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The method that we have developed [P-P. Borsboom, Ph.D. dissertation (Delft University of Technology,
Delft, The Netherlands); P-P. Borsboom and H. J. Frankena, J. Opt. Soc. Am. A 12, 1134-1141 (1995)] is
successfully applied to a two-dimensional focusing grating coupler. The field in the focal region has been
determined for symmetrical chirped gratings consisting of as many as 124 corrugations. The intensity
distribution in the focal region agrees well with the approximate predictions of geometrical optics. In the
case of short focusing grating couplers high-frequency intensity variations are observed in the focal region.

1. INTRODUCTION

A focusing grating coupler (FGC) redirects a guided wave
propagating in a dielectric planar structure into a beam
focused onto a point outside the waveguide, as discussed
in several papers.!=® In the future this device could be-
come the replacement for the conventional lens utilized in
compact disc players because it tends to be more compact,
lighter, and more rigid than currently used optical sys-
tems. The diffraction of light by FGC’s and their aberra-
tions have been studied by geometrical-optics methods.!~3
The disadvantage of these methods is their inability to
compute the actual field, or the intensity distribution,
rigorously in the focal region. To overcome this limita-
tion several methods treating two-dimensional gratings
of finite length have been proposed, such as those of Liu
and Chew* and of Shigesawa and Tsuji.® These meth-
ods could, in principle, be used to determine the field
in the focal region. However, the former method con-
siders only closed waveguides, whereas to our knowl-
edge no literature has appeared describing the actual
application of the latter method to FGC’s. Furthermore,
analysis of dielectric gratings of more than 20 periods has
not been reported thus far, whereas at least 100 corru-
gations must be considered to represent a realistic FGC.
Therefore we have developed a different method by which
several two-dimensional dielectric optical gratings, com-
prising 100 or more corrugations, are treated in a numeri-
cally reliable way.®

In this method the grating is considered as a se-
quence of two alternating types of waveguide sections
connected by means of step discontinuities, as shown in
Fig. 1. The sections can vary in length, permitting the
simulation of both periodic and nonperiodic (chirped)
gratings. All N waveguide layers are assumed to be ho-
mogeneous, isotropic, and linear. Losses in the media
can be accounted for. All the fields are assumed to be
time harmonic. The numerical examples presented here
are confined to gratings comprising sequences of wave-
guide sections symmetric about the x = 0 plane, although
the proposed method can also be applied to asymmetrical
profiles. In general, one can use symmetric gratings for
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qualitative considerations to gain a better understanding
of grating behavior.

2. PROPOSED METHOD OF ANALYSIS

To obtain the field scattered by the entire grating we
begin by determining the field scattered by a single step.
The scattering properties of this step are expressed by a
scattering matrix. Combining the matrices of the vari-
ous steps and waveguide sections, we obtain a matrix
describing the entire grating.

The approach followed can be divided into three stages:

A. Modal representation of the fields present in the
planar waveguide sections,

B. Scattering characteristics of a step discontinuity,

C. Combination of the scattering properties of a large
number of alternating step discontinuities and planar
waveguide sections.

All three stages were treated in Refs. 6 and 7 and are
only briefly discussed here.

We introduce a right-handed Cartesian system of coor-
dinates, as indicated in Fig. 1, where x is the direction
perpendicular to the interfaces between the homogeneous
dielectric layers and z is the propagation direction of the
guided waves. All the field quantities and the geometry
are assumed to be independent of y. Using the modal
representation in terms of guided and radiation modes,
as discussed, e.g., by Marcuse® and Vassallo,? we can ex-
press the fields by

M-1
Ey(x,2) = D [Ap exp(—jKkn2) + Bu exp(jKn2)m(x)
m=0

- [ Parkaexs(-kaz)

0 z1
+ bi(kx1)exp( jk:12)]pa(kar, x)d ki
[ P ey (ke exp(— huv2)

0 zN

+ by (kxw)exp( jk.nz)alken, x)dkey, (1)

where ,,, ¥4, and g are wave functions, as described in
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Fig. 1. Relief-type grating.

Refs. 6 and 7. The subscript N in k.5 and %,y indicates
that these quantities are considered in the superstratum.
M denotes the number of guided modes that are confined
to the guiding layer of the waveguide. Furthermore, A,,,
ai(ky1), and ay(k.y) are the complex amplitude coeffi-
cients of the guided and the radiation modes that propa-
gate in the positive z direction, whereas B,,, b1(k,;), and
by (k.n) are the corresponding quantities for the modes
traveling in the negative z direction. k,; and %,y are the
propagation constants of the radiation modes 4, and g,
respectively. They are defined as k,; = (n12ko% — ky12)"?
and k,y = (ny2ko? — k.n2)V2. Here n; and ny are the
complex refractive indices of the substrate and the super-
stratum, respectively, and kg = 27/Ao, where A is the
free-space wavelength. Finally, the modal expansion of
H, can be obtained from Eq. (1) by application of the re-
lationship H, = [ jou(x)] 10E,/0z.

Note that, because the configuration treated in the nu-
merical examples is symmetric with respect to x, we have
introduced a different set of radiation modes ¢z and o
that are linear combinations of 4 and ¢3:

Yg = s+ ¢p, (2)
Yo = tha — ¢, 3)

where {5 is even with respect to the plane x = 0 and ¢y is
odd. The superior numerical characteristics of the modal
expansion that we obtain by choosing these latter modes
were demonstrated by Vassallo.!? In all the examples
presented below, the field incident upon the FGC will
be a TE(, guided mode (which is an even function of x);
therefore only the a; and the b; coefficients must be
considered in these examples. The TE, mode is defined
as
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the amplitude coefficients are expanded by use of Cheby-
shev polynomials. By this method the field on both sides
of the step discontinuity is represented by a set of expan-
sion coefficients, which are arranged as a column matrix
to comply with the scattering matrix formalism. This
formalism was chosen because of its well-known numeri-
cal stability.
We thus obtain

Wy * S11 S \(Wi* 5
) sl ) o
where the square matrix is called the scattering matrix
pertalnlng to the step discontinuity at z = z,. Here
= [AD] af),s, afw),r,s]T (i = 1, 2) are column matrices
that describe the waves traveling in the positive z direc-
tion and W;~ = [BY, by, X;),S]T (i =1, 2) are column
matrices that describe waves traveling in the negative
z direction, at the left- and the right-hand sides of the
step discontinuity dependmg on i =1 or i = 2, respec-
tively. a(l), . and aN rs are the coefficients of the 7th-order
Chebyshev polynomial used in the expansion of a; and ay
in the sth 1nterval of the truncated integration domain.
Similarly, blrs and bN,s correspond to the expansions
of b; and by, respectively. The scattering matrix corre-
sponding to the planar waveguide section bounded by the
planes at z = z;, and at z = z;; is defined as

Wit P 0 Wit

)6 el )@
where the matrix P relates the complex amplitudes of the
waves traveling in both the positive and the negative z di-
rection. Here W), and W}, denote the wave amplitudes
traveling to the left and the right, respectively, at z = z,,
and at z = z;1;. In combining these matrices into a ma-
trix describing the entire grating, the Redheffer product
has been applied.!?

All the above steps were implemented by a computer
program that can be used to determine the field scat-
tered by periodic or aperiodic gratings. Periodic gratings
were successfully treated in our previous paper.® There-

AO,N exp[—jkv(x — Xn-1)]
lpO(x) = BO,p eXp[_jkxp(x -
Do, exp[+ jke(x — X1)]

Xp)] + CO,p exp[+jkxp(x - Xp)]

for x >XN_1
for X, 1 <x<X,, (4)
for x < X;

where Aoy, Bop, and Cy, can be expressed in terms
of Dy; through the boundary conditions at the inter-
faces X, (p =1, ..., N — 1) between the N homogeneous
waveguide layers.

To determine the field scattered by a single step discon-
tinuity, the mode-matching method!'~'* is applied. To
this aim, the modal expansion (1), with unknown am-
plitude coefficients, is used to represent the tangential
field components E, and H, at both sides of the step.
These field components are then forced to be continuous
across the plane of the step, and the resulting equations
are solved to yield the unknown amplitude coefficients.
In this process the integrals representing the radiation
fields are truncated, and the remaining integration inter-
vals are divided into subintervals. In each subinterval

fore only the focal-region field of chirped gratings is dis-
cussed here.

3. NUMERICAL RESULTS

In this section we discuss a symmetrical chirped grat-
ing, which is the two-dimensional equivalent of the FGC.
The z coordinates of the scattering steps were determined
by geometrical optics, according to Ref. 16, and the focal-
region field scattered by the grating was computed. The
configuration of the chirped grating closely resembles the
periodic grating discussed in our previous paper.® This
periodic grating was derived from the examples presented
in the papers by Liu and Chew* and by Shigesawa and
Tsuji.?> For the chirped grating the distances between
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Fig. 3. Focal region of a 19-corrugation grating with 8 = 45°,
h =30 um.

adjacent steps increase with z, and it is more appropriate
to replace the word period with the word corrugation.

Using the method described in Section 2, we designed
three chirped gratings in three-layer waveguide struc-
tures, each with the geometry indicated in Fig. 2, in which
only the upper half (x > 0) of a symmetrical chirped grat-
ing is shown. The gratings are 24 long and have their
focal points at (h, 0.414h). This geometry was chosen
such that the angle a between PF and QF is 45°, whereas
the angle B between AF and the x axis equals 45°. Here
B is the average angle under which the grating radiates
toward its focus. Furthermore, when we define the nu-
merical aperture NA as the sine of «a/2, for these con-
figurations NA = 0.38. Calculations were performed for
h =30 um, h = 80 um, and A = 200 um, respectively.
In all three geometries § = 0.08 um.

The positions of the steps in these gratings were chosen
such that, if a Gaussian light beam travels from the be-
ginning of the grating at z = —2h through a step (whose
height is neglected in this approximation) toward the focal
point, its optical path equals a constant plus /g, where
[=0, +1, =2, .... Hence all the scattered contributions
arrive at the focal point in phase, producing a maximum
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intensity there. The positions of the steps are then given
by!8:

_ ngngh

N, = —————
* ng? — ns?

1-— Ns)\O - (1= ans/\()
2nsh ng2h

where zy, denotes the z coordinate of the N,th step, ns
is the refractive index of the medium in which the focus
is situated, and n, is the average of the two effective
indices corresponding to the two waveguides making up
the grating.

In Fig. 3 a computed plot of the focal-region inten-
sity of a 19-corrugation grating with A = 30 um, with
its geometrical-optics focal point at (30, 12.42 um), is
shown. The focal-region intensity distribution is roughly
elliptical, with its main axis making an angle of approxi-
mately 45° with the x axis, which is in agreement with the
geometrical-optics considerations presented above. The
length of the area in which the field intensity is equal to,
or more than, one half of the maximum intensity in focus
is approximately 9 um. The width, where the field in-
tensity is 0.8 of the maximum intensity, is approximately
1.8 um. This result agrees well with estimates of the di-
mensions (8 and 2 um, respectively) and of the orientation
of the focus that we obtained by considering the grating as
an aperture and subsequently applying geometrical-optics
methods and scalar diffraction theory.!”

A ripple in the focal-region intensity distribution can be
observed in Fig. 3. Through convergence checks we es-
tablished that the ripple is not caused by numerical noise.
All the experimental work and most of the approximate
ray-tracing methods deal only with long gratings (1000
periods or more). By changing only 4 in the configura-
tion of Fig. 2 and observing the calculated field in the
focal region for gratings of 24 = 160 um (50 corrugations)
and 2A = 400 um (124 corrugations), we can see that the
ripple becomes less pronounced, as shown in Figs. 4 and
5. This effect suggests its absence in the fields of longer
gratings. However, further computations will have to be
carried out to confirm this result and to explain the oc-
currence of the short gratings’ ripples.

For the 19-corrugation grating, the complex amplitude
coefficients are shown in Fig. 6 for the reflected radiation
field at z < —2h and in Fig. 7 for the transmitted field
at z>0. We can see from Eq. (1) that the coefficients a;
and b; appear only in combination with the factor &,1/k.;.
Therefore, to assess the actual contributions of these co-
efficients on the intensity, this factor must be taken into
account because it has a broadening effect along the %,
axis. We can observe from the plots that the transmitted
field consists mainly of radiation modes with %,; values in
the 1.0 um™! < k,; < 3.5 um~! range. Note that this &,
domain is roughly predictable from the grating configura-
tion. By assuming that the wave vector k in the super-
stratum corresponds to a radiation angle 0, this angle can
be computed from the modulus of the wave vector |k| =
niky and from its x component k&,; with the equation ® =
sin~!(k,1/|k|). From the two angles Bp and Bg shown in
Fig. 2 we can determine the boundaries of the k,; inter-

1/2
N2 )2
+ 4ng2h2> ’ (7)
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Fig. 4. Focal region of a 50-corrugation grating with 8 = 45°,
h =80 um.
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Fig. 5. Focal region of a 124-corrugation grating with g = 45°,
h =200 pm.

val responsible for the dominant contribution to the radi-
ation field, as described in Ref. 6. This determination in
turn enables us to approximate the amplitude coefficients
efficiently because only this interval must be sampled
accurately, i.e., must be divided into many subintervals
(typically 100).

We can observe from Fig. 7 that the maxima of the
real and imaginary parts of amplitude a; lie at k,; = 2,
corresponding to an angle ® = 30°, which is different
from that predicted by geometrical optics (@ = 45°). This
result may be explained by the fact that the amplitude
of the guided wave decreases as it propagates through
the grating, whereas in the geometrical-optics analysis
this phenomenon is neglected. However, this is just one
possible explanation, and further investigation is required
for a full understanding of this discrepancy.
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Comparison of the complex amplitudes a; and b; with
those of a periodic grating® shows that the a; and the
by values of a periodic grating have a peaked charac-
ter, whereas those corresponding to a chirped grating are
more evenly distributed over the interval 0 < &,; < nko,
although oscillations occur. This is because for a periodic
grating the radiation occurs predominantly in a single di-
rection, whereas a chirped grating scatters the light in
several directions, thereby creating a focusing effect. In
the case of periodic gratings, we observed from numeri-
cal experiments that, especially for longer gratings, the
amplitude coefficient is reduced almost to a single nar-
row peak. Therefore we can, in most cases, restrict the
integrations of Eq. (1) to a subinterval near this peak,
thereby greatly increasing the efficiency of the compu-
tation. By comparison, the chirped grating has an am-
plitude coefficient whose width is dependent only on the
NA of the grating, not on the number of corrugations.
However, all things considered, our experience is that the
computation of the amplitude coefficients corresponding
to either a periodic or a chirped grating requires approxi-
mately the same computation effort for an identical num-
ber of steps, even though the coefficients involved are
entirely different.
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Fig. 6. Amplitude coefficient b; (V) corresponding to the re-
flected radiation field of the FGC comprising 19 corrugations:
(a) real part, (b) imaginary part.
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Fig. 7. Amplitude coefficient a; (V) corresponding to the trans-
mitted radiation field of the FGC comprising 19 corrugations:
(a) real part, (b) imaginary part.

4. CONCLUSIONS

In this paper the method presented in Refs. 6 and 7 has
been successfully applied to analyze the field produced
by a two-dimensional focusing grating coupler. Focal-
region fields have been determined for three symmet-
rical gratings with 19, 50, and 124 corrugations. The
intensity distribution in the focal region agrees well with
the approximate predictions of geometrical optics. In
the case of a focusing grating coupler of limited length,
high-frequency intensity variations were observed in the
focal region. The amplitude of these variations is low-
ered when the length of the grating increases. A plau-
sible explanation of this phenomenon has not yet been
found and is the object of ongoing research.
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