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ABSTRACT
This paper comparatively assesses the performance of five data assimilation techniques for three-
parameter Muskingum routing with a spatially lumped or distributed model structure. The
assimilation techniques used include direct insertion (DI), nudging scheme (NS), Kalman filter
(KF), ensemble Kalman filter (EnKF) and asynchronous ensemble Kalman filter (AEnKF), which are
applied to river reaches in Texas and Louisiana, USA. For both lumped and distributed routing,
results from KF, EnKF and AEnKF are sensitive to the error specification. As expected, DI out-
performed the other models in the case of lumped modelling, while in distributed routing, KF
approaches, particularly AEnKF and EnKF, performed better than DI or nudging, reflecting the
benefit of updating distributed states through error covariance modelling in KF approaches. The
results of this work would be useful in setting up data assimilation systems that employ
increasingly abundant real-time observations using distributed hydrological routing models.
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1 Introduction

River routing is critical in real-time hydrological forecast-
ing operations in order to mitigate losses and damages by
informing on the correct timing of floods. Since the
development of the Muskingum method by McCarthy
(1938), hydrological routing models have been used
extensively due to their parsimony and minimal data
and computational requirements (O’Donnell 1985,
Boku and Xuewei 1987, Georgakakos et al. 1990,
Samani and Jebelifard 2003, Barbetta et al. 2011, Xu
et al. 2012, Haddad et al. 2015, Yuan et al. 2016).
Moreover, these models can replace complicated hydrau-
lic models when river cross-section data are unavailable.
However, due to simplifying assumptions, hydrological
routing is subject to potentially significant structural and
parametric errors. To address this, data assimilation (DA)
approaches have increasingly been used to optimally
update model input, states, parameters and/or outputs
in order to reduce model uncertainty and improve pre-
dictions (WMO (World Meteorological Organization)
1992, Refsgaard 1997, McLaughlin 2002, Moradkhani
et al. 2005a, Walker and Houser 2005, Liu and Gupta
2007, Reichle et al. 2008). It is also noteworthy that types
of uncertainty in models and observations can be

categorized into two sources: aleatory (random) and epis-
temic (of unknown character, nonrandom) (Beven 2016).
Measurement errors in rainfall and water level observa-
tions can be considered as aleatory uncertainty, while
epistemic uncertainty sources include parametric and
model structural uncertainties.

Applications of hydrological DA in surface water
modelling can largely be divided into DA on rainfall–
runoff modelling and river routing. For DA on rainfall–
runoff modelling, it is common that hidden (latent or
unobserved) state variables (e.g. soil moisture, evapotran-
spiration, snow water equivalent, runoff and discharge
states) and/or associated parameters are updated by
observation of measurable quantities, e.g. streamflow
(Pauwels and De Lannoy 2006, 2009, Weerts and El
Serafy 2006, Noh et al. 2013), water depth (Madsen and
Skotner 2005, Neal et al. 2007), soil moisture (Brocca
et al. 2010, 2012), and snow cover (Andreadis and
Lettenmaier 2006). For DA on routing, the variables
(e.g. streamflow and/or water depth) updated in the mea-
surement equations are usually identical to those in state-
space equations. It is worth mentioning that, in hydro-
logical applications, both states and parameters can be
included in the control vector for DA, as described in
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Moradkhani et al. (2005b), DeChant and Moradkhani
(2012) and Moradkhani et al. (2012). Features of stream-
flow DA are also discussed in Sun et al. (2016).

Compared to various applications of DA on hydrau-
lic or hydrodynamic routing (Madsen et al. 2003,
Andreadis et al. 2007, Neal et al. 2007, 2009, 2012,
Matgen et al. 2010, Biancamaria et al. 2011,
Giustarini et al. 2011, Jean-Baptiste et al. 2011, Ricci
et al. 2011, García-Pintado et al. 2013, Kim et al. 2013a,
2013b, Andreadis and Schumann 2014; Barthelemy, et
al. 2017), DA on hydrological routing has received little
attention. This is probably due to the assumption that
conventional DA methods for linear systems, such as
Kalman filtering, are sufficient for hydrological rout-
ing. Therefore, a comprehensive evaluation of the effect
of various DA methods on hydrological routing has not
been carried out thoroughly. Seo et al. (2003) improved
the estimate of distributed hydraulic parameters of a
kinematic wave routing model by assimilating stream-
flow observations using a variational method. Liu et al.
(2008) used a one-dimensional variational (1D-VAR)
method to integrate streamflow observations within a
three-parameter Muskingum model.

In addition, the effects of different uncertainty speci-
fications on flood predictions are hardly known, despite
an obvious demand for improved real-time forecasting in
real-world applications. In order to derive recommenda-
tions about DA methods that work well for given model
structures, the evaluation efforts should take into account
different model structures and different river systems.

The aim of this study is to assess the effect of
different DA methods on streamflow predictions with
two different structures (i.e. lumped and distributed) of
a three-parameter Muskingum hydrological routing
model. The five different DA methods selected for
this study are direct insertion (DI), nudging scheme
(NS), Kalman filter (KF), ensemble Kalman filter
(EnKF) and asynchronous ensemble Kalman filter
(AEnKF). Different error specifications are used for
the different model structures and DA methods (e.g.
deterministic and ensemble Kalman filter methods). In
the case of lumped routing, the effect of different DA
methods is compared via updating a state variable
(streamflow discharge) at the downstream boundary
location, using observations from a single location;
while in the case of distributed routing, the assimilation
points are located both within the river reach and at
the downstream boundary location. The simulation
experiments are implemented for three different river
reaches located along the Trinity and Sabine rivers,
Texas, USA. The effect of different estimations of
model error in ensemble-based assimilation methods
is also investigated.

The paper is organized as follows. First, we describe
the three-parameter Muskingum model together with
the assimilation approach (Section 2). In Section 3, the
case study is described; we define the different experi-
mental set-ups in Section 4; and, finally, the results and
conclusions are given in Section 5.

2 Methodology

To evaluate the performance of hydrological routing
models, the different DA methods include three deter-
ministic (DI, NS and KF) and two probabilistic (EnKF
and AEnKF) methods, which are evaluated by both
deterministic and probabilistic measures. Among var-
ious hydraulic and hydrological models, the
Muskingum-based hydrological routing is chosen, not
only because of minimal data and computational
requirements, but also because of increasing applica-
tions of hydrological routing in real-time forecasting
and large-scale modelling (Gochis et al. 2015, Rakovec
et al. 2016).

2.1 The three-parameter Muskingum model

A three-parameter Muskingum model (3p-Musk;
O’Donnell 1985) is implemented in order to represent
downstream flood propagation:

Qnþ1
tþ1 ¼ C1Q

n
t þ C2Q

nþ1
t þ C3Q

n
tþ1 (1)

where n and t are the space and time indexes, respec-
tively. In Equation (1), C1, C2 and C3 are the model
coefficients, estimated as:

C1 ¼ 0:5�Δt þ K2�K1
K2� 1�K1ð Þ þ 0:5�Δt

C2 ¼ 0:5�Δt � K2�K1
K2� 1�K1ð Þ þ 0:5�Δt

C3 ¼ K2� 1�K1ð Þ� 0:5�Δt
K2� 1�K1ð Þ þ 0:5�Δt

(2)

where K1 and K2 are the model parameters represent-
ing the weighting factor and the storage constant (h),
respectively. The derivation of the 3p-Musk model is
based on the standard formulation of the Muskingum
model (Todini 2007). Georgakakos et al. (1990) pro-
posed a stochastic state-space form of the Muskingum
model:

xt ¼ Φxt�1 þ ΓIt þ wt wt ,N 0; Stð Þ (3)

where x is the nstate × 1 model state matrix (streamflow
in m3/s) related to each river section including the
outflow, in which nstate denotes the number of discrete
reaches that the river is divided into; It is the 2 × 1
input vector of the discharge at the upstream boundary
condition (Georgakakos et al. 1990); and wt is the
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model structural uncertainty expressed as normal dis-
tribution with zero mean and covariance S at time t.
The matrices Ф (nstate × nstate) and Γ (nstate × 2) repre-
sent the state-transition and input-transition matrices,
respectively, and are functions of three model coeffi-
cients C1, C2 and C3, derived based on Equation (1)
(Georgakakos et al. 1990). In the measurement equa-
tion, the matrix zt (nobs × 1), representing the flow
along the river channel at time t, is expressed as:

zt ¼ Htxt þ vt vt ,N 0;Rtð Þ (4)

where vt is the measurement error expressed as normal
distribution, with zero mean and covariance R; and H
(nobs × nstate) is the output matrix which, for a given
observation, is equal to 1 at the outlet location and zero
elsewhere. However, in the original Muskingum model,
no lateral inflow or outflow along the reach is consid-
ered. O’Donnell (1985) presented a direct and efficient
method to extend the two-parameter Muskingum
model to a three-parameter model by accounting for
the lateral inflow, which is modelled as upstream
inflow multiplied by K3. The new set of coefficients
d1, d2 and d3 are estimated as:

d1 ¼ 1þ K3ð Þ � C1

d2 ¼ 1þ K3ð Þ � C2

d3 ¼ C3

(5)

If there is no lateral inflow, K3 = 0 and d1, d2 and d3
reduce to the coefficients C1, C2 and C3 in Equation (2).

2.2 Data assimilation

State estimation methods are widely applied tools in
hydrology that efficiently use observational informa-
tion to improve model predictions and reduce mod-
elling uncertainty (McLaughlin 1995, 2002, Refsgaard
1997, Madsen and Skotner 2005). Recently, Liu et al.
(2012) presented a comprehensive literature review
of the latest advances in data assimilation procedures
in operational flood forecasting that have been
achieved by assimilating water observations from in
situ sensors or remote sensing in a distributed fash-
ion. In this study, DI, NS, KF, EnKF and AEnKF are
used as described below. It is worth noting that only
model states (river flow) are updated in this study,
while the model parameters are constant along the
simulation windows. For the lumped model struc-
ture, there is one model state, which is discharge at
the downstream location and is updated using flow
measurement data at the same location. For the dis-
tributed structure, model states of all river reaches
are updated using measurements from multiple

gauging locations. Because DA combines observa-
tional and model information to provide an estimate
of the most likely state and its uncertainty (Lahoz
and Schneider 2014), statistical information on
observations could be used to analyse the perfor-
mance of DA methods, which is discussed in
Section 2.4.

2.2.1 Direct insertion
In DI, also known as the Cressman method (Daley
1991), the model states are directly replaced with the
observations, whenever available:

xþt;l ¼ zot (6)

where zo and x are the observation value and the
updated model state at time step t at a particular loca-
tion l. Updated state values are indicated with the
superscript +. The main statistical hypothesis (and
limitation) of this method is that measurements are
considered exact and reliable and that the model con-
tains no information (Refsgaard 1997). However, the
risk of this approach, as in the case of the Kalman
filter-based approaches, is that unbalanced state esti-
mates can be obtained, which causes model shocks
(Walker et al. 2001).

2.2.2 Nudging scheme
The NS technique consists of adding a nudging or
innovation term in the model update equation in
order to “force” the model state to be closer to the
observations (Brocca et al. 2010). The nudging term is
proportional to the difference between the model
states, and the observations calculated at a given loca-
tion. The general formulation of NS is:

xþt ¼ x�t þ Kt � zot � x�t
� �

(7)

where K is the nudging (or gain) matrix estimated as:

Kt ¼ St
St þ Rt

(8)

where St and Rt are the model and observational error
variance, respectively, at the time step t. The super-
script − indicates the predicted matrices. In the case of
perfect measurement Rt = 0, K = 1 and x+ = zo, as in
the DI approach. Alternatively, if the model is assumed
perfect, St = 0 and K = 0, which means that there will
be no update (free run) since x+ = x−. Although NS is
not statistically optimal (Brocca et al. 2010), it can be
used to assimilate streamflow observations with low
computational time costs. A detailed review of nudging
methods is presented by Park and Xu (2013).
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2.2.3 Kalman filter
The Kalman filter (KF; Kalman 1960) is a mathematical
stochastic tool which allows the estimation, in an effi-
cient optimal recursive way, of the state of a process
governed by a linear stochastic difference equation as a
response to real-time (noisy) observations. The KF
procedure can be divided into two steps: forecasting
and updating. The forecasted (with superscript −)
model state matrix is estimated based on Equation
(1), while the forecasted model covariance matrix P
(nstate × nstate) is expressed as:

P�
t ¼ ΦPþ

t�1Φ
T þ St (9)

The prior model states x at time t are updated (with
superscript +), as the response to the new available
observations, using the following equations:

K t ¼ P�
t H

T

HP�
t H

T þ Rt
(10)

xþt ¼ x�t þ K t � zot �Hx�t
� �

(11)

Pþ
t ¼ 1� K tHð ÞP�

t (12)

where Kt is the nstate × nobs Kalman gain matrix.
Because nonlinear-dynamic models are favoured by
model developers and users, KF is not applied exten-
sively in the hydrological community. In addition,
another limitation in the implementation of KF is the
subjective determination of model errors, as underlined
in Mazzoleni (2017). On one hand, the confidence in
the model can be reduced if the model error is over-
estimated, while, on the other hand, too much trust in
the model can be achieved if the model error is under-
estimated, and the information from the new observa-
tions discarded (Kitanidis and Bras 1980, Sun et al.
2016). Puente and Bras (1987) argued that the proper
error quantification of the model is even more impor-
tant than the selection of the DA methods.

Different (subjective) methods have been proposed
to calculate a model error for KF, as reported in
Maybeck (1982) and Mazzoleni (2017). One of the
main challenges of model error estimation is the com-
putational costs required for large models. In addition,
simple parameterization of the model error might be
necessary due to the lack of available information (Dee
1995). Hence, in most of the applications with KF, the
common approach is to manually calibrate the model
error (Verlaan 1998). Another approach is to use the
least squares method to minimize the difference
between the computed and observed covariance of the
residuals (Verlaan 1998).

2.2.4 Ensemble Kalman filter
For nonlinear systems, the EnKF (Evensen 2009) can
be used to overcome the limitation of the linearity
assumption used for KF. The EnKF (Reichle et al.
2002, Evensen 2003, Weerts and El Serafy 2006; Noh
et al. 2013) is widely used in hydrological applications,
and defines model error as a function of the spread of
the model state ensemble. In the stochastic formulation
of EnKF, the vector of the forecasted (or background)
ensemble of model states x is represented as:

X�
t ¼ x�t;1; x

�
t;2; . . . ; x

�
t;i; . . . ; x

�
t;Nens

� �
(13)

where i is the given ensemble member and Nens is the
total number of ensemble members. The model error
covariance matrix P is calculated as proposed by
Evensen (2003):

P�
t ¼ 1

Nens � 1
EtE

T
t (14)

where E is the ensemble anomaly (Clark et al. 2008) for
each ensemble member:

Et ¼ x�t;1 � �x; x�t;2 � �x; . . . ; x�t;i � �x; . . . ; x�t;Nens
� �x

� �
(15)

A perturbed (with noise vt) normally distributed mea-
surement vector zo is generated when a new observa-
tion becomes available. As in the case of KF, the
updated model state matrix is estimated using
Equation (11), assimilating each member of the obser-
vation ensemble vector z (see Section 2.4) with a mem-
ber of the forecasted model state matrix x�t;i and using
Equation (10) to estimate the Kalman gain K.

The EnKF can be used to replace KF if the dimension
of the state matrix is large and if a non-linear model
structure is used. Theoretically, in the case of linear
dynamics and Gaussian noise, EnKF should converge
to the KF solution. However, according to different
uncertainty specifications, KF-based methods can lead
to different solutions, as discussed in Section 5. One of
the reasons to apply EnKF, even for a linear system, is
primarily that the estimation of model error in EnKF is
less subjective than in KF. In fact, in EnKF, the filter
parameters can be calibrated using rigorous approaches
such as the one proposed by Anderson (2001).

2.2.5 Asynchronous ensemble Kalman filter
The AEnKF, a generalization of the EnKF introduced
by Sakov et al. (2010), uses past observations over a
time window at once to update the model states at the
current time step (Rakovec et al. 2015). Unlike 4D-
VAR, AEnKF does not require any adjoint models.
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The model state matrix is augmented with the past
observations from the W previous time step. While
EnKF updates the model using the observation at the
current time step t, AEnKF uses the past as well as
current observations at time steps from t − W to t. The
new state augmented matrix ex�t (nstate+W × 1) can be
expressed as:

ex�t ¼

x�t;i
H x�t�1;i

� �
H x�t�2;i

� �
..
.

H x�t�W;i

� �

2
666666664

3
777777775

(16)

where H(xt−W,i) is the model output corresponding
to the time step t − W. In a similar way, with
the new state definition, also the operator matrix
H (nstate + W × nstate + W), the observation covar-
iance matrix R (nobs + W × nobs + W) and the
observation vector z (nobs + W × 1), can be
expressed in their augmented form as:

eHt ¼

Ht

It�1 0
It�2

0 . .
.

Ik�W

2
666664

3
777775

(17)

eRt ¼

Rt

Rt�1 0
Rt�2

0 . .
.

Rt�W

2
666664

3
777775

(18)

ezt ¼
zt
zt�1

zt�2

..

.

zt�W

2
666664

3
777775

(19)

where I is the identity matrix having the same dimen-
sion of H, i.e. (1 × nstate). It is worth noting that, even if
the matrices are made by augmenting with past obser-
vations, Equation (16) is solved only for the current
time step t without updating past model states.
Following Equations (10) and (14), the matrices K
and P also change their sizes in both rows and col-
umns. In fact, an extra column in K corresponds to the
gain due to one past observation. If W = 0, AEnKF is
identical to EnKF. The characteristic of the AEnKF of
adding past observations to improve the DA procedure
at the current time step is very attractive for

operational use, given its relatively small computational
costs. It is worth mentioning that the AEnKF method
differs from a Kalman smoother approach because
AEnKF uses past observations to update only the states
at time step t, while the smoother approaches also
update past model states.

2.3 Model error estimation

The proper model error estimation is fundamental in
order to properly implement DA techniques and
improve model output. The estimation of model error
for each of the methods employed (deterministic DA:
DI, NS and KF; ensemble-based DA: EnKF and
AEnKF) is reported below.

2.3.1 Deterministic DA methods
Model error estimation is not required for DI.
However, for NS and KF, the covariance matrix S is
initially estimated as a diagonal matrix (nstate × nstate)
where the covariance of the observed and simulated
streamflow is used as the diagonal elements of S. See
Sections 3 and 4 for further details.

2.3.2 Ensemble-based DA methods
The EnKF and AEnKF methods are Monte Carlo
approximations of a sequential Bayesian filtering pro-
cess, which alternates between an ensemble forecast step
and a state variable update step. In the forecast step, an
ensemble of model states is propagated forward in time
using the model. As a result, the accuracy of the sampled
covariances depends on the model perturbation and
ensemble size (Equations (17) and (18)). That is why it
is extremely important to properly assess the spread of
the ensemble for both EnKF and AEnKF.

In EnKF and AEnKF, the boundary I (i.e. river flow)
is perturbed as follows:

I
0s
t ¼ Ist þ U �εI � Ist;þ εI � Ist

� �
(20)

where I′ is the ensemble of perturbed boundary condi-
tions at time t, U is the uniform distribution, and εI is
the input hyper-parameter. It is worth noting that
model parameters are not perturbed in this study. In
fact, we found that perturbing model parameters with
high hyper-parameter values leads to instability in the
distributed 3p-Musk model. For this reason, only
boundary I is perturbed for both lumped and distrib-
uted model structures. Two different approaches are
used to generate the model ensemble.

2.3.2.1 Identical model error variance approach (sub-
opt). In the case of the lumped model, the model
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ensemble is generated by perturbing the model para-
meters in such a way that the variance of the ensemble
spread is equal to the value of S, estimated for NS and
KF. However, in this case the EnKF is sub-optimal
because the filter parameters, and the consequent
ensemble spread, are not properly calibrated following
the approach proposed by Anderson (2001).

2.3.2.2 Optimized model error variance approach
(optimal). Because of the filter sensitivity to model
error definition, the tuning of the process noise value is
the key factor to properly compare the different DA
methods (Brochero et al. 2011, Abaza et al. 2015). A
subjective variation of S in the KF might provide better
or worse results if compared to an optimal EnKF, com-
promising the correctness and reliability of the study. In
this study, we use the method proposed by Abaza et al.
(2014, 2015) to estimate the εI value, which led to a
normalized root mean square error ratio (NRR) close to
one. In fact, the optimal ensemble generates a NRR value
equal to 1; NRR > 1 indicates small ensemble spread and
NRR < 1 indicates the opposite.

2.4 Estimation of the observational error

The proper characterization of the observational covar-
iance error Rt is very important because it directly
affects the DA performance. In this study, (Rt)

1/2 is
assumed to be linearly dependent on the observed
flow zo at a given measurement location:

Rt ¼ αt � zot
� �2

(21)

where the proportionality coefficient αt is set to 0.1 for
each time step, as suggested by Weerts and El Serafy
(2006), Clark et al. (2008) and Rakovec et al. (2012).

For EnKF and AEnKF, an ensemble of observed
streamflow observations zt, normally distributed, with
mean zt

o and covariance Rt, is generated as follows:

zt ¼ zot þ vt ¼ zot þ N 0;Rtð Þ (22)

2.5 Performance measures

2.5.1 Deterministic measures
The performance of DA is measured by the Nash-
Sutcliffe efficiency (NSE; Nash and Sutcliffe 1970),
and bias index (Bias).

The NSE compares simulated and observed time
series by:

NSE ¼ 1�
PT

t¼1 Qm
t � Qo

t

� �2
PT

t¼1 Qo
t � Qo

� �2 (23)

where Qt
m and Qt

o are the simulated and observed
streamflow in the tth time step, respectively; Qo is the
average observed streamflow; and T is the number of
pairs of simulated and observed streamflow. A value of
NSE = 1 represents a perfect model simulation, while
NSE = 0 indicates that the simulated streamflow is as
accurate as the mean of the observed streamflow.

The Bias measures the tendency of the total simulated
streamflow to be larger or smaller than the observed one:

Bias ¼
PT

t¼1 Q
m
tPT

t¼1 Q
o
t

(24)

Values greater than 1 indicate overestimation of the
streamflow and overall underestimation otherwise.

2.5.2 Probabilistic measures
Four different probabilistic measures are used in this
study: Brier skill score (BSS, Richardson 2001, Weigel
et al. 2007), continuous ranked probability score
(CRPS, Bröcker 2012), receiver operating characteristic
curve (ROC, Hajian-Tilaki 2013) and reliability dia-
gram (Brochero et al. 2011)

The BSS is a normalized measure of the mean-
square error of probability forecasts for two events. A
BSS of 1.0 represents a perfect forecast, while BSS = 0.0
indicates the skill of the reference forecasts. Similarly,
the CRPS is equivalent to the mean absolute error in
deterministic forecasts. CRPS = 0.0 indicates the per-
fect score (Brochero et al. 2011).

The ROC curve is used to evaluate the ability of a
forecast to discriminate the occurrence of a certain event
(Trambauer et al. 2015). For example, a hydrograph can be
split into two categories: one identifying a flood event
(Category 1) and the other corresponding to the non-
flood event (Category 0). Where A is the fraction of truly
negative events (non-flood events) correctly classified as
negative, and B is the fraction of truly positive events (flood
events) correctly classified as positive, the ROC curve is a
graphical representation of (1 − A) vs B. A perfect discri-
mination ability will therefore be represented by two per-
pendicular lines intersecting at the point (1,1). The most
important statistical property that can be extracted from
the ROCcurve is the area under the curve (AUC). A value
of AUC = 1 represents perfect discrimination ability, while
a value of 0.5 represents no discrimination ability.

The reliability diagram is used to examine the relia-
bility of a probabilistic or ensemble forecast of binary
categorical events (Murphy and Winkler 1987, Franz
and Hogue 2011). For example, a hydrograph can be
split into two categories: one identifying a flood event
(Category 1) and the other corresponding to the non-
flood event (Category 0). In this case, the reliability
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diagram will be a plot of the forecasting frequency of a
certain event (x-axis) against the observed event fre-
quency (y-axis). If the forecasting and the observed
frequency match, all the points in the reliability dia-
gram will be on the 1:1 diagonal line, also referred to as
the perfect reliability line. The closer the points are to
the perfect reliability line, the higher the reliability of
the probabilistic forecast is.

2.6 The Trinity and Sabine Rivers

Comparison of DAmethods on hydrological routing was
implemented for two rivers in Texas and Louisiana, USA,
which are located within the Forecasting domain of the
NOAAWest Gulf River Forecast Center. With increasing
variability of climate and urbanization, these regions are
considered flood-prone areas, having experienced devas-
tating floods in recent years (Earl and Vaughan 2015,
Schumann et al. 2016).

The Trinity River in north Texas is 1140 km long,
with a drainage area of about 46 500 km2, 21 major
reservoirs, and an average discharge of about 180 m3/s

(USGS 2016). The highly dense urbanized area of the
Dallas–Fort Worth (DFW) Metroplex area (7 233 323
inhabitants) is located in the upper part of the Trinity
River. A major flood that occurred in 1908 resulted in
economic losses of about US$5 million and left 4000
people homeless (Barth et al. 2014). Recently, smaller
floods have occurred, in May and June 2015.

The Sabine River is a transboundary river between the
states of Texas and Louisiana (see Fig. 1). It has a drainage
area of about 25 270 km2 (76% in Texas and 24% in
Louisiana; Phillips 2008). In the recent flood event of
January 2016, the Sabine River (on the east Texas side)
was hit by a month-long flood.

Flow data for the period 2007–2015 at 15-min time
steps are available from monitoring stations, managed by
the US Geological Survey (USGS), along the Trinity and
Sabine Rivers.

2.7 Model structure

For the purposes of this study, two reaches of the Trinity
River and one reach of the Sabine River (see Fig. 1 and

Figure 1. Trinity and Sabine rivers with the locations of the USGS flow stations.
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Table 1) and two model structures (lumped and distrib-
uted) are considered. In particular, for Reach A
(between the RSRT2 upstream station and the TDDT2
downstream station) and Reach B (between the BWRT2
upstream station and the DWYT2 downstream station),
a lumped version of the 3-par Muskmodel with nstate = 1
is used. For Reach C, both lumped and distributed
model structures are considered. For this purpose,
Reach C is divided into sub-reaches C1 (FWOT2 as
upstream boundary condition), C2 (CART2 as upstream
boundary condition) and C3 (DALT2 station at Dallas
used to compare observed and simulated streamflow).
The confluence of C1 and C2 is used as the upstream
boundary conditions for sub-reach C3. For the distrib-
uted structure, a distributed hydraulic model with
Δt (s) = 0.9. Δx (m) and nstate = Lreach/Δx is used,
where Lreach is the reach length (reported in Table 1)
and Δx is the spatial increment implemented along
reach C (set to 1000 m). The lumped model structure
is implemented considering Lreach = Δx for C1, C2
and C3.

The main advantage of a distributed formulation
over a lumped one is that it is possible to estimate
flow characteristics at different points along the reach.
For operational applications, it is important to estimate
flow values at particular prediction points within urba-
nized areas, and assimilate flow observations to better
predict future flood situations and reduce the conse-
quent economic losses.

Figure 2 shows auto- and cross-correlation of stream-
flow observations for simulation periods. For both
reaches A and B, as the lag time increases, autocorrela-
tion decreases faster at the upstream locations (RSRT2,
BWRT2) than at the downstream ones (TPPT2,
DWYT2), which illustrates higher persistency of flows
at the downstream to remain in the same state from one
observation to the next. Values of both auto- and cross-
correlation are consistently higher at Reach B over
Reach A for all lag times. In Reach C, the difference of
autocorrelation between upstream and downstream is
not shown clearly, partly because the simulation period
is relatively short. However, the impact of merging two
upstream reaches is shown in the cross-correlation plot;
values of cross-correlation among two upstream loca-
tions (FWOT2, CART2) and one downstream location
(DALT2) are lower than those between FWOT2 and
GPRT2, which are located at the same sub-reach (C1)

Table 1. Length, in m, of each reach in the Trinity and Sabine
rivers.
Reach A Reach B Sub-reach C1 Sub-reach C2 Sub-reach C3

78 000 88 000 76 000 30 000 6 000

Figure 2. Auto- and cross-correlation of streamflow observations.
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before merging with another upstream sub-reach (C2).
Due to the nature of simple DA methods such as DI and
NS, the performance of these methods can be dependent
on the magnitude of auto- and cross-correlation of
observations, which is discussed with experimental
results in Section 5.

2.8 Model calibration and validation

2.8.1 Reaches A and B
Calibration for the lumped 3p-Musk model implemen-
ted in reaches A and B is performed in Lee et al.
(2011), by means of the least squares minimization
technique using the Broyden-Fletcher-Goldfarb-
Shanno variant of the Davidon-Fletcher-Powell mini-
mization (DFPMIN) algorithm (Press et al. 1992)
belonging to the class of quasi-Newton methods. The
optimal parameter values estimated for the two reaches
in the Trinity and Sabine rivers are reported in Table 2.
In fact, the higher parameter values in reaches A and B
are justified by the fact that parameters refer to the
whole river reach, while those for Reach C (distributed
routing) refer to the single spatial discretization. That is
why the storage constant (K2) and distributed lateral
inflow (K3) are smaller in the case of distributed rout-
ing compared to the lumped modelling. Validation of

the lumped hydraulic model is performed by compar-
ing five years (1 January 2002 to 31 December 2006)
and 12 years (1 January 1996 to 31 January 2007) of
observed and simulated flow time series at the TDDT2
and DWYT2 stations for reaches A and B, respectively
(Figs 1 and 3). Six different flood events with high
intensity and long duration are considered for these
river reaches. For Reach A, flood events include 16
March–8 June 2002 (flood event A.1), 29 May–20
August 2004 (A.2) and 14 March–4 April 2006 (A.3).
In the case of Reach B, the analyses are focused on the
three flood events of 17 October 1998–2 April 1999
(flood event B.1), 7 January–31 March 2001 (B.2) and 9
September–16 October 2006 (B.3). The corresponding
observed and simulated without DA (free run) hydro-
graphs are shown in Figure 3. A quantitative assess-
ment of the model performance without update is
provided in Section 5. In Table 3 the NSE values

Table 2. Optimal parameter values for the three-parameter
Muskingum model implemented along reaches A, B and C.
Parameter Lumped structure Distributed structure

Reach A Reach B Reach C Reach A Reach B Reach C

K1 (-) 0.47 0.35 0.103 - - 0.122
K2 (h) 47.28 78.97 4.94 - - 0.17
K3 (-) 0.109 0.105 0.088 - - 0.006

Figure 3. Comparison between observed and simulated (without DA) flow time series at TDDT2, DWYT2 and DAT2 in reaches A, B
and C used for evaluating the DA methods and model structures. Peak 1 refers to the June 2015 flood event.
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obtained for calibration and validation in both reaches
A and B are reported.

2.8.2 Reach C
For Reach C, both lumped and distributed model struc-
tures are implemented, and a genetic algorithm (GA)
approach (Deb et al. 2002) is used to calibrate the values
of parameters K1, K2 and K3, which are assumed to be
the same for the three sub-reaches of Reach C. The flow
time series between 1 October 2007 and 1 October 2013
is used in the calibration. The optimal sets of parameters
found for Reach C are also reported in Table 2. The
validation of the lumped and distributed 3p-Musk mod-
els is performed considering the recent flood event of 12
May–1 August 2015, which affected the urbanized area
of DFW. The results of the calibration and validation
analyses are reported in Table 3.

3 Experimental set-up

Two different experiments were carried out in this
study to assess the advantages (pros) and disadvantages
(cons) of different DA methods applied on a lumped
and distributed structure of the 3p-Musk model.
Table 4 summarizes the experimental set-up, which is
described below.

3.1 Experiment 1

This experiment focuses on the evaluation of the effects
of different DA methods implemented on a lumped
model structure considering sub-optimal and optimal
estimation of the model error for DA ensemble meth-
ods. Reaches A and B are considered.

In order to assess the effect of assimilation of stream-
flow observations, model error is considered lower than
the observational one. For this reason, a small and indi-
cative value of 25 m6/s2, lower than the observation

variance R even in the case of low flow, is assumed for
the elements of the model error variance S. This value is
considered stationary and constant along the river reach.
For ensemble methods, in both experiments 1 and 2, we
consider Nens = 50, since for numbers of ensemble mem-
bers higher than 50 there is no significant difference in
the model results. However, model performance varies
for ensemble numbers because of sampling issues. The
values of εI and related NRR for both model structures
and river reaches are reported in Table 5.

3.2 Experiment 2

The objective of Experiment 2 is to compare the results
of the different DA approaches for both lumped and
distributed 3p-Musk model structures implemented on
Reach C. Model error for Reach C is considered equal
to 90 m6/s2 for NS and KF. Also in this experiment,
sub-optimal and optimal ensemble spreads are calcu-
lated for EnKF and AEnKF. The corresponding values
of εI are reported in Table 5.

4 Results and discussion

4.1 Experiment 1

Assimilation of streamflow observations is performed
by applying DI, NS, KF, EnKF and AEnKF (W = 2) to a
lumped structure of the 3p-Musk model to simulate the
six flood events (Fig. 3) at stations TDDT2 (Reach A)
and DWYT2 (Reach B).

Figure 4 shows the observed and simulated hydro-
graphs at the analysis time step, with and without state
updating, for flood events A.2, A.3 and B.3 (see Section
3.3.1). The results without DA show a systematic over-
estimation of the simulated flow at Reach A, whereas

Table 3. Calibration period and NSE values for the calibration of the lumped and distributed model structure.
Lumped structure Distributed structure

Reach A Reach B Reach C Reach A Reach B Reach C

Period 01/01/1996–31/01/2007 01/10/2007–01/10/2013 - - 01/10/2007–01/10/2013
NSE 0.89 0.91 0.65 - - 0.61

Table 4. Summary of the experimental set-up.
Experiment 1 Experiment 2

Reach A ∏ -
B ∏ -
C - ∏

Model structure Lumped ∏ ∏
Distributed - ∏

Model error estimation Sub-optimal ∏ ∏
Optimal ∏ ∏

Table 5. Hyper-parameter values εI for different river reaches
and ensemble generation methods (sub-optimal and optimal).
The NRR values are given in parentheses.

Sub-optimal Optimal

Reach A (lumped) A1 0.05 (1.39) 0.75 (1.07)
A2 0.05 (1.38) 0.75 (0.93)
A3 0.05 (1.40) 0.75(1.02)

Reach B (lumped) B1 0.02 (1.39) 0.30 (1.08)
B2 0.02 (1.39) 0.30 (0.91)
B3 0.02 (1.40) 0.30 (1.15)

Reach C (lumped) C1 0.30 (1.12) 0.4 (1.00)
Reach C (distributed) C1 0.25 (1.26) 0.5 (1.00)
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peak flows are generally underestimated at Reach B. As
expected, DI provides better model improvements in all
the considered flood events compared to the other DA
methods. In fact, it is not surprising that DI shows good
performance at the analysis time step since observations
are assumed to be perfect and, in the case of lumped
modelling, there is only a single model state that is
directly substituted with the observation. In addition,
the good performance using DI can be due to the fact
that discharge shows prolonged autocorrelation (Fig. 2).
For these reasons, for the lumped model, DI can be used
as a baseline to compare the other DA approaches.
However, different orders of performance among DA
methods are found in the case of distributed routing,
where updating a single state does not augment the
spatial distribution (see the Section 5.2). The NS method
produces the worst results among all the DA approaches.

It is interesting to note that the results from KF and
EnKF differ based on the approach (sub-optimal or
optimal) used to estimate the model error variance S.
The results show that model error estimation in

Kalman filtering approaches can significantly affect
the DA performance. The reasons for such incongru-
ence can be found in the fact that fixing the ensemble
spread in the sub-optimal EnKF to the same value of
the process noise in KF does not guarantee the optimal
use of EnKF. In fact, the small value of the covariance S
results in a small spread in the EnKF and in its con-
sequent sub-optimal use. Such low spread of the model
ensemble indicates that the EnKF trusts the model
more than the assimilated observations, with a conse-
quent low model performance.

The Optimal EnKF tends to outperform both KF
and the sub-optimal EnKF. The AEnKF approach with
W = 2 produced results comparable with DI. This
means that augmenting past observations can improve
model performance even in cases of a sub-optimal
filter. A way to solve this issue is to optimally estimate
the ensemble spread, as described in Section 4. It can
be observed that optimal EnKF and AEnKF outper-
form the sub-optimal approaches and KF. The optimal
AEnKF shows performance similar to DI.

Figure 4. Observed and simulated flow hydrograph at the analysis time step in reaches A and B using different DA methods
(lumped routing).
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Table 6 presents NSE and Bias values for reaches A
and B for the six different flood events at the analysis
time (i.e. lead time = 0 h). As expected, the lowest
values of NSE are obtained without any model update.
The best model improvements, in terms of both NSE
and Bias, are achieved with DI and optimal AEnKF,
due to the high auto- and cross-correlation of stream-
flow, while NS and sub-optimal EnKF produce less
satisfactory model results. Overall, streamflow in
Reach A is overestimated (Bias > 1), while opposite
results are obtained in Reach B.1 and B.2 (Bias < 1).
This can be due to an inefficient calibration of the
parameter K3: (Equation (5)), which represents lateral
inflow along the river reach. High auto- and cross-
correlation of observations for short lag times (Fig. 2)
may affect performance at the analysis time step,
although additional analysis is left as a future
endeavour.

Figure 5 presents Taylor diagrams for reaches A and
B for the six flood events at the analysis time. Taylor
diagrams graphically summarize similarities between
simulations and observations with root mean square
deviation (RMSD), correlation and standard deviation
between observations and simulations. This means that
the closest the simulation result, for a given DA
method, is to the observations (black point) in the
Taylor diagram, the better. High correlation values
are achieved using DI and optimal ensemble methods.
On the other hand, the NS method does not allow us to
significantly improve model performance if compared
with results without update. In Table 6 the probabilistic
measures CRPS and BSS are reported. As expected,

values of BSS close to 1 are achieved for optimal
AEnKF, with the highest values for flood events A.2
and B.3. Similarly, small CRPS values are obtained for
DI and optimal AEnKF.

Figure 6 presents the ROC curve and the reliability
diagram for reaches A and B for three different flood
events (for lead time 1 hour) that occurred in the
analysed time period. In Figure 6, the optimal models
EnKF (Opt) and AEnKF (Opt) provide the highest
reliability and the highest discrimination ability with
respect to the sub-optimal models (Sub-opt). This is
particularly true in the analysis of flood event A.1.
Here, the optimal models experience an increase of
10% (AEnKF) and 16% (EnKF) in the value of the
AUC indicator with respect to the sub-optimal models.
The same can be said about BSS: the optimal models
perform better than the sub-optimal ones, with a 66%
(AEnKF) and 85% (EnKF) decrease in BSS from sub-
optimal to optimal (see Table 6). In general, it is
possible to consider the performance of the two opti-
mal models as comparable, with the AEnKF marginally
outperforming the EnKF, while EnKF (Sub-opt) is the
best solution in all the analysed scenarios.

Figure 7 shows NSE and Bias as a function of lead
time for flood events A.3 and B.3. Observations at the
upstream stations are used as perfect forecasts for this
analysis. As previously, DI produces the largest
improvement in streamflow over a range of lead
times for both flood events. AEnKF and KF also notice-
ably improve streamflow results. However, for flood
event A.3, NS tends to give comparable NSE values to
those obtained using the other DA methods used in

Table 6. Deterministic (NSE and Bias) and probabilistic (CRPS and BSS) performance measures obtained in Experiment 1.
Event Index NoDA DI NS KF EnKF (Sub-opt) EnKF (Opt) AEnKF (Sub-opt) AEnKF (Opt)

A.1 NSE 0.15 1.00 0.69 0.92 0.82 0.99 0.91 0.99
Bias 1.33 1.01 1.10 1.03 1.05 1.02 1.00 1.01
CRPS 143.10 4.85 78.53 33.70 57.43 11.43 23.37 8.50
BSS - - - - −0.33 0.83 0.60 0.89

A.2 NSE 0.69 1.00 0.85 0.97 0.93 1.00 0.99 1.00
Bias 1.23 1.01 1.09 1.03 1.08 1.02 1.02 1.01
CRPS 89.94 3.02 49.92 21.78 41.38 8.00 10.93 5.71
BSS - - - - 0.09 0.92 0.86 0.95

A.3 NSE 0.50 1.00 0.63 0.90 0.83 0.98 0.94 1.00
Bias 1.24 1.01 1.14 1.03 1.00 0.99 0.97 1.00
CRPS 115.28 4.96 87.30 45.94 68.04 16.11 33.66 7.89
BSS - - - - −0.88 0.63 −0.11 0.91

B.1 NSE 0.90 1.00 0.93 0.97 0.92 0.99 0.93 0.99
Bias 0.99 1.00 0.99 0.99 0.98 0.99 0.96 1.00
CRPS 77.15 8.99 61.00 30.59 62.75 20.23 37.98 11.84
BSS - - - - 0.42 0.80 0.54 0.87

B.2 NSE 0.95 1.00 0.97 0.99 0.98 1.00 0.99 1.00
Bias 1.11 1.00 1.07 1.02 1.07 1.02 1.01 1.01
CRPS 107.95 15.08 82.37 38.86 72.28 16.26 20.93 13.50
BSS - - - - 0.14 0.80 0.82 0.82

B.3 NSE 0.45 1.00 0.56 0.86 0.54 0.91 0.66 0.99
Bias 0.50 0.99 0.61 0.83 0.55 0.84 0.62 0.95
CRPS 230.01 6.30 180.43 85.08 205.53 70.42 172.70 23.20
BSS - - - - −0.11 0.84 −0.11 0.95
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Figure 6. ROC (a, b, c) and reliability diagrams (d, e, f) for three selected flood events in reaches A and B.

Figure 5. Taylor diagrams obtained for reaches A and B using different DA methods (lumped routing).
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this study for high lead times. In Figure 7, gains of
updating by DA methods last longer in Reach B (lower
panel) compared to Reach A (upper panel), which
indicates that the performance of DA may be affected
by characteristics of river observations, such as auto-
and cross-correlation (Fig. 2).

4.2 Experiment 2

Lumped and distributed 3-par Musk model structures
were used to estimate streamflow values along the
Trinity River flowing from Fort Worth to the urbanized
area of Dallas. For AEnKF, when W > 5, any additional
past observations provided negligible model updates.

Streamflow observations recorded at two sensor
locations – Grand Prairé (GPRT2) and Dallas
(DALT2) – during the flood events of May–August
2015 in the DFW area are assimilated. In particular,
three different scenarios of assimilation of streamflow
observations by location were introduced for the dis-
tributed structure: (a) at the GPRT2 sensor; (b) at the
DALT2 sensor; and (c) from both GPRT2 and DALT2
sensors. However, for the lumped structure, only

observations at DALT2 were integrated within the
model. Simulated streamflow values were compared
to the observed ones at DALT2 because of the strategic
position of this flow sensor in flood risk management
for the DFW area.

The results presented in Figure 8 and Table 7 show an
overestimation of the observed flow at the DALT2 sta-
tion. The Taylor diagrams for the distributed model
show that, as expected, lower standard deviations and
RMSD are achieved for assimilation at both GPRT2 and
DALT2. In particular, good model improvements are
obtained with the sensor at DALT2, while the opposite
results can be seen for assimilation only at GPRT2. This
suggests that additional sensors close to the Dallas area
would further improve the model results, and may help
reduce flood risk. High correlation values are achieved
for assimilation in both distributed and lumped model
structures. The DI provides the best model improve-
ment for the Dallas station with the lumped model.
Optimal and sub-optimal ensemble DA methods tend
to outperform KF in all three scenarios of assimilation
locations for the distributed model, while DI provides
poor model performance.

Figure 7. Comparison of NSE and Bias as a function lead time among the different DA methods for flood events A.3 and B.3
(lumped routing).
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The values of NSE and Bias, obtained for the different
model structures, are reported in Table 7. High NSE
values were obtained for AEnKF with W = 5, followed
by AEnKF with W = 2 in the distributed model. The DI
gave high NSE values because local updates were only at
the assimilation point and not along the entire river reach
for the lumped model structure. However, comparison

between the NSE values shows different results from
using KF, sub-optimal EnKF and optimal EnKF, high-
lighting that Kalman filtering methods are very sensitive
to the proper model error estimation. Overall, for the
distributed model, the streamflow at DALT2 tends to be
overestimated (Bias > 1). The frequent overestimation of
the observed flow may be due to inefficient calibration of
the parameter K3 (Equation (5)).

Figure 9 shows the streamflow profile along sub-
reach C1 obtained for assimilation at station GPRT2
and at two different time steps. As previously dis-
cussed, assimilation using both DI and NS does not
affect the profile upstream of the assimilation point.
Different results were obtained for Kalman filter meth-
ods. In the KF-based methods (KF, sub-optimal EnKF
and sub-optimal AEnKF), all the model states were
updated as a response to assimilation at a single loca-
tion. This is due to the distributed nature of the
Kalman gain matrix K. In fact, as shown in Section 5,
the maximum value of K is achieved at the assimilation
point, while the value of K reduces proportionally to

Figure 8. Taylor diagrams obtained using different DA methods for different locations of the flow sensors (distributed routing).

Table 7. Deterministic (NSE and Bias) and probabilistic (CRPS
and BSS) performance measures obtained in Experiment 2.
Method Lumped Distributed

NSE Bias CRPS BSS NSE Bias CRPS BSS

NoDA 0.77 0.96 77.04 - 0.47 1.11 139.52 -
DI 0.99 0.99 16.01 - 0.56 1.10 127.15 -
NS 0.98 0.99 22.37 - 0.52 1.11 130.87 -
KF 0.98 0.99 21.36 - 0.77 1.07 89.21 -
EnKF
(Sub-Opt)

0.94 0.97 29.31 0.60 0.93 1.00 30.74 0.49

EnKF (Opt) 0.95 0.96 27.55 0.67 0.96 0.99 22.79 0.70
AEnKF1 (Sub-Opt) 0.96 0.97 23.56 0.66 0.95 1.00 24.44 0.61
AEnKF1 (Opt) 0.96 0.97 22.51 0.71 0.97 0.99 19.31 0.74
AEnKF2 (Sub-Opt) 0.96 0.98 21.46 0.68 0.96 1.00 21.14 0.66
AEnKF2 (Opt) 0.97 0.97 20.62 0.72 0.98 0.99 17.18 0.77
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Figure 9. Streamflow profile and storage along sub-reach C1 at two particular time steps for assimilation in GPRT2 (distributed routing).

Figure 10. ROC (a and b) and reliability diagrams (c and d) for the flood event on Reach C for lumped and distributed structures A and B.
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the distance from the assimilation point. Another
interesting aspect is that, in the case of KF, a disconti-
nuity in the profile can be observed at the assimilation
point. However, such a discontinuity is not present in
the ensemble methods.

The same behaviour can be observed in Figure 9,
where the water storage (m3) between one cross-

section and the one upstream is calculated along sub-
reach C1 for the same time steps. It can be observed
that DI, NS and KF induce an abrupt change in the
water storage at the sensor location, while in ensemble
methods a smooth variation of storage is observed
along the river. However, it is interesting to observe
in Figure 9 that, in ensemble methods, the state update

Figure 11. Comparison of observations and model predictions, in terms of NSE, R and Bias, for different lead times and different
flow sensor locations during Peak 1 in the June 2015 flood event (distributed routing).

Table 8. Summary of the advantages and disadvantages of the five DA methods, in terms of updating the 3-par Musk model used
in this study.

Advantages Disadvantages

DI ● Best performance in cases of lumped modelling ● Assimilation effects dissipate quickly in cases of distributed modelling

NS ● Easy to implement ● Poor model performance in both lumped and distributed model structures

KF ● Good in cases of linear model
● Overall good results in both model structures

● Sensitive to model error estimation

EnKF ● Good results in cases of distributed model structure
● Good performance for optimal model error estimation

● Sensitive to ensemble spread definition
● Poor results in cases of lumped model structure for sub-optimal model error

estimation
● Computationally expensive
● Uncertain representation of flow profile in cases of distributed modelling

AEnKF ● Best performance in cases of both lumped and distributed
modelling

● Better results with the increasing number of past observa-
tions

● Sensitive to ensemble spread definition
● Computationally most expensive
● Uncertain representation of flow profile in cases of distributed modelling
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at upstream locations induces a non-univocal profile in
both EnKF and AEnKF. This is due to the ensemble
generation at the boundary conditions, which generates
different ensemble trajectories at upstream locations.

Figure 10 shows the ROC curve and reliability dia-
gram for the probabilistic analysis of the lumped and
distributed modes. By analysing the plot and observing
the statistical indicators, it is evident that all the models
provide excellent reliability (BSS in the range
[0.23; 0.37]) and discrimination ability score (AUC
always > 0.98). In general, the distributed optimal
models can be considered as the best alternative, hav-
ing performances that are marginally better than the
lumped non-optimal models. However, this perfor-
mance improvement can be considered as marginal in
most cases. Once again, EnKF (Sub-opt) can be con-
sidered a better solution than the rest.

In Figure 11, the NSE, R and Bias values of model
prediction, for up to 24 h lead time, are shown for the
June 2015 flood event, in Reach C (Peak 1 in Figure 3),
where the model simulation overestimated the
observed streamflow hydrograph. It can be seen that
assimilation at DALT2 station provides an overall
improvement in the model predictions. However,
such improvement is lost after a few hours, leading to
NSE, R and Bias values equal to those obtained without
any model update. Besides, assimilation at GPRT2 sta-
tion gives higher values of the statistical indexes for
high lead times. This is due to the propagation effect
from the assimilation point up to the target point at
DALT2. As described above, AEnKF and EnKF provide
better model performance for any lead time values,
while DI and NS are the less effective and accurate
DA methods for the distributed model in all scenarios
and sensor locations. In Table 8 we summarize the
advantages and disadvantages of the different DA
methods, in terms of updating the 3-par Musk model.

5 Conclusions

In this study, we evaluated the effects of different DA
approaches – direct insertion (DI), nudging scheme
(NS), Kalman filter (KF), ensemble Kalman filter
(EnKF) and asynchronous ensemble Kalman filter
(AEnKF) – on the assimilation of streamflow observa-
tions from within two structures, lumped and distribu-
ted, of a three-parameter Muskingum (3p-Musk) model.
Sub-optimal and optimal methods were used to estimate
the ensemble spread for EnKF and AEnKF approaches.

This study shows that, for the specific case studies,
assimilation of streamflow observations increases the
performance of the hydrological routing model.
Overall, higher statistical performance is obtained

with a lumped model compared to a distributed
model. This is because, in distributed modelling, the
maximum update is carried out at the assimilation
location, while at the other point the adjustment via
updating is relatively small. In the case of a lumped
model, the entire river reach receives the same amount
of update, with a consequent higher model improve-
ment at the downstream target point. In addition,
using past observations to update model states (e.g.
the AEnKF method) helps to achieve satisfactory
model results even with sub-optimal ensemble spread.

The results obtained in Experiment 1 (reaches A and
B) show that DI provided the best improvement among
the five DA methods used due to the model structure
(only one model state) and the assumption on perfect
flow observations. Comparably good results were
achieved for the optimal EnKF and AEnKF approaches.
Sub-optimal AEnKF performed better than KF and
sub-optimal EnKF, achieving similar results to DI.
Kalman filtering approaches were noticeably sensitive
to the definition of model error. Assimilation of
streamflow observations using NS produced unsatisfac-
tory model improvements.

For Experiment 2 and the distributed model of
Reach C, the best model improvement was obtained
by assimilating flow observations at distributed
upstream and downstream sensors. In contrast, assim-
ilation only at the upstream station resulted in small
improvement. Among all the DA methods, the highest
model performance was achieved using optimal and
sub-optimal AEnKF with W = 5 in both analysis and
forecasting steps. Additional inclusion of past observa-
tions longer than 5 hours didn’t increase the model
performance in the AEnKF approach. For the lumped
structure of Reach C, DI provided the best model
performance, as for reaches A and B. However, for
the distributed structure, DI was not as effective as
for the lumped structure in Reach C. This is mainly
because DI affects the model states only at that parti-
cular location and downstream of it, while upstream of
the assimilation point is not changed due to the nature
of the Muskingum model. An abrupt change in the
flow water storage profile was observed in the upstream
direction from the assimilation point when using DI,
NS and KF, while a smooth variation of flow was
observed in ensemble methods.

It is expected that these results will serve as possible
guidelines for selection of assimilation methods and
model structures for improved early warning systems
in assimilating increasingly abundant real-time obser-
vations into linear hydrological routing models.
Suggestions for future research include model error
specification considering the spatial and temporal
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correlation, and comparison between AEnKF and var-
iational data assimilation which implement asynchro-
nous assimilation in different approaches.
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