
Delft Center for Systems and Control

Design and Implementation of a
Development Platform for Indoor
Quadrotor Flight Control

Jose Libardo Navia Vela

M
as

te
ro

fS
cie

nc
e

Th
es

is

Design and Implementation of a
Development Platform for Indoor

Quadrotor Flight Control

Master of Science Thesis

For the degree of Master of Science in Systems and Control at Delft
University of Technology

Jose Libardo Navia Vela

September 17, 2018

Faculty of Mechanical, Maritime and Materials Engineering (3mE) · Delft University of
Technology

Copyright © Delft Center for Systems and Control (DCSC)
All rights reserved.

Delft University of Technology
Department of

Delft Center for Systems and Control (DCSC)

The undersigned hereby certify that they have read and recommend to the Faculty of
Mechanical, Maritime and Materials Engineering (3mE) for acceptance a thesis

entitled
Design and Implementation of a Development Platform for Indoor

Quadrotor Flight Control
by

Jose Libardo Navia Vela
in partial fulfillment of the requirements for the degree of

Master of Science Systems and Control

Dated: September 17, 2018

Supervisor(s):
dr.ir. T. Keviczky (chair)

ir. Z Zheng

Reader(s):
dr. S. Baldi

dr. J. Guo

Abstract

Research and development of flight control of quadrotor Unmanned Aerial Vehicles (UAVs)
have gained popularity during the past few years due to their deployment flexibility and wide
range of applications: agriculture, entertainment, cinematography, package delivery, search
and rescue, etc. This thesis project follows up this interest aiming to build a real-time devel-
opment platform for experimentation and test of indoor flight controllers in the Networked
Embedded Robotics in Delft laboratory. For this goal, we employ a Matrice 100 quadro-
tor from DJI alongside its ROS C++ Software Development Kit (SDK), develop a system
identification routine to model its autopilot, vertical and horizontal displacement, and based
on the attained results, we design and implement a control topology for real-time position
control of the UAV inside the laboratory by means of a Model Predictive Controller (MPC)
and a Linear-Quadratic Regulator. Finally, we enunciate and discuss potential applications
in which this development platform can be used.

Master of Science Thesis Jose Libardo Navia Vela

ii

Jose Libardo Navia Vela Master of Science Thesis

Table of Contents

Acknowledgements ix

1 Introduction 1
1-1 Thesis Objective and Contribution . 2
1-2 Document Outline . 2

2 Quadrotor Modeling 3
2-1 Reference Systems . 3
2-2 Dynamic Model . 4

3 Equipment and Setup Description 11
3-1 Aerial Platform . 11

3-1-1 Matrice 100 . 12
3-1-2 Manifold . 13
3-1-3 Guidance . 14
3-1-4 Wireless Serial Module . 15

3-2 Ground Station . 15
3-2-1 OptiTrack and Motive . 15
3-2-2 Emergency System . 16
3-2-3 On-ground PC, RC, and Router . 16

3-3 Block Diagram of the Complete Setup . 17

4 System Identification 19
4-1 Onboard Emergency Action . 19
4-2 Algorithm for Input-Output (I/O) Data Collection 19
4-3 Identification of the Low-level Controllers . 22

4-3-1 Results . 23
4-3-2 Validation . 25

Master of Science Thesis Jose Libardo Navia Vela

iv Table of Contents

4-3-3 Identification of the Roll and Pitch Trends 27
4-4 Drag Coefficient Identification . 28

4-4-1 Results . 28
4-4-2 Validation . 29

5 Controller Design and Implementation 33
5-1 Discretization and Sampling Time Selection . 33
5-2 Control Topology . 34
5-3 Application Programming Interface (API) . 35
5-4 Kalman Observers . 37

5-4-1 q̂ Observer Design . 37
5-4-2 r̂ Observer Design . 38

5-5 Linear-Quadratic Regulator (LQR) . 38
5-5-1 Fundamentals . 38
5-5-2 LQR Design . 39

5-6 Model Predictive Control (MPC) . 39
5-6-1 CVXGEN . 42
5-6-2 MPC Design . 44

5-7 Experimental Results . 47
5-7-1 Tracking . 49
5-7-2 Control Inputs . 50
5-7-3 Estimated States vs Measurements . 51

6 Conclusions, Recommendations, and Future Work 57
6-1 Conclusions . 57
6-2 Recommendations . 59
6-3 Future Work . 60

Bibliography 63

Glossary 69
List of Acronyms . 69
List of Symbols . 70

Jose Libardo Navia Vela Master of Science Thesis

List of Figures

2-1 World and body coordinate systems, {W} and {B}, respectively. (Adapted from
[1]). 3

2-2 Rotation axes of the attitude angles: roll (φ), pitch (θ), and yaw (ψ). (Adapted
from [1]). 4

2-3 Low-level controller representation. 5
2-4 Quadrotor’s free-body diagrams for non-zero pitch and roll angles, θ and φ, re-

spectively. 6
2-5 2D-view of the body-centered coordinate system, {B}, and the world frame, {W},

after a yaw rotation, ψ, about the z-axis. 7

3-1 Matrice 100 with Manifold, HC-11 wireless serial port module, dual-band antenna,
OptiTrack markers, and Guidance. 11

3-2 Matrice 100 and DJI simulator. 12
3-3 Dimension of the Matrice 100 (in millimeters) [1]. 13
3-4 Manifold’s connector overview [2]. 14
3-5 Guidance [3]. 14
3-6 HC-11. 15
3-7 OptiTrack and Motive . 15
3-8 Emergency system: Emergency button, Arduino, HC-11, and USB-to-TTL converter. 16
3-9 Block diagram of the entire setup: ground station to the left and aerial platform

to the right. 17

4-1 Onboard emergency action. 20
4-2 Flow chart of the algorithm for I/O data acquisition. 21
4-3 Transfer function in Simulink. 22
4-4 Identification input signals. 23
4-5 System identification: Original measurements. 24
4-6 System identification: simulation vs detrended and/or filtered measurements. . . 25

Master of Science Thesis Jose Libardo Navia Vela

vi List of Figures

4-7 Validation input signals. 26
4-8 Validation system identification: simulations vs detrended and/or filtered measure-

ments. 27
4-9 Simulink model for the identification of kd. 29
4-10 kd identification experiment: Input, measurements, and simulation. 29
4-11 kd identification experiment: Velocity and acceleration. 30
4-12 kd Validation experiment: x dynamics. 31
4-13 kd Validation experiment: y dynamics. 32

5-1 Implemented control topology. 35
5-2 Developed API. 36
5-3 LQR simulation. 40
5-4 MPC example. 41
5-5 MPC simulation without noise. 48
5-6 MPC simulation with sensor noise. 49
5-7 Control experiment work flow. 50
5-8 Experimental tracking response. 51
5-9 Experimental control actions. 52
5-10 r̂ observer experimental results. 52
5-11 q̂ observer experimental results: Part 1. 53

5-12 Observer error: θ − θ̂. 54
5-13 q̂ observer experimental results: Part 2. 55
5-14 Observer error in x and y. 55

6-1 Two-Quadrotor emulation of spacecraft rendezvous and docking, where xc denotes
the position of the chaser and xt the target’s. 62

Jose Libardo Navia Vela Master of Science Thesis

List of Tables

3-1 Specifications Matrice 100. 12
3-2 Specifications DJI Manifold. 14
3-3 Specifications on-ground PC. 17

4-1 System identification VAF. 25
4-2 Identified parameters of the low-level controllers. 26
4-3 System identification (validation) VAF. 28
4-4 Roll and pitch trends . 28

5-1 Step response’s rise time of the low-level controllers. 34

Master of Science Thesis Jose Libardo Navia Vela

viii List of Tables

Jose Libardo Navia Vela Master of Science Thesis

Acknowledgements

This thesis is the result of a 2-year adventure far from home during which I met many people,
visited diverse places for the first time, saw life fade out and reborn twice, lived alone, felt
alone but also loved from the distance, understood what missing someone means, arrived
to the strongest conclusion my mind has ever generated, and learned as never before about
myself. However, this journey would not have been possible without the help of many people
whom I would like to thank here:

• To my mother and father who have been there to support and guide every step I take
since I was born.

• To my uncle Crisanto who trusted in my capacities to pay back my study loan and who
has followed my progress since the very beginning.

• To my cousins Juan Manuel, Diana, Laura, and Jeisson who were there to read and
sometimes discuss all my crazy philosophical analyses, problems, and joyful moments.
One day we will be able to travel the world together.

• To all my Colombian and LATITUD friends with whom I shared uncountable unforget-
table moments, even before coming to The Netherlands.

• To Dr. Iván Mondragón and Dr. Jairo Hurtado for believing in and giving me their
recommendation letters.

• To my supervisor Dr.ir. Tamás Keviczky and co-supervisor ir. Zixuan Zheng for en-
trusting me this project and their resources.

• To my friend Srinath with whom I gladly worked most of the first year and kept on
sharing during the second.

• To all bloggers, programmers, and people who respond in forums such as Stack Overflow.
Without their indirect help, I would not have been able to resolve multiple implemen-
tation issues that popped up during this thesis.

• To all open-source and academia-free code developers, specially to Dr. Jacob Mattingley,
for allowing me to use their software free of charge.

Master of Science Thesis Jose Libardo Navia Vela

x Acknowledgements

• To Colfuturo and, therefore, to all honest Colombians who pay taxes. I could not have
come to Delft without your study loan.

• To Robert, Boaz, Nikhil, Iñigo, and Hai who were open to answer my questions in the
DCSC Lab.

• To Baptiste for his constant interest in my project and, more importantly, for telling
me about CVXGEN, which I used to solve my final implementation challenge.

• To engineer César Marín and SITE S.A.S. in Pereira, Colombia, for employing me in-
between the end of my bachelor and the start of my master’s degree. Similarly to Mrs.
Ana María Piedrahita for welcoming me in her house during that period.

On the other hand and as I did in my bachelor thesis, I would like to thank engineers Juan
Carlos Giraldo and Daniel Campos who recognized my skills and potential at early stages of
my bachelor. I will never forget your words and will always be thankful for them.

I also want to express my gratitude to all my relatives who have tracked my progress and
sent me all their positive energy and love from the distance.

Last but not least, I want to thank my grandmother for all the love she gave me while she
was alive and whom I miss every day.

Delft, University of Technology Jose Libardo Navia Vela
September 17, 2018

Jose Libardo Navia Vela Master of Science Thesis

“To my grandmother who will always be by my side...’

Let this thesis be a statement to all girls and boys, specially to my little cousins Amelia,
Nicolás and Juan Pablo, proving that dreams come true but not by themselves. One needs to
work for them, put a lot of effort, and make tough decisions while always respecting everyone.
And remember that dreams can only be achieved with the help of others, irrespective of who
you are or where you come from, so be thankful with those who have assisted you throughout
your life.

Chapter 1

Introduction

A quadrotor is a type of aircraft within the category: rotary wing, of the so-called Unmanned
Aerial Vehicles (UAVs) [4]. Its most relevant features are: Vertical Takeoff and Landing
(VTOL) and hovering, which make them suitable for applications where the available space
for takeoff and landing is limited and/or where vertical flight or hovering are important
assets, e.g. exploration of uneven terrain or mountains. These two characteristics have made
of quadrotors a popular platform in research and development of flight controllers during the
past few years [5, 4]. In fact, they are now employed in fields such as agriculture [6], search
and rescue [7], entertainment [8] and cinematography [9], for example.

The continuous advancement of embedded systems and the aforementioned popularity of
UAVs (specially quadrotors) have encouraged researchers to explore, exploit, and test the
capabilities of the named Model Predictive Control (MPC), whose applications used to be
limited to the process industry [10], on this type of aircraft. This is how, for instance, Viana
et al. [11] proposed a formation control strategy for a group of UAVs to avoid collisions and
obstacles, in their strategy each aircraft had a decentralized MPC capable of following a given
trajectory while complying with a set of constraints that prevented crashes against each other
and different shapes of obstacles. Similarly, Wang et al. [12] utilized an MPC to include
the aircraft’s constraints and to track the reference computed by a trajectory generator.
Hafez et al. [13] explored a multi-UAV dynamic encirclement, where each aircraft had an
MPC in charge of generating the drone’s trajectory while satisfying the defined encirclement
constraints.

However, researchers usually test their control algorithms in simulation models only, disre-
garding the challenges that may arise when porting their solutions to real setups: computa-
tional power, connectivity between the different components of the control scheme, sampling
time, model mismatch, safety measures, available sensors and complexity of the resulting con-
trollers, for instance. Still, real-life experiments can be found in the literature, for example,
Nägeli et al. [14] controlled a Parrot Bebop 2 via MPC for aerial videography, Potdar [15]
also utilized a Parrot Bebop 2 and an MPC for trajectory generation of a UAV plus payload
system including obstacle avoidance, Sa et al. [16] developed an MPC for horizontal con-
trol of a Matrice 100 from DJI. These works tried to explore the feasibility of MPC in real

Master of Science Thesis Jose Libardo Navia Vela

2 Introduction

quadrotors, at the same time, they serve to illustrate the importance of having a development
platform on/with which researchers and engineers can test their flight control algorithms.

1-1 Thesis Objective and Contribution

Considering the current necessity of counting with a reliable and practical setup where to test
various control algorithms within the facilities of the Networked Embedded Robotics in Delft
laboratory, this MSc. thesis aims to to build a development platform using a (quadrotor) Ma-
trice 100 from DJI to provide future students or interested engineers with the fundamental
software, hardware and position controller that enable them to easily (or readily) implement
their own control strategies. For this purpose, a typical procedure of modeling, system iden-
tification, controller design and testing will be followed.

The to-be-presented development platform differs from previous ones, mainly, in the con-
trol formulation. Here we divide the control problem in two: yaw (heading) regulation, i.e.
maintaining the yaw angle of the Matrice 100 at 0 rad, by means of an LQR, and horizontal
and vertical position control through a linear MPC. In addition, the dynamics of the drone’s
autopilot are accounted for in the MPC problem, unlike other implementations where they
are either completely omitted or used indirectly. The more intuitive drawback of the latter
feature is a more complex optimization problem.

On the other hand, the software is implemented in ROS C++, making it suitable for (eventual)
onboard processing, contrary to other software usually programmed in MATLAB, thus, not
intended for embedded systems.

1-2 Document Outline

The structure of this document is as follows:

• In Chapter 2, the dynamical model of the Matrice 100 is derived,

• Chapter 3 describes the equipment and setup utilized in the practical implementation
of this project, including the aerial platform and the laboratory resources,

• In Chapter 4, the system identification routine, tests, and results are given,

• In Chapter 5, the proposed control topology is introduced and the identified system
is utilized to design two Kalman observers, one LQR, and one MPC, for which the
simulation and experimental results are discussed,

• Finally, Chapter 6 presents the conclusions of this document, the recommendations
regarding the current state of the attained platform, and enunciates the future work.

Jose Libardo Navia Vela Master of Science Thesis

Chapter 2

Quadrotor Modeling

In this chapter, a dynamic model of the Matrice 100 is derived while considering that the
aircraft can be controlled via a Software Development Kit (SDK) from its manufacturer (DJI).
For this purpose, the required reference systems and attitude angles and defined first, then,
the dynamics is obtained by modeling the onboard controllers (embedded in the autopilot of
the UAV), followed by the analysis of the drone’s displacement in the horizontal plane.

2-1 Reference Systems

Figure 2-1: World and body coordinate systems, {W} and {B}, respectively. (Adapted from
[1]).

Prior to start analyzing the dynamics of the quadrotor, the coordinate systems on which it is
expressed need to be defined. Figure 2-1 presents the frames to be employed throughout this

Master of Science Thesis Jose Libardo Navia Vela

4 Quadrotor Modeling

document: i) the so-called East-North-Up (ENU) world reference system, {W}, where xW
points to the East, yW to the North, and zW completes the right-hand system; and ii) the
body-centered forward-left-up (FLU) frame, {B}, where xB points to the forward direction of
movement, yB to the left, and zB completes the right-hand system. The origin of the second
frame expressed in {W} is given by p =

[
x y z

]T
and corresponds to the absolute position

of the drone. Whilst this body frame moves with the aircraft, the world reference system,
{W}, is always fixed. These two coordinate systems comply with ROS’ Standard Units of
Measure and Coordinate Conventions [17], on which DJI’s ROS-SDK is developed [18].

Figure 2-2: Rotation axes of the attitude angles: roll (φ), pitch (θ), and yaw (ψ). (Adapted
from [1]).

Besides the world and body-centered reference systems, there are also the well-known Euler
angles which are used to describe the orientation of the aircraft. Figure 2-2 depicts the
rotation axes of these angles, namely: roll (φ), pitch (θ), and yaw (ψ); in the picture it can
also be seen that these angles are expressed w.r.t. the body frame, {B}. In other words, a
non-zero roll angle represents a rotation about xB, pitch about yB, and yaw about zB.

2-2 Dynamic Model

The Matrice 100 from DJI is controlled by an onboard autopilot, which can be accessed
through DJI’s SDK, which contains a set of functions that allows the user to send commands
to and retrieve telemetry data from the drone. By means of the available commands, one
can set desired roll and pitch angles, yaw rate, and vertical velocity, each of which utilizes an
independent controller.

Jose Libardo Navia Vela Master of Science Thesis

2-2 Dynamic Model 5

Figure 2-3: Low-level controller representation.

DJI does not provide any information regarding the internal implementation of the Matrice
100’s autopilot, hence, the embedded controllers need to be modeled and identified based
on input-output (I/O) data. A possible representation of the low-level controllers is shown
in Figure 2-3, where uφ, uθ, uψ̇, and uż are the desired roll, pitch, yaw rate, and vertical
velocity, respectively, and φ, θ, ψ̇, and ż are the actual measurements. According to [19, 16],
we can assume second-order dynamics for the aforementioned pitch and roll controllers, and
a first-order response for the vertical velocity and yaw rate, this assumption will be discussed
in detail in Chapter 4. Consequently, the following set of transfer functions are derived:

Gφ(s) = Φ
Uφ

= b0,φ
s2 + a1,φs+ a0,φ

,

Gθ(s) = Θ
Uθ

= b0,θ
s2 + a1,θs+ a0,θ

,

Gψ̇(s) = sΨ
Uψ̇

= b0,ψ
s+ a0,ψ

,

Gż(s) = sZ

Uż
= b0,z
s+ a0,z

,

(2-1)

where Ψ, Θ, Ψ, Z, Uφ, Uθ, Uψ̇, Uż are the Laplace transforms of φ, θ, ψ, z, uφ, uθ, uψ̇, and
uż, respectively; ai,j and b0,j for i = {0, 1} and j = {φ, φ̇, θ, θ̇, ψ̇, ż} are (non-zero) coefficients
to be identified, see Chapter 4. Their equivalent time-domain differential equations are:



φ̈ = −a0,φφ− a1,φφ̇+ b0,φuφ

θ̈ = −a0,θθ − a1,θθ̇ + b0,θuθ

ψ̈ = −a0,ψψ̇ + b0,ψuψ̇

z̈ = −a0,z ż + b0,zuż

. (2-2)

Although these equations can be grouped into one state-space model, for control purposes it
is more practical to have two models –this statement is elaborated later on this chapter as
well as in Chapter 5. Therefore, let us define q1 =

[
φ φ̇ θ θ̇ z ż

]T
, r =

[
ψ ψ̇

]
, the

Master of Science Thesis Jose Libardo Navia Vela

6 Quadrotor Modeling

input vector u =
[
uφ uθ uż

]T
, and assume all states to be measurable –see Chapter 3 for

details about the available sensors. Then the subsequent state-space models are obtained:

q̇1 = A1q1 +B1u,
y1 = C1q1,

(2-3)

with matrices:

A1 = diag

([
0 1
−a0,φ −a1,φ

]
,

[
0 1
−a0,θ −a1,θ

]
,

[
0 1
0 −a0,z

])
,

B1 = diag

([
0
b0,φ

]
,

[
0
b0,θ

]
,

[
0
b0,z

])
,

C1 = diag (1, 1, 1, 1, 1, 1) .

And,

ṙ = A2r +B2uψ̇,

yr = r,
(2-4)

with matrices

A2 =
[
0 1
0 −a0,ψ

]
,

B2 =
[

0
b0,ψ

]
,

where diag(·) is a (block) diagonal matrix.

(a) Quadrotor’s free-body diagram for non-zero
pitch angle, θ.

(b) Quadrotor’s free-body diagram for non-zero roll
angle, φ.

Figure 2-4: Quadrotor’s free-body diagrams for non-zero pitch and roll angles, θ and φ, respec-
tively.

Jose Libardo Navia Vela Master of Science Thesis

2-2 Dynamic Model 7

The individual control of roll and pitch angles, yaw rate, and vertical velocity allows us to
analyze the lateral displacement dynamics of the quadrotor separately [5, 20]. In addition,
we can assume the drone to be at hovering position, i.e. at the equilibrium point: że = 0,
θe = φe = 0, ψ̇e = 0, where the vertical forces are in equilibrium [16, 20, 21, 22].
Figure 2-4(a) illustrates the free-body diagram of the aircraft for a non-zero pitch angle
referenced to the body-centered coordinate system, {B}, where T is the thrust vector resulting
from the rotation of the propellers, T is its magnitude, Tz,B and Tx,B are the projection of T
on xB and zB, m is the mass of the UAV, and g is the acceleration of the gravity. From this
diagram we have:


Tz,B = T cos θ
Tx,B = T sin θ
Tz,B = mg

mẍB = Tx,B

. (2-5)

By rearranging these equations we arrive to:

ẍB = g tan θ. (2-6)

A similar analysis is performed using Figure 2-4(b), which depicts the free-body diagram for
a non-zero roll angle, yielding:

ÿB = −g tanφ. (2-7)

Figure 2-5: 2D-view of the body-centered coordinate system, {B}, and the world frame, {W},
after a yaw rotation, ψ, about the z-axis.

Regardless of the position of the quadrotor, zB is always parallel to zW. Hence, we can
transform the dynamics from {B} to {W} by applying the rotation matrix R(ψ) [14] given
in Eq. (2-8) [23], which represents a rotation about zW (also zB) by a yaw angle ψ, see
Figure 2-5.

R(ψ) =
[
cosψ − sinψ
sinψ cosψ

]
. (2-8)

One more effect to be considered is the aerodynamic drag, which according to [24] can be
modeled as a proportional linear force on the quadrotor given that it will be operated at

Master of Science Thesis Jose Libardo Navia Vela

8 Quadrotor Modeling

relatively low speeds. Combining this effect and the aforementioned dynamics in the world
frame, {W}, yields:

[
ẍ
ÿ

]
= R(ψ)

[
tan θ
− tanφ

]
g + kd

[
ẋ
ẏ

]

=
[
cosψ tan θ + sinψ tanφ
sinψ tan θ − cosψ tanφ

]
g + kd

[
ẋ
ẏ

]
.

(2-9)

where kd is the drag coefficient, whose value will be identified in Chapter 4.

Eq. (2-9) has infinite equilibrium points, to linearize it, a value for ψ has to be chosen and
it needs to be constant while the quadrotor is moving in the horizontal plane –the control
challenge due to this requirement is discussed in Chapter 5. Besides, the pitch and roll angles
(θ and φ) have to be small, which in reality is the case because the aircraft is going to be
operated at low speeds. By complying with these two conditions and naming ψ0 the value of
ψ during the horizontal displacement, the following linear equations are attained:

{
ẍ = (cosψ0θ + sinψ0φ) g + kdẋ

ÿ = (sinψ0θ − cosψ0φ) g + kdẏ
. (2-10)

By introducing a new state vector q =
[
q1

T x ẋ y ẏ
]
, taking into account Eq. (2-3),

and recalling that u =
[
uφ uθ uż

]T
, a new state-space model is constructed:

q̇ = Aqq +Bqu,
yq = Cq,

(2-11)

whose matrices are:

Aq =



0 1 0 0 0 0 0 0 0 0
−a0,φ −a1,φ 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0
0 0 −a0,θ −a1,θ 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 −a0,z 0 0 0 0
0 0 0 0 0 0 0 1 0 0

g sinψ0 0 g cosψ0 0 0 0 0 kd 0 0
0 0 0 0 0 0 0 0 0 1

−g cosψ0 0 g sinψ0 0 0 0 0 0 0 kd


,

Jose Libardo Navia Vela Master of Science Thesis

2-2 Dynamic Model 9

Bq =



0 0 0
b0,φ 0 0
0 0 0
0 b0,θ 0
0 0 0
0 0 b0,z
0 0 0
0 0 0
0 0 0
0 0 0


,

C = diag
(
C1,

[
1 0

]
,
[
1 0

])

=



1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1 0


.

The upcoming chapter presents the setup and equipment to be used in this thesis, including
the Matrice 100 whose dynamic model was derived here.

Master of Science Thesis Jose Libardo Navia Vela

10 Quadrotor Modeling

Jose Libardo Navia Vela Master of Science Thesis

Chapter 3

Equipment and Setup Description

This chapter describes the equipment and setup utilized in this thesis project in three sections:
i) the aerial platform, i.e. the aircraft and the onboard accessories; ii) the ground station,
which consists of two desktop PCs, an emergency system, a remote control (RC), a Wi-Fi
router, and a motion capture system (OptiTrack); and iii) the block diagram of the connections
between each of these resources.

3-1 Aerial Platform

Figure 3-1: Matrice 100 with Manifold, HC-11 wireless serial port module, dual-band antenna,
OptiTrack markers, and Guidance.

Figure 3-1 displays the aerial platform of this project: Matrice 100 from DJI. Onboard,
there are: i) an embedded computer called Manifold from DJI; ii) a visual sensing system

Master of Science Thesis Jose Libardo Navia Vela

12 Equipment and Setup Description

named Guidance also from DJI; iii) a radio frequency (RF) wireless serial module, HC-11; iv)
OptiTrack markers; and v) a 2 dB dual-band antenna –all the electronics are powered by a
TB47D battery from DJI [25]. These devices are described next.

3-1-1 Matrice 100

(a) Matrice 100 [26]. (b) DJI simulator.

Figure 3-2: Matrice 100 and DJI simulator.

The aircraft (alone) is presented in Figure 3-2(a). The relevant specifications of this quadrotor
are [18]:

Feature Value
Max. yaw rate 5π/6 rad/s

vertical velocity limits -5 to 5 m/s
Max. roll and pitch angles 0.611 rad

Table 3-1: Specifications Matrice 100.

Among the onboard sensors, those we use are: i) the inertial measurement unit (IMU), which
provides measurements of the attitude angles (φ, θ, and ψ), and their rates (φ̇, θ̇, and ψ̇) at
100 Hz; and ii) the barometer for altitude (z) and vertical velocity (ż) estimation (when there
is no GPS signal nor Guidance available) at 50 Hz. It is important to mention that the yaw
angle (ψ) is measured with respect to the North Magnetic Pole as internally indicated by the
compass calibration.

As it was said in Chapter 2, DJI offers an open-source Software Development Kit (SDK) (in
C++ and ROS C++), which can be installed in an external Linux computer. By doing so and
connecting it via UART to the drone’s autopilot, the user can program his/her own routines
to access the onboard sensor data and/or to send commands (e.g. desired attitude angles,
vertical velocity, or yaw rate) to the quadrotor.

DJI also provides a hardware-in-the-loop simulator within its DJI Assistant 2, which reads
and imports the configuration of the autopilot. A screenshot of the interface is shown in
Figure 3-2(b); within the measurements therein, those of our interest are: roll, pitch, and

Jose Libardo Navia Vela Master of Science Thesis

3-1 Aerial Platform 13

Figure 3-3: Dimension of the Matrice 100 (in millimeters) [1].

yaw angles, velocity in the z-axis, and angular rates (GyroX, GyroY, and GyroZ). Although
initial tests can be executed in this simulator, different real-life results are expected because
the actual platform has a few extra onboard accessories which are not part of the simulation
model, see Figure 3-1, and the physical conditions differ from those in this software.

Figure 3-3 shows the top view of the Matrice 100 with the propellers attached. According to
the measurements therein, the diameter of the UAV is 996 mm (0.996 m), which is comparable
to the available workspace, see Section 3-2-1; thence, special attention must be paid when
running experiments to avoid collisions.

3-1-2 Manifold

An onboard embedded computer, Manifold, with Ubuntu, ROS, and DJI’s (Onboard and
ROS) SDK installed, is connected via UART to the autopilot of the quadrotor; its connector
overview is displayed in Figure 3-4. A USB-to-TTL converter is hooked up to one of the
USB ports to connect a wireless serial module, HC-11; an Intel® Dual Band Wireless-AC
7260 (model 7260HWM) is installed on the mini PCIe Slot for Wi-Fi communication; a 2 dB
dual-band antenna is connected to the wireless adapter for signal reception and transmission.

Master of Science Thesis Jose Libardo Navia Vela

14 Equipment and Setup Description

Figure 3-4: Manifold’s connector overview [2].

Other specifications of this computer are listed in Table 3-2.

Feature Value
Processor Quad-core, 4-Plus-1™ARM®

Graphics processor Low-power NVIDIA Kepler™-based GeForce®

RAM 2 GB DDR3L
Storage 16 GB eMMC 4.51

Table 3-2: Specifications DJI Manifold.

3-1-3 Guidance

Figure 3-5: Guidance [3].

An onboard visual system, Guidance, is connected to the quadrotor’s autopilot via its CAN-
Bus. As presented in Figure 3-5, this system consists of a central computer that processes the
signals from a measurement unit, which comprises a stereo camera pair and two ultrasonic
sensors. The entire system has five (5) units, but for the purposes of this project, only one
(pointing downwards) is used now that it is sufficient to generate the vertical velocity estimate

Jose Libardo Navia Vela Master of Science Thesis

3-2 Ground Station 15

for the autopilot, which replaces that of the barometer [1]. The signal processing required to
compute this estimate is already implemented by DJI and is sent directly to the autopilot,
making it a plug and play accessory. However, the cameras have to be calibrated before using
them.

3-1-4 Wireless Serial Module

Figure 3-6: HC-11.

The RF wireless serial module HC-11, shown in Figure 3-6, allows the user to send data from
one of these devices to another using the 434 MHz band. In this project, a pair of HC-11 is
employed to send an emergency command from the ground station to the drone’s onboard
computer. The settings of both modules are: 4800 baud, 8-bit data, no check, one stop bit.

3-2 Ground Station

As mentioned at the beginning of this chapter, the ground station comprises: two desktop
PCs, an emergency system, a remote control (RC), a Wi-Fi router, and a motion capture
system (OptiTrack). The functional description of each component is given next.

3-2-1 OptiTrack and Motive

(a) OptiTrack cameras (encircled). (b) Position measurement in Motive.

Figure 3-7: OptiTrack and Motive

The motion capture system consists of ten (10) OptiTrack cameras, see Figure 3-7(a), that
track reflective markers, such as those in Figure 3-1, within a workspace of 6.0 × 3.0 × 2.6 m

Master of Science Thesis Jose Libardo Navia Vela

16 Equipment and Setup Description

(length × width × height). These cameras are connected to a Windows (desktop) computer
where a software calledMotive processes the data and, according to its calibration, determines
the absolute position of the aircraft (x, y, and z), see Figure 3-7(b). In addition, this software
also computes the orientation of the drone in the world frame, i.e. φW , θW , and ψ. These
angles are set to zero (0) at the moment the rigid body is created in Motive and can be reset
at any time by the user. Thus it is better to use OpiTrack’s yaw angle than the IMU’s (from
the drone). Although the readings in Motive do not comply with ROS’ coordinate standard,
the ROS package mocap_otitrack applies the required rotation matrix to express them in
ENU coordinates. Motive also broadcasts the resulting data onto the local network.

3-2-2 Emergency System

Figure 3-8: Emergency system: Emergency button, Arduino, HC-11, and USB-to-TTL converter.

Figure 3-8 shows the different elements of the emergency system: A push-button, an Arduino,
an HC-11, and a USB-to-TTL converter. These devices operate as follows: one terminal of
the button is connected to the 5 V end of the converter and the other to one interrupt pin
of the Arduino; while the button is released, the voltage in the interrupt pin is logical LOW,
but when it is pressed, it is HIGH. The Arduino is programmed to trigger a function that
sends an (ASCII) A to the HC-11 and the USB-to-TTL converter whenever a rising edge is
detected at that pin.

3-2-3 On-ground PC, RC, and Router

The second desktop computer runs Ubuntu Mate, the ROS master and a pair of ROS packages:
the main algorithm (for control or identification) and mocap_optitrack. The latter reads the
broadcasted OptiTrack data, rotates the coordinate system (to comply with ROS standards)
and publishes the result into a ROS topic. The main algorithm subscribes to that topic and
utilizes the measurements. The specifications of this desktop computer are listed in Table 3-3.

Jose Libardo Navia Vela Master of Science Thesis

3-3 Block Diagram of the Complete Setup 17

Feature Value
Processor Intel® Xeon® E5603 1.60 GHz
RAM 4 GB DDR3
Storage 35 GB

Table 3-3: Specifications on-ground PC.

The RC, on the other hand, is employed whenever manual control of the Matrice 100 is needed.
Besides, it has to be ON during the entire flight because it is required by the autopilot.

Finally, the router manages the local network to which all three computers (Manifold and
desktop PCs) are connected. While the ground station’s computers are hooked up via Eth-
ernet, the Manifold uses a 5.0 GHz Wi-Fi connection.

3-3 Block Diagram of the Complete Setup

Figure 3-9: Block diagram of the entire setup: ground station to the left and aerial platform to
the right.

Master of Science Thesis Jose Libardo Navia Vela

18 Equipment and Setup Description

The entire interconnection between the different elements of this thesis’ setup is presented in
Figure 3-9, where it can be seen that the user is responsible for operating the ground station,
i.e. he/she can push the emergency button, set up Motive, and utilize the on-ground PC.
In addition, he/she receives feedback from the main algorithm as on-screen messages, and
monitors the current status of the OptiTrack cameras and tracked objects on Motive.

On the other hand, the USB-to-TTL converter of the emergency system is connected to one of
the USB ports of the on-ground PC where the transmitted data is read by the main algorithm
which internally activates the required procedure to stop sending commands to the Matrice
100 when an emergency action is triggered.

The main algorithm can also import an input signal for identification or previously com-
puted matrices and vectors contained in text files stored in the database. Furthermore, it
generates the required log files for post-processing analyzes. This algorithm interacts with
the ROS master –which informs all ROS nodes about the existence of the others when they
are started–, mocap_optitrack and ROS-SDK (indirectly through the router). Although our
implementation runs the main algorithm in the on-ground PC, one may decide to port it
to the Manifold and execute it there. However, the emergency action procedure would have
to be revised (or bypassed which is highly discouraged) because there would not be a direct
connection between the emergency system and the algorithm.

As mentioned in the previous section, the (two-way) communication between the on-ground
PC and Manifold is achieved via Wi-Fi. The Manifold sends the available sensor measure-
ments to the main algorithm through the ROS-SDK, which at the same time reads the
messages sent from the emergency system and activates the emergency action if needed.
ROS-SDK uses DJI’s Onboard SDK to access the data from and to send commands to the
autopilot.

Finally, the autopilot controls the actuators (propellers’ rotors), processes the onboard sensor
measurements (from the IMU and Guidance), and executes the commands received from the
RC and/or the Onboard SDK.

The setup described here is employed in the subsequent chapters for system identification and
control.

Jose Libardo Navia Vela Master of Science Thesis

Chapter 4

System Identification

This chapter presents and explains the algorithms used for system identification of the low-
level controllers of the Matrice 100’s autopilot and the drag coefficient (kd), introduced in
Chapter 2. Besides, the attained results are also given and discussed.

Due to the possibility of unexpected behavior while testing and to prevent accidents, the
emergency system presented in Section 3-2-2 is essential when running an experiment. Thus,
we start by describing how the emergency actions are executed in both: the ground station
and the onboard computer (Manifold). In order to do so, the onboard procedure is treated
first and the on-ground action is explicated next in combination with the rest of the algorithm
used during the experiments.

4-1 Onboard Emergency Action

The flow chart of the onboard emergency action is depicted in Figure 4-1 –this process is
added to the (original) ROS-SDK, see Figure 3-9. The first step is to start the dij_sdk node.
Afterwards, the USB port where the HC-11 is connected to is opened and configured. Then,
the algorithm enters a loop where, every iteration, the USB data is read and compared with
an (ASCII) A, which corresponds to the emergency triggering command. The loop can be
stopped at any time by pressing Ctrl+C. If the emergency action is triggered, the control
of the drone is requested and the landing command is sent –due to a bug in the SDK, this
instruction may be given twice. Thenceforth, the algorithm waits until the aircraft is on
ground. At that moment, it releases the control of the drone, closes the USB port and ends
the execution by shutting down the node.

4-2 Algorithm for Input-Output (I/O) Data Collection

The algorithm utilized to obtain the necessary data for system identification is displayed in
the form of a flow chart in Figure 4-2. The procedure is as follows: first, the (identification)

Master of Science Thesis Jose Libardo Navia Vela

20 System Identification

Figure 4-1: Onboard emergency action.

input signals (one per low-level controller) are imported. Then, the number of samples (N),
the number of inputs (m), and the sampling time (h) of the signals are retrieved from the
imported data. Next, the log files are created (to store the measurement data: roll, pitch, yaw,
yaw rate, position, and vertical velocity). Afterwards, the USB port, where the USB-to-TTL
converter from the emergency system is connected, is opened to listen to the emergency call.
Subsequently, the (ROS) node is initiated and the subscribers and publishers to interact with
the drone (via ROS-SDK) and mocap_optitrack are instantiated. Following that, the control
of the drone is requested and, if obtained, the algorithm waits for the user to pilot the takeoff.
Once the user considers the drone is at a position that minimizes the chances of crashing,
he/she can command the start of the experiment. Now that the quadrotor may be slightly
tilted at that point, the attitude angles are reset. Afterwards, the time, sample instant (k),
loop rate, and the previous time stamp (prev_stamp) –that indicates at what moment the
last measurement was taken–, are initialized. The algorithm then enters a loop which is in
charge of: i) reading the USB to determine if the emergency action has to be activated; ii)
getting the current time stamp (current_stamp) and updating the time variable if needed;

Jose Libardo Navia Vela Master of Science Thesis

4-2 Algorithm for Input-Output (I/O) Data Collection 21

Figure 4-2: Flow chart of the algorithm for I/O data acquisition.

Master of Science Thesis Jose Libardo Navia Vela

22 System Identification

iii) logging the current outputs (measurements) and inputs; iv) commanding the inputs to
the autopilot and updating k and the previous stamp; v) calling the function ros::spinOnce()
to update all measurement data; and vi) sleeping for as long as it is needed to comply with
the desired rate of the loop. When the entire input signals, i.e. the N samples, have been
commanded or the user stops the loop, the drone lands and the log files are closed, finishing
the experiment.

4-3 Identification of the Low-level Controllers

Once the input-output (I/O) data has been obtained (using the algorithm explained above), a
grey-box identification approach is followed. This method consists on computing the value of
the parameters of a pre-derived mathematical model in order to fit its response to that of the
actual system [27]. The goal of this section is to identify the value of the coefficients in Eq. (2-
1), which as explained in Chapter 2 models the I/O behavior of the low-level controllers. This
equation is repeated here for readability:

Gφ(s) = b0,φ
s2 + a1,φs+ a0,φ

,

Gθ(s) = b0,θ
s2 + a1,θs+ a0,θ

,

Gψ̇(s) = b0,ψ
s+ a0,ψ

,

Gż(s) = b0,z
s+ a0,z

.

To attain such a goal, the acquired I/O data are imported into MATLAB, and then into
Simulink’s Parameter Estimation toolbox –a tutorial can be found in [28]. This toolbox
computes the value of the parameters by solving the following (curve fitting) optimization
problem [29]:

min
pid

‖F (pid, uid)− yid‖22, (4-1)

where pid are the parameters to identify (grouped into a vector), uid contains the input signal,
yid the sensor measurements (response of the system), and F () is a function internally built by
the toolbox from a Simulink block model that represents the dynamics of the to-be-identified
system. Figure 4-3 depicts the diagram utilized in this case which is simply a transfer function
block whose numerator and denominator change depending on the controller of interest. In
other words, each transfer function is estimated individually.

Figure 4-3: Transfer function in Simulink.

Jose Libardo Navia Vela Master of Science Thesis

4-3 Identification of the Low-level Controllers 23

0 2 4 6 8 10 12 14 16 18 20

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

(a) Pitch input signal (uθ).

0 2 4 6 8 10 12 14 16 18 20

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

(b) Roll input signal (uφ).

0 10 20 30 40 50 60 70

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

(c) Yaw rate input signal (uψ̇).

0 10 20 30 40 50 60 70 80

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

(d) Vertical velocity input signal (uż).

Figure 4-4: Identification input signals.

Square signals are used as inputs for identification because we are working with either first or
second-order systems, which can be fully characterized with such type of inputs. In addition,
their sampling time, h, is 0.02 s, which corresponds to a sampling frequency of 50 Hz (fre-
quency at which the vertical velocity estimate is broadcasted by the quadrotor’s autopilot,
see Chapter 3). Figure 4-4 presents the employed input signals, notice that their amplitude
and frequency are such that when applied to the quadrotor, it does not crash into the win-
dows, net, or ceiling around the workspace, while still capturing the dynamic response of the
system.

4-3-1 Results

The corresponding responses of the low-level controllers are presented in Figure 4-5. Figure 4-
5(a) and Figure 4-5(b) exhibit a second-order-like response, confirming the previously made
assumption regarding the order of the pitch and roll controllers, and in both cases there is
a trend in the signals, which may correspond to the operation point of these controllers.
On the other hand, the yaw rate and vertical velocity measurements in Figure 4-5(c) and
Figure 4-5(d), respectively, are noisy, yet, a first-order like response can be distinguished.

Master of Science Thesis Jose Libardo Navia Vela

24 System Identification

0 2 4 6 8 10 12 14 16 18 20

-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

(a) Original pitch response (θ).

0 2 4 6 8 10 12 14 16 18 20

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

(b) Original roll response (φ).

0 10 20 30 40 50 60 70

-0.2

-0.1

0

0.1

0.2

0.3

(c) Origianl yaw rate response (ψ̇).

0 10 20 30 40 50 60 70 80

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

(d) Original vertical velocity response (ż).

Figure 4-5: System identification: Original measurements.

Before estimating the parameters of each controller, it is important to filter the measurement
data and detrend the pitch and roll signals [30]. By doing so, we can expect to obtain accurate
results and to actually identify linear models. The selected filter is a moving average with
span 5 –applied using the function smooth() in MATLAB [31]–, which is chosen because it is
optimal for reducing random noise, making it ideal for time domain signals [32].

The processed measurements and simulations of the identified models are displayed in Fig-
ure 4-6, where it can be observed that in each picture both signals are alike. In order to
have a metric to determine whether the obtained results are reliable, the so-called Variance
accounted for (VAF), see Eq. (4-2), is computed for each controller, this value represents the
degree of closeness of the simulation to the experimental data [30]. The results are summa-
rized in Table 4-1 and lead us to the conclusion that the identification is successful now that
all VAFs are above 92%. The attained parameters are listed in Table 4-2

VAF(yid(k), ŷid(k)) = max

0,

1−

1
N

N∑
k=1
‖yid(k)− ŷid(k)‖22

1
N

N∑
k=1
‖yid(k)‖22

 ·100%

 . (4-2)

Jose Libardo Navia Vela Master of Science Thesis

4-3 Identification of the Low-level Controllers 25

0 2 4 6 8 10 12 14 16 18 20

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

Measurements

Simulation

(a) Pitch (θ) response and simulation.

0 2 4 6 8 10 12 14 16 18 20

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08
Measurements

Simulation

(b) Roll (φ) response and simulation.

0 10 20 30 40 50 60 70

-0.2

-0.1

0

0.1

0.2

0.3
Measurements

Simulation

(c) Yaw rate (ψ̇) response and simulation.

0 10 20 30 40 50 60 70 80

-0.1

-0.05

0

0.05

0.1

0.15

Measurements

Simulation

(d) vertical velocity (ż) response and simulation.

Figure 4-6: System identification: simulation vs detrended and/or filtered measurements.

In Eq. (4-2), yid is the measured data, ŷid is the outcome of the simulation, and N is the total
number of samples.

Controller VAF (%)
Roll (φ) 98.5
Pitch (θ) 98.9

Vertical velocity (ż) 92.4
Yaw rate (ψ̇) 98.4

Table 4-1: System identification VAF.

4-3-2 Validation

New experiments are executed to validate the attained parameters. The input signals are
displayed in Figure 4-7. In this opportunity, a sawtooth signal is chosen as input for the yaw
rate and vertical velocity controllers (uψ̇ and uż, respectively), moreover, these two are applied
at the same time in order to observe if there is coupling between both controllers. Similarly,

Master of Science Thesis Jose Libardo Navia Vela

26 System Identification

Parameter Value
b0,φ 47.3101
a1,φ 8.3898
a0,φ 49.9070
b0,θ 42.9685
a1,θ 7.9179
a0,θ 45.4188
b0,ψ 4.0083
a0,ψ 4.1094
b0,z 2.3269
a0,z 2.2820

Table 4-2: Identified parameters of the low-level controllers.

0 5 10 15 20 25

-0.1

-0.05

0

0.05

0.1

0.15

(a) Input signal for pitch (uθ).

0 5 10 15 20 25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

(b) Input signal for roll (uφ).

0 10 20 30 40 50 60 70

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

(c) Input signal for yaw rate (uψ̇).

0 10 20 30 40 50 60 70

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

(d) Input signal for vertical velocity (uż).

Figure 4-7: Validation input signals.

the roll and pitch inputs (uφ and uθ) are commanded at the same time, while keeping the other
two inputs at 0 for safety reasons, as combining all four inputs without a high-level controller
can result in severe collisions against the windows or the net (surrounding the workspace)
since the movement can be too fast for the user to push the emergency button on time. The

Jose Libardo Navia Vela Master of Science Thesis

4-3 Identification of the Low-level Controllers 27

latter two signals were generated by manually piloting the drone and recording the measured
angles, which are then post-processed (as explained in Section 4-3-1) and stored. By doing
so, we can expect the drone not to crash immediately after starting the experiment, giving
time to the user to react if required; besides, the resulting signal has a non-periodic shape,
allowing us to better test the identified models.

0 5 10 15 20 25

-0.1

-0.05

0

0.05

0.1

0.15 Measurements

Simulation

(a) Pitch (θ) response and simulation.

0 5 10 15 20 25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1
Measurements

Simulation

(b) Roll (φ) response and simulation.

0 10 20 30 40 50 60 70

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25
Measurements

Simulation

(c) Yaw rate (ψ̇) response and simulation.

0 10 20 30 40 50 60 70

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25
Measurements

Simulation

(d) vertical velocity (ż) response and simulation.

Figure 4-8: Validation system identification: simulations vs detrended and/or filtered measure-
ments.

The measured data is detrended, filtered and plotted in Figure 4-8. As expected, both: the
simulations and the measurements are alike, despite having thoroughly different input signals
compared to those used for identification. Once again, the VAF is used as metric to determine
how close the simulation is to the experimental data, the results are presented in Table 4-3,
given that all of them are above 96%, we conclude that the identification of the low-level
controllers has been validated satisfactorily.

4-3-3 Identification of the Roll and Pitch Trends

As mentioned in Section 4-3-1, the roll and pitch measurements have a trend, here we de-
termine its value. To do so, we take the mean (linear trend) of these two outputs for each

Master of Science Thesis Jose Libardo Navia Vela

28 System Identification

Controller VAF (%)
Roll (φ) 96.4
Pitch (θ) 97.7

Vertical velocity (ż) 98.8
Yaw rate (ψ̇) 97.1

Table 4-3: System identification (validation) VAF.

of the experiments showed in the previous sections and, then, we compute their average.
This procedure is resumed in Table 4-4. The computed trends (0.0219 in roll, φ, and 0.0501
in pitch ,θ) need to be subtracted from the measurements when simulating the system, as
explained before, and when using these angles for control. As it can be seen in Table 4-4,
the trends change slightly between experiments, thus the user should remember that the
calculated averages are only guesses of the real values.

1 2 3 4 5 6 7 8 Average
Roll (φ) 0.0288 0.0223 0.0182 0.0242 0.0183 0.0262 0.0220 0.0149 0.0219
Pitch (θ) 0.0596 0.0632 0.0592 0.0548 0.0439 0.0587 0.0545 0.0483 0.0501

Table 4-4: Roll and pitch trends

4-4 Drag Coefficient Identification

In Chapter 2, it was said that there is a drag coefficient, kd, that needs to be identified as
it is part of Eq. (2-9), which describes the horizontal displacement of the quadrotor and is
repeated here for readability:

[
ẍ
ÿ

]
=
[
cosψ tan θ + sinψ tanφ
sinψ tan θ − cosψ tanφ

]
g + kd

[
ẋ
ẏ

]
.

Now that the parameters of the low-level controllers have been found and based on Eq. (2-9),
we can utilize grey-box identification, similarly as in Section 4-3, to obtain the value of kd. For
this purpose, the Simulink model displayed in Figure 4-9 is built, where the block called ddx
contains the non-linear expression of ẍ, the G_ blocks are the identified transfer functions,
the input is all four available commands (uφ, uθ, uż, and uψ̇), and the output is the position
in x.

4-4-1 Results

The identification experiment consists in commanding the pitch signal (uθ) shown in Figure 4-
10(a) while keeping the other three inputs at 0 with the aim of exciting the dynamics in the
x-axis. As it can be seen in Figure 4-10(b), the difference between the simulation and the
measurements increases with time. In order to analyze the cause of this behavior, the recorded
position in x is differentiated twice and the results are plotted alongside the simulation in
Figure 4-11. Unsurprisingly, the discrepancy between the simulated and indirectly measured

Jose Libardo Navia Vela Master of Science Thesis

4-4 Drag Coefficient Identification 29

Figure 4-9: Simulink model for the identification of kd.

0 1 2 3 4 5 6 7

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

(a) Input signal.

0 1 2 3 4 5 6 7

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6
Measurements

Simulation

(b) Position x

Figure 4-10: kd identification experiment: Input, measurements, and simulation.

acceleration is small during the entire experiment, see Figure 4-11(b), in fact the VAF equals
93.6%. Likewise, when observing the velocity plots in Figure 4-11, the two signals have the
same shape and almost the same magnitude up to 4 s, from that moment on, the difference
is noticeable. Thus, the reasoning is that the errors in the acceleration are accumulated as
the signal is integrated. However, for the purpose of this project, it is sufficient that the
response of the model and the real system are comparable for a short time span because the
predictions of the (to-be-designed) MPC will be limited to a given amount of samples. Lastly,
the obtained value of kd is 0.3293.

4-4-2 Validation

To corroborate the value of kd, the data collected during the validation experiment of the
pitch and roll low-level controllers is utilized, i.e. the same inputs are employed, see Figure 4-
7(a) and Figure 4-7(b). Besides, the non-linear expression of ÿ, see Eq. (2-9) on page 8, is

Master of Science Thesis Jose Libardo Navia Vela

30 System Identification

0 1 2 3 4 5 6 7

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Measurements

Simulation

(a) Velocity ẋ.

0 1 2 3 4 5 6 7

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8
Measurements

Simulation

(b) Acceleration ẍ.

Figure 4-11: kd identification experiment: Velocity and acceleration.

included in the simulation.

Regarding the dynamics in x, it can be seen in Figure 4-12(c) that the two signals (mea-
surements and simulation) have mostly the same values, moreover, the VAF between them is
87.9%, which allows us to state that the identification is successful –notice that the sudden
peaks in the measurements are due to taking direct derivatives of the position. However and
as explained before, once the acceleration is integrated to obtain the velocity displayed in
Figure 4-12(b), the amplitude of the simulation differs compared to the measurements, and
this effect is more evident in the position. Yet, the shapes are conserved.

On the other hand, the responses in y are plotted in Figure 4-13. Similarly to what happened
in x, the simulated and measured acceleration are alike and have a VAF of 83.3%, but dis-
crepancies can be observed in the velocity, see Figure 4-13(b), and even more prominently in
Figure 4-13(a). Given that the shapes of all simulated signals are essentially the same as the
measured ones and that during the first seconds their amplitudes are similar, we can conclude
that the derived models have been validated.

Jose Libardo Navia Vela Master of Science Thesis

4-4 Drag Coefficient Identification 31

0 5 10 15 20 25

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

Measurements

Simulation

(a) Position x.

0 5 10 15 20 25

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Measurements

Simulation

(b) Velocity ẋ.

0 5 10 15 20 25

-1.5

-1

-0.5

0

0.5

1

1.5

Measurements

Simulation

(c) Acceleration ẍ.

Figure 4-12: kd Validation experiment: x dynamics.

Master of Science Thesis Jose Libardo Navia Vela

32 System Identification

0 5 10 15 20 25

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8
Measurements

Simulation

(a) Position y.

0 5 10 15 20 25

-0.5

0

0.5

1
Measurements

Simulation

(b) Velocity ẏ.

0 5 10 15 20 25

-1.5

-1

-0.5

0

0.5

1

1.5

2
Measurements

Simulation

(c) Acceleration ÿ.

Figure 4-13: kd Validation experiment: y dynamics.

Jose Libardo Navia Vela Master of Science Thesis

Chapter 5

Controller Design and Implementation

In this chapter the control strategies: LQR, MPC, and Kalman observer, are explained and
employed to design a position controller for the Matrice 100 using the models identified in
Chapter 4. An application programming interface (API) in ROS C++ has been developed
to implement the control topology and to interact with the UAV, a functional explanation of
this software is also given here. Besides, the attained experimental results are presented and
analyzed.

5-1 Discretization and Sampling Time Selection

Before introducing the control topology, let us discretize the models derived in Chapter 2:

q̇ = Aqq +Bqu,
yq = Cq,

and

ṙ = A2r +B2uψ̇,

yr = r,

where q =
[
φ φ̇ θ θ̇ z ż x ẋ y ẏ

]T
, yq =

[
φ φ̇ θ θ̇ z ż x y

]T
, r =

[
ψ ψ̇

]T
,

and u =
[
uφ uθ uż

]T
. As discretization method, we apply a zero-order hold approximation

for a given sampling time, h, yielding [33]:

q(k + 1) = Aq(k) +Bu(k),
yq(k) = Cq(k),

(5-1)

with matrices

Master of Science Thesis Jose Libardo Navia Vela

34 Controller Design and Implementation

A = eAqh,

B =
∫ h

0
eAqsdsBq,

where e· is the matrix exponential and k is the time index. Similarly we have:

r(k + 1) = Arr(k) +Bruψ̇(k),
yr(k) = r(k),

(5-2)

with matrices,

Ar = eA2h,

Br =
∫ h

0
eA2sdsB2.

In order to determine the sampling time, h, we can simulate the step response of the identified
low-level controllers, obtain its rise time, Tr, and according to the rule of thumbs given in [33]
choose h such that Tr

h ≈ 4 to 10. The resulting rising times, h = Tr
4 , and h = Tr

10 are listed in
the following table:

Low-level controller Tr (s) h = Tr
4 (s) h = Tr

10 (s)
Gφ 0.2611 0.0653 0.0261
Gθ 0.2714 0.0678 0.0271
Gż 0.9625 0.2406 0.0962
Gψ̇ 0.5346 0.1336 0.0535

Table 5-1: Step response’s rise time of the low-level controllers.

Based on Table 5-1 and the aforementioned rule of thumbs, we have hmin = 0.0261 s and
hmax = 0.0653 s that translate into fmax = 38 Hz and fmin = 15 Hz. Recalling that the
measurement of the vertical velocity, ż, is broadcasted at 50 Hz, see Chapter 3, we select a
sampling frequency, fs, of 25 Hz (a factor of 50 Hz), ergo, h = 0.04 s.

5-2 Control Topology

The control topology implemented in this thesis is displayed in Figure 5-1. To start explaining
this diagram, the reader should remember that from the onboard sensors of the Matrice 100
we gather the following measurements (see Chapter 3): the roll and pitch angles (φ(k) and
θ(k)), the angular rates (φ̇(k), θ̇(k) and ψ̇(k)), and the vertical velocity (ż(k)); whilst from
the motion camera system OptiTrack, we obtain: the position of the drone (x(k), y(k), and
z(k)) and the yaw angle (ψ(k)).

The implemented topology contains two Kalman observers/filters: r̂ observer and q̂ observer.
The first one filters yr(k) resulting in the filtered state vector r̂(k); the second is used to
estimate ẋ(k) and ẏ(k) while also filtering yq(k), producing the state vector q̂(k).

Jose Libardo Navia Vela Master of Science Thesis

5-3 Application Programming Interface (API) 35

Figure 5-1: Implemented control topology.

As it was mentioned in Chapter 2, for control we need the yaw angle, ψ, to be constant
because the linearization of the x-y dynamics depends on it. Hence, Eq. (5-1) is obtained for
a particular value ψ = ψ0, which we have chosen to be 0 rad. To satisfy this condition, we
use an LQR controller that regulates the yaw angle, see the gain −KLQR in Figure 5-1.

The MPC in Figure 5-1 is in charge of computing the control action u(k) to track the reference
ref =

[
zref xref yref

]T
, i.e., it controls the position of the drone. The loop is closed by

feeding back the estimated q̂(k) to the MPC.

The output of both controllers is then fed to the drone (Matrice 100) and to the corresponding
observers.

5-3 Application Programming Interface (API)

Figure 5-2 illustrates the application programming interface (API), coded in ROS C++, that
has been developed to implement the described control topology in real-time and comprises
four classes: LinearMPC, Observer, LQ, and SubAndPub, a general-purpose library: Utilities,
and the CVXGEN-generated solver needed by the MPC, see Section 5-6-1. This interface
has been coded such that, to the largest extend possible, it can be used not only in the
particular control case treated in this thesis, but wherever any of the blocks in Figure 5-1

Master of Science Thesis Jose Libardo Navia Vela

36 Controller Design and Implementation

Figure 5-2: Developed API.

are required, i.e. an observer, an LQR/LQI, an MPC, and an interface with the Matrice
100, either outdoors (using GPS) or indoors (using OptiTrack). For this reason, each class is
independent from the others, but all of them import the Utilities library and diverse header
files from ROS packages. Despite the flexibility of this API, users are recommended to read
the documentation (available alongside the source code upon request) before using it in order
to know its limitations or specific conditions, e.g. format of the text files containing pre-
computed matrices, observer structure, class constructors, etc.

The CVXGEN solver is an auto-generated library from CVXGEN necessary to execute the
online optimization of the MPC. Consequently, it works only for the MPC formulation that
will be presented in Section 5-6-2.

The LinearMPC class, per contra, is general enough to handle other kind of CVXGEN-
generated MPCs or, at least, slight modifications or additions would be required for this
purpose.

The Observer class can be directly used to implement any LTI observer as described in
Section 5-5. However, this class does not compute the Kalman (observer) gain K, the user
needs to calculate it beforehand and import it.

The LQ class allows us to implement either an LQR or a Linear-Quadratic-Integral control
(LQI), see [34]. Alike to the Observer class, LQ does not compute the corresponding feedback
gain KLQR (or KLQI in case of an LQI), so the user needs to use a third-party software for
that. Now that we cannot include the actuator limits within the LQR or LQI formulation,
this class incorporates a saturation check whose bounds can be set by the user or imported
from a file.

Finally, the class SubAndPub handles the ROS subscribers, publishers, and services, making
it the interface with the Matrice 100. Although not explicitly mentioned before, this class
was also used in the algorithm for I/O data acquisition presented in Figure 4-2 on page 21.

The main algorithm in Figure 3-9 on page 17 utilizes all four classes and the Utilities library to
execute the controller as well as to log the sensor data, observer estimates, control actions, and
reference signals. These logs are imported in MATLAB afterwards to assess the controller’s
performance.

Now that both the control topology and the software implementation have been described, we
move on to the observer and controller design, which is done in MATLAB via simulation using

Jose Libardo Navia Vela Master of Science Thesis

5-4 Kalman Observers 37

the identified models and is implemented later by means of the API for real-life experiments
with Matrice 100.

5-4 Kalman Observers

Before explaining how the observers in Figure 5-1 are tunned, we present the basics of an LTI
(steady-state) Kalman observer. For explanation purposes, let us introduce additive process
and sensor noises to the system model from Eq. (5-1):

q(k + 1) = Aq(k) +Bu(k) + wq(k),
yq(k) = Cq(k) + vq(k),

(5-3)

where q(k) ∈ Rn, u(k) ∈ Rm, and wq(k) ∈ Rn and vq(k) ∈ Rm are zero-mean white noise
sequences with joint covariance matrix:

E

[[
wq(k)
vq(k)

] [
wq(j)T vq(j)T

]]
=
[
Qq 0
0 Rq

]
∆(k − j) ≥ 0, (5-4)

Rq > 0 and ∆(k) is the unit pulse. The Kalman observer for this system takes the form of
Eq. (5-5) [30]:

q̂(k + 1) = Aq̂(k) +Bu(k) +Kq(yq(k)− ŷq(k))
= (A−KqC)q̂(k) +Bu(k) +Kqyq(k),

ŷq(k) = Cq̂(k),
(5-5)

where Kq is the so-called Kalman gain computed from the positive-definite solution, P ∈
Rn×n, of the following Riccati-type equation:

P = APAT +Qq −APCT (CPCT +Rq)−1CPAT ,

Kq = APCT (CPCT +Rq)−1.
(5-6)

5-4-1 q̂ Observer Design

Based on the previous explanation, we design the q̂ observer shown in Figure 5-1. The Kalman
gain, Kq, is found using MATLAB’s dare() command (with AT and CT as the first two
arguments, and transposing the returned gain matrix) [35], which solves the Riccati equation
presented in Eq. (5-6). For this controller we employ the subsequent variance matrices:

Rq = diag(1.4× 10−5, 1.59× 10−4, 1.59× 10−5, 1.63× 10−4, 5× 10−4, 1.99× 10−4,

5× 10−4, 7.5× 10−5),
Qq = diag(1× 10−5, 1× 10−5, 1× 10−5, 1× 10−5, 1× 10−5, 1× 10−5, 1× 10−4, 5× 10−5,

1× 10−5, 5× 10−5).
(5-7)

Master of Science Thesis Jose Libardo Navia Vela

38 Controller Design and Implementation

In general, the diagonal values of Rq can be found by letting the drone hover with zero input,
i.e. uφ = uθ = uż = uψ̇ = 0, and then computing the variance of the measurements. This
method produces an estimate of the sensor’s noise variance. Notwithstanding, there is no
similar recipe to determine the variance matrix of the process noise, Qq, the only hint we
have is that it is most likely on the same order of magnitude as Rq or close to it, else, the
noise would be too large and would be reflected in the measurements.

On the other hand, note that yq(k) includes the roll and pitch angles whose trends were
estimated in Chapter 4 and are subtracted by the observer before estimating the states.

5-4-2 r̂ Observer Design

Analogously to Eq. (5-5), the state-space description of the r̂ observer is:

r̂(k + 1) = Arr̂(k) +Bruψ̇(k) +Kr(yr(k)− ŷr(k))
= (Ar −Kr)r̂(k) +Bruψ̇(k) +Kryr(k),

ŷr(k) = r̂(k),
(5-8)

Once again, the dare() command from MATLAB is used to compute the Kalman gain, Kr.
In this occasion, the variance matrices are:

Rr =
[
6.9× 10−5 0

0 9× 10−5

]
,

Qr =
[
1× 10−4 0

0 1× 10−4

]
.

(5-9)

The selection of the diagonal values of Rr and Qr follows the same logic as per Rq and Qq.

5-5 Linear-Quadratic Regulator (LQR)

The first controller we are interested in is an LQR to regulate the yaw angle, ψ, as commented
in Section 5-2. The fundamentals regarding this type of controller are explicated first, followed
by the design procedure and the corresponding simulation.

5-5-1 Fundamentals

To begin with, the implemented LQR is an optimal state feedback controller that applies to
the system the solution of the subsequent optimization problem [33, 36]:

min
∞∑
k=0

(
r(k)TQLQRr(k) + uψ̇(k)RLQRuψ̇(k)

)
,

s.t. r(k + 1) = Arr(k) +Bruψ̇(k),
(5-10)

Jose Libardo Navia Vela Master of Science Thesis

5-6 Model Predictive Control (MPC) 39

where QLQR ∈ R2×2 and RLQR > 0. The solution of this problem is based on the unique
positive-definite solution, PLQR ∈ R2×2, of the following discrete-time algebraic Riccati equa-
tion (DARE) [33, 35]:

ATr PLQRAr − PLQR −ATr PLQRBr(BT
r PLQRBr +RLQR)−1BT

r PLQRAr +QLQR = 0. (5-11)

The optimal feedback gain, KLQR, and the control action, uψ̇(k), are given by:

KLQR = (BT
r PLQRBr +RLQR)−1BT

r PLQRAr,

uψ̇(k) = −KLQRr(k).
(5-12)

By applying this optimal control input as presented in Figure 5-1, one can drive all states to
the origin.

5-5-2 LQR Design

In order to tune this controller, we: i) vary the weighting matrices QLQR and RLQR, ii)
compute the corresponding feedback gainKLQR using MATLAB’s lqr() command [36], and iii)
simulate the closed loop (including the r̂ observer) to determine if the achieved performance
is satisfactory, if not, we repeat this procedure. The performance criteria are: i) ψ should
converge softly to 0 rad, ii) the settling time should be less than 3 s, and iii) the control
action should be as low as possible. Following these conditions, we arrived to the subsequent
weighting matrices:

QLQR =
[
20 0
0 1

]
,

RLQR = 2.
(5-13)

As it can be seen, QLQR has high penalty on the first state, ψ(k), to ensure fast convergence
to 0 rad. Additionally, the control action, uψ̇, is also penalized to reduce its magnitude. The

system is simulated with initial condition r(0) =
[
π/180 0

]T
and the results are plotted in

Figure 5-3. The settling time is roughly 2 s, thus within the specified limit, and the control
action’s peak is 0.042 rad/s (or 2.4 °/s) that we consider small enough. Furthermore, the
regulation is smooth as desired. This last characteristic is relevant to avoid abrupt rotations
of the aircraft.

5-6 Model Predictive Control (MPC)

The second control strategy implemented in this thesis is the named Model Predictive Control
(MPC), also known as Receding Horizon Control (RHC), which solves a finite horizon, open-
loop optimal control problem online [37]. Every time instant, k, this controller computes the
solution the following optimization problem:

Master of Science Thesis Jose Libardo Navia Vela

40 Controller Design and Implementation

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0

2

4

6

8

10

12

14

16

18
10

-3

(a) Simulated ψ

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

-0.02

-0.015

-0.01

-0.005

0

(b) Simulated ψ̇

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

-0.045

-0.04

-0.035

-0.03

-0.025

-0.02

-0.015

-0.01

-0.005

0

(c) Simulated uψ

Figure 5-3: LQR simulation.

min
qMPC,U

J(qMPC,U),

s.t. q(k + i) = Aq(k + i− 1) +Bu(k + i− 1) ∀ i = 1, . . . , Nc,

q(k + i) = Aq(k + i− 1) +Bu(k +Nc− 1) ∀ i = Nc + 1, . . . , Np,

g(qMPC,U) ≤ 0,

(5-14)

where Nc ≤ Np are the control and prediction horizons, respectively, qMPC ∈ RnNp and
U ∈ RmNc are vectors grouping all predicted states and inputs throughout the prediction and
control horizons, the expressions for q(k + i) are the prediction models, g(qMPC,U) is the
set of state and/or input constraints, and J(qMPC,U) is the cost function. Although the
prediction model shown in Eq. (5-14) is presented as a discrete-time state-space system, any
type of representation is also valid, e.g. transfer function or nonlinear system [10].

Figure 5-4 illustrates an example of the optimization performed by an MPC at time k, as-
suming there are only one input, u(k), and one state, q(k). The controller solves Eq. (5-14)
based on the current state, q(k), calculating the control input sequence U = [u(k) u(k +
1) · · · u(k + Nc − 1)]T that minimizes the cost function, while employing the prediction
model to construct the vector qMPC = [q(k+ 1) q(k+ 2) · · · q(k+Np)]T and satisfying

Jose Libardo Navia Vela Master of Science Thesis

5-6 Model Predictive Control (MPC) 41

Figure 5-4: MPC example.

the inequality constraints. In the figure, one can also notice that the control action is held
constant between k +Nc − 1 and k +Np − 1, doing so the number of optimization variables
and constraints is reduced, decreasing the problem’s complexity.

Despite solving an open-loop optimization problem, the closed-loop response is achieved by
updating the state vector, q(k), every sampling time, leading to the receding horizon control
that consists in applying to the system the attained u(k) and solving the optimization problem
again the next time instant with the new state vector [38]. The receding horizon approach is
useful to incorporate possible model mismatch, time varying behavior, and disturbances [10]
in a different fashion from other optimal controllers such as LQR, where the solution is found
off-line, hence, taking the same form all time instances.

The selection of the cost function, on the other hand, depends on what type of solution we
want. For instance, an `1 norm would produce a sparse result, but relatively high deviations
can be expected; an `∞ norm penalizes more the maximum deviation but all deviations would
have approximately the same value; in contrast, a quadratic cost would minimize the average
deviation, resulting in rather small deviations [39, 40]. Irrespective of the selected type of
penalty, it can be applied to the states, the outputs, or the inputs. Moreover, the cost function
can also contain a final state penalty, which, if tunned properly, can reduce the complexity of
the optimization problem as it may allow shorter-horizon controllers to still produce a similar
performance to controllers with longer horizons [38].

Based on the above analysis, the cost function for this thesis’ MPC is:

J(qMPC,U) =
Np−1∑
i=0
‖(Ctrackingq(k+ i)−ref)‖2QMPC

+
Nc−1∑
i=0
‖u(k+ i)‖2RMPC

+‖q(k+Np)‖2Qn ,

(5-15)

where ‖u(k+ i)‖2RMPC
= u(k+ i)TRMPCu(k+ i) and similarly for the other two expressions,

QMPC ∈ R3×3, RMPC ∈ R3×3, and Qn ∈ R10×10 are the weighting matrices –whose values
will be presented in Section 5-6-2–,

Master of Science Thesis Jose Libardo Navia Vela

42 Controller Design and Implementation

Ctracking = diag
([

0 0 0 0 1
]
,
[
0 1

]
,
[
0 1 0

])
,

qMPC =
[
q(k + 1)T q(k + 2)T . . . q(k +Np)T

]T
,

and U =
[
u(k)T u(k + 1)T . . . u(k +Nc − 1)T

]T
.

Given the value of Ctracking, we have: Ctrackingq(k) =
[
z(k) x(k) y(k)

]T
. The reason for

not using a separate vector, e.g. ytracking(k) =
[
z(k) x(k) y(k)

]T
, for this product is that

it would require the definition of a third optimization variable in CVXGEN, which from its
perspective would be a more complex problem.

By employing this cost function, one can penalize large deviations of the tracking outputs
from the reference; furthermore the control input is also penalized to avoid large control
actions; and finally, there is a cost for the final state, which as mentioned before, allows us to
reduce the prediction horizon (Np), whilst still achieving the desired performance.

5-6-1 CVXGEN

In order to implement the explained MPC, we need C/C++ code capable of solving Eq. (5-
14) online and faster than the sampling time of the system. From the designer’s perspective
one has, basically, three options: i) to manually transform the optimization problem into any
standard form, e.g. Linear Programming (LP) or Quadratic Programming (QP), and then
use any available software (e.g. Gurobi or CIPLEX) to solve it; ii) to fully customize the
solution if the problem cannot be recast into a standard form; or iii) to utilize an automatic
solver generator to produce the desired solver (almost) directly from the original formulation
of the problem. The first and second approaches require previous knowledge in optimiza-
tion techniques and can be highly time consuming as the transformation or customization
procedures have to be repeated every time the problem is changed (e.g. new constraints are
added, the sizes of the matrices are varied, the cost function is modified, etc.); whereas the
third option provides flexibility due to its high-level description, making it more appealing for
application-driven projects, where the designer alters the original formulation multiple times
before arriving to a final controller. However, the latter may be limiting for the intended
application or the designer may prefer to minimize the computation time as much as possible,
favoring then a custom solution. Now that this project focuses on the application side rather
than in optimization itself, the third option is more convenient.

The code generator for embedded convex optimization CVXGEN is chosen to generate the
solver because of its easy-to-use interface, which provides a framework for quick prototyping of
sophisticated controllers, such as MPC [38]. To be more explicit, CVXGEN’s editor consists
of four sections: i) dimensions, where the user can define various constants, such as the
prediction and control horizons, and the number of states, outputs and inputs; ii) parameters,
where the inputs of the solver are declared, e.g. weighting matrices, current state vector,
reference signal, etc; iii) variables, where the optimization variables are defined, e.g. U and
qMPC (using CVXGEN’s notation, evidently); and iv) minimize, where the optimization
problem is inserted in two parts: the cost function and the constraints (under the subject to

Jose Libardo Navia Vela Master of Science Thesis

5-6 Model Predictive Control (MPC) 43

tag). The reader is referred to [41] for an exhaustive explanation of CVXGEN and to Listing
(5.1) for a concrete illustration of its editor.

CVXGEN utilizes disciplined convex programming techniques to ensure that valid problem
descriptions are convex [41]. Disciplined convex programming is made of a set of functions
(known to be convex) grouped into a library named atom and a convexity ruleset, derived
from the principles of convex analysis, that assesses convexity of a given problem constructed
with functions from the atom library [42]. This means that CVXGEN’s users are restrained
to a collection of pre-defined functions to formulate their optimization problems and, more
importantly, the current version of the software only support problems that can be recast into
Quadratic Programming (QP) [41]. The other relevant limitation of CVXGEN is the number
of non-zero entries in the so-called Karush–Kuhn–Tucker (KKT) matrix constructed by the
software and whose form is explicated next.

CXVGEN transforms the high-level description of the optimization problem into a standard
(or canonical) QP as shown in Eq. (5-16):

min 1
2xqp

TQqpxqp + qTqpxqp,

s.t. Gqpxqp ≤ hqp,
Aqpxqp = bqp,

(5-16)

where xqp ∈ Rnqp is the optimization variable, Qqp > 0 ∈ Rnqp×nqp , qqp ∈ Rnqp , Gqp ∈
Rpqp×nqp , hqp ∈ Rpqp , Aqp ∈ Rmqp×nqp , and bqp ∈ Rmqp . This problem is solved by CXV-
GEN via primal-dual interior point, therefore, it introduces a slack variable sqp ∈ Rpqp and
reformulates the problem as:

min 1
2xqp

TQqpxqp + qTqpxqp,

s.t. Gqpxqp + sqp = hqp,

Aqpxqp = bqp,

sqp ≥ 0,

(5-17)

with optimization variables xqp and sqp. Then it inserts the dual variables yqp ∈ Rmqp associ-
ated with the equality constraints, and zqp ∈ Rpqp associated with the inequality constraints.
The resulting KKT conditions are [41]:

Gqpxqp + sqp = h,

Aqpxqp = bqp,

zqp ≥ 0,
Qqpxqp + qqp +GTqpzqp +ATqpyqp = 0,

zqpisqpi = 0, i = 1, . . . , pqp.

(5-18)

Now, let Sqp = diag(sqp) and Zqp = diag(zqp), then the KKT matrix equals [41]:

Master of Science Thesis Jose Libardo Navia Vela

44 Controller Design and Implementation


Qqp 0 GTqp ATqp
0 Zqp Sqp 0
Gqp I 0 0
Aqp 0 0 0

 , (5-19)

where I is an identity matrix of appropriate size. CVXGEN is able to generate reliable
and fast C-code as long as there are up to 4000 non-zero entries in the foregoing matrix.
Although the mentioned limits may seem narrow, it will be shown in Section 5-6-2 that we
are still capable of achieving good results using this code generator.

Besides the C code, CVXGEN creates a MATLAB MEX interface that allows us to use the
resulting solver in MATLAB, through which we are able to design and simulate the MPC
before testing it with the real Matrice 100.

5-6-2 MPC Design

Now that the MPC framework has been explained, we proceed to the design and simulation
phases by first presenting the to-be-used optimization problem in Eq. (5-20), which uses the
cost function from Eq. (5-15), the prediction model from Eq. (5-14) and defines the constraints
therein:

min
qMPC,U

Np−1∑
i=0
‖(Ctrackingq(k + i)− ref)‖2QMPC

+
Nc−1∑
i=0
‖u(k + i)‖2RMPC

+ ‖q(k +Np)‖2Qn ,

s.t. q(k + i) = Aq(k + i− 1) +Bu(k + i− 1) ∀ i = 1, . . . , Nc,

q(k + i) = Aq(k + i− 1) +Bu(k +Nc− 1) ∀ i = Nc + 1, . . . , Np,

umin ≤ u(k + i) ≤ umax ∀ i = 0, . . . , Nc − 1,
ymin ≤ Ctrackingq(k + i) ≤ ymax ∀ i = 1, . . . , Np − 8,

(5-20)

where umin =
[
uφmin uθmin użmin

]T
and umax =

[
uφmax uθmax użmax

]T
are the actuator

limits, ymin =
[
zmin xmin ymin

]T
and ymax =

[
zmax xmax ymax

]T
are the bounds of

the tracking outputs.

Eq. (5-20) is entered in CVXGEN as follows:

Listing 5.1: MPC implementation in CVXGEN’s editor.
1 dimensions
2 n = 10 # states .
3 m = 3 # inputs .
4 l = 3 # tracked outputs .
5 Np = 10 # Prediction horizon
6 Nc = 4 # Control horizon
7 end
8
9 parameters

Jose Libardo Navia Vela Master of Science Thesis

5-6 Model Predictive Control (MPC) 45

10 A (n , n) # dynamics matrix .
11 B (n , m) # transfer matrix .
12 C (l , n) # Tracking output matrix (C_tracking) .
13 Q (l , l) psd # tracking cost (Q_MPC) .
14 R (m , m) psd # input cost (R_MPC) .
15 Qn (n , n) psd
16 q [0] (n) # initial state .
17 u_max (m) # control action upper limit .
18 u_min (m) # control action lower limit .
19 y_max (m) nonnegative # output upper limit
20 y_min (m) # output lower limit
21 ref (l) # reference signal
22 end
23
24 variables
25 q [k] (n) , k=1. . Np # states (q_{MPC })
26 u [k] (m) , k=0. .Nc−1 # inputs (U)
27 end
28
29 minimize
30 sum [k=0. .Np−1](quad (C∗q [k] − ref , Q)) + sum [k=0. .Nc−1](quad (u [k] , R)) +

quad (q [Np] , Qn)
31 subject to
32 q [k+1] == A∗q [k] + B∗u [k] , k=0. .Nc−1
33 q [k+1] == A∗q [k] + B∗u [Nc−1] , k=Nc . . Np−1
34 u_min <= u [k] <= u_max , k=0. .Nc−1
35 y_min <= C∗q [k] <= y_max , k=1. .Np−8
36 end

In the above code, it can be easily noticed that porting the MPC formulation to CVXGEN is
straightforward. The interested reader is invited to read CVXGEN’s documentation [41] for
a detailed description of the syntax.

In order to select the prediction horizon, we increase it until just before reaching the limits
of CVXGEN (4000 non-zero KKT-matrix entries), while considering that the MPC should
predict the states for a reasonable time frame and that the sampling time, h, equals 0.04 s, see
Section 5-1. At that point, we start increasing the control horizon following the same logic.
The reached values are: Np = 10 and Nc = 4, consequently, the MPC predicts the states up
to 0.4 s ahead and computes the control actions until 0.12 s into the future. As a remark,
lower control horizons are capable of stabilizing the system, but unexpected oscillations occur
after reaching “steady state", in fact, the lower the control horizon, the more prominent this
effect is.

In Section 4-4, it was stated that the response of the identified model and the real drone are
comparable for up to 4 s, which implies that the open-loop predictions of the MPC throughout
the entire prediction horizon are reliable as it is one order of magnitude shorter.

On the other hand, having Np = 10 means that the output constraints in Eq. (5-20) are
imposed only on the first and second predicted set of outputs and not for the complete
prediction horizon. Constraining more outputs would cause more than 4000 non-zero KKT-
matrix entries. However, ensuring that those two sets are within the limits is sufficient to

Master of Science Thesis Jose Libardo Navia Vela

46 Controller Design and Implementation

secure that the drone will remain within the desired boundaries after applying the resulting
optimal control input u(k).

To determine the actuator and output limits we consider the following aspects: the diameter
of the Matrice 100 with the propellers attached is almost 1 m, the dimensions of the workspace
are 6.0 × 3.0 × 2.6 m (length × width × height), see Chapter 3, and we assume the origin
of the world reference system ({W}) to be on the floor (0 m height) and at the center of
the workspace’s horizontal plane. Then, we set ymax = [2.2 2.75 0.75]T , and ymin =
[0.15 − 2.75 − 0.75]T –notice that the minimum height is not 0 m since when the UAV is
on the floor, its center of mass is at 0.2 m approximately–, umax = [10π/180 15π/180 1.5]T ,
and umax = −umax. The limits of the control action can technically be larger (see Table 3-1
in 12), however, we prefer to utilize small angles due to the relatively small workspace.

To tune the weighting matrices QMPC , RMPC , and Qn, we define the following criteria: i)
the overshoot of the tracking outputs (x, y, and z) should not be larger than 5% to prevent
collisions against the windows or the net around the workspace; ii) the rise time should not be
longer than 4 s, although this is not a hard constraint because the endurance of the Matrice
100 is between 8 and 10 minutes (with the payload shown in Chapter 3); and iii) the reference
tracking should not be oscillatory.

Alike to the process followed to tune the LQR in Section 5-5-2, we simulate the closed-loop
system using the model from Eq. (5-1) and the q̂ observer. By doing so we arrive to:

QMPC =

5 0 0
0 2.5 0
0 0 5

 , (5-21)

where QMPC(1, 1) affects the performance of z, QMPC(2, 2) the one of x, and QMPC(3, 3)
that of y. Let us evaluate the effect of each of these entries: QMPC(1, 1) > 1 produces a faster
response and reduces the steady-state error, when it is greater or equal to 3 there is overshoot;
QMPC(2, 2) > 3 produces oscillations, in fact, the larger it becomes, the more prominent this
effect is (to the point of causing instability). Increasing QMPC(3, 3) speeds up the response,
but a larger overshoot and more oscillations (if any) may occur. The noticed behaviors are
expected as QMPC penalizes the deviation of x, y, and z from the given set-point ref , i.e.
it is logical to obtain a faster response for a larger penalty. With respect to the instability
caused by a large QMPC(2, 2), it resembles the effect of a proportional controller, where a
high enough gain can render the closed-loop response unstable.

The attained second weighting matrix equals:

RMPC =

1 0 0
0 1 0
0 0 0.2

 , (5-22)

where RMPC(1, 1) penalizes uφ, RMPC(2, 2) influences uθ, and RMPC(3, 3) affects uż. During
the tunning process, it was found that increasing RMPC(1, 1) causes more oscillations in y,
a larger overshoot and longer settling time; Reducing RMPC(2, 2) speeds up the response of
x; and augmenting RMPC(3, 3) slows down the response of z while reducing the overshoot
(if any). Thence, we decided to favor a low penalty in RMPC(3, 3). The effect of RMPC is

Jose Libardo Navia Vela Master of Science Thesis

5-7 Experimental Results 47

unsurprisingly alike to that of RLQR in the LQR controller now that both have a direct impact
on the amplitude of the control action. However, it is important to stress on one of the key
differences between the MPC and the LQR controllers: the possibility of including the limits
of the control action in the MPC formulation, which results in less effort when tunning this
weighting matrix.

The remaining weighting matrix is given by:

Qn = diag(1, 1, 1, 1, 0.1, 1, 0.01, 1, 0.01, 2). (5-23)

Regarding the response in y: Qn(1, 1) < 1 slightly reduces the overshoot; Qn(2, 2) < 1
produces a faster response and a smaller steady-state error at the cost of larger overshoot;
Qn(9, 9) < 1 reduces the overshoot, increases the settling time and lessens the steady-state
error; and Qn(10, 10) < 1 causes more oscillations, increasing the settling time. With respect
to the response in z: Qn(5, 5) < 1 reduces the steady-state error by causing overshoot,
while Qn(6, 6) > 1 has no effect. Concerning the performance in x: Qn(3, 3) ≥ 10 produces
overshoot, Qn(4, 4) < 1 has the same outcome, decreasing Qn(7, 7) reduces the steady-state
error, and Qn(8, 8) < 1 provokes instability. The values in Eq. (5-23) were found to balance
all these aspects.

Two simulation cases are performed: with and without sensor noise, the initial condition in
both cases is: q(0) = [0 0 0 0 0.2 0 0 0 0.01 0]T , and the set-point is: ref = [1.5 1 0.25].

Let us first present the outcome of the simulation without noise: Figure 5-5 illustrates the
tracking performance alongside the control actions obtained by the MPC. In Figure 5-5(a)
we can see that the peak of z is at 1.533 m and its steady-state value is 1.494 m, hence, the
overshoot equals 3.9% and the steady-state error 0.006 m (6 mm), consequently the design
specifications are met and the error of 6 mm is acceptable when compared to the size of the
Matrice 100. The response in x presents an overshoot of 0.8% and its rise time is clearly
within the specifications. No overshoot is observed in y and its rise time is also lower than
4 s. Regarding the control actions, during the first seconds, the signals reach their peaks to
accelerate the drone and take it to the desired set-point. The effect of the overshoot in z can
also be appreciated in uż, Figure 5-5(d), where it first reaches its maximum (as defined in
umax), and later it goes negative until finally converging to 0 m/s to maintain the drone’s
altitude.

The results of the simulation with sensor noise are displayed in Figure 5-6. It can be observed
that the MPC is capable of handling the noise to the point that the tracking performance
is practically unaffected, de facto, the only noticeable modification is that the peak of x is
shifted by approximately half a second. Moreover, the control actions are on the same order
of magnitude than those in the noiseless scenario.

5-7 Experimental Results

Relying on the attained simulations, we venture into the real-life implementation where the
complete setup and equipment described in Chapter 3, the developed API explained in Sec-
tion 5-3, and the control topology presented in Section 5-2 are merged. It is important to

Master of Science Thesis Jose Libardo Navia Vela

48 Controller Design and Implementation

0 1 2 3 4 5 6 7 8

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

X: 2.28

Y: 1.533
X: 6

Y: 1.494

X: 5.48

Y: 1.007

X: 7.88

Y: 0.9991

X: 7.72

Y: 0.2495

(a) Simulated tracking without noise

0 1 2 3 4 5 6 7 8

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

(b) Simulated uθ without noise

0 1 2 3 4 5 6 7 8

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

(c) Simulated uφ without noise

0 1 2 3 4 5 6 7 8

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

(d) Simulated uż without noise

Figure 5-5: MPC simulation without noise.

mention that in the real experiments we have −0.1 ≤ uψ̇ ≤ 0.1 (rad) to avoid unexpected fast
yaw rates (ψ̇) –these limits are set when instantiating the LQ class.

The results herein are acquired by following the procedure presented in Figure 5-7 –notice
that the emergency action check, time update, and data logging are intentionally omitted
for readability. The sequence of starting ROS and mocap_optitrack first, then ROS-SDK,
and finally the main algorithm is mandatory because ROS-SDK is executed in the onboard
computer, see Figure 3-9 on page 17, while the others run in the on-ground PC. Although it
is actually possible to skip the test of the emergency action, it is strongly recommended, thus,
included in the experiment protocol. When the main algorithm is started, it instantiates all
the required objects, i.e. two Observer, one LinearMPC, one LQ, and one SubAndPub, by
importing all matrices, vectors, dimensions, and sampling time from the text files stored in
the database; besides, the algorithm sets the number of samples (N) for the experiment and
creates the log files to record the measured outputs, state estimates, reference, and control
inputs for post-processing. Afterwards, the main program is paused while the user takes off
manually or finishes the experiment, when the user is ready, he/she commands the beginning
of the experiment. As explained in Section 5-2, we need the yaw angle ψ to be 0 rad (or close
to it) for the linear model employed in the MPC to be valid, the first part of the experiment

Jose Libardo Navia Vela Master of Science Thesis

5-7 Experimental Results 49

0 1 2 3 4 5 6 7 8

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

X: 2.28

Y: 1.53

X: 6

Y: 1.027

(a) Simulated tracking with noise

0 1 2 3 4 5 6 7 8

-0.05

0

0.05

0.1

0.15

0.2

(b) Simulated uθ with noise

0 1 2 3 4 5 6 7 8

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

(c) Simulated uφ with noise

0 1 2 3 4 5 6 7 8

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

(d) Simulated uż with noise

Figure 5-6: MPC simulation with sensor noise.

ensures this condition by setting the reference of the MPC to the current position and then
regulating ψ until |ψ| ≤ ε = 0.3π/180 rad, as it can never be exactly 0 rad due to sensor noise.
Once this condition is met, the reference is changed and the main control loop starts. In each
iteration, the measurements and estimates are gotten (from SubAndPub and the observers),
then it is checked if k = 1500 or 3000 to change the reference, later the control actions are
computed (using both the MPC and the LQR as shown in Figure 5-1), following, the next
states are estimated and k is increased by 1. Finally, when k = N , the drone is commanded
to land.

5-7-1 Tracking

Figure 5-8 presents the tracking response of the real-setup. In Figure 5-8(a) we can appreciate
that the response in x improves with time, in the sense that after the second change of
reference (at 62 s), the settling time decreases; the steady-state error during the final 20 s is
of approximately 0.1 m (almost 10% of the drone’s diameter). The rise time of the response
in y, shown in Figure 5-8(b), increases with time (going from 2.7 s to 9.8 s approx.), yet
the steady-state error practically does not change with the reference and is roughly 0.05 m.

Master of Science Thesis Jose Libardo Navia Vela

50 Controller Design and Implementation

Figure 5-7: Control experiment work flow.

The performance of z is the best of the three as its rise time is about 1 s and its steady-
state value is the closest to the reference out of the three tracking outputs and as expected,
there is a small overshoot (of approximately 2%). All performances differ from those of the
simulations, being z the only one that outperforms them; the reason why there is a larger
discrepancy in x and y is the model mismatch explained in Chapter 4, where it was seen that
the identified x and y dynamics are not perfect. Nevertheless, the experimental results confirm
that the implemented control topology is capable of compensating for such a mismatch and
the steady-state errors are small compared to the size of the Matrice 100.

5-7-2 Control Inputs

The control actions computed by the MPC are presented in Figure 5-9(a), Figure 5-9(b), and
Figure 5-9(c), whilst the control action of the LQR is plotted in Figure 5-9(d). As expected,
the peaks in the first three inputs occur when there is a change in the reference signal to
accelerate drone, we can also observe that the control actions are always within the defined
limits (umax = [0.17453293 0.26179939 1.5]T , umin = −umax and −0.1 ≤ uψ̇ ≤ 0.1). With
respect to uψ̇, the most prominent peaks also happen when the reference changes, in general
this response implies that when the drone is tilted, its yaw angle ψ changes slightly. This
effect was not perceived during the identification experiments because the commanded uφ

Jose Libardo Navia Vela Master of Science Thesis

5-7 Experimental Results 51

0 20 40 60 80 100 120 140 160 180

-1.5

-1

-0.5

0

0.5

1

1.5

X: 62.12

Y: 0.9506

X: 62.68

Y: 0.7154

X: 67.88

Y: -1.25 X: 118.7

Y: -1.448

X: 165.8

Y: 1.368

(a) Experimental x-response

0 20 40 60 80 100 120 140 160 180

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

X: 2.522

Y: -0.5262

X: 5.242

Y: 0.2118

X: 62.56

Y: 0.2535

X: 68.4

Y: -0.2406

X: 122.6

Y: -0.2331

X: 132.4

Y: 0.2408

(b) Experimental y-response

0 20 40 60 80 100 120 140 160 180

1

1.2

1.4

1.6

1.8

2
X: 3.322

Y: 2.026

X: 63.52

Y: 0.94

X: 123.3

Y: 1.533

(c) Experimental z-response

Figure 5-8: Experimental tracking response.

and uθ had a smother shape, see Figure 4-7 on page 26. Nonetheless, the LQR controller is
able to correct ψ along the experiment, guaranteeing the validity of the linear model used in
the MPC.

5-7-3 Estimated States vs Measurements

To finalize the experimental results, we compare the output of the two observers with the
sensor measurements to assess their performance.

The outcome of the r̂ observer is plotted in Figure 5-10. As it can be seen both signals
(Measurements and Estimate) superpose throughout the experiment and the effect of the
filter is more prominent in Figure 5-10(b). To be more precise, we contrast the variance of
the measurements, E[yr(k)yr(k)T], and that of the observer, E[ŷr(k)ŷr(k)T]:

E[yr(k)yr(k)T] =
[
2.9029× 10−4 8.6362× 10−4

]
,

E[ŷr(k)ŷr(k)T] =
[
2.8079× 10−4 5.1013× 10−4

]
.

(5-24)

Master of Science Thesis Jose Libardo Navia Vela

52 Controller Design and Implementation

0 20 40 60 80 100 120 140 160 180

-0.15

-0.1

-0.05

0

0.05

0.1

0.15 X: 62.04

Y: 0.1745

X: 2.242

Y: -0.1745

X: 122.1

Y: -0.1745

(a) Experimental uφ

0 20 40 60 80 100 120 140 160 180

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25
X: 122

Y: 0.2618

X: 62.04

Y: -0.2618

X: 2.042

Y: 0.2618

(b) Experimental uθ

0 20 40 60 80 100 120 140 160 180

-1.5

-1

-0.5

0

0.5

1
X: 122.1

Y: 1.234

X: 62.04

Y: -1.5

X: 2.082

Y: 1.343

(c) Experimental uż

0 20 40 60 80 100 120 140 160 180

-0.15

-0.1

-0.05

0

0.05

0.1

(d) Experimental uψ̇

Figure 5-9: Experimental control actions.

0 20 40 60 80 100 120 140 160 180

-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

(a) Measured vs estimated (filtered) ψ

0 20 40 60 80 100 120 140 160 180

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(b) Measured vs estimated (filtered) ψ̇

Figure 5-10: r̂ observer experimental results.

From Eq. (5-24) we can corroborate that the improvement is larger in the second output.

Figure 5-11 presents the first part of the experimental results of the q̂ observer. Likewise the

Jose Libardo Navia Vela Master of Science Thesis

5-7 Experimental Results 53

0 20 40 60 80 100 120 140 160 180

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

(a) Detrende measured vs estimated (filtered) φ

0 20 40 60 80 100 120 140 160 180

-1.5

-1

-0.5

0

0.5

1

1.5

(b) Measured vs estimated (filtered) φ̇

0 20 40 60 80 100 120 140 160 180

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

(c) Detrended measured vs estimated (filtered) θ

0 20 40 60 80 100 120 140 160 180

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

(d) Measured vs estimated (filtered) θ̇

Figure 5-11: q̂ observer experimental results: Part 1.

r̂ observer, the filtering is more noticeable in the angular rates. We employ the variance once
again to confirm this statement:

E[yq(k)yq(k)T]
= [2.2347× 10−4, 7.8641× 10−3, 8.7529× 10−4, 1.5772× 10−2, 0.1635,
9.9671× 10−3, 1.3310, 7.9755× 10−2],
E[ŷq(k)ŷq(k)T]
= [1.9628× 10−4, 4.8404× 10−3, 8.1283× 10−4, 1.0144× 10−2, 0.1634,
8.1653× 10−3, 1.3369, 7.8724× 10−2].

(5-25)

At this point we are interested in the first 4 entries of each vector in Eq. (5-25), where we can
see improvement in all of them, but more importantly in the second and forth values, which
correspond to the variance of the angular rates.

With the aim of elaborating on pitch angle’s performance, θ, we plot the error θ − θ̂ in
Figure 5-12, where a small linear trend can be observed. As mentioned in Section 4-3-3 on
page 27, the trend of θ and φ varies between experiments, thus, we can expect the identified

Master of Science Thesis Jose Libardo Navia Vela

54 Controller Design and Implementation

0 20 40 60 80 100 120 140 160 180

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

Figure 5-12: Observer error: θ − θ̂.

one to be slightly off from the real trend. However, the discrepancy is small enough to be able
to use the estimated angles. Moreover, the reader should consider that the measured angles
were detrended offline in MATLAB using the entire dataset, whereas in the real-time system
the trend is set at the commencement of the experiment.

With respect to remaining measurable states, i.e. z, ż, x, and y, the corresponding plots are
displayed in Figure 5-13, where it can be seen that the effect of the filter is more prominent in
ż and that the estimated and measured x and y do not overlap completely. In order to clearly
observe the discrepancy, we present the error signals of these two outputs in Figure 5-14.
There are two possible explanations for this outcome: i) the corresponding penalties in the
matrix Qq, see Eq. (5-7) on page 37, are not tunned well enough, consequently they can be
revised awaiting a lower error; and ii) the model mismatch in x and y is not fully counter
by the observer. Independently of the imperfectness of the observer, there is a substantial
improvement compared to the results obtained in the system identification phase described
in Section 4-4 and, more importantly, we have shown that the designed and implemented
control topology can cope for this dissimilarity.

Jose Libardo Navia Vela Master of Science Thesis

5-7 Experimental Results 55

0 20 40 60 80 100 120 140 160 180

1

1.2

1.4

1.6

1.8

2

(a) Measured vs estimated (filtered) z

0 20 40 60 80 100 120 140 160 180

-1.5

-1

-0.5

0

0.5

(b) Measured vs estimated (filtered) ż

0 20 40 60 80 100 120 140 160 180

-1.5

-1

-0.5

0

0.5

1

1.5

(c) Measured vs estimated (filtered) x

0 20 40 60 80 100 120 140 160 180

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

(d) Measured vs estimated (filtered) y

Figure 5-13: q̂ observer experimental results: Part 2.

0 20 40 60 80 100 120 140 160 180

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

(a) Observer error: x− x̂

0 20 40 60 80 100 120 140 160 180

-0.02

-0.01

0

0.01

0.02

0.03

0.04

(b) Observer error: y − ŷ

Figure 5-14: Observer error in x and y.

Master of Science Thesis Jose Libardo Navia Vela

56 Controller Design and Implementation

Jose Libardo Navia Vela Master of Science Thesis

Chapter 6

Conclusions, Recommendations, and
Future Work

This final chapter presents the conclusions from this document, gives a few recommenda-
tions on how to improve the current status of the attained development platform, and lastly,
enunciates and discusses potential applications where the platform can be used.

6-1 Conclusions

To begin with, in Chapter 2 the dynamic model of the Matrice 100 was derived considering
the already available low-level controllers –implemented in the drone’s autopilot. We opted
for separating the dynamics of the yaw angle, ψ, from the rest of the model and, assuming
a constant ψ = ψ0, we linearized the equations that describe the horizontal displacement of
the UAV.

Chapter 3 showed and explicated the setup and equipment employed in the implementation
of the development platform designed in this thesis. The block diagram of the complete setup
comprises: the user, the ground station (RC, emergency system, onground PC, router, Motive,
and OptiTrack), and the aerial platform (Matrice 100, Guidance, Manifold and the HC-11
attached to it). Moreover, the available sensors were enunciated along with the measurements
we gather from them: φ, θ, φ̇, θ̇, and ψ̇ from the drone’s IMU, ż from the Guidance, and x,
y, z, and ψ from OptiTtrack.

In Chapter 4 the system identification routine was explained and used in multiple identifica-
tion experiments from which the parameters of the derived dynamical models were estimated.
Moreover, the outcome of another set of experiments was utilized to validate the identified
systems. A trend in the measured roll and pitch angles (φ and θ, respectively) was noticed
and determined by averaging the trends from all the experiments.

The identified x and y dynamics were found to be reliable for 4 s. From that moment on, the
simulation began to diverge from the real measurements but the shape was preserved. The

Master of Science Thesis Jose Libardo Navia Vela

58 Conclusions, Recommendations, and Future Work

underlying reasoning for this discrepancy was the accumulation of error when going from the
acceleration (ẍ and ÿ) to the position. Despite this discrepancy, the trustworthy lapse was
long enough to cover the entire MPC’s prediction horizon.

With the aim of controlling the flight of the Matrice 100, the attained models were first
discretized using a zero-order-hold approximation with sampling time, h, equal to 0.04 s (40
ms), and then used to design and implement the control topology presented in Chapter 5,
which included two Kalman observers, one LQR, and one MPC. The purpose of the LQR
was to regulate ψ to 0 rad to maintain the validness of the linear model that describes the
horizontal displacement of the drone; whilst the MPC controlled the position of the drone
according to a given reference.

The MPC achieved its objective by solving every time instant an open-loop optimal control
problem whose cost function penalized the difference between the current position and the
reference, the control inputs, and the states of the system at the end of the prediction horizon.
In addition, the constraints of the problem consisted of the corresponding (10-state and 3-
input) dynamic model, the limits of the control actions, and the bounds of the workspace.

An API in ROS C++ was developed to implement the control topology. This software
comprises four classes, namely: LinearMPC, Observer, LQ, and SubAndPub, and two libraries:
Utilities and CVXGEN solver. All of them but CVXGEN solver were coded to be as general
as possible, so that they can be utilized not only in the particular control case treated in this
thesis but anywhere else they may be required.

When implementing the MPC, it was found that one has diverse options: i) to manually
transform the optimization problem into a standard form (if possible) and use an available
solver, ii) to develop a fully custom solution that may include the code of the solver, iii) to
employ an automatic code generator that produces a solver from a high-level description of the
problem. In this thesis, the third choice was selected as it is more suitable for application-
oriented projects where the designer changes the formulation of the optimization problem
multiple times before arriving to the definite one. The code generator for embedded convex
optimization CVXGEN was chosen for this purpose.

During the design phase of the MPC, it was experienced that although it is capable of handling
constraints and its cost function can be customized, it is limited by the complexity of the
resulting optimization problem. In other words, the more variables or computations are
introduced, the more complex the problem is and irrespective of the solver, the amount of
variables they can handle is bounded. It was seen that the prediction horizon has the largest
effect on this regard as every extra step adds a complete set of states to the optimization
vector. In the specific problem treated in this thesis, using a 10-state prediction model and
CVXGEN permitted a maximum prediction horizon of 10 samples.

In contrast, the above mentioned limitations were not faced when designing the LQR. How-
ever, such an optimal controller does not handle constraints different form the state-space
model of the to-be-controlled system.

The performance of the practical implementation of the control topology did not correspond
exactly to that of the simulations. More precisely, the steady-state error in x and y was larger
in the real-life experiments, but their values are acceptable compared to the dimensions of
the Matrice 100. In addition, there was a discrepancy between the estimated x and y and

Jose Libardo Navia Vela Master of Science Thesis

6-2 Recommendations 59

the corresponding measurements due to model mismatch and/or not accurate tuning of the
observer.
In the two observers implemented in this project, the largest noise reduction occurred in the
angular rates and the vertical velocity, which may indicate that their weights are better tuned
than the others, opening the room for improvement.
As a final conclusion, the main aim of this project was achieved: a reliable development
platform for indoor flight control of a UAV (Matrice 100) was designed and successfully
tested using an LQR to regulate the yaw angle and an MPC to control the position of the
quadrotor. The upcoming users of this platform will be able to readily utilize the API to
implement their own flight control algorithms in the Matrice 100 utilized in this project –
or in a different quadrotor from DJI that supports DJI’s ROS-SDK, by executing first the
presented identification routines to estimate its parameters and, then, tuning the controllers
and observers.

6-2 Recommendations

As explained in Chapter 3, when the user pushes the emergency button, the Arduino detects
a rising edge at its interrupt pin, triggering the emergency action. Such a method has been
proven to work, however, it is suggested to change it to continuously send a command while
the pin’s voltage is HIGH and stop sending it when it is LOW. The voltage can be controlled
by the button as follows: when released the voltage is HIGH and LOW when it is pushed.
The mentioned command would function as a heartbeat signal, so when the Manifold and/or
the on-ground PC does not receive it, it/they would activate the emergency action. By doing
so, the system would be more robust to (wired or wireless) connection failures or power
shutdowns, for instance.
It was shown that the attained controlled system is reliable, but there is steady-state error in
the tracking outputs, one method to eliminate it is to integrate the tracking error and add it
to the MPC’s output, similarly to an LQI, which can be achieved by tunning the integrator
gains manually in simulation and implementing them by means of the LQ class from the API,
see the class documentation for instructions on how to use the integral action.
The other concern on the experimental performance is the discrepancy between the estimated
and measured x and y, in order to improve it, the corresponding weights in the observer can
be fine-tuned. Given that Rq was set according to the variance of the measurements while the
drone was hovering, it is more likely that Qq is the weighting matrix that requires fine tuning.
The other option is to revise the identified model, which can be enhanced via closed-loop
identification as the current MPC would allow the user to command rich (position) reference
signals while ensuring the UAV will not collide against the windows or the net.
In Chapter 5 it was mentioned that the user needs to take off manually before starting the
control experiment. Nonetheless, two autonomous methods were tested: i) calling the takeoff
command from DJI’s ROS-SDK and ii) arming the rotors and using the explained control
topology to reach a given altitude. With the first method, the UAV did take off, but the SDK
gave a constant thrust command to the Matrice 100 for about 10 seconds during which other
inputs were ignored by the autopilot, hence, the drone drifted while gaining height, which is
not desirable as it may collide with the windows or the net around the workspace. The second

Master of Science Thesis Jose Libardo Navia Vela

60 Conclusions, Recommendations, and Future Work

approach also lifted up the drone, the inconvenient was that it depended on the autopilot’s
vertical velocity controller which, at the same time, depends on the vertical velocity estimate
from the Guidance, which is not useful before the drone reaches an altitude of about 50 cm.
Thus, the drone also drifted while taking off, even more than with the SDK’s command. On
top of it, it was seen that when the rotors are armed from a custom algorithm, a subsequent
landing instruction shuts them down, i.e. the drone falls rather than landing, hence, this
procedure was discarded for safety reasons. The suggestion is to debug DJI’s SDK to try to
find the cause of the latter problem, if it is successfully fixed, the low-level thrust controller
may be identified (alike to the other low-level controllers) and used for takeoff, instead of
utilizing the vertical velocity controller.

One more bug in DJI’s SDK was experienced: when landing is commanded through the
Onboard-SDK, it works every two calls. In other words, when we instruct the drone to land
from the Onboard-SDK for the first time, it does it, the next one it does not, the third it
does, and so on. This bug was reported by the author of this thesis on DJI’s GitHub forum,
but no answer has been given yet (as of September 17, 2018). Thus, it is recommended to
track the landing call as far as possible to try to determine the source of the bug and correct
it. However, the problem may be in the autopilot to which only DJI has access.

There are a few deprecated functions in the API, which can be removed. More importantly,
a better object-oriented structure can be designed to rearrange the existing classes. For
example, there can be a class called StateSpace from which LinearMPC and LQ inherit, so
that the A, B, and C matrices would not have to be redefined in each class. Such an API
would be easier to maintain and use.

Thus far, the control-related calculations have been executed in the on-ground PC. However,
the API has been developed in ROS C++ with the aim of making it suitable for embed-
ded systems, hence, for onboard implementation. It is suggested to test the performance
of the controlled system when the main algorithm is run in the onboard computer. Even
though porting the code to the Manifold is a matter of copying the existing files into its ROS
workspace and compiling them, the emergency action check in the main algorithm would
have to be revised because, onboard, the emergency command is received through the HC-
11, whose USB port is read by the edited ROS-SDK, as explained in Chapter 4. Thus, an
inter-process communication strategy should be used to forward the emergency command
from the ROS-SDK to the main algorithm, two possibilities to achieve it are: User Datagram
Protocol (UDP) [43] or pipes [44].

6-3 Future Work

Before exploring potential applications where the current development platform can be em-
ployed, designing a non-linear controller that includes a time varying yaw angle is appealing.
Such a controller would permit the user to execute more complex tasks such as tracking
a given position reference while altering the heading of the drone. A possible approach is
the so-called Non-linear Model Predictive Control (NMPC) which can be implemented using
ACADO [45], a C-code generator similar to CVXGEN, but whose main difference is that the
MPC problem (cost function and constraints) can only be entered in continuous time.

In Chapter 1, a few works in flight formation found in the literature were briefly mentioned,

Jose Libardo Navia Vela Master of Science Thesis

6-3 Future Work 61

there the researchers tested their algorithms in simulations, but not in real aircraft. The at-
tained development platform can be used for real-life experiments. In fact, in flight formation
more than one aircraft is present, thus, at least one more Matrice 100 (or any DJI drone
compatible with DJI’s ROS-SDK) should be identified following the identification routines
explained in this document and, then, the corresponding controllers and observers should
be tuned. Once the new drones are ready, one may tune the flight formation algorithms in
simulation and, afterwards, test them with the actual drones. Clearly, the API should be
extended for this purpose and, more importantly, the user should be aware of the size of the
available workspace before executing the experiments as it limits the plausible maneuvers,
formations, and number of aircraft that can fly at the same time.

Obstacle avoidance ([15, 46, 47]) utilizing OptiTrack as sensor to detect where the objects
are can be integrated to the current platform. Similarly, it can be extended with localization
and mapping ([48, 49]) by adding extra sensors, e.g. onboard cameras or LiDAR, and their
measurements may be fused with those from OptiTrack to explore sensor fusion algorithms.
Regardless of the final integration, obstacle avoidance, alike to flight formation, consists in
developing a motion planer that generates the reference signal for the MPC, thus, it can be
easily tested with the current platform.

The last potential future work we would like to discuss is emulation of spacecraft rendezvous
and docking, where rendezvous refers to taking an actuated spacecraft (namely the chaser)
to the proximity of a satellite (known as target), while docking is pairing both of them. This
spacecraft maneuver is essential in missions such as: transport of a payload from the Earth
to the International Space Station, capture and recovery of satellites, spacecraft formation,
capture of samples (as in the Mars Sample Return (MSR) mission), etc. [50]; therefore,
researchers are investigating control methods that allow the complete rendezvous and docking
to be executed autonomously –nowadays it is semi-autonomous as the chaser is piloted at
specific moments either by the crew or from a ground station. Recently, they have used
MPCs (in simulations) for this purpose, because of MPC’s capability of handling constraints
within its formulation and the well-known relative dynamics that describe the movement of
the chaser w.r.t. the target [50, 51, 52, 53, 54, 55].

Now that most of the research in the above topic is limited to simulations, it would be
useful to have a platform where to test the proposed control strategies. However, one should
understand that using actual spacecraft is laborious, expensive and dangerous. Thus, we
propose to identify relevant features that may be scaled down to be tested with quadrotors,
such as the Matrice 100 employed in this thesis. By doing so, implementation challenges (at
least software-wise) could be detected and addressed with the aim of, eventually, being able
to scale the results up for real implementation on spacecraft. With such an objective in mind,
we present a brief literature review next and determine a few aspects that could be emulated
from it.

Hartley et al. [51] divided the rendezvous and docking mission into multiple phases and
controlled them with different MPCs, whose formulation depended on the most suitable pre-
diction model or the relevant constraints; Cairano et al. [50] designed an MPC for spacecraft
formation that included collision avoidance, which can be added to the rendezvous and dock-
ing maneuver; and particularly when docking, satisfying the line of sight (LOS) constraints
of the target’s docking sensor, e.g. LiDAR, is essential to complete the mission, examples
on how to model these constraints can be found in [51, 53, 56]. From these previous works,

Master of Science Thesis Jose Libardo Navia Vela

62 Conclusions, Recommendations, and Future Work

we could emulate aspects such as: relative movement of a chaser w.r.t. a target including
collision avoidance between them (or also external objects), having a mission with multiple
phases where diverse MPCs need to be switched, or maintaining a chaser aircraft within the
LOS of a target.

Figure 6-1: Two-Quadrotor emulation of spacecraft rendezvous and docking, where xc denotes
the position of the chaser and xt the target’s.

An initial proposal is presented in Figure 6-1, where xc is the chaser’s position, xt is the
target’s, and R is the radius of a virtual orbit centered on the target. The mission is as
follows: the two aircraft (target and chaser) take off from different points (not necessarily at
the same time); once they reach a pre-defined altitude, the target starts spinning at a fixed
position, i.e. its yaw angle ψ is constantly changed while maintaining its position; meanwhile,
the chaser moves towards the target until reaching a distance R from it, resembling the
rendezvous maneuver. At that point, we propose two options: i) the chaser hovers until the
target’s nose faces it and then begins to orbit around the target while staying in front of its
nose, or ii) the chaser starts orbiting around the target at low or high speed until it is faced
by the target and synchronizes its speed with that of the target to keep facing it. Any of these
two approaches would require a different prediction model from the one used during the first
part, as it would have to include the relative position/velocity of the chaser with respect to
the target’s heading and yaw rate. Then, the second phase of the mission would somewhat
represent the docking procedure.

Jose Libardo Navia Vela Master of Science Thesis

Bibliography

[1] DJI, “DJI MATRICE 100 User Manual.” Available at https://dl.djicdn.com/
downloads/m100/M100_User_Manual_EN.pdf (2017/11/07).

[2] DJI, “Manifold User Manual.” Available at https://dl.djicdn.com/downloads/
manifold/20170918/Manifold_User_Manual_v1.2_EN.pdf (2018/05/30).

[3] B&H Photo Video Pro Audio, “DJI Guidance CP.VL.00103 B&H Photo Video.”
Available at https://www.bhphotovideo.com/c/product/1185290-REG/dji_cp_vl_
000003_guidance.html (2018/05/30).

[4] S. N. Ghazbi, Y. Aghli, M. Alimohammadi, and A. A. A. and, “Quadrotors unmanned
aerial vehicles: A review,” International Journal on Smart Sensing and Intelligent Sys-
tems, vol. 9, no. 1178-5608, pp. 309–333, 2016.

[5] R. E. Mahony, V. Kumar, and P. Corke, “Multirotor aerial vehicles: Modeling, estima-
tion, and control of quadrotor.,” IEEE Robot. Automat. Mag., vol. 19, no. 3, pp. 20–32,
2012.

[6] J. Navia, I. Mondragon, D. Patino, and J. Colorado, “Multispectral mapping in agri-
culture: Terrain mosaic using an autonomous quadcopter uav,” in 2016 International
Conference on Unmanned Aircraft Systems (ICUAS), pp. 1351–1358, June 2016.

[7] G. Hoffmann, S. Waslander, and C. Tomlin, ch. Distributed Cooperative Search Using In-
formation - Theoretic Costs for Particle Filters, with Quadrotor Applications. Guidance,
Navigation, and Control and Co-located Conferences, American Institute of Aeronautics
and Astronautics, Aug 2006.

[8] S. Lubell, “The master of drones turns flying machines
into performers.” Available at https://www.wired.com/2016/03/
master-drones-turns-flying-machines-performers/ (2017/10/25).

[9] S. Lubell, “Drones rising as valuable tool in commercial film in-
dustry.” Available at https://www.bostonglobe.com/business/2017/

Master of Science Thesis Jose Libardo Navia Vela

https://dl.djicdn.com/downloads/m100/M100_User_Manual_EN.pdf
https://dl.djicdn.com/downloads/m100/M100_User_Manual_EN.pdf
https://dl.djicdn.com/downloads/manifold/20170918/Manifold_User_Manual_v1.2_EN.pdf
https://dl.djicdn.com/downloads/manifold/20170918/Manifold_User_Manual_v1.2_EN.pdf
https://www.bhphotovideo.com/c/product/1185290-REG/dji_cp_vl_000003_guidance.html
https://www.bhphotovideo.com/c/product/1185290-REG/dji_cp_vl_000003_guidance.html
https://www.wired.com/2016/03/master-drones-turns-flying-machines-performers/
https://www.wired.com/2016/03/master-drones-turns-flying-machines-performers/
https://www.bostonglobe.com/business/2017/06/23/drones-rising-valuable-tool-commercial-film-industry/mbvWUH4Ydc5rkdHrMqxgjN/story.html
https://www.bostonglobe.com/business/2017/06/23/drones-rising-valuable-tool-commercial-film-industry/mbvWUH4Ydc5rkdHrMqxgjN/story.html
https://www.bostonglobe.com/business/2017/06/23/drones-rising-valuable-tool-commercial-film-industry/mbvWUH4Ydc5rkdHrMqxgjN/story.html

64 Bibliography

06/23/drones-rising-valuable-tool-commercial-film-industry/
mbvWUH4Ydc5rkdHrMqxgjN/story.html (2017/10/25).

[10] D. Baocang, Modern Predictive Control. Taylor & Francis, 2009.

[11] Í. B. Viana, D. A. dos Santos, and L. C. S. Góes, “Formation control of multirotor
aerial vehicles using decentralized mpc,” Journal of the Brazilian Society of Mechanical
Sciences and Engineering, vol. 40, p. 306, May 2018.

[12] X. Wang, V. Yadav, and S. N. Balakrishnan, “Cooperative uav formation flying with ob-
stacle/collision avoidance,” IEEE Transactions on Control Systems Technology, vol. 15,
pp. 672–679, July 2007.

[13] A. T. Hafez, A. J. Marasco, S. N. Givigi, M. Iskandarani, S. Yousefi, and C. A. Rabbath,
“Solving multi-uav dynamic encirclement via model predictive control,” IEEE Transac-
tions on Control Systems Technology, vol. 23, pp. 2251–2265, Nov 2015.

[14] T. Nägeli, J. Alonso-Mora, A. Domahidi, D. Rus, and O. Hilliges, “Real-time motion
planning for aerial videography with dynamic obstacle avoidance and viewpoint opti-
mization,” IEEE Robotics and Automation Letters, vol. 2, pp. 1696–1703, July 2017.

[15] N. Potdar, “Online trajectory planning and control of a mav payload system in dynamic
environments: A non-linear model predictive control approach,” Master’s thesis, Delft,
The Netherlands, 2018.

[16] I. Sa, M. Kamel, R. Khanna, M. Popovic, and R. Nieto, J. Siegwart, “Dynamic System
Identification, and Control for a cost effective open-source VTOL MAV,” Jan. 2017.

[17] M. P. Tully Foote, “REP 103 – Standard Units of Measure and Coordinate Conventions
(ROS.org).” Available at http://www.ros.org/reps/rep-0103.html (2018/05/24).

[18] B. Hu, “dji_sdk - ROS Wiki.” Available at http://wiki.ros.org/dji_sdk
(2018/05/24).

[19] F. Dai, K. Wang, and P. Lin, “A stereo camera-equipped quadrotor platform for vi-
sion based nonlinear control,” in 2016 IEEE International Conference on Robotics and
Biomimetics (ROBIO), pp. 1864–1869, Dec 2016.

[20] D. Bohdanov, “Quadrotor uav control for vision-based moving target tracking task,”
Master’s thesis, Toronto, Canada, 2012.

[21] P. Bouffard, “On-board Model Predictive Control of a Quadrotor Helicopter: Design,
Implementation, and Experiments,” tech. rep., EECS Dept., UC Berkeley, 12 2012.

[22] H. Bolandi, M. Rezaei, R. Mohsenipour, H. Nemati, and S. M. Smailzadeh, “Attitude
control of a quadrotor with optimized pid controller,” Intelligent Control and Automa-
tion, vol. 04, no. 03, pp. 335–342, 2013.

[23] T. Komura, “Geometric transformations.” Available at http://www.inf.ed.ac.uk/
teaching/courses/cg/2017/pdf/cg17-l5.pdf, 2017.

Jose Libardo Navia Vela Master of Science Thesis

https://www.bostonglobe.com/business/2017/06/23/drones-rising-valuable-tool-commercial-film-industry/mbvWUH4Ydc5rkdHrMqxgjN/story.html
https://www.bostonglobe.com/business/2017/06/23/drones-rising-valuable-tool-commercial-film-industry/mbvWUH4Ydc5rkdHrMqxgjN/story.html
https://www.bostonglobe.com/business/2017/06/23/drones-rising-valuable-tool-commercial-film-industry/mbvWUH4Ydc5rkdHrMqxgjN/story.html
https://www.bostonglobe.com/business/2017/06/23/drones-rising-valuable-tool-commercial-film-industry/mbvWUH4Ydc5rkdHrMqxgjN/story.html
http://www.ros.org/reps/rep-0103.html
http://wiki.ros.org/dji_sdk
http://www.inf.ed.ac.uk/teaching/courses/cg/2017/pdf/cg17-l5.pdf
http://www.inf.ed.ac.uk/teaching/courses/cg/2017/pdf/cg17-l5.pdf

65

[24] K. Klausen, T. I. Fossen, and T. A. Johansen, “Nonlinear control with swing damping of
a multirotor uav with suspended load,” Journal of Intelligent & Robotic Systems, vol. 88,
pp. 379–394, Dec 2017.

[25] DJI, “Buy Matrice 100 TB47D Battery - DJI Store.” Available at https://store.dji.
com/product/matrice-100-tb47d-battery (2018/05/30).

[26] DJI, “Matrice 100: The quadcopter for developers - DJI.” Available at https://www.
dji.com/matrice100 (2017/11/07).

[27] J. Rehor and V. Havlena, “Grey-box model identification – control relevant approach,”
IFAC Proceedings Volumes, vol. 43, no. 10, pp. 117 – 122, 2010. 10th IFAC Workshop
on the Adaptation and Learning in Control and Signal Processing.

[28] MathWorks Benelux, “Estimate Parameters from Measured
Data.” Available at https://nl.mathworks.com/help/sldo/gs/
estimate-parameters-from-measured-data-using-the-gui.html (2018-06-10).

[29] MathWorks Benelux, “Solve Non-linear Curve Fitting (Data-fitting) Problems
in Least-squares Sense.” Available at https://nl.mathworks.com/help/sldo/gs/
estimate-parameters-from-measured-data-using-the-gui.html (2018-06-10).

[30] M. Verhaegen and V. Verdult, Filtering and System Identification: A Least Squares
Approach. New York, NY, USA: Cambridge University Press, 1st ed., 2007.

[31] MathWorks Benelux, “Smooth response data - MATLAB smooth - MathWorks Benelux.”
Available at https://nl.mathworks.com/help/curvefit/smooth.html (2018-06-18).

[32] S. W. Smith, The Scientist and Engineer’s Guide to Digital Signal Processing. San Diego,
CA, USA: California Technical Publishing, 1997.

[33] K. J. Åström and B. Wittenmark, Computer-controlled Systems (3rd Ed.). Upper Saddle
River, NJ, USA: Prentice-Hall, Inc., 1997.

[34] MathWorks Benelux, “Linear-Quadratic-Integrator control - MATLAB lqi - Math-
Works Benelux.” Available at https://nl.mathworks.com/help/control/ref/lqi.
html (2018-08-26).

[35] MathWorks Benelux, “Solve discrete-time algebraic Riccati equations (DAREs) - MAT-
LAB dare - MathWorks Benelux.” Available at https://nl.mathworks.com/help/
control/ref/dare.html (2018-08-23).

[36] MathWorks Benelux, “Linear-Quadratic Regulator (LQR) Design - MATLAB lqr -
MathWorks Benelux.” Available at https://nl.mathworks.com/help/control/ref/
lqr.html (2018-08-23).

[37] J. H. Lee, “Model predictive control and dynamic programming,” in 2011 11th Interna-
tional Conference on Control, Automation and Systems, pp. 1807–1809, Oct 2011.

[38] J. Mattingley, Y. Wang, and S. Boyd, “Receding horizon control,” IEEE Control Systems
Magazine, vol. 31, pp. 52–65, June 2011.

Master of Science Thesis Jose Libardo Navia Vela

https://store.dji.com/product/matrice-100-tb47d-battery
https://store.dji.com/product/matrice-100-tb47d-battery
https://www.dji.com/matrice100
https://www.dji.com/matrice100
https://nl.mathworks.com/help/sldo/gs/estimate-parameters-from-measured-data-using-the-gui.html
https://nl.mathworks.com/help/sldo/gs/estimate-parameters-from-measured-data-using-the-gui.html
https://nl.mathworks.com/help/sldo/gs/estimate-parameters-from-measured-data-using-the-gui.html
https://nl.mathworks.com/help/sldo/gs/estimate-parameters-from-measured-data-using-the-gui.html
https://nl.mathworks.com/help/curvefit/smooth.html
https://nl.mathworks.com/help/control/ref/lqi.html
https://nl.mathworks.com/help/control/ref/lqi.html
https://nl.mathworks.com/help/control/ref/dare.html
https://nl.mathworks.com/help/control/ref/dare.html
https://nl.mathworks.com/help/control/ref/lqr.html
https://nl.mathworks.com/help/control/ref/lqr.html

66 Bibliography

[39] M. Juelsgaard, “Implementing MPC using CVX.” Available at http://kom.aau.dk/
~mju/downloads/otherDocuments/MPCusingCVX.pdf (2018-08-23).

[40] S. Boyd and L. Vandenberghe, Convex Optimization. New York, NY, USA: Cambridge
University Press, 2004.

[41] J. Mattingley and S. Boyd, “Cvxgen: a code generator for embedded convex optimiza-
tion,” Optimization and Engineering, vol. 13, pp. 1–27, Mar 2012.

[42] M. Grant, S. Boyd, and Y. Ye, Disciplined Convex Programming, pp. 155–210. Boston,
MA: Springer US, 2006.

[43] Sascha Nitsch Unternehmensberatung UG, “Linux Howtos: C/C++ -> Sockets Tutori-
als.” Available at http://www.linuxhowtos.org/C_C++/socket.htm (2018-09-07).

[44] die.net, “pipe(2): create pipe - Linux man page.” Available at https://linux.die.net/
man/2/pipe (2018-09-07).

[45] B. Houska, H. J. Ferreau, and M. Diehl, “Acado toolkit—an open-source framework
for automatic control and dynamic optimization,” Optimal Control Applications and
Methods, vol. 32, no. 3, pp. 298–312.

[46] K. Chang, Y. Xia, K. Huang, and D. Ma, “Obstacle avoidance and active disturbance
rejection control for a quadrotor,” Neurocomputing, vol. 190, pp. 60 – 69, 2016.

[47] K. Motonaka, K. Watanabe, and S. Maeyama, “Obstacle avoidance for autonomous
locomotion of a quadrotor using an hpf,” vol. 2, no. 2, pp. 110–116, 2016. 110.

[48] Y. Wei and Z. Lin, “Vision-based tracking by a quadrotor on ros**this work was sup-
ported in part by the u.s. army research office under grant w911nf1510275.,” IFAC-
PapersOnLine, vol. 50, no. 1, pp. 11447 – 11452, 2017. 20th IFAC World Congress.

[49] M. Faessler, F. Fontana, C. Forster, E. Mueggler, M. Pizzoli, and D. Scaramuzza, “Au-
tonomous, vision-based flight and live dense 3d mapping with a quadrotor micro aerial
vehicle,” Journal of Field Robotics, vol. 33, no. 4, pp. 431–450.

[50] S. di Cairano, H. Park, and I. Kolmanovsky, “Model predictive control approach for
guidance of spacecraft rendezvous and proximity maneuvering,” International Journal of
Robust and Nonlinear Control, vol. 22, no. 12, pp. 1398–1427, 2012.

[51] E. N. Hartley, P. A. Trodden, A. G. Richards, and J. M. Maciejowski, “Model predictive
control system design and implementation for spacecraft rendezvous,” Control Engineer-
ing Practice, vol. 20, no. 7, pp. 695 – 713, 2012.

[52] L. Breger and J. How, ch. J2-Modified GVE-Based MPC for Formation Flying Spacecraft.
Guidance, Navigation, and Control and Co-located Conferences, American Institute of
Aeronautics and Astronautics, Aug 2005.

[53] F. Gavilan, R. Vazquez, and E. F. Camacho, “Chance-constrained model predictive con-
trol for spacecraft rendezvous with disturbance estimation,” Control Engineering Prac-
tice, vol. 20, no. 2, pp. 111 – 122, 2012.

Jose Libardo Navia Vela Master of Science Thesis

http://kom.aau.dk/~mju/downloads/otherDocuments/MPCusingCVX.pdf
http://kom.aau.dk/~mju/downloads/otherDocuments/MPCusingCVX.pdf
http://www.linuxhowtos.org/C_C++/socket.htm
https://linux.die.net/man/2/pipe
https://linux.die.net/man/2/pipe

67

[54] D. Morgan, S.-J. Chung, and F. Y. Hadaegh, “Model predictive control of swarms of
spacecraft using sequential convex programming,” Journal of Guidance, Control, and
Dynamics, vol. 37, pp. 1725–1740, Apr 2014.

[55] U. Kalabić, R. Gupta, S. D. Cairano, A. Bloch, and I. Kolmanovsky, “Constrained space-
craft attitude control on so(3) using reference governors and nonlinear model predictive
control,” in 2014 American Control Conference, pp. 5586–5593, June 2014.

[56] L. S. Breger and J. P. How, “Safe trajectories for autonomous rendezvous of spacecraft,”
Journal of Guidance, Control, and Dynamics, vol. 31, pp. 1478–1489, Sep 2008.

Master of Science Thesis Jose Libardo Navia Vela

68 Bibliography

Jose Libardo Navia Vela Master of Science Thesis

Glossary

List of Acronyms

MPC Model Predictive Control

ENU East-North-Up

FLU forward-left-up

MSR Mars Sample Return

LP Linear Programming

QP Quadratic Programming

LOS line of sight

DARE discrete algebraic Riccati equation

SDK Software Development Kit

I/O input-output

RF radio frequency

IMU inertial measurement unit

RC remote control

VAF Variance accounted for

LQR Linear-Quadratic Regulator

DARE discrete-time algebraic Riccati equation

RHC Receding Horizon Control

KKT Karush–Kuhn–Tucker

API application programming interface

Master of Science Thesis Jose Libardo Navia Vela

70 Glossary

LQI Linear-Quadratic-Integral control

NMPC Non-linear Model Predictive Control

VTOL Vertical Takeoff and Landing

UDP User Datagram Protocol

List of Symbols

φ Roll
ψ Yaw
θ Pitch

Jose Libardo Navia Vela Master of Science Thesis

	Front Matter
	Cover Page
	Title Page
	Signatures
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements

	Main Matter
	Introduction
	Thesis Objective and Contribution
	Document Outline

	Quadrotor Modeling
	Reference Systems
	Dynamic Model

	Equipment and Setup Description
	Aerial Platform
	Matrice 100
	Manifold
	Guidance
	Wireless Serial Module

	Ground Station
	OptiTrack and Motive
	Emergency System
	On-ground PC, RC, and Router

	Block Diagram of the Complete Setup

	System Identification
	Onboard Emergency Action
	Algorithm for Input-Output (I/O) Data Collection
	Identification of the Low-level Controllers
	Results
	Validation
	Identification of the Roll and Pitch Trends

	Drag Coefficient Identification
	Results
	Validation

	Controller Design and Implementation
	Discretization and Sampling Time Selection
	Control Topology
	Application Programming Interface (API)
	Kalman Observers
	qhat Observer Design
	rhat Observer Design

	Linear-Quadratic Regulator (LQR)
	Fundamentals
	LQR Design

	Model Predictive Control (MPC)
	CVXGEN
	MPC Design

	Experimental Results
	Tracking
	Control Inputs
	Estimated States vs Measurements

	Conclusions, Recommendations, and Future Work
	Conclusions
	Recommendations
	Future Work

	Back Matter
	Bibliography
	Glossary
	List of Acronyms
	List of Symbols

