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Chapter 1

Introduction

When designing a new production plant a key aspect is to aaand predict the
production availability. Production systems may be intetgd as the systems that
convert raw product (for instance crude oil) into finisheddarct (i.e. gasoline) in a
continuous process. The production systems usually dasfsassnumber of connected
components such as pumps, compressors, tanks which ailieetetm perform cer-
tain functions. Components fail occasionally sometimea fally random process,
sometimes in a process governed by ageing. The impact ofatm@anents on the
production depends on the structure of the system andalityiof the failure. The re-
lation between component reliability and system relibi important for decisions
in the design as well as in the operation phase. For instarite idesign phase, before
the system is being built, one can compare different cordiams of the components
and check the impact on the system as a whole in order to clibesgptimal design
structure. In the operation phase information about theliainle components may
help in optimizing maintenance strategies.

In practice the analysis starts from transforming the msdkw to the reliability
block diagrams (RBD) that represent the logical structtith® system. Figure 1.1 il-
lustrates an example process flow scheme and corresporadiiagjlity block diagram
for sub-sea water injection system. The next step is to gaihecific characteristics
about each component. The most relevant information isxpeated functioning time
without a failure and also the information about the repaiet Since in most of the
situations those quantities are uncertain they have to lielad by random variables.
The choice of proper distributions is very often difficulspecially when data is lack-
ing or scarce. Once the distributions and parameters angrkone can predict the
performance of each component separately and then contliniafiormation, taking
into account the structure of the system, in order to asbessdarformance of the sys-
tem.

One of the most important performance measures of repaitatils is the availability
since it takes into account both failure and repair inforarat Availability is defined
as the probability that an item is available for operatioa gpecified time

A(t) = P(component is available at tint¢

1



1.1 Objective of the Thesis Introduction

An alternative interpretation &(t) is that if we have a very large numbeof identical
and independent components that have been put into opeedtioe same timey- A(t)

is the expected number of components that will be functgrhtimet. The avail-
ability of the system is defined in the same manner. The dikfjaof the component
(or system) depends on its initial condition and both thieifaiand repair distributions
specified for modeling its failure and repair processess & common practice to as-
sume that the system is initially in a good condition and thest as good as new. In
this thesis, however, we consider a more general situatloerevnot necessarily new
components at the initial state are also allowed.

Process Flow

scavenger Injection

cap=0.01
av=97T%

deacrator
lowaer
seawaler

pumps injection pumps

cap =110
cap = 60 av = 99% cap = 50
av = 92% av=80%

4,". infection rate = 100

{

Reliability Block Diagram (RBD)

Figure 1.1: From process flow scheme to reliability blockgdien: sub-sea water
injection system.

1.1 Objective of the Thesis

The aim of this project was to come up with an accurate, robndtfast method for
computing different renewal and availability functions@oomponent level. Particu-
lar emphasis was placed on the realistic choices of parasetelife time and repair
distributions.

It has to be stressed that there was no intention to analyzewdilability on a
system level and also there was no statistical analysigdiegathe proper choice of
the distributions and their parameters.

1.2 Outline of Thesis

This document is structured as follows. Chapter 2 preseassc lefinitions from
renewal theory and also introduces notation for specifiewahand availability func-
tions. Here also the equations for the functions are deawetbithe analytical solution

2



Introduction 1.2 Outline of Thesis

for exponential case is given. Chapter 3 is the main partethlesis and it presents
the process of selection of the best method for computinduhetions introduced in

Chapter 2. The next chapter deals with problem of "graceopstiand can also be
read separately. The conclusions and recommendationsesenped in Chapter 5






Chapter 2

Description of the problem

In this chapter we introduce the mathematical statemerieoptoblem and the nota-
tion that will be used in next chapters. This chapter is omghas follows. Section

2.1 gives the basic definitions related to the general rensary. In Section 2.2 we

derive possible equations for the renewal functions of temewal processes: ordi-
nary and delayed. Next, the four different availability ¢tions are introduced and the
corresponding equations are derived.

2.1 Introduction and Notation

Renewal theory is a key tool in reliability modeling. We wilbw summarize the most
important ideas and results of the renewal theory that aeelew:for later reference.
Most of the general theory is given in [41, 15].

Definition 2.1.1. Given the sequenc; : j > 1,2,...) of positive random variables
let S, be the sequence of partial sums

S=Ti++Th,n>1

with the conventionsy = 0. The procesgN(t),t > 0} is called acounting process
associated tQT; : j > 1,2,...) if:

Nt)=k <= S <t< S (2.1)

In relation with definition 2.1.1 there are two processes dna of particular inter-
est.

Definition 2.1.2. Let the variables in the sequen€g : j > 1,2,...) be independent
and identically distributed theN(t) defined in 2.1.1 is called aordinary renewal
processor shortlyrenewal process

Definition 2.1.3. Let the variables in the sequencCg : j > 1,2,...) be independent,
but suppose onlyl, T3, ... are identically distributed with distribution functidf,
while T; has possibly a different distribution functi@ thenN(t) defined in 2.1.1 is
called adelayed renewal processd denoted biNP(t).

5



2.1 Introduction and Notation Description of the problem

The latter process is a generalization of an ordinary rehpveeess, that is for
G = F the proces\P(t) becomesN(t). The principal objective of renewal theory
is to derive properties of certain variables associatett Wit). In this thesis it is of
significance and relevance to compute the expected numbrenefvals in the time
interval (O, t].

Definition 2.1.4. The renewal functiors defined as
M(t) = E[N(t)] and MP(t) = E[NP(1)]

Definition 2.1.5. For differentiable renewal functioi we define theaenewal density

= Mt
) = dt( )

In reliability applications renewal density is sometimedled the rate of occur-
rence of failuresor shortly ROCOF and it may be regarded as the mean number of
failures per time unit at timeor as the frequency of a unit failures at titneThus if
m(t) is increasing then the component is deteriorating. On therdtand ifm(t) is
decreasing the component is improving.

From Definition 2.1.5 it follows that

M(t) = /0 "mit)dt 2.2)

Definition 2.1.6. Let X andY be independent life lengths with distribution functions
Fx and~ and corresponding densitidg and fy. Then the distribution of the sum
X +Y is called theconvolutionof Fx andFy, and is defined by

t t
Feav(®) = [ Fx(t=x)dR () = [ Frlt xR (2.3)
And similarly in case of densities
t t
feov() = [ fxt=20fv(9ax= [ fy(t = (dx (2.4)

The convolution of two functions is denoted bg" Fx,v(t) = Fx ® R/(t) and
fX+Y(t) = fx® fy(t).
Remark2.1.7. The convolution defined in (2.3) is also called Riemanni§ie con-
volution and is not commutative for functions that are natagero at = 0. The
convolution defined by (2.4) is always commutative (it casbewn by simple change
of variables). LeF andG be two functions defined 0], ) then

t t t
/ F(t—x)dG(x) :/ F(t—x)G’(x)dx:/ F(X)G(t —x)dx
0 0 0
t
:/ F/(x)G(t — x)dx— (F (t)G(0) — F(0)G(t))
0
t
= [ 6t-xdF(x) - (F(1)6(0) - F(0)G()
0
where in the second line the integration by parts was usedief@kzation of the
convolution ton identically distributed random variables is straightfard.

6



Description of the problem 2.2 Renewal functions

Definition 2.1.8. If Ty,..., T, are iid with common distributioft then distribution of
the sumTy + - - - + T, is calledn-fold convolutionof Fr and is defined by

/ F -3t — )dFr () (2.5)
with F(D(t) = Fr(t). And similarly in case of densities
1
mt):/'ﬂmna—xﬁﬁmdx (2.6)
0

with fO(t) = f(t).
In case whefM; has a different distribution function, s&; then

FV(t)=GeF™ ()

2.2 Renewal functions

From definition 2.1.1 it follows that

= Ls<y
n=1

wherel s, denotes indicator function of the skt Therefore the renewal function for
ordinary renewal process becomes

M) =END] =T P& <t)= S F"(1) (2.7)
n=1 n=1
We next show that the renewal functibh(t) satisfies the equation

MO =Fr(0) + [ M(t-xdFr (9 (2.8)

or in convolution notation

RO+ Y FM 0 =R+ 3 Frer” )
n=1 n=1
F

(+H®ZH
=Fr(t)+Fr ®M(t)

and relation (2.8) is established. This equation is knowthasundamental renewal
equationand sometimes may be solved fdt).

7



2.2 Renewal functions Description of the problem

Immediately by differentiation of (2.8) we obtain similartégral equation for the re-
newal densitym(t)

m(t) — d'\g—t(t) — fr() +% (/Ot M(t—x) fT(x)dx> 2.9)
— (1) +/Ot % (M(t=x) 7 (X)) dx+ M(0) Fr () (2.10)
(1) + /0 it — %) fr () dx M(O) fr 1) (2.11)

(see also Remark 2.2.1) and including tN&I) = 0, by its definition, it follows

m(t) = fr (t) + /0 "mit —x) fr (x)dx (2.12)
or ;
m(t) = fr(t)+ /O m(t —x)dFr (x) (2.13)

Remark2.2.1 Alternative argument may be given in terms of Laplace trams§.
Define

t
h(t) :/ M (t — ) fr (x)dx

0
ThenZ[h(t)] = L[M(t)]- L] fr(t)]. Sinceh(0) =0, the Laplace transform of the deriva-
tive i is

LIN(U)] =sLIMW)]- L[ fr (t)] = (SL[M(1)] —M(0)) L[Fr ()] +M(0) L[ Fr (1)]
= LM/ (t)] L[fr (t)]+M(0)L[fr(t)]
So .
N (t) :/0 m(t — x) F (x)dx-+ M(0) fr (¢)

and relation (2.11) is established.
Note also that by differentiating (2.7) the renewal denség also be expressed as

8

mt) =S ") (2.14)
n=1

where fT(”) is n-fold convolution of the renewal density. Renewal functimay be
also expressed in terms of Laplace transform of underlyistildution. According to
Appendix B the Laplace transform of (2.8) is

M*(s) = Fr(s) +sM'(s) - Fr (s)

Solving forM*(s) gives

v FT(9)
M*(s) = ﬁﬁ(s) (2.15)
or .
M*(s) = f_Ti(s) (2.16)



Description of the problem 2.2 Renewal functions

where in last expression we usegl(s) = f{(s)/s. If the Laplace transform of densities
or distributions are known, one can also find the renewaltfondrom

M(t) = L7 M*(s)] = 72 [%(F?(SJ (2.17)
> — LM ()] — L fr(s)
M(t) = L71M*(s)] = L 69 (2.18)

where£ 1 is the inverse Laplace operator.
The following theorem will be useful when deriving the intelgequations for the
renewal function in delayed case and also for the avaitglfiinctions:

Theorem 2.2.2. Suppose H is a bounded function. There exists one and only one
function r bounded on finite intervals that satisfies

t
() = HO+ [ rt-xdF(
0
This function is t
((t) = H(t)+/ H (t — x)dM(x)
0
where Mt) = y»_, F((t) is the renewal function (of the ordinary renewal process).

Proof may be found in e.g. [26]. Repeating the argument frodinary case it is
easy to show that the renewal functibt? (t) satisfies

MP(t) =E ml | =P(T OOP
(t) Lzl (i<t} (1§t)+nzz (& <t)

= G(t)+ ie@) F"Y(t) =G(t) +G® i FV (1)
n—= n=1
—G(t) + G@M(t)
— (1) —I—/OtG(t —x)dM(x) (2.19)

Based on Theorem 2.2.2 equation (2.19) is the solution difl@ving integral equa-
tion .
MP(t) = G(t) +/ MO (t — x)dFr (x) (2.20)
0

Similarly as for the functioriM one can use Laplace transforms to obtain additional
representation for functiom. By taking Laplace transforms of both sides of (2.20)
and solving forlM*(s) gives

G'(s)

MP*(s) = T (2.21)

or

MP* () = 8(13*7(;)(5)) (2.22)

whereg is the density function of the first renewal time.

9



2.3 Availability Functions Description of the problem

2.2.1 Asymptotic expansion for the Renewal Function

The first one who introduced asymptotic representations@fténewal function was
W.L. Smith [40]. He showed that linear asymptotic approxiora for the renewal

function is: T2
t E[T
M)~ —=—= -1+ ——=5
O~ g~ 2
It is also possible to derive more accurate approximatiéssuming that at least the
first three moments of the interval distribution are finite[1®] showed that:

ot EMY sn | ETY
MO =gy~ EmeErE T EP
+o(t 9log(t)), t — o

RO = [ (1-F)dy
sit)=— [ Riydy

t — o0 (2.23)

“R() (2.24)

whereq is the highest-order finite moment of the distribution. Thigher order ap-

proximation is not very useful in practice since for eachueadft one has to compute
a double integral of the renewal distribution (in case ofilatédity the distributionF

is a convolution and has to be approximated as well). Thezadespite the fact that
renewal function converges fairly rapidly to (2.24) dueitodicity of (2.23) we keep

it as most practical approximation for large values.of

The asymptotic value for the renewal function may also bévelérin delayed case.
Ref [33] showed that

t E[T?] - 2E[T4|E[T]
E[T] 2E[T]?

whereT ~ F andT; ~ G.

2.3 Availability Functions

We consider a component that can be put into operation atfidrpeits functions for
a random period of time. Due to the process of ageing the coemgamay fail and
stop to operate, also for a random period of time. It is assutiat after failure the
component is repaired and restored to the state "as goodndqwe do not include
imperfect repairs). Therefore the component may be in tatesteither functioning
(1) or being repaired (0). Let the sequeritl,i =1,2,...) denote the successiup-
timesof the component. Assume that that up-times are indeperatehidentically
distributed with common distribution functidf, (t) = P(U; <t) and mearE[U;] =
MTTF (mean time to failure). Likewise we assume that the cormedipg down-times
(D, i=1,2,...) are independent and identically distributed with disttiitnu function
Fo(t) = P(D; <t) and mearE[D;] = MTTR(mean time to repair). We will assume
that the initial state of the component can be either 0 or 1.

Although a renewal process is defined by the distributionissahter-arrival times, it

10



Description of the problem 2.3 Availability Functions

iS more convenient to use a binary indicator variaklg) which takes the value 1 if
the component is operating at timhend O otherwise, where= 0 if the component

is initially down andi = 1 when it is initially up. If we define the completed repairs,
in the process(;(t), to be the renewals we obtain an ordinary renewal proces$s wit
renewal period&); + D; fori = 1,2,.... This process is calledn alternating renewal
processand denoted biX;r(t) (initial state is one and it counts completed repairs). An
example of a realization of the procesgt) is presented in Figure 2.1.

In order to define another renewal process relatel; g we need to assume that

&
4,0
1

P
L

L/ £ Ly o, Iy £

Figure 2.1: Example realization of the procegst)

the variabledJ; and D; are also independent for all This assumption, usually, is
not realistic (see also Section 4.3) however it is cruciadeniving equations for the
availability functions. Now if we define the moments thedads occur, in the process
Xi(t), to be the renewal moments we obtain a delayed renewal [grodgés renewal
periodsJ; +D;_1 fori=2,3,... and first renewal equal td;. This renewal process is
denoted byNir (initial state is one and it counts failures). In a similarywee define
the processes in case when the initial state is 0, see alsceR2g3. LetNor(t) denote
the counting process associated to completed repairs jrdfoessy(t), and also let
Nor (t) denote the process that counts failures in the prosgss.

ot
1

-

Iy o o, u Dy o ¢

Figure 2.2: Example realization of the procégst)

Definition 2.3.1. The point availability or time dependent availabilitat timet of a
component is defined as the probability that the componduoniioning at time

A(t) =PX(t) = 1) =E[X(t)], i=0,1 (2.25)

The existence of this limit follows from an application oktBasic Renewal The-
orem 2.2.2 tdA;, assuming that all functiortd (t) (see Table 2.4) are directly Riemann
integrable. Other availability measures:

11



2.3 Availability Functions Description of the problem

e Thelimiting availability or steady-state availability Af the component is de-
fined by
A= tIim A(t), i=0,1 (2.26)

e The average availabilityor interval availability of the component in the time
interval (t1,t) is defined by

. 1 t2

Al o) = == [ At (2.27)
t2 - t1 t1

It can be interpreted as the expected fraction of a givemvatef time that the

component will be able to operate.

e Theinterval reliability or mission reliabilityis defined as the probability that at
specified time timd, the component is operating and will continue to operate
for an interval of duratiorx:

Ri(t,x) =P(X(u) =1Lt <u<t+x)

(Note that in case of an ordinary renewal process this gyatwrresponds to
P(y(t) > X)), wherey(t) is the remaining lifetime of the item operating at time
t. For a clear explanation of the variahyg) see [26].)

e Thejoint availability, see [6], is the probability that the component is function-
ing at timed; andt,

Aty 1) = P(Xi(t1) = 1, X (t2) = 1)

e Thejoint interval availability, see [6], is the probability that the component is
functioning in the intervaldty, t; + x1] and|ta, to + X2]

Ri(t1,X1,t2,%2) = P(Xi(u) = 1L,t1 <u<t;+Xx1,X(2) =Lt <z<tr+X)

The latter two quantities can be expressed in terms of twitedpiity functions A (t),
Ao(t) andR(t,x). The interval reliabilityR(t,x) may be found by solving an integral
equation of renewal type. Due to the fact that the point aldity functions occur
directly or indirectly in all quantities mentioned abovedept the interval reliability)
they are the most relevant in availability studies.

However complete analysis of the availability require® &fgo additional functions.

2.3.1 The reason for four different availability functions

From the practical point of view it is important to predicetbomponent’s future per-
formance based on its present condition. Let us considexam@e.

Example 2.3.2.Suppose that in a plant there are four identical and indepehdom-
ponents that had been put into operation two months ago.imtiiis time there were
repeated cycles of failures and repairs of each componetrthiémoment in time the
components are in the following conditions:

12



Description of the problem 2.3 Availability Functions

Case 1: Repair of the first component has just finished
Case 2: Second component has just failed

Case 3: Third component is up and running for last x hours
Case 4: Fourth component is in repair for last y days

The situation is presented in Figure 2.3. Obviously, the that the components

|

1 1 !

' ' i
i 1 1 e .
| o

1 1 i i i i

1 1 1 1 I

. A B
T v

' 1 1 1 !

I ] ] :
i 1 1 - ! »
% —*

y ]

MNOW

Figure 2.3: States of the components from Example 2.3.2. fooents are labeled
starting from the top. Crosses denote the time of the lastteve

started functioning at the same tame does not have any icuen the prediction
because each repair/replacement brings the componentetsttie as good as new.
The only important information is that when the last eveail\(fe or completed re-
pair) occurred.

We are interested in the availability functions for all 4 quonents.

Note that the cases presented in the example are completgeandbe any pos-
sible situation that may occur. The reader immediatelyizealthat Cases 1 and 2
correspond to the process¥égt) andXy(t) respectively defined above. Therefore the
future performance of the components one and two may be meshby the availabil-
ity functions A;(t) andAg(t). Cases 3 and 4 are delayed versions of cases 1 and 2
and will be considered in details in separate sections wiverelerive equations for
delayed equivalents @ (t) andAg(t).

Nevertheless it is clear that four availability functiorssaciated with the cases from
Example 2.3.2 will cover all possible situations that maguwdn practice. In most of
the situations the modeling is done starting at any tiraad very often it is not the
time of the event therefore the delayed availability fumas are very important.

2.3.2 The functionA;

Recall that the availability functioA; is defined as
Ai(t) =P(Xy(t) =1).

13



2.3 Availability Functions Description of the problem

The processelhir(t) andN;g(t) count the number of completed repairs and number
of failures respectively. LeMr(t) and Mse(t) be the renewal functions of those
processes, i.e.

M]_R(t) = E[N]_R(t)] andMig (t) = E[N]_F (t)] (228)

Note that the number of repairs equals the number of failudesn the component
is functioning, see Figure 2.1. On the other hand when thepooent is down the
number of failures equals the number of repairs plus onesThu

Xl(t) =1 <— N]_R(t) = N]_F (t)
X1(t) =0 < Nir(t) +1=Nge(t)

Using above equivalences we can easily derive the relatbmden the renewal func-
tions and the availability function. Namely

Mar (t) — M1r(t) = E[Nir (1) — Nir(t)]
= E[Nir (t) — Nir(t)[Xa(t) = 1JP(Xi(t) = 1)
+E[Ngr (1) — Nir(t) [ X1 (t) = O]P(Xy(t) = 0)
=1-P(X(t) =1)
Therefore
Aq(t) = Mar(t) = M1 (t) +1 (2.29)

Now we present how to obtain an integral equationAgr FunctionMig(t) corre-
sponds to the ordinary renewal procégs that has renewals defined to be the sum
Ui+ D; fori=1,2,.... Thus the underlying distribution of this process is thevoen
lution of Fy andFp (see Definition 2.1.6)

Fusp(t) =Ry ®Fo(t)
From (2.8) it follows thatMg(t) satisfies the following integral equation
t
Mir(t) = FU+D(t)+/O M1r(t —X)dRy+p(X) (2.30)

On the other hand functioMg(t) corresponds to the delayed renewal prodégs

that has renewals defined to be the dum-Dj_; for i = 2, 3,... with first renewal
equal toU;. Since the variableb; andD;_; for i = 2,3,... are independent with
distributionsky and Fp respectively the underlying distribution of the procesthis
convolution ofy andFp and is the same as in previous case. The distribution of the
first arrival is just the distribution the of up-tintgy.

From (2.20) it follows thaiM ¢ (t) satisfies the following integral equation

M (6 = Fo (0 + [ Mae (0 )dRy o0 (2.31)

Subtracting (2.31) from (2.30) gives

Mar(t) — Mae (t) = Fuo(t) — Fu (t) + / (Mir(t —X) — Mig(t — X)) dFy p(X)

14



Description of the problem 2.3 Availability Functions

or equivalently

A =14 Fuo(t) ~ Fu(t) + [ (At + 1 dRy o)

Therefore
t
AD) = 1=Fo(0)+ [ Aa(t—x)dFu0( (2.32)

As a result of Theorem 2.2.2 the solution of (2.32) is

A =1 Fut) + [ (L Ry (t- X)) dMaa(x) (2.33)

The functionA; can also be expressed in terms of Laplace transform. Itasgbtr
forward to show by taking Laplace transforms on both side@ &2) and solving for
Aj(s) that

9= % o) (239

2.3.3 The functionAg

The derivation of equations for the functidg is almost exactly the same as in case of
A;. Recall that availability functioy is defined as

The processellpr(t) andNgg (t) count the number of completed repairs and number
of failures respectively. LeMogr(t) and Mo (t) be the renewal functions of those
processes, i.e.

MOR(t) = E[NOR(t)] andMge (t) = E[NOF (t)] (235)

Note that the number of repairs equals the number of failufesn the component
is down, see Figure 2.3. On the other hand when the composdangtioning the
number of repairs equals the number of failures plus onesThu

Xo(t) =0 <= Nor(t) = Nog(t)
Xo(t) =1 <«— NOR(t) = Nor (t) +1

Using above equivalences itis easy to derive the relatibmden the renewal functions
and the availability function. Namely

Mor(t) — Mok (t) = E[Nor(t) — Nor (t)]
= E[Nor(t) — Nor (1) [Xo(t) = 1JP(Xo(t) = 1)
+ E[Nor(t) — NOF(t)\Xo( ) = O]P(Xo(t) = 0)
=P(Xo(t) =1)

15



2.3 Availability Functions Description of the problem

Therefore
Ao(t) = Mor(t) — Mo (t) (2.36)

Similarly as in previous case we present how to obtain argiateequation forAg.
FunctionMor (t) corresponds to the ordinary renewal procédg:) that has renewals
defined to be the suml; +U; fori = 1,2,.... Thus the underlying distribution of this
process is the convolution & andFR, (see Definition 2.1.6)

Fusp(t) =Ry @ Fo(t)

Since the renewal process is completely determined by steldition of the inter-
arrivals it follows that

Nor (t) £ Nyr(t)
Therefore

However for completeness we also write an integral equdtioMor (t)

Mor (t) = Fup(t) +/ot Mor (t — x)dFy b (X) (2.37)

On the other hand functidvor(t) corresponds to the delayed renewal prodésghat
has renewals defined to be the sum; +D; fori = 2,3,... with first renewal equal to
D1. Since the variableg;_; andD; fori = 2,3,... are independent with distributions
Fu andFp respectively the underlying distribution of the procestheconvolution of
Fy andFp and is the same as in previous case. The distribution of thiedfirival is
just the distribution of the down-timiey.

From (2.20) it follows thaMogr(t) satisfies the following integral equation

Mor(t) = Fo(t) + /Ot Mor(t —X)dFy+p(X) (2.38)

Subtracting (2.37) from (2.38) gives

Mor(t) — Mor (t) = Fo(t) — Fuip(t) +/Ot (Mor(t — X) — Mor (t — X)) dFyp(X)

Therefore
Aolt) = Fo(t) - Fuso(t)+ | Aoft a0 (2.39)

As a result of Theorem 2.2.2 the solution of (2.39) is

Aolt) = Folt) ~Fusolt) + [ (Folt—X) ~ Fusolt-X)dMee(9)  (240)

The functionAg can also be expressed in terms of Laplace transform. Itagyktifor-
ward to show that by taking Laplace transforms on both siflé2.89) and solving for

Aj(s) gives

_ B8 —1jp(s)

M= 518 0(9) (2.41)
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Description of the problem 2.3 Availability Functions

To model the availability when the component is not new (sageG3 in Example
2.3.2) or when the repair is in progress (see Case 4 in Exa2npl2) we need to de-
fine new state variables. If the component has been funatydior x time units then its
remaining lifetime has a different distribution than tHetiime of a new component of
the same type. For the exponential case it will make no @iffee since this distribu-
tion possesses so callatemoryless propertyHowever in general, the distribution of
the remaining lifetime is a conditional distribution. Slarly with the repair time. It
is not the purpose now to specify this distribution, but iniportant to emphasize that
the distribution of the time to the first event may differ frahe distributions of next
up and down events. Therefore it is convenient to call theasesdelayed versions of
cases 1 and 2 from Example 2.3.2. We introduce the followwtgtion.

The cases when the component is initially up and initiallwd@re considered sepa-
rately.

The system is initially up. LeR U,,Us, ... be the sequence of independent up-times.
Similarly as before assume that variablégUs,... are identically distributed with
common distribution functiofy (t) = P(U; <t). Let Fr(t) denote the cumulative dis-
tribution function of the first up tim&. The sequence of down tim&s,D,,Ds3, ...
remains unchanged. me(t) denote the state of the component at tinfen example

of a realization of the proces¢>(t) is presented in Figure 2.4).

F 3
X7
1

-
>

R DU D, u b, t

Figure 2.4: Example realization of the proce€3(t)

The system is initially down. Le§ D,,Ds,... be the sequence of independent
down-times. Similarly as before assume that variable®Ds, ... are identically dis-
tributed with common distribution functiofp(t) = P(D; <t). Let Fs(t) denote the
cumulative distribution function of the first down tin®& The sequence of up times
U1,Uz,Us,... remains unchanged. L¥(t) denote the state of the component at time
t (an example of a realization of the proce@(t) is presented in Figure 2.5).

¥
X2
! : T : ]
' [ . ] ' '
] [ ] 1 ] ]
0 H I ! H -
s U pu D Ut

Figure 2.5: Example realization of the proceg(t)
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2.3 Availability Functions Description of the problem

2.3.4 The functionA?
Let AP be the availability function related to the proce€d(t), namely

AL (1) = P(XP(t) = 1)

In a similar manner as in previous sections we define an agsdcprocesses. Let
ND(t) be the renewal process that counts completed repairs iegsX€ (t) and sim-
ilarly let NE-(t) be the renewal process that counts failures. The renewelifuis of
these processes are denoted as

Mik(t) = E[NiR(t)] andMg- (t) = E[N ()] (2.42)

Since the renewal processhigs(t) andND-(t) are equivalent respectively tdr(t)
andN;ig (t) (they count the same events) one can use the same reasomingeasion
2.4 to derive the relation between the availability functéond the renewal functions.
Therefore

AR (t) = MB(t) ~ MB: (1) +1 (2.43)

Since the distribution of the first lifetime is different froany other distribution in the
model both processesl;(t) andNE(t) are delayed (see also Figure 2.4). The first
distribution of the procesND;(t) is the convolution ofg andFp. Next renewals are
formed by the sequendd + D;j, i = 1,2,.... Thus the underlying distribution of this
process is the convolution &, andFp. In the same manner we obtain that the first
renewal in the processl (t) has the distributiofrr and the underlying distribution is
also the convolution ofyy andFp.

Now we present how to obtain the integral equationABr Since both renewal func-
tions correspond to the delayed renewal processes from) (2 dllows that:

ME(®) = Fro®) + || MEk(t—XdF 1004 (2.44)

and
ML () = Fi() + [ MB(E )R 00 (2.45)

Subtracting (2.44) from (2.45) we obtain that the availgbfunction AD(t) satisfies
the following integral equation

A0 =1 Falt) + Froo(t) - Fucolt) + [ AR dR o) (240

Note that if the first up-time has the same distribution asnise ones , i.eFg(t) =

Fr(t), then equation (2.46) reduces to the equation (2.32) foavaéability function
Ar.

FunctionA? can also be expressed in terms of Laplace transforms. teightforward
to show that by taking Laplace transforms on both sides @f6j2and solving for
AD*(s) that

1-fR(9) + frep(S) — T510(9)

A= 1500

(2.47)
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Description of the problem 2.3 Availability Functions

2.3.5 The functionA
Let A§ denote the availability function of the procesS(t)

AD(t) = P(X3(t) = 1).

Similarly as in previous sections we define the renewal E®deat counts the number
of completed repairs and number of failures. Néi?(t) be the renewal process that
counts completed repairs in proces$(t) and similarly letNf(t) be the renewal

process that counts failures. The renewal functions oktipescesses are denoted as

Mgr(t) = E[Ngx(t)] andMg (t) = E[NG: ()] (2.48)

Since the renewal processhigs(t) and Ny (t) are equivalent respectively tdr(t)
andNgr (t) (they count the same events) one can use the same reasomingeasion
2.3.3 to derive the relation between the availability fimei&nd the renewal functions.
Therefore

AQ(t) = Mog(t) — Mgk (t) (2.49)

Since the distribution of the first downtime is differentnhany other distribution in
the model both processaigh(t) andNg-(t) are delayed (see also Figure 2.5). The first
distribution of the procesN- (t) is the convolution ofs andF,. Next renewals are
formed by the sequend® +U;, i = 1,2,.... Thus the underlying distribution of this
process is the convolution &, andFp. In the same manner we obtain that the first
renewal in the procedsdi:(t) has the distributiorfrs and the underlying distribution is
also the convolution ofyy andFp.

Now we present how to obtain the integral equationAgr Since both renewal func-
tions correspond to the delayed renewal processes from)(2 dllows that:

MBH(6) = Fs(t)+ | Mt ) o(x (2.50)

and
Mgk (t) = Fspu (t) + /0 M (t — )dFy (¥ (2.51)

Subtracting (2.50) from (2.52) we obtain that the availgbfunction A (t) satisfies
the following integral equation

AR(Y) = Fs(t) -~ Fosu(®) + || AB(E-X)aRy 00 @252)

Note that if the first down-time has the same distributiorhastext ones , i.eg(t) =
Fo(t), then equation (2.52) reduces to equation (2.39) for thibedoitity function Ay.
FunctionA? can also be expressed in terms of Laplace transforms. taigtforward
to show that by taking Laplace transforms on both sides @&2(2and solving for

AD"(s) gives

fs(s) — fsu(9)

7 oy 7 2.53
S1—13,0(9) (2:53)

AS(s) =
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2.3 Availability Functions Description of the problem

2.3.6 Planned Maintenance with variable duration — functio App

This section presents an additional application of the tioncAg that is related to
planned maintenance. Let us assume that there is a planriatenzance scheduled
at fixed timetpy, in the future. The choice dfy is determined based on the main-
tenance strategy (for instance block replacement, agaaeplent, condition-based
maintenance etc.) and it is not of our interest. For the dgenof the maintenance
strategies and optimal choice tpf, (maintenance optimization) we refer[t®]. Usu-
ally planned maintenance actions have constant duratawmeVver there are some sit-
uations in which the time to complete the maintenance is noi upfront and has
to be modeled by a random variable, sayAdditionally assume that the maintenance
is carried out regardless of the state of a component attgignét can be up or down).
After the maintenance is completed a component is subjeihdg its own rhythm
of lifetimes ;) and repair times;). It should be emphasized that the distribution
of the planned maintenanc&may be different from the distribution of usual repair
time R;. This situation corresponds to the proce(éé(t) introduced above: it starts
from down and the time to the first event has a different distion than the other
events. Therefore the renewal and availability functioesented in Section 2.3.5 can
be used directly. To distinguish those two cases we denetaviilability function for
the planned maintenance By (t). (The difference lies only in the interpretation of
the first down time. If it represents the remaining repairetirtnen it corresponds to
the functionAS, and if it represents planned maintenance then it corresptmpp,
but from the mathematical point of view both functions dgtthe same equations,as
introduced in Section 2.3.5).

2.3.7 Steady state availability

Similarly as in case of the renewal functions the asymptugitavior of the availability
functions is known. The following theorem presents the gsptic behavior of the the
general solution to the renewal integral equation.

Theorem 2.3.3.(The Basic Renewal Theorem). Let F be the distribution fonaif
a positive random variable with finite mean Y. Suppose thas directly Riemann
integrable and that r is the solution of the renewal equation

‘(1) :H(t)+/0tr(t—x)dF(x)

Then 1
Iimr(t):—/ H (x)dx
H.Jo

t—oo

The steady state availabilitypr limiting availability is defined as a the asymptotic
value for an availability function. It can be show that, sheshe state availability is
the same for all four availability functions and is equal to

. . EU4] _
A=IlmA®l) =IlimAP(t)=———— =12 2.54
This follows from the fact that the initial distribution dfié¢ renewal process does not
have influence on its asymptotic behavior.
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2.4 Analytical solution for the exponential case

Let Ry(t) = 1—e M andFp(t) = 1— e ¥ be the distributions of up-times and down-
times respectively. We use technique of Laplace transfdonabtain all renewal and
availability functions for the exponential case. For pmigs of Laplace transforms see
Appendix B. For the exponential case it is straightforwardtiow that the Laplace
transforms of the densities bf andD are
" A ey M
fo(t) = Nis andf3(t) = s
1. Function A;
Based on equations (2.22) and (2.30) the Laplace transfoivhpis

N V(SRR 103)
MIR(S) = (1 - 5 (t)I-DfS(t))

Substituting and simplifying we obtain

Al

MRS = Ao

Since above representation is a fraction of two polynomtaian be easily in-

verted. We obtain
_ A+t
Mir(t) Au (t—l € > (2.55)

T A+H

Similarly for the functionM;r. Based on the equations (2.16) and (2.31) it is
straightforward algebra to show that

c e fo(t) — (H+9)A
Mir(s) = s(1— fju(t) f51) T AN+p+9)s

Inverting gives
(1_ e()\-‘ru)t) A2

A+ w?

_ A
BT

Mg (t) t+ (2.56)
Therefore it follows from the relation (2.29) between theawal functions and

the availability function that

M Aot
A= — + = g MW 2.57

2. Function Ag
We proceed exactly in the same manner as in the case aboveLaphece
transform ofMgg is

o f2(t) (A+9s)u
Me(S = T30 T50) Ot ut 99



2.4 Analytical solution for the exponential case Descaptof the problem

Inverting gives
Al (l _ e()\-l-u)t) u2

= -t 2.58
TR T2 (2:59)

Mor(S)

As it was remarked in Section 2.3\ (t) = M1g(t) therefore based on relation
(2.36) the availability function for the exponential case i

Ao(t) = H H — (At
t _ .e 2.59
® AU A+ ( )

3. Function AP

If we assume that the component has the exponential lifetirae the distri-
bution of the remaining lifetime (given that the componentunctioning forx
time units) is again exponentially distributed with the saparametei (due
to the memoryless property). Therefore the formulas forftimetion A; apply
directly. However, we could consider a case when the digigh of the first
life time is exponential but with different parameter, €ayBut since the case
with the distribution that does not represent remainingtiliie does not have
any practical application we omit it.

4. Function A5 (Apm)
Similarly as in case OA? if the downtimes are exponentially distributed the

remaining repair time has again exponential distributidtinthe same param-
eter and formulas fofg apply directly. To the contrary with previous situation
there is an application of the case when the first down-tinsesly@onential dis-
tribution but with a different parameter. As the exampleusttake planned
maintenance which duration is exponentially distributethws(t) = 1 — e,
see also Section 2.3.6. We proceed in the same manner agimysreases (with
slightly more complicated inversion of the transformsnc®if(t) =n/(n+9)
the Laplace transform a¥15; is

S(A-15(t)-f3(t)  (N+9)FA+p+ts)

Inverting gives

1
(—N+A+n A +w?
+ B (A +n+ntA)—p <u+)\ <1+tp+ e*(”“ﬁ)) n2
+ (—H+ N+ A (A +2u-n)] (2.60)

Mgg(t) =

BN+ e (=) (A=) N+ 1)

Similarly for M3 the Laplace transform is

fs(OfG (t (H+S)An

. )
Moe (9= S fs ) o) ~ v ut 9 £ T 9

After inverting we obtain
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Renewal functiong Availability functions
H(t) r(t) H(t) r(t)
1-FRy(t) A(t)

Fo(t) = Fusp(t) Ao(t)

)
)
)
) | 1—FR(t)+Frep(t) — Fusn(t) | AD(t)
)
3 Fs(t) — Fsiu(t) AR (t)

Table 2.1: Combination of possible cases for the renewabaatiability functions

D _ A2 A 2 —nt 200
M0F<t>—(Hu)ﬁnmmz(_mﬂm [0+ e A+ P (=)
(s (o))

+ (A 2utn —2p+n) +(nt—1) (BB +2r?))] (2.61)

Therefore, based on relation (2.49), the availability fioxcAJ or betterApy
for the exponential case is

_AeMn+eMprAne M Ap—e Mun+pn— P+e 12
(=N+A+) A+

APM(t) =
(2.62)

Note that all three functions converge to the same limit

. L L M
fim Ag(t) = fim Ao(t) = fim Apw (1) = -5

as it is expected.
The equations for all renewal and availability functionsaduced in this chapter

can be written in general as the following integral equation

(0 =HO + [ rt-dR.00 (2.63)

where the functiorr is unknown and,.p, H are given (in most of the cas€g.p
has to be approximated). The specific choicesidbr the renewal and availability
functions are gathered in Table 2.4. Equation (2.63) iedalh integral equation of
renewal type
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Chapter 3

Overview of concepts and methods

In previous chapter we have introduced four different amlity functions and related
renewal functions. The exact analytical solution for thfogetions may be found only
in very simple cases, see for instance exponential caseciio8e.4. Therefore the
availability and renewal functions have to approximatedibiyng numerical methods.
In this chapter we present the review of the literature tleadsiwith this problem. Al-
though the number of publications that deal with approxiomabf the renewal func-
tions is rather large there are only few methods that dedl thig availability function
directly. As it was shown in Chapter 2 all availability fuicis may be founds via re-
newal functions therefore the methods for renewal funstiane also important. There
are two possibilities to find availability function from remal functions:

Aq(t) = Mar(t) = M1 (t) +1 (3.1)

A =1 R0 + [ (L Ru(t X)) dMus(x) (3.2)

The drawback of the first approach is that it requires douffitetdor computing two
renewal functions. The second method is even less efficibiié waking into consid-
eration the fact that for each time one has to integrate ovét,r. For instance let

us say tha#\; is required alN grid points, then using (3.1) one needs to compute two
renewal functions in total on\ points. Using (3.2) it is even worse and it requires
kN points, for some larg&. Due to these issues we decide to classify the available
methods on those that can compute availability functiortsthose that can compute
renewal functions. The advantage of using the method fataditity is that they can
also be used for renewal function, opposite relation is ivshgs possible. Therefore
based on the available literature review we classify thénou as follows:

e Availability function

— Direct solution of the renewal equation

1This also applies to the other availability functions.
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— Laplace transforms
— Spline approximation
— Bounds

e Renewal function

— All methods for computing availability function
— Series expansion
— Approximations

It is not possible to analyze and compare carefully all meéshdefore approaching
the stage of description and selection of the methods, tigresnents that will help
in making the decision should be specified.

3.1 The requirements

In this section we present the requirements that are useskfecting the method(s)
for computing the availability and renewal functions. Biffnt approaches lead to
various difficulties and it is sometimes not possible tocetee method that is capable
to deal with all possible situations. To exemplify the methaf [42] proposed to
compute renewal function for Weibull case is quite fast maippropriate for larger
arguments, on the other hand approach suggested by [22jjsesbut it requires™
derivative of the distributions. Other problems that mageaare: the error estimation,
difficulties with different ranges of parameters or comfilewf the algorithm and its
implementation. For the propose of this project we decidehtwose the following
requirements based on which the selection is made:

1. Realistic values of the parameters. In practice we aezdnted in components
that have a good reliability. So either their time to failisdong or their repair
time is short (and preferably both). For instance sub-segsatent is designed
to operate without a failure for few decades, but if a seripusblem occurs
a repair time lasts for few months. On the other hand a pumpplat may
trip a few times per year, but recovery is a matter of hoursthincontext of
applicability to oil & gas equipment we are interested in goments for which

MTTF € [0.1,10Q years andMTTRe [1,4000 hours (3.3)
under the constraint:
MTTF
= MTTErMTTRE 0951 (3.4)

WhereA is the limiting availability defined in Chapter 2. Obvioughe higher
the availability the more valuable the component, hencg siten A is close to
one. The method should work for as many choices of the pasamas possible.

2. Distributions of interest. In principle any distributialefined for non-negative
values can represent life time or repair time. It is hardlgbable to find a
method that works well for all distributions, and this is metuired. But it is
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required to find a method that can take as an input a genetribdison and be
able to produce some results. The proper choice of thelisitsins is not easy
and it is behind the scope of this report. However a particeaphasis is put on
the following realistic distributions:

a) Life time: Weibull distribution with constraint on theagte parametes €
[0,32.

b) Repair time: exponential distribution, constant, Lagnal distribution
For description and characteristics of those distribgtisee Appendix A.

3. ltis significant to have one method that can compute baotéwal and availabil-
ity functions.

4. Accuracy. This is the key factor and at the same time the diffisult to asses.
We require the method to give reasonable results and alswétiiable to have
some error estimate. However it is sometimes better to havethod that gives
more accurate results and poor error estimation than todavethod that gives
poor approximation and good error estimate.

5. Speed. We require the method to be reasonably fast. abetie of the avail-
ability models requires above 100 components (sometimes 2000). There-
fore the speed of calculations for one failure mode is a veyairtant factor. If
the computations for one component are slow but acceptaivlayi appear that
the waiting time for the calculations of the whole system @inponents is not
acceptable.

6. The method should work without predefined end point. Thguirement is
related to the numerical steady-state detection see 8&:fic3

7. The last but also very important requirement is that thinoteshould be robust
on the choices of parameters and relatively simple in implatation.

Next section presents an overview of the available appesaahd discusses the most
suitable methods for the problem.

3.2 Selection of the methods

3.2.1 Laplace transforms

Laplace transforms are a valuable tool in theoretical stfdyenewal processes and
several algorithms are available for their inversion, (4¢éor an overview). As it was
shown in the previous chapter all availability and renewalctions can be expressed
in terms of Laplace transforms of up and down time densifié® Laplace transform
of Weibull density is expressed in terms of alternatingesetinat converges slowly, for
lognormal distribution no analytical expression existhefefore a numerical inver-
sion without analytical expressions seem to be difficult.sAggested by [44] one can
approximate the density by some polynomial for which thelaeg transform is ana-
Iytically tractable and then use an algorithm for numerinag¢rsion. Albeit the choice
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3.2 Selection of the methods Overview of concepts and nsethod

of the polynomial for the distributions of our interest isghlly difficult. There is
also a positive aspect when using Laplace transforms tlvatusble for the discussed
problem. Recall that repair time usually is much shortentlifatime. This leads to
big differences in densities of up and down time. Choudhug/ \&/hitt [11] proposed
a very simple scaling procedure that allows to deal with caraple densities. For a
short and clear description of this method we refer to [44dwiver, since analytical
expressions for the Laplace transforms are not easily sitdesthis approach is not
continued.

3.2.2 Series expansion

Series expansion approaches were applied only for appatiximto a renewal func-
tion and none of such methods was found for computing an ahiliil function.
Most of the literature is focused on renewal process withBdleidistribution, see
[42, 27, 14]. In case of this study renewal distribution isialyy a convolution of
Weibull distribution with some distribution for repair tentherefore those methods do
not apply directly. However, in case when down time distitdou is constant (thus
renewal distribution is a shifted Weibull) the distributionay be scaled so that it is
Weibull. This restricts the usage of series expansion nastfior only one case. As
mentioned by [7] it is easy to note that those series are td litse for numerical
work especially with large values ¢f This is due to the term with alternating sign.
However the series method of Smith and Leadbetter [42] ishnansidering in more
detail since it converges quickly forQ 3 < 1. If M(t) denote the renewal function
with underlying distribution Weibu{bx, ) thenM(t) can be written as

2 (DA (ta)®
MO=2 — Fie+D)

where the constan®, are determined by the following recursive formula

n—1

An=Yn— ) YiPn-j
=1

The convergence is such that accurate numerical computasiog the series is only
feasible fort < 2.5 for B < 4 and decreasing tb< 1.5 at3 = 10. Whenp3 =0.5
then the convergence is rapid even for 100 and if = 0.8 then reasonable time
decreases tb< 30. Another technique proposed by [22] is based on McLawiies.
It is also not feasible since it required derivative of a renewal distribution. The
method proposed by Constantine and Robinson [14] also faouVeenewal process
is simply to complex to employ in order to use it for only onsealt also has to be
stressed that in order to compute availability by using wehdunctions all methods
proposed above have to be modified in order to be able to déaldelayed renewal
case. Those are the main reasons why the series expansioodsnere not employed
later.

3.2.3 Spline approximation

Cubic spline approximation developed by McConalogue [D3 s&@ems to be the first
numerical method for computing renewal functions. The @digon computes convo-
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lution by integrating the spline representation of therdbistions. The advantage of
this approach is that it can be used directly for computirailakility function and also
other metrics like mission reliability. However, as mengd by [22] this algorithm
is too computationally intensive for real-time computaicand it is mainly used for
tabulating purposes, see [8]. Another spline approximatias proposed by Bilgeet
al [9]. However, it is only applicable for the Weibull renewalniction and it is also
quite complicated. Modification for the delayed renewalgess with shifted Weibull
distribution is not trivial.

3.2.4 Approximations

These methods are based on weakening of certain assumpigenrsling the model
what leads to easier calculations. The simplest approiom#b the renewal and avail-
ability functions is in the form of linear asymptotic expams(for details see Section
2.2.1). Itis of course inadequate to use such approximnatorthe whole interval es-
pecially when the functions have highly oscillatory beloaviunfortunately all other
methods focus on approximating a renewal function and nanhavailability function.
This is obviously due to the fact that availability functsorequire higher accuracy. As
mentioned before the availability function may also berinteted as a difference be-
tween two renewal functions. Those functions differ onlytbg distribution of the
first renewal and therefore are very similar. Thus, the aggrwia renewal functions
also requires high accuracy. However, such methods mayiedgor approximat-
ing only renewal functions if not too much accuracy is regdir Examples of such
approaches may be found in [39], [25] (by approximating iphdistribution); [16]
(Normal approximation to Weibull renewal process); [5] éproximate solution for
renewal density).

Based on the literature review none of the above methodsiomeit above is com-
pletely suitable for the problem. Some methods may only leel der renewal func-
tions, other suffer from lack of accuracy or are too compédao analyze. For more
detailed comparison we decide to choose two left approadioesds and direct solu-
tion of the integral equation. This choice seems to be thefbeshe purpose of this
research.

3.3 Bounds

3.3.1 Renewal function

A number of lower and upper bounds for a renewal function neagdmstructed. These
bounds often depend on the assumptions about the undergmegval distribution and
may differ in shape and tightness. For example Marshall ji283ented "the best” lin-
ear bounds for the renewal function in the ordinary renewatgss as follows. If let
b =infi>o F(lt;ie)(t) andby = sup- F(ltz;%‘)(t) , thenb, <M(t) —t/u<by, wherepis
the expected value related to the distributoandF(t) = ﬁfé(l— F(u))duis known
as the limiting excess life distribution. Other linear bdarwere obtained by Lorden
[28].

Bartholomew [5] obtained the following upper boufdt) + ﬁfé[Fz(u)/Fe(u)]du.
Other bounds may be found in e.g. [18, 24]. It has to be rendaifkat usually those
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bounds need modification for a delayed renewal function.

For the purpose of this project it is desired to have an appraton for the renewal
function not necessarily the bounds. However, if both ugpet lower bounds are
available then one can take for instance the mid point betwlee bounds as the ap-
proximation for the renewal function. Namely

M (t) +Muy (t)

M(t) ~ 5

(3.5)
whereM| andMy are such thaM| (t) < M(t) < My(t), i.e. lower and upper bound
for M. This approximation is appropriate only if the bounds angeexed to be more
or less symmetric around the unknown renewal function. ¢h dae could take as an
approximation any point between the bounds and this wouldltre error

() - MOl a9

However, due to its simplicity and lack of better alternatithe midpoint approxima-
tion is used the most often. It has to be remarked that the estimation given in
(3.6) is not always useful. If the bounds are tight then thgr@ximation (3.5) is good
and the estimated error (3.6) is small. It may also happerbthands are wide but the
approximation taken as the midpoint between the boundsdd.gaAnd since there is
a big difference between the bounds the error estimatioairodd from (3.6) will also
be large. This kind of situation will appear later in casehaf &vailability function.
For the approximation o1, and My we decide to use a simple recursive formulas
that were first proposed by Ayha al [3] and later a different derivation was given by
Mercier [31]. Both approaches give the same set of equatmrthe upper and lower
bound but there were derived in a completely different manhes interesting that the
paper of Ayhan was published earlier and Mercier does ndadiecany comment on
Ayhan’s approach (it is not even in the references). Sindk m@thods give the same
algorithms we focus more deeply on just only one of them — tle¢hod of Ayhan.
The method of Mercier may be briefly described as follows. olRelve present the
description the method of
The idea is based on constructing discrete upper and lowdona bounds for the re-
newal times. Those bounds form a discrete renewal processbsenewal functions
associated with those processes form the bounds on thengons renewal process.
Next step is to construct the renewal functions associatddtiose discrete renewal
processes which will form the bound on the continuous rehéwation.

Numerical approach: method of Ayhan
In their paper Ayharet al are focused on computing bounds for a renewal function
and also provide bounds on the general solution to the iateguation of the form
(2.63). More details about the bounds on the solution ofititegral equation will be
given in Section 3.3.2. The bounds on the renewal functieneaactly the same as
those derived by Mercier. The derivation of the bounds isemastraightforward and
is based on the direct interpretation of the Riemann-#itelntegral. Let us recall
that the renewal function for a delayed renewal processfezithe following integral
equation

t
Mo (t) = G(t)+/0 Mo (t — x)dF (x)
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where G is the distribution of the first renewal time. Let us consitlee uniform
partition of the interval0,t] 0 < h < 2h < --- < nh=t. Then above equation may be
written as

it
Mo (tm) = G(tm) +/ Mo (tm — X)dF (X) tm+zi/ Mo (tn—X)dF(X) (3.7)

tio1
wherem=1,...,n. SinceMp(t) is non-decreasing function and alB¢;) > F(tj_1)
for all j the integral in (3.7) may be bounded by

Mo(tn—)IF() ~F(t )] < | Moltn—XdF() < Mo(tn—t 1)[F() ~F(t 1)

ti-1

(3.8)
foralli=1,...,m Therefore from (3.7) and (3.8) we obtain the lower bound for
Mlli(tm) = G(tm) + ZiMlli(tm_ti)[F(tj) - F(tj—l)] (3.9)
i=
and similarly the upper bound
m
M (tm) = Gi(im) + 3 M (tm—t-2)[F (1) F (t-)] (3.10)

Note that right hand side in (3.9) does not dependvigyitm) thus this equations can
be easily solved recursively. Right hand side in (3.10) ddse)nMB (tm) wheni =1.
Therefore

m

Mp (tm) = G(tm) + _;MB (tm—ti-1)[F (t}) — F (tj—1)] + Mp (tm) [F (tj) — F (tj-1)]

and solving foﬂ\/l,gJ (tm) gives the following recursive formula

MB (tm) =

o) + 5 M3t~ t-IF ()~ ()

(3.11)
Where the initial condition for both bounds is assumed to/ty) = 0= M3 (tm).
Both authors Mercier and Ayhan suggest also matrix notdborequations (3.9) and
(3.11) however we do not present it here since the recursiveulas seem quicker to
compute and they are less memory size consuming.

1-(F(tj) —F(tj-1)

3.3.2 Availability function

The bounds for the availability function are not so widelydséd in literature as in
case of the renewal function. Here we present two methodsofoputing the bounds
for the availability function. Both methods are based onlibends on corresponding
renewal functions.

Method 1

This approach was suggested by Ayhan also in [3]. Unfortinat is incorrect. It
can be shown by mean of examples that for some cases the bowitioks availability
function given in [3] are crossing. Below we present the igiedalso corrected version
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of the bounds. For convenience we use the same notation &k itt plso has to be
commented that in the paper there is a small disagreemeh¢ iimterpretation of the
renewal process at origin. Recall that all availabilitydtions may be found by solving
the renewal type integral equation

k(t) = g(t) + /0 ‘K(t—9)dF(s) (3.12)

whereg,F are known and is unknown, see also Table 2.4. Ayhan claims that the
solution to (3.12) is given by

_ /otg(t — 9)dM(s) (3.13)

whereM(t) = 3, FU)(t) andFU)(t) is j— fold convolution ofF with itself. This is
statement is incorrect. Take for instarfeét) = g(t) = 1— e thenk(t) = M(t). It can
easily be shown that
_ Z F ) =
=1

This situation corresponds to the renewal function in Rwigsrocess see e.qg. [24].
However from (3.13) one obtains

K(t) = /0(1 e M9 )ads= At 41 (3.14)

This disagreement comes from the interpretation of thewahprocess at origin. The
statement (3.13) is true if and only if

=1+ 5 FO(p)
2

what corresponds to the situation when the first renewahiayd at = 0. The authors
of [3] continue their notation using contradictory assui that (3.13) is true and
M(0) = 0. We will keep the convention th&(0) = 0 and the solution to (3.12) is
given by

t
t) +/0 g(t —s)dM(s) (3.15)
(see also Theorem 2.2.2).

The bounds ok may be obtained in the following manner. Using the same tjarti
of the interval the above equation may be written as

9(tm) + Z S)dM(s) (3.16)

tj— 1
Let M. andMy be the lower and upper bounds fdrand then the integral in (3.16)
can be bounded by
t
d(tm—9dM(s) < max {g(tm—9)M(t) ~M(ti-1)]}  (3.17)

ti1 tj_1<S<t;
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and
t

i )
g(tm—)dM(s) > min {g(tm—9)[M(tj) —M(tj-1)]} (3.18)
tji—1 tj—1<s<t;
Of courseM is unknown and the bounds for it have to be used instead. Tthersun
[3] suggested to use the following lower bound

min_ {g(tm—9)[ML(tj) —ML(tji—1)]} < min _{g(tm—8)[M(t;) —M(tj-1)]}

tj_1<S<t; 1<y
Which is based on their Proposition 3 in which their prove tha
ML(t)) — ML (tj_1) < M(tj) —M(tj_1) (3.19)

Upper bound is constructed in similar way. It is not that difft to find an example
for which (3.19) does not hold. Let us consider Gamma ren@n@tess (this pro-
cess is introduced in Section 3.5.1) for which analyticgregsions foM is known.
This process gives a flexibility to model either oscillateawgd non-oscillating renewal
functions. It appears that inequality (3.19) holds only whiee oscillations are small
(such examples, only with small oscillations, were presei [3]). In Figure 3.1 we
present renewal functions for two cases with oscillatorg aon-oscillatory behavior.
The renewal functioM was obtained from an explicit formula given later in Section
3.5.1, bounds were calculated using the recursive forn(@8l&83 and (3.11). From this
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Figure 3.1: Bound on the renewal function for Gamma renewatgss and corre-
sponding increments of the bounds. Number of grid pointsl d&e= 100 for both
cases.
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Figure it may be observed that both bounds are coherent gtlahalytical solution.
Plots on the right hand side present the increments for batimdis and also for the
renewal function. In case when the oscillations are smallrbrements of the bounds
bound the increment of the renewal function. When the @dimihs become bigger
then this is not true. Since in such cases relation (3.193 dothold the bounds dn
given in [3] will also be crossing.

To fix this problem we propose the following. Singk (t) andMy (t) form bounds on
M(t) for everyj =1,2, ... it holds

ML(t) ~Mu(t-2) SM) —M(t-2) SMu(t) ~Mi(t1)  (3.20)

Therefore the integral in (3.16) may be bounded by

t

" gltn-9aM(9 <, max {gitn-9Mut) M)} (320
and
tj g(tm—S)dM( ) > ; En<|sn L {g(tm—S)[ML(tj) — MU (tj_l)]} (322)

tj-1

Note that sinceM is non-decreasing the upper bound is bigger than the lowando
for all (different) arguments, hendéy (t;) — My (tj—1) > 0. Therefore the upper bound
on the functiork is

m

K(tm) <g(tm) + > max {g(tm—9)} My (tj) —ML(tj-1)] (3.23)

= 1tJ 1<S<tJ

This bound may be easily computed if the functigi) is monotone. Ifg(t) is in-
creasing then max,<s<t; {9(tm—9S)} = 9(tm —tj_1) and if g(t) is decreasing then
max, ;<s<t; {9(tm— )} = 9(tm — ;). From (3.22) and (3.16) it follows that the lower
bound ork is
m

) 2 gltm) + 3 min, {gltm—9M() Mo (-0} (324)
This bound may also be computed very easily whén is monotone however one
have to be careful about the sign Bf (tj) — My (tj—1). Therefore for the above
minimum one should takg(tm —t;) if g(t) is increasing (decreasing) amdi (t;) —
My (tj_1) > 0 (ML(tj) —Muy(tj—1) < 0). And g(tm —tj_1) if g(t) is increasing (de-
creasing) and (t;) — My (tj—1) <0 (M.(t;) —Mu(tj—1) > 0).
In the example below we check the behavior of these boundssia of the availability
function A;.

Example 3.3.1. Let up times Wbe distributed according to Weibull distribution with
parametersa and 3 and let the down-times jbe constant. Then the distribution
Fu.p is a shifted Weibull distribution and is given by (3.56). We iaterested in the
availability function A(t) for different parameters. This corresponds {o)k= A;(t),
F(t) = Ruip and gt) = 1—Ry(t). Figure 3.2 presents the bounds obtained from
formulas (3.23) and (3.24) and also the approximation taekethe mid point between

34



Overview of concepts and methods 3.3 Bounds

MTTF=2MTTR=03p=7 MTTF =2 MTTR = 0.011408 B = 4
T T T T T T T T T

4 T

T
(A+A )2

AL 4+
3H A 1
N=10!
u al 0\
Al
2r N = 1500
1 S _ _ 1
ok
ol
s
oy
ol
o . . . . . . . . . 3 . . . . . . . . .
0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10
Time [y] Time [y]
(@) (b)
MTTF=2MTTR=0.3p =12 MTTF = 2 MTTR = 0.0027379 B = 6
1 — ’ | ~ ! e a\‘\ = 1.01 T T T T T T T
\ “‘ \ | \ / \ / N\ N
09 | \ [ / \ 1 g
- ] \ S / N %
I ] \ ] /NS -
08F | (. \ 4 1005F /
| o \ \ /
oy N
/ /
07 | | | v, 1 /
| \
| | \/ /
06 | V 1 11— N
|| < o~/
| ~
| \ —
05f \‘ “‘ 1 \/
\|
V (A+A)I2 (A+A2
04 . . . . . . . T T 0.095 . . . . . . . :
0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10
Time [y] Time [y]
(c) (d)

Figure 3.2: Behavior of the bounds on the availability fume#; for Weibull-Constant
case.

bounds. The first observation from the plot 3.2(a) is thatibiends on the availability
constructed from the bounds on the renewal function are weédg for bigger values
of t. However, it is interesting that although bounds areenide approximation taken
as the midpoint converges to the steady state and it alsateftscillatory behavior.
Graph 3.2(c) presents only the approximation obtained ftbmbounds. Since the
bounds on the availability are very wide (very often beydmal interval [0, 1]) it is
natural to ask how fast the bounds will become tighter if thenber of grid points
will be increased. The answer is given on the graph 3.2(bklwvpresents the lower
and upper bounds on the availability function for two casase with 100 grid points
and second one with 1500 points. It can be seen that incrgaki® number of the
grid points by 15 times leads to a very small change in the suim general this is
the problem with discretization methods that they havedichaccuracy. Finally let us
focus on more realistic values of the parameters. Plot 3.Riigstrates the behavior
of the the approximation for the availability function olsted from the bounds when
the steady state is equal to 0.9986. It can be observed timbaimated availability
is above one (for this case we used 1500 points). This is thergkebehavior for
high availability states. The conclusion from this examglas follows: this method is
reasonable for the cases with low steady state.9). For the situations when steady
state is high this method gives a poor result.
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Method 2
This method bounds the availability function also usingrmsion the renewal func-
tion. The advantage of this method is that it can also haimdievailability functions
with high steady state. The idea is very simple and is basati@nelation between
the availability function and two renewal functions. Letpresent the method in case
of function A;. Recall that the availability functioA; may be obtained from

Al(t) = M]_R(t) — M1|: (t) +1

for other availability functions see Section 2.3. IM}¥(t) andMji(t) be the bounds
for the functionMyg(t), similarly letMi¢ (t) andM}: (t) denote the bounds fos(t)
then from above relation it follows that

MER(t) — MiE (1) + 1 < Ag(t) < Mig(t) — M (t) +1 (3.25)

Therefore we obtain the bounds on the availability functidn principle one can

use any bounds on the renewal function and use relation)(828btain bounds on
the availability function. Of course the drawback of thisthoel is that it requires
computing four bounds on two different renewal functions e other hand once
such bounds are computed the bounds on the availabilityoan@uated in a negligible
time. Let us consider again the case presented on Figurd)3.%(was remarked
in the example above that the Method 1 had problems with thle &vailabilities. It

appears that Method 2 can handle high availability stateshrmore efficiently. Figure
3.3 presents the bounds on the availability and the appitiom (separately on two
plots) for the same case as the one presented on Figure.Ba(ahds on the renewal
functions were computed by using the same recursive fosniar this computation
we used only 500 grid points. Note that the bounds on theahidily function are also
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(a) Bounds on the availability function.

(b) The approximation for the availability function

Figure 3.3: Approximation to the renewal function for theegtaken from the Example
3.3.1

quite wide and their usage as the error estimation is rathstfll. The approximation

(mid point between the bounds) presented on Figusébh3 suggests that this method
may be considered as a good candidate for approximatingvétillaility functions.
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Remark3.3.2 Run et al in [38] present a method for improving any bound for a
renewal function by a functional iteration. This proceduonay be described as follows.
If ML_(t) andMy (t) form the bounds on the renewal functibf(t) then those bounds
may be used as the initial conditions in the following ite@atscheme

MUY () = F(t) +/0t MU (t — s)dF(s)

or
MUY (1) = F(t) +/Ot MY (t — s)dF(s)

It is proven thaﬂ\/ll(_') and ML(J') are bounds for ali and converge to the renewal func-
tion wheni increases. Although this iterative procedure may be usedpoove the
bounds obtained in this section we do not employ it becausecimputationally in-
efficient. Each iteration leads to the integration of theereal function obtained from
the previous iteration therefore the initial bound has todraputed on a very fine grid.
This drawback can also be observed in their paper, namelalaiés of the improved
bounds are presented only at few grid points. This methodlmeaysed only if the the
single values of the renewal function are required.

3.4 Numerical solution of the integral equation

In previous Chapter it was shown that all functions of insésatisfy the same type of
integral equation

(t) = H(t)+/otr(t—x)dFu+D(x) (3.26)

whereH,Ry.p are given and is unknown. Although we say th&,.p is given in
most of the cases it has to be approximated as well. Howeigmibre convenient
to consider the problems of computifg.p andr separately. An obvious numerical
procedure for solving (3.26) is to approximate the integeam via quadrature rule
which integrates over the variablefor a fixed value oft. Below we present three
guadratures that appear to be the most suitable for thegmmobl

Assume that the solution to (3.26) is required on the intejda]. Let 0=ty <t; <
- <ty <t be a partition of the interval. As it was already seen in ®ac8.3 the
functionsr may have oscillatory behavior, like for instance the avmliy functions.
One may think that choosing a non-uniform partition|@ft] would result in higher
accuracy. Unfortunately the non-uniform grid increasesrédquired number of calcu-
lations of R, p. We will discuss this problem in more details in Section 8where
we also show that not big improvement is achieved when thqualespacing is used.
Therefore we choose to use the uniform grie- ih,i = 1,....,n h> 0. The equation
(3.26) may then be written as

tm tm
((im) = H(tm) + [ "rltm=X)dF0(0 = H(tm) + | "rltm—x)dRs10( (3.27)

3.4.1 Trapezoid and Simpson’s rules

Tortorella in [47] presented two approximations fdt;) based on the trapezoid and
Simpson’s rule for Riemann-Stieltjes integrals. The teayerule can be derived in the
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same manner as for Riemann integrals by replacing the ireraan by dRy . p(X). For
methods with orders 2 (Simpson'’s rule) Tortorella propasag Newton-Cotes rule for
Riemann-Stieltjes integrals, see also [46]. Direct regiaent ofdx by dRy.p(x) for
higher order methods will result in accuracies that are sgted as those of the rules
obtained in [47]. The derivation of the recursive formulasdpproximating (t;) may
be found in [47]. Here we present the end-equations andssnesmportant aspects
related to our problem. For convenience we use the samdarot in [47]. Lets
denote the value d#y . p(tj) and similarly forH; = H (t), ri =r(t;). The algorithms are
based on the assumption that0) = 0 andH (0) = 0 (whencer (0) = 0). Seemingly
this restricts the usage of the algorithms to only renewattions. The algorithms
may also be used for the case whe(0) # 0 with simple scaling procedure that is
presented in Remark 4.2.3. Below are the algorithms

Trapezoid Rule

2Hi ' Rgi—FRea
Il = l—k——F—————
' 2—F1+|(Z1 K2R

(3.28)

This procedure requires one starting poigt= 0.

Simpson’s RuleThis procedure requires three starting pointg:== 0, ry/> andry,
wherery, =r(t1/2). In principle those values could be obtained using trapeade,
however the error introduced in initial points has significanfluence on the whole
solution (see [47]). In order to find those initial points {Gwella propose so called
ascending-descending procedure. et 2 Kt;, k=0,1,2,.... Note that sequenc®
descends to zero &sncreases and also th&t=t;, 53 =t;/2. This grid is presented
on Figure 3.4. The idea is to take sufficiently lak§such thatg . ; is almost zero and
use Simpson'’s rule with starting values= 0 andr(s¢ + 1) = 0 to obtain an estimate
for r(s¢) and 'descend’ back up tdt; ). This ascending-descending procedure can be

Figure 3.4: Grid for ascending-descending procedure @@el for Simpson’s rule
(lower)

described as follows. Choose sufficiently lalgésee Remark 3.4.2 ). Compute
r(s¢) = (14+F())/6) " H(sx)
Takei =1,...,K and fork = K — 1 compute

-1
I’(SK) — 11— 2F(9&+1) + F(S()] [H(S,()—F
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Then the starting values for the Simpson’s rulerayg = r(s), r1 = r(so)-
The equations for approximatirrg by using Simpson’s rule derived in [47] are

2F -t 2 1 2
o= (1—?1+%> [Hi+§F2ri1+ri2<§F2—§Fl>+
+ '/zz [ri2k+4ri2I6<+1+ri2k+2(F2k_F2k2)+
K=
Mok — li_
+ %(sz —2Fx 1+ sz—z)] ]
fori=24,...,and
o 2F R\ '[, . 2_ . [(1_ 2
r = (1 3 +6> |:H|—|—3F2I’|_1—|—I’|_2<2F2 3F1>+
N 272 {ri2k+4rizg+l+ri2k+2(|:2k_ Fo o)+
K=2
Mok — li_
+ %(sz —2Fx 1+ sz—z)]
Ary0+11 r
- ”2T<F.—F.1)—§1<F.1—2F._1/2+F.)]

fori=3,5,....

Remark3.4.1 The algorithms presented in this section approximate fonctgiven
thatr(0) = 0. In order to use them for general case for whi@) = 0O it is needed to
scale the functioi. LetH*(t) = H(t) —H(0)(1—F(t)) andr?(t) = r(t) —H(0) then
it is easy to find thatr?,H? F) satisfy (3.26) if and only ifr?,H% F) satisfy (3.26).
So for instance when computing the availability functiby) see equation for which
A1(0) = 1 we need to first compute

H%(t) =H(t)—1-F(t)

whereH (t) = 1— Ry (t) andF (t) = Fy;p(t). Then usingH? as a proper input to the
algorithms one can compute valuesr€étt). After the approximatiom?(t) is obtained
it has to be re-scaled in order to have the solutiorr for (A1 (t)). This is done using
relation mentioned above

rt) =r*(t)+ 1.

It has to be stressed that this scaling procedure is doneeglaible time.

Remark3.4.2 Choice of K in ascending-descending procedufée choice oK in
the ascending-descending procedure will determine tloe ierthe starting points(t; )
andr(ty/2). It appears that the error introduced in those initial moimiay have sig-
nificant impact on the overall approximation. However theeasling-descending pro-
cedure eliminates the error for the initial conditions vefficiently. Based on the
experiments we claim that fa¢ > 7 the difference between two approximations with
differentK is beyond the machine precision. We could not find any exafoplehich

it is not true. The cost of computing 7 approximations is iugglle.
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The very big advantage of the Simpson’s rule derived by Telte is that it re-
quires the values of the distributid®y ., p at onlyN +N/2-+ K grid points (see Figure
3.4). Usually the second order methods requiMevalues for the functioify . p.

3.4.2 Midpoint Rule

This method is very similar to the trapezoid one but instéades the mid point values
for the functionF, . p. Below we present the derivation. Based on Remark 2.1.7 the
equation (3.26) may be written as

() =Ht)+ [t R o0 (3.29)

tm

=Hi(tm) + | Fusn(tm—X)dr(x) + F (1r(0) (3.30)
The integral in the last line ma be approximated by the midpaile
m tj

/tm Fusnltm—Xdrx) = 3 [ Fusoltm—x)dr(x
0

j=1/t-1

~ S Fooltn—ti o)) 14 2] (33D)
=1

wheret;_o5 = (tj —tj_1)/2. Substituting in (3.29) and solving fofty) gives

m-1

H (tm) +1(0)Fup(tm) = (tm-1)Fu+p(tos) + Y Fusp(tm—tj-0s)[r(tj) —r(tj-1)]
j=1

(3.32)
The disadvantage of this recursion formula is that it rezputhe values of the distri-
bution R, ;p on the grid with the step siz®/2. This is an important issue whég ,p
has to be approximated.

1
I’(tm) - 71_ F(tO.S) [

3.4.3 \olterra equations

If /. p has a densityfy . p then (3.26) may be written as

) =H(t) +/Ot F(x) fu 1o (t — x)dx (3.33)

Equation (3.33) is a linear Volterra integral equation & gecond kind with a differ-
ence kernel. Numerical solution of this type of equation Ib@some routine, see for
example [17]. However, interest remains in dealing witl2§3 directly because:

e We may compute all functions of interest (see Table 2.4) Hy asing Ry . p
without involving the densityfy . p. Some functions like\; orAg may be com-
puted using only densityfiy . p however in order to compute functioms or
AE’ one has to computBy p either by integrating the density (computed for
A or A?) or by using the algorithm for convolution. This double effashen
computing more functions is eliminated when using form§3.2

e We may want to avoid problems whédp. p has singularity.
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e As mentioned in [47], [19] simpler, more robust or more aeteimethods may
arise from a direct approach (3.26)

Nevertheless we do not reject this approach immediatehceshe literature for solv-
ing numerically Volterra integral equations is rather riele decide to choose one
representative method from this class and to compare iterpgaince for computing
the renewal and availability functions with other methodlke available methods for
solving Volterra integral equations are: quadrature magh&unge-Kutta methods,
block methods just to mention few. For the overview of thelalsée methods see e.qg.
[17]. As the representative of this class we decide to chémsgh order Runge-Kutta
method (RK-4). The main reason is that it differs signifibaffom the methods pre-
sented so far and also because the order of this method isrhigbnge-Kutta methods
for the solution of (3.33) are self-starting methods whiekedmine approximations to
the solution at the points= hi, i = 1,2,... by generating approximations at some in-
termediate points ift;,t;1] (RK-4 uses three points). The derivation of the algorithm
follows closely that for ordinary differential equationscamay be found for example
n [17]. The algorithm itself is not difficult but slightly complexd is not presented
here for typographical reasons (see p. 123 in [17]).

We will check the performance of RK-4 method together witheotmethods in Sec-
tion 3.5.

3.4.4 Non-uniform grid

The methods described in previous sections are fixed stejpoagtthat is, they are
methods which divide the range of interg8it] into N equally spaced intervals of
lengthh=t/N and which solve the integral equation at the set of discreitetst; = ih.
Since the availability and renewal functions tend to havesuillatory shape it is also
important to investigate the behavior of the approximatona non-uniform grid. It
may happen that putting more points in the places where thzimated function is
changing more rapidly gives better approximation than endase of equal spacing.
In this section we check how the change of the grid influencespproximation and
what is the actual cost of using non-uniform grids. The itssatte presented for two
methods: trapezoid rule and method with bounds. In ordes&tie methods pro-
posed by [47] and [31, 3] on the non-uniform grids the modificaof the algorithms
is necessary. For the trapezoid rule it is not difficult tovghbat the formula for
approximating (t) below may be used on any partition=0ty < t; <--- <ty =t

2

N tk -|-I’ tk_ )
r(tl)_Z—F(ti—ti_l)

[F(ti—te—1) —F(ti —t)]

(3.34)
For the method with bounds we present the results only forghewal function.
The modified recursive formulas for the bounds are

H(ti)+r(t2 ) (ti—ti1 +Z

Mi(tn) = F(m)—_iML(ti_o[F(tm—to—F(tm—ti_l)] (3.35)
- F(tm>+iML<ti1>[F<tm—ti1>—F<tm—ti>] (3.36)
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and
My (tm) = F(tm)+_iMU(ti)[F(tm—ti1)—F(tm—ti)]

where we used the notatidn(t) = R, p(t). Those bounds may be used on any parti-
tion.

Note that if the grid is uniform thety —t; = tx_; and the number of function evalua-
tions of F is minimal and equal td. If the non-uniform grid is used then the number
of function evaluations needed will increase and it will €legh on the structure of the
grid (in the worse case it could &% — N)/2). Since in many casés has to be ap-
proximated it is important to check if the usage of non-umifayrid will compensate
this additional cost.

The general idea behind the non-uniform grid can be destrsefollows. Having

N points in the grid find best possible location for those ointthe sense that the
approximation obtained on this grid has the smallest overedr. Of course it is not
obvious where is the best location, however we investigaggperimentally. In the
example below we compare the approximations obtained flarirapezoid rule on
uniform and non-uniform grids.

Example 3.4.3. Assume that the distributions of up times and down times hatre
Gamma distribution with parameters:; & Gamm&39,9) and D ~ Gammd1,9) 2,
then Ht) = Ry p(t) ~ Gamma40,1) (for details about Gamma alternating renewal
process see Section 3.5.1). Our interest is in the avaitglilnction A. Let us say that
we have N= 114 points at our disposal. From those points we decide to canstwo
grids: (1) uniform and (2) non-uniform. The best distrilautiof the points on the non-
uniform grid is not obvious; we decide to put more points acplwhen the distribution
F is changing rapidly (this is also the place where the fumt#y, is changing rapidly).
The two grids are presented in Figure 3.5. The approximatitor the availability

1 T 1

09 1 0.9
0.8 1 0.8
0.71 1 0.7
06 4 06
Zost 1 Bost
04r 1 0.4r
0.3 1 0.3
02t 4 02

0.1 1 0.1f

0

L L L L L L L L L L L L L L L L
0 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45
Time [y] Time [y]

() Uniform grid. (b) Finer grid wherd- is changing.
Figure 3.5: Two grids from Example 3.4.3
function obtained from the trapezoid rule on those two gdadsshown in Figure 3.6.

From this graph it can be observed that the overall approtioraobtained on the
non-uniform grid is much worse than the one in the uniformecas

20ther distributions could be taken as well, however for Ganease the analytical solution is known
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Figure 3.6: Comparison of the approximations for the abdits function on different
grids from Example 3.4.3

In the next example we investigate the behavior of the boondke renewal func-
tion using a non-uniform grid. Since the bounds on the reh@iwation determine the
bounds on the availability function and those are used toptenthe approximation
for the availability function we decide to investigate otiihe behavior of the bounds
on the renewal function.

Example 3.4.4. Let us consider a renewal process with the underlying distidn
F ~ Gamma40,9). Define the following uniform grid:'t= [0(0.1)40]. Figure 3.7(a)
illustrates the bounds on the renewal function computedhidrid. The decision

9
8
7
6
s
4
3
2
1
0

. . . . . . . . . . . . . .
0 5 10 15 20 25 30 35 40 [ 5 10 15 20 25 30 35 40
Time [y] Time [y]

(a) Bounds on the renewal function. (b) Difference between the bounds.

Figure 3.7: Bounds on the renewal function from Example4d3camputed on the
uniform grid.

on how to construct a non-uniform grid is based on the distdnetween the bounds
(see Figure 3.7(b)). Note that the difference between thmd® is bigger when the
bounds are increasing. It seems to be the natural choice tarmre points in the
place where the distance between the bounds is relativglyTiiierefore we construct
the following non-uniform grid%4= [0(0.05)10, 10.1(0.15)40], which has the same
number of points as gridt(N = 401) and puts more points betwe&10]. Figure 3.8
presents the difference between upper and lower bound dechpua those two grids:
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t! and £. The bounds obtained on the non-uniform grid are tighter e interval

0.25

| id
M_,~M,_ on uniform grid t Y

2| /
" MM, on non-uniform grid Y

0 5 1‘0 1‘5 Ti"il!) o 2‘5 3‘0 3‘5 40
Figure 3.8: Comparison of the distance between the boundsffenent grids from
Example 3.4.4.

[0,20]. Fort > 20the bounds computed on the uniform grid are better.
Based on Examples483 and 34.4 we can conclude that

1. The non-uniform distribution of the points in the grid da®t improve the over-
all approximation for the availability function.

2. Bounds for the renewal function can be tighter on the naferm grid but only
on bounded interval.

3. It is not worth to use non-uniform grids since the benef@rsall and the cost
attained by the additional computation of the renewal ithistion is big.

Therefore in the rest of computations we use uniform griccomputing renewal and
availability functions.

3.5 Comparison of the methods

In the previous section we have introduced different methiod approximating re-
newal and availability functions. The aim of this sectioridsllustrate the compara-
tive performance of those methods by using them to solveiesseifrtest problems and
to determine which routine is 'best’ in the sense of timingl @accuracy. Of course,
to define what we mean by 'best’ we need to declare a partitegtrstrategy which
can be applied uniformly to each routine. Inconvenienceunsituation is the lack
of test cases for which the analytical solution is known eeggly for the availability
functions. The exponential case, for which the solution gigen in Chapter 2, is not
suitable for comparing the overall performance of the mashAlthough, it may be
used as an easy test case. As it was mentioned in the requiieme are particularly
interested in situations where the availability and rerndwactions show oscillatory
behavior as it is for the case with Weibull uptime for highalues of the shape param-
eter. In the literature there are a few examples available/fiich the renewal function
is slightly oscillating and the analytical solution is knewl he availability functiorA;
for the case when up-times are exponentially distributetidown-times are constant
was presented in [4, 24]. Unfortunately, in this situatibe bscillations are visible
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only for low steady states, thus not of our interest.

In the absence of adequate test cases with known solutiamsuadh can be done with
respect to the comparison of the methods. Fortunatelypieans that it is possible to
derive explicit formulas for the availability and renewahttions in case when the up-
times and downtimes have both Gamma distribution with agget shape parameter.
In this situation the scale and the amplitude of the osiltest may be easily controled
what allows us to compare the methods for the problems witbrdint difficulty level.
The availability and renewal functions will be of coursefeliént than in case when
the up-time is Weibull but the general behavior will be samilTherefore we compare
the methods mainly based on their performance for Gammenatieg process and
we claim that the method selected based on this choice il bé able to produce
reasonable results for the case when the up-time has Wdibtribution.

Before the comparison of the methods the derivation of tlaélahility and renewal
functions for the Gamma renewal alternating process isngive

3.5.1 Availability in Gamma alternating renewal process

Availability function for Gamma alternating renewal prgsavas previously studied by
Pham-Gia and Turkkan in [36]. They propose to use Gammaldisitn for up time
Ui ~ Gammaay, PBy) and down timeD; ~ Gammaap,Bp) whereay,oy,Bu,Bp €
R, (for parametrization of the Gamma distribution see Apperdi. Their method
can be described as follows: compute the dengityp(t) of U; + D; (which has to
be approximated by using, rather complicated, Humberttiong; next approximate
renewal densityn(t) by iterative equation

m0) = 000 + [ (0T (X

with starting point taken from [5]

M) = foso®)+ Rolt) /[ (1R o(0) o

The availability functionA; is then obtained by numerical integration using relation
(2.33). This method is rather complex for real-time compates and we do not em-
ploy it. Instead we propose to use Gamma distribution wighdime shape parameter
for up time and down time and integer scale parameter forhwtliased formulas for
availability and renewal functions can be obtained. Whealesparameter in Gamma
distribution is integer then this distribution is calleddty distribution. Hwank [45]
give a numerical solution for the availability function whie; andU; + D; have both
Erlang distribution. We present analytical expressiomgtie renewal and availability
functions that are easy to implement and are exact.

LetU; ~ Gammdk—m,A) andD; ~ Gammdm,A) wherem < k are integers anl > 0.
ThenU; + D; ~ Gammak,A). The up-times can be interpreted as a surk-efm ex-
ponentially distributed random variables with parametend similarly down-times
correspond to a sum ofirandom variables with- Exp(A). Recall that the availability
functionA; can be expressed as a difference of two renewal functioesSgetion 2.4)

Aq(t) = Mar(t) = M1 (t) +1 (3.37)
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whereMig(t) denotes expected number completed repairs and denoteseskpem-
ber M4g(t) failures in(0,t](see Figure 2.1). We first compute the renewal functions
and then the availability is obtained from the above refatio

The main result is based on the following theorem

Theorem 3.5.1.For any real number u and positive integers n, k, m such thank it
holds
unk— lk 1

anm! k

gmr ue’ (3.38)

wheree = exp(22), €9 =1, &' = exp(&™) and i is imaginary unit satisfyingi= —

For the proof see Appendix D. This theorem expresses infagites in terms of
finite sum that involve complex numbers. Such a represemtatiows to simplify the
calculations and is crucial in obtaining the analyticalreggions.

We start with computindir. Since there is no closed form for Gamma CDF it is
easier to derive expressions for corresponding renewdaiitieshand use relation (2.2)
to get the renewal functions.

M]_R /mlR dX / Z fU+D (339)

Since the sum of Gamma distributed random variables has Gadistribution with
the same shape parameter and sum of the scale parameters\ubkitton of fSL)D(t)
is Gammank,A) i.e.

A 1
ilp(t) = W(M)nk e M
Therefore
nk 1
Mag(t) / e S )‘:(( i (3.40)

By Theorem 3.5.1 above series can be written as

M]_R / )\e*"x emr dx

k—1
_ —AX — X r JAXe"
_/OAe k<€2‘+r28€2‘ )dx

k—1
)\t 12)\8/ —AX(1— S)dx

By doing simple integration it can be shown that the renewatfionMiR is

)\t 1k Logr ~
Mir(t) = 7+ Z — (1 e M- €>> (3.41)

The same formula was obtained by Parzen [35]. However, thdtneresented here is
more general and also it allows to calculate the availgbilinctions which was not
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given in [35]. Now we present similar approach for compuftifg . Recall that in this
case inter arrivals are definedlds D1 +U,, D> +Us. ... This situation corresponds to
the delayed renewal process with first interval distribut@ammak — m,A) and with
remaining arrivals distributed according@@ammak, A) (for details about this renewal
process see Section 2.4). Therefore by applying the samenarg as foiM1g it can
be shown that

Mo (t) _ /t i mo\x)nkmle)\xdx

0 nk—(m+1)
/)\e_)‘x )\X)—dx
—(m+1))!

By Theorem 3.5.1

Mur (t / Ae —)\x £ (ML) e gy

At 1"*l t ‘
=4z )\er(erl)/ ef)\x(lfs )dX
k Kk Zl 0

r

Therefore the renewal functidvl;r can be expressed as

Mol
M, A At(1-€")
Mae (1) = +kr; — (1 e ) (3.42)

Substituting (3.41) and (3.42) in (3.37) we obtain that thailability function A; for
Gamma alternating process can be expressed as

lkl g’ M(1—¢€" m
Aq(t kz — (l—e’ ("9))(1—(5) )41 (3.43)

In the same manner one can obtain availability functfn Let as befordJ; ~
Gammak — m,A) and D; ~ Gammadm,A). Recall that the availability functiody
may be found by

Ao(t) = Mor(t) — Mor (1) (3.44)

As it was mentioned in Section 2.3.3 the expected numberilofés when process
starts from zero is equal to the expected number of complejeairs when process
starts from one, i.eMor (t) = Mir(t). ThereforeMog (t) may be computed by formula
(3.41). FunctionMgr corresponds to the delayed renewal process with interadsri

D1 ~Gammdm,A), D1 +Uy ~ Gammak, A), Do +Us ~ Gammdk, A) ... Proceeding

in the same manner as for the previous renewal functions

Mor(t) = / | % (- 1)k)\+ m_1)! (WDl e

/)\ _Ax w )\X)nk (k—m+1)
— (k—=m+1))!
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By Theorem 3.5.1
MOR /7\ f)\x r(k—m+1) e)xxe'dx

At 1"* grcmi) [* :
= — (k l) 7)\)((178 )
" +— " El)\ /0 € dx

r=

Therefore the renewal functidvigr can be expressed as

M Liiglemy
N o M)
Mor(t) = T 2 1% (1-e )

r=

(3.45)

Substituting (3.45) anMloe (t) computed from (3.41) in (3.44) we obtain that the avail-
ability function Ag for Gamma alternating process can be expressed as

1k 1 el At 3
e M(1- €") ryk—=m
RPN erd Gl i [ COE B D
Note that the steady state availability does not depend@rdale parameter
. L B MTTF o (k=m)/x o 0m
fim Aa(t) = fim Ao(t) = MTTF+MTTR (k—m)/A+m/A 1

The expressions for both availability functions and theeveal functions are very sim-
ple and can be easily implemented on a personal computelio@by the simplicity
is due to the complex number representation (the result ofse real), however
most of the modern programming languages like C++ or Matibhandle complex
numbers very efficiently.

Example 3.5.2. Let us check the behavior of the availability functions fan@na al-
ternating process for different set of parameters. Figueillustrates functions At)
and A(t) obtained from formulas (3.43) and (3.46). Black line on alijghs presents
the limiting availability computed from expression (2.54he manner how the func-
tions approach the limit depends on the shape of the digtabwf up and down time.
Our purpose is to model situations in which up time is muclydighan down time.
For instance the graph on the left upper corner presents tralability functions for
the case when uptime is only four times bigger than the doma,tivhat results in
relatively low steady state 0.8. In order to increase thedyestate availability one
has to increase the difference between k and m. However bgasiog the shape
parameter k the dispersion of the distribution becomes lemalhat leads to higher
oscillations in the availability functions. Therefore faralistic situations (with high
availability) Gamma alternating process may be used onlgmwthe oscillatory be-
havior is expected. On the other hand Gamma distributioriy flexible with regards
to the shape and scale what allows to model many realistiexas
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Figure 3.9: Example availability functions for Gamma aitging renewal process.

3.5.2 Testing procedure

It is true that comparison of the methods based on one or tweerigal examples
can be misleading. An overall picture of the performancehefrnethod depends on
its behavior over a wide class of problems. In order to havelgeactive picture of
the performance of the methods we consider a set of problemshvihave known
solutions and which vary in difficulty from easy to hard. Egmbblem is solved by
the routine under consideration, many times with diffeiaptt parameters and with
different number of grid pointsl. Certain data, such as the time taken and the actual
error are collected at the end of each run. Finally, theseegahre averaged out so
as to give an indication of how the routine would cope with@idsl problem. These
average values are then compared with values obtained o#iieg routines which
have undergone exactly the same procedure.

Therefore to test the efficiency of a method with particulesbem family we
carry out the following procedure with a number of differgatues ofiN:

1. run the method with many different values of paramepeisetween the limits
a < pi < bj. The parameterg; are sampled uniformly from the intervéd;, b );

2. after each indvidual run save the error and time taken

3. average out the errors and times. These average valudsarplotted against
N.

For the each test we used sample of 50 different parametergiave an objective

overview of the performance of the methods it is importanige the same criterion
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for evaluating the error. We use the following:

Error= = S Ire(t) — F(t) |2 ;
- N I; t |

wherer,(t;) is the true and (1;) is the approximate solution &t This is the root mean
squre error and may be interperted as a 'distance’ betwestwihvectors.

We give the results for different problem families using freatines which were
introduced in Sections 3.3 and 3.4:

e TT — Trapezoid rule for Stieltjes integrals introduced irctsm 3.4
e TS — Simpsons rule for Stieltjes integrals also introduce8ection 3.4

e BND — The approximation obtained as the mid point betweerbthads intro-
duced in Section 3.3. For the renewal function the boundsamnstructed by
the recursive formulas (3.10) and (3.11). When the avditgtbunction is con-
sidered the bounds are obtained by the Method 2 introduc&éation 3.3.2.
(Method 1 was not feasible for high steady states).

e MID — Midpoint method introduced in Section 3.4.2
e RK-4 — Fourth order Runge-Kutta method mentioned in Se@idi3.

Let us remaind again that these methods approximate fundtipfrom the following
integral equation

t
() =HO + [ rt=x)dFRo(

(except RK-4 which use§,  p instead) assuming that andR, . p are known. How-
ever, in most of the situations those input functions havieetapproximated as well.
Therefore, in checking the performance of the methods wied@side to compare the
methods for cases for whidd, Ry, p are known and later to check the influence on
the approximated solution when the input functions consaime error.

3.5.3 Results

Recall that we are interested in the renewal functions tbahtcthe expected number
of failures in the alternating renewal procedsir, Mo, M, M. FunctionsMg,
MD-, M correspond to the delayed renewal processes and furidgeris obtained
from the ordinary renewal process, for details see Chaptérhzrefore we decided
to perform the tests on the two classes of renewal functidakyed and not delayed
versions (Families 1-4). The performance of the algoritisradso tested for the avail-
ability functionsA; andAg (Families 5-9).3

Since in practice the most often used distribution for umpetis Weibull we construct
the problem families that are close to the cases that mag ahgn using Weibull dis-
tribution by using Gamma renewal process introduced ini@e&5.1 for which the

SFor functionsA? andA(? the performance will be similar and it will mainly depend e taccuracy
of H (see Table 2.4), if it has to be approximated
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analytical solution is known.
Below are the families of test problems for the renewal aradlaility functions that
vary in difficulty from easy to hard:

Family 1: Renewal function, not delayed, not oscillatifRenewal distributioGammak, A )
with 8 <k <20 and 2< A < 4.

Family 2: Renewal function, not delayed, oscillatirigenewal distributioammak, A)
with 180< k < 220 and 6< A < 12.

Family 3: Renewal function, delayed, not oscillatiRgnewal distributioisammak, A)
with 17< k<35 m=1and 7< A < 13.

Family 4: Renewal function, delayed, oscillatifRenewal distributiorGammak,A)
with 30< k< 70 and 3< A < 4.

Family 5: Availability function A, not oscillating, low steady-statd he exponential-
exponential case with underlying distribution given bys&.with the parame-
ters 10< MTTF < 25 and 039 < MTTR< 0.45.

Family 6: Availability function A, low steady-state Up-timesU; ~ Gammak —
m,A), down-timesD; ~ Gammam,A), with 20< k< 30,m=1and 3<A <7

Family 7: Availability function A, high steady-state Up-timesU; ~ Gammak —
m,A), down-timesD; ~ Gammdm,A), with 800< k < 1050, 1< m< 5 and
10<A <15

Family 8: Availability function A, low steady-state Up-timesU; ~ Gammak —
m,A), down-timesD; ~ Gammam,A), with 50< k < 80, 1< m< 5 and 10<
A <15

Family 9: Availability function A, high steady-state Up-timesU; ~ Gammak —
m,A), down-timesD; ~ Gammam,A), with 400 < k < 450, 1< m< 3 and
30<A <35

Figures 3.10-3.12 show the achieved average accuracysa@giron a logarithmic
scale, for the problem families tested. We now comment osethesults.
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Accuracy

As expected the BND method is the least successful for allliissn In general the
methods based on the discrete approximation of the conisiqoantities suffer from
lack of accuracy. This method is also not the fastest singitires to compute two
bounds in case of the renewal function and four bounds in@iade availability func-
tion. It appears that TT routine is more accurate on the rahfjeconsidered, however
the difference is not very significant in case of the renewatfions. This means that
it is more efficient to use simple trapezoid rule than therdigcapproximation. On
the other hand the bad performance of BND is recompensedtbsniieg the error
estimate which is missing in other routines. The MID methbdf actually works on
the grid with 2N points, is slightly better than TT for the renewal functi@msl signif-
icantly better for the availability functions, especialbr function A;. It is interesting
that all three schemes BND, TT and MID produce almost the samoe curves for
Family 5, and also similar situation is observed for FamilyThis suggests that for
'easy’ availability functions there is no difference inngithose three routines and the
one with shortest computation time should be chosen (TT odeiththe fastest since
it requires the smallest number of function evaluations,adeo Table 3.5.3). Albeit in
this case all three methods were outperformed by TS methaiclearly visible that
TS and RK-4 methods are the most accurate for all Familieth @iception for RK-4
method for ’easy’ Family 5). This is due to the fact that thosethods are based on
the higher order schemes. The RK-4 method is definitely thst mocurate with the
fastest speed of convergence, however in some cases itggaguore points to be the
winner, like for instance for Family 7.

Timings

Results are presented in Figure 3.13. We note that wheh, . p are known the time
taken to approximate for fixed N is independent of the family and of the problem
parameters for all routines except for the BND method wheagjuires to compute 2
bounds for the renewal function and 4 bounds for the avéialiunction. Thus the
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method with bounds is twice slower for computing the avdligbfunctions than in
case of renewal functions. Undoubtedly the RK-4 method eésaerall looser with
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Figure 3.13: Comparison of the methods with respect to teedp

respect to the speed. The time taken for this method cannetdre compared with
other methods on the same scale. The second order TS methothjgrable with
other methods however it is almost the slowest; althoughnswith BND method
when the availability functions have to be computed. Thera little difference be-
tween two the fastest methods: TT and MID. MID is slightlyvetw since it requires
the values of the distribution on more number of points, hearé the distribution is
easily accessible this difference is not very significantgéneral all methods make
the calculations relatively fast (except RK-4 method) om thnge ofN considered.
Nevertheless this small differences in timings may becoppaient if the underlying
distribution has to be approximated. This is investigatethé next section.

Additional cost related to the computation of convolution

In previous section we have compared the speed and accurdiffecent methods for
approximating renewal and availability functions. For@hsidered cases we have
used the analytical form for the renewal distributibg. p. Obviously, if Fy.p is
unknown then the speed and accuracy of the methods will leetatf by additional
cost related to the approximation Bfj . p. As far as the accuracy is considered it
has to be noted that the additional error relateéfop will not change the rankings
of the methods obtained in case whgn, p is error free. This can be explained by
the fact that all the methods take as an input the same ingpadistribution. The
additional time needed for compultikg . p will depend on the number of grid points
on which the value ofy.p is required. The number &, p evaluations varies for
different methods and different functions. Assume thatsiblation is required on the
grid with N equally spaced points. Table 3.5.3 presents the numbenofiélm R, p
evaluations for different methods. The trapezoid rule dralrhethod with bounds
are the cheapest in this serfseThe midpoint method requires different number of

4Method with bounds requires to compute 2 (for renewal fumjtor 4 bounds (for availability) but
all values are computed on the same grid, thus the vallg off may be stored and used for computing
all bounds
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Renewal fun. Availability fun.
TT N N
BND N N
TS N+N/2+K N+N/2+K
MID | 2N (N for delayed) 2N
RK-4 3N 3N

Table 3.1: Number of functiofy , p evaluations for different methods.

values of the distribution depending on which function ikckted. The Simpson’s

rule developed by Tortorella needs the value§pofp on the main grid (N) and also
between the every second point (N/2) and also for ascendisgetiding procedure
(K) (for details see Figure 3.4.1). The most expensive ifRkKe4 method which gives
another reason for not accepting it.

3.5.4 Conclusions

We can now try to make an overall assessment of these reshisaim of this compar-
ison was to select the method, perhaps few methods, thatigable for computing
renewal and availability functions. The selected algonghare going to be imple-
mented in a software that is used for real time calculatiars aso for large scale
models. Therefore the best method should have a good bdletween the speed and
accuracy.

The winner is TS method since it is the most accurate amohgsfastest methods.
Although it works on a finer grid than TT or BND it is still acdaple with regards
to the speed. Methods TT, BND are faster but they are not &iriflg accurate what
in case of the availability functions is very important. Hoxer the MID method is a
serious competitor for TS method in case of the availabilityctionsA;. Albeit the
MID point methods looses when the distribution of the predes, p is not analytical
since it needs more points than TS method. The methods withdsoare the least
successful with respect to the accuracy. The simple TT ndebldperforms the BND
method in the speed since basically both methods do the setekiterations but
BND method needs to do it twice in case of the renewal funaimhfour times in case
of the availability function. This comparison also showattthere are very accurate
methods like RK-4 that come from different theory, howearreal applications they
are rejected since the time taken for computations is fevedifonger and in case of
large scale models such a performance is simply unacceptabl

3.5.5 Error estimation and usage of bounds

Before the TS routine can be used automatically in the sofzere are some ques-
tions that need to be answered. As it was seen in Figures3310the size of the
error for the approximation differs in all families. Theoed the first question is: what

5Based on formula 3.32 for the midpoint approximation if temewal function is required then
r(0) = 0 and for delayed renewal proceds# R p thus the value oFy . p(tm) is not needed. For the
availability r (0) = 1 and bothy +p(tm) andFy+p(tm_o5) are required
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should be the step-size for the method in order to have dest@uracy? Another prob-
lem is related to the computation of convolution, namelywhioe error introduced in

computing convolution will influence the approximation abed by the method? We
will try to answer this questions in this section.

Choice of the step size

The choice of the step size can be determined in three waybagkd on the analytical
bound on the error (if such a bound is available), (2) basetherbound on the so-
lution, (3) numerically by investigating the speed of cagemnce of the method when
the number of grid points increases.

In general the studies related to the error analysis areuliffand very often it is not
possible to derive a closed formula for the bound on the erffarnumerical method.
In his paper Tortorella provides analytical bound on thereonly in case of the trape-
zoidal rule and claims (based on test examples) that Singsae is more accurate
with the same mesh grid. The bound on error is increasing tmté, thus analyzing
the error, he also focuses only on last grid paint Based on the bound he suggests
the following choice of step size: given a desired maximuroreg for time stepty
the choice of the step size should be chosen of the afd&r We will show that this
suggestion is not the most efficient in case of the renewalaamdability functions
study, mainly due to two reasons: the error is decreésing the bound on error given
in terms of orders of magnitude is too wide.

Let us investigate the actual behavior of the error for ther@xdmation obtained by
TS method for renewal and availability functions. Figur&43b) shows that the er-
ror becomes smaller (damped oscillations) as the functippsoach the steady state
and also converges to some limit (in these examples the intiibse to zero). This
is expected behavior in case of the renewal type integrehteans and it can be ex-
plained intuitively as follows. Let(t) denote the approximation tgt). Assume that
f(t) satisfies the same integral equationr @$ but with additional drive terni(t) that
introduces the difference betwee(t) andrt), then:

°(t) = H(t) + /o “E(t—X)dF () + b(t) (3.47)
Subtracting this equation from (3.26) gives
() — F(t) = bt) + /Ot (Ft—x) —F(t—x)) dF (%) (3.48)
This means that the difference between the approximatidrttesolution also satis-
fies renewal type equation. Certainly nothing can be saidtahe functiorb, however

if one assumes thétis directly Riemann integrable then based on the Theorer 2.3
the difference between the approximation and the solutiowerges to

t—oo

lim (1 (t — X) — F(t — X)) = [11/000 b(x)dx

6]t is non-monotone but it converges to 'zero’, see Figure [?]
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Figure 3.14: Example functions for Gamma alternating meagithk = 40, m= 1,

A =7, the absolute difference between the approximation oétbby TS and the exact
values and error estimation by the BND method. Number of gpidts usedN = 321,
steady stat&S= 0.975.

This reasoning is of course not strict and may be not true e, however it gives
some indication why the error in approximating renewal tygegral equations may
be not increasing. Therefore in practice the usage of isargebound on error is not
the most efficient method for determining the step size.

In Section 3.3 we have introduced the approximation(tp based on the bounds on
r(t). In theory this approach is very valuable regarding therearalysis, however
the practical usage of this error estimation is very limiged not efficient since the
bounds become wider as time increases and also tey requitg poats to become
tight. Therefore the error estimation also increases (@&imounds on error are pre-
sented in Figure 3.14(c)). Those bounds become tightereast¢ip size decreases, but
it can be shown by examples that the speed of convergence bbiimds to the solu-
tion with respect to the step size is slow. Figure 3.15 shdwglistance between the
upper and lower bound for the renewal and availability fioms computed at the last
grid point. The convergence is fast but only in a rargf, 1000 points, but even in
this interval the estimated error (or the distance betwbherbbunds) is relatively big.
For instance for availability it is better to use [0,1] as aihd instead of BND method
when less than 400 points is used. Therefore we concludéhthaisage of bounds as
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Figure 3.15: Distance between the upper and lower boundhéoliasst grid point.

the error estimate is impractical and in most of the situmtiid is not possible to use
large number of grid points to get such a weak error estimate.

Remark3.5.3 In some situations it is important to predict the comporseavailability
only in a short time interval, for instance to estimate tmeetiwhen will be the first
possible loss of production due to the next unit’s failurbeii the bounds may be used
since on the interval of the first renewat (0,MT TF-+ MT T R) the bounds are very
tight even with small number of grid points.

Remark3.5.4 Let us compare the approximation given by TS method with theds

on the availability functiomd;. We use the same parameters for the renewal process
as before. Figure 3.16 shows that the approximation given$ynethod agrees with
the bounds. It appears that all 500 points on whighs computed are between the
bounds. The calculation of the approximation by TS methadt @07 second (N =
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Figure 3.16: Comparison of the bounds on the availabilitthwihe approximation
obtained by TS method. Number of grid points: for bounds N 80I2and for TS
method N = 500

500) whereas for bounds it was 34.8 seconds (N = 12000).
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0<d<3 3<d<5 d>8
maxAP —Al") 10°-107 107-10° 10°9...

Table 3.2: Suggestion for the initial step size farwith Weibull uptime.

Since it is not possible to find a reasonable error estimatedan the bounds
the only way in which results correct to some prescribed r@oyumay be obtained is
to re-solve the original problem recursively each time gdriarger value oN, until
two consecutive sets of approximate function values agrdbe required accuracy.
(Usually the value oN is doubled, that is the steplength is halved, since thislesab
previously computed values &f;.p to be used again.) The question is what should
be the initial step-size so that the number of recursionsalls Certainly the choice
of the initial step size will depend on the problem family gradtameters. For instance
Figure 3.14(b) shows that the accuracy for the funcfigims much smaller compared
to the approximation of the functiof; on the same grid. We propose the following
choice of the initial step size.

Since usually the uptime is much smaller than down time thieence on the shape of
the function will be mainly by the distribution of uptime. tur case we are interested
in Weibull up-time. The step size should be determined basethe shape of the
function; if the function is oscillating then the step-sigieould be smaller. Let us
first focus on the availability functioA;. When the uptime has Weibull distribution
the amplitude of the oscillation can be modeled by the shapanpetef3, therefore
the choice of the step size should depend on this parameterth€®other hand it
should also depend on the scale of the problem, thus MTTHd gD be included.
In the initial choice of the step size one should also havessipiity to control the
accuracy by some input parameter. ddte some positive real number. Based on the
experiments with functio; we propose to use the following choice of the initial step
size

MTTF

o
The variabled is used to specify the desired accuracy for the differentedsn the
approximation obtained on the grid with sthpand the approximation obtained on
the gridh, = h—2° Table 3.5.5 presents the relation beteween the paramieted the
difference in consecutive approximations that was obthmeerimentally. It has to
be stressed that this is just the indication of the initiapstize and probably based on
more simulations one can find more accurate estimaltg.of

The step size for functiodg has to be much smaller than the for functidgp since

for realistic parameterd, is changing rapidly from zero to almost one on a very short

interval, see for example Figure. Therefore we suggestdhenwing choice of the
step-size for the initial step fdkg

MTTR

o="27g

(3.50)

This is just a suggestion for further investigation.
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Impact of the convolution error on the approximation

So far we have investigated the behavior of the approximagsuming that the the
distribution of the sunt; + D; is known. As it was mentioned in Section 3.5.3 the
time of the computations afwill depend on the number ¢i, . p evaluations (for TS
method it isSN + N/2+ K). Next to the time it is also important to investigate the
influence of the error introduced in approximatiRg. p on the overall approximation
obtained by TS method. In this section we will try to answer fiblllowing question:
given the required accuracy onvhat should be the accuracy for computing the convo-
lution of U; + D;? In other words how the error introduced in convolution wfibnge
the approximation.

Letr,(t) denote the approximation to the solution of the renewabratieequation ob-
tained by TS method with convolutidf; . p computed with accuracy. Figure 3.17
illustrates the influence af on the approximation in case of the availability function.
It can be observed that the changeydfy one order of magnitude changes the approx-

MTTF =3 MTTR = 0.011408 B = 4 N = 125 x107 MTTF =3 MTTR =0.011408 =4 N = 125
T T T 12 T T T

1.001

167
'10'5(‘)
"o ® ] 10r n

0999 |
\
0.9981

0.997

0.996 -

0.995

0.994 . L . L -2 . L . L
0 5 10 15 20 25 0 5 10 15 20 25
Time [y] Time [y]
Figure 3.17: The influence of the error in convolution on thailability function Ay,
Weibull-Exponential case.

imation also by one order of magnitude. This suggests tleagtitor in the convolution
is bigger than the error in the approximationroBased on the simulations and com-
parisons the conclusion is that that the convolution shbeldpproximated with the
accuracy at least the same as the desired accuracyptamot smaller than 10- 6).

3.6 Computing Convolution

All methods for approximating renewal and availability &ions require as an input
the distribution of the sum of two random variables. In caB&pandA it is the
convolution of the up and down time, whereas for delayediorssof A; and Ay one
also needs to provide the convolution involving a distiidntof the time to first event
(for details see Section 2.3). Recall that the distributbthe sum of two non-negative
independent random variables may be written as (we useiowtiar lifetimes and
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3.6 Computing Convolution Overview of concepts and methods

repair times):

FU+D(t)=/OtFU(t_X)dFD(X) (351)
:/Ot Fo(t —x)dRy (%) (3.52)
:/OtFU(t—x)fD(x)dx (3.53)
_ /0 “Fo(t - X) fu (x)dx (3.54)

Closed form expressions for the convolution are availablenly a few special cases.
The closure of the normal and gamma families of CDF’s undewalation is well
known. Other examples are available. From the distribstitat are of our interest
only two cases are analytically tractable: exponentiglemential and general lifetime

- constant down time. I); andD; are both exponentially distributed with parameters
A andp respectively then

e*)\t _ efpt

Fusp(t) =1-e™+p <7 (3.55)
A—Hu

This is so calledhypo-exponentiadlistribution. It is also easy to show that convolution

of any lifetime distribution with constant leads to shifttbe distribution. Indeed, if

P(Dj =1) =1then

Rut—1) t>1

0 t<1 (3.56)

Fusolt) = PIU+D<0) = PU <t—1) = {
Remaining cases have to be treated by numerical methodse ahe many different
techniques for computing the convolution of two non-negeatandom variables. First
obvious approach is to compukg ;p(t) by direct numerical integration. Since for
each timd it requires to approximate different integral on the in&f@,t] this method
may be slow. It is also an open question which quadratureshdeld be used and also
which form of the function is the easiest to integrate. We digcuss it later.

Another approach is via transforms of the density functibrfy is a density function
of a non-negative random variabethen the general transforffi of fx can be defined
as

Ty (t):8] = E[eX9%] = /0 " @t (1)t (3.57)

wherea(s) is some given function. Specific choice of the functags) will determine
the specific transform (#&(s) = —sthen7 is a Laplace transform; #(s) = —is then
7T becomes a Fourier transform ; afs) = is then 7 corresponds to characteristic
function). Using independence of up time and down time i&isyeo verify that

T[furo(t);s| = E[9 P = E[@OU]. E[e9P] = T[fy (t);9]- T[fo(t);S]
Therefore in order to compute the convolutign, p(t) one can proceed as follows

1. ComputeT [fy(t);s- T[fo(t);s]
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Overview of concepts and methods 3.6 Computing Convolution

2. Computefy,p(t) = T1fy(t);s]- T[fp(t);s
3. ComputeFyp(t) = fo fup(x)dx

In most situations all three steps have to be approximatederioally. In case of
Weibull distribution the Laplace transform and charastarifunction can be expressed
in terms of infinite alternating series. Those represamtatare presented in Appendix
A. However, from the practical point of view the usage of suepresentations is
limited. Mainly there are two reasons for that: 1) the cogeece is slow and therefore
the number of summed elements have to be large and 2) it isosstipe to determine
a truncation parameter for the summation because the seeedternating.

Despite the fact that this method involve many numericalasselated to steps 1
and 2 the main reason why we drop it is step 3. We look for a naethat approxi-
matesky ;p(t) but without usingfy p(t) to avoid additional computational effort, see
discussion in Section 3.4.3.

Another approach for numerical convolution of life distritons was proposed
by Tortorella in [46]. The author proposes simple recursorenulas for computing
Fu+p(t) based on trapezoid and Simpson’s rule for Stieltjes integrahe method
produce reasonable results for realistic values of parmmand is worth considering.

Another popular method is approximation through discegitin of the continuous
distributions. The popularity is attributed to the ease altglations at the cost of
reduced accuracy. We will present this approach in morélglefehere are also other
methods for computing convolution but most of them focus oobgbility density
functions that are not of our interest (see for example [P2, 2

3.6.1 Direct integration

This is very direct approach however it seems to be reaseriabhany cases. The
procedure is based on approximating Riemann integralseofaitm (4.7) and (4.10).
Let us first decide which form is easier to integrate based eitdll - exponential case
(for parametrization of the distributions see Appendix Fjom (4.7) we have

t
Fuso(t) = / (1-e (/") e (3.58)
0
t
— Fo(t)—p / e (/@) -ty (3.59)
0
and from (4.10)
t
Fuio(t) = / (1—e-u<t-X>) B (/)P Le 0/ i (3.60)
0 a
t
— Fy(t)— Ba Be it / xB L (X/)P Huxg (3.61)
0

Thus actually there are four possibilities. Note that irdeg in (3.61) does not de-
pendent ori so for eacht we can integrate only increment and add to previous value.
Namely

+dt

d
/t+ t)(B—le—(x/or)BJruxdX:/t B Lg (/)P 1 /t BT (/)P X g
0 t

0
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3.6 Computing Convolution Overview of concepts and methods

This is valuable only in theory. Usually life time is much g@r than repair time (see
also Section 3.1). For instance we can say that a componeci Wvave expected time
to failure MTTF = 3 years needs to be repaired in average for 10 hour8.q011

of the year). With3 = 4 (also realistic value), this correspondste= 8766 and

a = 3.31. If we take out constants from the integral as in (3.61)eth&then we have
to calculate big powers afand after integration multiply by very small number. This
leads to numerical problems thus we keep constants undentdgral. Eventually
we have to decide which form of the integrant in equations8B.(3.59), (3.60) is
the most convenient for integration. This decision is basedhe experiments with
different parameters. For plotting purposes let us lakeintegrants

f3s8(X) = (1_ e—((t—x)/ooﬁ) Le
f359(x) —= 7((tix)/a)ﬁfl‘lx

fa60(X) = (1— e M) B (x/q)P-1g-(v/a)’

wherea, B3, 1 andt are fixed parameters. We also want to investigate the behaivio
these functions for differeritwhena, (3, p are fixed. Figure 3.18 illustrates functions
fas8, f359 and f3 o for two sets of parameters and differéntFrom this Figure it is
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fZ.ll(X)

0.005 200

Z, 100
o
-~

0 0
0 1 2 3 4 5 400 1 2 3 4

= 4
= 200
b
g
0

0 > 3 4 0 1 2 3 4 5

f2 . 12()()

1

f5.150

0.5

0
0 1 2 3 4 5 0 1 2 3 4 5

Time [vearsl Timelvears]

Figure 3.18: Functions for integration in Weibull-expotiehcase, each line denotes
function for different timd. Parameters for distribution: Graphs on the IMT TF =
100 [y], MTTR= 2000[h] andB = 2 what corresponds t = 11283 andu = 4.38.
Graphs on the rightMTTF = 2 [y], MTTR= 24[h] and3 = 8 what corresponds to
o =2.12 andu = 36525.

easy to notice that function§ sg, f359 are difficult to integrate numerically whereas
the functionfz gg Seems to be quite reasonable. It appears that this is noblkateid
case. We checked also other parameters and other disinbudind the conclusion is
that for realistic values of parameters where life time imbigger than lifetime the
best form of the convolution for numerical integration is

Fu.o(t) = /Ot Fo(t —x) fu (X)dx = /Ot Fo(x) fu (t — x)dx

64



Overview of concepts and methods 3.6 Computing Convolution

This information is also important in discrete approactsprged in the next section.
Now we need to choose a numerical method for approximatiagntiegral. As it can
be observed on Figure (3.18) smart selection of the pointsearid for integration
may lead to higher speed and accuracy. Simple trapezoil#avith equidistant grid
is unacceptable. We propose to use adaptive Simpson’s Rdtils of this method
are precisely described in [21] and also Appendix C.

3.6.2 Discrete approximation and bounds

Recall that the aim is to approximalg p(t) = P(U +D <t) for many values of. It

is possible to approximate continuous convolution by iseidite counterpart. This can
be done for instance in the following way. Let us say that vegiire value ofy . p(t).
Choose agrid &=ty <,...,<ty=t. Then

tn
Fuslta) = [ Frita—x)dRu ()

The above integral can be approximated by

n

Fusolt) ~ 3 Frite—t0 (o)~ Fultcn) = 3 Frta—tope  (3.62)
k=1

k=1

where px = Ry (tk) — Fu (tk—1). Equation (3.62) is the discrete approximation of the
continuous convolution. Note that there is no need to digerdwo distributions. To
increase the speed of computing this summation one can usalled Fast Fourier
Transform (FFT). Evaluating these sum directly would t&Ke?) arithmetical opera-
tions. The FFT algorithm computes the same result in @flylogn) operations. We
stress that the only reason for using FFT method is incrgdbaspeed. Therefore one
can compute the discrete convolutibn, p(t,) very quickly even for large. For in-
stance fomn = 10000 it takes only 0.5 second to compbite p(t,) using FFT, wheras
direct summation takes about 100 times longer. Such longesegs may be required
if the discretization error needs to be decreased. Howeyegmall be seen in Section
3.6.4 the discretization methods have in general limitexdicxy.

3.6.3 Newton-Cotes rule for Stieltjes Integrals

In his paper [46] Tortorella develops two Newton-Cotes suler Stieltjes Integrals
based on trapezoid and Simpson’s rule. We will also use thithoas for comparisons.

3.6.4 Comparison

Let us give an example distribution functions that needstodnvoluted. Assume that
Ui ~Exp(A) andD; ~ Exp(p). The realistic parameters that may occur in practice are:
MTTF =5yearsandMT T R=48hours This corresponds th= 0.2 andu= 182625.
Figure 3.19(a) presents the distributions for this casecait be observed that the
distributions have very different shapes; the distributad downtime is almost one
when the distribution of uptime is almost zero. This is thamraason why most of
the numerical methods fail to compute the convolution ferrdrlistic parameters with
reasonable accuracy. For realistic parameters the cdioohy;  p will be very similar
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3.6 Computing Convolution Overview of concepts and methods

to the distribution of, since the downtime is relatively small. This difference toe
example considered is of order of Tfor smallt and decreases to zerotdacreases,
see Figure 3.19(b). Usually it is required to compute thdlaidity and renewal
functions on the intervalO,t] for some larget. Let us assume that the availability
function is required on the following grid: @ h < --- < mh= 20. Then the values
of the distribution, . p are required also on the same grid. Figure 3.6.4 presents the
absolute error for approximatirtg . p by the recursive trapeze and Simpson’s methods
and also by the discrete approximation introduced in Se@&i6.2.

We have used 1000 points for the recursive formulas and 18f0@iscrete ap-
proximation and this results in step stze- 0.02 andh = 0.002 respectively. Of course
if the step size is bigger than the region where the the bigian Fp is changing then
the approximation will result in the error similar to thefdience between thg;, and
Fu.p. From this figure it can also be observed that in case of theredes approxi-
mation even the large number of points will not improve theuaacy. Therefore it is

MTTF =5[y] MTTR =48 [h] X107 MTTF =5[y] MTTR =48 [n]
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(a) Distribution of uptime together with distribu- (b) Difference betweehy (t) andRyp(t)
tion of dowtime

Figure 3.19: Example distributions.
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Figure 3.20: Absolute error for computing convolution.
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clear that the uniform grid for computing convolution foalistic values of parameters
is not the best choice. Another problem arises when the gidhO< --- < mh= 20
and the grid on which,,p was computed do not match. Then the interpolation is
necessary. It is also not straightforward how to use FFT emtin-uniform grid. Ref
[23], however, presented some approach for computing theobation using FFT on
non-uniform grids.

It appears that the most suitable approach for computingdheolution is by using
direct integration introduced in Section 3.6.1. The adagetof this method is that it
approximates the values Bf,;p(t) for everyt independently and also since it is us-
ing adaptive grid it may recognize problematic cases autioally. This method can
easily obtain accuracy of order 10and higher. The error estimation provided by the
method is also reasonable.

3.7 Steady state detection

As it was mentioned in Section 2.3.7 both renewal and aviéitlahunctions converge
to known asymptotic values. From the computational poivi@iv it is very important
to investigate the speed of convergence especially whesollgion is oscillatory. By
steady state we mean the first titg@fter which the function will remain in a distance
less than some giveaifrom its asymptotic value. The methods that estimate ttrealgte
state can be divided into two groups: 1) compyteefore calculating the function and
2) compute thdg by using the values of the function. Naturally the first mel$o
are more valuable sinde may be used for choosing a step size in the algorithm for
computing the function.

Let us consider the renewal functidyr(t) that counts expected number of com-
pleted repairs. According to (2.23) asymptotic expansiothis case is

t 1 Var[U]+Var[D]
EUJ+ED] 2 2(U]+ED)?Z’

J(t) = lim Mag(t) =

Similarly for corresponding the availability functioky

E[V]

A= tlmAl(t) = E[U]+E[D]

From the numerical point of view it is important to know howpidly the asymptotic
result is approached. For each function let us define avelatror that measures the
relative distance between the function and asymptoticevalu

Mir(t) —J(t) Aq(t) —A'
Migr(t) Au(t)

In general it is not possible to firtgdanalytically. However it is known that the rapidity
with which the oscillations will die out depends on the dispen of the renewal distri-
bution, see [15]. Therefore we want to find some relation betwthe dispersion of the
distribution and steady state. The simplest measure ofiipeigion of a distribution
is acoefficient of variatiordefined as

Em (t) = ' ' andEA(t) = (3.63)

cv=2
H
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whereao is standard deviation anglis the first moment of a distribution.

3.7.1 "Switch-over” point methods

As proposed by [22] or [20] the relation between the CV anddieady state may
be found experimentally. Both authors suggest the follgndgmilar idea for finding
steady state for a renewal function. They propose to use i@ee @pproximations for
the renewal function. First piece is approximated by usomgesnumerical method (ref
[22] uses Pade approximates and ref [20] uses method of X]e4d second piece is
obtained by using linear asymptotic expansion. The poinattéth the method switch
from numerical approximation to linear is called a switaleopoint and corresponds
to ts in our interpretation. The procedure for the relation beméhe CV andg (or
switch over point) is as follows: fix some desired tolerarmele, specify parameters
to the distribution and computgV, next compute renewal function for consecutive
t’s until the relative difference between the asymptoticueahnd computed renewal
function is less thams. Repeating this procedure for different CV will give a tabfe
points (CV,ts). The authors disagree how to choaséor CV that is not in the table.
Ref [22] proposes to use third-order polynomial to integb®lunknown values, how-
ever ref [20] gives a counter example for which the metho®8f [s incorrect and by
himself proposes linear interpolation.

The disadvantage of such approaches is that for each distriband for eacle one
has to have different table. Another difficulty appears vétiale parameters of the
distribution. Let us take for instand&eibull(a, ) to be the renewal distribution. It
is easy to show that in this case CV is independert.off herefore after estimating
the steady statk based on the table one has to scale it by using pararaef#s
not mentioned in the example of [20]). Scaling is not thatiobs in case when the
renewal distribution is a convolution of two different dibtitions.

Recall that in our situation the renewal distribution is ttanvolution of up time
and down time distributiori; and Fp respectively. If we choose for instantk ~
Weibull(a, ) andD; ~ Exp(n) then the CV will depend on three parametEig =
CV(a,B,y). It easy to find two sets of parametsics;, B1,n1) and (a2,B2,n2) for
which

CV(ay,B1,n1) = CV(a2,B2,n2)

and for which the steady states are different. To exempdifyuk take(as,B1,n1) =
(5.4,5,168/8766) and (a2, B2,n2) = (20.4,5,336/8766) (parametersx and p have
been scaled by factor of 4 and 2) then in both c&¥és< 0.22. But the steady states
are respectivelys ~ 96 andts ~ 383 (computed witle = 10-8). For calculating the
renewal function in this example we have used TS method. Hbisstraightforward,
as itis in case of Weibull distribution, how to scale the diestates for the cases with
the same coefficient of variation. Therefore we do not emfiloge techniques neither
for renewal function nor for the availability function.

3.7.2 Rough estimation

Another much simpler approach for estimating the steadg stas proposed by Cox
in [15]. Let as beforeoc and u denote standard deviation and the first moment of a
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renewal distribution. Then he claims that the followingrastion of the steady state
is applicable wheRV <« 1

3
e e
ST 02 CVv2
Note that to the contrary with previous approaches the gtetade depends not only
on the CV but also o (it also includes the information about the scale). Althoug
(3.64) is a very rough estimate and it does not provide aryimition about the error

we decide to test it due its simplicity. Let us consider thofaing example

Example 3.7.1. Assume that U~ Weibull(a,) and O ~ Exp(n) with MTTF=5
[years] and MTTR= 3 [days] and[3 = 5. This corresponds to = 5.44 andn =
12175 with CV = 0.23. Steady state estimated in this case by formula (4.1)4s t
95.76 [years]. Figure 3.21 presents both renewal and availapifiinction computed
on the interval[0, 95.76]. For computation we used method of [47] with absolute
accuracy for computing convolutiog.n,, = 10-8 and with 1000 grid points. The

¢ (3.64)

20 1.0005
1
14} B 0.9995
0.999

0.9985

0.998
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Figure 3.21: Renewal functiokl;r(t) and availability functionA;(t) from Example
3.7.1

relative difference between the asymptotic value and thpropmation for the last
grid point is

Em(ts) = 6.48-10 8 and Ex(ts) = 5.2-10°8

If we increase in the example above the accuracy of compttiméunctions (by ei-
ther increasing the accuracy of convolution or by incregéie number of grid points)
then the value&y (ts) andEa(ts) become smaller. Similar behavior was observed for
other parameters. This means that the steady state estilmatermula (4.1) may be
too big as compared to desired accuracy. By visual inspedid-igure 3.21 it may
also be observed that the steady state has been reached anlightlan the estima-
tion given by (4.1). In general increasiffiddecreasing discrepancy of the distribution)
increases the value ¢f Figure 3.22 illustrates the relationship betwgeandts for
Weibull-exponential case with parametét3 TF =1 [y], MTTR=1][h]. Alsoitis an
open question how small should 8&. The conclusion that may be drawn from this
approach is that estimation given by Cox is very simple tolugerom the practical
point of view very often it overestimates the steady-staitee suggestion is that it may
be used as an upper bound for the steady state estimation.

Since above methods are not successful in detecting thidysstate one needs to esti-
mate it numerically.
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Figure 3.22: Relationship between steady statend3 for Weibull-exponential case
with parameteréATTF =1 [y], MTTR= 1][h]

3.7.3 Numerical

In case of availability function the speed of convergence beinvestigated by look-
ing at extremes. The location of the extremes of the avdithalfunctions is not a
trivial task and in practice those extremes have to be detemtmerically during the
computations of the function.

3.8 Example availability functions

In this section we give a few examples of the availabilitydiions computed by TS
method. For detailed explanation of the meaning of the fandee Section 2.3.

Example 3.8.1. FunctionsA;. This function gives the probability that a component is
functioning at time t in the future given that today, at time 0, it has been put into
operation. This function is the most often used in the abdity studies, especially in
the designing phase where the components are assumed tevbé&igeres 3.23 and
3.24 illustrate example functions for the case when themgptias Weibull distribution
and downtime is either exponential or lognormal. Paramgfer each case are given
above the plots: MTTF (mean time to failure in years), MTTRdmtime to repair in
hours),3 shape parameter for Weibull distribution, SS — steady stagglability, N —
number of grid points used, step — corresponding step-sidays, time — elapsed time
for computing the function including computing convolntig.qn,— accuracy used for
computing convolution.
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Figure 3.24: Example availability functiows for Weibull-Lognormal case.
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Example 3.8.2. FunctionsAg. This function gives the probability that a component
is functioning at time t in the future given that today, atdim= 0, the repair has
just started. Since usually the repair times are much smatkenpared to life times
function A will be rapidly increasing for small t. From Figure 3.25 it nde observed
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Figure 3.25: Example availability functioms for Weibull-Exponential case.

that much finer grid is required in casgAhan A. Sometimes when the step size is
too big the function may not converge to steady state.

Example 3.8.3. FunctionsA?. Remind that R is a delayed version of#and corre-
sponds to the situation in which a component is already fanictg for x units of time
att = 0. In practice this function is used more often in the operastage rather than
in the design since it incorporates the age of a componegurEi3.26 illustrates few
examples of functions&’A As it can be observed the functioﬁ? Aay be significantly
different from A. Each graph presents two functions with the same set of param
ters but with different age of the component. For instanad pl26(a) illustrates the
availability of the two components that are 4 and 8 -year dfdgeneral, the compu-
tation of & is more expensive than Aince it requires additionally the calculation of
the convolution of the remaining lifetime distribution kvthe repair distribution. The
times shown on the Figures are for one function.

Example 3.8.4. FunctionsA5. As mentioned in Section 2.3.6 functiof Aas two
applications: (1) it models the availability of a compondmat is in repair for y time
units at t= 0 and (2) it can be used to model a planned maintenance wittabkei
duration that has different distribution than usual repimes. Figure 3.27 illustrates
two functions Ay for which the maintenance time is assumed to be exponential w
mean PM.MTTR.

In case when the down time is exponentially distributed é#meaining repair has
again exponential distribution with the same parameterrqrogyless property), there-
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Figure 3.26: Example availability functior)‘!z1D for Weibull-Exponential case.
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Figure 3.27: Example availability functiodgy andAf.

fore Ap(t) = A5 (t) for all t. Figure 3.27(c) presents the functiory An case when the
repair time has lognormal distribution with MTTR=20 days fwo different times of
the repair in progress: 4 days (blue) and for 15 days (red).

Example 3.8.5. Figure 3.28 illustrates some availability functions fortrrealistic
parameters.
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(a) A for Weibull-Lognormal. (b) A for Weibull-Lognormal. (c) AY for Weibull-Lognormal
case.

Figure 3.28: Example availability functions for not redtigparameters.
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3.9 Influence of the repair distribution on the availability
function

Since in practice the repair time is much smaller as comp@arduk lifetime of a com-
ponent it is important to check how the distribution of thpaie time influences the
availability function. In this section we investigate th&afence between the avail-
ability functionsA; for the case when the lifetime has Weibull distribution arftew
the repair times are either exponential or constant. Fractdmputational point of
view it is important to make this sort of comparison sinceasewhen the down time
is constant there is no need to approximate the distributfds) + D; (see Section 3.6
for details).

It is clear that when the steady state (SS) availability ghhhen the repair time is rel-
atively small compared to the lifetime (see (2.54)). Andhé tepair time is small then
the influence on the (availability) function will also be dmdherefore we compare
the difference between the availability functions for exgitial and constant repair
times for three different steady states: 0.95, 0.97 and9.®%also appears that this
difference depends on the shape of the function itself. i dhse, the shape of the
availability function may be modeled l/(shape parameter for the Weibull distribu-
tion). We decide to compare the difference o 2,8,15. Results are presented on
Figures 3.29, 3.30 and 3.31. All functions were computedhengtrid withN = 300
points and for computing the convolution of up and down timexponential case the
accuracy of 10° was used. Upper plots in the those figures illustrate thdadikiiy
functions with the up time being Weibull and with the dowrgilbeing constant and
exponential. The length of the down time for the constant eagials to the MTTR for
of the exponential downtime. This match will assure thahldahctions will converge
to the same steady state. Lower plots present the differeatveeen corresponding
availability functions. In general, behavior of the avhily functions is similar and

526 S5 = 0.95 = 2

00000

10 15 ] s 10 15 o s
Time [y) Time [y] Time )

Figure 3.29: Comparison of the availability function foffeient repair times: steady
state 0.95

the difference becomes more significant when the functiarsdillating. On Figure
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3.9 Influence of the resiitdition

3.29 we observe that the error in using constant repair timsgead of exponential
one is of order 10° for non oscillatory behavior and increases to 4€r case when
B = 15. This error decreases to zero as the functions convergfeteteady state.
When the steady state is higher the error becomes smalleindtance foiSS= 0.999

MTTF =2 MTTR = 0061856 S§ =097 B=2

MTTF = 2 MTTR = 0,061856 S = 0.97 =8

MTTF =2 MTTR = 0.061856 SS = 0.97 = 15
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©10* MTTF =2 MTTR = 0061856 SS = 0.97 B = 2 Y10° MTTE = 2 MTTR = 0.061856 SS = 0.97 = 8 MTTF = 2 MTTR = 0.061856 S = 0.97 f = 15
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Figure 3.30: Comparison of the availability function foffeient repair times: steady

state 0.97

the difference between the availability functions rangesf10~ to 10-° depending
on their shape. The conclusions that may be drawn from théstigations are:
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Figure 3.31: Comparison of the availability function foffeient repair times: steady

state 0.999

1. The availability functions with high steady states aighgly affected by the
distribution of down time.

2. For the realistic cases with small oscillations the défeee between the avail-
ability functions with constant and exponential repairgiranges from 10° to
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10~7. Therefore if the accuracy of at least three digits is remlithe constant
repair time may be used instead of the exponential one. lerdaits are re-
quired then it is also possible to change the distributidndoavntime but only
for higher steady states.

3. For the high steady states 0.999) the difference between the availability func-
tions with exponential and repair down times is negligible.
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Chapter 4

Grace Period

This chapter presents a new approach for modeling the hitajleof a component in
a situation when some failures are not visible.

4.1 Introduction

In practice we encounter the following situation. A compainis put into operation at
time tp, when it fails it is repaired for some random time. If it talkeshort time (less
thanx hours) to fix a failure, production can continue. If repakesilong, production
has to cease aftathours. Thexhours is calledjrace period Similarly as before repair
brings the component to the state "as good as new”. The aimrisotel production
losses that are reflected only in "long” repairs. We intradlnew state variable that
represents the state (level) of production at time

Y(t) = 1 if production can continue at time
~ | 0 otherwise

As before we assume that up-tim@s;,i = 1,2,...) are independent and identically
distributed with distributiory; = P(U; <t) and similarly down-time¢D;,i =1,2,...)
are independent with common distributiég = P(D; <t). Previously we assumed
thatU; andD; are independent, however in this chapter we also allow thiasables
to be dependent. Example realization of the pro¥gskis presented in Figure 4.1. Let

E 3

Y5 z
J I — P
: : i ] ] I
" ' ] ] "
[ ] I ] ] [ ]
() 1 1 1 [}
LI ) ' ' ' "
X
o oy o, v, D

Figure 4.1: Example realization of procésg)

L denote the length of the first production time of a componaettit grace periock. Of
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4.1 Introduction Grace Period

course the second production time will be different, howédased on the assumption
of independence and perfect repairs it will have the santghiion. Thus indexing
of Ly is omitted to keep the notation clearer. It is easy to notettitenew down-time
is stochastically equal tb, — x. The aim of this chapter is to find the expected value
and the distribution of the new down-tinhg.

Before the mathematical formulation of the problem is givesm present some
examples of situations that may occur in practice and aateelto the grace period:

e Back-up electricity systems (sometimes called an Uniatsilole Power Supply
(UPS)). If there is a failure of power supply in a computerteethe processes on
the computers can continue with the back-up electricityesydor fixed number
of hours. If restoration of power takes longer than the tiheeliack-up system
caters for the production stops and failure is visible. Thaximal possible
working time of the back-up system is the grace period.

e Flaring Allowance. In the oil industry flaring is used for hurg off unwanted
gas and liquids released by pressure relief valves duriptponed over-pressuring
of plant equipment. Its primary purpose is to act as a safeticd to protect ves-
sels or pipes from over-pressuring. The allowed flaring tisn@stricted by the
government regulations and varies from country to counirigerefore, when
flaring occurs (due to the failure of some equipment, foransé a compression
unit in a small side stream ) the main production may stilltcare as long as
the flaring allowance is not exceeded. The flaring allowairoe s the grace
period.

e Separation. One of the first stages of raw gas processingés ad condensate
removal. Those substances have to be separated in ordercesprthe conden-
sate later on in a refinery. If separation of water and corateris not possible
due to failure of a separation unit, the substance can betsexdoff-spec tank.
The task of the tank is to keep the unseparated substant¢e¢henf@ilure of the
separation unit is fixed and there is some spare capacityowess additional
substance from the tank. Production has to stop when dunmgepair of the
separation unit the off-spec tank becomes full. The gracmgen this case
is the maximal time that the tank can take the substance ééfay full. Note
that if the failure of the separation unit occurs when thd&tiamot completely
empty the grace period will be different and it should be ldsthed based on
the capacity of the tank and its present fill.

From the practical point of view it is very important to motted availability of produc-
tion. Note that in these situations the availability of a pament is different than the
availability of production because the component may berdamd production may
still continue. Therefore there is a need to develop mathieadanodel that allows to
calculate the availability of production taking into acobthe grace period.

We use the same notation for up-times and down-times as wopiechapters.

Let {U;j,i = 1,2,...} be the sequence of independent and identically distributed
lifetimes having common distributiofy, similarly let {D;,i = 1,2,...} be the se-
guence of independent and identically distributed repaies having common distri-
bution Fp.
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Let S, denote the partial sum
n
S=) (Ui+Di)
2

ThenLy is the sum of up-times and down-times for which consecutgair times are
smaller tharx. During the first repair time that is greater thathe production can still
continue forx time units thereforex has to be included ihy as well. Hence we have
that

Lx=S-1+Un+Xx & D1<xDy<Xx,...,Dnp1<XDp>xX (4.2)

Furthermord_, can be written as

Ly = Z (31—1 +Un+ X) 1{D1§x7...7Dn,1§x7Dn>x} (4-2)
n=1

and sinceD; are independent

[o0]

Ly = Z (Si-1+Un+Xx) Lpy<xy oo Lo, 1<x11pp>x (4.3)
n=1

4.2 Independent case

4.2.1 Expected value

Using representation (4.3) the expected valuk cin be written as

00

ElLd= 3 (E[(Sr1+Un+X)Lp,<q - Loy 129 Loron])
n=1

n—1
Z ( [21 Di+Ui) Lp,<x; - - Lp,1<x3 LDusx)

(4.4)

Due to independence @f;’s and independence &f andD; first expectation in above
expression is

n—-1
i; (E [Dil{Di<x} [J I:JLI 1{D <x}] [1{Dn>x} +E[U [I_I 1{D <x}] [1{Dn>x}]>

Similarly the second expectation in (4.4) can be written as

n-1
JI:Il Yo, SX}] ‘E [Lp,>x]

Since the value&[1(p,<x] = P(Di < x) andE[1(p,~x;] = P(Di > x) are independent
oni we have that the expected valuelogéquals to

(E[Un]+x)E

ELy = i [(N—1) (E [D11{p,<x | P(D1 < X)" ?P(D1 > X) + E[Uy]P(D1 < X)" *P(D1 > X))

+ (E[Un] +X) P(D1 < X)"*P(D1 > X)]

79

+E [(Un + X) l{D1§X} ... 1{Dn,1§X} 1{Dn>x}]>



4.2 Independent case Grace Period

and after rearranging and using the fact tBa,| is independent on

E[Ly] = [E [D11{p,<x] P(D1 > X) + E[U1]P(D1 < X)P(D1 > X)] i (n—1)P(Dy < x)"2
n=1

+(EU]+X)PD1> %) 3 P(D1 <)
n=1

Since|P(D1 < x)| < 1 both series in above expression are absolutely convetyemte

© 1
P(D; <x)" 1=
Z (Br=x) 1-P(D1<x)
and
®© d © 1
_ < n-2 — < n—1 _
2 (= DPO1 <X = G55 = (,;F’@l ) ) [1_P(D; <X
Therefore

1

B[l = (P(D1>X)E [D1lyp,< ] + EU1IP(D1 <X)PD1> X)) (55 =572

BV +X)P(D1>X) 55—

Using the fact thaP(D1 > x) = 1— P(D; < x) above expression may be simplified to

E [D1lip,<x] +E[U1]P(D1 < X) + (E[U1] +X)P(D1 > X)

ElLy] = 1-P(D; <X (4.5)
where «
E [D1l(p,x] = /0 2dRs (2). (4.6)
Note that if there is no grace period i>e= 0 then
E[Lo] = E[Ty]
also ifx — oo then
. L 2E[D4] B

as expected. In principle formula (4.5) allows to compute ékpected value of pro-
duction time including grace period for any choice of dmitions off; andFp that
have finite first moment and support | (other distributions are not interesting in
reliability modeling).

We copmare formula (4.5) with a simulation. As a test casehwoese exponential dis-
tributions for both up-time and down-time, i)y (t) = 1—e ™ andFp(t) = 1— e .
ThenE(U;) = 1/A andE(D1) = 1/p. The integral in (4.6) equals to

_ e*“xxu
u

X Uz 1-e™
E[Dll{D1<x}] :/0 pze *“dz=
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Substituting in (4.5) we have that for exponential-expdiatitase the expected pro-
duction time including grace periodis

e Hx
A+p—Ae —)\Jr“e“—} 4.7)

The simulation is based on random sampling of the produtiinel, and comparing
mean from the sample with the formula (4.5). The followinggmaeters were used

for the simulation:A = 0.2, u= 1, x =1, and hencé&|[T;] = 5. Using formula (4.5)

we obtain thaE[L] = 15.3097. Figure 4.2 presents the estimated mean from samples
with different size. We observe that results obtained framugation agree with the
theoretical value. Note that due to the grace period of ledginean production time

15.7 T T T T T T T
° ®  Simulation
1565 Theoretical |{

156

15.55F

155F

Mean

1545
1541

15351 .

1531 . b

15.25 . . . . . .
0 2 4 6 8 10 12 14 16
Number of samples x10°

Figure 4.2: Comparison of the formula fBfLy| with simulation. Independent, expo-
nential case.

has been extended from 5 to 15.3097. From the practical pbiniew it is important
to know how the the extension of the grace period influencesmban production
time. In this case the expected production time grows expmitaily with respect to
the grace period, see (4.7). In order to investigate thesticglship let us consider
an example with more realistic parameters. Let MEBRyears and MTTR3 days.
This corresponds th = 1/5, u= 8766/(24- 3). Figure 4.3 illustrates the relationship
between the grace period and the expected production tintedse parameters. This
example shows that it is very important to introduce gragéogde and were possible
to extend them. For instance in this case introduction ofytlage period of length 10
hours leads to the extension of the expected productiondfraémost 1 year!

4.2.2 The Distribution

As expected the distribution af; is much more difficult to obtain as compared to ex-
pected value. However it is not impossible. In this sectienuse technique of Laplace
transforms that allows us to find the transform of the prdiighidensity function. Let
fL(t) denotes the probability density function of the variablend letf (s) denotes
its Laplace transform.
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N
N
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Expected production time [years]

©
T

. . . . . . . . .
0 10 20 30 40 50 60 70 80 90 100
Grace period [hours]

Figure 4.3: Relationship between the grace period and ptimgutime. Independent,
exponential case.

Then we can write

fi (9 =Ele*H =Y Ele SS1tUntX: D) < x ..., Dp_1 < X,Dp > X (4.8)
n=1

n—-1

o) n
ZE exp —leUi—sZDj—sx ;D1 <X,...,Dp_1 <X,Dp > X
n=1 i= j=1

(4.9)
by independence d&f; andD; we have that
[ n-1

_eSXY E [e—sul}nE exp<—sZDj> ;D1 <X,...,Dp_1 <X,Dp > x]

n=1 i=
=Y E[eSU]"E [e - 1p,4] "p(Dy > x)

n=1
—e YE[e]P(D1>x) Y (E[e ] E[e ™ Loy )" (4.10)

n=1

where in second line we used the independend®;’sf For any positive random vari-
ableX and reak > 0 it holds thate S| < 1, this implies thakE[|e~SX|] < 1 from which

it follows that |E[e~5X]| < 1. Therefore the series in expression (4.10) is convergent
and

8

—sUy —sD1 o :
X (E [e } E [e 1{D1§X}D 1—-E[esY]E [e*SDl . 1{D1§x}]

n

Then the Laplace transform of the density functip(t) becomes

e ¥P(D1>x)E [e Y]
 1-E[eSY]E[esD 1p, ]

f’ () (4.11)

or
e SP(Dy > X) 5 (9)

1- 5 (9)E [€75Pr- 1ip, ]

f (s) = (4.12)
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Grace Period 4.2 Independent case

where f(j (s) denotes the Laplace transform of the up-time density. ESgiwe (3.59),
at least in principle, may be inverted for any choice of ug dawn-time distributions
and fi_(t) may be found.

Assume again that that andD; have both exponential distribution with parameters
andp respectively. Then it is easy to show that

A
* _ —sUry\
fU(S)_E(e )_)\+S
and

X X
—sDy | _ —Sz _ —SZ-HZq, M _ o X(stw
Ele 1(p,<x}] /Oe fo(2)dz u/o e S Hyz u+s(1 e )

Substituting in formula (3.59) and simplifying we obtaimtthe the Laplace transform
of density functionfi, (t) for exponential case becomes

A(p+s)
AS+ US+ 2+ pAe X(sth)

fi'(s) = e (W (4.13)
Unfortunately it is not straightforward how to invert aboegpression because it is
not a fraction of polynomials for which analytical expressimay always be found.
However again we choose to compare obtained results witmalaiion. Using the
same parameters as for the simulation in previous secticsampled random variable
Ly 19200 times. Now the empirical estimation of the densitynfrthis sample is
compared to the numerical inversion of expression (3.60).nemerical inversion of
the Laplace transform we used Euler method, see e.g. [1] Quré-i4.4 we observe
that results are coherent.

I I I I I I I
20 40 60 80 100 120 140
Data

Figure 4.4: Comparison of the numerical inversion of equma(B.60) with empirical
density.

Remarkd4.2.1 Note that in general the support fif (t) is [x, »]. This is due to the fact
that production time will be at least equal to the grace pkrio

Remark4.2.2 We want to investigate the behavior of |imy. f (t). It is known
that for any continuous functiof that have support o, «| it holds lim_o. f(t) =
lims_.sf*(s), see e.g. [43]. Note thdt_ (t +X) have support oD, «| and

tILr& fLt+x) = t|l>r>r<]+ ()
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The Laplace transform df_ (t +X) is

L, (t+x)] = /0 fL (t+x)e S'dt = /x fo(Z)e—s(z—x)d .

= esx/x f, (2e5dz= esx/o fi, (2e%dz
= ()

Therefore in exponential case

lim f (t) = lim se*f (s)

t—X+
: - A(H+9)
= lim | se *¥
$—0 ( AS+ s+ S+ pAe (st )

. 1
= lim (exu)\ . — g )
S s+1 1_m'uTs(1_e W)
=)\e

Remark4.2.3 Since[A\e ¥ ~1 +£ E[L,] from the possible candidates to the distribution
of Ly we have to exclude exponential distribution (in fact skiponential) for which
E[X] = 1/limi_o fx(t).

Remark4.2.4 Best candidate for the distribution. This remark has ngttndo with
Laplace transforms. The candidate that fits the data the(inestaximum Likelihood
sense) is Generalized Pareto distribution. Figure 4.%episghe fit.

L_set_last data

—— Generalized Pareto

" L
100 150
Data

Figure 4.5: Generalized Pareto distribution as the begi fiata. Independent, expo-
nential case.

Recall that Generalized Pareto distribution is a threerpatar parameter family

with the density
g\ L
F(t) = <3> <1+ kﬂ>
o o

for 8 <t, whenk > 0, or for@ < x < —o/k whenk < 0. Maximum likelihood estima-
tion gave the following values of the parameters:

k= —0.00188266 0 = 14.2924
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where the threshold parametéwas specified to be equal to the grace period, in this
casef = 1. Itis interesting that in the limit — O the density becomes

f(t) = (%) e '

which is PDF of shifted exponentially distributed randomiaile. However as it was
noticed in Remark 4.2.3 an exponential distribution is riotrsed.

4.3 Dependent case

In this section we loose the assumption about the indepeedgfrup- and down-times
in a cycle and allowJ; andD; to be dependent. This assumption is far more realistic.
First remark about the dependence structure betWeandD; is that they are expected
to be positively correlated. Equipment that that has longetto failure requires long
repair times. Another obvious relation is that usuallytiifee is much bigger than
repair time. One of the main aims of the equipment desigrets provide highly
reliable components that can be repaired or replaced inyastrt time as compared
to the expected time to failure. These kind of dependenciglme, at least partially,
modeled by suitable choice of the parameters to the disimist However another
example that occurs very often in practice cannot be tréayad that way. Consider
a unit, say a pump in a plant, that operates 24 hours per dag plEmnt operates
mainly during the day. When the pump fails during night stti& repair time may be
much longer than during the normal working hours. From théheraatical point of
view dependent case does not introduce any additional wifes with deriving the
formulas for the expected production time and its distidaut

4.3.1 Expected Value

Starting from representation (4.4) we have that expectedyation time with grace
periodx is

[ n-1
Elly] =3 (E [_Z(Di +Ui) Lipy<x} - Loy 1< Lipnsxy | FE [(Un+X) 1{Dlgx}---1{on1gx}1{Dn>x}]>
i=

n=1
Due to independence bf’s first expectation in above expression may be written as

n—1

i;l (( [Di l{D,<x}] +E; 1{D <x} rl 1{D,<x} l{Dn>x}]>

=1

Similarly the second expectation is

(E[Unl{Dn>x}] + XE[l{Dn>x}]) 1{D1§X} e 1{Dn71§X}
Using again the fact that;’s are identically distributed we have that the expectedeal
of Ly can be expressed as

00

ElL = Zl [(n—1) (E[D11{p,<x] + E[U11{p,<x]) P(D1 < X)"2P(D1 > X)

+ (E[Unlyp,=x] + XE[L{p,>x]) P(D1 < )" 1]

85



4.3 Dependent case Grace Period

We recognize the same infinite sums as in independent caseafter doing some
algebra we obtain that the expected production time witbhayeriodx in dependent
case is

E[Dll{Dlgx}] + E[Ull{Dlgx}] + E[Ull{D1>x}] +XP(D1 > X)
1-P(D1<X)

E[L,] = (4.14)

Note that ifU; andDj, i = 1,2,... are independent then

E[Dll{Dlgx}] + E[U]_]P(Dl < X) + E[U]_]P(Dl > X) —I—XP(D]_ > X)
1-P(Dy < X)

EllLd =
and we obtain formula (4.5).

4.3.2 The Distribution

Starting from representation (4.8) we have that the Lagi@resform ofLy is

f' (s) = iE [exp (—s

Due to independence bf’s above expression may be written as

n—1
Zi(UH'Di)—SUn—SX) ;Dléx,---,Dnléx,Dn>XI

0 n-1
ffx (S) =g Z E [exp (—S Zl(Ui + Di)) l{D1§X} ... 1{Dn1§X}] E[e_Sth{Dn>X}]
n=1 i=

=&Y E [exp(—s(Us +D1)) 1p, <] "E[e"H1p, ]
n=1

Using the same argument about the convergance as in indaqerake we obtain that
the Laplace transform off, is

- (S) _ e SE [e_Sth{Dn>X}] (4.15)
Lx l _ E [e*s(ul*i’Dl) l{DnSX}] )

which in case whetJ; andDj, i = 1,2,... are independent reduces to the formula
(3.59) for independent case. The expected value in the deaton for non-negative
random variables with the suppd@ ], is

X 00
Ele SNy o] — / / fup(u,v)dudv
- 0 JO

where fyp(u,Vv) denotes the joint probability density function of variadlg andD;.

Remark4.3.1 Particle Counter Models. A counter is a device for detecting regis-
tering radioactive particles. In general counters are niegeand incapable of detect-
ing all particles. After a particle is registered a counteisimenew itself in preparation
for next arrival. This time is called locked time. Two impamt classes of counting
devices are two Type | and Type Il countefSounters of Type:lan arriving particle
which finds the counter free gets registered and locks it fona of lengtht. Arrivals
during locked period have no effecCounters of Type llan arrival particle during
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Grace Period 4.3 Dependent case

the locked period does not get registered, but it extend$otied period so that the
counter remains locked untilunits from that arrival. Length of locking periads as-
sumed to be random. More detailed description of these eoumbdels may be found
in [?, 12]. Some possible deviations from such models are pregém{37]. A possi-
ble interpretation of the grace period in terms of those rtsodedifficult. The closest
is Type Il counter model where the length of locking time detseon the number of
particles arrived during the locked period and their logkimes as it is in case with
the grace period where production time depends on the nuamodength of up-times.
However based on the literature research in this area wa ¢lat no similar model
as the grace period was developed.
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Chapter 5

Conclusions

The theory of renewal processes has proven to be very usetiakicontext of appli-
cability to the reliability modeling. Although the theorg rather simple and much
research has been done in the last century there is still @m gpace for new models
that can capture the reality more efficiently.

This thesis presents a complete framework for modeling énpmance of a com-
ponent based on its life and repair time distributions bygisio called — availability
functions. The advantage of the proposed approach is tbahibe used to model the

availability of a component taking into account its presstiate. The four functions
developed for this reason are:

e A;(t) the component is new at tintg

e Ay(t) the repair of the component has just startetd at

o AP(t) the component is functioning fortime units at timeig
e AD(t) the component is in repair fortime units at timeg

Additionally, the functionAg’(t) can be applied to model the availability of a compo-
nent including maintenance schedules. This charactenzé complete and gives a
possibility to model any situation that may arise in praetidhe examples given in
Section show that there is a significant difference betw®gh) andA;(t)®, and their
interchangeable usage is not suggested. A common practicedeling the availabil-
ity of a component that is year-old, is to shift the functioAy(t) by x years and use it
instead ofA?(t). However, this approach is not suggested, especially i wagn the
components are quite old since then the availability mayp dnach lower than in case
when the method with shifting is used (see Figure 3.26()g difference between the
functionsAo(t) andAD (t) is less significant and sometimes shifted functie(t) may
be used instead @ (t), but this will depend on the repair time distribution. In gen
eral, however, the all four functions are used to model déffie situations and none of
them should be omitted in the complete availability studye $tate diagram presented
in Appendix E illustrates the order in which those functishsuld be computed.
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Conclusions

From the practical point of view it was relevant to find a metfibat is able to
compute those functions with high accuracy and also with@aaonable time. This re-
quirement has been met by using a combination of the adagpi@érature for comput-
ing convolution together with TS method for numerical apgim@ation of the renewal-
type integral equation. The main criterion of the selecti@s the overall performance
on many test problems that may arise in practice (not two reetlexamples like it is
commonly practiced in literature). The accuracy of the apjpnation depends on two
factors: error for computing convolution and the choicelw step-size used in the
algorithm. Results show that in most of the cases with fonstA;, AP the accuracy
for convolution of order 10” — 10~° is sufficient. For functions that starts from zero
Ao, Ag the error in convolution can be of the same order but the stepfer the main
algorithm needs to be much smaller than in case of funct}ms!\?. The speed of
calculations is mainly affected by the time spent for cormuuthe convolution and
one may search for an additional improvement in this dioecti

One of the most important aspect from the computational tpafirview is the
steady state detection, that is the time after which thetfomavill remain in some
specified distance from its asymptotic value. It is not &fivd find a good estimation
of the steady state before performing computations. Theenigal investigation of
the extremes, however, is a reasonable choice. The regaatth direction would be
extremely important with regards to applications (the tmcaof low and high levels
of production is crucial in the availability studies).

This research also showed that methods with bounds are notiseful from the
practical point of view since they require too many grid peito be accurate, what
is unacceptable when the convolution has to be approximatesvever, there is an
exception from this rule. The bounds for the availabilitglaanewal functions may be
used for short term predictions, usually up to titrier whicht x MTTF+MTTR In
this situations the bounds are tight, even with small nunalbgrid points.

We also claim that the methods based on the density fundti@)olterra inte-
gral equation, are less applicable for real time calcutatisince they are too slow.
Nevertheless if the high accuracy is required and the sgeadtiimportant one can
use for instance RK-4 method that is able to produce veryrateuwesults for either
availability and renewal functions.

The availability functions for Gamma renewal alternatirrggess, that were de-
rived for the testing purposes, may also be used in practstead of Weibull-Exponential
case. The main advantage of using Gamma process is thea@tgnlispecifying the
parameters for the distributions. It is very intuitive amdjuires only to answer the
guestion: how many times the life time is bigger than the irejrae? When the data
is missing and there is not much known about the failure apdirenechanisms, the
answer to this question may be the only one way to charaeterizomponent and
predict its availability.

It was also shown that the grace periods have a very impdrtgact on the pro-
duction time. For instance in case of exponentially distell up and down times the
the productions grows exponentially with respect to thegnaeriod. Nevertheless
the research in this area, especially with regards to digidns of the new production
time, is still needed.
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Appendix A

The Distributions

Below we present the characteristics of the distributidreg aire used in this report.
Let X be a random variable. We specify the distributionXoby either density or
cumulative distribution function.

1. Exponential Distribution. The probability density faiom of an exponential
distribution has the form

—AX
f(x):{)\e , x>0,

0 , X< 0.

whereA > 0 is a parameter of the distribution, often called the rataupater.
The distribution is supported on the intery@lc). The cumulative distribution

function is given by
1-e™ x>0,
Fx) = { 0 , Xx<0.
2. Weibull Distribution. The probability density functios:

=g () e

a \a

for x > 0 andf(x) = 0 for x < 0, wheref3 > 0 is the shape parameter amd- 0
is the scale parameter of the distribution. The cumulatig&iution function
foris

F(x)=1—e "

for x> 0, andF (x) = 0 for x < 0. The characteristic function of Weibull distri-

bution is (see [32])
(s) = 1+ i(is:x!)ﬁrﬂ . (rgl>

The Laplace transform of Weibull distribution is (S8

F(s) = rii(_l)rr!(so‘)r T (é + 1)
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3. Lognormal Distribution. The lognormal distribution g probability density

function
1 (In(x)—w?

f(x) = e 272
) X0V 21
where—oe < p < 0 ando > 0. Expectation and variance are

E(X) = "9%/2 Var(X) = (e°°— 1)e2+9°,

We remark that there is no closed form for the cumulativeritistion function
for lognormally distributed random variable and its CDF twale approximated
(the most common approximation is in terms of error fungtion

4. Constant Distribution. The CDF of this discrete disttibo is

1 ,x>T1,
F(X):{O X< T.

5. Gamma Distribution. That a random variallés gamma-distributed with scale
A and shapé if its PDF can be expressed as

f( = | e e x>0,
0 , X< 0.

Similarly as in lognormal case the CDF has to b approximated.

6. Remaining Life Time distribution. Of our interest is thistdbution of the re-
maining life time of a component given that it is in operatfonx time units. Let
T be a random variable with distributid# (t) and letFr, (t) denotes the proba-
bility that the component will fail in timé -+ x given that it was in operation for
x time units. Then
P(T>t+xT>x) P(T>t+X)

1-F(t) =P(T >t+XxT >x) = BT > %) = T > %)

therefore
C1-Fr(t+x)

1-Fr(x)
In principle this distribution may be found for any choicefFgf For instance, if
Fr is Weibull distribution then

Fr(t) =1

It follows that

P(T>t+x) e (% B
PMT>x () P

thus




The Distributions

SinceF, (t) correpsonds to a continuous random variable it has a derBjty
simple differentiation we obtain that

fr(t) = (tTTX>BBe<%*>B+<

Qlx

)B(ter)’1
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Appendix B

Laplace Transforms

Suppose thaf (x) is a function that is defined on the intervd, «). The Laplace
transformf*(s) of the functionf (t) is defined by

F(s) = /Om e St (t)dt

wheresis a real number. It is convenient sometimes to use the aligennotation

Not all functions have a Laplace transform, for instancé(t) = ¢ the integral di-
verges for all values of. Whenf(t) is the probability density function of a nonnega-
tive random variable, the Laplace transform df(t) is seen to be equal the expected
value of the random variabkes*:

Ele ] = / e St (t)dt = F*(9)
0
The functionf (t) us called the inverse Laplace transformfofs), and is written
f(t) = L7 (s)]

As an example, consider the exponential distributiot) = Ae€M. The corresponding
Laplace transform is
A
Ae —At —St
/ T A+s

The Laplace transforms of over 300 functions may be foun@4n [
Properties

1 L[f(t) + f2(t)] = LF1(t)] + L[f2(V)]
2. Llaf(t)] =acL[f(t)]
3. L[f(t—a) =edL[f(1)]
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LIF()] =sLIf(H)] - F(0)

L[5 fwdd = LIF(©)]/s

L[5 falt—u) fa(u)du] = L[f1(t)] - L[fo(1)]

Initial value theorem: lim,. sf*(s) = lim¢_o f (1)

Final value theorem: lig,os*(s) = lim{_. f(t)

© © N o 0 &

If f(t) is a probability density function then® f*(s) <1 foralls> 0

Proofs of properties 1-6 are based on the properties ofraiieg. Properties 7 and 8
are derived by using property 4 and the last property is alsimgnsequence of the
property of an exponential function. All properties are dificult to prove and may

be found in standard textbooks.
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Appendix C

Adaptive Simpson’s Rule

This appendix describes the idea of the numerical integrdiy using adaptive grid.

Let [a,b] be the interval of integration, assumed to be bounded, arfdde a real
integrable function. We are interested in computing thegrsl

Q= /abf(x)dx (C.1)

The idea of the adaptive grid is as follows. Compute two axiprations ofQ using
two different numerical integration methods to obt&n and Q,. We assume that
one approximation, sa§; is more accurate than the other. If the relative difference
betweenQ; andQ, is smaller than some prescribed tolerance than one acQg&s

the value of the integral. Otherwise the interyalb] is divided in two equal parts
[a,m], [m,b], wherem= (a+ b)/2, and two integrals

/amf(x)dx

/mb f(x)dx

are computed independently. One now again computes reelyrsiwvo approxima-
tions Q1 andQ- for each integral and, if necessary, continues to subdividesmaller
intervals. This is the basic idea of the adaptive grid. Fgraxmation ofQ; and
Q2 we choose Simpson’s rule with step stz& andh respectively (we expect more
accurate approximation with smaller step size). The adggnbdf choosing the same
quadrature is that for every iteration we can compute mocarate approximation to
Q using one iteration of so called Romberg extrapolation. é/jaecisely, we know
that for Simpson’s rule the relation between the integrdligmapproximation is of the
form

and

Q=Q(h) +An*
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Adaptive Simpson’s Rule

whereA is some constant independentloandQ(h) denotes approximation @ by
Simpson'’s rule with step size Similarly for Q(h/2) we have

Q=Q(h/2) +A(h/2)".
We can find constarf from the first equation and substitute in the second one.€Fher

fore we obtain that
o 16(h/2) —Q(h)
15 )
The error in approximation now has ordertSfinstead of initialh®.
For approximations of; andQ, we decide to choose the following Simpson’s rule

Qu= g (1(@)+4T(m) + (b))
and h
Qz = 73 (f(2)+4f(d) +2f (m) +2f() + (b))

whered = (a+m)/2 ande= (m-+c)/2.

Stopping criteria

Using adaptive grids we have to be very careful in choosingsihg criterion. We
suggest to use the following

1. Stop when the difference between two consecutive appietions is less than
some prescribed tolerance.

2. The other problem we need to take care of is when an intgetsl subdivided
so small that it contains no interior machine-representalolint. Therefore we
terminate the recursion when the step size is smaller thamrttinimal possible
step size or when>aorc<h.
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Appendix D

Proof of Theorem 3.5.1

We prove Theorem 3.5.1 by using technique of Laplace tramsfol et us define

The Laplace transform afiis

00 su 0 U o] unkfm
0(9= [ e gudu= [ ey o

n—
_ Z (nklm)l/ e-su nk-my
n=1 — )= Jo

where interchange of sum and integral is justified by abeatonvergence of the se-
ries. It can be easily verified that by changing variablesute x the Laplace transform
becomes

ik — i 1 1 ® —XyNk—m
() (S) - nzl (nk— m)! Snkfm+1/0 e X du

Since for any integezx

/Om e X du=r(z2) = (z—1)!

then
§ © 1 1 e 1\"
v = nZl (nk—m)! Snkfmﬂ(nk_ i =" 1n; <§>
gn-1

Since (D.1) is a fraction of two polynomials it can be invertey the method of partial
fractions. First we need to find roogsr = 0,...,k— 1 of the denominatos< — 1. It
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Proof of Theorem 3.5.1

can be easily verified that those roots sre- exp(z—lfi)r. Let us denote = exp(22).
Therefore the denominator can be expressed as

K—1=(s—¢€%(s—¢gl)---- (s—e< 1)

Then the Laplace transform gfcan be written as

Smfl k—1 A
- =gmly (D.2)
-1 J; s—egl
Multiplying both sides of (D.2) bg— €' gives
gn-1 k—1 A
w1 (s g)=gmt > Sk_Jl(s—sr)+sm’lAr (D.3)
j=0,j#r
From (D.3) it follows that coefficienté, are
. s—¢
Ar=lm g (B4

Above limit can be computed using d’Hopital’s rule

= lim 1€ D.5
Ik o

Therefore the Laplace transform @becomes

1k 1 gn-
k s o (D.6)
The fraction in above expression may be rewritten as follows
gn-1 B gn-1_ (sr)m—1_|_ (Sr)m—l
s—g S—gf
(s—¢") (sm*2 4 S 3g ps A ()2 s(e)™ P 4 (sf)’“‘z) + (g™t
B s—¢f
_ Srn—2 j ( )mfl
Z) s—¢f
Thus
1k 1 m-2 r m-1

kZJ Z)sm—ZJ j %Zi . (D.7)

First term in the above expression is zero

lk— m—ZSm ” J o 5 Jlk_ N 1_8(j+1)k 0 D8
S e s YelS - o oo

Straightforward inversion of the second term in (D.7) costgd the proof.

104



Appendix E

State diagram for calculations

This appendix presents the state diagram for computinguvigaaility functions that
may facilitate the implementation of the algorithms.

In practice one computes the availability function untit@nverges to the steady
state (with some desired accuracy) and after that the asjimptlue for the function
is used (no calculations are necessary). Before the steattyis reached there may
be a planned maintenance scheduled at tiggg then the function is computed on
[0,tpm] @and att = tpy the availability goes to zero. For> tpy the functionApy is
used. Planned maintenance may be also scheduled afteediuy state is reached this
applies to all four availability functions. Therefore irder to compute the availability
of a component including the planned maintenance and stdatlys we propose the
following diagram for easier implementation of the possisituations with the avail-
ability functions.

Description of the states:

. Before the calculations
: Unit at start-up: functio\;

. Unit at start of repair: functiory

: Unit in repair fory hours: functiomg’

0

1

2

3 : Unit in operation forx hours: functionA?

4

5 : Planned maintenance just started: funcitggy
6

. Availability in steady-state: functioA (constant)

This diagram can be explained as follows. At any given tim@@monent may be
in one of the five states: start-up, start of repair, in openatduring the repair or at
the beginning of planned maintenance therefore from te 6té is possible to go to
states 1,2,3,4,PM. Let us first consider state 1. The calculations may be paedr

1we do not consider the steady state as the transition frorstgtie 0 since there is no need to do
calculations for steady state
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State diagram for calculations

Figure E.1: State diagram for computing availability.

until the nearest planned maintenance ttggor until the steady state thus transition
from state 1 to SS or PM. From SS it is possible to have anotlaampd mainte-
nance thus transition from SS to PM. The calculations may isiastate PM since
there may be another maintenance scheduled, however #dgaksible to reach the
steady state thus also transition from PM to SS is possibleeithere are no planned
maintenances scheduled the calculations will eventualty w in the SS state. The
transitions from states 2,3 and 4 can be described in a siméaner.
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