions can be expressed
in terms of Laplace transforms of up and down time densities.The Laplace transform
of Weibull density is expressed in terms of alternating series that converges slowly, for
lognormal distribution no analytical expression exists. Therefore a numerical inver-
sion without analytical expressions seem to be difficult. Assuggested by [44] one can
approximate the density by some polynomial for which the Laplace transform is ana-
lytically tractable and then use an algorithm for numericalinversion. Albeit the choice
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3.2 Selection of the methods Overview of concepts and methods

of the polynomial for the distributions of our interest is slightly difficult. There is
also a positive aspect when using Laplace transforms that isvaluable for the discussed
problem. Recall that repair time usually is much shorter than lifetime. This leads to
big differences in densities of up and down time. Choudhury and Whitt [11] proposed
a very simple scaling procedure that allows to deal with comparable densities. For a
short and clear description of this method we refer to [44]. However, since analytical
expressions for the Laplace transforms are not easily accessible, this approach is not
continued.

3.2.2 Series expansion

Series expansion approaches were applied only for approximation to a renewal func-
tion and none of such methods was found for computing an availability function.
Most of the literature is focused on renewal process with Weibull distribution, see
[42, 27, 14]. In case of this study renewal distribution is usually a convolution of
Weibull distribution with some distribution for repair time therefore those methods do
not apply directly. However, in case when down time distribution is constant (thus
renewal distribution is a shifted Weibull) the distribution may be scaled so that it is
Weibull. This restricts the usage of series expansion methods for only one case. As
mentioned by [7] it is easy to note that those series are of little use for numerical
work especially with large values oft. This is due to the term with alternating sign.
However the series method of Smith and Leadbetter [42] is worth considering in more
detail since it converges quickly for 0< β < 1. If M(t) denote the renewal function
with underlying distribution Weibull(α,β) thenM(t) can be written as

M(t) =
∞

∑
k=1

(−1)k−1 ·Ak · (t/α)kβ

Γ(kβ+1)

where the constantsAk are determined by the following recursive formula

An = γn−
n−1

∑
j=1

γ jAn− j

The convergence is such that accurate numerical computation using the series is only
feasible fort < 2.5 for β < 4 and decreasing tot < 1.5 at β = 10. Whenβ = 0.5
then the convergence is rapid even fort < 100 and ifβ = 0.8 then reasonable time
decreases tot < 30. Another technique proposed by [22] is based on McLaurin series.
It is also not feasible since it requiresnth derivative of a renewal distribution. The
method proposed by Constantine and Robinson [14] also for Weibull renewal process
is simply to complex to employ in order to use it for only one case. It also has to be
stressed that in order to compute availability by using renewal functions all methods
proposed above have to be modified in order to be able to deal with delayed renewal
case. Those are the main reasons why the series expansion methods are not employed
later.

3.2.3 Spline approximation

Cubic spline approximation developed by McConalogue [13, 30] seems to be the first
numerical method for computing renewal functions. The algorithm computes convo-
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lution by integrating the spline representation of the distributions. The advantage of
this approach is that it can be used directly for computing availability function and also
other metrics like mission reliability. However, as mentioned by [22] this algorithm
is too computationally intensive for real-time computations and it is mainly used for
tabulating purposes, see [8]. Another spline approximation was proposed by Bilgenet
al [9]. However, it is only applicable for the Weibull renewal function and it is also
quite complicated. Modification for the delayed renewal process with shifted Weibull
distribution is not trivial.

3.2.4 Approximations

These methods are based on weakening of certain assumptionsregarding the model
what leads to easier calculations. The simplest approximation to the renewal and avail-
ability functions is in the form of linear asymptotic expansion (for details see Section
2.2.1). It is of course inadequate to use such approximations on the whole interval es-
pecially when the functions have highly oscillatory behavior. Unfortunately all other
methods focus on approximating a renewal function and not onan availability function.
This is obviously due to the fact that availability functions require higher accuracy. As
mentioned before the availability function may also be interpreted as a difference be-
tween two renewal functions. Those functions differ only bythe distribution of the
first renewal and therefore are very similar. Thus, the approach via renewal functions
also requires high accuracy. However, such methods may be applied for approximat-
ing only renewal functions if not too much accuracy is required. Examples of such
approaches may be found in [39], [25] (by approximating partial distribution); [16]
(Normal approximation to Weibull renewal process); [5] (anapproximate solution for
renewal density).

Based on the literature review none of the above methods mentioned above is com-
pletely suitable for the problem. Some methods may only be used for renewal func-
tions, other suffer from lack of accuracy or are too complicated to analyze. For more
detailed comparison we decide to choose two left approaches: bounds and direct solu-
tion of the integral equation. This choice seems to be the best for the purpose of this
research.

3.3 Bounds

3.3.1 Renewal function

A number of lower and upper bounds for a renewal function may be constructed. These
bounds often depend on the assumptions about the underlyingrenewal distribution and
may differ in shape and tightness. For example Marshall [29]presented ”the best” lin-
ear bounds for the renewal function in the ordinary renewal process as follows. If let
bL = inft≥0

F(t)−Fe(t)
1−F(t) andbU = supt≥0

F(t)−Fe(t)
1−F(t) , thenbL ≤ M(t)− t/µ≤ bU , whereµ is

the expected value related to the distributionF andFe(t) = 1
µ

R t
0(1−F(u))du is known

as the limiting excess life distribution. Other linear bounds were obtained by Lorden
[28].
Bartholomew [5] obtained the following upper boundF(t) + 1

µ

R t
0[F

2(u)/Fe(u)]du.
Other bounds may be found in e.g. [18, 24]. It has to be remarked that usually those
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bounds need modification for a delayed renewal function.
For the purpose of this project it is desired to have an approximation for the renewal
function not necessarily the bounds. However, if both upperand lower bounds are
available then one can take for instance the mid point between the bounds as the ap-
proximation for the renewal function. Namely

M(t) ≈ ML(t)+MU(t)
2

(3.5)

whereML andMU are such thatML(t) ≤ M(t) ≤ MU(t), i.e. lower and upper bound
for M. This approximation is appropriate only if the bounds are expected to be more
or less symmetric around the unknown renewal function. In fact one could take as an
approximation any point between the bounds and this would result in error

ε(t) =
MU(t)−ML(t)

2
(3.6)

However, due to its simplicity and lack of better alternative, the midpoint approxima-
tion is used the most often. It has to be remarked that the error estimation given in
(3.6) is not always useful. If the bounds are tight then the approximation (3.5) is good
and the estimated error (3.6) is small. It may also happen that bounds are wide but the
approximation taken as the midpoint between the bounds is good. And since there is
a big difference between the bounds the error estimation obtained from (3.6) will also
be large. This kind of situation will appear later in case of the availability function.
For the approximation ofML andMU we decide to use a simple recursive formulas
that were first proposed by Ayhanet al [3] and later a different derivation was given by
Mercier [31]. Both approaches give the same set of equationsfor the upper and lower
bound but there were derived in a completely different manner. It is interesting that the
paper of Ayhan was published earlier and Mercier does not include any comment on
Ayhan’s approach (it is not even in the references). Since both methods give the same
algorithms we focus more deeply on just only one of them – the method of Ayhan.
The method of Mercier may be briefly described as follows. Below we present the
description the method of
The idea is based on constructing discrete upper and lower random bounds for the re-
newal times. Those bounds form a discrete renewal processesand renewal functions
associated with those processes form the bounds on the continuous renewal process.
Next step is to construct the renewal functions associated with those discrete renewal
processes which will form the bound on the continuous renewal function.

Numerical approach: method of Ayhan
In their paper Ayhanet al are focused on computing bounds for a renewal function
and also provide bounds on the general solution to the integral equation of the form
(2.63). More details about the bounds on the solution of thisintegral equation will be
given in Section 3.3.2. The bounds on the renewal function are exactly the same as
those derived by Mercier. The derivation of the bounds is rather straightforward and
is based on the direct interpretation of the Riemann-Stieltjes integral. Let us recall
that the renewal function for a delayed renewal process satisfies the following integral
equation

MD(t) = G(t)+
Z t

0
MD(t −x)dF(x)
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whereG is the distribution of the first renewal time. Let us considerthe uniform
partition of the interval[0, t] 0 < h < 2h < · · · < nh= t. Then above equation may be
written as

MD(tm) = G(tm)+

Z tm

0
MD(tm−x)dF(x) = G(tm)+

m

∑
i=1

Z ti

ti−1

MD(tm−x)dF(x) (3.7)

wherem= 1, . . . ,n. SinceMD(t) is non-decreasing function and alsoF(t j) > F(t j−1)
for all j the integral in (3.7) may be bounded by

MD(tm− ti)[F(t j)−F(t j−1)]≤
Z ti

ti−1

MD(tm−x)dF(x)≤ MD(tm− ti−1)[F(t j)−F(t j−1)]

(3.8)
for all i = 1, . . . ,m. Therefore from (3.7) and (3.8) we obtain the lower bound for
MD(tm)

ML
D(tm) = G(tm)+

m

∑
i=1

ML
D(tm− ti)[F(t j)−F(t j−1)] (3.9)

and similarly the upper bound

MU
D(tm) = G(tm)+

m

∑
i=1

MU
D(tm− ti−1)[F(t j)−F(t j−1)] (3.10)

Note that right hand side in (3.9) does not depend onML
D(tm) thus this equations can

be easily solved recursively. Right hand side in (3.10) depends onMU
D(tm) wheni = 1.

Therefore

MU
D(tm) = G(tm)+

m

∑
i=2

MU
D(tm− ti−1)[F(t j)−F(t j−1)]+MU

D(tm)[F(t j)−F(t j−1)]

and solving forMU
D(tm) gives the following recursive formula

MU
D (tm) =

1
1− (F(t j)−F(t j−1))

[

G(tm)+
m

∑
i=2

MU
D (tm− ti−1)[F(t j)−F(t j−1)]

]

(3.11)
Where the initial condition for both bounds is assumed to beML

D(tm) = 0 = MU
D (tm).

Both authors Mercier and Ayhan suggest also matrix notationfor equations (3.9) and
(3.11) however we do not present it here since the recursive formulas seem quicker to
compute and they are less memory size consuming.

3.3.2 Availability function

The bounds for the availability function are not so widely studied in literature as in
case of the renewal function. Here we present two methods forcomputing the bounds
for the availability function. Both methods are based on thebounds on corresponding
renewal functions.
Method 1
This approach was suggested by Ayhan also in [3]. Unfortunately it is incorrect. It
can be shown by mean of examples that for some cases the boundson the availability
function given in [3] are crossing. Below we present the ideaand also corrected version
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of the bounds. For convenience we use the same notation as in [3]. It also has to be
commented that in the paper there is a small disagreement in the interpretation of the
renewal process at origin. Recall that all availability functions may be found by solving
the renewal type integral equation

k(t) = g(t)+
Z t

0
k(t −s)dF(s) (3.12)

whereg,F are known andk is unknown, see also Table 2.4. Ayhan claims that the
solution to (3.12) is given by

k(t) =
Z t

0
g(t −s)dM(s) (3.13)

whereM(t) = ∑∞
j=1F ( j)(t) andF( j)(t) is j– fold convolution ofF with itself. This is

statement is incorrect. Take for instanceF(t) = g(t) = 1−eλt thenk(t) = M(t). It can
easily be shown that

M(t) =
∞

∑
j=1

F( j)(t) = λt

This situation corresponds to the renewal function in Poisson process see e.g. [24].
However from (3.13) one obtains

k(t) =
Z t

0
(1−e−λ(t−s))λds= λt +1 (3.14)

This disagreement comes from the interpretation of the renewal process at origin. The
statement (3.13) is true if and only if

M(t) = 1+
∞

∑
j=1

F( j)(t)

what corresponds to the situation when the first renewal is always att = 0. The authors
of [3] continue their notation using contradictory assumptions that (3.13) is true and
M(0) = 0. We will keep the convention thatM(0) = 0 and the solution to (3.12) is
given by

k(t) = g(t)+
Z t

0
g(t −s)dM(s) (3.15)

(see also Theorem 2.2.2).
The bounds onk may be obtained in the following manner. Using the same partition
of the interval the above equation may be written as

k(tm) = g(tm)+
m

∑
j=1

Z t j

t j−1

g(tm−s)dM(s) (3.16)

Let ML andMU be the lower and upper bounds forM and then the integral in (3.16)
can be bounded by

Z t j

t j−1

g(tm−s)dM(s) ≤ max
t j−1≤s≤t j

{

g(tm−s)[M(t j)−M(t j−1)]
}

(3.17)
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and
Z t j

t j−1

g(tm−s)dM(s) ≥ min
t j−1≤s≤t j

{

g(tm−s)[M(t j)−M(t j−1)]
}

(3.18)

Of courseM is unknown and the bounds for it have to be used instead. The authors in
[3] suggested to use the following lower bound

min
t j−1≤s≤t j

{

g(tm−s)[ML(t j)−ML(t j−1)]
}

≤ min
t j−1≤s≤t j

{

g(tm−s)[M(t j)−M(t j−1)]
}

Which is based on their Proposition 3 in which their prove that

ML(t j)−ML(t j−1) ≤ M(t j)−M(t j−1) (3.19)

Upper bound is constructed in similar way. It is not that difficult to find an example
for which (3.19) does not hold. Let us consider Gamma renewalprocess (this pro-
cess is introduced in Section 3.5.1) for which analytical expressions forM is known.
This process gives a flexibility to model either oscillatingand non-oscillating renewal
functions. It appears that inequality (3.19) holds only when the oscillations are small
(such examples, only with small oscillations, were presented in [3]). In Figure 3.1 we
present renewal functions for two cases with oscillatory and non-oscillatory behavior.
The renewal functionM was obtained from an explicit formula given later in Section
3.5.1, bounds were calculated using the recursive formulas(3.9) and (3.11). From this
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Figure 3.1: Bound on the renewal function for Gamma renewal process and corre-
sponding increments of the bounds. Number of grid points used N = 100 for both
cases.
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Figure it may be observed that both bounds are coherent with the analytical solution.
Plots on the right hand side present the increments for both bounds and also for the
renewal function. In case when the oscillations are small the increments of the bounds
bound the increment of the renewal function. When the oscillations become bigger
then this is not true. Since in such cases relation (3.19) does not hold the bounds onk
given in [3] will also be crossing.
To fix this problem we propose the following. SinceML(t) andMU(t) form bounds on
M(t) for every j = 1,2, . . . it holds

ML(t j)−MU(t j−1) ≤ M(t j)−M(t j−1) ≤ MU(t j)−ML(t j−1) (3.20)

Therefore the integral in (3.16) may be bounded by

Z t j

t j−1

g(tm−s)dM(s) ≤ max
t j−1≤s≤t j

{

g(tm−s)[MU(t j)−ML(t j−1)]
}

(3.21)

and
Z t j

t j−1

g(tm−s)dM(s) ≥ min
t j−1≤s≤t j

{

g(tm−s)[ML(t j)−MU(t j−1)]
}

(3.22)

Note that sinceM is non-decreasing the upper bound is bigger than the lower bound
for all (different) arguments, henceMU(t j)−ML(t j−1)≥ 0. Therefore the upper bound
on the functionk is

k(tm) ≤ g(tm)+
m

∑
j=1

max
t j−1≤s≤t j

{g(tm−s)} [MU(t j)−ML(t j−1)] (3.23)

This bound may be easily computed if the functiong(t) is monotone. Ifg(t) is in-
creasing then maxt j−1≤s≤t j {g(tm−s)} = g(tm− t j−1) and if g(t) is decreasing then
maxt j−1≤s≤t j {g(tm−s)} = g(tm− t j). From (3.22) and (3.16) it follows that the lower
bound onk is

k(tm) ≥ g(tm)+
m

∑
j=1

min
t j−1≤s≤t j

{

g(tm−s)[ML(t j)−MU(t j−1)]
}

(3.24)

This bound may also be computed very easily wheng(t) is monotone however one
have to be careful about the sign ofML(t j)− MU(t j−1). Therefore for the above
minimum one should takeg(tm− t j) if g(t) is increasing (decreasing) andML(t j)−
MU(t j−1) > 0 (ML(t j)−MU(t j−1) < 0). And g(tm− t j−1) if g(t) is increasing (de-
creasing) andML(t j)−MU(t j−1) < 0 (ML(t j)−MU(t j−1) > 0).
In the example below we check the behavior of these bounds in case of the availability
functionA1.

Example 3.3.1.Let up times Ui be distributed according to Weibull distribution with
parametersα and β and let the down-times Di be constant. Then the distribution
FU+D is a shifted Weibull distribution and is given by (3.56). We are interested in the
availability function A1(t) for different parameters. This corresponds to k(t) = A1(t),
F(t) = FU+D and g(t) = 1− FU(t). Figure 3.2 presents the bounds obtained from
formulas (3.23) and (3.24) and also the approximation takenas the mid point between
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Figure 3.2: Behavior of the bounds on the availability function A1 for Weibull-Constant
case.

bounds. The first observation from the plot 3.2(a) is that thebounds on the availability
constructed from the bounds on the renewal function are verywide for bigger values
of t. However, it is interesting that although bounds are wide the approximation taken
as the midpoint converges to the steady state and it also reflects oscillatory behavior.
Graph 3.2(c) presents only the approximation obtained fromthe bounds. Since the
bounds on the availability are very wide (very often beyond the interval [0,1]) it is
natural to ask how fast the bounds will become tighter if the number of grid points
will be increased. The answer is given on the graph 3.2(b) which presents the lower
and upper bounds on the availability function for two cases:one with 100 grid points
and second one with 1500 points. It can be seen that increasing the number of the
grid points by 15 times leads to a very small change in the bounds. In general this is
the problem with discretization methods that they have limited accuracy. Finally let us
focus on more realistic values of the parameters. Plot 3.2(d) illustrates the behavior
of the the approximation for the availability function obtained from the bounds when
the steady state is equal to 0.9986. It can be observed that approximated availability
is above one (for this case we used 1500 points). This is the general behavior for
high availability states. The conclusion from this exampleis as follows: this method is
reasonable for the cases with low steady states (< 0.9). For the situations when steady
state is high this method gives a poor result.
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Method 2
This method bounds the availability function also using bounds on the renewal func-
tion. The advantage of this method is that it can also handle the availability functions
with high steady state. The idea is very simple and is based onthe relation between
the availability function and two renewal functions. Let uspresent the method in case
of functionA1. Recall that the availability functionA1 may be obtained from

A1(t) = M1R(t)−M1F(t)+1

for other availability functions see Section 2.3. LetML
1R(t) andMU

1R(t) be the bounds
for the functionM1R(t), similarly letML

1F(t) andMU
1F(t) denote the bounds forM1R(t)

then from above relation it follows that

ML
1R(t)−MU

1F(t)+1≤ A1(t) ≤ MU
1R(t)−ML

1F(t)+1 (3.25)

Therefore we obtain the bounds on the availability function. In principle one can
use any bounds on the renewal function and use relation (3.25) to obtain bounds on
the availability function. Of course the drawback of this method is that it requires
computing four bounds on two different renewal functions. On the other hand once
such bounds are computed the bounds on the availability are computed in a negligible
time. Let us consider again the case presented on Figure 3.2(d). It was remarked
in the example above that the Method 1 had problems with the high availabilities. It
appears that Method 2 can handle high availability states much more efficiently. Figure
3.3 presents the bounds on the availability and the approximation (separately on two
plots) for the same case as the one presented on Figure 3.2(d). Bounds on the renewal
functions were computed by using the same recursive formulas. For this computation
we used only 500 grid points. Note that the bounds on the availability function are also
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Figure 3.3: Approximation to the renewal function for the case taken from the Example
3.3.1

quite wide and their usage as the error estimation is rather doubtful. The approximation
(mid point between the bounds) presented on Figure 3.3(b) suggests that this method
may be considered as a good candidate for approximating the availability functions.
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Remark3.3.2. Run et al in [38] present a method for improving any bound for a
renewal function by a functional iteration. This proceduremay be described as follows.
If ML(t) andMU(t) form the bounds on the renewal functionM(t) then those bounds
may be used as the initial conditions in the following iterative scheme

M(i+1)
L (t) = F(t)+

Z t

0
M(i)

L (t −s)dF(s)

or

M(i+1)
U (t) = F(t)+

Z t

0
M(i)

U (t −s)dF(s)

It is proven thatM(i)
L andM(i)

U are bounds for alli and converge to the renewal func-
tion wheni increases. Although this iterative procedure may be used toimprove the
bounds obtained in this section we do not employ it because itis computationally in-
efficient. Each iteration leads to the integration of the renewal function obtained from
the previous iteration therefore the initial bound has to becomputed on a very fine grid.
This drawback can also be observed in their paper, namely allvalues of the improved
bounds are presented only at few grid points. This method maybe used only if the the
single values of the renewal function are required.

3.4 Numerical solution of the integral equation

In previous Chapter it was shown that all functions of interest satisfy the same type of
integral equation

r(t) = H(t)+
Z t

0
r(t −x)dFU+D(x) (3.26)

whereH,FU+D are given andr is unknown. Although we say thatFU+D is given in
most of the cases it has to be approximated as well. However itis more convenient
to consider the problems of computingFU+D andr separately. An obvious numerical
procedure for solving (3.26) is to approximate the integralterm via quadrature rule
which integrates over the variablex for a fixed value oft. Below we present three
quadratures that appear to be the most suitable for the problem.
Assume that the solution to (3.26) is required on the interval [0, t]. Let 0= t0 < t1 <
· · · < tn < t be a partition of the interval. As it was already seen in Section 3.3 the
functionsr may have oscillatory behavior, like for instance the availability functions.
One may think that choosing a non-uniform partition of[0, t] would result in higher
accuracy. Unfortunately the non-uniform grid increases the required number of calcu-
lations ofFU+D. We will discuss this problem in more details in Section 3.4.4 where
we also show that not big improvement is achieved when the unequal spacing is used.
Therefore we choose to use the uniform gridti = ih,i = 1, . . . ,n h> 0. The equation
(3.26) may then be written as

r(tm) = H(tm)+
Z tm

0
r(tm−x)dFU+D(x) = H(tm)+

Z tm

0
r(tm−x)dFU+D(x) (3.27)

3.4.1 Trapezoid and Simpson’s rules

Tortorella in [47] presented two approximations forr(ti) based on the trapezoid and
Simpson’s rule for Riemann-Stieltjes integrals. The trapezoid rule can be derived in the
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same manner as for Riemann integrals by replacing the incrementdxby dFU+D(x). For
methods with orders 2 (Simpson’s rule) Tortorella proposesnew Newton-Cotes rule for
Riemann-Stieltjes integrals, see also [46]. Direct replacement ofdx by dFU+D(x) for
higher order methods will result in accuracies that are not as good as those of the rules
obtained in [47]. The derivation of the recursive formulas for approximatingr(ti) may
be found in [47]. Here we present the end-equations and stress the important aspects
related to our problem. For convenience we use the same notation as in [47]. LetFi

denote the value ofFU+D(ti) and similarly forHi = H(ti), r i = r(ti). The algorithms are
based on the assumption thatF(0) = 0 andH(0) = 0 (whencer(0) = 0). Seemingly
this restricts the usage of the algorithms to only renewal functions. The algorithms
may also be used for the case whenH(0) 6= 0 with simple scaling procedure that is
presented in Remark 4.2.3. Below are the algorithms
Trapezoid Rule

r i =
2Hi

2−F1
+

i−1

∑
k=1

r i−k
Fk+1−Fk−1

2−F1
(3.28)

This procedure requires one starting point:r0 = 0.
Simpson’s RuleThis procedure requires three starting points:r0 = 0, r1/2 and r1,
wherer1/2 = r(t1/2). In principle those values could be obtained using trapezoid rule,
however the error introduced in initial points has significant influence on the whole
solution (see [47]). In order to find those initial points Tortorella propose so called
ascending-descending procedure. Letsk = 2−kt1, k = 0,1,2, . . . . Note that sequencesk

descends to zero ask increases and also thats0 = t1, s1 = t1/2. This grid is presented
on Figure 3.4. The idea is to take sufficiently largeK such thatsK+1 is almost zero and
use Simpson’s rule with starting valuesr0 = 0 andr(sK +1) = 0 to obtain an estimate
for r(sK) and ’descend’ back up tor(t1). This ascending-descending procedure can be

Figure 3.4: Grid for ascending-descending procedure (upper) and for Simpson’s rule
(lower)

described as follows. Choose sufficiently largeK (see Remark 3.4.2 ). Compute

r(sK) = (1+F(sK))/6)−1H(sK)

Takei = 1, . . . ,K and fork = K −1 compute

r(sk) =

[

1− 2F(sk+1)

3
+

F(sk)

6

]−1[

H(sk)+
2F(sk)

3
r(sk+1)

]
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Then the starting values for the Simpson’s rule arer1/2 = r(s1), r1 = r(s0).
The equations for approximatingr i by using Simpson’s rule derived in [47] are

r i =

(

1− 2F1

3
+

F2

6

)−1[

Hi +
2
3

F2r i−1 + r i−2

(

1
2

F2−
2
3

F1

)

+

+
i/2

∑
k=2

[

r i−2k +4r i−2k+1 + r i−2k+2

6
(F2k−F2k−2)+

+
r i−2k− r i−2k+2

3
(F2k−2F2k−1+F2k−2)

]]

for i = 2,4, . . . , and

r i =

(

1− 2F1

3
+

F2

6

)−1[

Hi +
2
3

F2r i−1 + r i−2

(

1
2

F2−
2
3

F1

)

+

+
(i−1)/2

∑
k=2

[

r i−2k +4r i−2k+1 + r i−2k+2

6
(F2k−F2k−2)+

+
r i−2k− r i−2k+2

3
(F2k−2F2k−1+F2k−2)

]

+
4r1/2 + r1

6
(Fi −Fi−1)−

r1

3
(Fi−1−2Fi−1/2+Fi)

]

for i = 3,5, . . . .

Remark3.4.1. The algorithms presented in this section approximate function r given
that r(0) = 0. In order to use them for general case for whichr(0) 6= 0 it is needed to
scale the functionH. Let Hz(t) = H(t)−H(0)(1−F(t)) andrz(t) = r(t)−H(0) then
it is easy to find that(rz,Hz,F) satisfy (3.26) if and only if(rz,Hz,F) satisfy (3.26).
So for instance when computing the availability functionA1, see equation for which
A1(0) = 1 we need to first compute

Hz(t) = H(t)−1−F(t)

whereH(t) = 1−FU(t) andF(t) = FU+D(t). Then usingHz as a proper input to the
algorithms one can compute values ofrz(t). After the approximationrz(t) is obtained
it has to be re-scaled in order to have the solution forr(t) (A1(t)). This is done using
relation mentioned above

r(t) = rz(t)+1.

It has to be stressed that this scaling procedure is done in a negligible time.

Remark3.4.2. Choice of K in ascending-descending procedure.The choice ofK in
the ascending-descending procedure will determine the error in the starting pointsr(t1)
and r(t1/2). It appears that the error introduced in those initial points may have sig-
nificant impact on the overall approximation. However the ascending-descending pro-
cedure eliminates the error for the initial conditions veryefficiently. Based on the
experiments we claim that forK ≥ 7 the difference between two approximations with
differentK is beyond the machine precision. We could not find any examplefor which
it is not true. The cost of computing 7 approximations is negligible.
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The very big advantage of the Simpson’s rule derived by Tortorella is that it re-
quires the values of the distributionFU+D at onlyN+N/2+K grid points (see Figure
3.4). Usually the second order methods require 2N values for the functionFU+D.

3.4.2 Midpoint Rule

This method is very similar to the trapezoid one but instead it uses the mid point values
for the functionFU+D. Below we present the derivation. Based on Remark 2.1.7 the
equation (3.26) may be written as

r(tm) = H(tm)+
Z tm

0
r(tm−x)dFU+D(x) (3.29)

= H(tm)+
Z tm

0
FU+D(tm−x)dr(x)+F(t)r(0) (3.30)

The integral in the last line ma be approximated by the midpoint rule

Z tm

0
FU+D(tm−x)dr(x) =

m

∑
j=1

Z t j

t j−1

FU+D(tm−x)dr(x)

≈
m

∑
j=1

FU+D(tm− t j−0.5)[r(t j)− r(t j−1)] (3.31)

wheret j−0.5 = (t j − t j−1)/2. Substituting in (3.29) and solving forr(tm) gives

r(tm)=
1

1−F(t0.5)

[

H(tm)+ r(0)FU+D(tm)− r(tm−1)FU+D(t0.5)+
m−1

∑
j=1

FU+D(tm− t j−0.5)[r(t j)− r(t j−1)]

]

(3.32)
The disadvantage of this recursion formula is that it requires the values of the distri-
butionFU+D on the grid with the step sizeh/2. This is an important issue whenFU+D

has to be approximated.

3.4.3 Volterra equations

If FU+D has a densityfU+D then (3.26) may be written as

r(t) = H(t)+

Z t

0
r(x) fU+D(t −x)dx (3.33)

Equation (3.33) is a linear Volterra integral equation of the second kind with a differ-
ence kernel. Numerical solution of this type of equation hasbecome routine, see for
example [17]. However, interest remains in dealing with (3.26) directly because:

• We may compute all functions of interest (see Table 2.4) by only using FU+D

without involving the densityfU+D. Some functions likeA1 or AD
0 may be com-

puted using only densityfU+D however in order to compute functionsA0 or
AD

1 one has to computeFU+D either by integrating the density (computed for
A0 or AD

1 ) or by using the algorithm for convolution. This double effort when
computing more functions is eliminated when using form (3.26).

• We may want to avoid problems whenfU+D has singularity.
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• As mentioned in [47], [19] simpler, more robust or more accurate methods may
arise from a direct approach (3.26)

Nevertheless we do not reject this approach immediately. Since the literature for solv-
ing numerically Volterra integral equations is rather richwe decide to choose one
representative method from this class and to compare its performance for computing
the renewal and availability functions with other methods.The available methods for
solving Volterra integral equations are: quadrature methods, Runge-Kutta methods,
block methods just to mention few. For the overview of the available methods see e.g.
[17]. As the representative of this class we decide to choosefourth order Runge-Kutta
method (RK-4). The main reason is that it differs significantly from the methods pre-
sented so far and also because the order of this method is higher. Runge-Kutta methods
for the solution of (3.33) are self-starting methods which determine approximations to
the solution at the pointsti = hi, i = 1,2, . . . by generating approximations at some in-
termediate points in[ti , ti+1] (RK-4 uses three points). The derivation of the algorithm
follows closely that for ordinary differential equations and may be found for example
in [17]. The algorithm itself is not difficult but slightly complex and is not presented
here for typographical reasons (see p. 123 in [17]).
We will check the performance of RK-4 method together with other methods in Sec-
tion 3.5.

3.4.4 Non-uniform grid

The methods described in previous sections are fixed step methods, that is, they are
methods which divide the range of interest[0, t] into N equally spaced intervals of
lengthh= t/N and which solve the integral equation at the set of discrete pointsti = ih.
Since the availability and renewal functions tend to have anoscillatory shape it is also
important to investigate the behavior of the approximationon a non-uniform grid. It
may happen that putting more points in the places where the approximated function is
changing more rapidly gives better approximation than in the case of equal spacing.
In this section we check how the change of the grid influences the approximation and
what is the actual cost of using non-uniform grids. The results are presented for two
methods: trapezoid rule and method with bounds. In order to use the methods pro-
posed by [47] and [31, 3] on the non-uniform grids the modification of the algorithms
is necessary. For the trapezoid rule it is not difficult to show that the formula for
approximatingr(ti) below may be used on any partition 0= t0 < t1 < · · · < tN = t

r(ti)=
2

2−F(ti − ti−1)

[

H(ti)+
r(ti−1)

2
F(ti − ti−1)+

i−1

∑
k=1

r(tk)+ r(tk−1)

2
[F(ti − tk−1)−F(ti − tk)]

]

(3.34)
For the method with bounds we present the results only for therenewal function.

The modified recursive formulas for the bounds are

ML(tm) = F(tm)−
m

∑
i=1

ML(ti−1) [F(tm− ti)−F(tm− ti−1)] (3.35)

= F(tm)+
m

∑
i=1

ML(ti−1) [F(tm− ti−1)−F(tm− ti)] (3.36)
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and

MU(tm) = F(tm)+
m

∑
i=1

MU(ti) [F(tm− ti−1)−F(tm− ti)]

where we used the notationF(t) = FU+D(t). Those bounds may be used on any parti-
tion.
Note that if the grid is uniform thentk− ti = tk−i and the number of function evalua-
tions ofF is minimal and equal toN. If the non-uniform grid is used then the number
of function evaluations needed will increase and it will depend on the structure of the
grid (in the worse case it could be(N2−N)/2). Since in many casesF has to be ap-
proximated it is important to check if the usage of non-uniform grid will compensate
this additional cost.
The general idea behind the non-uniform grid can be described as follows. Having
N points in the grid find best possible location for those points in the sense that the
approximation obtained on this grid has the smallest overall error. Of course it is not
obvious where is the best location, however we investigate it experimentally. In the
example below we compare the approximations obtained from the trapezoid rule on
uniform and non-uniform grids.

Example 3.4.3.Assume that the distributions of up times and down times haveboth
Gamma distribution with parameters: Ui ∼ Gamma(39,9) and Di ∼ Gamma(1,9) 2,
then F(t) = FU+D(t) ∼ Gamma(40,1) (for details about Gamma alternating renewal
process see Section 3.5.1). Our interest is in the availability function A1. Let us say that
we have N= 114points at our disposal. From those points we decide to construct two
grids: (1) uniform and (2) non-uniform. The best distribution of the points on the non-
uniform grid is not obvious; we decide to put more points in place when the distribution
F is changing rapidly (this is also the place where the function A1 is changing rapidly).
The two grids are presented in Figure 3.5. The approximations for the availability
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Figure 3.5: Two grids from Example 3.4.3

function obtained from the trapezoid rule on those two gridsare shown in Figure 3.6.
From this graph it can be observed that the overall approximation obtained on the
non-uniform grid is much worse than the one in the uniform case.

2Other distributions could be taken as well, however for Gamma case the analytical solution is known
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Figure 3.6: Comparison of the approximations for the availability function on different
grids from Example 3.4.3

In the next example we investigate the behavior of the boundson the renewal func-
tion using a non-uniform grid. Since the bounds on the renewal function determine the
bounds on the availability function and those are used to compute the approximation
for the availability function we decide to investigate onlythe behavior of the bounds
on the renewal function.

Example 3.4.4. Let us consider a renewal process with the underlying distribution
F ∼ Gamma(40,9). Define the following uniform grid: t1 = [0(0.1)40]. Figure 3.7(a)
illustrates the bounds on the renewal function computed on this grid. The decision
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(a) Bounds on the renewal function.
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(b) Difference between the bounds.

Figure 3.7: Bounds on the renewal function from Example 3.4.4 computed on the
uniform grid.

on how to construct a non-uniform grid is based on the distance between the bounds
(see Figure 3.7(b)). Note that the difference between the bounds is bigger when the
bounds are increasing. It seems to be the natural choice to put more points in the
place where the distance between the bounds is relatively big. Therefore we construct
the following non-uniform grid t2 = [0(0.05)10, 10.1(0.15)40], which has the same
number of points as grid t1 (N = 401) and puts more points between[5,10]. Figure 3.8
presents the difference between upper and lower bound computed on those two grids:
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t1 and t2. The bounds obtained on the non-uniform grid are tighter on the interval
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Figure 3.8: Comparison of the distance between the bounds ondifferent grids from
Example 3.4.4.

[0,20]. For t > 20 the bounds computed on the uniform grid are better.

Based on Examples 3.4.3 and 3.4.4 we can conclude that

1. The non-uniform distribution of the points in the grid does not improve the over-
all approximation for the availability function.

2. Bounds for the renewal function can be tighter on the non-uniform grid but only
on bounded interval.

3. It is not worth to use non-uniform grids since the benefit issmall and the cost
attained by the additional computation of the renewal distribution is big.

Therefore in the rest of computations we use uniform grid forcomputing renewal and
availability functions.

3.5 Comparison of the methods

In the previous section we have introduced different methods for approximating re-
newal and availability functions. The aim of this section isto illustrate the compara-
tive performance of those methods by using them to solve a series of test problems and
to determine which routine is ’best’ in the sense of timing and accuracy. Of course,
to define what we mean by ’best’ we need to declare a particulartest strategy which
can be applied uniformly to each routine. Inconvenience in our situation is the lack
of test cases for which the analytical solution is known, especially for the availability
functions. The exponential case, for which the solution wasgiven in Chapter 2, is not
suitable for comparing the overall performance of the methods. Although, it may be
used as an easy test case. As it was mentioned in the requirements we are particularly
interested in situations where the availability and renewal functions show oscillatory
behavior as it is for the case with Weibull uptime for higher values of the shape param-
eter. In the literature there are a few examples available for which the renewal function
is slightly oscillating and the analytical solution is known. The availability functionA1

for the case when up-times are exponentially distributed and down-times are constant
was presented in [4, 24]. Unfortunately, in this situation the oscillations are visible
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only for low steady states, thus not of our interest.
In the absence of adequate test cases with known solutions not much can be done with
respect to the comparison of the methods. Fortunately, it appears that it is possible to
derive explicit formulas for the availability and renewal functions in case when the up-
times and downtimes have both Gamma distribution with an integer shape parameter.
In this situation the scale and the amplitude of the oscillations may be easily controled
what allows us to compare the methods for the problems with different difficulty level.
The availability and renewal functions will be of course different than in case when
the up-time is Weibull but the general behavior will be similar. Therefore we compare
the methods mainly based on their performance for Gamma alternating process and
we claim that the method selected based on this choice will also be able to produce
reasonable results for the case when the up-time has Weibulldistribution.
Before the comparison of the methods the derivation of the availability and renewal
functions for the Gamma renewal alternating process is given.

3.5.1 Availability in Gamma alternating renewal process

Availability function for Gamma alternating renewal process was previously studied by
Pham-Gia and Turkkan in [36]. They propose to use Gamma distribution for up time
Ui ∼ Gamma(αU ,βU) and down timeDi ∼ Gamma(αD,βD) whereαU ,αU ,βU ,βD ∈
R+(for parametrization of the Gamma distribution see Appendix A). Their method
can be described as follows: compute the densityfU+D(t) of Ui + Di (which has to
be approximated by using, rather complicated, Humbert function), next approximate
renewal densitym(t) by iterative equation

m(i)(t) = fU+D(t)+
Z t

0
m(i−1)(t) fU+D(x)dx

with starting point taken from [5]

m(0)(t) = fU+D(t)+F2
U+D(t)

/

Z t

0

(

1−F2
U+D(t)

)

dx

The availability functionA1 is then obtained by numerical integration using relation
(2.33). This method is rather complex for real-time computations and we do not em-
ploy it. Instead we propose to use Gamma distribution with the same shape parameter
for up time and down time and integer scale parameter for which closed formulas for
availability and renewal functions can be obtained. When scale parameter in Gamma
distribution is integer then this distribution is called Erlang distribution. Hwank [45]
give a numerical solution for the availability function when Ui andUi + Di have both
Erlang distribution. We present analytical expressions for the renewal and availability
functions that are easy to implement and are exact.
LetUi ∼Gamma(k−m,λ) andDi ∼Gamma(m,λ) wherem< k are integers andλ > 0.
ThenUi + Di ∼ Gamma(k,λ). The up-times can be interpreted as a sum ofk−m ex-
ponentially distributed random variables with parameterλ and similarly down-times
correspond to a sum ofm random variables with∼ Exp(λ). Recall that the availability
functionA1 can be expressed as a difference of two renewal functions (see Section 2.4)

A1(t) = M1R(t)−M1F(t)+1 (3.37)
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whereM1R(t) denotes expected number completed repairs and denotes expected num-
ber M1F(t) failures in(0, t](see Figure 2.1). We first compute the renewal functions
and then the availability is obtained from the above relation.
The main result is based on the following theorem

Theorem 3.5.1.For any real number u and positive integers n, k, m such that k≥ m it
holds

∞

∑
n=1

unk−m

(nk−m)!
=

1
k

k−1

∑
r=0

εmreuεr
(3.38)

whereε = exp
(

2πi
k

)

, ε0 = 1, εr = exp
(

2πri
k

)

and i is imaginary unit satisfying i2 =−1.

For the proof see Appendix D. This theorem expresses infiniteseries in terms of
finite sum that involve complex numbers. Such a representation allows to simplify the
calculations and is crucial in obtaining the analytical expressions.
We start with computingM1R. Since there is no closed form for Gamma CDF it is
easier to derive expressions for corresponding renewal densities and use relation (2.2)
to get the renewal functions.

M1R(t) =
Z t

0
m1R(x)dx=

Z t

0

∞

∑
n=1

f (n)
U+D(x)dx (3.39)

Since the sum of Gamma distributed random variables has Gamma distribution with
the same shape parameter and sum of the scale parameters the convolution of f (n)

U+D(t)
is Gamma(nk,λ) i.e.

f (n)
U+D(t) =

λ
(nk−1)!

(λt)nk−1e−λt

Therefore

M1R(t) =

Z t

0
λe−λx

∞

∑
n=1

(λx)nk−1

(nk−1)!
dx (3.40)

By Theorem 3.5.1 above series can be written as

M1R(t) =

Z t

0
λe−λx1

k

k−1

∑
r=0

εreλxεr
dx

=
Z t

0
λe−λx1

k

(

eλx +
k−1

∑
r=1

εreλxεr

)

dx

=
λt
k

+
1
k

k−1

∑
r=1

λεr
Z t

0
e−λx(1−εr )dx

By doing simple integration it can be shown that the renewal functionM1R is

M1R(t) =
λt
k

+
1
k

k−1

∑
r=1

εr

1− εr

(

1−e−λt(1−εr)
)

(3.41)

The same formula was obtained by Parzen [35]. However, the result presented here is
more general and also it allows to calculate the availability functions which was not
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given in [35]. Now we present similar approach for computingM1F . Recall that in this
case inter arrivals are defined asU1, D1+U2, D2+U3 . . . . This situation corresponds to
the delayed renewal process with first interval distribution Gamma(k−m,λ) and with
remaining arrivals distributed according toGamma(k,λ) (for details about this renewal
process see Section 2.4). Therefore by applying the same argument as forM1R it can
be shown that

M1F(t) =

Z t

0

∞

∑
n=1

λ
(nk−m−1)!

(λx)nk−m−1e−λxdx

=
Z t

0
λe−λx

∞

∑
n=1

(λx)nk−(m+1)

(nk− (m+1))!
dx

By Theorem 3.5.1

M1F(t) =

Z t

0
λe−λx1

k

k−1

∑
r=0

εr(m+1)eλxεr
dx

=
λt
k

+
1
k

k−1

∑
r=1

λεr(m+1)
Z t

0
e−λx(1−εr )dx

Therefore the renewal functionM1F can be expressed as

M1F(t) =
λt
k

+
1
k

k−1

∑
r=1

εr(m+1)

1− εr

(

1−e−λt(1−εr )
)

(3.42)

Substituting (3.41) and (3.42) in (3.37) we obtain that the availability function A1 for
Gamma alternating process can be expressed as

A1(t) =
1
k

k−1

∑
r=1

εr

1− εr

(

1−e−λt(1−εr )
)

(1− (εr)m)+1 (3.43)

In the same manner one can obtain availability functionA0. Let as beforeUi ∼
Gamma(k−m,λ) and Di ∼ Gamma(m,λ). Recall that the availability functionA0

may be found by
A0(t) = M0R(t)−M0F(t) (3.44)

As it was mentioned in Section 2.3.3 the expected number of failures when process
starts from zero is equal to the expected number of completedrepairs when process
starts from one, i.e.M0F(t) = M1R(t). ThereforeM0F(t) may be computed by formula
(3.41). FunctionM0R corresponds to the delayed renewal process with inter-arrivals
D1 ∼Gamma(m,λ), D1+U2 ∼Gamma(k,λ), D2+U3 ∼Gamma(k,λ) . . . . Proceeding
in the same manner as for the previous renewal functions

M0R(t) =

Z t

0

∞

∑
n=1

λ
((n−1)k+m−1)!

(λx)(n−1)k+m−1e−λxdx

=
Z t

0
λe−λx

∞

∑
n=1

(λx)nk−(k−m+1)

(nk− (k−m+1))!
dx
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By Theorem 3.5.1

M0R(t) =
Z t

0
λe−λx 1

k

k−1

∑
r=0

εr(k−m+1)eλxεr
dx

=
λt
k

+
1
k

k−1

∑
r=1

λεr(k−m+1)
Z t

0
e−λx(1−εr )dx

Therefore the renewal functionM0R can be expressed as

M0R(t) =
λt
k

+
1
k

k−1

∑
r=1

εr(k−m+1)

1− εr

(

1−e−λt(1−εr )
)

(3.45)

Substituting (3.45) andM0F(t) computed from (3.41) in (3.44) we obtain that the avail-
ability functionA0 for Gamma alternating process can be expressed as

A0(t) =
1
k

k−1

∑
r=1

εr

1− εr

(

1−e−λt(1−εr)
)(

(εr)k−m−1
)

(3.46)

Note that the steady state availability does not depend on the scale parameterλ

lim
t→∞

A1(t) = lim
t→∞

A0(t) =
MTTF

MTTF+MTTR
=

(k−m)/λ
(k−m)/λ+m/λ

= 1− m
k

The expressions for both availability functions and the renewal functions are very sim-
ple and can be easily implemented on a personal computer. Obviously the simplicity
is due to the complex number representation (the result is ofcourse real), however
most of the modern programming languages like C++ or Matlab can handle complex
numbers very efficiently.

Example 3.5.2.Let us check the behavior of the availability functions for Gamma al-
ternating process for different set of parameters. Figure 4.4 illustrates functions A1(t)
and A0(t) obtained from formulas (3.43) and (3.46). Black line on all graphs presents
the limiting availability computed from expression (2.54). The manner how the func-
tions approach the limit depends on the shape of the distribution of up and down time.
Our purpose is to model situations in which up time is much bigger than down time.
For instance the graph on the left upper corner presents the availability functions for
the case when uptime is only four times bigger than the down time, what results in
relatively low steady state 0.8. In order to increase the steady state availability one
has to increase the difference between k and m. However by increasing the shape
parameter k the dispersion of the distribution becomes smaller what leads to higher
oscillations in the availability functions. Therefore forrealistic situations (with high
availability) Gamma alternating process may be used only when the oscillatory be-
havior is expected. On the other hand Gamma distribution is very flexible with regards
to the shape and scale what allows to model many realistic cases.
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Figure 3.9: Example availability functions for Gamma alternating renewal process.

3.5.2 Testing procedure

It is true that comparison of the methods based on one or two numerical examples
can be misleading. An overall picture of the performance of the method depends on
its behavior over a wide class of problems. In order to have anobjective picture of
the performance of the methods we consider a set of problems which have known
solutions and which vary in difficulty from easy to hard. Eachproblem is solved by
the routine under consideration, many times with differentinput parameters and with
different number of grid pointsN. Certain data, such as the time taken and the actual
error are collected at the end of each run. Finally, these values are averaged out so
as to give an indication of how the routine would cope with a typical problem. These
average values are then compared with values obtained usingother routines which
have undergone exactly the same procedure.

Therefore to test the efficiency of a method with particular problem family we
carry out the following procedure with a number of differentvalues ofN:

1. run the method with many different values of parameterspi between the limits
ai < pi < bi . The parameterspi are sampled uniformly from the interval(ai ,bi);

2. after each indvidual run save the error and time taken

3. average out the errors and times. These average values arethen plotted against
N.

For the each test we used sample of 50 different parameters. To have an objective
overview of the performance of the methods it is important touse the same criterion
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for evaluating the error. We use the following:

Error=
1
N

(

N

∑
i=1

|rt(ti)− r̂(ti)|2
)

1
2

wherert(ti) is the true and ˆr(ti) is the approximate solution atti . This is the root mean
squre error and may be interperted as a ’distance’ between the two vectors.

We give the results for different problem families using fiveroutines which were
introduced in Sections 3.3 and 3.4:

• TT – Trapezoid rule for Stieltjes integrals introduced in Section 3.4

• TS – Simpsons rule for Stieltjes integrals also introduced in Section 3.4

• BND – The approximation obtained as the mid point between thebounds intro-
duced in Section 3.3. For the renewal function the bounds areconstructed by
the recursive formulas (3.10) and (3.11). When the availability function is con-
sidered the bounds are obtained by the Method 2 introduced inSection 3.3.2.
(Method 1 was not feasible for high steady states).

• MID – Midpoint method introduced in Section 3.4.2

• RK-4 – Fourth order Runge-Kutta method mentioned in Section3.4.3.

Let us remaind again that these methods approximate function r(t) from the following
integral equation

r(t) = H(t)+
Z t

0
r(t −x)dFU+D(x)

(except RK-4 which usesfU+D instead) assuming thatH andFU+D are known. How-
ever, in most of the situations those input functions have tobe approximated as well.
Therefore, in checking the performance of the methods we first decide to compare the
methods for cases for whichH, FU+D are known and later to check the influence on
the approximated solution when the input functions containsome error.

3.5.3 Results

Recall that we are interested in the renewal functions that count the expected number
of failures in the alternating renewal process:M1F , M0F , MD

1F , MD
0F . FunctionsM1F ,

MD
1F , MD

0F correspond to the delayed renewal processes and functionM0F is obtained
from the ordinary renewal process, for details see Chapter 2. Therefore we decided
to perform the tests on the two classes of renewal functions:delayed and not delayed
versions (Families 1-4). The performance of the algorithmsis also tested for the avail-
ability functionsA1 andA0 (Families 5-9).3

Since in practice the most often used distribution for up-time is Weibull we construct
the problem families that are close to the cases that may arise when using Weibull dis-
tribution by using Gamma renewal process introduced in Section 3.5.1 for which the

3For functionsAD
1 andAD

0 the performance will be similar and it will mainly depend on the accuracy
of H (see Table 2.4), if it has to be approximated
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analytical solution is known.
Below are the families of test problems for the renewal and availability functions that
vary in difficulty from easy to hard:

Family 1: Renewal function, not delayed, not oscillating. Renewal distributionGamma(k,λ)
with 8 < k < 20 and 2< λ < 4.

Family 2: Renewal function, not delayed, oscillating. Renewal distributionGamma(k,λ)
with 180< k < 220 and 6< λ < 12.

Family 3: Renewal function, delayed, not oscillatingRenewal distributionGamma(k,λ)
with 17< k < 35,m= 1 and 7< λ < 13.

Family 4: Renewal function, delayed, oscillatingRenewal distributionGamma(k,λ)
with 30< k < 70 and 3< λ < 4.

Family 5: Availability function A1, not oscillating, low steady-state. The exponential-
exponential case with underlying distribution given by (3.55) with the parame-
ters 10< MTTF < 25 and 0.39< MTTR< 0.45.

Family 6: Availability function A1, low steady-state. Up-timesUi ∼ Gamma(k−
m,λ), down-timesDi ∼ Gamma(m,λ), with 20< k < 30,m= 1 and 3< λ < 7

Family 7: Availability function A1, high steady-state. Up-timesUi ∼ Gamma(k−
m,λ), down-timesDi ∼ Gamma(m,λ), with 800< k < 1050, 1< m < 5 and
10< λ < 15

Family 8: Availability function A0, low steady-state. Up-timesUi ∼ Gamma(k−
m,λ), down-timesDi ∼ Gamma(m,λ), with 50< k < 80, 1< m< 5 and 10<
λ < 15

Family 9: Availability function A0, high steady-state. Up-timesUi ∼ Gamma(k−
m,λ), down-timesDi ∼ Gamma(m,λ), with 400< k < 450, 1< m < 3 and
30< λ < 35

Figures 3.10-3.12 show the achieved average accuracy against N, on a logarithmic
scale, for the problem families tested. We now comment on these results.
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(d) Accuracy for Family 2.
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(f) Accuracy for Family 3.
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Figure 3.10: Comparison of the methods without computing convolution.52
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(b) Accuracy for Family 5.

0 10 20 30 40 50 60
0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

1.01
20 < k < 30   1 < m < 1   3 < λ < 7

Time [y]

 

 
A

1
(t)

(c) Example availability function from
Family 6.
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(d) Accuracy for Family 6.
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(e) Example availability function from
Family 7.
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(f) Accuracy for Family 7.
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(g) Example availability function from
Family 8.
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(h) Accuracy for Family 8.

Figure 3.11: Comparison of the methods without computing convolution
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9.
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(b) Accuracy for Family 9.

Figure 3.12: Comparison of the methods without computing convolution.

Accuracy

As expected the BND method is the least successful for all families. In general the
methods based on the discrete approximation of the continuous quantities suffer from
lack of accuracy. This method is also not the fastest since itrequires to compute two
bounds in case of the renewal function and four bounds in caseof the availability func-
tion. It appears that TT routine is more accurate on the rangeof N considered, however
the difference is not very significant in case of the renewal functions. This means that
it is more efficient to use simple trapezoid rule than the discrete approximation. On
the other hand the bad performance of BND is recompensed by returning the error
estimate which is missing in other routines. The MID method,that actually works on
the grid with 2N points, is slightly better than TT for the renewal functionsand signif-
icantly better for the availability functions, especiallyfor functionA1. It is interesting
that all three schemes BND, TT and MID produce almost the sameerror curves for
Family 5, and also similar situation is observed for Family 9. This suggests that for
’easy’ availability functions there is no difference in using those three routines and the
one with shortest computation time should be chosen (TT method is the fastest since
it requires the smallest number of function evaluations, see also Table 3.5.3). Albeit in
this case all three methods were outperformed by TS method. It is clearly visible that
TS and RK-4 methods are the most accurate for all Families (with exception for RK-4
method for ’easy’ Family 5). This is due to the fact that thosemethods are based on
the higher order schemes. The RK-4 method is definitely the most accurate with the
fastest speed of convergence, however in some cases it requires more points to be the
winner, like for instance for Family 7.

Timings

Results are presented in Figure 3.13. We note that whenH, FU+D are known the time
taken to approximater for fixed N is independent of the family and of the problem
parameters for all routines except for the BND method which requires to compute 2
bounds for the renewal function and 4 bounds for the availability function. Thus the
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method with bounds is twice slower for computing the availability functions than in
case of renewal functions. Undoubtedly the RK-4 method is the overall looser with
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Figure 3.13: Comparison of the methods with respect to the speed.

respect to the speed. The time taken for this method cannot beeven compared with
other methods on the same scale. The second order TS method iscomparable with
other methods however it is almost the slowest; although it wins with BND method
when the availability functions have to be computed. There is a little difference be-
tween two the fastest methods: TT and MID. MID is slightly slower since it requires
the values of the distribution on more number of points, however if the distribution is
easily accessible this difference is not very significant. In general all methods make
the calculations relatively fast (except RK-4 method) on the range ofN considered.
Nevertheless this small differences in timings may become apparent if the underlying
distribution has to be approximated. This is investigated in the next section.

Additional cost related to the computation of convolution

In previous section we have compared the speed and accuracy of different methods for
approximating renewal and availability functions. For allconsidered cases we have
used the analytical form for the renewal distributionFU+D. Obviously, if FU+D is
unknown then the speed and accuracy of the methods will be affected by additional
cost related to the approximation ofFU+D. As far as the accuracy is considered it
has to be noted that the additional error related toFU+D will not change the rankings
of the methods obtained in case whenFU+D is error free. This can be explained by
the fact that all the methods take as an input the same imperfect distribution. The
additional time needed for computingFU+D will depend on the number of grid points
on which the value ofFU+D is required. The number ofFU+D evaluations varies for
different methods and different functions. Assume that thesolution is required on the
grid with N equally spaced points. Table 3.5.3 presents the number of functionFU+D

evaluations for different methods. The trapezoid rule and the method with bounds
are the cheapest in this sense4. The midpoint method requires different number of

4Method with bounds requires to compute 2 (for renewal function) or 4 bounds (for availability) but
all values are computed on the same grid, thus the value ofFU+D may be stored and used for computing
all bounds
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Renewal fun. Availability fun.
TT N N

BND N N
TS N+N/2+K N+N/2+K

MID 2N (N for delayed) 2N
RK-4 3N 3N

Table 3.1: Number of functionFU+D evaluations for different methods.

values of the distribution depending on which function is calculated5. The Simpson’s
rule developed by Tortorella needs the values ofFU+D on the main grid (N) and also
between the every second point (N/2) and also for ascending descending procedure
(K) (for details see Figure 3.4.1). The most expensive is theRK-4 method which gives
another reason for not accepting it.

3.5.4 Conclusions

We can now try to make an overall assessment of these results.The aim of this compar-
ison was to select the method, perhaps few methods, that are suitable for computing
renewal and availability functions. The selected algorithms are going to be imple-
mented in a software that is used for real time calculations and also for large scale
models. Therefore the best method should have a good balancebetween the speed and
accuracy.
The winner is TS method since it is the most accurate amongst the fastest methods.
Although it works on a finer grid than TT or BND it is still acceptable with regards
to the speed. Methods TT, BND are faster but they are not sufficiently accurate what
in case of the availability functions is very important. However the MID method is a
serious competitor for TS method in case of the availabilityfunctionsA1. Albeit the
MID point methods looses when the distribution of the process FU+D is not analytical
since it needs more points than TS method. The methods with bounds are the least
successful with respect to the accuracy. The simple TT method outperforms the BND
method in the speed since basically both methods do the same kind of iterations but
BND method needs to do it twice in case of the renewal functionand four times in case
of the availability function. This comparison also shows that there are very accurate
methods like RK-4 that come from different theory, however for real applications they
are rejected since the time taken for computations is few times longer and in case of
large scale models such a performance is simply unacceptable.

3.5.5 Error estimation and usage of bounds

Before the TS routine can be used automatically in the software there are some ques-
tions that need to be answered. As it was seen in Figures 3.10-3.12 the size of the
error for the approximation differs in all families. Therefore the first question is: what

5Based on formula 3.32 for the midpoint approximation if the renewal function is required then
r(0) = 0 and for delayed renewal processH 6= FU+D thus the value ofFU+D(tm) is not needed. For the
availability r(0) = 1 and bothFU+D(tm) andFU+D(tm−0.5) are required

56



Overview of concepts and methods 3.5 Comparison of the methods

should be the step-size for the method in order to have desired accuracy? Another prob-
lem is related to the computation of convolution, namely: how the error introduced in
computing convolution will influence the approximation obtained by the method? We
will try to answer this questions in this section.

Choice of the step size

The choice of the step size can be determined in three ways: (1) based on the analytical
bound on the error (if such a bound is available), (2) based onthe bound on the so-
lution, (3) numerically by investigating the speed of convergence of the method when
the number of grid points increases.
In general the studies related to the error analysis are difficult and very often it is not
possible to derive a closed formula for the bound on the errorof a numerical method.
In his paper Tortorella provides analytical bound on the error only in case of the trape-
zoidal rule and claims (based on test examples) that Simpson’s rule is more accurate
with the same mesh grid. The bound on error is increasing withtime, thus analyzing
the error, he also focuses only on last grid pointtN. Based on the bound he suggests
the following choice of step size: given a desired maximum error ε for time steptN
the choice of the step size should be chosen of the orderε1/2. We will show that this
suggestion is not the most efficient in case of the renewal andavailability functions
study, mainly due to two reasons: the error is decreasing6 and the bound on error given
in terms of orders of magnitude is too wide.
Let us investigate the actual behavior of the error for the approximation obtained by

TS method for renewal and availability functions. Figure 3.14(b) shows that the er-
ror becomes smaller (damped oscillations) as the functionsapproach the steady state
and also converges to some limit (in these examples the limitis close to zero). This
is expected behavior in case of the renewal type integral equations and it can be ex-
plained intuitively as follows. Let ˆr(t) denote the approximation tor(t). Assume that
r̂(t) satisfies the same integral equation asr(t) but with additional drive termb(t) that
introduces the difference betweenr(t) and ˆr(t), then:

r̂(t) = H(t)+
Z t

0
r̂(t −x)dF(x)+b(t) (3.47)

Subtracting this equation from (3.26) gives

r(t)− r̂(t) = b(t)+
Z t

0
(r(t −x)− r̂(t −x))dF(x) (3.48)

This means that the difference between the approximation and the solution also satis-
fies renewal type equation. Certainly nothing can be said about the functionb, however
if one assumes thatb is directly Riemann integrable then based on the Theorem 2.3.3
the difference between the approximation and the solution converges to

lim
t→∞

(r(t −x)− r̂(t −x)) =
1
µ

Z ∞

0
b(x)dx

6It is non-monotone but it converges to ’zero’, see Figure [?]
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(a) Example renewal and availability functions.
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(b) Actual error between the exact solution and the approximation obtained by TS method.
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Figure 3.14: Example functions for Gamma alternating process withk = 40, m= 1,
λ = 7; the absolute difference between the approximation obtained by TS and the exact
values and error estimation by the BND method. Number of gridpoints usedN = 321,
steady stateSS= 0.975.

This reasoning is of course not strict and may be not true in general, however it gives
some indication why the error in approximating renewal typeintegral equations may
be not increasing. Therefore in practice the usage of increasing bound on error is not
the most efficient method for determining the step size.
In Section 3.3 we have introduced the approximation tor(t) based on the bounds on
r(t). In theory this approach is very valuable regarding the error analysis, however
the practical usage of this error estimation is very limitedand not efficient since the
bounds become wider as time increases and also tey require many points to become
tight. Therefore the error estimation also increases (example bounds on error are pre-
sented in Figure 3.14(c)). Those bounds become tighter as the step size decreases, but
it can be shown by examples that the speed of convergence of the bounds to the solu-
tion with respect to the step size is slow. Figure 3.15 shows the distance between the
upper and lower bound for the renewal and availability functions computed at the last
grid point. The convergence is fast but only in a range≈ [0,1000] points, but even in
this interval the estimated error (or the distance between the bounds) is relatively big.
For instance for availability it is better to use [0,1] as a bound instead of BND method
when less than 400 points is used. Therefore we conclude thatthe usage of bounds as
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Figure 3.15: Distance between the upper and lower bound for the last grid point.

the error estimate is impractical and in most of the situations it is not possible to use
large number of grid points to get such a weak error estimate.

Remark3.5.3. In some situations it is important to predict the component’s availability
only in a short time interval, for instance to estimate the time when will be the first
possible loss of production due to the next unit’s failure. Then the bounds may be used
since on the interval of the first renewal (≈ [0,MTTF+MTTR]) the bounds are very
tight even with small number of grid points.

Remark3.5.4. Let us compare the approximation given by TS method with the bounds
on the availability functionA1. We use the same parameters for the renewal process
as before. Figure 3.16 shows that the approximation given byTS method agrees with
the bounds. It appears that all 500 points on whichA1 is computed are between the
bounds. The calculation of the approximation by TS method took 0.07 second (N =
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Figure 3.16: Comparison of the bounds on the availability with the approximation
obtained by TS method. Number of grid points: for bounds N = 12000 and for TS
method N = 500

500) whereas for bounds it was 34.8 seconds (N = 12000).
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0 < d ≤ 3 3< d ≤ 5 d > 8
max(Ah0

1 −Ah1
1 ) 10−5−10−7 10−7−10−9 10−9 . . .

Table 3.2: Suggestion for the initial step size forA1 with Weibull uptime.

Since it is not possible to find a reasonable error estimate based on the bounds
the only way in which results correct to some prescribed accuracy may be obtained is
to re-solve the original problem recursively each time using a larger value ofN, until
two consecutive sets of approximate function values agree to the required accuracy.
(Usually the value ofN is doubled, that is the steplength is halved, since this enables
previously computed values ofFU+D to be used again.) The question is what should
be the initial step-size so that the number of recursions is small. Certainly the choice
of the initial step size will depend on the problem family andparameters. For instance
Figure 3.14(b) shows that the accuracy for the functionA0 is much smaller compared
to the approximation of the functionA1 on the same grid. We propose the following
choice of the initial step size.
Since usually the uptime is much smaller than down time the influence on the shape of
the function will be mainly by the distribution of uptime. Inour case we are interested
in Weibull up-time. The step size should be determined basedon the shape of the
function; if the function is oscillating then the step-sizeshould be smaller. Let us
first focus on the availability functionA1. When the uptime has Weibull distribution
the amplitude of the oscillation can be modeled by the shape parameterβ, therefore
the choice of the step size should depend on this parameter. On the other hand it
should also depend on the scale of the problem, thus MTTF should also be included.
In the initial choice of the step size one should also have a possibility to control the
accuracy by some input parameter. Letd be some positive real number. Based on the
experiments with functionA1 we propose to use the following choice of the initial step
size

h0 =
MTTF
d2 + β

(3.49)

The variabled is used to specify the desired accuracy for the difference between the
approximation obtained on the grid with steph0 and the approximation obtained on
the gridh1 = h0

2 . Table 3.5.5 presents the relation beteween the parameterd and the
difference in consecutive approximations that was obtained experimentally. It has to
be stressed that this is just the indication of the initial step size and probably based on
more simulations one can find more accurate estimate ofh0.
The step size for functionA0 has to be much smaller than the for functionA1 since
for realistic parametersA0 is changing rapidly from zero to almost one on a very short
interval, see for example Figure. Therefore we suggest the following choice of the
step-size for the initial step forA0

h0 =
MTTR
e2 + β

(3.50)

This is just a suggestion for further investigation.
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Impact of the convolution error on the approximation

So far we have investigated the behavior of the approximation assuming that the the
distribution of the sumUi + Di is known. As it was mentioned in Section 3.5.3 the
time of the computations ofr will depend on the number ofFU+D evaluations (for TS
method it isN + N/2+ K). Next to the time it is also important to investigate the
influence of the error introduced in approximatingFU+D on the overall approximation
obtained by TS method. In this section we will try to answer the following question:
given the required accuracy onr what should be the accuracy for computing the convo-
lution of Ui +Di? In other words how the error introduced in convolution willchange
the approximation.
Let rη(t) denote the approximation to the solution of the renewal integral equation ob-
tained by TS method with convolutionFU+D computed with accuracyη. Figure 3.17
illustrates the influence ofη on the approximation in case of the availability function.
It can be observed that the change ofη by one order of magnitude changes the approx-
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Figure 3.17: The influence of the error in convolution on the availability functionA1,
Weibull-Exponential case.

imation also by one order of magnitude. This suggests that the error in the convolution
is bigger than the error in the approximation ofr. Based on the simulations and com-
parisons the conclusion is that that the convolution shouldbe approximated with the
accuracy at least the same as the desired accuracy forr but not smaller than 10( −6).

3.6 Computing Convolution

All methods for approximating renewal and availability functions require as an input
the distribution of the sum of two random variables. In case of A1 and A0 it is the
convolution of the up and down time, whereas for delayed versions ofA1 andA0 one
also needs to provide the convolution involving a distribution of the time to first event
(for details see Section 2.3). Recall that the distributionof the sum of two non-negative
independent random variables may be written as (we use notation for lifetimes and
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repair times):

FU+D(t) =
Z t

0
FU(t −x)dFD(x) (3.51)

=

Z t

0
FD(t −x)dFU(x) (3.52)

=

Z t

0
FU(t −x) fD(x)dx (3.53)

=
Z t

0
FD(t −x) fU(x)dx (3.54)

Closed form expressions for the convolution are available in only a few special cases.
The closure of the normal and gamma families of CDF’s under convolution is well
known. Other examples are available. From the distributions that are of our interest
only two cases are analytically tractable: exponential-exponential and general lifetime
- constant down time. IfUi andDi are both exponentially distributed with parameters
λ andµ respectively then

FU+D(t) = 1−e−µt +µ

(

e−λt −e−µt

λ−µ

)

(3.55)

This is so calledhypo-exponentialdistribution. It is also easy to show that convolution
of any lifetime distribution with constant leads to shift ofthe distribution. Indeed, if
P(Di = τ) = 1 then

FU+D(t) = P(U +D ≤ t) = P(U ≤ t − τ) =

{

FU(t − τ) t ≥ τ
0 t < τ (3.56)

Remaining cases have to be treated by numerical methods. There are many different
techniques for computing the convolution of two non-negative random variables. First
obvious approach is to computeFU+D(t) by direct numerical integration. Since for
each timet it requires to approximate different integral on the interval [0, t] this method
may be slow. It is also an open question which quadrature ruleshould be used and also
which form of the function is the easiest to integrate. We will discuss it later.
Another approach is via transforms of the density function.If fX is a density function
of a non-negative random variableX then the general transformT of fX can be defined
as

T [ fX(t);s] = E[ea(s)X] =

Z ∞

0
ea(s)t fX(t)dt (3.57)

wherea(s) is some given function. Specific choice of the functiona(s) will determine
the specific transform (ifa(s) = −s thenT is a Laplace transform; ifa(s) = −is then
T becomes a Fourier transform ; ifa(s) = is then T corresponds to characteristic
function). Using independence of up time and down time it is easy to verify that

T [ fU+D(t);s] = E[ea(s)(U1+D1)] = E[ea(s)U1] ·E[ea(s)D1] = T [ fU(t);s] ·T [ fD(t);s]

Therefore in order to compute the convolutionFU+D(t) one can proceed as follows

1. ComputeT [ fU(t);s] ·T [ fD(t);s]
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2. ComputefU+D(t) = T −1[ fU(t);s] ·T [ fD(t);s]

3. ComputeFU+D(t) =
R t

0 fU+D(x)dx

In most situations all three steps have to be approximated numerically. In case of
Weibull distribution the Laplace transform and characteristic function can be expressed
in terms of infinite alternating series. Those representations are presented in Appendix
A. However, from the practical point of view the usage of suchrepresentations is
limited. Mainly there are two reasons for that: 1) the convergence is slow and therefore
the number of summed elements have to be large and 2) it is not possible to determine
a truncation parameter for the summation because the seriesare alternating.

Despite the fact that this method involve many numerical issues related to steps 1
and 2 the main reason why we drop it is step 3. We look for a method that approxi-
matesFU+D(t) but without usingfU+D(t) to avoid additional computational effort, see
discussion in Section 3.4.3.

Another approach for numerical convolution of life distributions was proposed
by Tortorella in [46]. The author proposes simple recursiveformulas for computing
FU+D(t) based on trapezoid and Simpson’s rule for Stieltjes integrals. The method
produce reasonable results for realistic values of parameters and is worth considering.

Another popular method is approximation through discretization of the continuous
distributions. The popularity is attributed to the ease of calculations at the cost of
reduced accuracy. We will present this approach in more details. There are also other
methods for computing convolution but most of them focus on probability density
functions that are not of our interest (see for example [22, 2]).

3.6.1 Direct integration

This is very direct approach however it seems to be reasonable in many cases. The
procedure is based on approximating Riemann integrals of the form (4.7) and (4.10).
Let us first decide which form is easier to integrate based on Weibull - exponential case
(for parametrization of the distributions see Appendix A).From (4.7) we have

FU+D(t) =

Z t

0

(

1−e−((t−x)/α)β
)

µe−µxdx (3.58)

= FD(t)−µ
Z t

0
e−((t−x)/α)β−µxdx (3.59)

and from (4.10)

FU+D(t) =
Z t

0

(

1−e−µ(t−x)
) β

α
(x/α)β−1e−(x/α)β

dx (3.60)

= FU(t)−βα−βe−µt
Z t

0
xβ−1e−(x/α)β+µxdx (3.61)

Thus actually there are four possibilities. Note that integrant in (3.61) does not de-
pendent ont so for eacht we can integrate only increment and add to previous value.
Namely

Z t+dt

0
xβ−1e−(x/α)β+µxdx=

Z t

0
xβ−1e−(x/α)β+µxdx+

Z t+dt

t
xβ−1e−(x/α)β+µxdx
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This is valuable only in theory. Usually life time is much longer than repair time (see
also Section 3.1). For instance we can say that a component which have expected time
to failure MTTF = 3 years needs to be repaired in average for 10 hours (≈ 0.0011
of the year). Withβ = 4 (also realistic value), this corresponds toµ = 876.6 and
α = 3.31. If we take out constants from the integral as in (3.61) thee−µt then we have
to calculate big powers ofeand after integration multiply by very small number. This
leads to numerical problems thus we keep constants under theintegral. Eventually
we have to decide which form of the integrant in equations (3.58), (3.59), (3.60) is
the most convenient for integration. This decision is basedon the experiments with
different parameters. For plotting purposes let us label the integrants

f3.58(x) =
(

1−e−((t−x)/α)β
)

µe−µx

f3.59(x) = e−((t−x)/α)β−µx

f3.60(x) =
(

1−e−µ(t−x)
) β

α(x/α)β−1e−(x/α)β

whereα, β, µ andt are fixed parameters. We also want to investigate the behavior of
these functions for differentt whenα, β, µ are fixed. Figure 3.18 illustrates functions
f3.58, f3.59 and f3.60 for two sets of parameters and differentt. From this Figure it is
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Figure 3.18: Functions for integration in Weibull-exponential case, each line denotes
function for different timet. Parameters for distribution: Graphs on the left:MTTF =
100 [y], MTTR= 2000[h] andβ = 2 what corresponds toα = 112.83 andµ = 4.38.
Graphs on the right:MTTF = 2 [y], MTTR= 24[h] andβ = 8 what corresponds to
α = 2.12 andµ= 365.25.

easy to notice that functionsf3.58, f3.59 are difficult to integrate numerically whereas
the function f3.60 seems to be quite reasonable. It appears that this is not an isolated
case. We checked also other parameters and other distributions and the conclusion is
that for realistic values of parameters where life time is much bigger than lifetime the
best form of the convolution for numerical integration is

FU+D(t) =
Z t

0
FD(t −x) fU(x)dx=

Z t

0
FD(x) fU (t −x)dx
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This information is also important in discrete approach presented in the next section.
Now we need to choose a numerical method for approximating the integral. As it can
be observed on Figure (3.18) smart selection of the points tothe grid for integration
may lead to higher speed and accuracy. Simple trapezoidal rule with equidistant grid
is unacceptable. We propose to use adaptive Simpson’s rule.Details of this method
are precisely described in [21] and also Appendix C.

3.6.2 Discrete approximation and bounds

Recall that the aim is to approximateFU+D(t) = P(U +D ≤ t) for many values oft. It
is possible to approximate continuous convolution by its discrete counterpart. This can
be done for instance in the following way. Let us say that we require value ofFU+D(t).
Choose a grid 0= t0 <,. . . ,< tn = t. Then

FU+D(tn) =
Z tn

0
FT(tn−x)dFU(x)

The above integral can be approximated by

FU+D(tn) ≈
n

∑
k=1

FT(tn− tk)(FU(tk)−FU(tk−1)) =
n

∑
k=1

FT(tn− tk)pk (3.62)

where pk = FU(tk)−FU(tk−1). Equation (3.62) is the discrete approximation of the
continuous convolution. Note that there is no need to discretize two distributions. To
increase the speed of computing this summation one can use socalled Fast Fourier
Transform (FFT). Evaluating these sum directly would takeO(n2) arithmetical opera-
tions. The FFT algorithm computes the same result in onlyO(nlogn) operations. We
stress that the only reason for using FFT method is increasing the speed. Therefore one
can compute the discrete convolutionFU+D(tn) very quickly even for largen. For in-
stance forn = 10000 it takes only 0.5 second to computeFU+D(tn) using FFT, wheras
direct summation takes about 100 times longer. Such long sequences may be required
if the discretization error needs to be decreased. However as it will be seen in Section
3.6.4 the discretization methods have in general limited accuracy.

3.6.3 Newton-Cotes rule for Stieltjes Integrals

In his paper [46] Tortorella develops two Newton-Cotes rules for Stieltjes Integrals
based on trapezoid and Simpson’s rule. We will also use this methods for comparisons.

3.6.4 Comparison

Let us give an example distribution functions that needs to be convoluted. Assume that
Ui ∼Exp(λ) andDi ∼Exp(µ). The realistic parameters that may occur in practice are:
MTTF= 5yearsandMTTR= 48hours. This corresponds toλ = 0.2 andµ= 182.625.
Figure 3.19(a) presents the distributions for this case. Itcan be observed that the
distributions have very different shapes; the distribution of downtime is almost one
when the distribution of uptime is almost zero. This is the main reason why most of
the numerical methods fail to compute the convolution for the realistic parameters with
reasonable accuracy. For realistic parameters the convolution FU+D will be very similar
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3.6 Computing Convolution Overview of concepts and methods

to the distribution ofFU since the downtime is relatively small. This difference forthe
example considered is of order of 10−3 for smallt and decreases to zero ast increases,
see Figure 3.19(b). Usually it is required to compute the availability and renewal
functions on the interval[0, t] for some larget. Let us assume that the availability
function is required on the following grid: 0< h < · · · < mh= 20. Then the values
of the distributionFU+D are required also on the same grid. Figure 3.6.4 presents the
absolute error for approximatingFU+D by the recursive trapeze and Simpson’s methods
and also by the discrete approximation introduced in Section 3.6.2.

We have used 1000 points for the recursive formulas and 10000for discrete ap-
proximation and this results in step sizeh= 0.02 andh= 0.002 respectively. Of course
if the step size is bigger than the region where the the distributionFD is changing then
the approximation will result in the error similar to the difference between theFU and
FU+D. From this figure it can also be observed that in case of the discrete approxi-
mation even the large number of points will not improve the accuracy. Therefore it is
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clear that the uniform grid for computing convolution for realistic values of parameters
is not the best choice. Another problem arises when the grid 0< h < · · · < mh= 20
and the grid on whichFU+D was computed do not match. Then the interpolation is
necessary. It is also not straightforward how to use FFT on the non-uniform grid. Ref
[23], however, presented some approach for computing the convolution using FFT on
non-uniform grids.
It appears that the most suitable approach for computing theconvolution is by using
direct integration introduced in Section 3.6.1. The advantage of this method is that it
approximates the values ofFU+D(t) for everyt independently and also since it is us-
ing adaptive grid it may recognize problematic cases automatically. This method can
easily obtain accuracy of order 10−7 and higher. The error estimation provided by the
method is also reasonable.

3.7 Steady state detection

As it was mentioned in Section 2.3.7 both renewal and availability functions converge
to known asymptotic values. From the computational point ofview it is very important
to investigate the speed of convergence especially when thesolution is oscillatory. By
steady state we mean the first timets after which the function will remain in a distance
less than some givenε from its asymptotic value. The methods that estimate the steady
state can be divided into two groups: 1) computets before calculating the function and
2) compute thets by using the values of the function. Naturally the first methods
are more valuable sincets may be used for choosing a step size in the algorithm for
computing the function.

Let us consider the renewal functionM1R(t) that counts expected number of com-
pleted repairs. According to (2.23) asymptotic expansion in this case is

J(t) := lim
t→∞

M1R(t) =
t

E[U ]+E[D]
− 1

2
+

Var[U ]+Var[D]

2([U ]+E[D])2 , t → ∞

Similarly for corresponding the availability functionA1

A = lim
t→∞

A1(t) =
E[U ]

E[U ]+E[D]

From the numerical point of view it is important to know how rapidly the asymptotic
result is approached. For each function let us define a relative error that measures the
relative distance between the function and asymptotic value

EM(t) =

∣

∣

∣

∣

M1R(t)−J(t)
M1R(t)

∣

∣

∣

∣

andEA(t) =

∣

∣

∣

∣

A1(t)−A
A1(t)

∣

∣

∣

∣

(3.63)

In general it is not possible to findts analytically. However it is known that the rapidity
with which the oscillations will die out depends on the dispersion of the renewal distri-
bution, see [15]. Therefore we want to find some relation between the dispersion of the
distribution and steady state. The simplest measure of the dispersion of a distribution
is acoefficient of variationdefined as

CV =
σ
µ
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whereσ is standard deviation andµ is the first moment of a distribution.

3.7.1 ”Switch-over” point methods

As proposed by [22] or [20] the relation between the CV and thesteady state may
be found experimentally. Both authors suggest the following similar idea for finding
steady state for a renewal function. They propose to use two piece approximations for
the renewal function. First piece is approximated by using some numerical method (ref
[22] uses Pade approximates and ref [20] uses method of Xie [48]) and second piece is
obtained by using linear asymptotic expansion. The point atwhich the method switch
from numerical approximation to linear is called a switch-over point and corresponds
to ts in our interpretation. The procedure for the relation between the CV andts (or
switch over point) is as follows: fix some desired tolerance levelε, specify parameters
to the distribution and computeCV, next compute renewal function for consecutive
t’s until the relative difference between the asymptotic value and computed renewal
function is less thanε. Repeating this procedure for different CV will give a tableof
points(CV, ts). The authors disagree how to choosets for CV that is not in the table.
Ref [22] proposes to use third-order polynomial to interpolate unknown values, how-
ever ref [20] gives a counter example for which the method of [22] is incorrect and by
himself proposes linear interpolation.
The disadvantage of such approaches is that for each distribution and for eachε one
has to have different table. Another difficulty appears withscale parameters of the
distribution. Let us take for instanceWeibull(α,β) to be the renewal distribution. It
is easy to show that in this case CV is independent ofα. Therefore after estimating
the steady statets based on the table one has to scale it by using parameterα (this
not mentioned in the example of [20]). Scaling is not that obvious in case when the
renewal distribution is a convolution of two different distributions.
Recall that in our situation the renewal distribution is theconvolution of up time
and down time distributionFU andFD respectively. If we choose for instanceUi ∼
Weibull(α,β) andDi ∼ Exp(η) then the CV will depend on three parametersCV =
CV(α,β,µ). It easy to find two sets of parameters(α1,β1,η1) and (α2,β2,η2) for
which

CV(α1,β1,η1) ≈CV(α2,β2,η2)

and for which the steady states are different. To exemplify let us take(α1,β1,η1) =
(5.4,5,168/8766) and (α2,β2,η2) = (20.4,5,336/8766) (parametersα and µ have
been scaled by factor of 4 and 2) then in both casesCV ≈ 0.22. But the steady states
are respectivelyts ≈ 96 andts ≈ 383 (computed withε = 10−8). For calculating the
renewal function in this example we have used TS method. It isnot straightforward,
as it is in case of Weibull distribution, how to scale the steady states for the cases with
the same coefficient of variation. Therefore we do not employthose techniques neither
for renewal function nor for the availability function.

3.7.2 Rough estimation

Another much simpler approach for estimating the steady state was proposed by Cox
in [15]. Let as beforeσ andµ denote standard deviation and the first moment of a
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renewal distribution. Then he claims that the following estimation of the steady state
is applicable whenCV ≪ 1

ts =
µ3

σ2 =
µ

CV2 (3.64)

Note that to the contrary with previous approaches the steady state depends not only
on the CV but also onµ (it also includes the information about the scale). Although
(3.64) is a very rough estimate and it does not provide any information about the error
we decide to test it due its simplicity. Let us consider the following example

Example 3.7.1.Assume that Ui ∼ Weibull(α,β) and Di ∼ Exp(η) with MTTF = 5
[years] and MTTR= 3 [days] and β = 5. This corresponds toα = 5.44 and η =
121.75 with CV = 0.23. Steady state estimated in this case by formula (4.1) is ts =
95.76 [years]. Figure 3.21 presents both renewal and availability function computed
on the interval[0, 95.76]. For computation we used method of [47] with absolute
accuracy for computing convolutionεconv = 10−8 and with 1000 grid points. The
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Figure 3.21: Renewal functionM1R(t) and availability functionA1(t) from Example
3.7.1

relative difference between the asymptotic value and the approximation for the last
grid point is

EM(ts) = 6.48·10−8 and EA(ts) = 5.2·10−8

If we increase in the example above the accuracy of computingthe functions (by ei-
ther increasing the accuracy of convolution or by increasing the number of grid points)
then the valuesEM(ts) andEA(ts) become smaller. Similar behavior was observed for
other parameters. This means that the steady state estimated by formula (4.1) may be
too big as compared to desired accuracy. By visual inspection of Figure 3.21 it may
also be observed that the steady state has been reached much earlier than the estima-
tion given by (4.1). In general increasingβ (decreasing discrepancy of the distribution)
increases the value ofts. Figure 3.22 illustrates the relationship betweenβ andts for
Weibull-exponential case with parametersMTTF = 1 [y], MTTR= 1[h]. Also it is an
open question how small should beCV. The conclusion that may be drawn from this
approach is that estimation given by Cox is very simple to usebut from the practical
point of view very often it overestimates the steady-state.The suggestion is that it may
be used as an upper bound for the steady state estimation.
Since above methods are not successful in detecting the steady-state one needs to esti-
mate it numerically.
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Figure 3.22: Relationship between steady statets andβ for Weibull-exponential case
with parametersMTTF = 1 [y], MTTR= 1[h]

3.7.3 Numerical

In case of availability function the speed of convergence may be investigated by look-
ing at extremes. The location of the extremes of the availability functions is not a
trivial task and in practice those extremes have to be detected numerically during the
computations of the function.

3.8 Example availability functions

In this section we give a few examples of the availability functions computed by TS
method. For detailed explanation of the meaning of the function see Section 2.3.

Example 3.8.1.FunctionsA1. This function gives the probability that a component is
functioning at time t in the future given that today, at time t= 0, it has been put into
operation. This function is the most often used in the availability studies, especially in
the designing phase where the components are assumed to be new. Figures 3.23 and
3.24 illustrate example functions for the case when the uptime has Weibull distribution
and downtime is either exponential or lognormal. Parameters for each case are given
above the plots: MTTF (mean time to failure in years), MTTR (mean time to repair in
hours),β shape parameter for Weibull distribution, SS – steady stateavailability, N –
number of grid points used, step – corresponding step-size in days, time – elapsed time
for computing the function including computing convolution, εconv – accuracy used for
computing convolution.
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Figure 3.23: Example availability functionsA1 for Weibull-Exponential case.
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Figure 3.24: Example availability functionsA1 for Weibull-Lognormal case.
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Example 3.8.2. FunctionsA0. This function gives the probability that a component
is functioning at time t in the future given that today, at time t = 0, the repair has
just started. Since usually the repair times are much smaller compared to life times
function A0 will be rapidly increasing for small t. From Figure 3.25 it can be observed
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Figure 3.25: Example availability functionsA0 for Weibull-Exponential case.

that much finer grid is required in case A0 than A1. Sometimes when the step size is
too big the function may not converge to steady state.

Example 3.8.3.FunctionsAD
1 . Remind that AD1 is a delayed version of A1 and corre-

sponds to the situation in which a component is already functioning for x units of time
at t = 0. In practice this function is used more often in the operation stage rather than
in the design since it incorporates the age of a component. Figure 3.26 illustrates few
examples of functions AD

1 . As it can be observed the function AD
1 may be significantly

different from A1. Each graph presents two functions with the same set of parame-
ters but with different age of the component. For instance plot 3.26(a) illustrates the
availability of the two components that are 4 and 8 -year old.In general, the compu-
tation of AD

1 is more expensive than A1 since it requires additionally the calculation of
the convolution of the remaining lifetime distribution with the repair distribution. The
times shown on the Figures are for one function.

Example 3.8.4. FunctionsAD
0 . As mentioned in Section 2.3.6 function AD

0 has two
applications: (1) it models the availability of a componentthat is in repair for y time
units at t= 0 and (2) it can be used to model a planned maintenance with variable
duration that has different distribution than usual repairtimes. Figure 3.27 illustrates
two functions APM for which the maintenance time is assumed to be exponential with
mean PM.MTTR.

In case when the down time is exponentially distributed the remaining repair has
again exponential distribution with the same parameter (memoryless property), there-
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Figure 3.26: Example availability functionsAD
1 for Weibull-Exponential case.
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(a) APM for Weibull-Exponential
case with exponential mainte-
nance.
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Exponential case with ex-
ponential maintenance.
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Figure 3.27: Example availability functionsAPM andAD
0 .

fore A0(t) = AD
0 (t) for all t. Figure 3.27(c) presents the function AD

0 in case when the
repair time has lognormal distribution with MTTR=20 days for two different times of
the repair in progress: 4 days (blue) and for 15 days (red).

Example 3.8.5. Figure 3.28 illustrates some availability functions for not realistic
parameters.
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Figure 3.28: Example availability functions for not realistic parameters.
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3.9 Influence of the repair distribution on the availability
function

Since in practice the repair time is much smaller as comparedto the lifetime of a com-
ponent it is important to check how the distribution of the repair time influences the
availability function. In this section we investigate the difference between the avail-
ability functionsA1 for the case when the lifetime has Weibull distribution and when
the repair times are either exponential or constant. From the computational point of
view it is important to make this sort of comparison since in case when the down time
is constant there is no need to approximate the distributionof Ui +Di (see Section 3.6
for details).
It is clear that when the steady state (SS) availability is high then the repair time is rel-
atively small compared to the lifetime (see (2.54)). And if the repair time is small then
the influence on the (availability) function will also be small. Therefore we compare
the difference between the availability functions for exponential and constant repair
times for three different steady states: 0.95, 0.97 and 0.999. It also appears that this
difference depends on the shape of the function itself. In this case, the shape of the
availability function may be modeled byβ (shape parameter for the Weibull distribu-
tion). We decide to compare the difference forβ = 2,8,15. Results are presented on
Figures 3.29, 3.30 and 3.31. All functions were computed on the grid withN = 300
points and for computing the convolution of up and down time in exponential case the
accuracy of 10−9 was used. Upper plots in the those figures illustrate the availability
functions with the up time being Weibull and with the downtime being constant and
exponential. The length of the down time for the constant case equals to the MTTR for
of the exponential downtime. This match will assure that both functions will converge
to the same steady state. Lower plots present the differencebetween corresponding
availability functions. In general, behavior of the availability functions is similar and
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Figure 3.29: Comparison of the availability function for different repair times: steady
state 0.95

the difference becomes more significant when the function isoscillating. On Figure
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3.29 we observe that the error in using constant repair time instead of exponential
one is of order 10−3 for non oscillatory behavior and increases to 10−2 for case when
β = 15. This error decreases to zero as the functions converge tothe steady state.
When the steady state is higher the error becomes smaller. For instance forSS= 0.999
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Figure 3.30: Comparison of the availability function for different repair times: steady
state 0.97

the difference between the availability functions ranges from 10−7 to 10−5 depending
on their shape. The conclusions that may be drawn from this investigations are:
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Figure 3.31: Comparison of the availability function for different repair times: steady
state 0.999

1. The availability functions with high steady states are slightly affected by the
distribution of down time.

2. For the realistic cases with small oscillations the difference between the avail-
ability functions with constant and exponential repair time ranges from 10−3 to
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10−7. Therefore if the accuracy of at least three digits is required the constant
repair time may be used instead of the exponential one. If more digits are re-
quired then it is also possible to change the distributions of downtime but only
for higher steady states.

3. For the high steady states (≈ 0.999) the difference between the availability func-
tions with exponential and repair down times is negligible.

76



Chapter 4

Grace Period

This chapter presents a new approach for modeling the availability of a component in
a situation when some failures are not visible.

4.1 Introduction

In practice we encounter the following situation. A component is put into operation at
time t0, when it fails it is repaired for some random time. If it takesa short time (less
thanx hours) to fix a failure, production can continue. If repair takes long, production
has to cease afterx hours. Thex hours is calledgrace period. Similarly as before repair
brings the component to the state ”as good as new”. The aim is to model production
losses that are reflected only in ”long” repairs. We introduce new state variable that
represents the state (level) of production at timet

Y(t) =

{

1 if production can continue at timet
0 otherwise

As before we assume that up-times(Ui, i = 1,2, . . . ) are independent and identically
distributed with distributionFU = P(Ui ≤ t) and similarly down-times(Di, i = 1,2, . . . )
are independent with common distributionFD = P(Di ≤ t). Previously we assumed
thatUi andDi are independent, however in this chapter we also allow thosevariables
to be dependent. Example realization of the processY(t) is presented in Figure 4.1. Let

Figure 4.1: Example realization of processY(t)

Lx denote the length of the first production time of a component with grace periodx. Of
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course the second production time will be different, however based on the assumption
of independence and perfect repairs it will have the same distribution. Thus indexing
of Lx is omitted to keep the notation clearer. It is easy to note that the new down-time
is stochastically equal toD1−x. The aim of this chapter is to find the expected value
and the distribution of the new down-timeLx.

Before the mathematical formulation of the problem is givenwe present some
examples of situations that may occur in practice and are related to the grace period:

• Back-up electricity systems (sometimes called an Uninterruptible Power Supply
(UPS)). If there is a failure of power supply in a computer center the processes on
the computers can continue with the back-up electricity system for fixed number
of hours. If restoration of power takes longer than the time the back-up system
caters for the production stops and failure is visible. The maximal possible
working time of the back-up system is the grace period.

• Flaring Allowance. In the oil industry flaring is used for burning off unwanted
gas and liquids released by pressure relief valves during unplanned over-pressuring
of plant equipment. Its primary purpose is to act as a safety device to protect ves-
sels or pipes from over-pressuring. The allowed flaring timeis restricted by the
government regulations and varies from country to country.Therefore, when
flaring occurs (due to the failure of some equipment, for instance a compression
unit in a small side stream ) the main production may still continue as long as
the flaring allowance is not exceeded. The flaring allowance time is the grace
period.

• Separation. One of the first stages of raw gas processing is water and condensate
removal. Those substances have to be separated in order to process the conden-
sate later on in a refinery. If separation of water and condensate is not possible
due to failure of a separation unit, the substance can be sendto an off-spec tank.
The task of the tank is to keep the unseparated substance until the failure of the
separation unit is fixed and there is some spare capacity to process additional
substance from the tank. Production has to stop when during the repair of the
separation unit the off-spec tank becomes full. The grace period in this case
is the maximal time that the tank can take the substance before it is full. Note
that if the failure of the separation unit occurs when the tank is not completely
empty the grace period will be different and it should be established based on
the capacity of the tank and its present fill.

From the practical point of view it is very important to modelthe availability of produc-
tion. Note that in these situations the availability of a component is different than the
availability of production because the component may be down and production may
still continue. Therefore there is a need to develop mathematical model that allows to
calculate the availability of production taking into account the grace period.

We use the same notation for up-times and down-times as in previous chapters.
Let {Ui , i = 1,2, . . .} be the sequence of independent and identically distributed

lifetimes having common distributionFU , similarly let {Di , i = 1,2, . . .} be the se-
quence of independent and identically distributed repair times having common distri-
butionFD.
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Let Sn denote the partial sum

Sn =
n

∑
i=1

(Ui +Di)

ThenLx is the sum of up-times and down-times for which consecutive repair times are
smaller thanx. During the first repair time that is greater thanx the production can still
continue forx time units thereforex has to be included inLx as well. Hence we have
that

Lx = Sn−1 +Un+x ⇔ D1 ≤ x,D2 ≤ x, . . . ,Dn−1 ≤ x,Dn > x (4.1)

FurthermoreLx can be written as

Lx =
∞

∑
n=1

(Sn−1 +Un+x)1{D1≤x,...,Dn−1≤x,Dn>x} (4.2)

and sinceDi are independent

Lx =
∞

∑
n=1

(Sn−1 +Un+x)1{D1≤x} · · · · ·1{Dn−1≤x}1{Dn>x} (4.3)

4.2 Independent case

4.2.1 Expected value

Using representation (4.3) the expected value ofL can be written as

E[Lx] =
∞

∑
n=1

(

E
[

(Sn−1 +Un+x)1{D1≤x} · · · · ·1{Dn−1≤x}1{Dn>x}
])

=
∞

∑
n=1

(

E

[

n−1

∑
i=1

(Di +Ui)1{D1≤x} . . .1{Dn−1≤x}1{Dn>x}

]

+E
[

(Un +x)1{D1≤x} . . .1{Dn−1≤x}1{Dn>x}
]

)

(4.4)

Due to independence ofDi ’s and independence ofUi andDi first expectation in above
expression is

n−1

∑
i=1

(

E
[

Di1{Di≤x}
]

E

[

n−1

∏
j=1 j 6=i

1{D j≤x}

]

·E
[

1{Dn>x}
]

+E[Ui]E

[

n−1

∏
j=1

1{D j≤x}

]

·E
[

1{Dn>x}
]

)

Similarly the second expectation in (4.4) can be written as

(E[Un]+x)E

[

n−1

∏
j=1

1{D j≤x}

]

·E
[

1{Dn≥x}
]

Since the valuesE[1{Di≤x}] = P(Di ≤ x) andE[1{Di>x}] = P(Di > x) are independent
on i we have that the expected value ofL equals to

E[Lx] =
∞

∑
n=1

[

(n−1)
(

E
[

D11{D1≤x}
]

P(D1 ≤ x)n−2P(D1 > x)+E[Un]P(D1 ≤ x)n−1P(D1 > x)
)

+ (E[Un]+x)P(D1 ≤ x)n−1P(D1 > x)
]

79



4.2 Independent case Grace Period

and after rearranging and using the fact thatE[Un] is independent onn

E[Lx] =
[

E
[

D11{D1≤x}
]

P(D1 > x)+E[U1]P(D1 ≤ x)P(D1 > x)
]

∞

∑
n=1

(n−1)P(D1 ≤ x)n−2

+(E[U1]+x)P(D1 > x)
∞

∑
n=1

P(D1 ≤ x)n−1

Since|P(D1 ≤ x)|< 1 both series in above expression are absolutely convergent, hence

∞

∑
n=1

P(D1 ≤ x)n−1 =
1

1−P(D1 ≤ x)

and

∞

∑
n=1

(n−1)P(D1 ≤ x)n−2 =
d

dP(D1 ≤ x)

(

∞

∑
n=1

P(D1 ≤ x)n−1

)

=
1

[1−P(D1 ≤ x)]2

Therefore

E[Lx] =
(

P(D1 > x)E
[

D11{D1≤x}
]

+E[U1]P(D1 ≤ x)P(D1 > x)
) 1

(1−P(D1 ≤ x))2

+(E[U1]+x)P(D1 > x)
1

1−P(D1 ≤ x)

Using the fact thatP(D1 > x) = 1−P(D1 ≤ x) above expression may be simplified to

E[Lx] =
E
[

D11{D1≤x}
]

+E[U1]P(D1 ≤ x)+ (E[U1]+x)P(D1 > x)

1−P(D1 ≤ x)
(4.5)

where

E
[

D11{D1≤x}
]

=

Z x

0
zdFD(z). (4.6)

Note that if there is no grace period i.e.x = 0 then

E[L0] = E[T1]

also ifx→ ∞ then

lim
x→∞

E[Lx] = lim
x→∞

(

2E[D1]

1−P(D1 ≤ x)
+E[D1]+x

)

= ∞

as expected. In principle formula (4.5) allows to compute the expected value of pro-
duction time including grace period for any choice of distributions ofFU andFD that
have finite first moment and support on[0,∞] (other distributions are not interesting in
reliability modeling).
We copmare formula (4.5) with a simulation. As a test case we choose exponential dis-
tributions for both up-time and down-time, i.e.FU(t) = 1−e−λt andFD(t) = 1−e−µt.
ThenE(U1) = 1/λ andE(D1) = 1/µ. The integral in (4.6) equals to

E
[

D11{D1<x}
]

=
Z x

0
µze−uzdz=

1−e−µx−e−µxxµ
u
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Substituting in (4.5) we have that for exponential-exponential case the expected pro-
duction time including grace periodx is

E[Lx] =
λ+µ−λe−µx

λµe−µx =
λ+µ
λµ

eµ x− 1
µ

(4.7)

The simulation is based on random sampling of the productiontimeLx and comparing
mean from the sample with the formula (4.5). The following parameters were used
for the simulation:λ = 0.2, µ = 1, x = 1, and henceE[T1] = 5. Using formula (4.5)
we obtain thatE[L] = 15.3097. Figure 4.2 presents the estimated mean from samples
with different size. We observe that results obtained from simulation agree with the
theoretical value. Note that due to the grace period of length 1 mean production time

0 2 4 6 8 10 12 14 16

x 10
4

15.25

15.3

15.35

15.4

15.45

15.5

15.55

15.6

15.65

15.7

Number of samples

M
ea

n

 

 
Simulation
Theoretical

Figure 4.2: Comparison of the formula forE[Lx] with simulation. Independent, expo-
nential case.

has been extended from 5 to 15.3097. From the practical pointof view it is important
to know how the the extension of the grace period influences the mean production
time. In this case the expected production time grows exponentially with respect to
the grace period, see (4.7). In order to investigate this relationship let us consider
an example with more realistic parameters. Let MTTF=5 years and MTTR=3 days.
This corresponds toλ = 1/5, µ= 8766/(24·3). Figure 4.3 illustrates the relationship
between the grace period and the expected production time for these parameters. This
example shows that it is very important to introduce grace periods and were possible
to extend them. For instance in this case introduction of thegrace period of length 10
hours leads to the extension of the expected production timeof almost 1 year!

4.2.2 The Distribution

As expected the distribution ofLx is much more difficult to obtain as compared to ex-
pected value. However it is not impossible. In this section we use technique of Laplace
transforms that allows us to find the transform of the probability density function. Let
fLx(t) denotes the probability density function of the variableLx and let f ∗Lx

(s) denotes
its Laplace transform.
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Figure 4.3: Relationship between the grace period and production time. Independent,
exponential case.

Then we can write

f ∗Lx
(s) = E[e−sLx] =

∞

∑
n=1

E[e−s(Sn−1+Un+x);D1 ≤ x, . . . ,Dn−1 ≤ x,Dn > x] (4.8)

=
∞

∑
n=1

E

[

exp

(

−s
n

∑
i=1

Ui −s
n−1

∑
j=1

D j −sx

)

;D1 ≤ x, . . . ,Dn−1 ≤ x,Dn > x

]

(4.9)

by independence ofUi andDi we have that

= e−sx
∞

∑
n=1

E
[

e−sU1
]n

E

[

exp

(

−s
n−1

∑
j=1

D j

)

;D1 ≤ x, . . . ,Dn−1 ≤ x,Dn > x

]

= e−sx
∞

∑
n=1

E
[

e−sU1
]n

E
[

e−sD1 ·1{D1≤x}
]n−1

P(D1 > x)

= e−sxE
[

e−sU1
]

P(D1 > x)
∞

∑
n=1

(

E
[

e−sU1
]

E
[

e−sD1 ·1{D1≤x}
])n−1

(4.10)

where in second line we used the independence ofDi ’s. For any positive random vari-
ableX and reals> 0 it holds that|e−sX|< 1, this implies thatE[|e−sX|] < 1 from which
it follows that |E[e−sX]| < 1. Therefore the series in expression (4.10) is convergent
and

∞

∑
n=1

(

E
[

e−sU1
]

E
[

e−sD1 ·1{D1≤x}
])n−1

=
1

1−E [e−sU1]E
[

e−sD1 ·1{D1≤x}
]

Then the Laplace transform of the density functionfL(t) becomes

f ∗Lx
(s) =

e−sxP(D1 > x)E
[

e−sU1
]

1−E [e−sU1]E
[

e−sD1 ·1{D1≤x}
] (4.11)

or

f ∗Lx
(s) =

e−sxP(D1 > x) f ∗U (s)

1− f ∗U(s)E
[

e−sD1 ·1{D1≤x}
] (4.12)

82



Grace Period 4.2 Independent case

where f ∗U(s) denotes the Laplace transform of the up-time density. Expression (3.59),
at least in principle, may be inverted for any choice of up- and down-time distributions
and fL(t) may be found.
Assume again that thatUi andDi have both exponential distribution with parametersλ
andµ respectively. Then it is easy to show that

f ∗U(s) = E(e−sU1) =
λ

λ+s

and

E
[

e−sD1 ·1{D1≤x}
]

=

Z x

0
e−szfD(z)dz= µ

Z x

0
e−sz−µzdz=

µ
µ+s

(

1−e−x(s+µ)
)

Substituting in formula (3.59) and simplifying we obtain that the the Laplace transform
of density functionfLx(t) for exponential case becomes

f ∗L (s) = e−x(s+µ) λ(µ+s)

λs+µs+s2 +µλe−x(s+µ)
(4.13)

Unfortunately it is not straightforward how to invert aboveexpression because it is
not a fraction of polynomials for which analytical expression may always be found.
However again we choose to compare obtained results with a simulation. Using the
same parameters as for the simulation in previous section wesampled random variable
Lx 19200 times. Now the empirical estimation of the density from this sample is
compared to the numerical inversion of expression (3.60). For numerical inversion of
the Laplace transform we used Euler method, see e.g. [1] On Figure 4.4 we observe
that results are coherent.
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Figure 4.4: Comparison of the numerical inversion of equation (3.60) with empirical
density.

Remark4.2.1. Note that in general the support offLx(t) is [x,∞]. This is due to the fact
that production time will be at least equal to the grace period.

Remark4.2.2. We want to investigate the behavior of limt→x+ fLx(t). It is known
that for any continuous functionf that have support on[0,∞] it holds limt→0+ f (t) =
lims→∞ s f∗(s), see e.g. [43]. Note thatfLx(t +x) have support on[0,∞] and

lim
t→0+

fLx(t +x) = lim
t→x+

fLx(t)
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4.2 Independent case Grace Period

The Laplace transform offLx(t +x) is

L [ fLx(t +x)] =

Z ∞

0
fLx(t +x)e−std t =

Z ∞

x
fLx(z)e

−s(z−x)d z

= esx
Z ∞

x
fLx(z)e

−szd z= esx
Z ∞

0
fLx(z)e

−szd z

= esxf ∗Lx
(s)

Therefore in exponential case

lim
t→x+

fLx(t) = lim
s→∞

sesx f ∗Lx
(s)

= lim
s→∞

(

se−xµ λ(µ+s)

λs+µs+s2+µλe−x(s+µ)

)

= lim
s→∞

(

e−xµ λ
λ
s +1

· 1

1− λ
λ+s ·

µ
µ+s

(

1−e−x(s+µ)
)

)

= λe−xµ

Remark4.2.3. Since[λe−xµ]−1 6= E[Lx] from the possible candidates to the distribution
of Lx we have to exclude exponential distribution (in fact shifted exponential) for which
E[X] = 1/ limt→0 fX(t).

Remark4.2.4. Best candidate for the distribution. This remark has nothing to do with
Laplace transforms. The candidate that fits the data the best(in maximum Likelihood
sense) is Generalized Pareto distribution. Figure 4.5 presents the fit.
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Figure 4.5: Generalized Pareto distribution as the best fit to data. Independent, expo-
nential case.

Recall that Generalized Pareto distribution is a three parameter parameter family
with the density

f (t) =

(

1
σ

)(

1+k
t −θ

σ

)−1− 1
k

for θ < t, whenk > 0, or forθ < x < −σ/k whenk < 0. Maximum likelihood estima-
tion gave the following values of the parameters:

k = −0.00188266, σ = 14.2924
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Grace Period 4.3 Dependent case

where the threshold parameterθ was specified to be equal to the grace period, in this
caseθ = 1. It is interesting that in the limitk→ 0 the density becomes

f (t) =

(

1
σ

)

e−
t−θ

σ

which is PDF of shifted exponentially distributed random variable. However as it was
noticed in Remark 4.2.3 an exponential distribution is not allowed.

4.3 Dependent case

In this section we loose the assumption about the independence of up- and down-times
in a cycle and allowUi andDi to be dependent. This assumption is far more realistic.
First remark about the dependence structure betweenUi andDi is that they are expected
to be positively correlated. Equipment that that has long time to failure requires long
repair times. Another obvious relation is that usually lifetime is much bigger than
repair time. One of the main aims of the equipment designers is to provide highly
reliable components that can be repaired or replaced in a very short time as compared
to the expected time to failure. These kind of dependencies may be, at least partially,
modeled by suitable choice of the parameters to the distributions. However another
example that occurs very often in practice cannot be treatedby in that way. Consider
a unit, say a pump in a plant, that operates 24 hours per day. The plant operates
mainly during the day. When the pump fails during night shiftthe repair time may be
much longer than during the normal working hours. From the mathematical point of
view dependent case does not introduce any additional difficulties with deriving the
formulas for the expected production time and its distribution.

4.3.1 Expected Value

Starting from representation (4.4) we have that expected production time with grace
periodx is

E[Lx] =
∞

∑
n=1

(

E

[

n−1

∑
i=1

(Di +Ui)1{D1≤x} . . .1{Dn−1≤x}1{Dn>x}

]

+E
[

(Un +x)1{D1≤x} . . .1{Dn−1≤x}1{Dn>x}
]

)

Due to independence ofUi ’s first expectation in above expression may be written as

n−1

∑
i=1

(

(

E[Di1{Di≤x}]+E[Ui1{Di≤x}]
)

n−1

∏
j=1 j 6=i

E[1{D j≤x}]E[1{Dn>x}]

)

Similarly the second expectation is
(

E[Un1{Dn>x}]+xE[1{Dn>x}]
)

1{D1≤x} . . .1{Dn−1≤x}

Using again the fact thatUi ’s are identically distributed we have that the expected value
of Lx can be expressed as

E[Lx] =
∞

∑
n=1

[

(n−1)
(

E[D11{D1≤x}]+E[U11{D1≤x}]
)

P(D1 ≤ x)n−2P(D1 > x)

+
(

E[Un1{Dn>x}]+xE[1{Dn>x}]
)

P(D1 ≤ x)n−1]
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4.3 Dependent case Grace Period

We recognize the same infinite sums as in independent case, thus after doing some
algebra we obtain that the expected production time with grace periodx in dependent
case is

E[Lx] =
E[D11{D1≤x}]+E[U11{D1≤x}]+E[U11{D1>x}]+xP(D1 > x)

1−P(D1 < x)
(4.14)

Note that ifUi andDi, i = 1,2, . . . are independent then

E[Lx] =
E[D11{D1≤x}]+E[U1]P(D1 ≤ x)+E[U1]P(D1 > x)+xP(D1 > x)

1−P(D1 < x)

and we obtain formula (4.5).

4.3.2 The Distribution

Starting from representation (4.8) we have that the Laplacetransform ofLx is

f ∗Lx
(s) =

∞

∑
n=1

E

[

exp

(

−s
n−1

∑
i=1

(Ui +Di)−sUn−sx

)

;D1 ≤ x, . . . ,Dn−1 ≤ x,Dn > x

]

Due to independence ofUi ’s above expression may be written as

f ∗Lx
(s) = e−sx

∞

∑
n=1

E

[

exp

(

−s
n−1

∑
i=1

(Ui +Di)

)

1{D1≤x} . . .1{Dn−1≤x}

]

E[e−sUn1{Dn>x}]

= e−sx
∞

∑
n=1

E
[

exp(−s(U1 +D1))1{D1≤x}
]n−1

E[e−sUn1{Dn>x}]

Using the same argument about the convergance as in independent case we obtain that
the Laplace transform offLx is

f ∗Lx
(s) =

e−sxE[e−sUn1{Dn>x}]

1−E[e−s(U1+D1)1{Dn≤x}]
(4.15)

which in case whenUi and Di , i = 1,2, . . . are independent reduces to the formula
(3.59) for independent case. The expected value in the denominator, for non-negative
random variables with the support[0,∞], is

E[e−s(U1+D1)1{Dn≤x}] =
Z x

0

Z ∞

0
fUD(u,v)dudv

where fUD(u,v) denotes the joint probability density function of variablesUi andDi.

Remark4.3.1. Particle Counter Models. A counter is a device for detectingand regis-
tering radioactive particles. In general counters are imperfect and incapable of detect-
ing all particles. After a particle is registered a counter must renew itself in preparation
for next arrival. This time is called locked time. Two important classes of counting
devices are two Type I and Type II counters.Counters of Type I: an arriving particle
which finds the counter free gets registered and locks it for atime of lengthτ. Arrivals
during locked period have no effect.Counters of Type II: an arrival particle during
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Grace Period 4.3 Dependent case

the locked period does not get registered, but it extends thelocked period so that the
counter remains locked untilτ units from that arrival. Length of locking periodτ is as-
sumed to be random. More detailed description of these counter models may be found
in [?, 12]. Some possible deviations from such models are presented in [37]. A possi-
ble interpretation of the grace period in terms of those models is difficult. The closest
is Type II counter model where the length of locking time depends on the number of
particles arrived during the locked period and their locking times as it is in case with
the grace period where production time depends on the numberand length of up-times.
However based on the literature research in this area we claim that no similar model
as the grace period was developed.
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Chapter 5

Conclusions

The theory of renewal processes has proven to be very useful in the context of appli-
cability to the reliability modeling. Although the theory is rather simple and much
research has been done in the last century there is still an open space for new models
that can capture the reality more efficiently.

This thesis presents a complete framework for modeling the performance of a com-
ponent based on its life and repair time distributions by using so called – availability
functions. The advantage of the proposed approach is that itcan be used to model the
availability of a component taking into account its presentstate. The four functions
developed for this reason are:

• A1(t) the component is new at timet0

• A0(t) the repair of the component has just started att0

• AD
1 (t) the component is functioning forx time units at timet0

• AD
0 (t) the component is in repair fory time units at timet0

Additionally, the functionAD
0 (t) can be applied to model the availability of a compo-

nent including maintenance schedules. This characterization is complete and gives a
possibility to model any situation that may arise in practice. The examples given in
Section show that there is a significant difference betweenA1(t) andA1(t)D, and their
interchangeable usage is not suggested. A common practice in modeling the availabil-
ity of a component that isx year-old, is to shift the functionA1(t) by x years and use it
instead ofAD

1 (t). However, this approach is not suggested, especially in case when the
components are quite old since then the availability may drop much lower than in case
when the method with shifting is used (see Figure 3.26(b)). The difference between the
functionsA0(t) andAD

0 (t) is less significant and sometimes shifted functionA0(t) may
be used instead ofAD

0 (t), but this will depend on the repair time distribution. In gen-
eral, however, the all four functions are used to model different situations and none of
them should be omitted in the complete availability study. The state diagram presented
in Appendix E illustrates the order in which those functionsshould be computed.
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Conclusions

From the practical point of view it was relevant to find a method that is able to
compute those functions with high accuracy and also within areasonable time. This re-
quirement has been met by using a combination of the adaptivequadrature for comput-
ing convolution together with TS method for numerical approximation of the renewal-
type integral equation. The main criterion of the selectionwas the overall performance
on many test problems that may arise in practice (not two or three examples like it is
commonly practiced in literature). The accuracy of the approximation depends on two
factors: error for computing convolution and the choice of the step-size used in the
algorithm. Results show that in most of the cases with functionsA1, AD

1 the accuracy
for convolution of order 10−7−10−9 is sufficient. For functions that starts from zero
A0, AD

0 the error in convolution can be of the same order but the step size for the main
algorithm needs to be much smaller than in case of functionsA1, AD

1 . The speed of
calculations is mainly affected by the time spent for computing the convolution and
one may search for an additional improvement in this direction.

One of the most important aspect from the computational point of view is the
steady state detection, that is the time after which the function will remain in some
specified distance from its asymptotic value. It is not trivial to find a good estimation
of the steady state before performing computations. The numerical investigation of
the extremes, however, is a reasonable choice. The researchin this direction would be
extremely important with regards to applications (the location of low and high levels
of production is crucial in the availability studies).

This research also showed that methods with bounds are not very useful from the
practical point of view since they require too many grid points to be accurate, what
is unacceptable when the convolution has to be approximated. However, there is an
exception from this rule. The bounds for the availability and renewal functions may be
used for short term predictions, usually up to timet for which t ≈ MTTF+MTTR. In
this situations the bounds are tight, even with small numberof grid points.

We also claim that the methods based on the density function,like Volterra inte-
gral equation, are less applicable for real time calculations since they are too slow.
Nevertheless if the high accuracy is required and the speed is not important one can
use for instance RK-4 method that is able to produce very accurate results for either
availability and renewal functions.

The availability functions for Gamma renewal alternating process, that were de-
rived for the testing purposes, may also be used in practice instead of Weibull-Exponential
case. The main advantage of using Gamma process is the simplicity in specifying the
parameters for the distributions. It is very intuitive and requires only to answer the
question: how many times the life time is bigger than the repair time? When the data
is missing and there is not much known about the failure and repair mechanisms, the
answer to this question may be the only one way to characterize a component and
predict its availability.

It was also shown that the grace periods have a very importantimpact on the pro-
duction time. For instance in case of exponentially distributed up and down times the
the productions grows exponentially with respect to the grace period. Nevertheless
the research in this area, especially with regards to distributions of the new production
time, is still needed.
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Appendix A

The Distributions

Below we present the characteristics of the distributions that are used in this report.
Let X be a random variable. We specify the distribution ofX by either density or
cumulative distribution function.

1. Exponential Distribution. The probability density function of an exponential
distribution has the form

f (x) =

{

λe−λx , x≥ 0,
0 , x < 0.

whereλ > 0 is a parameter of the distribution, often called the rate parameter.
The distribution is supported on the interval[0,∞). The cumulative distribution
function is given by

F(x) =

{

1−e−λx , x≥ 0,
0 , x < 0.

2. Weibull Distribution. The probability density functionis:

f (x) =
β
α

( x
α

)β−1
e−(x/α)β

for x > 0 and f (x) = 0 for x≤ 0, whereβ > 0 is the shape parameter andα > 0
is the scale parameter of the distribution. The cumulative distribution function
for is

F(x) = 1−e−(x/α)β

for x≥ 0, andF(x) = 0 for x < 0. The characteristic function of Weibull distri-
bution is (see [32])

Φ(s) = 1+
∞

∑
r=0

(isα)r+1

r!β
·Γ
(

r +1
β

)

The Laplace transform of Weibull distribution is (see??)

f ∗(s) =
∞

∑
r=0

(−1)r (sα)r

r!
·Γ
(

r
β

+1

)
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The Distributions

3. Lognormal Distribution. The lognormal distribution hasthe probability density
function

f (x) =
1

xσ
√

2π
e−

(ln(x)−µ)2

2σ2

where−∞ < µ< ∞ andσ > 0. Expectation and variance are

E(X) = eµ+σ2/2 Var(X) = (eσ2−1)e2µ+σ2
.

We remark that there is no closed form for the cumulative distribution function
for lognormally distributed random variable and its CDF hasto be approximated
(the most common approximation is in terms of error function).

4. Constant Distribution. The CDF of this discrete distribution is

F(x) =

{

1 , x≥ τ,
0 , x≤ τ.

5. Gamma Distribution. That a random variableX is gamma-distributed with scale
λ and shapek if its PDF can be expressed as

f (x) =

{

λ
(k−1)! (λx)k−1e−λx , x≥ 0,

0 , x < 0.

Similarly as in lognormal case the CDF has to b approximated.

6. Remaining Life Time distribution. Of our interest is the distribution of the re-
maining life time of a component given that it is in operationfor x time units. Let
T be a random variable with distributionFT(t) and letFTx(t) denotes the proba-
bility that the component will fail in timet +x given that it was in operation for
x time units. Then

1−FTx(t) = P(T > t +x|T > x) =
P(T > t +x,T > x)

P(T > x)
=

P(T > t +x)
P(T > x)

.

therefore

FTx(t) = 1− 1−FT(t +x)
1−FT(x)

.

In principle this distribution may be found for any choice ofFT . For instance, if
FT is Weibull distribution then

FT(t) = 1−e−( t
α)

β
.

It follows that

P(T > t +x)
P(T > x)

=
e−( t+x

α )
β

e−( x
α)

β = exp

[

−
(

t +x
α

)β
+
( x

α

)β
]

thus

FTx(t) = 1−exp

[

−
(

t +x
α

)β
+
( x

α

)β
]
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The Distributions

SinceFTx(t) correpsonds to a continuous random variable it has a density. By
simple differentiation we obtain that

fTx(t) =

(

t +x
α

)β
βe−( t+x

α )
β
+( x

α)
β

(t +x)−1
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Appendix B

Laplace Transforms

Suppose thatf (x) is a function that is defined on the interval(0,∞). The Laplace
transform f ∗(s) of the function f (t) is defined by

f ∗(s) =
Z ∞

0
e−st f (t)dt

wheres is a real number. It is convenient sometimes to use the alternative notation

L [ f (t)] = f ∗(s)

Not all functions have a Laplace transform, for instance iff (t) = et2
the integral di-

verges for all values ofs. When f (t) is the probability density function of a nonnega-
tive random variableX, the Laplace transform off (t) is seen to be equal the expected
value of the random variablee−sX:

E[e−sX] =
Z ∞

0
e−st f (t)dt = f ∗(s)

The function f (t) us called the inverse Laplace transform off ∗(s), and is written

f (t) = L
−1[ f ∗(s)]

As an example, consider the exponential distributionf (t) = λeλt . The corresponding
Laplace transform is

Z ∞

0
λe−λte−st =

λ
λ+s

The Laplace transforms of over 300 functions may be found in [34]
Properties

1. L [ f1(t)+ f2(t)] = L [ f1(t)]+ L [ f1(t)]

2. L [a f(t)] = aL [ f (t)]

3. L [ f (t −a)] = e−atL [ f (t)]
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4. L [ f ′(t)] = sL [ f (t)]− f (0)

5. L
[
R t

0 f (u)du
]

= L [ f (t)]/s

6. L
[
R t

0 f1(t −u) f2(u)du
]

= L [ f1(t)] ·L [ f2(t)]

7. Initial value theorem: lims→∞ s f∗(s) = limt→0 f (t)

8. Final value theorem: lims→0 s f∗(s) = limt→∞ f (t)

9. If f (t) is a probability density function then 0< f ∗(s) ≤ 1 for all s≥ 0

Proofs of properties 1-6 are based on the properties of integration. Properties 7 and 8
are derived by using property 4 and the last property is a simple consequence of the
property of an exponential function. All properties are notdifficult to prove and may
be found in standard textbooks.
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Appendix C

Adaptive Simpson’s Rule

This appendix describes the idea of the numerical integration by using adaptive grid.

Let [a,b] be the interval of integration, assumed to be bounded, and let f be a real
integrable function. We are interested in computing the integral

Q =
Z b

a
f (x)dx. (C.1)

The idea of the adaptive grid is as follows. Compute two approximations ofQ using
two different numerical integration methods to obtainQ1 and Q2. We assume that
one approximation, sayQ1 is more accurate than the other. If the relative difference
betweenQ1 andQ2 is smaller than some prescribed tolerance than one acceptsQ1 as
the value of the integral. Otherwise the interval[a,b] is divided in two equal parts
[a,m], [m,b], wherem= (a+b)/2, and two integrals

Z m

a
f (x)dx.

and
Z b

m
f (x)dx.

are computed independently. One now again computes recursively two approxima-
tionsQ1 andQ2 for each integral and, if necessary, continues to subdividethe smaller
intervals. This is the basic idea of the adaptive grid. For approximation ofQ1 and
Q2 we choose Simpson’s rule with step sizeh/2 andh respectively (we expect more
accurate approximation with smaller step size). The advantage of choosing the same
quadrature is that for every iteration we can compute more accurate approximation to
Q using one iteration of so called Romberg extrapolation. More precisely, we know
that for Simpson’s rule the relation between the integral and its approximation is of the
form

Q = Q(h)+Ah4
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whereA is some constant independent onh andQ(h) denotes approximation ofQ by
Simpson’s rule with step sizeh. Similarly for Q(h/2) we have

Q = Q(h/2)+A(h/2)4.

We can find constantA from the first equation and substitute in the second one. There-
fore we obtain that

Q =
16Q(h/2)−Q(h)

15
.

The error in approximation now has order ofh6 instead of initialh4.
For approximations ofQ1 andQ2 we decide to choose the following Simpson’s rule

Q1 =
h
6

( f (a)+4 f (m)+ f (b))

and

Q2 =
h
12

( f (a)+4 f (d)+2 f (m)+2 f (e)+ f (b))

whered = (a+m)/2 ande= (m+c)/2.
Stopping criteria
Using adaptive grids we have to be very careful in choosing stopping criterion. We
suggest to use the following

1. Stop when the difference between two consecutive approximations is less than
some prescribed tolerance.

2. The other problem we need to take care of is when an intervalgets subdivided
so small that it contains no interior machine-representable point. Therefore we
terminate the recursion when the step size is smaller than than minimal possible
step size or whenc≥ a or c≤ b.
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Appendix D

Proof of Theorem 3.5.1

We prove Theorem 3.5.1 by using technique of Laplace transforms. Let us define

φ(u) =
∞

∑
n=1

unk−m

(nk−m)!

The Laplace transform ofφ is

φ∗(s) =

Z ∞

0
e−suφ(u)du=

Z ∞

0
e−su

∞

∑
n=1

unk−m

(nk−m)!
du

=
∞

∑
n=1

1
(nk−m)!

Z ∞

0
e−suunk−mdu

where interchange of sum and integral is justified by absolute convergence of the se-
ries. It can be easily verified that by changing variables tosu= x the Laplace transform
becomes

φ∗(s) =
∞

∑
n=1

1
(nk−m)!

1
snk−m+1

Z ∞

0
e−xxnk−mdu

Since for any integerz
Z ∞

0
e−xxz−1du= Γ(z) = (z−1)!

then

φ∗(s) =
∞

∑
n=1

1
(nk−m)!

1
snk−m+1(nk−m)! = sm−1

∞

∑
n=1

(

1
sk

)n

=
sm−1

sk−1
(D.1)

Since (D.1) is a fraction of two polynomials it can be inverted by the method of partial
fractions. First we need to find rootssr r = 0, . . . ,k−1 of the denominatorsk−1. It
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Proof of Theorem 3.5.1

can be easily verified that those roots aresr = exp
(2πi

k

)r
. Let us denoteε = exp

(2πi
k

)

.
Therefore the denominator can be expressed as

sk−1 = (s− ε0)(s− ε1) · · · · · (s− εk−1)

Then the Laplace transform ofφ can be written as

sm−1

sk−1
= sm−1

k−1

∑
j=0

A j

s− ε j (D.2)

Multiplying both sides of (D.2) bys− εr gives

sm−1

sk−1
(s− εr) = sm−1

k−1

∑
j=0, j 6=r

A j

sk−1
(s− εr)+sm−1Ar (D.3)

From (D.3) it follows that coefficientsAr are

Ar = lim
s→εr

s− εr

sk−1
(D.4)

Above limit can be computed using d’Hôpital’s rule

Ar = lim
s→εr

1

k(εr)k−1 =
εr

k
(D.5)

Therefore the Laplace transform ofφ becomes

φ∗(s) =
1
k

k−1

∑
r=0

εr sm−1

s− εr (D.6)

The fraction in above expression may be rewritten as follows

sm−1

s− εr
=

sm−1− (εr)m−1+(εr)m−1

s− εr

=
(s− εr)

(

sm−2 +sm−3εr +sm−4(εr)2 + · · ·+s(εr)m−3 +(εr)m−2
)

+(εr)m−1

s− εr

=
m−2

∑
j=0

sm−2− j (εr) j +
(εr)m−1

s− εr

Thus

φ∗(s) =
1
k

k−1

∑
r=0

εr
m−2

∑
j=0

sm−2− j (εr) j +
1
k

k−1

∑
r=0

εr (εr)m−1

s− εr (D.7)

First term in the above expression is zero

1
k

k−1

∑
r=0

εr
m−2

∑
j=0

sm−2− j (εr) j =
m−2

∑
j=0

sm−2− j 1
k

k−1

∑
r=0

(

ε j+1)r
=

1− ε( j+1)k

1− ε j+1 = 0 (D.8)

Straightforward inversion of the second term in (D.7) completes the proof.
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Appendix E

State diagram for calculations

This appendix presents the state diagram for computing the availability functions that
may facilitate the implementation of the algorithms.

In practice one computes the availability function until itconverges to the steady
state (with some desired accuracy) and after that the asymptotic value for the function
is used (no calculations are necessary). Before the steady state is reached there may
be a planned maintenance scheduled at timetPM, then the function is computed on
[0, tPM] and att = tPM the availability goes to zero. Fort > tPM the functionAPM is
used. Planned maintenance may be also scheduled after the steady state is reached this
applies to all four availability functions. Therefore in order to compute the availability
of a component including the planned maintenance and steadystates we propose the
following diagram for easier implementation of the possible situations with the avail-
ability functions.
Description of the states:

0 : Before the calculations

1 : Unit at start-up: functionA1

2 : Unit at start of repair: functionA0

3 : Unit in operation forx hours: functionAD
1

4 : Unit in repair fory hours: functionAD
0

5 : Planned maintenance just started: functionAPM

6 : Availability in steady-state: functionA (constant)

This diagram can be explained as follows. At any given time a component may be
in one of the five states: start-up, start of repair, in operation, during the repair or at
the beginning of planned maintenance therefore from the state 0 it is possible to go to
states 1,2,3,4,PM1. Let us first consider state 1. The calculations may be performed

1We do not consider the steady state as the transition from thestate 0 since there is no need to do
calculations for steady state
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Figure E.1: State diagram for computing availability.

until the nearest planned maintenance timetPM or until the steady state thus transition
from state 1 to SS or PM. From SS it is possible to have another planned mainte-
nance thus transition from SS to PM. The calculations may stay in state PM since
there may be another maintenance scheduled, however it is also possible to reach the
steady state thus also transition from PM to SS is possible. When there are no planned
maintenances scheduled the calculations will eventually end up in the SS state. The
transitions from states 2,3 and 4 can be described in a similar manner.
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