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Abstract

Vehicle routing problems (VRP) and Container Loading Problems (CLP) have been
studied for decades. However, the combination of the two deserves more attention
than in the literature to date. When solving VRP problems, computed routes must be
checked for feasibility. Among the feasibility checks to perform, we need to guarantee
that the load plan is feasible, namely that all the assigned products fit inside the truck.
This involves solving a CLP.

Since the check of load plan feasibility is performed frequently, a short computational
time is important. Hence, the load plan feasibility check is usually performed using
approximation methods. Having rapid and reliable load plan feasibility estimations is
crucial to reduce computational times when solving the VRP problem. However, if
these estimations are conservative, the obtained routes are inefficient routes; if the
estimations are opportunistic, the resulting load plans can turn out to be infeasible.

This work explored to what extent supervised Machine Learning (ML) methods can
be used to rapidly yet accurately classify whether load plans will be feasible or not.
These predictions can then be exploited in VRP algorithms to improve efficiency and
computation time.

Several ML methods are considered and benchmarked on synthetic data and real
data from a major company in the beverage sector. Extended experiments in different
settings are performed, to check the effectiveness of ML in providing reliable load
plan estimations and to extract insights on how load plan characteristics affect load
feasibility.

Results suggest the effectiveness of applying MLmodels, with Random Forest models
reaching an accuracy above 91.5% on all different experiments considered. Also,
compared to the current estimations used for load feasibility checking, Random Forest
models decreases computation time with 54.9%.
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1
Introduction

1.1. Motivation

The Vehicle Routing Problem (VRP) and Container Loading Problem (CLP) have been
studied for decades. However, the combination of the two deserves more attention
than in the literature to date (Bortfeldt and Homberger 2013; Fuellerer et al. 2009;
Gendreau et al. 2008; Iori 2005; Iori et al. 2007; Zachariadis et al. 2009). When solving
VRP problems, computed routes must be checked for feasibility. Among the feasibility
checks to perform, we need to guarantee that the load plan is feasible, namely that all
the assigned products fit inside the truck. This involves solving a CLP.

Since load plan feasibility is checked frequently, a short computational time is crucial.
Hence, the load plan feasibility check is usually performed using approximation meth-
ods. Having rapid and reliable load plan feasibility estimations is crucial to reduce
computational times when solving the VRP problem. However, if these estimations
are conservative, the obtained routes are inefficient; if the estimations are opportunis-
tic, the resulting load plans can be infeasible.

This work explores to what extent supervised Machine Learning (ML) methods can be
used to rapidly yet accurately classify whether load plans will be feasible or not. The
computation time of standard heuristic methods depend on the number of items in a
load plan, where ML approaches are size-independent. Moreover, ML approaches
do not require human-based tuning of heuristics. Given the data, ML methods extract
patterns in an automated way, decreasing the chance of biased predictions. The ML
predictions can then be exploited in VRP algorithms to improve efficiency and compu-
tation time.

1
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1.2. Introduction to ORTEC

This thesis is written in collaboration with ORTEC. ORTEC is now one of the world’s
leading providers of mathematical optimization software and sophisticated analytics,
with over 1,000 people and offices in 13 countries worldwide. ORTEC creates plan-
ning, scheduling, routing, and forecasting solutions.

The research focuses on one client of ORTEC, a significant company in the beverage
sector. This thesis uses data and loading rules of this beverage company data. For
confidentiality reasons, the name of this company will not be mentioned.

1.3. Thesis goal and scope

This thesis aims to contribute to the improvement of the feasibility check of 3D load
feasibility within route creation. The primary research goal is to examine if and how
a ML solution could lead to improved productivity in route creation by improving the
speed and/or accuracy of the load feasibility check. No literature is available on using
MLmethods for feasibility checking within route creation. The main research objective
is to study the performance of different ML models and compare their capability to
improve on the current solution.

This thesis focuses on a specific use case of a major beverage company. The most
important Key Performance Indicator (KPI) is the precision of the model. It is not
wished that the model predicts a load plan to be feasible when it is not. However, the
overall performance of the model is also essential.

1.4. Research Questions

The primary research goal is to examine if and how a ML solution could lead to in-
creased productivity of route creation. The research questions this thesis aims to
answer are the following:

1. How accurately an ML approach can predict whether a 3D load plan will be
feasible or not?

2. What are the improvements derived by a ML model for load feasibility checking
versus current approximation algorithms?

3. What insights on the relation between input variables and 3D load feasibility can
be extracted from the trained ML model?



1.5. Thesis Structure 3

1.5. Thesis Structure
This thesis is divided into chapters highlighting the research and development con-
ducted throughout the thesis and the outcomes. The next chapter (Chapter 2) presents
the relevant background for this thesis. This chapter provides background knowledge
on cutting and packing problems, CLP, VRP, and their integration. At the end of the
chapter, the research gap this thesis aims to fill is identified. Chapter 3 discusses
the data used for the Machine Learning models. First, the data processing pipeline
is explained. Then the chapter describes the datasets used for the final experiments.
Chapter 4 presents the different Machine Learning models created for this thesis. The
selection of the models is clarified. This chapter also goes over feature engineering
and hyperparameter tuning. The approximation algorithm created for comparison with
the ML performance is introduced in chapter 5. In chapter 6, the result of the models
created in chapter 4 are explained, as well as the comparison with the approxima-
tion algorithm of chapter 5. Also, insights on the relation between the input features
and 3D load feasibility are presented. The final chapter of this thesis concludes with
answers to the research questions and the recommended future work.



2
Background and problem statement

This chapter presents the theoretical background needed to understand the thesis’s
methodology. First, an overview of cutting and packing problems is given, and the
specific cutting and packing problem this thesis deals with is identified, namely the
Container Loading Problem (CLP). The following section goes into depth on the CLP
and presents the existing literature on the problem. Section 2.3 describes the Vehicle
Routing Problem (VRP) and how CLP and VRP are integrated in both literature and
reality. The last section identifies the research gap this thesis aims to fill.

2.1. Cutting and packing problems

Dyckhoff (1990) grouped the types of cutting and packing problems based on four
main criteria, namely dimensionality, kind of assignment, the assortment of large ob-
jects and the assortment of small items. Wäscher et al. (2007) grouped the cutting and
packing problem into five main categories. In figure 2.1 an overview of the taxonomy
of Wäscher et al. (2007) is given.

Dimensionality
The meaning of dimensionality speaks for itself. The dimensionalities that are relevant
for this research are 2D and 3D.

Kind of assignment
There are two different objectives/assignments a cutting and packing problem can
have. The first is that all large objects can be used, and a selection of small items
can be used. This is called output maximisation. The amount of container space is
set in output maximisation, and the goal is to pack as many items as possible. The
second cutting and packing objective is input minimisation. With input minimisation, a
selection of objects is used to pack all items. So the amount of items that need to be
packed is fixed, and the goal is to use the least amount of (container) space.

4
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Figure 2.1: Overview of the criteria for the definition of cutting and packing problem
types

Assortment of large objects
There are two different types of ’assortments of large objects’, either ’one object’ or
’several large objects’. In the case of one large object, the object can have either fixed
dimensions or one or more variable dimensions. If there are several large objects,
these can either be identical, weakly heterogeneous or strongly heterogeneous.

Assortment of small items
Concerning the assortment of small items, there are three different types. Namely
’identical’, ’weakly heterogeneous’ and strongly heterogeneous’. Identical items are
the same in the problem-relevant dimensions, such as shape and size, but weight and
required orientation can also play a role. Items are weakly heterogeneous if they can
be grouped based on problem-relevant dimensions in relatively few classes. Items
are strongly heterogeneous if there are only a few identical items.

2.2. Container Loading Problem

Dyckhoff (1990) found that the container loading problem can be defined in two dif-
ferent ways as a cutting and packing problem. In both cases, the problem is three-
dimensional. The container loading problem can be defined as having the objective
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of output maximisation with only one large object with fixed dimensions. Alternatively,
the problem can be defined as an input minimisation problem with several identical
large objects. Figure 2.2 presents a schematic overview of the two different types of
container loading problems as cutting and packing problems.

(a) Option 1

(b) Option 2

Figure 2.2: A schematic overview of the two possible criteria of a container loading
problem as a cutting and packing problem

2.2.1. Constraints

The container loading problem is a geometric assignment problem where 3D items
must be packed into 3D cubic large objects (containers). Three constraints are the
same for every container loading problem. These constraints are:

• Each item is placed completely within the container
• Each item is not allowed to overlap with other items
• Each item is placed parallel with the walls of the container.

Aydemir and Yigit (2019) outlined the different constraints that can be accounted for
in the Container Loading Problem. These can be split into Container-Related, Item-
Related, Cargo-Related, Positioning and Load-Related constraints.

Container-Related Constraints

Weight Distribution Constraints: The weight should be spread across the con-
tainer floor. Heavier items should be lower than lighter ones, reducing risks during
transport.
Weight Limits: Take into account the weight limit a container can take.

Item-Related Constraints
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Loading Priorities: This constraint can only occur in the case of input minimisa-
tion. Items with a higher contribution to the objective function have a higher loading
priority. If all items need to be loaded, there could be constraints on (1) delivery
locations, (2) items that are not allowed to be loaded together, or (3) obliged to be
loaded together.
Orientation Constraints: This constraint is one of the most commonly used con-
straints. It depicts whether items are allowed to rotate and, if so, in what directions.
Stacking Constraints: Restricts how to stack items. Factors that influence this
constraint are how much pressure items can handle or how many items can be
placed upon another item

Cargo-Related Constraints

Complete-Shipment Constraints: This constraint can only occur in the case of
output maximisation. Items that are part of a subset should be loaded as a group
or not.
Allocation Constraints: This constraint should only occur in multiple container
problems. Some items are not allowed to be packed in the same container, e.g.
food and cleaning products.

Positioning Constraint

This constraint can occur when the items are for different customers. The items
should be loaded in a specific route order so the unloading will not take too long.

Load-Related Constraints

Stability Constraints: This constraint ensures the items are loaded stable to avoid
damage to the items, containers and employees handling the load.
Complexity Constraints: This constraint prevents the load plan from being too
complex. Since this could be too difficult for manual loading and take too much
time.

2.2.2. Approaches for Container Loading Problem

Bortfeldt and Wäscher (2013) states that heuristic algorithms are the most important
class of algorithms for solving container loading problems. Since only heuristic algo-
rithms can provide solutions within a reasonable computing time and volume utilisation
if the problem size grows. Especially if different constraints are taken into account.

Pisinger (2002) stated that the most common heuristics use either the wall building,
stack building, horizontal layer building, block building or guillotine cutting for placing
items, in Pisinger’s case boxes, in the Container Loading Problem.

1. Wall Building Approach, proposed by George and Robinson (1980), splits the
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container into vertical layers, and the container is loaded per layer (wall) simul-
taneously.

2. Stack Building Approach, proposed by Gilmore and Gomory (1965), packs the
items in stacks arranged on the container floor. Which reduces the problem to
two dimensions.

3. Horizontal Layer Building Approach, proposed by, loads the container from
bottom to top by loading horizontal layers simultaneously. Each horizontal layer
aims to cover the maximum space of the layer.

4. Block Building Approach, proposed by Bortfeldt and Gehring (1998a), packs
the container recursively with cuboid arrangements of similar items.

5. Guillotine Cutting Approach, proposed by Morabito and Arenales (1994),is
based on a slicing tree. The slicing tree represents a ’guillotine’ partition of the
container, and the leafs represent the items to be packed.

The heuristic algorithms that can be applied to the Container Loading Problem can be
split into three categories: Conventional Heuristic Methods, Meta-Heuristic Methods
and Tree Search Methods (Fanslau and Bortfeldt 2010).

Conventional Heuristic Methods
Bischoff, Janetz, et al. (1995) presented a heuristic approach where the loading ar-
rangement is built up in layers from the bottom upwards. Bischoff and Ratcliff (1995)
proposed a method specifically designed to produce stable, evenly distributed loading
arrangements. Lim et al. (2003) created a method using a multi-faced buildup tech-
nique in the packing procedure, so items are not required to form flat layers. These
methods have been the most used method types for the 3D Container Loading Prob-
lem in recent years (Sheng et al. 2016).

Meta-Heuristic Methods
Hemminki (1994), Gehring et al. (1997), Gehring and Bortfeldt (2002) and Bortfeldt
and Gehring (2001) proposed genetic algorithms. Sixt (1996) and Mack et al. (2004)
presented simulated annealing methods. Sixt (1996), Bortfeldt and Gehring (1998b)
and Bortfeldt, Gehring, and Mack (2003) presented tabu search algorithms. Faroe
et al. (2003) and Mack et al. (2004) developed local search algorithms. Moura and
Oliveira (2005) and Parreño et al. (2008) suggested a greedy randomized adaptive
search procedure (GRASP). Zhou and X. Liu (2017) introduced a swarm search algo-
rithm.

Tree Search Methods
Morabito and Arenales (1994) introduced the AND/OR graph search method where
possible loading patterns are represented as complete paths in an AND/OR-graph.
Eley (2002) proposed an algorithm with a greedy heuristic that builds homogeneous
blocks of identical items. These blocks are then loaded using tree search. Hifi (2002)
presents a tree search algorithm and uses hill-climbing strategies to construct heuris-
tics. Pisinger (2002) proposed an algorithm based on the wall-building approach.
These ’walls’ are then split into several horizontal or vertical strips. The size of the
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layers and strips is decided through a branch-and-bound approach. These strips are
then solved as a one-dimensional knapsack problem. Fanslau and Bortfeldt (2010)
proposed two different methods. The first is a full-support method where full support
from below for all packed boxes is guaranteed. The second is the non-support variant,
where this is not considered. Partition-controlled tree search with the block-building
approach is proposed. Zhang et al. (2012) created a heuristic block-loading algorithm
based on multi-layer search based on depth-first search. S. Liu et al. (2014) presents
a binary search tree algorithm based on the wall-building approach. Araya and Riff
(2014) introduced a beam search approach, which can be seen as a variant of the
branch-and-bound search that only expands the most promising nodes at each level
of the search tree.

2.3. Vehicle Routing Problem

The Vehicle Routing Problem (VRP) is the problem of finding the optimal routes for a
set of vehicles visiting a set of locations. The VRP is a minimisation problem, where
the objective is to minimise the route’s costs. The VRP problem is NP-hard. So does
not exist a solution that can optimally solve the VRP in a reasonable amount of time.
Therefore, heuristics are used to give a non-optimal but good solution in a reasonable
amount of time.

2.3.1. Integration CLP in VRP

Both CLP and VRP are NP-hard problems. Evidently, the combination of the two,
known as the Three-Dimensional Loading Capacitated Vehicle Routing Problem (3L-
CVRP), is also NP-hard. Iori (2005) proposed the 2D version of the problem and
solved it with an exact approach in 2007 (Iori et al. 2007). Gendreau et al. (2008)
presented an approach using a tabu search algorithm for the routing part of the prob-
lem and tackling the loading as a two-dimensional strip packing problem. Zachariadis
et al. (2009) introduced an algorithm called Guided Tabu Search. In terms of rout-
ing, it uses a search method based on tabu search, driven by an objective function
alteration mechanism, to explore the solution space. In the approach proposed by Fu-
ellerer et al. (2009), for the loading component, multiple heuristics are used, and for
the overall optimisation, an ant colony optimisation (ACO) method is used. Bortfeldt
and Homberger (2013) proposed a method where the loading is solved prior to the
routing, in contract with the beforementioned approaches.

2.3.2. 3D load feasibility estimation

Themethods mentioned in subsection 2.3.1 require a relatively adequate time to solve
if the loading is not infeasible often. Nonetheless, these methods do not consider all
the different aspects of a route plan that must be feasible in real life. The loading ca-
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pacity is just one aspect of the problem. In reality, when creating routes, other feasibil-
ity checks need to be performed, such as time windows, picking time, and maximum
pollution or costs. Generally speaking, creating a route plan that satisfies all these
constraints and is close to an optimal solution is an iterative process. Consequently,
these routes need to be checked for feasibility repeatedly. So the computational time
for the load plan feasibility check must be short. Therefore, the load plan feasibility
check is usually performed using approximation methods. Rapid and reliable load
plan feasibility estimations are crucial to reducing computational times when solving
the VRP problem. However, if these estimations are conservative, the obtained routes
are inefficient; if the estimations are opportunistic, the resulting load plans can be in-
feasible. No literature was found on these approximation algorithms for feasibility
checking during route creation.

2.4. Research gap
Talking to experts in the routing industry revealed that companies use very basic ap-
proximation algorithms to predict feasibility during route creation. In Chapter 5 an
approximation algorithm based on the one ORTEC is using is presented. According
to the lacking literature and the industry experts, a ML approach for 3D load feasibility
checking during route creation has not been explored. This thesis aims to fill the re-
search gap on how ML approaches may be used to quickly and reliably determine if
load plans are feasible. Approximation methods have a computation time proportional
to the number of items in a load plan, whereas ML approaches are size-independent.



3
Data

This thesis intends to bridge a knowledge gap in how ML methods may be used to
identify whether load plans are feasible or not. In order to create an ML model, data
is required. This thesis focuses on the beverage industry. Information and data from
a major company in the beverage sector are utilised.

At first, a minimal dataset was available from the focus beverage company. The
dataset consisted of 242 load plans, including 12 truck types, 4 pallet types and 118
unique item types. This dataset was insufficient to train an ML model. A second issue
was that this dataset consisted of unusual cases. In Figure 3.1 an example is shown.
The image on the left shows an almost empty truck. After talking to an industry expert,
we discovered that this does happen in exceptional cases. Nearly empty trucks like
that will drive if there is no efficient way to combine the load with other trucks, and the
customer’s orders need to be done that day. For these two reasons, synthetic data
had to be created.

Figure 3.1: Visualisation of a random example of the initial company data

This chapter first explains the data processing pipeline. Second, a general overview
of the pipeline is given. After which, every step of the process is explained in more

11
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detail. The last section of this chapter presents the datasets used for the experiments
performed in this thesis.

3.1. Data Processing Pipeline

In Figure 3.2 one can see a flowchart of the data processing pipeline. The operation
is part of the synthetic data processing pipeline if a square is blue. The procedure is
part of the company data processing pipeline if a square is orange. If a square is half
blue and half orange, it is part of both the synthetic and the company data processing
pipeline.

Load plan input has to be created for the synthetic data processing pipeline. This input
consists of information on what orders must be placed in the truck. This information is
then passed on to the ORTEC Load Builder (OLB). The input file is read, and with the
use of the ORTEC loading algorithm, the orders are placed in the truck(s). From this
point on, the data processing pipeline is the same for the synthetic and the company
data. OLB outputs where every item and pallet should be placed in the truck. Features
are extracted from the OLB output and transformed to a row in the tabular ML input
dataset.

Figure 3.2: Data processing pipeline

3.1.1. Load Plan Input

Trucks, pallets, and items are needed to create synthetic load plan input. These trucks,
pallets, and items are obtained from the small initial company dataset.

Trucks
The features considered for trucks in this research are the truck type, length, width,
height, tare weight and the allowed total weight. A truck type can either be a Standard
Truck or a Bay Truck.

Pallets
For pallets, we consider the features length, width and height of the pallet, its tare
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(a) Standard Truck
(b) Bay Truck

Figure 3.3: Examples of the two different truck categories included in the data

weight and allowed total weight, and the maximum allowed height of the items on the
pallet.

Items
There are different features we look at when we consider items. First is the shape of
the item; with generalisation, we consider every item either cuboid or cylinder-shaped.
Other than the weight and dimensions of the items, we also consider the rotatability
and stackability of the items. Some items have specific stacking rules. For example,
a crate of beer cannot be stacked on a bag of potato chips. An example of rotatability
constraints is that a bottle should not be placed on its cap.

After extracting the trucks, pallets and items, these could be used to create synthetic
load plans and thus an experiment dataset. Figure 8 presents a scheme of how the
synthetic load plans are created.

For every experiment, a specification CSV is given as input. This CSV provides infor-
mation such as the customer types, number of truck, pallet and item types and loading
rules. Based on this CSV, a subset of trucks, pallets, items and customer types is cre-
ated. A customer type is specified through different features. Namely, its item type
preference is either small, big or no preference.

Load plans are created using a lower- and upper-bound of volume utilisation. First,
a load plan is created with a volume utilisation equal to the lower bound. This load
plan is then exported, after which a new customer with its items is added to the same
load plan. Again, this load plan is exported. This iterative process is repeated until
the volume utilisation equals the upper bound.

The aim is to create synthetic datasets that are balanced. This was achieved by try-
ing smaller test datasets with different lower and upper bounds. These tests were
performed separately for the Standard Truck and the Bay Truck since they have differ-
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ent manners of loading. These test sets exposed the critical boundary where a load
plan becomes infeasible to fit into one truck. The load plans close to this boundary
are the most challenging load plans to predict. The datasets are balanced around this
critical boundary.

3.1.2. ORTEC Load Builder

OLB uses operational research (OR) algorithms to simulate and optimise how to pack
items into containers or onto pallets in the most efficient way. The result is exported as
a configurable list and interactive 3D graphic. In this thesis, OLB ’s output is used as a
ground truth infeasibility for the data generation. OLB can perform a cartonizing, pal-
letising and loading algorithm on the load plans. Different loading rules can be applied
to these algorithms. Finally, OLB outputs XML files with the packing instructions.

A few of the most significant loading rules are loading sequence, pallet margins, multi-
customer pick pallets, stackability of pallets and the height of items on a pallet.

Loading sequence
Pallets are loaded and unloaded from the back in the Standard Truck type. Therefore
the location in the truck where pallets are placed is essential. The first customer should
not be placed in the back of the truck. Bay Trucks are loaded and unloaded from the
side, so this situation generally does not occur with Bay Trucks.

Pallet margins
Some companies have rules on how much space should be between pallets or rows
of pallets. The beverage company considered in this thesis demands at least a 10cm
spacing between the truck’s left and right row of pallets.

Multi-customer pick pallets
A typical process in the beverage industry is that a customer’s items are mixed through
the truck on different pallets. If multiple small orders were all located on individual
pallets, the volume of the truck would be utilised very poorly. A remedy is to combine
orders from different customers on the same pallet. Furthermore, the picking process
in the warehouse and loading of the trucks could be optimised by picking per item type
of isle instead of the customer. So, if a customer allows, so-called multi-customer pick
pallets are built. When arriving at the customer, the driver picks the items from the
multi-customer pick pallet. In general, Bay Trucks are used for multi-customer pick
pallets.

Stackability of pallets
If the items on a pallet are strong enough, it could be possible to stack pallets on top
of each other. Some companies do not allow for this pallet stacking. Pallets can be
dirty and have splinters and therefore could damage the products they are stacked
on.
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Height of items on a pallet
The rules on the maximum allowed height on the pallets are location-based. General-
ising, the people in Germany are taller than the people in Japan. Therefore Germany
will allow for higher item stacks on pallets than Japan. Otherwise, the unloading will
be uncomfortable.

3.1.3. Machine Learning Input

Finally, the XML file outputted by OLB needs to be translated to rows of features.
Section 4.2 will go into depth on what features are included in the ML models.

3.2. Experiments

This section will give insights into the three datasets used for the experiments. There
are two synthetic datasets and one beverage company dataset. Table ?? gives in-
sights into the different datasets.

3.2.1. Experiment Synthetic A

The first dataset is the simplest of all. This dataset consists of 12,625 synthetic in-
stances, of which 45% is feasible. The dataset is built from 6 trucks, 4 pallets, 50
items and 3 customer types. The six different trucks are solely Standard Trucks. The
three customer types include one that prefers a small number of big items, one that
prefers a large number of small items and one that prefers an average amount of
medium-sized items. In this dataset, it is allowed to have precisely one customer per
pallet. The loading sequence is not taken into account.

3.2.2. Experiment Synthetic B

The second synthetic dataset consists of 21,934 instances, of which 51% is feasible.
This dataset is made from 11 trucks, 6 pallets, 100 items and 5 customer types. The
trucks include both Standard Trucks and Bay Trucks. The five customer types include
the same types as Experiment Synthetic A. Also, two customers with dominant big
orders of one item type are added. One customer’s order consists of small items, the
other of big items. Like the other synthetic dataset, it is allowed to have precisely one
customer per pallet. However, the loading sequence is taken into account.
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3.2.3. Company Experiment

The dataset of the Company experiment consists of 143,279 instances, of which 91%
is feasible. It includes both the Standard Truck and the Bay Truck. It consists of
primarily two special scenarios: Most of the time, the load plans employing a Standard
Truck have just one customer and at most three different items. According to experts
on the beverage company in question, this is either haulage or a cross-dock shuttle
scenario. Haulage means the replenishment of distribution centres. A cross-dock
shuttle scenariomeans that a bulk truck brings the goods to the cross-dock, where they
are unloaded and loaded on distribution trucks. The Bay Trucks have the customer’s
items mixed over different pallets on so-called multi-customer pick pallets. In section
3.1.2 the motivation for these pallets is explained in more detail.

3.2.4. Summary

In summary, both synthetic datasets are balanced and controlled. It is known what
truck, pallet and item types are included, and they represent different scenarios through
the different customer types. Dataset Synthetic A only includes the loading rule of one
customer per pallet. In the second synthetic dataset, the loading sequence is taken
into account. The company dataset includes all the beverage company’s loading rules,
which will not be mentioned due to confidentiality reasons. The company dataset is
imbalanced and includes particular scenarios that are not generalisable.
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Figure 3.4: Load plan creation design



4
Machine Learning Models

This chapter presents the different ML methods that were explored. The first section
elaborates on the different ML models that will be investigated. The following section
demonstrates the feature engineering methods used. The last section elaborates on
the strategy used for hyperparameter tuning.

4.1. Model Selection
In ML, there are twomain approaches: supervised learning and unsupervised learning.
With unsupervised learning, the model identifies patterns and trends in unlabeled data,
for example, by clustering the data into groups. An unsupervised learning algorithm
aims to find insights and trends in the data. A drawback of unsupervised learning is
that the results can be inaccurate if not checked by humans and that it is challenging
to make the outcomes explainable. Supervised learning is an ML approach that uses
labelled datasets for training the model and finds a pattern between the input and
output data. The goal of supervised learning algorithms is to predict outcomes for
the new input data. A drawback of supervised learning is that the training can be
very time-consuming. Experts sometimes must label the data manually, which is very
time-consuming.

This thesis considers supervised learning methods to classify load plans (input) as fea-
sible or infeasible (output). A selection was made from a list of IBM (2021) containing
the most commonly used supervised learning algorithms: Neural Network (NN), Naive
Bayes (NB), Linear Regression (LR), Logistic Regression (LOG), Support Vector Ma-
chine (SVM), k-Nearest Neighbour (KNN) and Random Forest (RF). LR is excluded
because it is not a classification algorithm. NN is not considered because it is a bit
too complicated for the use case. Also, it is unsure if the datasets consist of enough
instances for NN. NB is not considered because it assumes that all features are inde-
pendent, which is not the case. Therefore this thesis assesses, LOG, KNN, SVM and

18
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RF.

4.1.1. Logistic Regression

Logistic regression is a linear classification model that predicts binary outcomes. It
predicts the probability that an event occurs. This probability is then mapped to a
discrete outcome class using the Sigmoid function. LOG is an efficient simple model.
However, LOG supposes a linear relationship between the input and output variables.

4.1.2. k-Nearest Neighbour

Simply put, KNN works as follows: for every new data instance, knn looks at the k-
nearest neighbours. What are the k-nearest neighboursmainly depends on two things:
the distance metric and k. Examples of distance metrics included in python’s SKLearn
are Eucleadian, Manhattan and Minkowski. Deciding what k to use is a difficult trade-
off. If the k-value is too small, this could cause overfitting. If the k-value is too big,
this could cause over-generalisation. KNN is a fast prediction model and can handle
non-linear data.

4.1.3. Support Vector Machine

SVM creates hyperplanes to separate classes. This hyperplane is placed in such a
way that the distance between the hyperplane and the nearest point on each side
(margin) is maximised. SVM is not sensitive to overfitting.

4.1.4. Random Forest

RF is an ensemble of multiple decision trees. In short, RF models creates n decision
trees. Every decision tree is based on a randomly sampled subset of the dataset.
The prediction of the RF model is the class that was predicted most often within all n
decision trees. RFmodels are powerful and can also handle non-linear data. However,
it is sensitive to overfitting and difficult to interpret.

4.2. Feature Engineering

Feature engineering is an essential aspect in the creation of an ML model. Feature
engineering intends to organise the information/data in a way that is compatible with
ML algorithms and improve the model’s performance. In this thesis, the information
about the load plans needs to be decoded into relevant features, which is called fea-
ture extraction. Understanding of the discipline is required to extract influential fea-
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tures. Therefore this is a manual process. Then these features need to be reduced.
This process is called feature selection. Feature selection will reduce the feature cal-
culation time and the training time. It also decreases overfitting en the model will be
easier to interpret.

This thesis aims to create a model that will fast and precisely predict whether a load
is feasible or not. So, the time to compute the features needs to be short, while the
precision is high. It is impossible to optimise both, so a balance between the two has
to be found. Where this balance is, depends on the use case, but even then, it is not a
trivial decision. A minimum accuracy or precision can be set in stone. However, from
there on, it is a trade-off between adding another feature that improves performance
and increases computation time. Therefore, this process needs to be done manually.

The feature engineering was performed on Experiment Synthetic B (section 3.2.2).
It was performed on this experiment because it is a more complicated and realistic
experiment than Experiment Synthetic A. Moreover, in contrast with the Company Ex-
periment, the dataset was balanced, and it consisted of more generalisable instances.

4.2.1. Feature Selection

Feature selection is the process of selecting essential input features for an ML model.
Excluding a feature reduces the computation time of the input data for the ML model,
but it could also decrease the performance of the model.

Table 4.1 gives an overview of the 40 initial features that were taken into account for
the feature selection. A short computation time is one of the most important KPI’s
in this thesis. The feature selection performed in this thesis is based on the theory
that including highly correlated features will increase the computation time but will not
increase precision (much).

Algorithm 1 shows the pseudocode for the feature selection method this thesis uses,
which will hereafter be explained. The feature selection method was performed on
both the RF and KNN model. First, the 40 features were sorted on feature importance
for the model prediction. Then, the Pearson correlation between all 40 features was
calculated. Figure 4.1 presents the correlation heatmap between all these 40 features.
For readability, correlations with itself were set to None, and only correlation values
above 0.7 are presented. Also, features were excluded from the heatmap if they did
not have a Pearson correlation above 0.7 with any other feature.

The next step is to exclude highly correlated features. Different correlation bounds
have been tested, namely 0.7, 0.75, 0.8 and 0.85. Features from the residual feature
set were added incrementally from three up to 20 features, while the model’s perfor-
mance was tested every step.

The calculation time per feature was measured on a subset of 1678 instances of Ex-
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Table 4.1: All features included in the feature selection procedure with the median
time it takes to calculate 1678 randomly selected instances of Experiment Synthetic

A

Feature Time (s) Feature Time (s)

Truck type 0.01 Total item height 0.33

Truck volume 0.00 Volume of biggest customer 32.84

Truck length 0.00 Weight of biggest customer 8.68

Truck width 0.00 Volume of last customer 3.09

Truck height 0.00 Weight of last customer 0.87

Max allowed weight 0.01 Volume utilization 0.01

Pallet EURO 0.00 Weight utilization 0.00

Pallet 48x40 0.00 Number of unique items 0.25

Pallet 36x36 0.00 Number of cylinder items 0.00

Pallet plastic 1x1.2 0.00 Number of cuboid items 0.00

Pallet plastic 1x1 0.00 Total cylinder weight 0.00

Pallet prostack 0.00 Total cuboid weight 0.00

Pallet NoDescr 0.00 Total cylinder volume 0.00

Unknown pallet type 0.00 Total cuboid volume 0.00

Total number of items 0.17 Number items allowed to be placed LxW 0.00

Total number of customers 0.23 Number items allowed to be placed WxL 0.00

Total item weight 0.50 Number items allowed to be placed LxH 0.00

Total item volume 2.90 Number items allowed to be placed HxL 0.00

Total item length 0.32 Number items allowed to be placed WxH 0.00

Total item width 2.85 Number items allowed to be placed HxW 0.00
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Figure 4.1: Pearson correlation heatmap for the features before feature selection.
Only correlations > 0.7 are displayed.

periment Synthetic A. These load plans were converted to ML input features. The
time it took to calculate a feature was summed for all 1678 load plans per feature.
This process was repeated 100 times. Most features took so little time to create that it
was impossible to measure. In Table 4.1 the median time it took to create the features
for these 1678 load plans is presented.

Table C.1 shows the results of this method on the RF model on Experiment Synthetic
B. Figure 4.2 presents a plot of these results with on the x-axis precision, and on the
y-axis the time it takes to calculate the accompanying features. The plot shows a clear
Pareto-front of 5 data points. Table 4.2 presents these 5 Pareto front feature sets and
their performances. As said before, the trade-off between performance and time is
very use case dependent. For this thesis, feature set 2 is chosen because this feature
set showed the best overall performance compared to the other 4 in the Pareto front.
The precision of feature set 1 was higher than that of feature set 2. However, feature
set 2 had higher accuracy and recall and a lower computation time. Feature set 5
shows that very few simple computable features can perform well. Concluding, the
final selected features for the ML models created in this thesis are:
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Figure 4.2: The precision for the different feature combination vs the time to
calculate these features
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1. Weight utilization
2. Volume utilization
3. Total number of customers
4. Total weight of the items
5. Truck Volume
6. Volume of the biggest customer
7. Weight of the biggest customer
8. Truck Width
9. Truck Type
10. Total Item Length

4.3. Hyperparameter Tuning

Hyperparameters are configuration arguments in a ML model that allows the model
to be customised for a specific dataset. In contrast with model parameters, which are
set through training, hyperparameters are set manually before training. ML models
have different hyperparameters that also interact with each other. Therefore, a com-
bination of hyperparameters should be found to achieve optimal model performance.
The process of finding this set is called hyperparameter tuning.

This thesis uses a combination of Grid Search Cross-Validation and Randomised
Search Cross-Validation.

With Grid Search, first, it is manually specified which ranges of hyperparameters are in-
cluded. Then, all hyperparameter combinations are tried out with cross-validation, and
their performance is measured. The best hyperparameter set is the combination that
maximises the average value in cross-validation. Grid Search is a time-consuming
technique since it considers all possible combinations, and for every combination, k-
fold cross-validation is employed.

Randomised Search Cross-Validation is comparable to Grid Search, but instead of
trying out every hyperparameter combination, it tests a randomly selected subset of
all combinations.

This thesis first uses Randomised Search Cross-Validation, with accuracy as the per-
formance measure. Even though precision is the most critical KPI, high accuracy is
also essential. A model with very high precision could be a flawed model in general.
The Randomised Search Cross-Validation gives an idea in which direction to look for
models that perform well in general, so a high accuracy.

Then, a grid is built around the Randomised Search outcome. This grid is used as
input for the Grid Search Cross-Validation. The Grid Search Cross-Validation will use
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Table 4.2: Overview of the feature sets in the Pareto front and their performance
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Algorithm 1 Feature Selection
1: function FeatureEngineering
2: for correlationBound← 0.7, 0.75, 0.8, 0.85 do
3: featureList← ExcludeHighlyCorrelatedFeatures(correlationBound)
4: for nrFeatures = 3, . . . , 20 do
5: currentFeatures← featureList[: nrFeatures]
6: currentFeaturesT ime← timeToCalcFeature(currentFeatures)
7: Fit Random Forest model on currentFeatures
8: Compute precision, recall, accuracy
9: Write currentFeatures, currentFeaturesT ime, correlationBound, nrFeatures,
10: precision, recall, accuracy to csv line
11: end for
12: end for
13: end function

14: function ExcludeHighlyCorrelatedFeatures(correlationBound)
15: finalFeatureList← []
16: Sort allFeaturesList on feature importance
17: for all feature pairs A,B in allFeaturesList do
18: Compute pearsonCorr between A and B
19: if pearsonCorr > correlationBound then
20: Add A,B, pearsonCorr to correlationDF
21: end if
22: end for
23: for f in allFeaturesList do
24: abort← False
25: highlyCorrFeatures← correlationDF [correlationDF [′A′] = f ]
26: for highCorrf in highlyCorrFeatures do
27: if highCorrf in finalFeatureList then
28: abort← True
29: end if
30: end for
31: if abort = True then
32: continue
33: else
34: Add f to finalFeatureList
35: end if
36: end for
37: return finalFeatureList
38: end function
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precision as the performance measure since the models within this grid will have good
accuracy and the main KPI is precision.

Different k-values (3,5 and 10) for the k-fold cross-validation have been tested on Ex-
periment Synthetic B. K=5 and k=10 clearly outperformed k=3 when considering bias.
The difference in performance between k=5 and k=10 was neglectable. Therefore,
k=5 was the best value for k since k=10 takes more computation time.

Table 4.3 presents the hyperparameters found through the method explained.
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Synthetic A Synthetic B Company

Algorithm Auto Ball tree Auto

Leaf size 16 24 16

Metric Euclidean Manhattan Manhattan

Num Neighbours 19 25 12

Weights Distance Distance Distance

(a) KNN

Synthetic A Synthetic B Company

Bootstrap TRUE TRUE FALSE

Max depth 15 13 16

Max Features Sqrt Sqrt Sqrt

Min samples leaf 3 3 4

Min samples split 2 4 2

Num estimators 44 72 48

(b) RF

Synthetic A Synthetic B Company

C 100 1000 1

Gamma auto Scale auto

Kernel rbf rbf poly

(c) SVM

Synthetic A Synthetic B Company

C 10 10 10

Penalty None None l2

(d) LOG

Table 4.3: Hyperparameters for all models



5
Approximation Algorithm

This chapter introduces the approximation algorithm used for the comparison of the
results. It is based on ORTEC’s approximation algorithm. Thus is it representative of
the type of (non-learning) algorithm used in practice today.

Recall that this thesis aims to useMLmethods to rapidly yet accurately classify whether
load plans will be feasible or not. The load plan feasibility check is usually performed
using approximation methods. This thesis aims to outperform the current solution.
Therefore, the performance of the ML feasibility checker should be compared to an
existing solution. At ORTEC, an approximation method called ’Cube Calculation’ is
used. This algorithm was unavailable for this thesis, but a high-level description was.
Therefore this chapter aims to recreate ORTEC’s approximation algorithm.

Due to time limitations and scope, a simplified version is created. The three main
simplifications are: The simplified algorithm only works with the Standard Truck type,
whereas ORTEC’s version also works with the Bay Truck type. The simplified algo-
rithm assumes every load plan uses one specific pallet type, even though this is not
the case. ORTEC’s algorithm receives information on which item needs to be loaded
on what pallet and considers this when calculating feasibility. The simplified algorithm
assumes that customers cannot be combined on pallets. So that every pallet is loaded
with the items of precisely one customer. First, for every item type, how many items
fit on one pallet was calculated such that the pallet is maximally packed. Second, it
was calculated for every Standard Truck type how many pallets fit in one truck, such
that the truck is fully packed. Both only need to be calculated once. They are used as
input for the algorithm together with the load plan in question.

Algorithm 2 present the pseudocode of the simplified algorithm. The algorithm works
as follows. First, it is checkedwhether the total weight of the items in the load plan does
not exceed the maximum allowed weight in the truck. If it does exceed the maximum
allowed weight, it can immediately be concluded that the load plan is infeasible. Else,
it is checked whether the total volume of the items does not exceed the volume of the
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truck. Again, if it does exceed the maximum allowed weight, it can immediately be
concluded that the load plan is infeasible. Else, the algorithm continues. For every
customer in the load plan, it is calculated how many pallets that customer fills. For
example, if a customer has 20 items of type A and 15 items of type B. It is known
that 40 items of type A fill a pallet, and 20 items of type B fill a pallet. Therefore this
customer fills 20/40 + 15/20 = 1.25 pallet. This is rounded to 2 because the algorithm
assumes only one customer per pallet. The amount of pallets per customer is summed
for all customers. If this exceeds the number of pallets that fit in the truck in question,
the load plan is predicted infeasible; else, it is predicted to be feasible.

Due to the simplifications of the algorithm, it can only be used on Experiment Synthetic
A.

Algorithm 2 Approximation Algorithm
1: function ApproximationAlgorithm(loadplan, maxItemsPerPallet,

maxPalletsPerTruck)
2: if totalItemWeight > maxAllowedWeightTruck then
3: feasibility ← 0
4: return feasibility
5: end if
6: if totalItemV olume > maxAllowedV olumeTruck then
7: feasibility ← 0
8: return feasibility
9: end if
10: nrPallets← 0
11: for customer in loadplan do
12: itemsOfCustomer ← getItemsOfCustomer(customer)
13: nrCubes← 0
14: for itemLine in itemsOfCustomer do
15: nrCubes← nrCubes+(itemLine[′noItems′]/itemLine[′maxItemsPerPallet′]
16: end for
17: nrPallets← nrPallets+math.ceil(nrCubes)
18: end for
19: if nrPallets > maxPalletsPerTruck then
20: feasibility ← 0
21: else
22: feasibility ← 1
23: end if
24: return feasibility
25: end function



6
Results

This chapter first section presents the models’ performance. The following section
introduces insights on the relation between the input features and 3D load feasibil-
ity. In the last section, the performance of the best ML model is compared with the
approximation algorithm.

6.1. Model Performance

This section presents and evaluates the performance of the models built in Chapter 4.
Models’ performance on Experiment Synthetic A, Synthetic B and the Company Exper-
iment are compared. Various evaluation techniques are used to analyse the model’s
performance, such as the confusion matrix, accuracy, precision, npv, McNemar’s test,
confidence, training time and testing time.

The box plots in this section are based on the performance of the in Chapter 4 created
ML models on 100 samples of 30% of the test set of the experiment in question.

6.1.1. Confusion Matrix

This section will not compare the confusion matrices of the different models and ex-
periments. It is meant to give the reader a general feeling of the performances of
the models in the different experiments and to provide basic knowledge that helps to
understand the metrics in the following subsections.

One way to evaluate the performance of a classification model is by creating a con-
fusion matrix. A confusion matrix is an NxN table, where N is the number of classes.
One axis represents the predictions of the model, and the other axis represents the
ground truth. So, a confusion matrix not only gives information on how many test
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instances were (in)correctly classified, but it also shows, if an instance was wrongly
classified, what other class it was predicted to be. In Figure 6.1 a confusion matrix for
a binary classifier is displayed. The following list explains what each cell in this matrix
represents.

• True Negative (TN) is the number of instances that were predicted as negative
and are truly negative.

• True Positive (TP) is the number of instances that were predicted as positive
and are truly positive.

• False Negative (FN) is the number of instances that were predicted as negative,
but are truly positive.

• False Positive (FP) is the number of instances that were predicted as positive,
but are truly negative.

ORTEC’s KPI is to minimize the number of FP’s.

Figure 6.1: Confusion matrix explained

Pred 0 Pred 1

Actual 0 1827 185

Actual 1 136 1640

(a) LOG

Pred 0 Pred 1

Actual 0 1852 160

Actual 1 125 1651

(b) SVM

Pred 0 Pred 1

Actual 0 1886 126

Actual 1 143 1633

(c) KNN

Pred 0 Pred 1

Actual 0 1854 158

Actual 1 135 1641

(d) RF

Table 6.1: Confusion matrices for Experiment Synthetic A
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Pred 0 Pred 1

Actual 0 2843 364

Actual 1 331 3043

(a) LOG

Pred 0 Pred 1

Actual 0 2865 342

Actual 1 297 3077

(b) SVM

Pred 0 Pred 1

Actual 0 2888 319

Actual 1 318 3056

(c) KNN

Pred 0 Pred 1

Actual 0 2931 276

Actual 1 317 3057

(d) RF

Table 6.2: Confusion matrices for Experiment Synthetic B

Pred 0 Pred 1

Actual 0 3663 272

Actual 1 3913 35136

(a) LOG

Pred 0 Pred 1

Actual 0 1479 2456

Actual 1 871 38178

(b) SVM

Pred 0 Pred 1

Actual 0 3478 457

Actual 1 146 38903

(c) KNN

Pred 0 Pred 1

Actual 0 3659 276

Actual 1 362 38687

(d) RF

Table 6.3: Confusion matrices for Company Experiment

6.1.2. Accuracy

Accuracy is the sum of the correct predictions, divided by the total number of predic-
tions. For binary classification, this is equal to the sum of TP and TN, divided by the
sum of TP, TN, FP, and FN.

Accuracy =
TP + TN

TP + TN + FP + FN
(6.1)

In Figure 6.2 an overview of the accuracies of all four models in the three different
experiments is given. In Figure 6.2a, the simplest experiment, Experiment Synthetic
A, is considered. The median accuracy for LOG is 91.5%. It can be observed that
the accuracy improves with SVM, KNN and RF. The accuracy of these three models
is almost identical. KNN shows the highest accuracy with a median of 92.8%. The
performance of SVM and RF is 92.4% and 92.3%, respectively.

Looking into the accuracies of Experiment Synthetic B (Figure 6.2b), a clear distinction
with Experiment Synthetic A is noticeable. In general, the accuracies of all models
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are lower. When comparing the different models within this experiment, RF clearly
outperforms the other models, with a median accuracy of 91.5%. This suggests that
when the use case is more complicated, RF is the best classifier. SVM and KNN
show similar results, with a median accuracy of 90.3%. LOG clearly had the worst
performance with a median accuracy of 89.5%.

Figure 6.2c shows the accuracies of the models in the Company Experiment. LOG
(90.3%) and SVM (92.2%) clearly underperform in terms of accuracy compared to
KNN and RF. KNN and RF show similar results with a median accuracy of 98.6% and
98.5%, respectively.

(a) Experiment Synthetic A (b) Experiment Synthetic B

(c) Company Experiment

Figure 6.2: The accuracy of LOG, SVM, KNN and RF on all three experiments

However, accuracy is not a good indicator of performance when considering class-
imbalanced datasets, like the Company Data Experiment. In this dataset, 91% of the
load plans are feasible. If a classifier predicted every load plan to be feasible, it would
still reach an accuracy of 91%. This means that LOG performs worse than the most
unintelligent model imaginable.

At the same time, accuracy should not be the only metric for balanced datasets ei-
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ther. If one classifier’s prediction contains 8% FP and 2% FN, it has an accuracy of
10%. When another classifier’s prediction contains 2% FP and 8% FN, it also has an
accuracy of 10%. Whereas a specific use case would prefer one or the other.

6.1.3. Precision

Precision tells what proportion of positive predictions is actually positive. Equation 6.2
shows how this is calculated.

Precision =
TP

TP + FP
(6.2)

Figure 6.3 presents an overview of the precision of the four models in the three dif-
ferent experiments. Figure 6.3a presents the results of Experiment Synthetic A. KNN
clearly shows the best performance with a median precision of 92.8%. SVM and RF
perform very similarly with a median precision of 91.3% and 91.6%, respectively. LOG
performs the worst with a median precision of 89.8%.

The precisions of the models in Experiment Synthetic B are shown in Figure 6.3b. In
general, the precisions of the synthetic B experiments are slightly lower than those
of the synthetic A experiments but are very close in relation. In this experiment, it is
clear that RF outperforms the other models with a median precision of 92.2%. KNN
is next best with a median precision of 90.5%. SVM achieved a median precision of
90% and LOG of 89.2%.

Figure 6.3c shows the results of the Company experiment. The first thing that stands
out is that SVM performs poorly compared to the other models. SVM reached a me-
dian precision of 94%, while the other models all have a median precision greater than
98%. Namely 98.8%, 99.2% and 99.3% for KNN, LOG and RF respectively.

It is remarkable, that LOG performs so well in this experiment considering that it
reached an accuracy of 90.3%, which was an under-achievement compared to all
other models. The confusion matrix of LOG on the Company Experiment (Table 6.3a)
shows that indeed when the model predicts that a load plan is feasible, it is correct in
around 99% of the cases. However, when the model predicts that a load plan is not
feasible, it is wrong about 50% of the time. This last metric is the NPV.

6.1.4. Negative Predictive Value

Negative Predictive Value (NPV) tells what proportion of negative predictions is actu-
ally negative. Equation 6.3 shows how this is calculated.

NPV =
TN

TN + FN
(6.3)
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(a) Experiment Synthetic A (b) Experiment Synthetic B

(c) Company Experiment

Figure 6.3: The precision of LOG, SVM, KNN and RF on all three experiments

Figure 6.4 shows the NPV on the experiment for all models. Figure 6.4a gives an
overview of the performance of the models on Experiment Synthetic A in terms of
NPV. SVM shows the best performance with a median NPV of 93.6%. The other
three models perform similarly with RF having a median NPV of 93.1% and KNN and
LOG of 93%.

In experiment Synthetic B (Figure 6.4b RF and SVM perform almost identical, with a
median NPV of 90.8% and 90.7%, respectively. KNN comes right behind that with
90.2%, and LOG performs the worst with 89.7%.

The performance on NPV of the models in the Company Experiment is presented
in Figure 6.4c. This figure clearly shows that LOG and SVM are not suitable mod-
els for this classification task. LOG shows a median NPV of 48.2% and SVM of
62.9%. Where RF and KNN achieved a median NPV of, respectively, 90.9% and
95.8%. Therefore, the remainder of the result chapter will focus on KNN and RF.
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(a) Experiment Synthetic A (b) Experiment Synthetic B

(c) Company Experiment

Figure 6.4: The NPV of LOG, SVM, KNN and RF on all three experiments

6.1.5. McNemar’s Test

This section investigates whether there is a statistical difference in performance be-
tween the KNN and RF model, for this McNemar’s test is used. McNemar’s test is a
statistical test that can be used to compare the predictions of two ML models. The
test uses a 2x2 contingency table of the predictions of the two models that are being
compared. In figure 6.5 an overview of a contingency table is given. In cell A the
number of instances both models predicted right is given. In cell D the number of
instances both models predicted wrong is given. Cell B shows how many instances
were correctly predicted by model 1, but incorrectly by model 2. Cell C shows the
opposite of cell B.

The null hypothesis in McNemar’s Test is formulated as follows: Neither of the two
models outperforms the other. As a result, the alternative hypothesis is that the two
models’ performances are not the same, and one does outperform the other. The
McNemar test statistic is chi-squared.
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Figure 6.5: Contingency table explained

For this research, we set the significance threshold to α = 0.05. If the p-value is lower
than this significance threshold, the null hypothesis that the two model’s performances
are equal is rejected.

Correct Wrong

Correct 3459 40

Wrong 60 229

(a) Synthetic A

Correct Wrong

Correct 5809 211

Wrong 135 426

(b) Synthetic B

Correct Wrong

Correct 42090 256

Wrong 291 347

(c) Company Experiment

Table 6.4: Contingency Matrices of KNN (x-axis) vs RF (y-axis)

For experiment Synthetic A, KNN slows a slightly better performance with 20 misclas-
sifications less than RF, as can be seen in Table 6.4a. The Chi2 value is 3.61, so the
p-value equals 0.05743. This means that the null hypothesis is not rejected and thus
that RF is not significantly better than KNN.

In experiment Synthetic B, KNNmisclassifiedmore instances than RF (see Table 6.4b).
The Chi2 value equals 16.257 and therefore the p-value equals 0.00005. This means
the null hypothesis of the models’ performance not differing is rejected. So RF is a
significantly better model than KNN for experiment Synthetic B.

Table 6.4c shows the contingency matrix for the Company experiment. The percent-
age of correctly classified instances is very similar. The Chi2 value is equal to 2.113
and thus the p-value equals 0.14601. This implies that there is no significant difference
in the performance of KNN and RF on the Company experiment.

6.1.6. Confidence

Since the difference in performance is not significant for Experiment A and the Com-
pany experiment. We will look into the certainty that the models predicted the wrongly
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classified instances. Suppose one model predicted an infeasible load plan to be fea-
sible with 51% certainty, and another model predicted it with 100% to be feasible.
Arguably, the last model performs worse, even though they both made an incorrect
prediction.

To investigate this, confidence plots were created. Figure 6.6 and 6.7 present confi-
dence plots on themisclassified data. In both figures, the two plots at the top represent
the confidence plots for RF and the bottom two for KNN. The blue histograms show the
prediction probability the model had that an instance was feasible for the FN. These
load plans are feasible, but the models return a prediction probability below 0.5, clas-
sifying them as infeasible. The red plots show exactly the opposite, namely the FP.
These load plans were infeasible, but the model returned a probability of more than
0.5 that they were feasible.

Figure 6.6: Confidence plots for misclassified data for Experiment Synthetic A for
KNN and RF

In addition to the confidence plot, this section will also consider the average distance
to correct classification. The distance meant is the distance from the prediction prob-
ability to 0.5. 0.5 is the threshold value that decides whether a prediction classifies as
feasible or infeasible. The lower this distance is, for both FN and FP, the better the
model. These distances are also compared using the unpaired t-test. The results for
these tests are presented in Table 6.5.

Looking at Figure 6.6 the confidence distributions of experiment Synthetic A are quite
evenly spread for both RF as KNN. The average distance for the RF model is 0.212,
for KNN this is 0.217. An unpaired t-test was performed on the list of distances to
the threshold value to check whether this difference is significant. This test returned
a t-statistic of 0.420 and a p-value of 0.674. So, there is no significant difference
in the performance regarding prediction probability on the misclassified data for this
experiment.
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Figure 6.7: Confidence plots for misclassified data for Company Experiment for
KNN and RF

For the Company experiment, the confidence distributions are displayed in Figure 6.7.
One thing that immediately stands out is the peak in the FP plot of KNN. Solely visual
analysis would suggest a difference in performance in terms of prediction probability
on the misclassified data for the Company experiment. The average distance for RF
equals 0.234, where the average distance for KNN is 0.292. The t-test returns a t-
statistic of 6.409 and a p-value of 0.000, indicating a significant difference.

Table 6.5: Unpaired t-test on prediction probability distance to correct prediction

Experiment Subject t-statistic p-value

Synthetic A FN+FP 0.420 0.674

Company FN+FP 6.409 0.000

Synthetic A FN 0.594 0.991

Company FN -1.225 0.000

Synthetic A FP -0.011 0.991

Company FP 3.570 0.000

6.1.7. Training and Testing Time

When two models show similar performance, training and testing time could be the
deciding factor; the quickest in training and testing is typically the selected one. It is
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worth noting that training and testing time vary per machine, but the models can be
compared because all models were run on the same system. The training and testing
time mentioned in this thesis were recorded on a machine with an intel i7 processor,
4-core CPU and 16GB RAM.

Figure 6.8 shows the training time for KNN and RF in all experiments. A clear trend
is visible, namely that RF takes relatively a lot more time to train than KNN. However,
for the Company experiment, which consists of over 100,000 instances, the average
training time is still just 6.78 seconds. It is important to remember that the training
process is only performed occasionally.

(a) Synthetic A (b) Synthetic B (c) Company

Figure 6.8: Comparison of training time, on the 70% training sets, between the
approximation algorithm and the RF model

On the other hand, the testing time gives information about the time it takes to predict
whether a load plan is feasible. This is an action that is performed very often in the
iterative process of creating routes, as explained in 1.1. Doing this fast and precise
was the initial motivation of this thesis.

In Figure 6.9 the testing times for KNN and RF in all experiments are presented. Again,
a trend is visible, namely that RF is faster in terms of testing time. A paired t-test was
performed for every experiment to check whether this difference is significant. The
results of these tests are presented in table 6.6. It applies to all experiments that the
testing time of RF is significantly shorter than that of KNN.

(a) Synthetic A (b) Synthetic B (c) Company

Figure 6.9: Comparison of testing time, on the 30% test sets, between the
approximation algorithm and the RF model



6.2. Insights 42

Table 6.6: Results paired t-test on training time different between the approximation
algorithm and the RF model for all experiments

Experiment t-statistic p-value

Synthetic A -5.460 0.000

Synthetic B -24.905 0.000

Company -11.640 0.000

6.1.8. Conclusion

For Experiment Synthetic B, RF is a significant better model than KNN. For the other
two experiments, KNN seems to perform slightly better, but this is not a significant
difference. Taking into account the confidence for misclassified data and the testing
time, RF does significantly outperform KNN. It is all those reasons combined that the
rest of this chapter will solely focus on the RF model.

6.2. Insights

This section presents insights on the relation between the input features and 3D load
feasibility. First every experiment will be evaluated individually using SHAP summary
plots.

SHapley Additive exPlanations (SHAP) is a game theory technique that can help to
understand how an ML model reaches its prediction. In the SHAP summary plots
(Figure 6.10, 6.13 and 6.18), the feature names are listed on the y-axis in order of
importance from top to bottom. The SHAP values are plotted on the x-axis. The
colour represents the value of that feature. In the case of boolean features, the colour
will be either pink for one or blue for zero. For non-boolean features, the colour will
range in the spectrum of colours, with pink presenting high and blue low values. Each
point represents one instance from the dataset.
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6.2.1. Experiment Synthetic A

Figure 6.10: Shap summary plot for the RF model on Experiment Synthetic A

Weight utilization and volume utilization are the most important features for Exper-
iment Synthetic A. For both features, it holds that the chance of feasibility decreases
if the value is high and vice versa. The impact of weight utilization is more substantial
than that of volume utilization.

The biggest instances of total item length decrease the chance of feasibility, and
the smallest cases increase the chance of feasibility. However, for the less extreme
instances, there is not such a clear relation. The same pattern is visible for the total
number of customers. Total item weight exclusively has a clear relation when its
value is high; the other instances do not clearly relate to the model output. For these
unclear instances, the output does not depend solely on the value of one feature but
on a combination of features. The data distributions (Figure 6.11) indicate that the
combinations of total item length, the total number of customers or total item weight
with truck volume are stronger predictors of feasibility.



6.2. Insights 44

Figure 6.11: Scatterplot of truck volume vs total number of customers, total item
weight and total item length of Experiment Synthetic A

Truck volume shows a positive relation with feasibility. So a load plan with a big truck
has a higher chance of being feasible.

The SHAP values for truck width show an interesting pattern. A high truck width has
a positive relation with feasibility, a low truck width does not influence feasibility much,
and a medium truck width has a negative effect on feasibility. Figure 6.12 displays
the distribution of truck width with the colour being feasibility. This plot indicates just
three different truck widths: 2000, 2100 and 2200 mm and that the feasibility rate is
lower for the trucks with a width of 2100 mm. This is because the data is created
based on volume utilization (see chapter 3). It tells us that 2100 mm wide trucks are
inefficient for optimal volume utilization. The pallets included in this experiment are
1200x1000, 1200x800 or 940x940. For a 2100 mm wide truck, there will always be
at least 100 mm space left broadwise. However, some companies have rules about
space between the pallets. For these companies, a 2100 mm truck would be a good
option.

Figure 6.12: Distribution for truck width in experiment Synthetic A

The volume of the biggest customer and theweight of the biggest customer show
a positive relationship with the feasibility. So if the volume of the biggest customer is
low, the chance of the load plan being feasible is also low. This seems counter-intuitive
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at first, but taking into account that this dataset allows for one customer per pallet, the
volume utilization of the truck will be low if the orders of the customers are small.
Because the volume and weight of items are strongly correlated, the same reasoning
holds for the weight of the biggest customer.

The truck type is irrelevant for this experiment since it only includes the standard truck
and not the bay truck.

6.2.2. Experiment Synthetic B

Figure 6.13: Shap summary plot for the RF model on Experiment Synthetic B

Just as in Experiment Synthetic A, weight utilization and volume utilization are the
most influencing features for Experiment Synthetic B. For both features, the chance of
feasibility decreases if the value is high and vice versa. The impact of weight utilization
is more substantial than that of volume utilization.

Also, the combination of the total number of customers and the total item weight
with the truck volume shows a strong relation with feasibility, just like in Experiment
Synthetic A. However, the total item length does not in this experiment.
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Figure 6.14: Scatterplot of truck volume vs total number of customers, total item
weight and total item length of Experiment Synthetic B

This reflects that the items from experiment synthetic B are a more heterogeneous
group than the items from experiment synthetic A. The relation between item length -
item volume, and item length - item weight is not as linear as in experiment synthetic
A. Figure 6.15 depicts that, generally speaking, the items in experiment Synthetic A
increase in volume when the length increases. For the items of Experiment Synthetic
B, this relation is not that clear. The same holds for the relation between item length
and weight. For this reason, item length is not the best predictor.

(a) Experiment Synthetic A (b) Experiment Synthetic B (c) Company Experiment

Figure 6.15: Relation item length and item volume

(a) Experiment Synthetic A (b) Experiment Synthetic B (c) Company Experiment

Figure 6.16: Relation item length and item weight
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The volume of the biggest customer and the weight of the biggest customer
show the same positive relationship with the feasibility, as explained for Experiment
Synthetic A (subsection 6.2.1).

The SHAP plot shows that a high value for the truck type, meaning bay trucks, neg-
atively affects the feasibility prediction, and a standard truck positively influences the
feasibility prediction. This truck type feature is powerful in combination with other fea-
tures, such as the total item weight. Figure 6.17 shows that the maximum allowed
weight, in general, is a lot higher for standard trucks than for bay trucks.

Figure 6.17: Distribution of maximum allowed weight in a truck for Experiment
Synthetic B. Orange represents bay trucks, green represents standard trucks.
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6.2.3. Company Experiment

Figure 6.18: Shap summary plot for the RF model on the Company Experiment

Again, weight utilization is the most influencing feature. However, a difference in the
colour assignment is visible. As shown in Figure B.1, in the synthetic experiments, the
highest weight utilization is a lot bigger than for this experiment. Since the colour scale
is relative per experiment, a dot’s colour can represent different numbers. Even though
the colours are different, the overall trend the SHAP plots indicate in all experiments
is the same: a negative relation.

(a) Synthetic A (b) Synthetic B (c) Company

Figure 6.19: Distribution of the weight utilization for all experiments

In contrast to Experiment Synthetic B and just like Experiment Synthetic A, there exists
an almost linear relation between item length - item volume and item length - item
weight. This is visualized in Figure 6.15 and 6.16.
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The volume of the biggest customer and theweight of the biggest customer have
the opposite relation with the model output compared to the synthetic experiments.
This is caused by the fact that 58% of the load plans have only one customer in this
dataset. The volume and weight of the biggest customer are, in those cases, equal
to the total volume and weight of the load plan. Therefore a low value increases the
chance on feasibility.

Figure 6.20 shows the heatmap of the absolute means of the Shap interaction values.
This plot shows the important main effects and interaction effects of features. The
main effects of the features are given on the diagonal, corresponding to the Shap plot.
The other values represent the interaction effects. One interaction effect that stands
out is weight utilisation with total item weight. This interaction effect influences the
outcome just as much as volume utilisation. The relation between these two features
is based on the maximum allowed weight in a truck. The maximum allowed weight is a
good indicator of which truck is considered. To clarify, the dataset includes 21 distinct
truck widths, 38 truck heights, 40 truck lengths and 77 distinct truck volumes and
80 maximum allowed weights. So the maximum allowed weight is the best indicator
of what truck is considered. This suggests that knowing what truck is considered
is valuable. The model found a trend that the pattern found to predict feasibility is
different for every truck.

6.3. Comparison with the Approximation Algorithm

This section compares the performance of the RF model and the approximation al-
gorithm created in chapter 5 on Experiment Synthetic A. This is the only experiment
possible for comparison, because the approximation algorithm does not allow for bay
trucks. The box plots in this section are based on the performance on 100 samples of
30% of the test set of the experiment.

6.3.1. Accuracy

Figure 6.21: The accuracy of RF and the Approximation Algorithm
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Figure 6.20: Absolute mean of the Shap interaction values for the Company
Experiment
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Figure 6.21 presents the accuracy of RF and the approximation algorithm on Experi-
ment Synthetic A. RF clearly shows a better performance with a median accuracy of
92.3% versus 90.1% for the approximation algorithm.

6.3.2. Precision

Figure 6.22 compares the precision of RF with the approximation method on Experi-
ment Synthetic A. In contract with accuracy, for precision the approximation technique
clearly outperforms RF, with a median precision of 95.9% against 91.6%.

Figure 6.22: The precision of RF and the Approximation Algorithm

6.3.3. NPV

Figure 6.23: The NPV of RF and the Approximation Algorithm

Figure 6.23 depicts the NPV of RF and the approximation method on Experiment Syn-
thetic A. RF clearly outperforms the approximation approach, with a median accuracy
of 93.1% vs 86.1% for the approximation algorithm.
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6.3.4. McNemar

For experiment Synthetic A, RF shows a better performance with 87 misclassifications
less than the approximation algorithm, as can be seen in the contingency table (Table
6.7). The Chi2 value is 18.444, so the p-value equals 0.000. This means that the
null hypothesis is rejected and thus that RF is a significantly better model than the
approximation algorithm.

Correct Wrong

Correct 3255 244

Wrong 157 132

Table 6.7: Contingency Matrices of Approx (x-axis) vs RF (y-axis) on Experiment
Synthetic A

6.3.5. Time

Figure 6.24: The computation time of RF and the Approximation Algorithm

Figure 6.24 presents a comparison between the computation time for the RF model
and the approximation algorithm. The computation time is split into two parts: features
calculation time and prediction time. The results are based on 50 runs on the same
subset of 1000 instances of Experiment Synthetic A. It is run per instance, and the
time of the 1000 instances is summed up. This process is repeated 50 times. The
median feature calculation time is 46.34 seconds, with a standard deviation of 4.91
seconds. The median ML prediction time is equal to 11.59 seconds with a standard
deviation of 2.10 seconds. For the approximation algorithm, the computation time is
much higher, namely a median of 128.49 seconds with a standard deviation of 22.12
seconds.

Even though the feature calculation time and the ML prediction time are both not nor-
mally distributed, for comparison, their medians are summed. It will give a better
sense of the improvements in computation time. The sum of the feature calculation
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time and the ML prediction time equals 57.93 seconds. This implies that switching to
an ML approach improves the computation time by 54.9%.

6.4. Summary

This chapter first looks at the performance of the four models, created in Chapter 4,
on the three different experiments explained in Chapter 3. The performance of the
models is very similar in Experiment Synthetic A. However, in Experiment Synthetic
B and especially the Company data experiment, it is evident that KNN and RF outper-
form SVM and LOG. McNemar’s test showed that in Experiment Synthetic B, the RF
model significantly outperforms the KNN model. This difference was not significant
for Experiment Synthetic A and the Company Experiment. The analysis of the confi-
dence plots on the misclassified data in Section 6.1.6 showed that the RF model was
less sure about the instances it wrongly classified. On average, the KNN model felt
more sure about the wrong predictions it made. This difference was significant for the
Company Experiment. With regards to the training and testing time, RF has a higher
training time, but still acceptable. RF also has a lower testing time. Since training only
needs to be done occasionally, and predictions are often made, a short testing time
is more important than a short training time. Combining all these reasons concludes
that RF is the best model.

Section 6.2 uses SHAP to help understand how an ML model reaches its predictions.
It was shown that weight utilisation and volume utilisation are fundamental features
in predicting feasibility for all experiments. The effects of the other features are more
experiment (and thus scenario) dependent. For example, in Experiment Synthetic
A, the total item length is a powerful predictor, whereas this is the least important
feature for Experiment Synthetic B. It was also shown that features’ interaction effect
could be precious. In the Company Experiment, the interaction effect of the weight
utilisation and the total item weight is significant. In this case, this interaction effect
symbolises the maximum allowed weight. Moreover, the maximum allowed weight is
a good identifier for the truck used.

Table 6.8: Comparison of the performance of the RF model and the approximation
algorithm

RF Approx

Accuracy 92.30% 90.10%

Precision 91.60% 95.90%

NPV 93.10% 86.10%

Table 6.8 gives an overview of the performance of the RF model and the approxi-
mation algorithm on Experiment Synthetic A. The KPI is to reach the best precision.
However, the general performance, thus accuracy, should be good. Even though the
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approximation algorithm has better precision, this is not a good predictor. McNemar’s
test showed that the RF model performs significantly better in general. Also, the ML
model improves computation time by 54.9%.



7
Conclusion

This chapter first provides the answers to the research questions defined in section
1.4. Second, possible future research directions are presented.

7.1. Answers to Research Questions

RQ1: How accurate can an ML approach predict whether a 3D load plan will be
feasible or not?
In section 6.1 we see that the RF model outperforms the LOG, SVM and KNN models
created in chapter 4. This model reaches an accuracy of 91.5% for Experiment Syn-
thetic B, 92.3% for Experiment Synthetic A and 98.5% for the Company Experiment.
This means that the performance of a ML model is dependant on the scenario, but
overall shows great potential.

RQ2: What insights on the relation between input variables and 3D load feasi-
bility can be extracted from the trained ML model?
In Section 6.2, it was found that weight utilisation was the most important feature in
predicting feasibility for all experiments. The volume utilisation came in second for
both synthetic experiments and third for the Company Experiment. Therefore, we
conclude that weight and volume utilisation are significant predictors of load feasibility
in general.

The effect of the other features is dependent on the scenario. For example, in Exper-
iment Synthetic A, the total item length is a significant predictor, whereas this is the
least important feature for Experiment Synthetic B.

RQ3: What are the improvements derived by an ML model for load feasibility
checking versus current approximation algorithms?
The answer to this question is based on comparing the performance of the RF model

55
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and the approximation algorithm on Experiment Synthetic A. These results suggest
switching to an ML approach for feasibility prediction decreases computation time
by 54.9%. Also, the RF model is significantly better in predicting load plan feasibil-
ity. The RF model offers precision and accuracy of respectively 95.9% and 92.3%.
Against 91.6% and 90.1% for the approximation algorithm. This indicates that the
ML approach increases the precision with 4.3%-point and accuracy with 2.2%-point.
Further, it is expected that ML scales better in performance and time if the problem
instances are larger.

7.2. Discussion and Future Work

This section discusses the drawbacks of the thesis and possible future work.

The approximation algorithm used for comparison
Since the approximation algorithm used by ORTEC was not available and due to time
limitations, a simplified version of ORTEC’s algorithm was created (Chapter 5). There-
fore, the comparison between the performance of theMLmodel and the approximation
undertaken in section 6.3 is not entirely realistic. ORTEC’s actual approximation algo-
rithm is expected to be a better and faster feasibility predictor than that of chapter 5.
Nonetheless, the advantages of ML approach are expected to remain.

Comparison only on Experiment Synthetic A
Another fallback of the simplified approximation algorithm is that it could only be used
on Experiment Synthetic A. This thesis hypothesises that the ML solution scales better
in terms of time and performance when the experiments get more complicated. This
is something that should be tested in the future.

Performance in different real-world use cases
This thesis uses one real dataset. The first fallback is that this dataset is imbalanced
(91% instances are feasible). Also, this dataset consists of (1) specific scenarios, (2)
from one company, (3) in one specific region (4) of one industry. This thesis aims to
prove a concept. However, in future research, it should be investigated how well ML
models perform load feasibility checks for different scenarios, companies, regions and
industries.

Investigate the performance of a minimal feature set
The feature selection method in Section 4.2 showed that the RF model shows good
performance on Experiment Synthetic B with just the features weight utilisation, vol-
ume utilisation, total number of customers and total item weight. It would be valuable
to further investigate the performance of such a simple model.

Combination of different algorithms
Such simple models are specifically interesting for a combinatorial solution. For ex-
ample, a very simple model could predict the more straightforward instances. If the
prediction probability is below a certain threshold, that instance will be predicted by a
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more complex model or heuristic algorithm.

Insights on how often feasibility check is performed
It is recommended to get better insights on how often the feasibility check is performed.
Then it could be analysed what the best balance between computation time and ac-
curacy is.

Time measurement
The scripts created for this thesis are not optimised in terms of computation time.
Therefore, the time measurements performed in this are sufficient for comparison
with each other, but the time on its own is invaluable. Further improvements such
as parallel programming should be used when the project is deployed.
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Figure A.1: Pairplot Experiment Synthetic A
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Figure A.2: Pairplot Experiment Synthetic B
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Figure A.3: Pairplot Company Experiment
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Figure A.4: Pairplot Company Experiment



B
Data Distributions per Feature

(a) Synthetic A (b) Synthetic B (c) Company

Figure B.1: Distribution of the weight utilization for all experiments

(a) Synthetic A (b) Synthetic B (c) Company

Figure B.2: Distribution of the volume utilization for all experiments
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(a) Synthetic A (b) Synthetic B (c) Company

Figure B.3: Distribution of the total item length for all experiments

(a) Synthetic A (b) Synthetic B (c) Company

Figure B.4: Distribution of the total item weight for all experiments

(a) Synthetic A (b) Synthetic B (c) Company

Figure B.5: Distribution of the total number of customers for all experiments

(a) Synthetic A (b) Synthetic B (c) Company

Figure B.6: Distribution of the truck type for all experiments
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(a) Synthetic A (b) Synthetic B (c) Company

Figure B.7: Distribution of the truck volume for all experiments

(a) Synthetic A (b) Synthetic B (c) Company

Figure B.8: Distribution of the truck width for all experiments

(a) Synthetic A (b) Synthetic B (c) Company

Figure B.9: Distribution of the volume of the biggest customer for all experiments

(a) Synthetic A (b) Synthetic B (c) Company

Figure B.10: Distribution of the weight of the biggest customer for all experiments
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Table C.1: Feature sets and their performance outputted after performing feature selection on RF on Experiment Synthetic B

Precision Recall Accuracy CorrBound NrFeat Features Time

0.924 0.907 0.914 0.85 14 [’weight_util’, ’vol_util’, ’tot_nr_customers’,
’tot_items_weight’, ’truck_volume’,
’volume_of_biggest_customer’,
’weight_of_biggest_customer’, ’truck_width’, ’truck_type’,
’tot_item_length’, ’volume_of_last_customer’,
’nr_cylinder_items’, ’cylinder_weight’, ’truck_height’]

45.689

0.924 0.910 0.915 0.85 17 [’weight_util’, ’vol_util’, ’tot_nr_customers’,
’tot_items_weight’, ’truck_volume’,
’volume_of_biggest_customer’,
’weight_of_biggest_customer’, ’truck_width’, ’truck_type’,
’tot_item_length’, ’volume_of_last_customer’,
’nr_cylinder_items’, ’cylinder_weight’, ’truck_height’,
’cylinder_vol’, ’nr_HxL’, ’Pallet_plastic_1x1_2’]

45.691

0.924 0.912 0.916 0.85 19 [’weight_util’, ’vol_util’, ’tot_nr_customers’,
’tot_items_weight’, ’truck_volume’,
’volume_of_biggest_customer’,
’weight_of_biggest_customer’, ’truck_width’, ’truck_type’,
’tot_item_length’, ’volume_of_last_customer’,
’nr_cylinder_items’, ’cylinder_weight’, ’truck_height’,
’cylinder_vol’, ’nr_HxL’, ’Pallet_plastic_1x1_2’, ’Pal-
let_48x40’, ’Pallet_36x36’]

45.691
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0.923 0.912 0.916 0.85 10 [’weight_util’, ’vol_util’, ’tot_nr_customers’,
’tot_items_weight’, ’truck_volume’,
’volume_of_biggest_customer’,
’weight_of_biggest_customer’, ’truck_width’, ’truck_type’,
’tot_item_length’]

42.597

0.922 0.912 0.916 0.85 12 [’weight_util’, ’vol_util’, ’tot_nr_customers’,
’tot_items_weight’, ’truck_volume’,
’volume_of_biggest_customer’,
’weight_of_biggest_customer’, ’truck_width’, ’truck_type’,
’tot_item_length’, ’volume_of_last_customer’,
’nr_cylinder_items’]

45.688

0.922 0.911 0.915 0.85 11 [’weight_util’, ’vol_util’, ’tot_nr_customers’,
’tot_items_weight’, ’truck_volume’,
’volume_of_biggest_customer’,
’weight_of_biggest_customer’, ’truck_width’, ’truck_type’,
’tot_item_length’, ’volume_of_last_customer’]

45.688

0.921 0.908 0.913 0.85 13 [’weight_util’, ’vol_util’, ’tot_nr_customers’,
’tot_items_weight’, ’truck_volume’,
’volume_of_biggest_customer’,
’weight_of_biggest_customer’, ’truck_width’, ’truck_type’,
’tot_item_length’, ’volume_of_last_customer’,
’nr_cylinder_items’, ’cylinder_weight’]

45.689
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0.921 0.907 0.912 0.85 15 [’weight_util’, ’vol_util’, ’tot_nr_customers’,
’tot_items_weight’, ’truck_volume’,
’volume_of_biggest_customer’,
’weight_of_biggest_customer’, ’truck_width’, ’truck_type’,
’tot_item_length’, ’volume_of_last_customer’,
’nr_cylinder_items’, ’cylinder_weight’, ’truck_height’,
’cylinder_vol’]

45.691

0.920 0.909 0.913 0.8 14 [’weight_util’, ’vol_util’, ’tot_nr_customers’,
’tot_items_weight’, ’truck_volume’, ’vol-
ume_of_biggest_customer’, ’truck_width’, ’truck_type’,
’nr_LxW’, ’volume_of_last_customer’, ’nr_cylinder_items’,
’cylinder_weight’, ’truck_height’, ’cylinder_vol’]

36.692

0.919 0.910 0.913 0.85 16 [’weight_util’, ’vol_util’, ’tot_nr_customers’,
’tot_items_weight’, ’truck_volume’,
’volume_of_biggest_customer’,
’weight_of_biggest_customer’, ’truck_width’, ’truck_type’,
’tot_item_length’, ’volume_of_last_customer’,
’nr_cylinder_items’, ’cylinder_weight’, ’truck_height’,
’cylinder_vol’, ’nr_HxL’]

45.691
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0.919 0.908 0.912 0.85 18 [’weight_util’, ’vol_util’, ’tot_nr_customers’,
’tot_items_weight’, ’truck_volume’,
’volume_of_biggest_customer’,
’weight_of_biggest_customer’, ’truck_width’, ’truck_type’,
’tot_item_length’, ’volume_of_last_customer’,
’nr_cylinder_items’, ’cylinder_weight’, ’truck_height’,
’cylinder_vol’, ’nr_HxL’, ’Pallet_plastic_1x1_2’, ’Pal-
let_48x40’]

45.691

0.918 0.909 0.912 0.8 11 [’weight_util’, ’vol_util’, ’tot_nr_customers’,
’tot_items_weight’, ’truck_volume’, ’vol-
ume_of_biggest_customer’, ’truck_width’, ’truck_type’,
’nr_LxW’, ’volume_of_last_customer’, ’nr_cylinder_items’]

36.69

0.918 0.909 0.912 0.8 18 [’weight_util’, ’vol_util’, ’tot_nr_customers’,
’tot_items_weight’, ’truck_volume’, ’vol-
ume_of_biggest_customer’, ’truck_width’, ’truck_type’,
’nr_LxW’, ’volume_of_last_customer’, ’nr_cylinder_items’,
’cylinder_weight’, ’truck_height’, ’cylinder_vol’, ’nr_HxL’,
’Pallet_plastic_1x1_2’, ’Pallet_48x40’, ’Pallet_36x36’]

36.693

0.917 0.908 0.911 0.8 15 [’weight_util’, ’vol_util’, ’tot_nr_customers’,
’tot_items_weight’, ’truck_volume’, ’vol-
ume_of_biggest_customer’, ’truck_width’, ’truck_type’,
’nr_LxW’, ’volume_of_last_customer’, ’nr_cylinder_items’,
’cylinder_weight’, ’truck_height’, ’cylinder_vol’, ’nr_HxL’]

36.692
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0.917 0.911 0.912 0.8 17 [’weight_util’, ’vol_util’, ’tot_nr_customers’,
’tot_items_weight’, ’truck_volume’, ’vol-
ume_of_biggest_customer’, ’truck_width’, ’truck_type’,
’nr_LxW’, ’volume_of_last_customer’, ’nr_cylinder_items’,
’cylinder_weight’, ’truck_height’, ’cylinder_vol’, ’nr_HxL’,
’Pallet_plastic_1x1_2’, ’Pallet_48x40’]

36.693

0.917 0.910 0.911 0.8 19 [’weight_util’, ’vol_util’, ’tot_nr_customers’,
’tot_items_weight’, ’truck_volume’, ’vol-
ume_of_biggest_customer’, ’truck_width’, ’truck_type’,
’nr_LxW’, ’volume_of_last_customer’, ’nr_cylinder_items’,
’cylinder_weight’, ’truck_height’, ’cylinder_vol’, ’nr_HxL’,
’Pallet_plastic_1x1_2’, ’Pallet_48x40’, ’Pallet_36x36’,
’EURO’]

36.693

0.916 0.908 0.910 0.8 12 [’weight_util’, ’vol_util’, ’tot_nr_customers’,
’tot_items_weight’, ’truck_volume’, ’vol-
ume_of_biggest_customer’, ’truck_width’, ’truck_type’,
’nr_LxW’, ’volume_of_last_customer’, ’nr_cylinder_items’,
’cylinder_weight’]

36.691

0.915 0.911 0.911 0.8 16 [’weight_util’, ’vol_util’, ’tot_nr_customers’,
’tot_items_weight’, ’truck_volume’, ’vol-
ume_of_biggest_customer’, ’truck_width’, ’truck_type’,
’nr_LxW’, ’volume_of_last_customer’, ’nr_cylinder_items’,
’cylinder_weight’, ’truck_height’, ’cylinder_vol’, ’nr_HxL’,
’Pallet_plastic_1x1_2’]

36.693



75

0.915 0.902 0.907 0.85 9 [’weight_util’, ’vol_util’, ’tot_nr_customers’,
’tot_items_weight’, ’truck_volume’,
’volume_of_biggest_customer’,
’weight_of_biggest_customer’, ’truck_width’, ’truck_type’]

42.273

0.915 0.910 0.911 0.8 13 [’weight_util’, ’vol_util’, ’tot_nr_customers’,
’tot_items_weight’, ’truck_volume’, ’vol-
ume_of_biggest_customer’, ’truck_width’, ’truck_type’,
’nr_LxW’, ’volume_of_last_customer’, ’nr_cylinder_items’,
’cylinder_weight’, ’truck_height’]

36.691

0.914 0.900 0.905 0.85 8 [’weight_util’, ’vol_util’, ’tot_nr_customers’,
’tot_items_weight’, ’truck_volume’,
’volume_of_biggest_customer’,
’weight_of_biggest_customer’, ’truck_width’]

42.267

0.913 0.910 0.909 0.8 9 [’weight_util’, ’vol_util’, ’tot_nr_customers’,
’tot_items_weight’, ’truck_volume’, ’vol-
ume_of_biggest_customer’, ’truck_width’, ’truck_type’,
’nr_LxW’]

33.598

0.913 0.900 0.905 0.85 7 [’weight_util’, ’vol_util’, ’tot_nr_customers’,
’tot_items_weight’, ’truck_volume’,
’volume_of_biggest_customer’,
’weight_of_biggest_customer’]

42.267

0.911 0.898 0.903 0.8 8 [’weight_util’, ’vol_util’, ’tot_nr_customers’,
’tot_items_weight’, ’truck_volume’, ’vol-
ume_of_biggest_customer’, ’truck_width’, ’truck_type’]

33.598



76

0.911 0.904 0.906 0.8 10 [’weight_util’, ’vol_util’, ’tot_nr_customers’,
’tot_items_weight’, ’truck_volume’, ’vol-
ume_of_biggest_customer’, ’truck_width’, ’truck_type’,
’nr_LxW’, ’volume_of_last_customer’]

36.689

0.908 0.908 0.906 0.75 18 [’weight_util’, ’tot_nr_customers’, ’tot_items_weight’,
’truck_length’, ’volume_of_biggest_customer’,
’truck_width’, ’truck_type’, ’nr_cube_items’,
’weight_of_last_customer’, ’nr_cylinder_items’, ’cylin-
der_weight’, ’truck_height’, ’cylinder_vol’, ’nr_HxL’,
’Pallet_plastic_1x1_2’, ’Pallet_48x40’, ’Pallet_36x36’,
’EURO’]

34.454

0.908 0.903 0.904 0.75 13 [’weight_util’, ’tot_nr_customers’, ’tot_items_weight’,
’truck_length’, ’volume_of_biggest_customer’,
’truck_width’, ’truck_type’, ’nr_cube_items’,
’weight_of_last_customer’, ’nr_cylinder_items’, ’cylin-
der_weight’, ’truck_height’, ’cylinder_vol’]

34.454

0.908 0.906 0.905 0.75 14 [’weight_util’, ’tot_nr_customers’, ’tot_items_weight’,
’truck_length’, ’volume_of_biggest_customer’,
’truck_width’, ’truck_type’, ’nr_cube_items’,
’weight_of_last_customer’, ’nr_cylinder_items’, ’cylin-
der_weight’, ’truck_height’, ’cylinder_vol’, ’nr_HxL’]

34.454
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0.908 0.905 0.904 0.75 12 [’weight_util’, ’tot_nr_customers’, ’tot_items_weight’,
’truck_length’, ’volume_of_biggest_customer’,
’truck_width’, ’truck_type’, ’nr_cube_items’,
’weight_of_last_customer’, ’nr_cylinder_items’, ’cylin-
der_weight’, ’truck_height’]

34.452

0.908 0.895 0.900 0.8 7 [’weight_util’, ’vol_util’, ’tot_nr_customers’,
’tot_items_weight’, ’truck_volume’, ’vol-
ume_of_biggest_customer’, ’truck_width’]

33.591

0.908 0.909 0.906 0.75 16 [’weight_util’, ’tot_nr_customers’, ’tot_items_weight’,
’truck_length’, ’volume_of_biggest_customer’,
’truck_width’, ’truck_type’, ’nr_cube_items’,
’weight_of_last_customer’, ’nr_cylinder_items’, ’cylin-
der_weight’, ’truck_height’, ’cylinder_vol’, ’nr_HxL’,
’Pallet_plastic_1x1_2’, ’Pallet_48x40’]

34.454

0.907 0.908 0.905 0.75 11 [’weight_util’, ’tot_nr_customers’, ’tot_items_weight’,
’truck_length’, ’volume_of_biggest_customer’,
’truck_width’, ’truck_type’, ’nr_cube_items’,
’weight_of_last_customer’, ’nr_cylinder_items’, ’cylin-
der_weight’]

34.452

0.907 0.908 0.905 0.75 17 [’weight_util’, ’tot_nr_customers’, ’tot_items_weight’,
’truck_length’, ’volume_of_biggest_customer’,
’truck_width’, ’truck_type’, ’nr_cube_items’,
’weight_of_last_customer’, ’nr_cylinder_items’, ’cylin-
der_weight’, ’truck_height’, ’cylinder_vol’, ’nr_HxL’,
’Pallet_plastic_1x1_2’, ’Pallet_48x40’, ’Pallet_36x36’]

34.454
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0.907 0.902 0.902 0.75 15 [’weight_util’, ’tot_nr_customers’, ’tot_items_weight’,
’truck_length’, ’volume_of_biggest_customer’,
’truck_width’, ’truck_type’, ’nr_cube_items’,
’weight_of_last_customer’, ’nr_cylinder_items’, ’cylin-
der_weight’, ’truck_height’, ’cylinder_vol’, ’nr_HxL’,
’Pallet_plastic_1x1_2’]

34.454

0.906 0.903 0.903 0.75 19 [’weight_util’, ’tot_nr_customers’, ’tot_items_weight’,
’truck_length’, ’volume_of_biggest_customer’,
’truck_width’, ’truck_type’, ’nr_cube_items’,
’weight_of_last_customer’, ’nr_cylinder_items’, ’cylin-
der_weight’, ’truck_height’, ’cylinder_vol’, ’nr_HxL’,
’Pallet_plastic_1x1_2’, ’Pallet_48x40’, ’Pallet_36x36’,
’EURO’, ’Pallet_plastic_1x1’]

34.454

0.906 0.895 0.899 0.8 6 [’weight_util’, ’vol_util’, ’tot_nr_customers’,
’tot_items_weight’, ’truck_volume’, ’vol-
ume_of_biggest_customer’]

33.591

0.906 0.895 0.899 0.85 6 [’weight_util’, ’vol_util’, ’tot_nr_customers’,
’tot_items_weight’, ’truck_volume’, ’vol-
ume_of_biggest_customer’]

33.591
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0.903 0.891 0.895 0.7 19 [’weight_util’, ’tot_nr_customers’, ’tot_items_weight’,
’volume_of_biggest_customer’, ’truck_width’, ’truck_type’,
’weight_of_last_customer’, ’nr_cylinder_items’, ’cylin-
der_weight’, ’truck_height’, ’cylinder_vol’, ’nr_HxL’,
’Pallet_plastic_1x1_2’, ’Pallet_48x40’, ’Pallet_36x36’,
’EURO’, ’Pallet_plastic_1x1’, ’Pallet_prostack’, ’Un-
known_pallet_type’]

34.453

0.902 0.902 0.900 0.75 10 [’weight_util’, ’tot_nr_customers’, ’tot_items_weight’,
’truck_length’, ’volume_of_biggest_customer’,
’truck_width’, ’truck_type’, ’nr_cube_items’,
’weight_of_last_customer’, ’nr_cylinder_items’]

34.451

0.902 0.902 0.899 0.75 9 [’weight_util’, ’tot_nr_customers’, ’tot_items_weight’,
’truck_length’, ’volume_of_biggest_customer’,
’truck_width’, ’truck_type’, ’nr_cube_items’,
’weight_of_last_customer’]

34.45

0.902 0.889 0.893 0.7 11 [’weight_util’, ’tot_nr_customers’, ’tot_items_weight’,
’volume_of_biggest_customer’, ’truck_width’, ’truck_type’,
’weight_of_last_customer’, ’nr_cylinder_items’, ’cylin-
der_weight’, ’truck_height’, ’cylinder_vol’]

34.453

0.902 0.899 0.898 0.75 8 [’weight_util’, ’tot_nr_customers’, ’tot_items_weight’,
’truck_length’, ’volume_of_biggest_customer’,
’truck_width’, ’truck_type’, ’nr_cube_items’]

33.584



80

0.901 0.888 0.893 0.7 16 [’weight_util’, ’tot_nr_customers’, ’tot_items_weight’,
’volume_of_biggest_customer’, ’truck_width’, ’truck_type’,
’weight_of_last_customer’, ’nr_cylinder_items’, ’cylin-
der_weight’, ’truck_height’, ’cylinder_vol’, ’nr_HxL’,
’Pallet_plastic_1x1_2’, ’Pallet_48x40’, ’Pallet_36x36’,
’EURO’]

34.453

0.901 0.889 0.893 0.7 17 [’weight_util’, ’tot_nr_customers’, ’tot_items_weight’,
’volume_of_biggest_customer’, ’truck_width’, ’truck_type’,
’weight_of_last_customer’, ’nr_cylinder_items’, ’cylin-
der_weight’, ’truck_height’, ’cylinder_vol’, ’nr_HxL’,
’Pallet_plastic_1x1_2’, ’Pallet_48x40’, ’Pallet_36x36’,
’EURO’, ’Pallet_plastic_1x1’]

34.453

0.901 0.894 0.895 0.7 9 [’weight_util’, ’tot_nr_customers’, ’tot_items_weight’,
’volume_of_biggest_customer’, ’truck_width’, ’truck_type’,
’weight_of_last_customer’, ’nr_cylinder_items’, ’cylin-
der_weight’]

34.451

0.900 0.892 0.894 0.7 10 [’weight_util’, ’tot_nr_customers’, ’tot_items_weight’,
’volume_of_biggest_customer’, ’truck_width’, ’truck_type’,
’weight_of_last_customer’, ’nr_cylinder_items’, ’cylin-
der_weight’, ’truck_height’]

34.451
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0.899 0.889 0.892 0.7 18 [’weight_util’, ’tot_nr_customers’, ’tot_items_weight’,
’volume_of_biggest_customer’, ’truck_width’, ’truck_type’,
’weight_of_last_customer’, ’nr_cylinder_items’, ’cylin-
der_weight’, ’truck_height’, ’cylinder_vol’, ’nr_HxL’,
’Pallet_plastic_1x1_2’, ’Pallet_48x40’, ’Pallet_36x36’,
’EURO’, ’Pallet_plastic_1x1’, ’Pallet_prostack’]

34.453

0.899 0.888 0.892 0.7 13 [’weight_util’, ’tot_nr_customers’, ’tot_items_weight’,
’volume_of_biggest_customer’, ’truck_width’, ’truck_type’,
’weight_of_last_customer’, ’nr_cylinder_items’, ’cylin-
der_weight’, ’truck_height’, ’cylinder_vol’, ’nr_HxL’,
’Pallet_plastic_1x1_2’]

34.453

0.899 0.887 0.891 0.7 8 [’weight_util’, ’tot_nr_customers’, ’tot_items_weight’, ’vol-
ume_of_biggest_customer’, ’truck_width’, ’truck_type’,
’weight_of_last_customer’, ’nr_cylinder_items’]

34.45

0.899 0.889 0.892 0.7 15 [’weight_util’, ’tot_nr_customers’, ’tot_items_weight’,
’volume_of_biggest_customer’, ’truck_width’, ’truck_type’,
’weight_of_last_customer’, ’nr_cylinder_items’, ’cylin-
der_weight’, ’truck_height’, ’cylinder_vol’, ’nr_HxL’,
’Pallet_plastic_1x1_2’, ’Pallet_48x40’, ’Pallet_36x36’]

34.453

0.898 0.891 0.892 0.7 12 [’weight_util’, ’tot_nr_customers’, ’tot_items_weight’,
’volume_of_biggest_customer’, ’truck_width’, ’truck_type’,
’weight_of_last_customer’, ’nr_cylinder_items’, ’cylin-
der_weight’, ’truck_height’, ’cylinder_vol’, ’nr_HxL’]

34.453



82

0.898 0.890 0.892 0.7 14 [’weight_util’, ’tot_nr_customers’, ’tot_items_weight’,
’volume_of_biggest_customer’, ’truck_width’, ’truck_type’,
’weight_of_last_customer’, ’nr_cylinder_items’, ’cylin-
der_weight’, ’truck_height’, ’cylinder_vol’, ’nr_HxL’,
’Pallet_plastic_1x1_2’, ’Pallet_48x40’]

34.453

0.896 0.890 0.891 0.7 7 [’weight_util’, ’tot_nr_customers’, ’tot_items_weight’, ’vol-
ume_of_biggest_customer’, ’truck_width’, ’truck_type’,
’weight_of_last_customer’]

34.449

0.895 0.889 0.890 0.8 5 [’weight_util’, ’vol_util’, ’tot_nr_customers’,
’tot_items_weight’, ’truck_volume’]

0.7462

0.895 0.889 0.890 0.85 5 [’weight_util’, ’vol_util’, ’tot_nr_customers’,
’tot_items_weight’, ’truck_volume’]

0.7462

0.893 0.887 0.888 0.75 7 [’weight_util’, ’tot_nr_customers’, ’tot_items_weight’,
’truck_length’, ’volume_of_biggest_customer’,
’truck_width’, ’truck_type’]

33.583

0.893 0.886 0.887 0.75 5 [’weight_util’, ’tot_nr_customers’, ’tot_items_weight’,
’truck_length’, ’volume_of_biggest_customer’]

33.577

0.892 0.885 0.886 0.75 6 [’weight_util’, ’tot_nr_customers’, ’tot_items_weight’,
’truck_length’, ’volume_of_biggest_customer’,
’truck_width’]

33.577

0.890 0.884 0.885 0.7 5 [’weight_util’, ’tot_nr_customers’, ’tot_items_weight’, ’vol-
ume_of_biggest_customer’, ’truck_width’]

33.577
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0.890 0.882 0.883 0.7 6 [’weight_util’, ’tot_nr_customers’, ’tot_items_weight’, ’vol-
ume_of_biggest_customer’, ’truck_width’, ’truck_type’]

33.583

0.886 0.881 0.881 0.8 4 [’weight_util’, ’vol_util’, ’tot_nr_customers’,
’tot_items_weight’]

0.7425

0.886 0.881 0.881 0.85 4 [’weight_util’, ’vol_util’, ’tot_nr_customers’,
’tot_items_weight’]

0.7425

0.879 0.876 0.875 0.75 4 [’weight_util’, ’tot_nr_customers’, ’tot_items_weight’,
’truck_length’]

0.7321

0.877 0.884 0.877 0.7 4 [’weight_util’, ’tot_nr_customers’, ’tot_items_weight’, ’vol-
ume_of_biggest_customer’]

33.577

0.873 0.881 0.873 0.7 3 [’weight_util’, ’tot_nr_customers’, ’tot_items_weight’] 0.7321

0.873 0.881 0.873 0.75 3 [’weight_util’, ’tot_nr_customers’, ’tot_items_weight’] 0.7321
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