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Summary

This thesis investigates the role of learned abstract models in online planning and model-
based reinforcement learning (MBRL). We explore how abstract models can accelerate
search in online planning and evaluate their effectiveness in supporting policy evaluation
and improvement in MBRL.

In online planning, we focus on reducing the high computational cost of simulat-
ing large, factored, partially observable environments. In Chapter 3, we introduce the
influence-augmented local simulator (IALS), which approximates external influences while
preserving local agent interactions. By replacing the full simulator with IALS, we enable
faster planning while maintaining decision quality. We propose a two-phase approach
where the influence model is trained offline and later integrated into planning, allowing sig-
nificantly more simulations within a fixed computational budget. However, this approach
has limitations, including potential distribution shifts and the risk of poor generalization.

To address these issues, Chapter 4 introduces the self-improving simulator, which elim-
inates offline training by learning the abstract model online during planning. A simulator
selection mechanism dynamically balances the use of the learned and original simulators,
improving computational efficiency over time while ensuring planning accuracy. Our
results show that this approach avoids distribution shift issues, prevents premature reliance
on inaccurate models, and removes the delay associated with offline training.

In MBRL, we examine the effectiveness of MuZero’s learned model in supporting policy
evaluation and improvement. In Chapter 5, we analyze how well MuZero’s model general-
izes beyond its training distribution and find that it struggles to support planning "outside
the box" due to accumulated model inaccuracies. However, we show that MuZero’s learned
policy prior mitigates these errors by guiding the search toward regions where the model is
more reliable. This insight highlights the dual role of the policy prior—not only improving
search efficiency but also compensating for model imperfections, contributing to MuZero’s
strong empirical performance.

Overall, this thesis advances the understanding of learned abstract models in sequen-
tial decision-making, demonstrating their potential to improve computational efficiency
while identifying key limitations in their ability to support planning. We hope these find-
ings encourage further research into abstraction-driven approaches for adaptive, scalable
decision-making in complex environments.





xi

Samenvatting

Dit proefschrift onderzoekt de rol van geleerde abstracte modellen in online planning en
model-gebaseerde reinforcement learning (MBRL). We verkennen hoe abstracte modellen
het zoeken in online planning kunnen versnellen en evalueren hun effectiviteit in het
ondersteunen van beleidsevaluatie en -verbetering binnen MBRL.

Bij online planning richten we ons op het verminderen van de hoge rekentijd die nodig
is om grote, gefactoreerde en partieel observeerbare omgevingen te simuleren. In Hoofdstuk
3 introduceren we de influence-augmented local simulator (IALS), die externe invloeden
benadert terwijl lokale interacties tussen agenten behouden blijven. Door de volledige
simulator te vervangen door IALS, maken we snellere planning mogelijk zonder in te boeten
aan beslissingskwaliteit. We stellen een tweefasenaanpak voor waarbij het invloedsmodel
offline wordt getraind en later in de planning wordt geïntegreerd, waardoor aanzienlijk
meer simulaties binnen een vast rekencapaciteitsbudget kunnen worden uitgevoerd. Deze
aanpak heeft echter beperkingen, zoals mogelijke distributieverschuivingen en het risico
op slechte generalisatie.

Om deze problemen aan te pakken, introduceert Hoofdstuk 4 de self-improving simula-
tor, die offline training overbodig maakt door het abstracte model online tijdens de planning
te leren. Een simulatiekeuzemechanisme balanceert dynamisch het gebruik van de geleerde
en originele simulatoren, waardoor de computationele efficiëntie in de loop van de tijd
verbetert terwijl de nauwkeurigheid van de planning gewaarborgd blijft. Onze resultaten
tonen aan dat deze aanpak distributieverschuivingen vermijdt, voortijdig vertrouwen in
onnauwkeurige modellen tegengaat en de vertraging van offline training wegneemt.

Binnen MBRL onderzoeken we de effectiviteit van het geleerde model van MuZero
in het ondersteunen van beleidsevaluatie en -verbetering. In Hoofdstuk 5 analyseren we
hoe goed het model van MuZero generaliseert buiten de trainingsdistributie en ontdekken
we dat het moeite heeft met planning “buiten de gebaande paden” vanwege opgebouwde
modelonnauwkeurigheden. We laten echter zien dat de door MuZero geleerde beleids-
prior deze fouten verzacht door de zoekrichting te sturen naar gebieden waar het model
betrouwbaarder is. Dit inzicht benadrukt de dubbele rol van de beleidsprior: niet alleen
het verbeteren van de zoek efficiëntie, maar ook het compenseren van modelimperfecties,
wat bijdraagt aan MuZero’s sterke empirische prestaties.

Samengevat draagt dit proefschrift bij aan het begrip van geleerde abstracte modellen
bij sequentiële besluitvorming. Het toont hun potentieel om de computationele efficiëntie
te verbeteren en identificeert tegelijkertijd belangrijke beperkingen in hun vermogen om
planning te ondersteunen. We hopen dat deze bevindingen verder onderzoek stimuleren
naar op abstractie gebaseerde benaderingen voor adaptieve, schaalbare besluitvorming in
complexe omgevingen.
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1
Introduction

"A journey of a thousand miles begins with a single step."

Laozi

Concepts such as space, time, and causality constitute the physical world that we inhabit.
Within this world, diverse systems, from humans and animals to coffee machines and chairs,
constantly interact with each other. The behavior of these systems varies in complexity. Some,
like coffee machines and chairs, follow predictable patterns and are relatively easy to model.
Others, in contrast, exhibit complex behavior by observing and reasoning about other systems
and act accordingly.

This evolving landscape of complex systems and interactions fundamentally shapes one of
the central questions in artificial intelligence (AI): how can we build autonomous systems, or
agents, that are capable of making decisions in environments full of other complex interacting
systems? This question not only challenges our understanding of intelligence but also has
many real-world applications. Indeed, recent advances in AI have led to a surge of success
in creating intelligent agents capable of tackling a wide range of real-world tasks previously
considered too difficult for machines. These tasks range from mastering games such as Go
[Silver et al., 2016, 2017b, 2018], Starcraft [Vinyals et al., 2019] and Dota 2 [OpenAI et al.,
2019b], solving combinatorial optimization problems, such as chip design [Mirhoseini et al.,
2021], neural network architecture search [Zoph and Le, 2016] and causal discovery [Zhu et al.,
2019], to controlling complex systems, such as cooling systems of buildings [Luo et al., 2022],
robotic systems [Kober et al., 2013] and nuclear fusion plasma [Degrave et al., 2022].
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2 1 Introduction

1.1 Seqential decision-making

The first step towards building intelligent agents capable of solving these tasks is often
formulating them as sequential decision-making problems. In this framework, an agent
interacts with an environment in discrete time steps. At each time step, the agent observes
the environment and chooses an action, causing the environment to transition to a new
state. The agent’s goal is then to maximize the rewards accumulated over time, which are
numerical signals that indicate how well the agent is doing.

1.1.1 Models

Researchers have developed a rich set of mathematical models and solution methods to
tackle these problems, each tailored to specific assumptions and settings. Markov decision
processes (MDPs) [Bellman, 1957b] form a foundational model for sequential decision-
making. In MDPs, it is assumed that an agent receives observations that constitute a
Markovian signal of the underlying environment state, enabling optimal decision-making
based solely on the current observation. Partially observable MDPs (POMDPs) [Kaelbling
et al., 1998] relax this assumption by considering situations where the environment state is
only partially observable. Consequently, acting optimally in POMDPs requires agents to
reason about the hidden state by integrating their past actions and observations, rather than
relying solely on the current observation. Extending sequential decision-making problems
to multi-agent contexts, partially observable stochastic games (POSGs) [Hansen et al., 2004,
Shapley, 1953] model interactions among multiple agents as well as their environment.
A notable special case of POSGs is the class of decentralized POMDPs (Dec-POMDPs)
[Oliehoek and Amato, 2016], in which agents collaborate to maximize a shared reward.
Formulating sequential decision-making problems using these mathematical frameworks
allows for a formal definition of the challenges addressed in this thesis and facilitates the
principled development and application of solution methods.

1.1.2 Solution Methods

A diverse range of solution methods have been proposed for sequential decision-making
problems, each suited to different assumptions and paradigms. Although the overarching
goal is similar—to develop autonomous agents capable of effective decision-making within
specific environments—these methods differ considerably. For comprehensive overviews,
readers can consult textbooks such as Wiering and Van Otterlo [2012], Sutton and Barto
[2018], and Kochenderfer et al. [2022]. For our purposes, we will focus on a key distinction:
what knowledge about the environment is available when constructing the agents? In practice,
this translates to the question of what type of simulator or model we assume is accessible
when developing decision-making agents. This distinction serves as our primary criterion
for classifying sequential decision-making methods.

Environment models used for decision-making can generally be categorized into three
types: full models, generative models, and trajectory models. A full model provides a complete
mathematical description of the environment, specifying precise probability distributions
for state transitions and rewards. Given this comprehensive representation, optimal policies
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can be computed through dynamic programming methods such as value iteration [Bellman,
1957a] and policy iteration [Howard, 1960].

In contrast, generative and trajectory models do not provide explicit probability dis-
tributions of future states and rewards, making exact computations infeasible. Instead,
they require the use of sampling-based methods. Generative models, for example, allow
simulation of possible future states and rewards from any arbitrary state-action pair. This
capability enables the use of online planning approaches, where agents select actions
by simulating future outcomes. Monte-Carlo Tree Search (MCTS) [Browne et al., 2012,
Coulom, 2006, Kocsis and Szepesvári, 2006] exemplifies this class, incrementally building a
search tree through simulations to identify promising actions.

Unlike generative models, trajectory models permit the simulation of only a single
next state from the current state-action pair. This closely resembles interactions with real
environments, where arbitrary state resets are impossible; indeed, the real environment
itself can be viewed as a trajectory model. Consequently, methods designed for trajectory
models are inherently suited to learning in real environments. Reinforcement learning (RL)
[Sutton and Barto, 2018], which learns policies through trial-and-error interactions, is the
predominant method within this category. A key advantage of RL is its ability to operate
without explicit environment models or simulators. However, practical constraints such as
safety risks and poor sample efficiency often limit direct learning in real environments.
Consequently, RL methods are typically employed within simulators or models prior to
deployment—a paradigm known as simulated reinforcement learning.

Importantly, full models can often be trivially transformed into generative models,
and generative models into trajectory models, establishing a natural hierarchy from most
expressive (full models) to least expressive (trajectory models). Consequently, trajectory-
model-based methods like RL can, in principle, also be applied within full or generative
model settings. In practice, RL methods often hold advantages over dynamic programming
and online planning approaches (when all of them are applicable), particularly in scenarios
involving continuous or high-dimensional state and action spaces, and when generalization,
scalability, or rapid deployment-time decisions are required. The integration of neural
network-based function approximation has recently led to the emergence of deep rein-
forcement learning (deep RL) [François-Lavet et al., 2018] as a highly flexible framework
capable of effectively handling complex, high-dimensional decision-making problems.

Nevertheless, RL methods are not universally superior. Deep RL training typically
suffers from issues such as sample inefficiency, computational expense, training instability,
and sensitivity to hyperparameters and implementation nuances [Henderson et al., 2018,
Irpan, 2018, Islam et al., 2017, Mannor and Tamar, 2023]. Online planning approaches,
which avoid explicit training phases, circumvent these limitations by focusing solely on
selecting effective actions for the current state. This makes them particularly suitable
for large state-space problems and environments subject to dynamic changes, conditions
under which learned RL policies often struggle. Finally, as explored in Section 2.4.1, RL
and online planning can be effectively combined under the expert iteration framework
[Anthony et al., 2017] to develop more efficient algorithms for sequential decision-making.
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4 1 Introduction

1.2 Abstractions in Seqential Decision-Making

Despite the significant progress in sequential decision-making problems, many challenges
remain. For example, in environments characterized by intricate interacting systems, the
vastness of the state space poses a significant challenge for decision-making agents operat-
ing with limited resources. This challenge is particularly acute in online planning scenarios,
where agents must predict future states to make informed decisions. The computational
demands of simulating the entire environment can severely constrain the agent’s ability
to act both efficiently and effectively. Similarly, in RL, the task of "representing" a good
policy (i.e., remembering what to do in each state) in a complex environment can already be
challenging due to the curse of dimensionality, let alone the sample complexity required to
find a good policy. Furthermore, in simulated RL, where agents are trained in simulations
before deployment in the real environment, the challenge of computational complexity in
simulation is also present.

Moreover, the complexity of sequential decision-making is influenced not only by the
environment but also by the agent’s action space and the task horizon. A larger action
space—i.e., having many possible actions—increases the computational effort required
to identify optimal decisions. Tasks with long horizons similarly amplify complexity, as
agents must reason further into the future, significantly complicating the search for optimal
decisions. Thus, efficiently solving long-horizon tasks in complex environments remains
an important open challenge, especially relevant since real-world applications often exhibit
precisely these complexities.

A promising approach to addressing these challenges is the use of abstractions, which
simplify complex problems by deliberately ignoring certain details. Specifically, abstractions
in sequential decision-making can simplify the environment, reduce the complexity of the
action space, or shorten the effective horizon of the task.

1.2.1 Action and Temporal Abstractions

Two key forms of abstraction in sequential decision-making are action abstraction, which
simplifies the set of available actions, and temporal abstraction, which simplifies decisions
over longer time horizons.

Action abstractions address large action spaces by reducing the number of candidate
actions an agent must consider, typically eliminating actions that are irrelevant, infeasi-
ble, or consistently inferior. A simple yet effective method is action elimination, where
unnecessary actions are removed manually using domain knowledge [Kanervisto et al.,
2020] or automatically via auxiliary environmental signals [Zahavy et al., 2018]. A practical
example is invalid action masking [Huang and Ontañón, 2022], crucial in environments
with numerous invalid actions.

Beyond “hard” elimination (completely removing actions), "soft" elimination methods
reduce the influence of non-promising actions by assigning them lower priority during
exploration and decision-making. Soft elimination often uses a prior policy to focus
exploration on promising actions [Anthony et al., 2017, Rosin, 2011]. From a Bayesian
viewpoint, this approach imposes a prior over policies [Doshi-velez et al., 2010, Levine, 2018,
Wingate et al., 2011], effectively regularizing policy optimization and facilitating faster
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convergence [Geist et al., 2019, Grill et al., 2020]. Thus, with a suitable prior, agents achieve
more efficient planning and learning, requiring fewer samples and resources, leading to
improved performance.

Temporal abstractions simplify the policy space by enabling agents to reason over
temporally extended sequences of primitive actions rather than individual steps. This
is particularly useful in long-horizon tasks, where step-by-step planning in large action
spaces is impractical. For example, a robot navigating to a distant location can select
high-level waypoints instead of controlling low-level motor commands at each step.

In the literature, temporally extended actions are called options [Sutton et al., 1999],
low-level controllers [Heess et al., 2016, Nachum et al., 2018], workers [Vezhnevets et al.,
2017], or skills [Eysenbach et al., 2018], reflecting different modeling frameworks. A
prominent formalism, the options framework [Sutton et al., 1999], defines options as
low-level policies executed over multiple timesteps with explicit termination conditions,
enabling hierarchical reasoning. These options can be handcrafted by experts or learned
from data [Achiam et al., 2018, Bagaria and Konidaris, 2019, Fox et al., 2017, Jinnai et al.,
2019, Machado et al., 2017, Ramesh et al., 2019], an ongoing open challenge. Recent work
in hierarchical RL demonstrates that temporal abstractions provide a strong inductive
bias, enhancing end-to-end deep RL efficiency in long-horizon tasks [Bacon et al., 2017,
Harb et al., 2018]. Moreover, temporal abstractions can serve as reusable knowledge in
transfer learning, facilitating effective exploration and accelerated learning of new tasks
[Eysenbach et al., 2018, Heess et al., 2016, Igl et al., 2020, Wulfmeier et al., 2020].

1.2.2 State abstractions

To address the challenge of large state spaces, researchers have explored state abstractions,
which simplify the environment by filtering out irrelevant information from the state space.
State abstractions can be implemented in various ways: by removing state variables in
factored domains, creating partitions of the state space in tabular domains, or learning
state representations in high-dimensional domains. Despite differences in implementation,
all state abstractions share the core of grouping "similar" states to simplify the policy space.

A fundamental question is: which states should be grouped together? To address this,
Li et al. [2006] proposed a unified framework of state abstractions for MDPs, defining a
hierarchy of abstractions based on the properties they preserve:

• Model-irrelevance abstraction: States are grouped together if they lead to the same
rewards and next abstract states for all actions.

• 𝑄Π-irrelevance abstraction: States are grouped together if they share the same Q
value for all actions and policies to follow afterwards.

• 𝑄∗-irrelevance abstraction: States are grouped together if they share the same optimal
Q value for all actions.

• 𝑎∗-irrelevance abstraction: States are grouped together if they share an optimal
action and the optimal Q value for this action.

• 𝜋∗-irrelevance abstraction: States are grouped together if they share an optimal
action while their optimal Q values for this action not necessarily being the same.
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Here, the Q-value (or action-value) of a state-action pair represents the long-term rewards
an agent receives when taking an action in a state and then following a policy thereafter.

This abstraction hierarchy moves from the most restrictive (model-irrelevance) to
the most permissive (𝜋∗-irrelevance). As we go down the hierarchy, the abstractions
rely less on full knowledge of the environment’s dynamics (i.e., transition and reward
functions) and more on value-based information, which is often harder to obtain or estimate
accurately. This leads to a trade-off: more abstract models can improve learning and
planning efficiency, but they may require access to difficult-to-compute information, such
as the optimal policy or value function—what we later refer to as the "curse" of abstraction.
Moreover, abstractions can be extended beyond states to include state-action pairs, as in
the framework of MDP homomorphisms, which capture deeper symmetries and structural
regularities in the environment [Ravindran and Barto, 2001, van der Pol et al., 2020a,b].

According to [Starre et al., 2023b], state abstractions are applied in three distinct
settings, depending on the available information. First, when both the abstraction and the
corresponding abstract model (including transitions and rewards) are available, planning
and learning can occur entirely within the abstract model. This typically leads to significant
computational and sample efficiency gains, particularly valuable for online planning and
simulated RL [Buesing et al., 2018, Chitnis and Lozano-Pérez, 2020]. This approach directly
relates to Chapters 3 and 4 of this thesis.

Second, when only a state abstraction (but no abstract model) is available, we can
still enhance sample efficiency by applying the abstraction directly to data sampled from
the original environment/model. The resulting "empirical abstract model" reduces the
complexity of policy and value function learning. However, approximate abstractions may
introduce non-Markovian dependencies in the data [Starre et al., 2023a]. This approach
has proven particularly effective in Monte Carlo Tree Search (MCTS), reducing search-
tree complexity and enhancing planning efficiency [Anand et al., 2015b, Bai et al., 2016,
Hostetler et al., 2014, Jiang et al., 2014, Xu et al., 2023], and in abstracted RL, where agents
learn policies from abstract observations [Abel et al., 2016].

Third, when neither the abstraction nor the abstract model is initially known, abstrac-
tion frameworks still guide representation learning in model-based RL (MBRL)—a hybrid
planning and learning approach explored in Chapter 5 of this thesis. In MBRL, agents learn
abstract models directly from environment interactions, offering greater sample efficiency
than traditional model-free methods. However, accurately identifying abstract states with-
out full access to the true environment model is challenging, creating a "chicken-and-egg"
problem: defining abstractions typically requires prior knowledge (like optimal policies or
Q-values), which itself must be learned from data.

Thus, most research on learning abstract models in MBRL has focused on the model-
irrelevance abstraction, avoiding the complexity of predicting full states or observa-
tions—especially beneficial in high-dimensional, visual domains [Gelada et al., 2019, van
der Pol et al., 2020a]. Recently, researchers have also explored value-equivalent models
[Grimm et al., 2020, 2021, 2022], corresponding to 𝑄𝜋-irrelevance abstraction. While the-
oretically more abstract and potentially more compact, these methods require accurate
estimation of value functions from data. Notable successes in this direction include MuZero
[Schrittwieser et al., 2020] and EfficientZero [Ye et al., 2021], demonstrating significant
improvements in both performance and sample efficiency compared to model-free RL.
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1.3 Contributions of this thesis

The research in this thesis explores learned abstract models in the contexts of online
planning and model-based reinforcement learning (MBRL). Specifically, we investigate
how learned abstract models can accelerate search in online planning and examine to what
extent they support effective planning and policy improvement in MBRL.

Main Research Question: How can learned abstract models improve the efficiency
and effectiveness of online planning and model-based reinforcement learning?

Key Contributions:

• A novel two-phase method for online planning in large Factored POMDPs that
combines exact local dynamics with a learned influence model, significantly
improving simulation efficiency (Chapter 3).

• A self-improving simulator framework that learns abstract models online and
dynamically balances learned and ground-truth dynamics for efficient planning
(Chapter 4).

• A systematic analysis of MuZero’s learned model, showing its limitations for
policy evaluation and highlighting the central role of the learned policy prior in
supporting effective planning (Chapter 5).

1.3.1 Learned AbstractModels for Efficient Online Planning

Chapters 3 and 4 address the problem of online planning in large, factored, partially
observable environments. A key challenge in this setting is the high computational cost of
simulating the full environment, which can limit practical applicability.

We leverage structural properties common in real-world domains (e.g., traffic networks,
warehouses), where the agent interacts with a local environment but is influenced by a
broader system. To exploit this, we apply Influence-Based Abstraction (IBA) [Oliehoek
et al., 2021] to build an efficient abstract simulator — the influence-augmented local sim-
ulator (IALS). This simulator combines exact local dynamics with a learned model that
approximates external influences.

Research Question 1 (Chapter 3): How can we learn and integrate an influence-
augmented local simulator (IALS) to accelerate online planning?

• We propose a two-phase approach: an offline phase, where we train a deep
recurrent neural network as an influence model from simulation data; and an
online planning phase, where this influence model is combined with an exact
local simulator to form the IALS.



1

8 1 Introduction

• We demonstrate seamless integration of the IALS into the POMCP planning algo-
rithm, improving computational efficiency by caching recurrent neural network
states rather than reprocessing complete histories.

Research Question 2 (Chapter 3): How does planning with the learned IALS com-
pare to planning with the original simulator?

• We empirically show that planning with the IALS significantly reduces computa-
tional costs. Under fixed simulation budgets, planning with the IALS outperforms
planning with the original simulator, demonstrating greater efficiency despite
approximations.

Research Question 3 (Chapter 3): How does environmental influence strength
affect the performance of the learned IALS?

• We find that environments with weaker influence coupling result in smaller per-
formance gaps between planning with the IALS and the true simulator. Stronger
coupling environments demand more accurate influence modeling for high plan-
ning performance.

Despite its advantages, the two-phase approach has key drawbacks: a costly offline
training phase, sensitivity to distribution shifts during planning, and risk associated with
fully replacing the true simulator.

To overcome these issues, we introduce a self-improving simulator paradigm that learns
the abstract model online and dynamically chooses between the abstract and original
simulators during planning.

Research Question 4 (Chapter 4): How can we address the limitations of the two-
phase approach through a new simulation paradigm?

• We introduce the self-improving simulator, which incrementally learns the ab-
stract model during planning, eliminating the need for an offline training phase.

• We propose a simulator-selection mechanism that uses a UCB1-based strategy
to dynamically switch between the abstract and ground-truth models based on
estimated prediction accuracy.

• We demonstrate that this mechanism mitigates distribution shift, improves pre-
diction accuracy, and reduces the risk of planning failures due to inaccurate
modeling.
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1.3.2 Learned Abstract Models in Model-Based Reinforce-
ment Learning

Chapter 5 explores learned abstract models in the context of MuZero [Schrittwieser et al.,
2020], which uses a value-equivalent model for sample-efficient reinforcement learning.

While MuZero has shown impressive empirical results, its learned model’s contribution
to effective planning and policy improvement is not well understood.

Research Question 5 (Chapter 5): How does MuZero’s learned value-equivalent
model support effective planning and policy improvement?

• We show that MuZero’s learned model struggles with accurate policy evaluation,
particularly for policies outside its training distribution, limiting direct policy
improvement through planning.

• By isolating the learned model from the learned value function, we find that
effective planning in MuZero critically depends on the learned policy prior, which
guides the search toward areas where the model is accurate, reducing accumulated
prediction errors. This insight partially explains MuZero’s effectiveness despite
inaccuracies in the learned model itself.
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1.4 Additional Research

In this section, we describe our research that extends or complements the core contributions
of this thesis. As an overview, there are two main lines of work: one on applying influence-
augmented local simulators to reinforcement learning settings and the other on applying
sequential decision-making methods to AI competitions inspired by real-world applications.

1.4.1 Scaling up Deep RL with IALS

We begin by describing our work on applying influence-augmented local simulators to
reinforcement learning (RL) settings, which is closely related to the research presented in
Chapters 3 and 4. This line of investigation was led by our close colleague, Miguel Suau.

As discussed earlier in Section 1.2, complex systems pose significant computational
challenges for both online planning and simulated RL, where policies are learned in a
simulated environment before being deployed in the real world. These challenges are
particularly pronounced in deep RL methods, which require large amounts of data to
learn effective policies. To improve the feasibility of deep RL in cases where environment
simulations are costly, we explore the use of influence-augmented local simulators as a
surrogate for data generation and policy learning. Our role in this line of work primarily
involved contributing to experimental design.

We investigated this approach in single-agent RL settings [Suau et al., 2022c], with ex-
periments conducted in two weakly coupled environments: warehouse commissioning and
traffic light control. Results demonstrate that using influence-augmented local simulators
can significantly reduce the overall runtime needed to learn an effective policy compared
to training with a global simulator.

Building on this work, we extended the approach to multi-agent systems [Suau et al.,
2022a], where we train multiple agents in a networked environment. In this case, each
agent operates with its own influence-augmented local simulator, running independently
and in parallel. This decentralized approach avoids the need for centralized simulations
traditionally required in multi-agent RL, thereby improving the scalability of deep RL
methods. We highlight the advantages of this method by demonstrating that 100 agents
can be trained to control a traffic network in under six hours, as opposed to more than ten
days, when using a global simulator.

Additionally, inspired by the influence-based abstraction framework, we propose a new
neural network architecture, influence-aware memory, for deep RL in partially observable
Markov decision processes (POMDPs). This architecture shows improved runtime efficiency
and final performance compared to standard recurrent neural networks [Suau et al., 2022b].

1.4.2 The 2022 Pathways to Net Zero RL Challenge

The second line of work is applying sequential decision-makingmethods to AI competitions.
This led to two studies [Chen et al., 2023, Zobernig et al., 2022] that summarized the overall
results of the competitions, where our solutions were discussed and analyzed.

In the 2022 Pathways to Net Zero RL Challenge, we, alongside our colleague Aleksander
Czechowski, were tasked with developing a policy for investing in three types of renewable
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energy. The objective was to maximize long-term rewards, considering factors such as
revenue, carbon emissions, and job creation over the period from 2031 to 2050.

Unlike other teams that primarily applied deep RL methods, we developed a lightweight
sequential optimization algorithm called sequential golden section search. In our approach,
we modeled the problem as an open-loop planning problem, where the agent selects a
sequence of actions for the entire planning horizon without receiving feedback from the
environment. The algorithm iteratively refines the action sequence step by step, using the
golden section search method [Kiefer, 1953] to optimize each action while keeping the
others fixed. We found that a single iteration of the search, performed in the backward
direction, was sufficient to achieve strong performance.

Due to the simplicity and scalability of our approach compared to deep RL methods,
we were able to achieve the highest score in the competition, using only a dozen CPUs and
a few hours of search. Our method earned us joint first place in the competition and was
summarized and analyzed in [Zobernig et al., 2022], which we coauthored.

1.4.3 The Second Neural MMO Challenge

In the second Neural MMO Challenge at IJCAI 2022, where we placed third, our team
implemented a planning-based solution for controlling eight agents in a 128x128 multi-
agent grid environment. This environment required agents to make movement and attack
decisions to optimize a team score based on exploration, foraging, combat, and equipment.
Unlike other teams using computationally expensive deep RL methods, we adopted a
decentralized planning approach that allowed each agent to make independent decisions
within an autoregressive framework, where prior decisions influenced subsequent ones. To
manage the agents’ coordination, a manually designed master policy dynamically assigned
tasks based on current team needs, such as exploring the map or gathering resources.

Our solution included three key components: a simulation model, a preference model,
and a planning algorithm. The simulation model predicted outcomes of possible actions
using a simplified representation of the environment, with adversarial modeling for other
player agents. The preference model evaluated trajectories based on criteria like resource
collection and proximity to threats, using the concept of satisfying to ensure balanced
decision-making in the presence of multiple objectives. Finally, our planning algorithm,
primarily based on Dijkstra’s algorithm [Dijkstra, 1959], reduced computational complexity
by focusing on minimal paths, enhancing efficiency within time constraints. To address
partial observability, we compiled a global map from past agent observations, allowing
agents to extend their planning horizon and reducing issues from limited sight.

While our approach was successful, we identified limitations, particularly in the level
of agent coordination and the manual effort required to refine the preference model. Future
work could involve integrating learning with planning, allowing a reinforcement learning-
based agent to set high-level goals while the planner handles low-level decisions, which
could provide a more adaptive, end-to-end learning framework. This combination could
potentially improve both the performance and scalability of the approach.

Our method, analyzed in [Chen et al., 2023], demonstrated a balance between compu-
tation and coordination, yet also highlighted opportunities to enhance automation and
flexibility in multi-agent planning tasks.
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1.4.4 Other Collaborations

In addition to our previously mentioned work, we collaborated with several bachelor’s
and master’s students on their theses, as listed in the Appendix. A notable collaboration
was with Daniele Foffano, a former master’s student, on robust model-based reinforcement
learning (MBRL) [Foffano et al., 2022]. In this work, we proposed Robust Ensemble Adver-
sarial MBRL, a method in which both an ensemble of dynamics models and an adversarial
model selector are learned. The policy is then trained in the worst-case model from the en-
semble, as determined by the adversary. This approach encourages robustness by exposing
the policy to the worst model dynamics. We served as daily supervisor for this project.

We also contributed to a project led by Maximilian Igl, which introduced a hierarchical
multitask framework called Multitask Soft Option Learning (MSOL). MSOL is built upon the
control as inference framework [Levine, 2018] and extends it to hierarchical reinforcement
learning [Sutton et al., 1999]. The key idea is to distill shareable policy priors, called
soft options, from a set of training tasks while allowing the agent to learn task-specific
policy posteriors for each task. This approach stabilizes training in multi-task settings and
accelerates the learning of new tasks by using the learned soft options as priors. Our role
in the project primarily involved evaluating the effectiveness of transferring policy priors
learned by MSOL from training environments to new, unseen environments.
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2
Background

"Scientia potentia est."

Francis Bacon

In this chapter, we provide the necessary background for the rest of the thesis. In Section 2.1,
we introduce the mathematical models of sequential decision-making problems, including
Markov Decision Processes (MDPs), Partially Observable Markov Decision Processes (POMDPs),
and Factored POMDPs. In Section 2.2, we introduce the Influence-based Abstraction (IBA), an
effective state abstraction method for factored POMDPs that we use in our research (Chapter 3
and Chapter 4). Then, in Section 2.3, we introduce online planning, a class of solution methods
for sequential decision-making problems. Finally, in Section 2.4, we introduce Model-Based
Reinforcement Learning (MBRL), a class of reinforcement learning methods that (learn and)
use a model of the environment to improve the efficiency of learning policies.
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2.1 Seqential Decision-Making Problems

In this section, we start by introducingMarkov Decision Processes (MDPs), the fundamental
mathematical model for sequential decision-making problems. We will simultaneously
refer to an MDP as (a model of) a problem, a task, and an environment. Then, we introduce
Partially Observable Markov Decision Processes (POMDPs), an important generalization
of MDPs that account for agents’ partial observability of environment states. Next, we
introduce factored POMDPs, often used to model sequential decision-making problems in
structured environments.

2.1.1 Markov Decision Processes

The Model
AMarkov decision process (MDP) [Bellman, 1957b] is a model that describes the interaction
between a decision-making agent and an environment. Formally, a discounted infinite-
horizon MDP is a 6-tuple  = ( ,, ,, 𝜇, 𝛾) where:

•  represents the set of possible states of the environment,

•  represents the set of actions that the agent can take in the environment,

•  ∶  ×→ Δ() represents the transition function,

•  ∶  ×→ ℝ represents the reward function,

• 𝜇 ∈ Δ() represents the initial state distribution,

• 𝛾 ∈ [0,1) represents the discount factor.

The agent interacts with the environment as follows. At the initial time step 𝑡 = 0, an
initial state of the environment is drawn from the initial state distribution, 𝑆0 ∈ 𝜇. At each
subsequent time step 𝑡, the agent observes the environment state 𝑆𝑡 and selects an action
𝐴𝑡 . This action causes the environment to transition to a new state 𝑆𝑡+1 ∼  (⋅|𝑆𝑡 ,𝐴𝑡), and
the environment returns 𝑅𝑡 =(𝑆𝑡 ,𝐴𝑡).

The discount factor 𝛾 indicates the agent or user’s preference for immediate versus
future rewards. While 𝛾 is often considered as part of the problem description and it is
necessary for bounding the sum of rewards in infinite-horizon tasks, it can be treated as
a hyperparameter. As a hyperparameter, 𝛾 can be used to control the variance of values
in planning [Jiang et al., 2015] and learning [Schulman et al., 2015], trading off bias and
variance to improve performance with limited samples.

Policies and Value Functions
Let Π be the set of all policies, including those that are non-stationary and randomized.
Given a policy 𝜋 ∈ Π, the state-value function 𝑉 measures the expected discounted sum of
future rewards, or discounted return in short, from a state 𝑠 by following 𝜋 afterwards:

𝑉 𝜋(𝑠) = 𝔼
[

∞
∑
𝑘=0

𝛾𝑘𝑅𝑡+𝑘 |𝑆𝑡 = 𝑠,𝜋
]

(2.1)
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The action-value function 𝑄 measures the expected discounted return from a state 𝑠 by
taking an action 𝑎 and following 𝜋 afterwards:

𝑄𝜋(𝑠,𝑎) = 𝔼
[

∞
∑
𝑡=0

𝛾𝑘𝑅𝑡+𝑘 |𝑆𝑡 = 𝑠,𝐴𝑡 = 𝑎,𝜋
]

(2.2)

Optimality Criteria
In the discounted infinite-horizon setting, the goal of sequential decision making is to learn
or plan a policy 𝜋 that maximizes the expected discounted return,

𝜋∗ = argmax
𝜋∈Π

𝔼𝑆0∼𝜇 [𝑉
𝜋(𝑆0)] (2.3)

We refer interested readers to [Puterman, 1994] for other optimality criteria in this and
other settings. In pursuit of the optimal policy 𝜋∗, the concepts of optimal value functions
become relevant, which are defined for every state 𝑠 ∈  and action 𝑎 ∈ as below:

𝑉 ∗(𝑠) = max
𝜋∈Π

𝑉 𝜋(𝑠) (2.4)

𝑄∗(𝑠,𝑎) = max
𝜋∈Π

𝑄𝜋(𝑠,𝑎) (2.5)

In the discounted infinite-horizon setting, there always exists a stationary and deter-
ministic policy 𝜋 that satisfies 𝑉 𝜋(𝑠) = 𝑉 ∗(𝑠) and 𝑄𝜋(𝑠,𝑎) = 𝑄∗(𝑠) for all states 𝑠 ∈ and
actions 𝑎 ∈ [Puterman, 1994]. Consequently, when searching for optimal policies, it is
sufficient to restrict ourselves to the space of deterministic stationary policies.

Bellman Eqations
The Bellman consistency and optimality equations (terminologies from [Agarwal et al.,
2019]) are fundamental properties of MDPs that are crucial for the evaluation of value
functions and the search for optimal policies. Given a stationary policy 𝜋 ∶  → Δ(),
where Δ() denotes the space of distributions over actions, the Bellman consistency
equations are necessary conditions for the value functions of the policy 𝜋, which state that
for all states 𝑠 ∈  and actions 𝑎 ∈:

𝑉 𝜋(𝑠) = 𝔼𝐴∼𝜋(⋅|𝑠) [𝑄𝜋(𝑠,𝐴)] (2.6)

𝑄𝜋(𝑠,𝑎) =(𝑠,𝑎)+ 𝛾𝔼𝑆′∼ (⋅|𝑠,𝑎) [𝑉 𝜋(𝑆′)] (2.7)

This recursive form of value functions gives rise to the temporal difference learningmethods
[Sutton, 1988], a commonly used class of methods for estimating the value function of a
policy. The Bellman optimality equations are necessary conditions for the optimal value
functions, which state that for all states 𝑠 ∈  and actions 𝑎 ∈:

𝑉 ∗(𝑠) = max
𝑎∈

𝑄∗(𝑠,𝑎) (2.8)

𝑄∗(𝑠,𝑎) =(𝑠,𝑎)+ 𝛾𝔼𝑆′∼ (⋅|𝑠,𝑎) [max
𝑎′∈

𝑄∗(𝑆′, 𝑎′)] (2.9)
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Deterministic MDPs
In deterministic MDPs, the next state 𝑠𝑡+1 is solely determined by the current state 𝑠𝑡 and
action 𝑎𝑡 with probability 1. In this setting, we will overload the notation  for deterministic
transitions, 𝑠𝑡+1 =  (𝑠𝑡 , 𝑎𝑡). The initial state distribution can still be stochastic.

Finite-horizon MDPs
Different from discounted infinite-horizon MDPs, finite-horizon MDPs do not require
a discount factor in the model specification to bound the sum of rewards. Instead, it
introduces an integer  that defines the horizon of the task. In the most general case, the
reward and transition functions in finite-horizon MDPs can both be dependent on time
steps. Consequently, the Markovian state of finite-horizon MDPs does not only include the
environment state but also the current time step. In this setting, the optimality criterion of
sequential decision making is often the expected sum of rewards. Accordingly, to make
optimal decisions, the agent needs to take into account the current time step, resulting in
time-dependent policies, 𝜋 ∶  ×{0,… ,−1}→ Δ(), and time-dependent value functions:

𝑉 𝜋
𝑡 (𝑠) = 𝔼

[

−𝑡−1
∑
𝑘=0

𝛾𝑘𝑅𝑡+𝑘 |𝑆𝑡 = 𝑠,𝜋
]

(2.10)

𝑄𝜋
𝑡 (𝑠,𝑎) = 𝔼

[

−𝑡−1
∑
𝑘=0

𝛾𝑘𝑅𝑡+𝑘 |𝑆𝑡 = 𝑠,𝐴𝑡 = 𝑎,𝜋
]

(2.11)

2.1.2 Partially Observable MDPs

When the agent does not fully observe the environment state, the decision-making tasks
are often formulated as partially observable MDPs (POMDPs) [Kaelbling et al., 1998].
Formally, a discounted infinite-horizon POMDP is a 8-tuple  = ( ,,Ω, ,,, 𝜇, 𝛾),
which consists of an underlying MDP and an observation model. The underlying MDP
describes the same agent-environment interaction as in MDPs where:

•  represents the set of possible states of the environment,

•  represents the set of actions that the agent can take in the environment,

•  ∶  ×→ Δ() represents the transition function,

•  ∶  ×→ ℝ represents the reward function,

• 𝜇 ∈ Δ() represents the initial state distribution,

• 𝛾 ∈ [0,1) represents the discount factor.

The observation model describes how the agent perceives the environment where:

• Ω represents the set of possible observations,

•  ∶× → Δ(Ω) represents the observation function.
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In the general case of POMDPs, the agent does not directly observe the environment
state but receives a noisy or partial observation of the environment after a transition,
𝑂𝑡+1 ∼ (⋅|𝐴𝑡 , 𝑆𝑡+1). When the agent does observe the environment state, the POMDP
simplifies to an MDP, making MDPs special cases of POMDPs.

In POMDPs, the agent’s current observation 𝑂𝑡 is not a sufficient statistic for the next
environment state 𝑆𝑡+1 and reward 𝑅𝑡 . As such, in the most general case, the agent has to
take into account the entire history of observations and actions 𝐻𝑡 = {𝐴0,𝑂1,… ,𝐴𝑡−1,𝑂𝑡} to
make optimal decisions. This motivates the consideration of history-dependent policies,
whichmap a history ℎ𝑡 to a distribution over actions, and history-dependent value functions:

𝑉 𝜋(ℎ𝑡) = 𝔼
[

∞
∑
𝑘=0

𝛾𝑘𝑅𝑡+𝑘 |𝐻𝑡 = ℎ𝑡 ,𝜋]
(2.12)

𝑄𝜋(ℎ𝑡 , 𝑎) = 𝔼
[

∞
∑
𝑘=0

𝛾𝑘𝑅𝑡+𝑘 |𝐻𝑡 = ℎ𝑡 ,𝐴𝑡 = 𝑎,𝜋
]

(2.13)

2.1.3 Factored POMDPs

In many real-world environments, the state space is structured and can be decomposed
into a finite set of state variables, or factors, that interact with each other in a modular
way. Factored POMDPs [Hansen and Feng, 2000] exploit this structure for more concise
representations of large POMDPs. They represent the environment state as a joint random
variable over a set of state variables, 𝑆 = {𝑆1,… , 𝑆𝑁 }, such that each environment state
corresponds to an assignment of these state variables. Within this framework, the transition,
reward, and observation functions can be modeled by a Two-stage dynamic Bayesian
network (2DBN) [Boutilier et al., 1999], which also integrates the agent’s action, observation,
and reward as random variables. This model capitalizes on the conditional independence
among random variables to maintain the compactness of representations. As a result,
they can model very large environments with thousands of state variables. However,
the state space can still be too large for efficient simulation-based planning and learning,
necessitating state abstraction methods in factored POMDPs.
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2.2 Influence-Based Abstraction

The complex state space of the ground-truth model motivates the use of abstract models.
Adhering to the principle that a model’s construction should be informed by its final
use, one intuitive approach to identifying such abstract models is to ensure they behave
identically to the original model within the context where they are used. In the context of
a POMDP model, if we can identify another model that, for any action-observation history
and action, produces the same expected rewards and distribution for the next observations,
then these models can be used interchangeably in solution methods for POMDPs that focus
on estimating values and computing optimal policies for histories. Crucially, these abstract
models can employ state spaces that are different and potentially simpler than that of the
original model while guaranteeing the optimality of planning and learning with them.

Influence-based abstraction (IBA) [Oliehoek et al., 2021] is one such approach for
performing lossless state abstraction [Li et al., 2006] in factored POMDPs. Given a factored
POMDP model, referred to here as the global model, IBA defines a so-called influence-
augmented local model (IALM) that abstracts away state variables that do not directly affect
the agent’s observations and rewards. In this thesis, we will demonstrate how to construct
and use this model for efficient simulation in online planning (Chapters 3 and 4; He et al.
[2020, 2022]). Additionally, our research beyond this thesis demonstrates how IBA can
significantly scale up simulation-based reinforcement learning as well in both single [Suau
et al., 2022c] and multi-agent [Suau et al., 2022a] settings.

In the following sections, we will formally define the influence-augmented local model
and demonstrate its property as a lossless abstraction of the ground-truth model. We begin
by categorizing the state variables of a factored POMDP into those that directly affect the
agent’s observation and reward (local state variables) and those that do not (Section 2.2.1).
Then, we define the local model that captures the agent’s observation and reward with only
the local state variables (Section 2.2.2). Finally, we describe how to capture the influence
of the remaining state variables on the local model with only local information, using a
so-called influence predictor (Section 2.2.3). The resulting influence-augmented local model,
which integrates the local model with an influence predictor, induces the same history
MDP as the original model and is, as such, a lossless abstraction of it.

2.2.1 Categories of State Variables

Notations For ease of notation, we will override the notation, for example, 𝑆, to represent
both a set of state variables, i.e., 𝑆 = {𝑆1, 𝑆2,… , 𝑆𝑁 }, and the joint random variable over
them, i.e., the global state. Moreover, we will use  = ×𝑆𝑖∈𝑆𝐝𝐨𝐦(𝑆𝑖) to denote the space of
this joint random variable. Finally, we will use superscript to denote the index of a state
variable and subscript to denote the time step.

Assumptions Employing 2DBNs [Boutilier et al., 1999] to represent factored POMDPs
implies a stationary structure among the state variables, which remains consistent across
all time steps. In this thesis, we further assume that there is no intra-stage dependency
among the state variables in the 2DBN representing the global model. However, techniques
introduced in this thesis can be readily extended to the setting where intra-stage dependen-
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cies are present at the expense of more complex notations and models. We refer interested
readers to Oliehoek et al. [2021] for how to deal with them in the IBA.

Assumption 1. There is no intra-stage dependency among the state variables - a state
variable at time step 𝑡 +1 can only depend on state variables at time step 𝑡 and the action.

Local state variables We start by defining the local state variables 𝑆local as state variables
that directly affect the agent’s observation and reward 1. Given that 𝑅𝑡 depends on 𝑆𝑡 and
𝐴𝑡 , and 𝑂𝑡+1 depends on 𝐴𝑡 and 𝑆𝑡+1, a state variable is a local state variable if it directly
affects 𝑅𝑡 as part of 𝑆𝑡 or if it directly affects 𝑂𝑡+1 as part of 𝑆𝑡+1.

Definition 1. Given a factored POMDP represented by a 2DBN with a finite set of state
variables 𝑆 = {𝑆1, 𝑆2,… , 𝑆𝑁 }, the local state variables are those that are direct parents of the
observation and reward variables:

𝑆local def= {𝑆𝑖 ∈ 𝑆 ∣ 𝑆𝑖𝑡 ∈ 𝐏𝐀(𝑅𝑡)} ∪ {𝑆𝑖 ∈ 𝑆 ∣ 𝑆𝑖𝑡+1 ∈ 𝐏𝐀(𝑂𝑡+1)} (2.14)

By their definition, the local state variables can be used to model the next observation
and reward without other state variables. Consequently, if we have a transition function
over the local states, we will have an alternative model to the original global model.

Influence source state variables However, the transitions of local state variables 𝑆local
cannot be solely determined by themselves as they may be affected by the rest of the state
variables in the system, i.e., the non-local state variables 𝑆¬local.

Definition 2. Given a factored POMDP represented by a 2DBN with a finite set of state
variables 𝑆 = {𝑆1, 𝑆2,… , 𝑆𝑁 }, the non-local state variables are:

𝑆¬local def= 𝑆 ⧵ 𝑆local (2.15)

While it seems we need to keep track of the non-local state variables 𝑆¬local to model
the local state variables 𝑆local, ending up modeling the entire system, the structure of the
environment can be exploited again here. We split the set of non-local state variables into
two disjoint subsets: the influence source state variables and the auxiliary state variables.

To capture the influence from the rest of the system on the local state variables, we
define the influence source state variables as the non-local state variables that directly affect
the local state variables. The name comes from the fact that the rest of the system can only
influence the local state variables and, as such, the agent’s observation and reward through
the influence source state variables.

Definition 3. Given a factored POMDP represented by a 2DBN with a finite set of state
variables 𝑆 = {𝑆1, 𝑆2,… , 𝑆𝑁 }, the influence source state variables are non-local state variables
that are direct parents of the local state variables:

𝑆src def= {𝑆𝑖 ∈ 𝑆¬local ∣ ∃𝑆𝑗∈𝑆local 𝑆𝑖𝑡 ∈ 𝐏𝐀(𝑆
𝑗
𝑡+1)} (2.16)

1Technically, the IBA only requires that all state variables directly affecting the agent’s observation and reward are
modeled, meaning that other state variables can also be local state variables. The definition here is for simplicity.
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Figure 2.1: Two-stage dynamic Bayesian networks for the global model (a) and the influence-augmented local
model (b). The global model and the IALM share the same local model that captures the transitions of local states
and the agent’s observation and reward. However, the IALM abstracts away the auxiliary state variables and
models the influence sources state differently from the global model.

The auxiliary state variables Finally, the auxiliary state variables are non-local state
variables that do not directly affect the local state variables.
Definition 4. Given a factored POMDP represented by a 2DBN with a finite set of state
variables 𝑆 = {𝑆1, 𝑆2,… , 𝑆𝑁 }, the auxiliary state variables are non-local state variables that
are not direct parents of the local state variables:

𝑆aux def= {𝑆𝑖 ∈ 𝑆¬local ∣ ∀𝑆𝑗∈𝑆local 𝑆𝑖𝑡 ∉ 𝐏𝐀(𝑆
𝑗
𝑡+1) } (2.17)

We have now categorized the state variables into three subsets, 𝑆 = (𝑆local, 𝑆¬local) =
(𝑆local, 𝑆src, 𝑆aux), as pictured in Figure 2.1a. The name "auxiliary" comes from the fact
that to model the agent’s observation and reward, one only needs to model the local and
influence source state variables. Of course, to model the influence source state variables,
one needs to model the auxiliary state variables. However, the IBA shows that the influence
source state variables can also be modeled in a way that does not involve auxiliary state
variables without losing the optimality of planning and, therefore, the name "auxiliary".

Next, we will introduce the local model that captures the agent’s observation and
reward with only the local state variables.

2.2.2 TheLocalTransition, ObservationandReward functions

According to the definition of local state variables, we canmodel the agent’s observation and
reward with only the local states and actions. This allows us to define a local observation
function that conditions only on the local states and actions:
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Definition 5. Given a factored POMDP represented by a 2DBN with a finite set of state
variables 𝑆 = {𝑆1, 𝑆2,… , 𝑆𝑁 }, the local observation function local ∶×local → Δ(Ω)maps
an action 𝐴𝑡 and a next local state 𝑆local𝑡+1 to a distribution over observations 𝑂𝑡+1, where
local = ×𝑆𝑖∈𝑆local𝐝𝐨𝐦(𝑆𝑖) denotes the space of local states.

and similarly a local reward function:

Definition 6. Given a factored POMDP represented by a 2DBN with a finite set of state
variables 𝑆 = {𝑆1, 𝑆2,… , 𝑆𝑁 }, the local reward functionlocal ∶ local ×→ ℝ maps a local
state 𝑆local𝑡 and an action 𝐴𝑡 to a numerical reward 𝑅𝑡 .

Then, according to the definition of influence source state variables, we can define a
local transition function that predicts the next local states given the current local states,
actions, and influence source states:

Definition 7. Given a factored POMDP represented by a 2DBN with a finite set of state vari-
ables 𝑆 = {𝑆1, 𝑆2,… , 𝑆𝑁 }, the local transition function  local ∶ local ×src ×→ Δ(local)
maps a local state 𝑆local𝑡 , an influence source state 𝑆src𝑡 and an action 𝐴𝑡 to a distribution over
next local states 𝑆local𝑡+1 .

These functions constitute the local model local = ( local,local,local), a par-
tial model of the local states and the agent’s observation and reward with an external
dependency on the influence source states.

2.2.3 Influence-Augmented Local Model

To construct a POMDP model that abstracts away state variables not directly affecting the
agent’s observations or rewards, we aim to track the influence source states using only
local states and actions. We introduce the influence-augmented local model (IALM) — a
reformulation of the original global model that preserves decision-relevant dynamics.

Every POMDP can be viewed as a history MDP, where the Markovian state at time step
𝑡 is the action-observation history ℎ𝑡 . Two POMDPs with identical action and observation
spaces induce the same history MDP if they agree on the expected reward (ℎ𝑡 , 𝑎𝑡) and
the distribution over next observations  (𝑂𝑡+1|ℎ𝑡 , 𝑎𝑡) for all histories ℎ𝑡 and actions 𝑎𝑡 .

We first show that  (𝑂𝑡+1|ℎ𝑡 , 𝑎𝑡) can be expressed without auxiliary state variables via
marginalization. Building on this, we define the IALM — a POMDP model that induces the
same history MDP as the original model.

Given the global model global = ( ,,Ω, ,,, 𝜇, 𝛾), for every history ℎ𝑡 , action
𝑎𝑡 , and next observation 𝑜𝑡+1:
Pr(𝑜𝑡+1 |ℎ𝑡 , 𝑎𝑡 ;global) (2.18)

=
Pr(𝑜𝑡+1, 𝑜0∶𝑡 |𝑎0∶𝑡−1, 𝑎𝑡 ;global)

𝑍
(2.19)

(conditional probability; where 𝑍 = Pr(𝑜0∶𝑡 |𝑎0∶𝑡 ) = Pr(𝑜0∶𝑡 |𝑎0∶𝑡−1) is the normalization constant)

=
∑𝑠local0∶𝑡+1

Pr(𝑠local0∶𝑡+1 , 𝑜0∶𝑡+1 |𝑎0∶𝑡 ;global)

𝑍
(2.20)

(law of total probability)

=
∑𝑠local0∶𝑡+1

Pr(𝑠local0∶𝑡+1 |𝑎0∶𝑡 ;global)(∏𝑡
𝑖=0local(𝑜𝑖+1 |𝑎𝑖, 𝑠local𝑖+1 ))

𝑍
(2.21)
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(observation is conditionally independent of other variables given the action and local state)

=
∑𝑠local0∶𝑡+1

Pr(𝑠local0 )(∏𝑡
𝑖=0 Pr(𝑠local𝑖+1 |𝑠local0∶𝑖 , 𝑎0∶𝑡 ;global))(∏𝑡

𝑖=0local(𝑜𝑖+1 |𝑎𝑖, 𝑠local𝑖+1 ))
𝑍

(2.22)

(chain rule)

=
∑𝑠local0∶𝑡+1

Pr(𝑠local0 )(∏𝑡
𝑖=0 Pr(𝑠local𝑖+1 |𝑠local0∶𝑖 , 𝑎0∶𝑖;global))(∏𝑡

𝑖=0local(𝑜𝑖+1 |𝑎𝑖, 𝑠local𝑖+1 ))
𝑍

(2.23)

(future actions cannot affect past local states)

=
∑𝑠local0∶𝑡+1

Pr(𝑠local0 )(∏𝑡
𝑖=0 Pr(𝑠local𝑖+1 |𝑠local0∶𝑖 , 𝑎0∶𝑖−1, 𝑎𝑖;global)local(𝑜𝑖+1 |𝑎𝑖, 𝑠local𝑖+1 ))

𝑍
(2.24)

(reorganization)

=
∑𝑠local0∶𝑡+1

Pr(𝑠local0 )(∏
𝑡
𝑖=0∑𝑠src𝑡

Pr(𝑠local𝑖+1 , 𝑠src𝑡 |𝑠local0∶𝑖 , 𝑎0∶𝑖−1, 𝑎𝑖;global)local(𝑜𝑖+1 |𝑎𝑖, 𝑠local𝑖+1 ))
𝑍

(2.25)

(law of total probability)

=
∑𝑠local0∶𝑡+1

Pr(𝑠local0 )(∏
𝑡
𝑖=0∑𝑠src𝑡

 local(𝑠local𝑖+1 |𝑠local𝑖 , 𝑠src𝑖 , 𝑎𝑖)Pr(𝑠src𝑖 |𝑠local0∶𝑖 , 𝑎0∶𝑖−1, 𝑎𝑖;global)local(𝑜𝑖+1 |𝑎𝑖, 𝑠local𝑖+1 ))
𝑍

(2.26)
(conditional probability)

=
∑𝑠local0∶𝑡+1

Pr(𝑠local0 )(∏
𝑡
𝑖=0∑𝑠src𝑡

 local(𝑠local𝑖+1 |𝑠local𝑖 , 𝑠src𝑖 , 𝑎𝑖)Pr(𝑠src𝑖 |𝑠local0∶𝑖 , 𝑎0∶𝑖−1;global)local(𝑜𝑖+1 |𝑎𝑖, 𝑠local𝑖+1 ))
𝑍

(2.27)
(future actions cannot affect past local states)

=
∑𝑠local0∶𝑡+1

Pr(𝑠local0 )(∏
𝑡
𝑖=0𝔼𝑆src𝑖 ∼Pr(⋅|𝑠local0∶𝑖 ,𝑎0∶𝑖−1 ;global) [

local(𝑠local𝑖+1 |𝑠local𝑖 , 𝑆src𝑖 , 𝑎𝑖)]local(𝑜𝑖+1 |𝑎𝑖, 𝑠local𝑖+1 ))
𝑍

(2.28)
(rewrite into expectation)

where Pr(𝑠local0 ) is the initial distribution over the local state from the 2DBN.

Local history In the global model, the influence source state at time 𝑡 is conditioned on
the full previous state: Pr(𝑆src𝑡 |𝑆local𝑡−1 , 𝑆src𝑡−1 , 𝑆aux𝑡−1 ,𝐴𝑡−1). After marginalizing out the auxiliary
variables (as in Equation (2.28)), the resulting distribution depends on the full history of
local states and actions: Pr(𝑆src𝑡 |𝑆local𝑡−1 , 𝑆src𝑡−1 , 𝑆aux𝑡−1 ,𝐴𝑡−1). We refer to this sequence as the
local history, denoted by 𝐷𝑡 = (𝑆local0∶𝑡 ,𝐴0∶𝑡−1), which excludes non-local state variables.

Influence predictor Below, we define an influence predictor that captures the conditional
probability distribution in Equation (2.28) for time steps 𝑡 = 0,1,… and show that it can be
computed exactly from the global model.

Definition 8. Given a factored POMDP global = ( ,,Ω, ,,, 𝜇, 𝛾) represented by
a 2DBN with a finite set of state variables 𝑆 = {𝑆1, 𝑆2,… , 𝑆𝑁 }, the influence predictor is a
sequence of conditional probability distributions over the influence source states, given the
history of local states and actions:

𝐼 = (Pr(𝑆src𝑡 |𝐷𝑡 = (𝑆local0∶𝑡 ,𝐴0∶𝑡−1));global)𝑡∈ℕ (2.29)
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where for every 𝑡 ∈ℕ, history of local states and actions 𝑑𝑡 = (𝑠local0 , 𝑎0, 𝑠local1 ,… , 𝑠local𝑡 ), and
influence source state 𝑠src𝑡 :

Pr(𝑠src𝑡 |𝑑𝑡 = (𝑠local0∶𝑡 , 𝑎0∶𝑡−1);global) (2.30)

=
∑𝑠src0∶𝑡−1 ,𝑠

aux
0∶𝑡

Pr(𝑠local0∶𝑡 , 𝑠src0∶𝑡 , 𝑠aux0∶𝑡 |𝑎0∶𝑡−1;global)
𝑍

(2.31)

=
∑𝑠src0∶𝑡−1 ,𝑠

aux
0∶𝑡

𝜇(𝑠local0 , 𝑠src0 , 𝑠aux0 )∏𝑡−1
𝑖=0  (𝑠local𝑖+1 , 𝑠src𝑖+1 , 𝑠aux𝑖+1 |𝑠local𝑖 , 𝑠src𝑖 , 𝑠aux𝑖 , 𝑎𝑖)

𝑍
(2.32)

where the denominator 𝑍 is a constant that makes Pr(𝑆src𝑡 |𝑑𝑡) a valid probability distribution.

Note that while in the general case the entire history of local states and actions may be
needed for influence prediction, in many cases a sufficient statistic of this history, known
as the D-set, exists and enables optimal prediction [Oliehoek et al., 2021]. This motivates
the use of sequence models for this prediction.

The influence-augmented local model We have now shown the distribution over the
next observation can be rewritten in a recursive form without the auxiliary state variables.
Below, we will formally introduce the influence-augmented local model that integrates the
local model with the influence predictor, as pictured in Figure 2.1b. The IALM employs the
local model to capture the transition of local states and the agent’s observation and reward
and the influence predictor to model the influence source states, making it a complete
POMDP model.

Definition 9. Given a factored POMDP global = ( ,,Ω, ,,, 𝜇, 𝛾) represented by a
2DBN with a finite set of state variables 𝑆 = {𝑆1, 𝑆2,… , 𝑆𝑁 }, the influence-augmented local
model is a POMDP model that consists of a local model and an influence predictorIALM =
(𝑆IALM,,Ω, IALM,IALM,IALM, 𝜇IALM, 𝛾) where:

1.  and Ω are the action space and observation space.

2. 𝑆IALM is the state space of the IALM. It contains not only the local state variables but
also the past local states and actions as they are needed for the transition function.
Technically, 𝐷𝑡 contains 𝑆local𝑡 but we write that 𝑆IALM𝑡 = (𝑆local𝑡 ,𝐷𝑡) for ease of notation,
where 𝐷𝑡 = 𝐷𝑡−1𝐴𝑡−1𝑆local𝑡 = 𝑆local0∶𝑡 𝐴0∶𝑡−1 is the history of local states and actions.

3. IALM is the reward function, whereIALM(𝑆IALM𝑡 = (𝑆local𝑡 ,𝐷𝑡),𝐴𝑡) =local(𝑆local𝑡 ,𝐴𝑡).

4. IALM is the observation function, whereIALM(𝐴𝑡 , 𝑆IALM𝑡+1 = (𝑆local𝑡+1 ,𝐷𝑡+1)) =local(𝐴𝑡 , 𝑆local𝑡+1 ).

5.  IALM is the transition function of the IALM, made of the local transition function
 local and the influence predictor 𝐼 , as described below.

6. 𝜇IALM(𝑆local0 ) = Pr(𝑆local0 ) is the initial distribution over the local state.

For every state of the IALM (𝑠local𝑡 , 𝑑𝑡), action 𝑎𝑡 , and next state (𝑠local𝑡+1 , 𝑑𝑡+1), we have that

 IALM(𝑠local𝑡+1 , 𝑑𝑡+1|𝑠local𝑡 , 𝑑𝑡 , 𝑎𝑡) =∑
𝑠src𝑡

𝐼 (𝑠src𝑡 |𝑑𝑡) local(𝑠local𝑡+1 |𝑠local𝑡 , 𝑠src𝑡 , 𝑎𝑡)1(𝑑𝑡+1 = 𝑑𝑡𝑎𝑡𝑠local𝑡+1 )

(2.33)
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2.2.4 Remarks

The IALM is a lossless abstraction to the global model To demonstrate that the
IALM is a lossless abstraction to the global model, we can show that they induce the same
history MDP. That is, they give the same expected reward for all histories and actions and
the same distribution over the next observation. This guarantees that planning with either
model would lead to the same optimal policies and values. The original result, proven in a
more general setting, can be found in [Oliehoek et al., 2021] (Section 6, Theorem 1).

Proposition 1. The influence-augmented local model IALM constructed from the global
modelglobal of a factored POMDP defines the same history MDP as the global model.

Proof Sketch. By construction, the IALM induces the same distribution over the next ob-
servation Pr(𝑂𝑡+1|ℎ𝑡 , 𝑎𝑡) as the original model, given any history ℎ𝑡 and action 𝑎𝑡 .

In a very similar way, we can prove that the IALM and the global model induce the
same distribution over the current local state Pr(𝑆local𝑡 |ℎ𝑡). This allows us to show that
both models induce the same expected reward as for both models, we have (ℎ𝑡 , 𝑎𝑡) =
𝔼𝑆local𝑡 ∼Pr(⋅|ℎ𝑡 ) [

local(𝑆local𝑡 , 𝑎𝑡)].

Computing the influence predictor exactly We have shown above how to compute
the influence predictor exactly via marginalization. However, doing that for 𝑇 steps has
a time and space complexity that is exponential in 𝑇 in the worst case, which makes it
computationally infeasible in practice. We will discuss how to address this challenge in
Chapter 3.

When is the IBA most beneficial? We can construct an influence-augmented local
model from any factored POMDP represented by a 2DBN. The advantage is that we can
abstract all the auxiliary state variables away from the state space and simulations. As
such, the IBA is most effective when the number of auxiliary state variables far exceeds the
number of local state variables, which happens in scenarios where the environment is huge,
but the agent directly interacts with a smart part of it. An example would be controlling a
robot in a very large warehouse to perform some local tasks.

Why not directly model the next local state? The IALM predicts the distribution over
the next local state by first predicting the distribution over the current influence source
state and then using the local model to obtain the distribution over the next local state.
Alternatively, one could directly use a model for local states Pr(𝑆local𝑡+1 |𝑆local0∶𝑡 ,𝐴0∶𝑡) or obser-
vations Pr(𝑂𝑡+1|𝑂0∶𝑡 ,𝐴0∶𝑡) to obtain the same history MDP. However, we choose to model
the influence source state first for two reasons. First, in many structured environments, an
agent’s local state variables are directly influenced by only a few influence source state
variables. This makes predicting the influence source state simpler and more efficient
than predicting the next local state. Second, directly modeling Pr(𝑆local𝑡+1 |𝑆local0∶𝑡 ,𝐴0∶𝑡) or
Pr(𝑂𝑡+1|𝑂0∶𝑡 ,𝐴0∶𝑡) requires building a model from scratch, involving either exact inference
or learning. In contrast, modeling the influence source state allows us to leverage the exact
local model that can be extracted from the 2DBN, resulting in a hybrid model where only
the part of the influence predictor is approximated.
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2.3 Sample-Based Online Planning

Many real-world decision-making tasks are so complex that finding a policy that performs
well in all situations is infeasible. In such cases, planning methods that use online compu-
tation to find a good action for the current state become more practical. These methods,
referred to as online or decision-time planning methods, differ from background planning
methods like value iteration, which aim to find an optimal action or policy for all states.

Decision-time planning methods use online computation to predict future outcomes
from the current state 𝑠𝑡 using an environment model, and then select actions based on
their estimated long-term utilities. While it is theoretically possible to run a global or local
dynamic programming algorithm to find the optimal action at decision time, this is usually
computationally infeasible for large problems. Moreover, these exact planning algorithms
cannot provide results at any time, making them unsuitable for real-time decision-making.
Therefore, practical decision-time planning methods are often iterative algorithms, capable
of returning a good action at any point during computation.

The iterative nature of decision-time planning methods makes them similar to search
algorithms, where the objective is to find the action that maximizes the local state-action
value, 𝑎∗ = argmax𝑎∈𝑄∗(𝑠𝑡 , 𝑎). Like search algorithms, decision-time planning algorithms
face the challenge of efficiently navigating the search space, specifically deciding which
actions to consider and evaluate during the search process. The literature has explored
various approaches, including random search, heuristic search, and tree search, which are
different strategies for guiding the search using previous results—akin to the exploration
challenge in reinforcement learning.

Another critical challenge for efficient online planning is evaluating the long-term
utilities of actions. Given the preference for anytime algorithms, decision-time planning
methods often rely on sampling-based techniques to estimate these utilities. Monte-Carlo
rollout methods, due to their simplicity, are frequently used to simulate trajectories from
the current state to the end of the episode, thereby estimating action values.

In this thesis, we extensively use Monte-Carlo Tree Search (MCTS), a highly flexible
and scalable sample-based online planning method that has been successfully applied to a
wide range of decision-making problems, including games, robotics, and recommendation
systems. In the following section, we will introduce MCTS and then describe POMCP, a
variant of MCTS adapted for partially observable domains.

2.3.1 Monte-Carlo Tree Search

MCTS is an online planning algorithm that uses rollouts to estimate the value of states and
actions. Making use of a generative simulator , MCTS incrementally builds a search tree
by simulating trajectories from the root node to the leaf nodes following a tree policy. In
this search tree, each node represents a state, which stores statistics such as visit count and
average return, and each edge represents an action (and the corresponding transition). The
tree policy is often designed to balance exploration and exploitation explicitly, for example,
by using the UCB1 algorithm [Auer et al., 2002] as in upper confidence tree search (UCT)
[Kocsis and Szepesvári, 2006]. At leaf nodes, the algorithm uses a rollout policy, such as
a random policy, to quickly estimate the node’s value by simulating a trajectory from it
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to the end of the episode. The simulation results are then back-propagated to update the
statistics of the nodes in the tree, which determine the tree policy in the next iteration.
At the end of each iteration, a new node is added to the tree to represent the first newly
encountered state-action pair. When the search budget is up, the algorithm returns either
the action that maximizes the average return (the max child) or the action that has been
visited the most (the robust child).

In essence, MCTS is a sample-efficient method for approximating the local optimal
state-action value function �̂�∗(𝑠𝑡 , ⋅). It achieves this by (1) focusing the online computation
on the current state 𝑠𝑡 , (2) effectively balancing exploration and exploitation when selecting
actions for simulation, and (3) efficiently backing up the simulation results to the tree nodes
to direct future search. Using search algorithm terminology, MCTS implements a form of
best-first search, where the search is directed towards the most promising branches based
on the current search results.

2.3.2 Monte-Carlo Planning in Large POMDPs

Classical POMDP techniques [Spaan, 2012] scale moderately as they explicitly represent
the exact beliefs over states. To improve scalability, Silver and Veness [2010] adapted MCTS
to POMDPs and proposed POMCP, an online planning method for large POMDPs where
particle filtering [Doucet and Johansen, 2009] is applied to approximate the belief.

POMCP inherits the basic structure of MCTS but is adapted to the partially observable
setting. The main difference between planning in MDPs and POMDPs is that in POMDPs,
the agent needs to make decisions based on the entire history of past observations and
actions ℎ𝑡 instead of the current observation 𝑜𝑡 . Ideally, if we have access to a generative
simulator of histories that can simulate a possible next observation and reward, given the
current history and action, we can apply MCTS to POMDPs straightforwardly. However, in
practice, we often do not have access to such a simulator, and the histories are too large to
be stored and simulated explicitly. POMCP addresses this challenge by using a generative
simulator of states and approximating the simulation of histories with the simulation of
states. Specifically, POMCP uses a particle filter to approximate the belief over states, given
the current history, and simulates trajectories from particles sampled from the belief, each
of which represents a possible state of the environment. The use of states in simulation is
implicit in POMCP, as the nodes in the search tree still represent histories and tree policy
still conditions on the statistics of the history nodes. That means the way that POMCP
selects actions to simulate within the tree and the way that it updates and expands the tree
nodes are the same as in MCTS. POMCP has been shown effective in scaling up planning
in large POMDPs due to the sample efficiency of MCTS and the scalability of particle filters
in approximating the belief over states.

2.4 Model-Based Reinforcement Learning

In the RL literature, the term model-based reinforcement learning (MBRL) [Moerland et al.,
2023] has been used in various contexts, often without a precise definition. In recent years,
however, MBRL has come to more specifically refer to the paradigm in which an agent
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learns a model of the environment and uses it to make decisions while interacting with the
environment.

The promise behind MBRL in comparison to model-free RL is that by learning a model
of the environment, the agent can further improve its policy or value functions by planning
with the model without additional interactions with the environment, a process known as
model-based credit assignment [van Hasselt et al., 2019].

Apart from the potentially improved sample efficiency, another hypothesized benefit
of MBRL is more efficient exploration. Model-based exploration can leverage the learned
model by using model uncertainty to guide exploration and by planning with the model to
identify actions that will enable deeper exploration. This approach, often referred to as
directed exploration, has been investigated in Bayes-adaptive model-based RL [Duff, 2002,
Ghavamzadeh et al., 2015, Guez et al., 2012, Katt et al., 2017, Ross et al., 2007, 2011, Shyam
et al., 2019] as well as in deep RL settings [Brafman and Tennenholtz, 2002, Henaff, 2019,
Lowrey et al., 2018, Pathak et al., 2017, 2019, Sekar et al., 2020, Shyam et al., 2019].

Model-based RL has been an active research area since the early days of reinforcement
learning [Brafman and Tennenholtz, 2002, Deisenroth and Rasmussen, 2011, Moore and
Atkeson, 1993, Sutton, 1991, Sutton and Barto, 2018]. Many MBRL frameworks in the
literature exist, differing in a diverse range of design choices. At a high level, these design
choices concern the following aspects: (1) what model to learn, (2) how to learn the model,
and (3) how to use the model for decision-making. For example, on the last aspect, once
a model is learned, one can use offline planning methods, such as deep reinforcement
learning, or online planning methods, such as MCTS, to find a policy that maximizes the
expected return. Furthermore, when a model is parameterized by a neural network and
learned from data, it is differentiable, in which case the agent can also use gradient-based
optimization to directly find a good action or policy for the current state.

In the following, we will introduce MuZero [Schrittwieser et al., 2020], an MBRL
algorithm that has achieved state-of-the-art performance across multiple benchmarks and
a significant impact on real-world applications. We will begin by discussing AlphaZero,
MuZero’s predecessor, along with the framework of expert iteration [Anthony et al., 2017],
which forms the foundation of both AlphaZero and MuZero. Next, we will introduce the
value-equivalence principle, a line of theoretical work that connects MuZero’s empirical
success to the state abstraction theory. Finally, we will describe MuZero itself.

2.4.1 AlphaZero and Expert Iteration

The development of this family of algorithms started with AlphaGo [Silver et al., 2016],
a computer program designed to play the board game Go. AlphaGo used deep neural
networks to guide Monte-Carlo Tree Search (MCTS): a value network estimated state
values, and a policy network guided action selection during simulation. Unlike classical
MCTS, AlphaGo’s MCTS replaced rollouts with value function estimates at leaf nodes and
incorporated the policy network (the prior policy) to bias action selection toward promising
moves. These modifications served two purposes: (1) bootstrapping from a value network
reduced variance and improved value estimates, and (2) using a prior policy accelerated
search by focusing on high-potential actions.

AlphaGo’s networks were first trained via supervised learning on expert games, fol-
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lowed by reinforcement learning through self-play, where the networks were updated
using MCTS-generated targets. This approach led to AlphaGo defeating world champion
Lee Sedol in 2016—one of the first major successes in deep reinforcement learning.

AlphaGo Zero [Silver et al., 2017b] improved upon AlphaGo by removing human data
and learning entirely from self-play. This made the system more general and improved its
performance—after just three days of training, AlphaGo Zero decisively beat AlphaGo.

AlphaZero [Silver et al., 2018] generalized this approach beyond Go to other board
games like Chess and Shogi, achieving superhuman performance from scratch in each
domain. Although AlphaZero was designed for two-player games, its architecture extends
naturally to single-agent decision-making problems, paving the way for MuZero.

While AlphaGo and AlphaZero’s integration of deep learning and MCTS may appear ad
hoc, the expert iteration framework [Anthony et al., 2017] provides a conceptual foundation.
This framework aligns with dual-process theories of reasoning [Evans, 2008, Gershman,
2017, Kahneman, 2011, Stanovich, 2011], which propose two cognitive systems: a fast,
intuitive one (System 1) and a slow, deliberative one (System 2). In this analogy, neural
networks serve as the fast, approximate component, while MCTS provides slow, exact
deliberation. Crucially, the fast system accelerates the slow one, and is in turn trained by
imitating its outputs—a process called expert iteration. This framework is general: MCTS
can be replaced by other planning methods (e.g., model predictive control), and neural
networks by other function approximators (e.g., decision trees). Even what constitutes the
"fast system" can vary—for example, it could represent high-level skills in a hierarchical
agent [Young and Sutton, 2023].

Grill et al. [2020] analyzed the role of MCTS through the lens of policy improvement,
showing that it approximately solves a regularized policy optimization problem at decision
time. The strength of this regularization—favoring the policy prior—diminishes with more
simulations. Thus, MCTS acts as a policy improvement operator: it refines the learned
policy during planning, producing better actions for execution andmore informative targets
for learning [Grill et al., 2020, Hamrick et al., 2022]. This interaction between planning and
learning accelerates the learning of the policy [Bertsekas, 2022, Hamrick et al., 2022].

2.4.2 The Value-Eqivalence Principle

The value equivalence principle for model-based reinforcement learning, introduced by
Grimm et al. [2020, 2021, 2022], is motivated by the consideration that the construction of
a model should take into account the final use of the model. It defines the order-𝑘 value
equivalence class 𝑘(Π,) as the subset of all models that can predict the correct 𝑘-step
bellman update for any 𝜋 ∈ Π and 𝑣 ∈  in a set of policies Π and functions  . For 𝑘 →∞,
an additional proper value equivalence class ∞(Π) is defined, which excludes the set
of functions from the specification. In essence, a model in the proper value equivalence
class must have the true value function as the fixed point of the bellman operator for all
policies in this set. As such, these models can be seen as the 𝑄𝚷-irrelevance abstractions
for the MDP [Li et al., 2006]. Notably, the largest proper value equivalence class that
guarantees optimal planning is ∞(𝚷DET), where 𝚷DET is the set of all deterministic
policies. Moreover, Grimm et al. [2021] showed that a simplified version of MuZero’s loss
upper bounds the proper value equivalence loss, making an explicit connection between
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the theory of value equivalence principle and the strong empirical performance of MuZero.

2.4.3 MuZero

MuZero [Schrittwieser et al., 2020] is a model-based reinforcement learning algorithm
that inherits most of its structure from AlphaZero. The key difference between MuZero
and AlphaZero is that AlphaZero has access to an exact model of the environment, while
MuZero learns a model of the environment from data. MuZero gained its popularity by
achieving state-of-the-art performance in Atari games and matching the superhuman
performance of AlphaZero [Silver et al., 2018] in Go, chess, and shogi.

Components MuZero learns a deterministic world model that consists of a represen-
tation function ℎ𝜃 and a dynamics function 𝑔𝜃. The representation function encodes an
environment state 𝑠𝑡 into a latent state 𝑧0𝑡 = ℎ𝜃(𝑠𝑡). Here, the subscript denotes the time step
in the environment at which the encoding occurs, and the superscript denotes the number
of time steps that have been spent in the learned model since then. Given a latent state 𝑧𝑘𝑡
and an action 𝑎𝑡+𝑘 , the dynamics function predicts the next latent state 𝑧𝑘+1𝑡 and the reward
𝑢𝑘𝑡 , (𝑧𝑘+1𝑡 , 𝑢𝑘𝑡 ) = 𝑔𝜃(𝑧𝑘𝑡 , 𝑎𝑡+𝑘). Apart from the representation and dynamics functions, MuZero
uses a prediction function to predict the value and policy at a latent state, 𝜋𝑘

𝑡 , 𝑣𝑘𝑡 = 𝑓𝜃(𝑧𝑘𝑡 ).
For ease of notation, we split the prediction function into a policy function 𝜋𝜃(𝑧𝑘𝑡 ) and
a value function 𝑣𝜃(𝑧𝑘𝑡 ). To distinguish between the policy function 𝜋𝜃 and the MuZero
policy 𝜋MuZero, which runs MCTS, we will refer to the former as the policy prior and the
latter as MuZero’s behavior policy.

Acting MuZero makes decisions by planning with the learned model. At each time
step 𝑡, MuZero encodes the environment state 𝑠𝑡 into a latent state 𝑧0𝑡 and uses it as the
root node to perform MCTS. As the result of the search, MuZero selects the action 𝑎𝑡 by
sampling from a distribution that is constructed using the visit counts at the root node and
a temperature parameter 𝑇 ∈ (0,∞):

𝜋MuZero(𝑎|𝑠𝑡) =
𝑁 (𝑧0𝑡 , 𝑎)1/𝑇

∑𝑏𝑁 (𝑧0𝑡 , 𝑏)1/𝑇
(2.34)

MuZero’s planning differs from traditional MCTS methods like UCT [Kocsis and Szepesvári,
2006] in two key ways. First, rather than employing random rollouts for leaf node value
estimation, MuZero uses its learned value function 𝑣𝜃 to produce potentially more informed
value estimates. Second, MuZero incorporates the policy prior into its action selection,
guiding the simulation of actions at tree nodes towards more promising candidates:

argmax
𝑎 [𝑄(𝑧,𝑎)+ 𝑐 ⋅𝜋𝜃(𝑎|𝑧) ⋅

√
∑𝑏𝑁 (𝑧,𝑏)
1+𝑁 (𝑧,𝑎) ] (2.35)

where 𝑐 = 𝑐1+ log(∑𝑏𝑁 (𝑧,𝑏)+𝑐2+1
𝑐2 ) with 𝑐1 = 1.25 and 𝑐2 = 19652. 𝑄 and 𝑁 are the estimated

values and visit counts of actions. MuZero inherits much of its search mechanism from
AlphaZero, including the use of policy prior and value function.

Training The key difference between MuZero and many prior works in MBRL lies
in their approach to learning the model. In Figure 2.2, we illustrate the loss function of
MuZero. Essentially, given a segment of a real episode that starts from state 𝑠𝑡 , MuZero
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Figure 2.2: An illustration of MuZero’s loss function.

unrolls its model for 𝐾 simulated time steps (below the dotted line) and compares these
to real experiences (above the dotted line). This comparison results in a loss consisting of
three terms for each of the 𝐾 steps. The first term is the per-step reward prediction loss,
with the target being the real reward received. The second term is the policy prediction
loss, with the target being the action visit distribution of the MCTS at the root node. The
third term is the value prediction loss, with the target being the discounted sum of 𝑛-step
real rewards plus a value estimation bootstrapped from MCTS 𝑛 steps into the future
𝑣target𝑡 =∑𝑛−1

𝑘=0 𝛾𝑘𝑟𝑡 + 𝛾𝑛𝑣MCTS𝑡 . For simplicity, we omit the links for value targets in Figure 2.2.
All components of MuZero are trained jointly end-to-end byminimizing the aggregated loss.
In practice, MuZero incorporates various additional techniques from the literature, such
as prioritized experience replay, to improve training. It also introduces a novel algorithm
called ‘reanalyse’ to generate fresh targets from old trajectories by re-running MCTS on
them using the latest network.
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3
Learning and Planning with
Influence-augmented Local

Simulators

"The body is a cage for the mind, and the world is a cage for the body."

Lord of Mysteries

How can we plan efficiently in real time to control an agent in a complex environment that may
involve many other agents? While existing sample-based planners have enjoyed empirical
success in large POMDPs, their performance heavily relies on a fast simulator. However,
real-world scenarios are complex in nature and their simulators are often computationally
demanding, which severely limits the performance of online planners. In this work, we propose
influence-augmented online planning, a principled method to transform a factored simulator
of the entire environment into a local simulator that samples only the state variables that
are most relevant to the observation and reward of the planning agent and captures the
incoming influence from the rest of the environment using machine learning methods. Our
main experimental results show that planning with this less accurate but much faster local
simulator with POMCP leads to higher real-time planning performance than planning with
the simulator that models the entire environment.

This chapter is based on J. He, M. Suau, and F. A. Oliehoek. "Influence-Augmented Online Planning for Complex
Environments." In Advances in Neural Information Processing Systems, 2020.
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3.1 Introduction

We consider the online planning setting where we control an agent in a complex environ-
ment that is partially observable and may involve many other agents. When other agents’
policies are known, the entire environment can be modeled as a Partially Observable
Markov Decision Process (POMDP) [Kaelbling et al., 1998], and classical online planning
approaches can be applied. While sample-based planners like POMCP [Silver and Veness,
2010] have been shown effective for large POMDPs, their performance relies heavily on a
fast simulator to perform a vast number of Monte Carlo simulations in a step. However,
many real-world scenarios are complex in nature, making simulators that capture the
dynamics of the entire environment extremely computationally demanding and hence
preventing existing planners from being useful in practice. Towards effective planning
in realistic scenarios, this work is motivated by the question: can we significantly speed
up a simulator by replacing the part of the environment that is less important with an
approximate learned model?

We build on the multi-agent decision-making literature that tries to identify compact
representations of complex environments for an agent to make optimal decisions [Becker
et al., 2003, 2004, Petrik and Zilberstein, 2009, Witwicki and Durfee, 2010]. These methods
exploit the fact that in many structured domains, only a small set of (state) variables, which
we call local (state) variables, of the environment directly affects the observation and reward
of the agent. The rest of the environment can only impact the agent indirectly through
their influence on the local state variables. For example, Figure 3.1 shows a game called
Grab A Chair, in which there are 𝑁 agents that, at every time step, need to decide whether
they will try to grab the chair on their left or right side. An agent can only secure a chair if
that chair is not targeted by the other neighboring agent. At the end of every step, each
agent only observes whether it obtains the chair without knowing the decisions of others.
Additionally, there is a noise on observation, i.e., a chance that the agent gets an incorrect
observation. In this game, it is clear that to the planning agent, whose goal is to obtain a
chair in as many steps as possible, the decisions of neighboring agents 2 and 5 are more
important than those of agents 3 and 4, as the former directly determine if the planning
agent can secure a chair. In other words, only agents 2 and 5 directly influence agent 1’s
local decision making, while agents 3 and 4 may only do so indirectly.

To utilize this structure, we propose influence-augmented online planning, a principled
method based on the influence-based abstraction (IBA) (Chapter 2.2; Oliehoek et al. [2021])
that transforms a factored simulator of the environment, called global simulator, into a
faster influence-augmented local simulator (IALS). The IALS simulates only the local state
variables and concisely captures the influence of the other state variables by predicting
only the subset of them, called influence source state variables that directly affect the local
state variables. Using off-the-shelf supervised learning methods, the influence predictor is
learned offline with data collected from the global simulator. We posit that when planning
with sample-based planners, the advantage of substantially more simulations in the IALS
may outweigh the simulation inaccuracy caused by approximating the incoming influence.

In this work, we investigate this hypothesis and show that this approach can indeed
improve online planning performance. More specifically, our planning experiments with
POMCP show that, by replacing the global simulator with an IALS that learns the incoming
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Planning Agent 1

Fixed Agent 2Fixed Agent 5

Fixed Agent 3Fixed Agent 4

Figure 3.1: Controlling a single agent in the Grab A Chair game with 4 other agents.

influence with a recurrent neural network (RNN), we achieve matching performance while
using much less time. More importantly, our real-time online planning experiments show
that planning with the less accurate but much faster IALS yields better performance than
planning with the global simulator in a complex environment when the planning time per
step is constrained. In addition, we find that learning an accurate influence predictor is
more important for good performance when the local planning problem is tightly coupled
with the rest of the environment.

3.2 Influence-augmented Local Simulators

While the influence-based abstraction (Chapter 2.2; Oliehoek et al. [2021]) results in an
IALM IALM that abstracts away non-local state variables 𝑆¬local in a lossless way, it is
not useful in practice because computing the distribution 𝐼 (𝑆src𝑡 |𝐷𝑡) exactly is in general
intractable. Our approach trades off between the time spent before and during the online
planning, by approximating 𝐼 (𝑆src𝑡 |𝐷𝑡) with a function approximator 𝐼𝜃 learned offline. The
learned influence predictor 𝐼𝜃 will then be integrated with an accurate local simulator
local to construct an influence-augmented local simulator (IALS) that only simulates
the local state variables 𝑆local but concisely captures the influence of the non-local state
variables 𝑆¬local by predicting the influence source state variables 𝑆src with 𝐼𝜃. During the
online planning, the integrated IALS will be used to replace the accurate but slow global
simulator to speed up the simulations for the sample-based online planners. See Table 3.1
for a comparison between the global simulator and the IALS.

Our motivation is that by simulating the local transitions that directly decide the
observation and reward of the agent with an accurate local simulator, the simulation
inaccuracy caused by approximating the distribution 𝐼 (𝑆src𝑡 |𝐷𝑡) with 𝐼𝜃 can be overcome
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Simulator & State Feature Simulation
the global simulator global

𝑠𝑡 = (𝑠local𝑡 , 𝑠src𝑡 , 𝑠aux𝑡 ) accurate & slow 𝑠𝑡+1, 𝑜𝑡+1, 𝑟𝑡 ∼ global(𝑠𝑡 , 𝑎𝑡)

the IALS 𝜃IALS = (local, 𝐼𝜃)
𝑠IALS𝑡 = (𝑠local𝑡 , 𝑑𝑡)

approximate & fast
𝑠src𝑡 ∼ 𝐼𝜃(⋅|𝑑𝑡)

𝑠local𝑡+1 , 𝑜𝑡+1, 𝑟𝑡 ∼ local(𝑠local𝑡 , 𝑠src𝑡 , 𝑎𝑡)
𝑑𝑡+1 = 𝑑𝑡𝑎𝑡 𝑠local𝑡+1

Table 3.1: Comparison between the global simulator and the influence-augmented local simulator.

by the advantage that simulations can be performed significantly faster in the IALS, which
is essential to sample-based planners like POMCP [Silver and Veness, 2010], leading to
improved online planning performance in realistic scenarios with limited planning time.
Our overall approach, influence-augmented online planning, is presented in Algorithm 1,
followed by our method to learn an approximate influence predictor with recurrent neural
networks (RNNs) [Cho et al., 2014, Hochreiter and Schmidhuber, 1997] and integrate it
with a local simulator to form a plannable IALS for sample-based planners.

Algorithm 1: Influence-Augmented Online Planning
input :a real environment env
input :a global simulator global and a local simulator local
input :an exploratory policy 𝜋explore
input :a sample-based planner planner with a termination condition 𝑇 , e.g., a

fixed time limit
input :a planning horizon 
Offline Influence Learning

Collect a dataset  of input sequences 𝐷−1=(𝐴𝑖−1, 𝑆local𝑖 )−1
𝑖=1 and target

sequences (𝑆src𝑖 )−1
𝑖=1 by interacting with the global simulator global using

the policy 𝜋explore;
Train an approximate influence predictor 𝐼𝜃 on the dataset  by minimizing
the average empirical KL Divergence between 𝐼 (⋅|𝐷𝑡) and 𝐼𝜃(⋅|𝐷𝑡) ;

Online Planning with a sample-based planner
Integrate the local simulator local and the learned influence predictor 𝐼𝜃 into
an IALS 𝜃IALS;
for 𝑡 = 0,… ,−1 do

plan for an action until 𝑇 is met: 𝑎𝑡 = planner.plan(𝜃IALS, 𝑇 );
execute the action in the real environment: 𝑜𝑡+1 = env.act(𝑎𝑡) ;
process the new observation: planner.observe(𝑜𝑡+1)

end
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3.2.1 LearningApproximate Influence PredictorOfflinewith
Recurrent Neural Networks

The dependency of 𝐼 (𝑆src𝑡 |𝐷𝑡) on the d-separation set𝐷𝑡 renders it infeasible to be computed
exactly online or offline. In this work we learn an approximate influence predictor offline
with RNNs by formalizing it as a supervised sequential classification problem.

For planning with horizon, we need to predict the conditional distribution over the
influence source state 𝐼 (𝑆src𝑡 |𝐷𝑡) for 𝑡 = 1 to −1. We do not need to predict 𝐼 (𝑆src0 |𝐷0)
as it is the initial belief over the influence source state. As RNNs require the input size
to be constant for every time step, we drop the initial local state 𝑆local0 from 𝐷𝑡 so that
the input to RNNs at time step 𝑡 is {𝐴𝑡−1, 𝑆local𝑡 } and the target is 𝑆src𝑡 . If there exists a
distribution from which we can sample a dataset  of input sequence 𝐷−1 and target
sequence (𝑆src1 ,… , 𝑆src1

), then this is a classic sequential classification setup that can be
learned by training a RNN 𝐼𝜃 to minimize the average empirical KL divergence between
𝐼 (⋅|𝐷𝑡) and 𝐼𝜃(⋅|𝐷𝑡) with stochastic gradient descent (SGD) [Ruder, 2016], which yields a
cross-entropy loss in practice. While we leave the question on how can we collect the
dataset in a way that maximizes the online planning performance for future investigation,
in this paper we use a uniform random policy to sample from the global simulator global.

3.2.2 Integrating the Local Simulator and RNN Influence Pre-
dictor for Online Planning

To plan online in a POMDP, sample-based planners like POMCP [Silver and Veness, 2010]
require a generative simulator that supports sampling the initial states and transitions. As
shown in Figure 2.1b, to sample a transition in the IALS 𝜃IALS, we need to first sample
an influence source state 𝑆src𝑡 and then sample the local transitions in the local simulator
local. While in the original formulation of IBA, 𝐼𝜃(𝑆src𝑡 |𝐷𝑡) conditions on the d-separation
set 𝐷𝑡 which grows with actions 𝐴𝑡 and new local states 𝑆local𝑡+1 at every time step, we avoid
feeding the entire 𝐷𝑡 into RNNs for every prediction of 𝑆src𝑡 by taking the advantage of
RNNs whose hidden state 𝑍𝑡 is a sufficient statistic of the previous inputs. As a result, we use
𝑆IALM𝑡 = (𝑆local𝑡 , 𝑆src𝑡 ,𝑍𝑡) as the state of the IALS in practice. The transition 𝑠IALM𝑡+1 , 𝑜𝑡+1, 𝑟𝑡+1 ∼
𝜃IALS(𝑠IALM𝑡 , 𝑎𝑡) can then be sampled in two steps:
1. sample the next local state, observation and reward: 𝑠local𝑡+1 , 𝑜𝑡+1, 𝑟𝑡 ∼local(𝑠local𝑡 , 𝑠src𝑡 , 𝑎𝑡)
2. sample the next RNN hidden state and influence source state : 𝑧𝑡+1, 𝑠src𝑡+1 ∼ 𝐼𝜃(⋅|𝑧𝑡 , 𝑎𝑡 , 𝑠local𝑡+1 )
The initial state 𝑆IALM0 of the IALS can be easily sampled by first sampling a full state 𝑠 ∼ 𝜇
and then extracting the local state and the influence source state (𝑠local0 , 𝑠src0 ) from 𝑠.

3.3 Empirical Analysis

We perform online planning experiments with the POMCP planner [Silver and Veness,
2010] to answer the following questions: when learning approximate influence predictors
with RNNs,

• can planning with an IALS be faster than planning with the global simulator while
achieving similar performance, when the same number of simulations are allowed per
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planning step?

• can planning with an IALS yield better performance than planning with the global
simulator, when the same amount of planning time is allowed per planning step?

3.3.1 Experimental Setup

Our codebase was implemented in C++, including a POMCP planner and several bench-
marking domains 1. We ran each of our experiments for many times on a computer cluster
with the same amount of computational resources. To report results, we plot the means
of evaluation metrics with standard errors as error bars. Details of our experiments are
provided in the appendix.

3.3.2 Grab A Chair

The first domain we use is Grab A Chair mentioned in Section 3.1. In our setting, the
other agents employ a policy that selects chairs randomly in the beginning and greedily
afterwards according to the frequency of observing to obtain a chair when visiting it.

Our intuition is that the amount of speedup we can achieve by replacing global with
𝜃IALS depends on how fast we can sample influence source state variables 𝑆src from the
approximate influence predictor 𝐼𝜃 and the size of hidden state variables 𝑆aux we can
avoid simulating in 𝜃IALS. We perform planning with different simulators in games of
{5,9,17,33,65,129} agents for a horizon of 10 steps, where a fixed number of 1000Monte
Carlo simulations are performed per step.

To obtain an approximate influence predictor 𝐼𝜃, we sample a dataset of 1000 episodes
from the global simulator global with a uniform random policy and train a variant of
RNN called Gated Recurrent Units (GRU) [Cho et al., 2014] on  until convergence. To
test if capturing the incoming influence is essential for achieving good performance when
planning with 𝜃IALS, we use an IALS with a uniform random influence predictor as an
additional baseline, denoted as randomIALS .

Figure 3.2a shows the performance of planning with different simulators in scenarios
of varying sizes. Clearly, planning with 𝜃IALS achieves significantly better performance
than planning with randomIALS , emphasizing the importance of learning 𝐼𝜃 to capture the
influence. While planning with 𝜃IALS can indeed achieve matching performance with
global as shown by the small differences in their returns, the advantage of the IALS, its
speed, is shown in Figure 3.2b. In contrast to global which slows down quickly due to the
growing number of state variables to simulate, the computation time of both 𝜃IALS and
randomlyIALS barely increases. This is because those state variables added by more chairs and
agents are abstracted away from the simulations in the IALS with their influence concisely
captured by 𝐼𝜃 in the distribution of the two neighboring agents’ decisions. Note that 𝜃IALS
is slower than global in scenarios with few agents due to the overheads of feedforward
passing in the GRU.

To further investigate how will influence-augmented online planning perform in envi-
ronments with different influence strengths, by which we mean the degree to which the

1available at https://github.com/INFLUENCEorg/IAOP
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(a) Average return (b) Average simulation time per step (seconds)

Figure 3.2: Performance of POMCP with different simulators in Grab A Chair games of various sizes. While
the IALS with GRU influence predictor achieves matching returns with the global simulator, the simulation is
significantly faster in scenarios with many other agents.

local states are affected by the influence source states, we repeat our experiments above in
a variant of the 5-agent Grab A Chair game where the only difference is that when two
agents target the same chair, both of them have the same probability 𝑝 ∈ [0,1] to obtain the
chair 2. The intuition is that when 𝑝 is lower, the influence from the rest of the environment
will be stronger as the decisions of the two neighboring agents will be more decisive on
whether the planning agent can secure a chair. In this case, higher prediction accuracy on
the decisions of the two neighboring agents will be required for the agent to plan a good
action. Figure 3.3 shows the planning performance with all simulators under decreasing
𝑝 which implies stronger influence strength from the rest of the environment. While the
same amount of effort was put into training the approximate influence predictor 𝐼𝜃, the
performance difference between planning with 𝜃IALS and global is smaller under higher
𝑝. This suggests that in environments where the local planning problem is more tightly
coupled with the rest of the environment, learning an accurate influence predictor 𝐼𝜃 is
more important to achieve good planning performance.

3.3.3 Real-Time Online Planning in Grid Traffic Control

The primary motivation of our approach is to improve online planning performance in
realistic settings where the planning time per step is constrained. For this reason, we
conduct real-time planning experiments in a more realistic domain called Grid Traffic
Control, which simulates a busy traffic system with 9 intersections, each of which consists
of 4 lanes with 6 grids as shown in Figure 3.4a, with more details provided in the appendix.

The traffic lights are equipped with sensors providing 4-bit information on the existence
of vehicles in the 4 nearby grids. While the other traffic lights employ a hand-coded
switching strategy that prioritizes lanes with vehicles before the lights and without vehicles
after the lights, the traffic light in the center is controlled by planning, aiming to minimize

2Note that this leads to a physically unrealistic setting since it is possible that two agents obtain the same chair at
a time step. However, it gives us a way to investigate the impact of the influence strength from the rest of the
environment.
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Figure 3.3: Performance of POMCP with different simulators in the modified Grab A Chair game under decreasing
𝑝, which implies stronger influence from the rest of the environment. The smaller performance difference between
𝜃IALS and global under higher 𝑝 suggests that learning an accurate influence predictor is more important to
achieve good planning performance when the local planning problem is more tightly coupled with the rest of the
environment.

the total number of vehicles in this intersection for a horizon of 30 steps.
As mentioned in Section 2.3.2, POMCP approximates the belief update with an un-

weighted particle filter that reuses the simulations performed during the tree search.
However, in our preliminary experiments, we observed the particle depletion problem,
which occurred when POMCP ran out of particles because none of the existing particles was
evidenced by the new observation. While to alleviate this problem we use a workaround
inspired by Silver and Veness [2010] 3, when particle depletion still occurs at some point
during an episode, the agent employs a uniform random policy.

We train an influence predictor with an RNN and evaluate the performance of all three
simulators randomIALS , 𝜃IALS and global in settings where the allowed planning time is fixed
per step. We posit that 𝜃IALS will outperform global when the planning time allowed is
very constrained because, in that case, the advantage on simulation speed will dominate
the disadvantage on simulation accuracy caused by approximating the influence with 𝐼𝜃.

Figure 3.4b demonstrates the ability of the IALS to perform more than twice the number
of simulations that can be performed by the global simulator within the same fixed time.
This is directly translated into the ability of POMCP to plan for more time steps before
the particle depletion occurs, as shown in Figure 3.4c. The more important effect of faster
simulation is that our approach performs much better than planning on the global simulator
especially when the planning time is limited. This suggests that there does exist a trade-off
between simulation speed and simulation accuracy that allows planning on the IALS with
an approximate influence predictor to achieve better online performance.

Figure 3.6 in the appendix performs a similar time-constrained evaluation in the Grab
A Chair domain. The finding there is that the advantage of the IALS on the simulation

3While more advanced particle filters like Sequential Importance Resampling can reduce this problem, we chose
to use POMCP in unmodified form to make it easier to interpret the benefits of our approach. Our workaround
is that when the search tree is pruned because of a new observation, we add 𝑁/6 additional particles sampled
from the initial belief 𝑏0 to the current particle pool where 𝑁 is the number of remaining particles.
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(a) The Grid Traffic Control domain (b) Number of simulations performed per planning step

(c) Number of steps to go on particle depletion (d) Discounted return

Figure 3.4: Performance of POMCP with different simulators (d) while allowing different numbers of seconds per
planning step in the Grid Traffic Control domain (a). The advantage of the IALS on speed allows the POMCP to
perform significantly more simulations than with the global simulator, given the same planning budget (b). This
allows POMCP to plan for more time steps when particle depletion occurs and achieve better returns (c). While
the planning performance of the IALS with trained influence predictor dominates the global simulator when the
planning time is constrained, the performance difference decreases when more time is allowed.

speed is clearer when the global model of the problem is more complex, in which cases the
IALS with an approximate influence predictor shows a superior performance compared to
the global simulator.

3.4 Related Work

The idea of utilizing offline knowledge learning for improved online planning performance
has been well-studied [Anthony et al., 2017, Gelly and Silver, 2007, 2011, Silver et al.,
2016, 2017b, 2018]. These approaches can be categorized as 1) learning value functions or
policies to guide the tree search, 2) improving default policy for more informative rollouts,
3) replacing rollouts with learned value functions and 4) initializing state-action value
estimates. Our approach takes a distinct path by speeding up computationally expensive
forward simulations, which allows the planner to sample more trajectories for each decision.

Closest to our work is the approach by Chitnis and Lozano-Pérez [2020], which exploits
exogenous variables to reduce the state space of the model for more efficient simulation
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and planning. While both of the approaches learn a more compact model by abstracting
away state variables, exogenous variables are fundamentally different from the non-local
variables that we abstract away. By definition, exogenous variables refer to those variables
that are beyond the control of the agent: they cannot be affected, directly or indirectly, by
the agent’s actions [Boutilier et al., 1999, Chitnis and Lozano-Pérez, 2020]. In contrast, the
non-local variables that are abstracted away in IBA [Oliehoek et al., 2021] can be chosen
more freely, as long as they do not directly affect the agent’s observation and reward.
Therefore, the exogenous variables and non-local variables are in general two different
sets of variables that can be exploited to reduce the state space size. For instance, in the
traffic problem of Figure 3.4a, there are no exogenous variables as our action can directly
or indirectly effect the transitions at other intersections (by taking or sending vehicles
from/to them). This demonstrates that our approach allows us to reduce the state space of
this problem beyond the exogenous variables.

The idea of replacing a computationally demanding simulator with an approximate
simulator for higher simulation efficiency has been explored in many fields under the
name of surrogate model, such as computer animation [Grzeszczuk et al., 1999], network
simulation [Kazer et al., 2018], the simulation of seismic waves [Moseley et al., 2018] etc.
Our work explores this idea in the context of sample-based planning in structured domains.

Recent works in deep model-based reinforcement learning [Farquhar et al., 2018, Hafner
et al., 2019, Schrittwieser et al., 2020, van der Pol et al., 2020a] have proposed to learn an
approximate model of the environment by interacting with it, and then plan a policy within
the learned model for better sample efficiency. Our method considers a very different
setting, in which we speed up the simulation for sample-based planning by approximating
part of the global simulator, that is, the influence from the rest of the environment, and
retain the simulation accuracy by explicitly utilizing a light and accurate local simulator.

3.5 Conclusion

In this workwe aim to address the problem that simulators modeling the entire environment
is often slow and hence not suitable for sample-based planning methods which require a
vast number of Monte Carlo simulations to plan a good action. Our approach transforms
an expensive factored global simulator into an influence-augmented local simulator (IALS)
that is less accurate but much faster. The IALS utilizes a local simulator which accurately
models the state variables that are most important to the planning agent and captures the
influence from the rest of the environment with an approximate influence predictor learned
offline. Our empirical results show that in despite of the simulation inaccuracy caused by
approximating the incoming influence with a recurrent neural network, planning on the
IALS yields better online performance than planning on the global simulator due to the
higher simulation efficiency, especially when the planning time per step is limited. While
in this work we collect data from the global simulator with a random exploratory policy
to learn the influence, a direction for future work is to study how this offline learning
procedure can be improved for better performance during online planning.
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3.6 Appendix

In this appendix, we provide the details of our experimental setups for reproducibility. Our
codebase for this research is open-sourced at https://github.com/INFLUENCEorg/IAOP.

3.6.1 Grab A Chair

Environment
The Grab A Chair game is an 𝑁 -agent game where at every time step, each agent has an
action space of two, trying to grab the chair on its left or right side. An agent only secures
a chair if its targeted chair is not targeted by a neighboring agent. At the end of a time
step 𝑡, each agent with 𝑠𝑡+1∈{0,1} indicating if this agent obtains a chair receives a reward
𝑟𝑡=𝑠𝑡+1 and a noisy observation 𝑜𝑡+1 on 𝑠𝑡+1 which has a probability 0.2 to be flipped.

In the experiments of Figure 3.3, when two agents target the same chair, both of them
have a probability of 𝑝 ∈ [0,1] to secure the chair, which means that there is a probability
that two neighboring agents obtain the same chair. The following setup applies to all the
experiments in this domain.

Experimental Setup
Influence Learning In this domain, the approximate influence predictor 𝐼𝜃 is parame-
terized by a GRU classifier with 8 hidden units. The dataset  consists of 1000 episodes
collected from the global simulator global with a uniform random policy, where 800
episodes are used as the training set and the other 200 episodes are used as the validation
set. The hyperparameters used to train the GRU influence predictors in scenarios with
{5,9,17,33,65,129} agents are shown in Table 3.2 and their learning curves are shown in
Figure 3.5.

Table 3.2: Hyperparameters used to train the GRU influence predictors for experiments in the Grab A Chair
domain, where the weight decay was fine tuned within the range until there is no clear sign of overfitting.

Learning rate 0.0005
Batch size 128

Number of epochs 8000
Weight decay [1 × 10−5,5×10−5]

Planning with POMCP The parameters used in the planning experiments with POMCP
are shown in Table 3.3.

Real-time Online Planning in Grab A Chair domain We conduct a time-constrained
evaluation in this domain with {33,65,129} agents, similar to the one performed in the
Grid Traffic Control domain, where different amount of time is allowed to plan an action.
Results in Figure 3.6 show that the advantage of the IALS with GRU influence predictor is
clearer when the global model of the planning gets more complex.
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(a) 5 agents (b) 9 agents (c) 17 agents

(d) 33 agents (e) 65 agents (f) 129 agents

Figure 3.5: Learning curves of influence predictors in the Grab A Chair domain.

Table 3.3: Parameters for the planning experiments with POMCP in the Grab A Chair domain.

Discount factor 1.0
Horizon 10

Number of simulations per step 1000
Number of initial particles 1000

Exploration constant in the UCB1 algorithm (𝑐) 100.0

Figure 3.6: Performance of POMCP with different simulators while allowing different numbers of seconds per
planning step in Grab A Chair games with 33 (left), 65 (middle), and 129 (right) agents. The advantage of IALS
over the global simulator becomes clearer as the planning problem gets more complex.
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3.6.2 Grid Traffic Control

Environment
The Grid Traffic Control environment simulates a traffic system of 9 intersections as shown
in Figure 3.4a. The vehicles, plotted as yellow arrows, move from the left to right and the
bottom to top, governed by the traffic lights in the center of each intersection. While they
are initially generated with a probability of 0.7 in each grid, new vehicles will enter the
traffic system at entrances on the left and bottom borders whenever they are not occupied
at last time step. When reaching the right and bottom borders, with a probability of 0.3,
vehicles leave the traffic system.

While the other traffic lights are controlled by fixed switching strategies, the traffic light
in the center intersection is controlled by the planning agent, whose action space consists
of actions to set the light green for each lane. After an action 𝑎𝑡 is taken which results in the
movement of vehicles, the agent receives an observation consisting of four Boolean variables
𝑜𝑡+1={left_occupied,right_occupied,up_occupied,bottom_occupied} indicating if
the four grids around the traffic light are occupied. The reward 𝑟𝑡 is the negative number
of grids that are occupied in this intersection after the transition at time step 𝑡.

Experimental Setup
Influence Learning In this domain, the approximate influence predictor 𝐼𝜃 is parame-
terized by a RNN classifier with 2 hidden units. The dataset  consists of 1000 episodes
collected from the global simulator global with a uniform random policy, where 800
episodes are used as the training set and the other 200 episodes are used as the validation
set. The hyperparameters used to train the RNN influence predictor are shown in Table 3.4
and its learning curve is shown in Figure 3.7.

Table 3.4: Hyperparameters used to train the RNN influence predictor for experiments in the Grid Traffic Control
domain.

Learning rate 0.00025
Batch size 128

Number of epochs 8000
Weight decay 1×10−4

Figure 3.7: The learning curve of the influence predictor in the Grid Traffic Control domain.
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Planning with POMCP The parameters used in the planning experiments with POMCP
are shown in Table 3.5, where effective horizon is the maximal depth from the root node
that a search or a rollout will be performed.

Table 3.5: Parameters for the planning experiments with POMCP in the Grid Traffic Control domain.

Discount factor 0.95
Horizon 30

Number of seconds allowed per planning step {1,2,4,8,16,32,48,64}
Number of initial particles 1000

Exploration constant in the UCB1 algorithm (𝑐) 10.0
Effective horizon 18
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4
Learning and Planning with

Self-improving Simulators

"Mental effort, I would argue, is relatively rare. Most of the time we coast."

Daniel Kahneman

How can we plan efficiently in a large and complex environment when the time budget is
limited? Given the original simulator of the environment, which may be computationally
very demanding, we propose to learn online an approximate but much faster simulator that
improves over time. To plan reliably and efficiently while the approximate simulator is learning,
we develop a method that adaptively decides which simulator to use for every simulation,
based on a statistic that measures the accuracy of the approximate simulator. This allows
us to use the approximate simulator to replace the original simulator for faster simulations
when it is accurate enough under the current context, thus trading off simulation speed and
accuracy. Experimental results in two large domains show that when integrated with POMCP,
our approach allows to plan with improving efficiency over time.

This chapter is based on Jinke He, Miguel Suau, Hendrik Baier, Michael Kaisers, Frans A. Oliehoek. "Online
Planning in POMDPs with Self-Improving Simulators." In International Joint Conference on Artificial Intelligence,
2022.
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4.1 Introduction

Decision making under uncertainty is one of the key problems in artificial intelligence
[Kaelbling et al., 1998, Spaan, 2012]. Online planning methods, such as POMCP [Silver
and Veness, 2010] and DESPOT [Ye et al., 2017], have become popular as they enable time-
efficient decision making by focusing the computation on the current context. However,
these methods rely heavily on fast simulators that can rapidly perform a large number of
Monte Carlo simulations. Unfortunately, many real-world domains are complex and thus
slow to simulate, which impedes real-time online planning.

To mitigate the simulation cost, researchers have explored learning surrogate models
that are computationally less expensive [Buesing et al., 2018, Chitnis and Lozano-Pérez,
2020, Grzeszczuk et al., 1999]. However, one disadvantage of these methods is that they
learn a model of the entire environment, which may be unnecessary and is often difficult.
Our previous approach (Chapter 3; He et al. [2020]) builds on the framework of influence-
based abstraction (Chapter 2.2; Oliehoek et al. [2021]) to overcome this problem: We
propose to exploit the structure of the environment via a so-called influence-augmented
local simulator (IALS), which uses a lightweight simulator to capture the local dynamics
that surround the agent and learns an influence predictor 𝐼𝜃 that accounts for the interaction
between the local dynamics and the rest of the environment.

However, this "two-phase" paradigm, in which a simulator is learned offline and then
used as-is for online simulation and planning, has three main limitations. First, no planning
is possible until the offline learning phase finishes, which can take a long time. Second,
the separation of learning and planning raises a question of what data collection policy
should be used during training to ensure good online prediction during planning. We
empirically demonstrate that when the training data is collected by a uniform random
policy, the learned influence predictors can perform poorly during online planning due to
distribution shifts. Third, completely replacing the original simulator with the approximate
one after training implies a risk of poor planning performance in certain situations, which
is hard to detect in advance.

In this work, we aim to overcome these drawbacks by investigating if we can learn the
influence predictor 𝐼𝜃 used in an IALS online, without pretraining. As the quality of such an
IALS with an untrained influence predictor would initially be poor, we investigate if we
can selectively use the learning IALS and the accurate but slow global simulator (GS) to
balance the simulation speed and accuracy. To address this major challenge, we propose a
simulator selection mechanism to choose between the GS and IALS based on the latter’s
accuracy under the current context, which is estimated online from the simulations of the
GS. This enables us to use the fast IALS when it is sufficiently accurate, while reverting
back to the GS otherwise.

The experiments reveal that as the influence predictor becomes more accurate, the
simulator selection mechanism starts to use the IALS more and more often, which allows
for high-accuracy simulations with increasing speed. Planning with such self-improving
simulators speeds up decisions (given a fixed number of simulations) and increases task
performance (given a fixed time budget), without pretraining the influence predictor 𝐼𝜃.
Moreover, we find that influence predictors that are trained with online data, i.e., coming
from online simulations with the GS, can significantly outperform those trained with offline
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data, both in terms of online prediction accuracy and planning performance.

4.2 Self-improving Simulators

To address the limitations mentioned earlier of learning the IALS offline (the need for
pre-training, the gap between states visited in training vs. planning, and the inherent
approximation due to function approximation), we introduce a new approach that 1) starts
planning from the start while collecting data to train the surrogate model, 2) trains the
influence predictor with this data, which is now more pertinent to planning and 3) reverts
back to the global simulator when the IALS is considered inaccurate for the current context
(i.e., the current history and future trajectories we are likely to reach). Additionally, by
switching back to the global simulator when the IALS is inaccurate, we provide more
training data to improve the IALS precisely for those inaccurate contexts. As such, the
IALS will improve over time and be used more frequently, improving overall simulation
efficiency. Therefore, we refer to our approach as a self-improving simulator (SIS).

4.2.1 Planning with Self-improving Simulators

We propose and test the integration of these ideas in POMCP [Silver and Veness, 2010],
although the principle is transferable to other planning methods such as DESPOT [Ye
et al., 2017], which also involves iterative simulations. Algorithm 1 outlines our approach,
and Figure 4.1 illustrates it. The planning begins with an arbitrarily initialized influence
predictor 𝐼𝜃, combined with the known 1 local simulator local, which models the local
dynamics ( local,,), to form the IALS 𝜃IALS = (local, 𝐼𝜃). For each simulation, a
simulator is chosen between global and 𝜃IALS to generate a new trajectory 𝜏𝑖 (line 5).
This trajectory is then used to update the statistics and expand a new tree node (line 6),
regardless of the simulator used. When 𝜏𝑖 comes from global, we extract and store training
data from 𝜏𝑖 (line 7). Selecting the action to take is the same as in regular POMCP (line 9).

The data stored, denoted as  = {(𝑑𝑘 , 𝑠src𝑘 )} for any 0 ≤ 𝑘 ≤−1, can then be used as a
replay buffer to further improve 𝐼𝜃 regularly, for example, in between real episodes. To train
the approximate influence predictor 𝐼𝜃, parameterized as a recurrent neural network, we
use the same method as described in Section 3.2.1 and treat it as a sequential classification
task where the cross entropy loss is minimized by stochastic gradient descent:

(𝜃;) = −
1
||

∑
𝑑𝑘 ,𝑠src𝑘 ∈

log 𝐼𝜃(𝑠src𝑘 |𝑑𝑘). (4.1)

Overall, we expect to mainly select the global simulator for earlier simulations since 𝐼𝜃
is not yet very accurate. Over time, we expect the IALS to become more accurate and thus
more frequently used. However, global simulations are needed to assess the accuracy of
the IALS, thus leading to a complex exploration/exploitation problem.

1local is an extractable subset of the 2DBN representation of global, as illustrated in Figure 2.1.
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Algorithm 1 Planning with the Self-improving Simulator
1: initialize the influence predictor 𝐼𝜃
2: for every real episode do
3: for every time step 𝑡 do
4: for every simulation 𝑖 = 0,… do
5: select either global or 𝜃IALS and simulate trajectory 𝜏𝑖 (Section 4.2.2)
6: update the search tree with 𝜏𝑖
7: if global generated 𝜏𝑖, add training data to 
8: end for
9: take action recommended by POMCP
10: prune the search tree with new observation
11: end for
12: train the influence predictor 𝐼𝜃 on  for 𝑁 steps (Section 3.2.1)
13: end for

4.2.2 Online Simulator Selection

The primary challenge in our approach lies in determining which simulator to select online
for both fast and accurate simulations. We need to select simulators online because of two
specific difficulties:

1. The IALS learns online between real episodes (but not within them), meaning its
accuracy is unknown in advance and must be estimated on the fly when planning a
decision.

2. The accuracy of the approximate influence predictor, and consequently the IALS,
can vary based on the input distributions (i.e., the history of local states and actions).
These distributions are influenced by the tree policy (search policy) defined by
the current tree statistics, which evolve during a planning step from simulation to
simulation, making them non-stationary.

To address the second difficulty, we introduce a context-conditioned accuracy measure of
𝐼𝜃 that considers the expected input distribution. For the first difficulty, even though the
exact influence source distribution is not accessible, we demonstrate that it is feasible to
estimate this accuracy measure online using simulators from the global simulator. Finally,
we discuss how to handle the exploration-exploitation trade-off when selecting simulators
online, employing the UCB1 algorithm [Auer et al., 2002].

IALS Accuracy Measure
The approximate IALS 𝜃IALS consists of an exact local model local and a learned influence
predictor 𝐼𝜃. To evaluate the accuracy of the IALS, one effective approach is to measure the
Kullback–Leibler (KL) divergence between the true influence source distribution 𝐼 and the
distribution predicted by the influence predictor 𝐼𝜃. This method is motivated by theory
[Congeduti et al., 2021], which shows that the maximum KL divergence across any time
step and history of local states and actions can provide an upper bound on the value loss.

To properly account for the context in which the influence predictor operates, we need
to consider the setting in which it is used. As described in Section 2.3.2, each POMCP
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Figure 4.1: General procedure of planning with the self-improving simulator. Note that all simulations from the
global simulator are reused for three purposes. First, they are used to update the search tree as in regular online
planning. Second, they are used to estimate the accuracy of the IALS for the current context. Third, they are used
to construct training data for further improving the approximate influence predictor.

simulation begins by sampling a possible state of the environment from the belief, which
is approximated by a particle filter. Following this, a trajectory is sampled from the model,
during which the influence predictor is called upon at each simulation step to predict
the distribution over influence source states. Therefore, we consider the context for the
influence predictor as the expected distribution over its input—the history of local states
and actions—given the history at the root node and the current state of the search tree,
which decides the actions to be selected for simulation.

In the following, we first derive the distribution under which influence prediction
occurs, and consequently, the distribution with respect to which the influence predictor
should be accurate. Based on this input distribution, we then define an accuracy metric for
evaluating the influence predictor.

Formally, at each real time step 𝑡, given the history ℎ𝑡 , we denote the (partial) search
tree of POMCP at the start of simulation 𝑖 as tree𝑖 and the corresponding tree policy as
𝜋tree
𝑖 , which maps a simulated history to a distribution over actions. For each simulated
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time step 𝑘 ≥ 𝑡 in simulation 𝑖, the expected distribution over local histories 𝐷𝑘 in the true
IALM (with an exact influence predictor) is defined as Pr(𝐷𝑘 |ℎ𝑡 ,𝜋tree𝑖 ;IALM). For every
𝑑𝑘 = (𝑠local0∶𝑘 , 𝑎0∶𝑘−1), this is expressed as:

Pr(𝑑𝑘 |ℎ𝑡 ,𝜋tree𝑖 ;IALM) =Pr(𝑠local0∶𝑘 , 𝑎0∶𝑘−1|ℎ𝑡 ,𝜋tree𝑖 ;IALM) (4.2)
=Pr(𝑑𝑡 = (𝑠local0∶𝑡 , 𝑎0∶𝑡−1), 𝑠local𝑡+1∶𝑘 , 𝑎𝑡∶𝑘−1|ℎ𝑡 ,𝜋

tree𝑖 ;IALM) (4.3)
=Pr(𝑑𝑡 |ℎ𝑡 ;IALM)⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

belief

Pr(𝑠local𝑡+1∶𝑘 , 𝑎𝑡∶𝑘−1|𝑑𝑡 , ℎ𝑡 ,𝜋
tree𝑖 ;IALM)⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

dynamics

(4.4)

The expected KL divergence for simulated time step 𝑘 in the 𝑖-th simulation, between
the true influence source distribution 𝐼 and the approximate one 𝐼𝜃, is then defined as:

𝑘
𝑖
def= 𝔼𝐷𝑘∼Pr(⋅|ℎ𝑡 ,𝜋tree𝑖 ;IALM) [𝐷KL ( 𝐼 (𝑆src𝑡 |𝐷𝑘)|||| 𝐼𝜃(𝑆

src
𝑡 |𝐷𝑘))] (4.5)

Note that the accuracy measure here is defined with respect to the distribution induced by
the exact IALM rather than the approximate IALM. This choice is intentional and will be
clarified later: it allows us to use the global simulator to estimate this accuracy measure
since the global simulator induces the same distribution as the exact IALM.

However, our accuracy measure should not only consider the accuracy of 𝐼𝜃 at one
simulated step but should also take the upcoming simulated steps into account. To achieve
this, we average the expected KL divergence over all simulated time steps, providing an
overall accuracy measure of using the approximate IALS for simulation 𝑖:

𝑖
def=

1
 − 𝑡

−1
∑
𝑘=𝑡

𝑘
𝑖 (4.6)

In essence, if we are planning a decision for real time step 𝑡 and have conducted 𝑖−1
simulations, then 𝑖 quantifies the expected average KL divergence between the true
influence source distribution and the one approximated by 𝐼𝜃 for simulation 𝑖. In other
words, it measures the expected approximate error introduced by using the current IALS
for the next simulation instead of the exact IALS or global simulator, which defines the
same history MDP as discussed in Section 2.2.

Estimating the Accuracy Online
For every simulated step 𝑡 ≤ 𝑘 ≤−1 of simulation 𝑖, where  is the planning horizon,

𝑘
𝑖 =𝔼𝐷𝑘∼Pr(⋅|ℎ𝑡 ,𝜋tree𝑖 ;IALM) [𝐷KL ( 𝐼 (𝑆src𝑡 |𝐷𝑘)|||| 𝐼𝜃(𝑆

src
𝑡 |𝐷𝑘))] (4.7)

=𝔼𝐷𝑘∼Pr(⋅|ℎ𝑡 ,𝜋tree𝑖 ;IALM)[𝐻 (𝐼 (𝑆src𝑡 |𝐷𝑘), 𝐼𝜃(𝑆src𝑡 |𝐷𝑘))⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
cross entropy

−𝐻 (𝐼 (𝑆src𝑡 |𝐷𝑘)⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
entropy

] (4.8)

This metric could be estimated by sampling 𝐷𝑘 using the tree policy and exactly
computing the KL if we had access to the exact influence source distribution 𝐼 (𝑆src𝑘 |𝐷𝑘)
in the discrete case. However, this is not the case. Instead, we demonstrate below how to
construct an estimate of this accuracy measure using simulations from the global simulator.
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Specifically, Proposition 2 shows that the expected cross entropy in Equation (4.8) can
be re-expressed as an expectation under the global model. Following this, Proposition 3
establishes that a lower bound for the expected entropy can also be derived using the global
model. By combining these two results, we construct an upper bound for the expected KL
divergence that relies on the global model (Proposition 4), which is accessible for sampling.
Consequently, we can estimate an upper bound for 𝑘

𝑖 using simulations from the global
model.

Proposition 2 (Cross Entropy Equivalence). For every simulated step 𝑡 ≤ 𝑘 ≤−1 of simu-
lation 𝑖, the expected cross entropy between the true influence source distribution 𝐼 (𝑆src𝑘 |𝐷𝑘)
and its approximation 𝐼𝜃(𝑆src𝑘 |𝐷𝑘) under the exact IALM can be equivalently expressed under
the global modelglobal:

𝔼𝐷𝑘∼Pr(⋅|ℎ𝑡 ,𝜋tree𝑖 ;IALM) [𝐻 (𝐼 (𝑆src𝑘 |𝐷𝑘), 𝐼𝜃(𝑆src𝑘 |𝐷𝑘))] (4.9)

=−𝔼𝐷𝑡∼Pr(⋅|ℎ𝑡 ;IALM) [𝔼𝑆local𝑡+1∶𝑘 ,𝐴𝑡∶𝑘−1∼Pr(⋅|𝐷𝑡 ,ℎ𝑡 ,𝜋tree𝑖 ;IALM) [𝔼𝑆src𝑘 ∼𝐼 (⋅|𝐷𝑘) [log 𝐼𝜃(𝑆
src
𝑘 |𝐷𝑘)]]]

(4.10)
=−𝔼𝐷𝑘 ,𝑆src𝑘 ∼𝑃(⋅|ℎ𝑡 ,𝜋tree𝑖 ;global) [log 𝐼𝜃(𝑆

src
𝑘 |𝑑𝑘)] (4.11)

=−𝔼𝐷𝑡 ,𝑆𝑡∼Pr(⋅|ℎ𝑡 ;global)⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
belief

[𝔼𝑆𝑡+1∶𝑘 ,𝐴𝑡∶𝑘−1∼Pr(⋅|𝑆𝑡 ,ℎ𝑡 ,𝜋tree𝑖 ;global)⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
dynamics

[log 𝐼𝜃(𝑆𝑘[𝑆src𝑘 ]|𝐷𝑘)]] (4.12)

(where 𝑆𝑘[𝑆src𝑘 ] represents the 𝑆src𝑘 part of 𝑆𝑘 and 𝐷𝑘 = 𝐷𝑡𝐴𝑡𝑆𝑡+1[𝑆local𝑡+1 ]…𝐴𝑘−1𝑆𝑘[𝑆local𝑘 ])

Proof. See Appendix 4.6.1.

Equation (4.10) shows how we can estimate the cross entropy with an exact IALS by
sampling 𝑆src𝑘 and 𝐷𝑘 and using the influence predictor to compute the log-likelihood
𝐼𝜃(𝑆src𝑘 |𝐷𝑘). However, we do not have access to the exact influence source distribution
and, as such, the exact IALS. Fortunately, Equation (4.12) presents an alternative approach
that uses simulations from the global simulator instead. This approach only requires one
modification: We need to keep track of not only 𝑆𝑘 but also 𝐷𝑘 when performing particle
filtering and forward simulation with the global simulator.

Unlike cross entropy, we cannot directly estimate entropy from samples due to the lack
of an unbiased estimator for entropy [Paninski, 2003]. Here, we choose to use the entropy
of the same distribution but instead conditioned on the global state as a lower bound of
the entropy to estimate.

Proposition 3 (Entropy Lower Bound). For every simulated step 𝑡 ≤ 𝑘 ≤−1 of simulation
𝑖, the expected entropy of the true influence source distribution 𝐼 (𝑆src𝑘 |𝐷𝑘) under the exact
IALM can be lower bounded using the global modelglobal by conditioning on the global
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state:

𝔼𝐷𝑘∼Pr(⋅|ℎ𝑡 ,𝜋tree𝑖 ;IALM) [𝐻 (𝐼 (𝑆src𝑘 |𝐷𝑘))]

≥𝔼𝐷𝑡 ,𝑆𝑡∼Pr(⋅|ℎ𝑡 ;global)⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
belief

[𝔼𝑆𝑡+1∶𝑘−1 ,𝐴𝑡∶𝑘−1∼Pr(⋅|𝑆𝑡 ,ℎ𝑡 ,𝜋tree𝑖 ;global)⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
dynamics

[𝐻 (𝑆src𝑘 |𝑆𝑘−1,𝐴𝑘−1)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

from 2DBN

]] (4.13)

Proof. See Appendix 4.6.1.

This inequality holds intuitively because as a Markovian signal, the global state 𝑆𝑘
contains more information than the local history 𝐷𝑘 on the random variable 𝑆src𝑘 . The
entropy 𝐻 (𝑆𝑠𝑟𝑐𝑘 |𝑆𝑘−1,𝐴𝑘−1) can be directly computed with the 2DBN, which we assume is
given. Importantly, the use of a lower bound on the entropy means that we estimate an
upper bound on the KL divergence, making sure we do not underestimate the inaccuracy
of the IALS simulations.

Overall, Equations (4.12) and (4.13) construct an upper bound on the expected average
KL divergence between the true influence source distribution and the one approximated
by 𝐼𝜃, for simulation 𝑖 of a planning step.

Proposition 4 (KL Divergence Upper Bound).

𝑖 ≤
1

 − 𝑡

−1
∑
𝑘=𝑡

𝔼𝐷𝑡 ,𝑆𝑡∼Pr(⋅|ℎ𝑡 ;global)[𝔼𝑆𝑡+1∶𝑘 ,𝐴𝑡∶𝑘−1∼Pr(⋅|𝑆𝑡 ,ℎ𝑡 ,𝜋tree𝑖 ;global)

[− log 𝐼𝜃(𝑆𝑘[𝑆src𝑘 ]|𝐷𝑘)−𝐻 (𝑆src𝑘 |𝑆𝑘−1,𝐴𝑘−1)]] (4.14)

where 𝐷𝑘 =𝐷𝑡𝐴𝑡𝑆local𝑡+1 …𝐴𝑘−1𝑆local𝑘 and 𝐻 (𝑆src𝑘 |𝑆𝑘−1,𝐴𝑘−1) is the exact entropy from 2DBN.

Proof. The proof of this Proposition is straightforward by applying Propositions 2 and 3 in
Equation (4.8).

As mentioned, the quantity above can be estimated with samples from the global
simulator by augmenting the state 𝑆𝑘 with the history of local states and actions 𝐷𝑘 .
Specifically, to perform a POMCP simulation at time step 𝑡, we start by sampling a possible
pair (𝑠𝑡 , 𝑑𝑡) from the root node. For every simulated step 𝑘, we first perform the simulation
with the global simulator 𝑠𝑘+1, 𝑟𝑘 , 𝑜𝑘+1 ∼ global(𝑠𝑘 , 𝑎𝑘) and then let 𝑑𝑘+1 = 𝑑𝑘𝑎𝑘𝑠local𝑘+1 . The
empirical average KL divergence is then:

𝑙𝑖 =
1

 − 𝑡

−1
∑
𝑘=𝑡

[−log 𝐼𝜃(𝑠src𝑘 |𝑑𝑘)−𝐻 (𝑆src𝑘 |𝑠𝑘−1, 𝑎𝑘−1)] (4.15)
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Deciding between the Simulators
Finally, we want to use the estimated accuracy to decide whether to use the IALS or the
global simulator for a simulation. However, alluded to before, the simulations from the GS
will not only be used for planning but also for estimating the accuracy of the IALS, and this
will need to be done every time we plan for a decision: Even if in the past we determined
that 𝐼𝜃 is accurate for the subtree of the current history ℎ𝑡 , it is possible that due to learning
for other histories the accuracy for this ℎ𝑡 has decreased. Moreover, due to the constant
updating of the search tree during a planning step, the tree policy also changes, which can
also invalidate past accuracy estimates. As such, we face an ongoing exploration (assessing
accuracy) and exploitation (of accurate 𝐼𝜃) problem.

To address this, we propose to model the question which simulator to use for the 𝑖-th
simulation as a bandit problem, and apply the UCB1 algorithm Auer et al. [2002]. In the
following, we define the values of using the global simulator global and the IALS 𝜃IALS
for every simulation 𝑖:

𝑉 𝜃IALS
𝑖 = ̂+ 𝑐meta

√
log(𝑁 𝜃IALS)

𝑖

𝑉 global
𝑖 = −𝜆+ 𝑐meta

√
log(𝑁 global)

𝑖

Here, 𝑁 global and 𝑁 𝜃IALS are the number of calls to the global simulator and the IALS,
respectively. ̂ is an average of the empirical average KL divergence, and 𝜆 quantifies
the extra computation cost of using the global simulator for a simulation, compared to
the IALS. In practice, it is treated as a hyperparameter as it also reflects how willingly
the user may sacrifice simulation accuracy for efficiency. Note that even though UCB1 is
theoretically well understood, bounding the ‘sample complexity’ here is impossible as both
the history-visit distribution as well the accuracy of the IALS can continually change.

4.3 Empirical Analysis

In this section, we first evaluate the main premise of our approach: can selecting between
a global simulator and an online learning IALS lead to a self-improving simulator? Such
improvement can manifest itself in faster decision making (when fixing the number of
simulations per real time step), or in better performance (when fixing the time budget for
each real time step). We investigate both. We also compare our on-line learning approach
to the existing two-phase approach.

Experimental Setup We perform the evaluation on two large POMDPs introduced by
He et al. [2020], the Grab A Chair (GAC) domain and the Grid Traffic Control (GTC) domain,
of which descriptions can be found in Appendix 4.6.3. In all planning experiments with
self-improving simulators, we start with a IALS that makes use of a completely untrained
𝐼𝜃, implemented by a GRU; after every real episode it is trained for 64 gradient steps with
the accumulated data from the global simulations. The results are averaged over 2500
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(a) (b)

(c) (d)

Figure 4.2: (a-c) Simulation controlled planning results for grab a chair. Planning time reduces without significant
drop in return for small 𝜆’s. (d) Time controlled planning results for grid traffic control, with IALSs that make
use of influence predictors trained on offline (from a uniform random policy) and online (from self-improving
simulator with 𝜆=0.7) data. This experiment is repeated for 20 times.

and 1000 individual runs for the GAC and GTC domains, respectively. Further details are
provided in Appendix 4.6.2.

Online Planning with Fixed Number of Simulations In this experiment, we fix the
number of POMCP simulations to 100 per planning step and investigate two questions: 1)
can planning with self-improving simulators enable increasing planning efficiency? and 2)
how does the choice of the hyperparameter 𝜆 affect the performance of planning? Since
traffic domains have fixed time constraints, we only evaluate on GAC. In addition, GAC as
the simpler domain allows us to explore many different settings for lambda 𝜆.

Figure 4.2a shows how many of the 100 simulations are performed using the fast IALS
(on average over all real time steps in the episode) for different 𝜆. Remember that higher
𝜆 implies the planner is more willing to sacrifice the simulation accuracy for efficiency.
For moderate 𝜆s, there is a clear trend that the use of IALS is increasing over time, due to
the increasing accuracy of the approximate influence predictor 𝐼𝜃, which is confirmed by
the reduced training loss provided in Appendix 4.6.4. This translates into the increasing
planning speed shown in Figure 4.2b.2 Note that large 𝜆s like 1.5 and 3.0 produce very fast
2Planning time with 𝜆=0.0 grows slowly due to the practical issue of memory fragmentation, which can be fixed
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(a) Grab a chair results.

(b) Grid traffic control results.

Figure 4.3: Time controlled planning results. Performance improves because of increasingly accurate IALS and
more simulations.

planning directly from the first episode. However, as shown in Figure 4.2c, the price for
that is poor performance at the earlier episodes, because they begin by heavily using the
IALS with untrained influence predictors. Moreover, Figures 2b and 2c show that planning
time for 𝜆 = 1.0 becomes comparable to 𝜆 = 1.5 and 𝜆 = 3.0 after roughly 10 episodes, while
having much better performance at that point. This can be explained by the lack of training
data caused by not using the global simulator often enough. Importantly, it seems that
there is no clear sign of decreasing performance for moderate 𝜆s, which supports our key
argument that in this setting, our approach enables planning with increasing speed without
sacrificing task performance.

Real-Time Online Planning In this experiment, we evaluate the performance of our
approach under limited time budget. On the one hand, the IALS is an approximate model
that introduces errors, certainly when the accuracy of its 𝐼𝜃 is still poor in early episodes.
On the other hand, using the faster IALS means that we can do many more simulations
per real time step. As such, we investigate the ability of our proposed simulator selection
mechanism to dynamically balance between these possible risks and benefits of the IALS.

We conduct planning experiments in both the grab a chair domain and the grid traffic

with the memory pool technique from David Silver’s implementation of POMCP.
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control domain, allocating 1/64 and 1/16 seconds per decision, respectively. Results are
shown in Figure 4.3. As a baseline, we include the global simulator (without abstraction),
with its performance shown as dotted lines. We observe an initial overhead when using
the self-improving simulators, reflected in a lower number of simulations at the start. This
overhead arises from the simulator selection mechanism, which estimates KL divergence
using the approximate influence predictor 𝐼𝜃. While this adds computational cost, it could
be reduced with a more efficient RNN implementation and is expected to become less
significant in larger domains.

In the grab a chair domain, we see that the self-improving simulators can perform
more simulations for later episodes. This is expected: for later episodes the accuracy of the
approximate influence predictor 𝐼𝜃 improves, which means that the IALS is selected more
frequently, thus enabling more simulations per real time step on average. The figure also
shows that this larger number of planning simulations translates to better performance:
for appropriate values of 𝜆, after planning for a number of real episodes, the performance
increases to a level that planning with the global simulator alone cannot reach. We stress
that, in line with the results in the previous subsection, the increase in return is not
only explained by doing more simulations: the quality of the 𝐼𝜃 does matter, as is clearly
demonstrated by 𝜆 = 2.0 in GAC: even though it performs many simulations per step from
episode 1, its performance only surpasses that of the global simulator baseline after 20
episodes. Overall, these results show that self-improving simulators enables planning
with increasing efficiency, and can outperform using an exact global simulator without
pre-training an influence predictor.

Further comparison to the two-phase approach Another limitation of the two-phase
approach is: the offline learned influence predictors may generalize poorly when making
online predictions due to the distribution shift issue caused by training with data collected
by an exploration policy. We investigate if this is a real issue that can affect performance
and if learning with online data, as in our approach, can help.

We reuse the real-time planning setting in GTC. Following He et al. [2020], we collect
offline datasets of varying sizes using a uniform random policy in the global simulator. For
comparison, we also collect online datasets—of similar sizes—from the replay buffer of the
self-improving simulator (with 𝜆=0.7) after 1500 episodes of planning. These datasets are
then used to train influence predictors offline, which are subsequently used as part of the
IALSs for online planning. We show the results in Figure 4.2d.

While it seems that more offline training data can be helpful, overall the performance
of the influence predictors that are trained with online data completely dominates those
that are trained with offline data: with much less online data, we can achieve a level of
performance that is impossible with much more offline data. Figure 4.8 in appendix shows
that this indeed might be caused by distribution shift issue: when evaluated on a test dataset
that is collected by running POMCP on the global simulator, the influence predictors being
trained on the offline data can have an increasing test loss. Moreover, training on the online
data from the self-improving simulator results in a much lower test loss. As such, we can
conclude that there is indeed a distribution shift issue with the two-phase approach that
can harm the planning performance, which is addressed in our approach.
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4.4 Related Work

Surrogate models have been widely used in many applications, such as aerodynamic
design prediction Pehlivanoglu and Yagiz [2012], spacecraft path planning Peng and Wang
[2016] and satellite reconfiguration Chen et al. [2020]. It has been proposed as a general
approach to constraint optimization problems Audet et al. [2000]. For fast simulations in
large factored POMDPs, He et al. [2020] propose to construct influence-augmented local
simulators as surrogate models to a slow global simulator, which we extend in this work.

There is a strong connection between our work and multi-fidelity methods Kennedy
and O’Hagan [2000], Peherstorfer et al. [2018], which combine models with varying costs
and fidelities to accelerate outer-loop applications such as optimization and inference.
In essence, the simulator selection mechanism in our approach does the same: It selects
between a slow high-fidelity global simulator with high cost and a fast low-fidelity IALS, to
accelerate planning. In our case however, the fidelity of the IALS may change over time due
to the training of the influence predictor, and also depends on the current context. While
our simulator selection mechanism is based on an accuracy measure that is theoretically
inspired Congeduti et al. [2021], future work could incorporate ideas from multi-fidelity
methods more explicitly.

There is also a body of work that applies abstraction methods inside MCTS Anand
et al. [2015a,b, 2016], Bai et al. [2016], Hostetler et al. [2014], Jiang et al. [2014]. Such
methods perform abstraction on the MCTS search tree: they aggregate search tree nodes,
thus reducing the search tree. This is complementary to our technique, which speeds up
the simulations themselves.

4.5 Conclusion

In this paper, we investigated two questions. First, given a global simulator (GS) of a complex
environment formalized as a factored POMDP, can we learn online a faster approximate
model, i.e., a so-called IALS? Second, can we balance between such a learning IALS and
the GS for fast and accurate simulations to improve the planning performance?

The answers to these questions lead to a new approach called self-improving simulators,
which selects between the learning IALS and the GS for every simulation, based on an
accuracy measure for IALS that can be estimated online with the GS simulations. As the
accuracy of the influence predictor 𝐼𝜃 would be poor initially, the GS will be used mainly
for simulations in earlier episodes, which can then also be used to train 𝐼𝜃. This leads to
increasing simulation efficiency as the IALS becomes more accurate and is used more often,
which improves planning performance (time and return) over time. Our approach has
three main advantages against the two-phase approach by He et al. [2020]z, which trains
the influence predictor 𝐼𝜃 offline before using it for planning. First, the planning can start
without pre-training. Second, learning 𝐼𝜃 online prevents the distribution shift issue that
occurs when transferring the 𝐼𝜃 learned offline to make online predictions. Third, selecting
the simulator online enables reverting back to the global simulator when the IALS is not
sufficiently accurate for the current context.
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4.6 Appendix

In this appendix, we provide proofs for Proposition 2, 3 and 4. In Section 4.6.2, we provide
details of our experimental setup. In Section 4.6.4, we present some additional results.

4.6.1 Proofs

Proposition 2 (Cross Entropy Equivalence). For every simulated step 𝑡 ≤ 𝑘 ≤ −1 of sim-
ulation 𝑖, the expected cross entropy between the true influence source distribution 𝐼 (𝑆src𝑘 |𝐷𝑘)
and its approximation 𝐼𝜃(𝑆src𝑘 |𝐷𝑘) under the exact IALM can be equivalently expressed under
the global modelglobal:

𝔼𝐷𝑘∼Pr(⋅|ℎ𝑡 ,𝜋tree𝑖 ;IALM) [𝐻 (𝐼 (𝑆src𝑘 |𝐷𝑘), 𝐼𝜃(𝑆src𝑘 |𝐷𝑘))]

=𝔼𝐷𝑡∼Pr(⋅|ℎ𝑡 ;IALM) [𝔼𝑆local𝑡+1∶𝑘 ,𝐴𝑡∶𝑘−1∼Pr(⋅|𝐷𝑡 ,ℎ𝑡 ,𝜋tree𝑖 ;IALM) [𝐻 (𝐼 (𝑆src𝑘 |𝐷𝑘), 𝐼𝜃(𝑆src𝑘 |𝐷𝑘))]] (4.16)

=−𝔼𝐷𝑡∼Pr(⋅|ℎ𝑡 ;IALM) [𝔼𝑆local𝑡+1∶𝑘 ,𝐴𝑡∶𝑘−1∼Pr(⋅|𝐷𝑡 ,ℎ𝑡 ,𝜋tree𝑖 ;IALM) [𝔼𝑆src𝑘 ∼𝐼 (⋅|𝐷𝑘) [log 𝐼𝜃(𝑆
src
𝑘 |𝐷𝑘)]]]

(4.17)
=−𝔼𝐷𝑘 ,𝑆src𝑘 ∼𝑃(⋅|ℎ𝑡 ,𝜋tree𝑖 ;global) [log 𝐼𝜃(𝑆

src
𝑘 |𝑑𝑘)] (4.18)

=−𝔼𝐷𝑡 ,𝑆𝑡∼Pr(⋅|ℎ𝑡 ;global)⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
belief

[𝔼𝑆𝑡+1∶𝑘 ,𝐴𝑡∶𝑘−1∼Pr(⋅|𝑆𝑡 ,ℎ𝑡 ,𝜋tree𝑖 ;global)⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
dynamics

[log 𝐼𝜃(𝑆𝑘[𝑆src𝑘 ]|𝐷𝑘)]] (4.19)

(where 𝑆𝑘[𝑆src𝑘 ] represents the 𝑆src𝑘 part of 𝑆𝑘 and 𝐷𝑘 = 𝐷𝑡𝐴𝑡𝑆𝑡+1[𝑆local𝑡+1 ]…𝐴𝑘−1𝑆𝑘[𝑆local𝑘 ])

Proof. The key insight from this proposition is that we can construct a sampling distribution
with the global modelglobal that is equivalent to the distribution Pr(𝐷𝑘 |ℎ𝑡 ,𝜋tree𝑖 ;IALM)
under the exact IALM, which we cannot access. Below, we show that this is the case.

For every 𝑑𝑘 = (𝑠local0∶𝑘 , 𝑎0∶𝑘−1) where 𝑎0∶𝑡−1 are from ℎ𝑡 = (𝑜0∶𝑡 , 𝑎0∶𝑡−1):

Pr(𝑑𝑘 |ℎ𝑡 ,𝜋tree𝑖 ;IALM) = Pr(𝑠local0∶𝑡 |ℎ𝑡 ;IALM)Pr(𝑠local𝑡+1∶𝑘 , 𝑎𝑡∶𝑘−1|𝑑𝑡 , ℎ𝑡 ,𝜋
tree𝑖 ;IALM) (4.20)

For the first part of the right-hand side, we have that

Pr(𝑠local0∶𝑡 |ℎ𝑡 ;IALM)

=
Pr(𝑜0∶𝑡 , 𝑠local0∶𝑡 |𝑎0∶𝑡−1;IALM)

Pr(𝑜0∶𝑡 |𝑎0∶𝑡−1;IALM)
(4.21)

(conditional probability)

=(∏𝑡−1
𝑗=0local(𝑜𝑗+1|𝑎𝑗 , 𝑠local𝑗+1 ))Pr(𝑠local0∶𝑡 |𝑎0∶𝑡−1;IALM)

Pr(𝑜0∶𝑡 |𝑎0∶𝑡−1;IALM)
(4.22)

=(∏𝑡−1
𝑗=0local(𝑜𝑗+1|𝑎𝑗 , 𝑠local𝑗+1 ))Pr(𝑠local0∶𝑡 |𝑎0∶𝑡−1;IALM)

Pr(𝑜0∶𝑡 |𝑎0∶𝑡−1;global)
(4.23)

(as the global model and the IALM induce the same history MDP)
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=
Pr(𝑠local0 )∏𝑡−1

𝑗=0local(𝑜𝑗+1|𝑎𝑗 , 𝑠local𝑗+1 )𝔼𝑆src∼𝐼 (⋅|𝑑𝑗 ) [ local(𝑠local𝑗+1 |𝑠local𝑗 , 𝑆src𝑗 , 𝑎𝑗 )]
Pr(𝑜0∶𝑡 |𝑎0∶𝑡−1;global)

(4.24)

=
Pr(𝑠local0 )∏𝑡−1

𝑗=0local(𝑜𝑗+1|𝑎𝑗 , 𝑠local𝑗+1 )𝔼𝑆src∼Pr(⋅|𝑑𝑗 ;global) [ local(𝑠local𝑗+1 |𝑠local𝑗 , 𝑆src𝑗 , 𝑎𝑗 )]
Pr(𝑜0∶𝑡 |𝑎0∶𝑡−1;global)

(4.25)

=
Pr(𝑠local0 )∏𝑡−1

𝑗=0local(𝑜𝑗+1|𝑎𝑗 , 𝑠local𝑗+1 )Pr(𝑠local𝑗+1 |𝑑𝑗 ;global)
Pr(𝑜0∶𝑡 |𝑎0∶𝑡−1;global)

(4.26)

=
Pr(𝑜0∶𝑡 , 𝑠local0∶𝑡 |𝑎0∶𝑡−1;global)

Pr(𝑜0∶𝑡 |𝑎0∶𝑡−1;global)
(4.27)

=Pr(𝑠local0∶𝑡 |ℎ𝑡 ;global) (4.28)
=Pr(𝑑𝑡 = (𝑠local0∶𝑡 , 𝑎0∶𝑡−1)|ℎ𝑡 = (𝑜0∶𝑡 , 𝑎0∶𝑡−1);global) (4.29)

This shows that the history of local states 𝑠local0∶𝑡 can be equivalently tracked in the global
model as in the exact IALM.

For the second part of the right-hand side of Equation (4.20), we have that

Pr(𝑠local𝑡+1∶𝑘 , 𝑎𝑡∶𝑘−1|𝑑𝑡 , ℎ𝑡 ,𝜋
tree𝑖 ;IALM)

= ∑
𝑜𝑡+1∶𝑘

Pr(𝑠local𝑡+1∶𝑘 , 𝑎𝑡∶𝑘−1, 𝑜𝑡+1∶𝑘 |𝑑𝑡 , ℎ𝑡 ,𝜋
tree𝑖 ;IALM) (4.30)

=
(

∑
𝑜𝑡+1∶𝑘

𝑘−1
∏
𝑗=𝑡

𝜋tree𝑖(𝑎𝑗 |ℎ𝑗 )(𝔼𝑆src𝑗 ∼𝐼 (⋅|𝑑𝑗 ) [
local(𝑠local𝑗+1 |𝑠local𝑗 , 𝑆src𝑗 , 𝑎𝑗 )])

local(𝑜𝑗+1|𝑎𝑗 , 𝑠local𝑗+1 )
)

(4.31)

=
(

∑
𝑜𝑡+1∶𝑘

𝑘−1
∏
𝑗=𝑡

𝜋tree𝑖(𝑎𝑗 |ℎ𝑗 )(𝔼𝑆src𝑗 ∼Pr(⋅|𝑑𝑗 ;global) [
local(𝑠local𝑗+1 |𝑠local𝑗 , 𝑆src𝑗 , 𝑎𝑗 )])

local(𝑜𝑗+1|𝑎𝑗 , 𝑠local𝑗+1 )
)

(4.32)

=
(

∑
𝑜𝑡+1∶𝑘

𝑘−1
∏
𝑗=𝑡

𝜋tree𝑖(𝑎𝑗 |ℎ𝑗 )Pr(𝑠local𝑗+1 |𝑑𝑗 , 𝑎𝑗 ;global)local(𝑜𝑗+1|𝑎𝑗 , 𝑠local𝑗+1 )
)

(4.33)

= ∑
𝑜𝑡+1∶𝑘

Pr(𝑠local𝑡+1∶𝑘 , 𝑎𝑡∶𝑘−1, 𝑜𝑡+1∶𝑘 |𝑑𝑡 , ℎ𝑡 ,𝜋
tree𝑖 ;global) (4.34)

=Pr(𝑑𝑘 |𝑑𝑡 , ℎ𝑡 ,𝜋tree𝑖 ;global) (4.35)

This shows that the future of local states can be similarly simulated in the global model as
in the exact IALM. Combining the first and second part, we have that

Pr(𝑑𝑘 |ℎ𝑡 ,𝜋tree𝑖 ;IALM) =Pr(𝑑𝑡 |ℎ𝑡 ;global)Pr(𝑑𝑘 |𝑑𝑡 , ℎ𝑡 ,𝜋tree𝑖 ;global) (4.36)
=Pr(𝑑𝑘 |ℎ𝑡 ,𝜋tree𝑖 ;global) (4.37)
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This shows that given an action-observation history ℎ𝑡 and a partial search tree, the global
model and the exact IALM induce the same distribution over histories of local states and
actions 𝐷𝑘 at simulated time step 𝑘. Furthermore, we can sample 𝐷𝑘 from this distribution
by performing particle filtering on (𝐷𝑡 , 𝑆𝑡) and doing forward simulation with the global
simulator to obtain the rest of 𝐷𝑘 .

Using this result, we have that

𝔼𝐷𝑘∼Pr(⋅|ℎ𝑡 ,𝜋tree𝑖 ;IALM) [𝐻 (𝐼 (𝑆src𝑘 |𝐷𝑘), 𝐼𝜃(𝑆src𝑘 |𝐷𝑘))]

=𝔼𝐷𝑘∼Pr(⋅|ℎ𝑡 ,𝜋tree𝑖 ;IALM) [𝔼𝑆src𝑘 ∼𝐼 (⋅|𝐷𝑘) [−log 𝐼𝜃(𝑆src𝑘 |𝐷𝑘)]] (4.38)

=𝔼𝐷𝑘∼Pr(⋅|ℎ𝑡 ,𝜋tree𝑖 ;IALM) [𝔼𝑆src𝑘 ∼Pr(⋅|𝐷𝑘 ;global) [−log 𝐼𝜃(𝑆src𝑘 |𝐷𝑘)]] (4.39)

=𝔼𝐷𝑘∼Pr(⋅|ℎ𝑡 ,𝜋tree𝑖 ;global) [𝔼𝑆src𝑘 ∼Pr(⋅|𝐷𝑘 ;global) [−log 𝐼𝜃(𝑆src𝑘 |𝐷𝑘)]] (4.40)

=𝔼𝐷𝑘 ,𝑆src∼Pr(⋅|ℎ𝑡 ,𝜋tree𝑖 ;global) [−log 𝐼𝜃(𝑆src𝑘 |𝐷𝑘)] (4.41)

=𝔼𝐷𝑡 ,𝑆𝑡∼Pr(⋅|ℎ𝑡 ;global) [𝔼𝑆𝑡+1∶𝑘 ,𝐴𝑡∶𝑘−1∼Pr(⋅|𝑆𝑡 ,ℎ𝑡 ,𝜋tree𝑖 ;global) [−log 𝐼𝜃(𝑆𝑘[𝑆src𝑘 ]|𝐷𝑘)]] (4.42)

(where 𝑆𝑘[𝑆src𝑘 ] represents the 𝑆src𝑘 part of 𝑆𝑘 and 𝐷𝑘 = 𝐷𝑡𝐴𝑡𝑆𝑡+1[𝑆local𝑡+1 ]…𝐴𝑘−1𝑆𝑘[𝑆local𝑘 ])

which concludes our derivation for estimating the cross entropy with the global simulator.

Proposition 3 (Entropy Lower Bound). For every simulated step 𝑡 ≤ 𝑘 ≤−1 of simulation
𝑖, the expected entropy of the true influence source distribution 𝐼 (𝑆src𝑘 |𝐷𝑘) under the exact
IALM can be lower bounded using the global modelglobal by conditioning on the global
state:

𝔼𝐷𝑘∼Pr(⋅|ℎ𝑡 ,𝜋tree𝑖 ;IALM) [𝐻 (𝐼 (𝑆src𝑘 |𝐷𝑘))]

≥𝔼𝐷𝑡 ,𝑆𝑡∼Pr(⋅|ℎ𝑡 ;global)⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
belief

[𝔼𝑆𝑡+1∶𝑘−1 ,𝐴𝑡∶𝑘−1∼Pr(⋅|𝑆𝑡 ,ℎ𝑡 ,𝜋tree𝑖 ;global)⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
dynamics

[𝐻 (𝑆src𝑘 |𝑆𝑘−1,𝐴𝑘−1)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

from 2DBN

]] (4.43)

Proof.

𝔼𝐷𝑘∼Pr(⋅|ℎ𝑡 ,𝜋tree𝑖 ;IALM) [𝐻 (𝐼 (𝑆src𝑘 |𝐷𝑘))] (4.44)
=𝔼𝐷𝑘∼Pr(⋅|ℎ𝑡 ,𝜋tree𝑖 ;global) [𝐻 (𝐼 (𝑆src𝑘 |𝐷𝑘))] (4.45)
(as shown in the proof of Proposition 2)

=𝔼𝐷𝑘∼Pr(⋅|ℎ𝑡 ,𝜋tree𝑖 ;global) [𝐻 (𝑆src𝑘 |𝐷𝑘 ;global)] (4.46)
(by definition of 𝐼 (Definition 8): 𝐼 (𝑆src𝑘 |𝐷𝑘) = Pr(𝑆src𝑘 |𝐷𝑘 ;global))

=𝔼𝐷𝑡 ,𝑆𝑡∼Pr(⋅|ℎ𝑡 ;global) [𝔼𝑆𝑡+1∶𝑘−1 ,𝐴𝑡∶𝑘−1 ,𝑆local𝑘 ∼Pr(⋅|𝑆𝑡 ,ℎ𝑡 ,𝜋tree𝑖 ;global) [𝐻 (𝑆src𝑘 |𝐷𝑘 ;global)]]
(4.47)

(law of total expectation)

≥𝔼𝐷𝑡 ,𝑆𝑡∼Pr(⋅|ℎ𝑡 ;global) [𝔼𝑆𝑡+1∶𝑘−1 ,𝐴𝑡∶𝑘−1 ,𝑆local𝑘 ∼Pr(⋅|𝑆𝑡 ,ℎ𝑡 ,𝜋tree𝑖 ;global) [𝐻 (𝑆src𝑘 |𝐷𝑘 , 𝑆𝑡+1∶𝑘−1,𝐴𝑡∶𝑘−1;global)]]
(4.48)
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(adding more information does not increase entropy)

=𝔼𝐷𝑡 ,𝑆𝑡∼Pr(⋅|ℎ𝑡 ;global) [𝔼𝑆𝑡+1∶𝑘 ,𝐴𝑡∶𝑘−1 ,𝑆local𝑘 ∼Pr(⋅|𝑆𝑡 ,ℎ𝑡 ,𝜋tree𝑖 ;global) [𝐻 (𝑆src𝑘 |𝑆𝑘−1,𝐴𝑡−1, 𝑆local𝑘 ;global)]]
(4.49)

(Markov property)

=𝔼𝐷𝑡 ,𝑆𝑡∼Pr(⋅|ℎ𝑡 ;global) [𝔼𝑆𝑡+1∶𝑘 ,𝐴𝑡∶𝑘−1 ,𝑆local𝑘 ∼Pr(⋅|𝑆𝑡 ,ℎ𝑡 ,𝜋tree𝑖 ;global) [𝐻 (𝑆src𝑘 |𝑆𝑘−1,𝐴𝑘−1)]]
(4.50)

(here we use the assumption there is no inter-stage dependency between state variables)

=𝔼𝐷𝑡 ,𝑆𝑡∼Pr(⋅|ℎ𝑡 ;global) [𝔼𝑆𝑡+1∶𝑘 ,𝐴𝑡∶𝑘−1∼Pr(⋅|𝑆𝑡 ,ℎ𝑡 ,𝜋tree𝑖 ;global) [𝐻 (𝑆src𝑘 |𝑆𝑘−1,𝐴𝑘−1)]] (4.51)

where 𝐻 (𝑆src𝑘 |𝑆𝑘−1,𝐴𝑘−1) is the entropy of the influence source state distribution given the
previous state and action, which can be computed from the 2DBN.
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4.6.2 Details of the experimental setup

In the following, we describe further details of the experimental setup, including the
planning domains and the hyperparameters used. Our codebase for this research is open-
sourced at https://github.com/INFLUENCEorg/POMCP-SIS.

4.6.3 Domains

(a) (b)

Figure 4.4: (a) An example of the grab a chair domain with 4 agents. For this time step, the agents on the top and
left successfully obtain a chair and receive a reward 1 while the other two do not because they target the same
chair. (b) A visualization of the grid traffic control domain with yellow arrows representing the moving cars. A
red bounding box highlights the intersection controlled by the agent.

Grab a chair domain In our experiments, we make use of a grab a chair domain that
lasts for 10 steps with one planning agent and 64 other agents executing fixed policies. At
time step 𝑡, each agent has two possible actions which are grabbing the chair on its left
and right side. When all the decisions are made, every agent which makes the decision
to grab a chair that is not targeted by another neighboring agent will get the chair, and
receive a reward of 1, otherwise none of the agents get the chair and both of them will
receive 0 reward. The agent can only observe whether itself has obtained the chair or not,
with a noise rate of 0.2. The fixed policy that is used by the 64 fixed agents make decisions
based on the empirical frequency of obtaining a chair on the left and right side, according
to their action-observation histories so far. See Figure 4.4a for an example.

Grid traffic control domain As illustrated by Figure 4.4b, the grid traffic control domain
is made of 9 traffic intersections in total where the planning agent controls the one in the
middle. At every time step 𝑡, the agent can take an action to switch the traffic light of the
local intersection that it controls. The agent has access to a sensor data on if there are cars
at the four grids that surround the traffic light. The reward of the agent is the negative
total number of cars in this intersection at this time step. For the other 8 intersections in
this intersection, they use a policy that switches their traffic lights every 9 time steps. New
cars will enter the system with a probability 0.7 and cars at the borders of the system will
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leave with a probability 0.3. Initially, cars are generated with a probability 0.7 in every grid.
The horizon of this domain is 50.

Hyperparameters
The following hyperparameters are used for the experiments that correspond to Figure 4.2
(a-c) and Figure 4.3.

Influence Predictor In all experiments, the approximate influence predictor 𝐼𝜃 is pa-
rameterized by a gated recurrent unit (GRU) Cho et al. [2014], a variant of recurrent neural
networks, with 8 hidden states. We use Adam Kingma and Ba [2014] as the optimizer for
training with stochastic gradient descent.

Training The online training of the influence predictors 𝐼𝜃 occurs after every real episode.
During every training, we perform 64 steps of stochastic gradient descent with the Adam
optimizer. The data is sampled from the replay buffer that stores all the data collected so
far, with a batch size of 128. The learning rates we use for the grab a chair and grid traffic
control domains are 0.001 and 0.00025, respectively.

Planning In Table 4.1 and Table 4.2 we list the hyperparameters for planning with
self-improving simulators in the grab a chair and grid traffic control domains.

Discount factor 𝛾 1.0
Number of initial particles 1000

Exploration constant in the UCB1 algorithm 𝑐 100.0
Meta exploration constant for simulation selection 𝑐meta 0.3

Table 4.1: Hyperparameters for planning with self-improving simulators in the grab a chair domain.

Discount factor 𝛾 0.95
Effective Horizon 36

Number of initial particles 1000
Exploration constant in the UCB1 algorithm 𝑐 10.0

Meta exploration constant for simulation selection 𝑐meta 0.1

Table 4.2: Hyperparameters for planning with self-improving simulators in the grid traffic control domain.

4.6.4 Additional results

The simulation controlled planning experiments
In Figure 4.5 we provide the additional results for the planning experiments with fixed
number of simulations per step in the grab a chair domain. The left figure shows the
learning curves of the influence predictor over real episodes. The right figure shows the
estimated inaccuracy for the IALS. As we can see, due to training, generally the estimated
inaccuracy is decreasing, which is expected. This leads to the increasing use of the IALS as
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shown in the main text, thus speeding up planning. We can also see that with 𝜆 = 3.0 and
𝜆 = 1.5, the estimated inaccuracy is much lower in the beginning than the other 𝜆s. This is
because with a large 𝜆, the accuracy threshold to use the IALS is much lower, which results
that the untrained IALSs are used exclusively right from start. This limits the number of
global simulations, causing poor accuracy of the inaccuracy estimation itself.

The (time controlled) real-time planning experiments
In Figure 4.6 and 4.7, we provide the additional results for the real-time planning experi-
ments. The common trend is that, over real episodes, the training loss of the approximate
influence predictor 𝐼𝜃 (used in the IALS) decreases, which is translated into the decreasing
inaccuracy estimate. This leads to more planning time spent on the IALS, which results in
more simulations being done within the same time limit since it is significantly faster than
the global simulator.

(a) (b)

Figure 4.5: Additional results for the simulation controlled planning experiments in the grab a chair domain
(accompanying Figure 4.2 (a-c)).

The comparison to the two-phase approach
Figure 4.2d shows that the planning performance is dramatically different when training the
influence predictors with the offline and online data. Note that in both cases, the influence
predictors are trained offline and then used as-is for online planning. In the following we
investigate the issue behind the failure of the influence predictors that are trained with
data collected by a uniform random policy. To evaluate the influence predictors, we collect
two independent datasets. One contains again the offline data that is collected by a uniform
random policy, which should have the same distribution as the offline training data. To
understand the behavior of the influence predictors when they make online predictions
during planning, we execute POMCP with the global simulator to collect the second
dataset. We consider the POMCP-GS dataset as the test set here because that represents
the distribution that we may encounter when planning with an exact simulator. We plot
the learning curves of the influence predictors that are trained on {10𝐾,20𝐾,50𝐾,100𝐾 }
episodes of offline data and on the "online" data that is collected when planning with the
self-improving simulator 𝜆 = 0.7, importantly, evaluated on both datasets. The dotted lines
with circles represent the evaluations with the offline dataset, and the solid lines with
triangles represent the evaluations with the POMCP-GS dataset. We can see that first of
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(a) (b)

(c) (d)

Figure 4.6: Additional results for the real-time planning experiments in the grab a chair domain (accompanying
Figure 4.3a).

all, for all the influence predictors that are trained with offline data, there is a trend that as
training goes on, the training error (evaluated on the offline dataset) is decreasing while
the test error (on the POMCP-GS) dataset is increasing, a classic indicator of overfitting.
This is strong evidence that there is indeed a distribution shift when training the influence
predictors with data collected offline. Moreover, we see that this does not happen to the
influence predictors that are trained with online data from the self-improving simulators.
In the end, they can converge to a much lower test error, which can explain their much
better planning performance. As such, we can conclude that this experiment demonstrates
the distribution shift issue of the two-phase approach by He et al. [2020] and shows that
planning with self-improving simulators can fix the issue.
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(a) (b)

(c) (d)

Figure 4.7: Additional results for the real-time planning experiments in the grid traffic control domain (accompa-
nying Figure 4.3b).

Figure 4.8: Learning curves of the influence predictors that are trained in an offline manner with the offline and
online data (accompanying Figure 4.2d).
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Ablation study: the effect of the meta exploration constant
To understand the effect of the meta exploration constant 𝑐meta, we repeat the simulation
controlled experiment with a set of different values 𝑐meta = {0.0,0.3,1.0,2.0}. The results
are shown in Figure 4.9. In the main text, we describe that there is an exploration and
exploitation problem when selecting the simulators online, which we address with the
UCB1 algorithm by formulating it as a bandit problem. Here we investigate the effect of
the meta exploration constant on the planning performance. As we can see from Figure 4.9,
with a meta exploration constant 𝑐meta = 0.0, which effectively removes the UCB1 action
selection, there is a period at the beginning of planning, during which the agent does not
perform well, for many values of 𝜆s. The number of IALS simulations suggests this is
due to already the IALS a lot while it has not been trained much. However, this does not
happen to the other values of the meta exploration constant. Our understanding is that
this is due to the poor estimation of the IALS inaccuracy, i.e., a lack of exploration. On the
other hand, from Figure 4.9, we can see that the use of a large meta exploration constant
𝑐meta = 2.0 results in a limited exploitation of the faster IALS, even when it is sufficiently
trained, preventing the planning speed to increase further after reaching certain level.
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(a) 𝑐meta = 0.0

(b) 𝑐meta = 0.3

(c) 𝑐meta = 1.0

(d) 𝑐meta = 2.0

Figure 4.9: Simulation controlled planning experiments in the grab a chair domain with different values of the
meta exploration constant.
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5
What Model Does MuZero

Learn?

"The purpose of abstracting is not to be vague, but to create a new semantic level in which one
can be absolutely precise."

Edsger W. Dijkstra

Model-based reinforcement learning (MBRL) has drawn considerable interest in recent years,
given its promise to improve sample efficiency. Moreover, when using deep-learned models, it is
possible to learn compact and generalizable models from data. In this work, we study MuZero,
a state-of-the-art deep model-based reinforcement learning algorithm that distinguishes itself
from existing algorithms by learning a value-equivalent model. Despite MuZero’s success and
impact in the field of MBRL, existing literature has not thoroughly addressed why MuZero
performs so well in practice. Specifically, there is a lack of in-depth investigation into the value-
equivalent model learned by MuZero and its effectiveness in model-based credit assignment
and policy improvement, which is vital for achieving sample efficiency in MBRL. To fill
this gap, we explore two fundamental questions through our empirical analysis: 1) to what
extent does MuZero achieve its learning objective of a value-equivalent model, and 2) how
useful are these models for policy improvement? Among various other insights, we conclude
that MuZero’s learned model cannot effectively generalize to evaluate unseen policies. This
limitation constrains the extent to which we can additionally improve the current policy by
planning with the model.

This chapter is based on Jinke He, Thomas M Moerland, Joery A. de Vries, and Frans A Oliehoek. "What model
does MuZero learn?." In European Conference on Artificial Intelligence, 2024.
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5.1 Introduction

In recent years, deep reinforcement learning (DRL) [François-Lavet et al., 2018] has achieved
remarkable progress, finding applications in a variety of real-world problems such as video
compression [Mandhane et al., 2022], chip design [Mirhoseini et al., 2021], inventory
management [Madeka et al., 2022] and plasma control for nuclear fusion [Degrave et al.,
2022]. Despite these advancements, sample inefficiency remains a significant obstacle that
limits the broader applicability of deep reinforcement learning in practical settings.

Model-based reinforcement learning (MBRL) [Moerland et al., 2023] addresses sample
inefficiency in DRL by learning predictive models of the environment. In the typical RL
cycle, an agent interacts with the environment (acting) and uses the collected data to refine
its policy (learning). Accordingly, MBRL methods fall into two non-mutually exclusive
categories [van Hasselt et al., 2019]: (1) those that use the learned model to improve acting
and (2) those that use the learned model to improve learning.

One notable example of the first category is model-based exploration. In environ-
ments where rewards are sparse, shallow exploration techniques such as epsilon-greedy
exploration often fail. Model-based exploration addresses this by not only allowing the
agent to use model prediction errors or model uncertainty as intrinsic learning signals, but
also enabling more effective exploration of "interesting" regions of the environment by
"planning to explore" [Brafman and Tennenholtz, 2002, Henaff, 2019, Lowrey et al., 2018,
Pathak et al., 2017, 2019, Sekar et al., 2020, Shyam et al., 2019]. In addition, decision-time
planning methods such as Monte Carlo Tree Search (MCTS) [Browne et al., 2012] compute
local policies online by planning with the model. A representative class of methods that
use MCTS for decision-time planning is AlphaZero [Silver et al., 2016, 2017b, 2018], which
defeated a human Go world champion for the first time in human history.

The other class of MBRL methods aims to improve the agent’s policy and value func-
tions without consuming additional data through model-based credit assignment. At a
high level, these methods generate synthetic data through the learned model to simulate
potential outcomes of specific actions or policies. This synthetic data is then used to update
the agent’s value estimates and improve the policy with a policy improvement operator.
Notably, the DYNA architecture [Sutton, 1991] treats synthetic data as real data, integrating
it into model-free learning algorithms, whereas the Dreamer methods [Hafner et al., 2019,
2020, 2023] use synthetic data exclusively for policy computation. In addition to using
synthetic data directly, AlphaZero employs MCTS to compute a refined local policy and
improved value estimates, which then serve as better learning targets for policy and value
functions in replacement of model-free targets. Furthermore, van Hasselt et al. [2019]
advocate for backward planning, which assigns credits to hypothetical states through a
learned inverse model. They argue that planning backward for credit assignment can be
more robust to model errors than planning forward, as updating fictional states can be less
harmful than updating real states with fictional values.

Model-based exploration and credit assignment improve the data efficiency of RL meth-
ods by collecting more useful data and extracting more information from it. Beyond these
two categories, learning a predictive model of the environment can also serve as an auxil-
iary task for representation learning [Hessel et al., 2022, Jaderberg et al., 2022]. In addition,
in model-free planning, differentiable computation graphs that resemble the structure of
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planning with a model (i.e., implicit models) have been found useful as architectural priors
for value and policy functions, demonstrating improved performance in combinatorial
planning domains while trained via model-free losses [Farquhar et al., 2018, Guez et al.,
2018, 2019, Oh et al., 2017, Tamar et al., 2016].

Unlike tabular methods that learn the dynamics and reward for each state-action pair,
deep model-based RL (DMBRL) approaches typically learn a state representation, on top of
which dynamics and reward functions are estimated. However, determining what relevant
information to include in these state representations and how to learn them effectively
remains challenging. Namely, not all features of the observations are relevant [Li et al.,
2006], and missing relevant features may lead to history dependence [McCallum, 1996]. A
prevalent approach within DMBRL for learning these state representations is to model the
next observation [Ha and Schmidhuber, 2018, Hafner et al., 2019, 2020, 2023, Kaiser et al.,
2020]. However, accurately predicting high-dimensional observations, such as images,
requires considerable effort in designing and training high-capacity neural networks with
effective inductive biases [Kaiser et al., 2020]. This challenge has long been a barrier for
MBRL methods, as the efficacy of model-based policy optimization strongly depends on
the quality of these representations. Moreover, this approach often wastes significant
representational power and training resources on encoding task-irrelevant information
within the state representations, causing inefficiency in learning.

One approach to this challenge is the development of value-equivalent models [Farquhar
et al., 2018, Grimm et al., 2020, 2021, 2022, Oh et al., 2017, Silver et al., 2017a, Tamar
et al., 2016]. These models are specifically trained to predict the (multi-step) Bellman
update, focusing solely on value-relevant aspects of the task dynamics without needing
to reconstruct any observation. MuZero [Schrittwieser et al., 2020], a well-known MBRL
algorithm, exemplifies this approach by achieving state-of-the-art performance in Atari
games [Bellemare et al., 2013] and superhuman performance in Go, Chess, and Shogi.

MuZero inherits much of its structure from AlphaZero, which uses MCTS guided
by both a learned policy network and a learned value network to make decisions and
generate learning targets. However, MuZero distinguishes itself by integrating a model
learned jointly with the value and policy networks, contrasting AlphaZero’s use of a
ground-truth model for simulation and search. For clarity, throughout this work, we
use the term learned model to refer specifically to the combination of MuZero’s learned
dynamics and reward functions. Importantly, MuZero’s model is not trained to predict
the next state or observation, but instead focuses on predicting task-relevant quantities
such as future rewards, policies, and values. This approach of learning implicit models
sets MuZero apart from traditional MBRL algorithms and promises a shift towards more
efficient model learning. Despite MuZero’s empirical success and its considerable impact
on MBRL [Antonoglou et al., 2021, Hubert et al., 2021, Mandhane et al., 2022, Ye et al.,
2021], a recent study by [de Vries et al., 2021] shows that MuZero’s dynamics model can
diverge significantly from real transitions, highlighting a gap in our understanding of how
these models function and their efficacy in model-based credit assignment and planning.
This discrepancy underscores the necessity for a detailed investigation into the capabilities
and limitations of value-equivalent models within MuZero, which motivates this work.

The most relevant study in this direction is by Hamrick et al. [2022], who studied the
role of planning in MuZero’s learning. They found that planning primarily boosts the
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policy network’s learning by generating more informative data and constructing better
training targets. Surprisingly, their findings also reveal that, in most domains, planning at
evaluation time does not significantly improve performance compared to using the policy
network alone, even with large search budgets. One explanation is that the policy network
has converged to the optimal policy, rendering planning less useful. Another important
consideration is that MuZero’s planning performance may not solely rely on its learned
model: the value network, which is used to evaluate leaf nodes in MuZero’s MCTS, may
also play a crucial role in driving strong empirical performance. Furthermore, Danihelka
et al. [2021] show that improving MuZero’s planning enables strong performance even
with extremely small search budgets (𝑛 = 2, or 𝑛 = 4) in Go. This raises the question of
what the contribution of MuZero’s learned model is.

In this study, we aim to bridge the gap in our understanding of MuZero’s learned model
by exploring two fundamental questions:

1. To what extent does MuZero learn a value-equivalent model?
2. Towhat extent doesMuZero learn amodel that supports effective policy improvement

(through planning)?
Learning a truly value-equivalent model is essential for model-based credit assignment,
which directly influences the potential for improving existing policies through model-based
planning. The more effectively we can improve existing policies through planning with
the learned model, the greater the sample efficiency achieved by an MBRL method. As
such, addressing these questions can help us better understand MuZero’s empirical success
and inform the design of future algorithms or extensions.

Through our empirical analysis, we find that MuZero’s learned model is generally not
accurate enough for policy evaluation, and the accuracy of the model decreases as the
policy to evaluate deviates further fromMuZero’s data collection policy. Consequently, this
limits the extent to which we can find a good policy via planning. However, we find that
MuZero’s incorporation of the policy prior in MCTS alleviates this problem, which biases
the search towards actions where the model is more accurate. Based on these findings,
we speculate that the role of the model in MuZero may be similar to that in model-free
planning, providing a more powerful representation of value and policy functions, as the
extent to which it can support policy improvement is rather limited. Moreover, using the
policy prior indirectly takes model uncertainty into account during planning, which results
in a form of regularized policy optimization with the learned model.

We introduce the essential background in Section 2.4. In Section 5.2, we study trained
MuZero models in the policy evaluation setting (the objective for which the models were
trained). In Section 5.3, we extend the analysis to the policy improvement setting (planning).
Finally, we discuss the limitations and outlook of this work in Section 5.4.

5.2 Policy Evaluation Experiments

We are interested in the extent to which MuZero’s learned model supports additional policy
improvement, which is crucial for MuZero’s sample efficiency as an MBRL method. Our
hypothesis is that, since MuZero’s model is trained on data collected by previous policies,
it is not generally value equivalent for all policies, especially those that have not been
executed. As accurate policy evaluation is the basis for effective policy improvement, this
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will limit the extent to which MuZero can additionally improve its policy through planning.
In this section, we validate this hypothesis.

5.2.1 Training MuZero agents

For our empirical analysis, we used three fully observable deterministic environments, as
MuZero was designed for this setting: Cart Pole, a deterministic version of Lunar Lander,
and Atari Breakout [Bellemare et al., 2013]. We trained 30MuZero agents with different
random seeds for Cart Pole and Lunar Lander and 20 for Atari Breakout. For each agent,
we saved the model weights at different training steps. In the figures below, we aggregate
results from different seeds/agents and plot their means, with the corresponding standard
errors represented as confidence intervals.

In Cart Pole and Lunar Lander, we extensively trained the MuZero agents for 100K and
1M steps. This way, we can conduct our analysis on the trained agents throughout their
lifecycle of learning. For Atari Breakout, we adopted the same setup as EfficientZero [Ye
et al., 2021] but extended the training from 100K steps to 500K steps.
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MuZero's Policy Prior (w/o planning) MuZero's Behavior Policy (w/ planning)

Figure 5.1: Online performance of MuZero agents in Cart Pole (Left), Lunar Lander (Middle), and Atari Breakout
(Right). For the same agent, we plot the performance of MuZero’s behavior policy (with planning) and policy
prior (without planning). Note that the X-axes are in logarithmic scales. Planning at decision time substantially
improves the performance of an agent, compared to taking actions directly from the policy prior.

Figure 5.1 shows the online performance of MuZero agents at various training steps,
which make decisions by performing MCTS planning (Equation 2.34). For reference, we
also plot the performance of the policy prior of the same agent, which samples actions
directly from the policy network, 𝑎𝑡 ∼ 𝜋𝜃(⋅|ℎ𝜃(𝑠𝑡)). Throughout training, planning enables
MuZero to achieve a substantially better performance than directly using the policy prior.
It is important to note that the improved performance may not only come from the learned
model but may also come from the value network, which is used to estimate the value of
leaf nodes in MuZero’s MCTS. In the following, we will take a deeper look at how much
the learned model contributes to this.
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5.2.2 Evaluating the learned model

To assess MuZero’s learned model in the context of policy evaluation, we will compare
it to the ground-truth model. Through experiments, we aim to answer questions in the
format of how much value prediction error should we expect when using MuZero’s learned
model to evaluate a policy 𝜋?

Considering that MuZero does not train or employ the model for infinite-horizon
rollouts, we impose a limit on the evaluation horizon when assessing the value prediction
error. For each state 𝑠𝑡 , we define the discounted sum of future rewards for taking an action
sequence (𝑎𝑡 ,… , 𝑎𝑡+ℎ−1) as:

𝑣𝑎𝑡∶𝑡+ℎ−1(𝑠𝑡) =
ℎ−1
∑
𝑘=0

𝛾𝑘𝑟𝑡+𝑘 (5.1)

where 𝑟𝑡+𝑘 =(𝑠𝑡+𝑘 , 𝑎𝑡+𝑘) and 𝑠𝑡+𝑘+1 =  (𝑠𝑡+𝑘 , 𝑎𝑡+𝑘), assuming the environment is determin-
istic. As mentioned in Section 2.4, MuZero predicts the value of this action sequence by
first encoding the state into a latent state 𝑧0𝑡 = ℎ𝜃(𝑠𝑡) and then rolling out the model from
the latent state:

�̂�𝑎𝑡∶𝑡+ℎ−1(𝑠𝑡) =
ℎ−1
∑
𝑘=0

𝛾𝑘𝑢𝑘𝑡 (5.2)

where 𝑧𝑘+1𝑡 , 𝑢𝑘𝑡 = 𝑔𝜃(𝑧𝑘𝑡 , 𝑎𝑡+𝑘). Then, we can define the value prediction error of the learned
model for the action sequence 𝑎𝑡∶𝑡+ℎ−1.

Definition 10. The value prediction error of using the learned model to evaluate the action
sequence 𝑎𝑡∶𝑡+ℎ−1 at state 𝑠𝑡 is:

|𝑣𝑎𝑡∶𝑡+ℎ−1(𝑠𝑡)− �̂�𝑎𝑡∶𝑡+ℎ−1(𝑠𝑡)| (5.3)

As a stationary policy 𝜋 ∶  → Δ() that operates in the original environment defines
a distribution over such action sequences:

Pr(𝑎𝑡∶𝑡+ℎ−1|𝑠𝑡 ,𝜋) =
ℎ−1
∏
𝑘=0

𝜋(𝑎𝑡+𝑘 |𝑠𝑡+𝑘 =  (𝑠𝑡+𝑘−1, 𝑎𝑡+𝑘−1)) (5.4)

We can define the value prediction error for evaluating 𝜋.

Definition 11. The value prediction error of using the learned model to evaluate a stationary
policy 𝜋, which operates in the original environment, for horizon ℎ is:

||𝑣
𝜋
ℎ (𝑠𝑡)− �̂�𝜋ℎ (𝑠𝑡)|| = ||𝔼𝑎𝑡∶𝑡+𝑘−1∼Pr(⋅|𝑠𝑡 ,𝜋) [𝑣

𝑎𝑡∶𝑡+ℎ−1(𝑠𝑡)− �̂�𝑎𝑡∶𝑡+ℎ−1(𝑠𝑡)]|| (5.5)

5.2.3 How accurately can MuZero’s learned model predict
the value of its own behavior policy?

As the model is trained on data collected by MuZero’s behavior policy 𝜋MuZero, we expect it
to be at least accurate on this data collection policy. Therefore, we begin our investigation
by examining the model’s prediction performance on this policy. Due to the continuous
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state spaces of our environments, it is not feasible to enumerate all states and compute
the error for each. Instead, we sample states from MuZero’s on-policy state distribution
𝑑𝜋MuZero . For each sampled state, we conduct the evaluation and aggregate the errors. To
facilitate tractable evaluation, at every state 𝑠, we use Monte Carlo sampling to estimate
both the true value 𝑣𝜋MuZero

ℎ (𝑠) and the value predicted by MuZero’s model �̂�𝜋MuZero
ℎ (𝑠).
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Figure 5.2: Value prediction error of using MuZero’s learned model to evaluate its own behavior policy.

In Figure 5.2, we report the value prediction error (Y-axis) under various evaluation
horizons (lines) across different training steps (X-axis). The maximum evaluation horizons
are set to the number of unrolling steps during training: 10,10,5 for Cart Pole, Lunar Lander,
and Atari Breakout, respectively. In all environments, value predictions for short horizons
are highly accurate, with errors approaching zero. However, as the evaluation horizon
increases, the errors consistently grow larger. On the one hand, this is not surprising be-
cause learned models are known prone to accumulate errors during long rollouts [Lambert
et al., 2022]. On the other hand, this shows that models learned by MuZero cannot be fully
value equivalent as they are not even accurate enough to predict values for the policy that
collects the training data. Errors at different training steps are generally not comparable
due to the different state distributions, but the decreasing errors observed at the end of
training suggest the convergence of the policy as a possible explanation.

5.2.4 How accurately can MuZero’s learned model evaluate
policies that are different from the behavior policy?

To assess whether MuZero’s learned model effectively supports planning, we will investi-
gate its capacity to generalize and accurately predict values beyond its own data collection
policy. Our hypothesis is that the model will exhibit increasing inaccuracies when evalu-
ating policies that differ significantly from the behavior policy, which is responsible for
collecting the training data.

To test this hypothesis, we conduct an experiment focusing on the relationship be-
tween the value prediction error for an action sequence |𝑣𝑎𝑡∶𝑡+ℎ−1(𝑠𝑡)− �̂�𝑎𝑡∶𝑡+ℎ−1(𝑠𝑡)| and the
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Figure 5.3: X-axis: action sequences sorted by their probabilities of being taken by the behavior policy (from
unlikely to likely reading from left to right). Y-axis: the probabilities (blue, from small to large) and the corre-
sponding value prediction errors (yellow, from small to large). Action sequences with higher probabilities to be
taken by MuZero’s behavior policy correlate with lower value prediction errors by MuZero’s learned model. This
implies that the learned model is less accurate for policies that are different from the data collection policy.

probability of the behavior policy selecting this action sequence Pr(𝑎𝑡∶𝑡+ℎ−1|𝑠𝑡 ,𝜋MuZero). We
again sample states from MuZero’s on-policy state distribution 𝑑𝜋MuZero and compute the
probabilities and value prediction errors for all action sequences of length {8,4,4} for Cart
Pole, Lunar Lander and Breakout (limited by computation budget). Considering that both
probabilities and errors are real-valued and non-uniformly distributed, we aggregate results
as follows: first, for each state, we rank action sequences by their probabilities of being
chosen by MuZero’s behavior policy. Then, we compile statistics for action sequences with
the same ranks. Finally, we combine results from different agents and report their means
and standard errors.

In Figure 5.3, we present the results. Here, the X-axis represents the action sequences
that are sorted by their likelihood of being taken by the current behavior policy, ranging
from unlikely to likely. On the Y-axis, we plot both the probabilities (blue) and the corre-
sponding value prediction errors (yellow). The results clearly show that, as the likelihood
of the behavior policy selecting the action sequence decreases, the value prediction error
for that action sequence increases. This trend is consistently observed across different
environments and training steps. Moreover, it seems to become more evident with more
training, possibly because the behavior policy becomes more deterministic. This finding
supports our hypothesis that the model is more reliable in predicting values for the behavior
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Figure 5.4: Cross model policy evaluation. We evaluate MuZero’s behavior policy at training step Y (column)
with the learned model at training step X (row) and measure the value prediction error. Results are aggregated
over states sampled from MuZero’s on-policy state distribution at training step X (same as the model).

policy, which collects the training data. Consequently, evaluating a policy using MuZero’s
learned model may yield increasingly inaccurate results as the policy to evaluate deviates
further from the behavior policy.

5.2.5 How accurately can MuZero’s learned model from one
training step evaluate the behavior policy of the same
agent from another training step?

In our previous experiment, we investigated the generalization capability of the learned
model in predicting values for policies that differ from the behavior policy. We accomplished
this by considering all action sequences of length ℎ at each state, possibly including actions
that are unlikely to be taken by any sensible policy. In this experiment, we conduct a
similar analysis but with a focus on more interesting policies. Specifically, we assess the
accuracy with which the model at training step X (row) can evaluate the policy (of the same
agent) at training step Y (column). The idea is that if a model cannot accurately evaluate
high-performing future policies, planning with it would not be effective in finding a good
policy. For this experiment, we set the evaluation horizon for each environment to the
number of unrolling steps during training. Results are aggregated over states sampled from
MuZero’s on-policy state distribution at training step X (same per row as the model). Note
that errors at different model steps (rows) are not directly comparable due to the different
state distributions.

It is clear from Figure 5.4 that models at all training steps are most accurate when
evaluating policies at the same training steps, as the error per row is smallest at the diagonal.
This aligns with our earlier finding: learned models are more accurate when assessing
action sequences with a higher selection likelihood by the current behavior policy. Notably,
we can see that using early models to evaluate future policies results in large errors in Cart
Pole and Lunar Lander. This may have important implications for policy improvement: if
the model at the current training step cannot accurately evaluate a future policy that performs
better, then the extent to which we can improve our current policy will be limited. Intuitively,
if the model does not know a high-performing policy is good, then a deeper search in the
model would not help us find the policy. This phenomenon is less evident in Breakout,
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possibly because the evaluation horizon is too short in this environment to allow for an
observable difference in rewards across the policies (5 vs 10 in the other environments).

5.3 Policy Improvement Experiments

Our policy evaluation experiments indicate that MuZero’s learned model can become
increasingly inaccurate when evaluating policies differing from the data collection policy,
particularly those unseen during training. In this section, we investigate the natural follow-
up question, the question that we are most interested in: what is the effect of this on policy
improvement through planning?

Intuitively, if the agent is given the ground-truth model and has an infinite budget for
planning, it can act optimally by exhaustively searching with the model. Sample efficiency
is maximized in this case as the agent needs no sample from the environment to learn.
However, in real-world scenarios, the planning budget is always constrained, both during
training and deployment. To improve planning with these constraints, AlphaZero and
MuZero employ a learned policy prior to guide the action simulation in MCTS. If the policy
prior is well-trained, it can greatly enhance planning, but if not, it might harm efficiency.

We evaluate planning using MuZero’s learned model both with and without the guid-
ance of the policy prior. In the latter case, we replace the policy prior with a uniform
prior, allowing for a form of “free search”. To focus on evaluating the contribution of the
learned model, we modify MuZero’s MCTS by replacing the value network’s predictions
at leaf nodes with random rollouts in the model, a standard approach to estimating the
value of a leaf node in MCTS. To address the computational costs of long rollouts in neural
models, we restrict the planning horizon to {16,128,32} in Cart Pole, Lunar Lander, and
Atari Breakout. For comparison, we include the baselines of the policy prior and planning
with the ground-truth model using the same MCTS. The goal of this experiment is to
answer two questions:

(a) How effectively does MuZero’s learned model support free search?
(b) To what extent can MuZero improve its policy by planning with the learned model?

We present our results in Figure 5.6. In Cart Pole, MuZero’s learned model exhibits
some degree of support for free search (orange dashed) after some training. However, it
significantly underperforms compared to free search with the ground-truth model (green
dashed) in terms of both planning efficiency and asymptotic performance. In Lunar Lander
and Atari Breakout, free search with the learned model (orange dashed) fails completely.
Consequently, the potential for finding a good policy through planning with the learned
model will be effectively limited.

In Cart Pole and Lunar Lander, with enough MCTS simulations, planning with the
learned model improves performance over using the policy prior alone. However, compared
to the ground-truth model, it is evident that the extent to which we can improve upon the
policy prior via planning is still very limited. This is a clear sign that the model error is
restricting the extent to which we can further improve the policy by planning. In Atari
Breakout, while planning with more simulations using the learned model improves the
agent’s performance, it cannot outperform the policy prior.
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Interestingly, when comparing planning with the policy prior to planning with the
uniform prior, the learned model consistently shows a larger gap compared to the ground-
truth model except in Atari Breakout. Furthermore, unlike the ground-truth model, the gap
for the learned model does not seem to diminish quickly with more simulations, suggesting
an additional role of the policy prior to accelerating MCTS. As shown in Figure 5.3, action
sequences with higher probabilities of being selected by the behavior policy tend to be
more accurately evaluated by the learned model. As the policy prior is directly learned to
match the behavior policy, it is reasonable to assume that the values of action sequences
favored by the policy prior can also be more accurately predicted by the learned model.

To verify this hypothesis, in Figure 5.5, we plot the learned model’s value prediction
error for MCTS’s simulated trajectories under the guidance of the policy prior (blue) and
uniform prior (orange) in CartPole after 2000 training steps. Meanwhile, we also plot the
total variation TV[𝜋𝜃, �̂�] and KL divergence KL[𝜋𝜃, �̂�] between the policy prior 𝜋𝜃 and
MCTS’s empirical visit distribution �̂� = 1+𝑁 (𝑎)

∑𝑏 ||+𝑁 (𝑏) at the root node. Clearly, the policy
prior regularizes MCTS to visit actions that are more favored by it, as suggested by the
lower total variation and KL divergence (blue, middle, and right), which results in a smaller
value prediction error (blue, left), when compared to the uniform prior, which explores
more out-of-the-box (orange, middle, and right) and incurs more value prediction errors
(orange, left). This suggests that apart from biasing the search, the policy prior may also
serve to prevent the search from exploring directions where the learned model is less accurate.
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Figure 5.5: Value prediction error of MCTS’s simulated trajectories using the learned model (left), the total
variation between the policy prior and MCTS’s empirical visit distribution at the root node (middle), and the KL
divergence between them (right).
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Figure 5.6: MCTS planning with (i) MuZero’s learned model (orange) and (ii) the ground-truth model (green),
under the guidance of (a) MuZero’s policy prior (solid line) and (b) the uniform prior (dotted line)). The X and Y
axes are the number of simulations per step and the return.

5.4 Discussion

Limitations In this study, we analyzed MuZero, one of the most successful DMBRL
methods that is grounded in the value equivalence principle. The conclusions we draw can,
therefore, not be directly generalized to other DMBRL methods, certainly not those that
employ other auxiliary loss functions on top, e.g., [Gelada et al., 2019, van der Pol et al.,
2020a, Ye et al., 2021]. However, our analysis clearly shows that, despite its simplicity, using
the value equivalence principle does not imply that we learn models that are actually value
equivalent. Even when restricting the predictions to its own behavior policy, MuZero’s
learned model leads to prediction errors that quickly grow with the horizon of prediction.
As such, our study does serve as a warning for other DMBRL methods that aim to use
value equivalence as their guiding principle.

Outlook We have demonstrated that MuZero’s model, trained with a value-equivalence-
based loss, struggles to generalize and predict values accurately for unseen or unfamiliar
policies. This raises the question of how different losses for model learning would behave
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and compare in our analysis, such as the reconstruction-based loss [Hafner et al., 2019,
2020, 2023, Kaiser et al., 2020] and the temporal-consistency [de Vries et al., 2021, van
der Pol et al., 2020a, Ye et al., 2021]. Specifically, we hypothesize that, while the value
equivalence loss is the most flexible loss as it does not directly impose requirements on
state representations, other losses may have an advantage for generalization in low-data
regimes due to a richer supervision signal. We consider this potential trade-off between
representation complexity and generalization an exciting direction for future research.

5.5 Conclusion

In this work, we empirically studied the models learned byMuZero, which are trained based
on the value equivalence principle. Our analysis focused on two fundamental questions:
(1) To what extent does MuZero learn a value-equivalent model? and (2) To what extent
does the learned model support effective policy improvement by planning? We find that
MuZero’s learned model cannot generally evaluate policies accurately, especially those
that further deviate from the data collection policy. Consequently, the failure of the model
to predict values for policies that are out of the training distribution prevents effective
planning from scratch, which limits the extent to which MuZero can additionally improve
its policy via planning. Moreover, we uncover that apart from accelerating the search as in
AlphaZero, the policy prior in MuZero serves another crucial function: it regularizes the
search towards areas where the learned model is more accurate, which effectively reduces
the model error that is accumulated into planning. From these findings, we speculate
that because MuZero’s model itself is limited in its ability for policy improvement, the
empirical success of MuZero may be a result of the model providing the algorithm with
a more powerful representation of the values and policies compared to single-lookahead
methods like deep Q-learning [Mnih et al., 2015]. This implies a role for the model that is
similar to that in model-free planning but extends it with the policy prior to make planning
conservative [Kumar et al., 2020].
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5.6 Appendix

In this appendix, we describe the training of MuZero agents in detail and present additional
results.

5.6.1 Training of MuZero agents

Setup and Hyperparameters

Hyperparameter Cart Pole Lunar Lander
Random seeds 0 to 29 0 to 29
Discount factor 0.997 0.999
Total training steps 100000 (10000) 1000000 (200000)
Optimizer Adam Adam
Initial Learning Rate 0.02 0.005
Learning Rate Decay Rate 0.1 (0.8) No decay
Learning Rate Decay Steps 50000 (1000) No decay
Weight Decay 1e-4 1e-4
Momentum 0.9 0.9
Batch Size 128 64
Encoding size 8 10
Fully-connected Layer Size 16 64
Root Dirichlet Alpha 0.25 0.25
Root Dirichlet Fraction 0.25 0.25
Prioritized Experience Replay Alpha 0.5 0.5
Num Unroll Steps 10 10
TD Steps 50 30
Support Size 10 10
Value Loss Weight 1.0 1.0
Replay Buffer Size 500 500 (2000)
Visit Softmax Temperature Fn 1.0→ (5e4) 0.5 → (7.5e4) 0.25 0.35

Table 5.1: Hyperparameters for training MuZero agents in Cart Pole and Lunar Lander. We used default values
from [Duvaud and Hainaut, 2019] for most of the hyperparameters. The bold values are those that we tuned to
improve the convergence of the agents, with the default values shown in brackets.

For Cart Pole and Lunar Lander, we trained 30 MuZero agents using an open-source
implementation of MuZero [Duvaud and Hainaut, 2019], which is available on GitHub
(under the MIT license). The implementation has been extensively tested on various
classic RL environments, including Cart Pole and Lunar Lander. While we mostly used
the default recommended hyperparameter values from [Duvaud and Hainaut, 2019], we
fine-tuned a few of them to improve the convergence of agents. The comprehensive list of
hyperparameters for training MuZero agents in these environments can be found in Table
5.1. For Atari Breakout, we trained 20 MuZero agents using the official implementation
of EfficientZero [Ye et al., 2021], excluding the additional improvements introduced by
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Hyperparameter Atari Breakout
Random seeds 0 to 9
Total training steps 500000
Learning Rate 0.1→ 0.01 with an exponential decay rate of 0.1
Replay Buffer Size 100000
Visit Softmax Temperature Fn 1.0 (fixed throughout training)

Table 5.2: Hyperparameters for training MuZero agents in Atari Breakout. We used default values from Effi-
cientZero [Ye et al., 2021] (see Appendix A.1 Table 6 of [Ye et al., 2021]) for those hyperparameters that are not
mentioned in the table.

EfficientZero. This implementation is also available on GitHub (under the GPL-3.0 license).
At the time of this research, this was the only plausible way to train MuZero agents in
Atari games. See Table 5.2 for the hyperparameters.

Regarding computation, training each MuZero agent took around 3 hours for Cart Pole
and 20 hours for Lunar Lander, using 8 CPUs. For Atari Breakout, it took around 40 hours
per agent using 2 GPUs and 48 CPUs. The training was conducted on a shared internal
cluster equipped with a variety of CPUs and GPUs (Nvidia 2080Ti/V100/A40).

Learning Curves
In Figure 5.1, we plot the online performance of MuZero agents at various training steps
for running both the policy prior and the behavior policy. There, actions are sampled from
policies. In Figure 5.7, we plot the full learning curves with actions both sampled and taken
greedily from the policies. When running MuZero’s behavior policy greedily, we do not
add Dirichlet noise to the policy prior in the tree search.
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Figure 5.7: Full learning curves of MuZero agents in Cart Pole (Left), Lunar Lander (Middle), and Atari Breakout
(Right).

5.6.2 Additional Results

Policy Evaluation Experiments with Longer Evaluation Horizons
In the main paper, we used relatively short evaluation horizons in the policy evaluation
experiments because the models were only unrolled for these numbers of steps during
training: 10,10,5 for Cart Pole, Lunar Lander, and Atari Breakout, respectively. Here, we
present results using a longer evaluation horizon of 50 steps.
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Specifically, we replicate the experiment from Section 5.2.5 and Figure 5.4, where we
measure the value prediction error using the model learned at training step 𝑋 to evaluate
MuZero’s behavior policy at training step 𝑌 , but with an extended evaluation horizon of
50 steps across all domains. The results are shown in Figure 5.8.

Compared to Figure 5.4, which uses shorter evaluation horizons, the value prediction
errors here are significantly larger due to compounding errors. However, the overall
trend remains consistent: models and policies at different training steps generally show
incompatibility in value prediction. This trend is more pronounced here, as the value
discrepancies between different policies are more evident with a longer horizon.
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Figure 5.8: Cross model policy evaluation with an evaluation horizon of 50. We evaluate MuZero’s behavior policy
at training step Y (column) with the learned model at training step X (row) and measure the value prediction
error. Results are aggregated over states sampled from MuZero’s on-policy state distribution at training step X
(same as the model).
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6
Conclusion

"From the first stirrings of life beneath water... to the great beasts of the Stone Age... to
humankind taking their first upright steps, you have come far. Now begins your greatest

quest: from this early cradle of civilization on towards the stars."

Civilization VI

In this chapter, we describe the big picture of automated decision-making, summarize the
contributions of this thesis, and outline potential directions for future work.
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In this thesis, we set out to improve decision-making in complex environments using
abstractions. This raises the question: where do we now stand in the broader context of
supported and automated decision-making? Here, we sketch a big-picture overview of the
past and current state of supported/automated decision-making and what we see as the
main challenges moving forward.

6.1 TheBigPicture: TheEvolutionofHumanDecision-
Making

The history of humankind is, in many ways, the history of decision-making. From the
earliest days, humans have been observing their environment, processing information, and
making decisions to shape the world according to their needs and desires. Initially driven
by the imperative to survive—seeking food, shelter, and safety—and later by ambition and
curiosity, our capacity for decision-making has evolved significantly over time.

6.1.1 Extending human action and perception

To enhance this capacity, humans have developed tools that extend their natural abilities.
The first major leap was the creation of implements such as stone tools and weapons,
which allowed us to manipulate the environment in ways that bare hands could not achieve.
These tools enabled more complex actions, leading to advancements in agriculture with
the development of farming equipment, construction with architectural innovations, and
craftsmanship with specialized instruments for various trades.

The next significant progression involved expanding our ability to gather and process
information. The invention of devices such as cameras, sensors, and satellites, along with
communication systems like the telegraph, telephone, and the internet, revolutionized how
we observe and understand the world. These technologies increased the volume and variety
of data available, necessitating more sophisticated methods for processing information.

As the scale of both action and observation spaces grew, so did the need for tools
that could assist in processing vast amounts of data and making intricate decisions. Early
efforts focused on prediction tools that simplified decision-making processes for human
operators. For example, statistical models were used in weather forecasting to predict
climatic conditions, aiding farmers and policymakers. However, the exponential growth of
computational power, epitomized by Moore’s Law [Moore, 1998] in the mid-20th century,
paved the way for developing systems capable of making decisions automatically based on
potentially real-time information collected from the environment.

6.1.2 Expert systems

Early advancements in automated decision-making were marked by the development of
rule-based, logic, and expert systems in the 1970s and 1980s. A notable example is the
MYCIN system [van Melle, 1978], designed to diagnose bacterial infections and recom-
mend antibiotics by following explicit rules defined by medical experts. These systems
processed information and made decisions by applying predefined rules, relying heavily on
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expert human knowledge. Compared to individual human experts, these systems had the
potential to process larger volumes of information and make decisions more consistently
and efficiently. While effective in specific domains, these systems were limited by their
dependence on exhaustive human expertise and struggled with scalability and adaptability
in more complex or dynamic environments.

6.1.3 Optimization-based systems

To overcome these limitations and reduce the reliance of decision-making systems on
human expertise, researchers began to explore optimization-based approaches such as
dynamic programming [Bellman, 1957a, Puterman, 1994], search/planning [Browne et al.,
2012, García et al., 1989, Hart et al., 1968, Russell and Norvig, 2016], and reinforcement
learning [Sutton and Barto, 2018]. These methods focused on optimizing a well-defined
objective—often represented as a reward function—within a model of the environment.
By employing exact computations or leveraging data-driven approaches, machines could
compute policies determining the optimal actions to maximize this objective. Notably,
this approach reduced the need for human experts to specify explicit actions, allowing
machines to discover optimal strategies independently and, in some cases, outperform
human decision-makers.

However, the success of these methods relies on three critical components: (1) a well-
defined model of the task or a reliable source of data, (2) efficient optimization algorithms,
and (3) substantial computational resources to carry out the optimization.

6.1.4 Hardware

In recent decades, significant progress has been made on all three fronts. The development
of faster and specialized hardware, such as Graphics Processing Units (GPUs) and Tensor
Processing Units (TPUs), has significantly improved the scalability of existing methods and
enabled the emergence of large-scale learning algorithms based on neural networks. While
neural networks have existed since the 1950s [McCulloch and Pitts, 1943], it was the advent
of GPUs that made training deep neural networks feasible due to their ability to perform
massive parallel computations efficiently [Krizhevsky et al., 2012]. This capability made it
possible to train deep models that were previously impractical because of computational
limitations, which paved the way for decision-making systems capable of processing data
and deciding actions in high-dimensional spaces.

6.1.5 Learning algorithms

While deep learning [Lecun et al., 2015] mostly focuses on prediction, the combination of
deep learning with reinforcement learning has resulted in deep reinforcement learning
[François-Lavet et al., 2018, Mnih et al., 2015], a powerful paradigm for data-driven decision-
making in high-dimensional state and action spaces that previous methods could not handle
without imposing restrictive assumptions. This fusion has led to remarkable successes in
various domains. For instance, AlphaZero mastered the games of Go, chess, and shogi from
scratch using self-play reinforcement learning, surpassing the performance of both human
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experts and specialized programs [Silver et al., 2016, 2017b, 2018]. Similarly, OpenAI Five
achieved professional-level performance in the complex multiplayer game Dota 2, defeating
top human teams by learning strategies through extensive self-play [OpenAI et al., 2019b].

6.1.6 Hardware-algorithm coevolution

Despite these achievements, a significant challenge of deep reinforcement learning has
been the need for massive data to learn effective policies. While algorithmic improvements
(e.g., off-policy learning, model-based learning, exploration strategies) have addressed this
to some extent, recent advancements in GPU-based simulations [Bradbury et al., 2018,
Freeman et al., 2021, Makoviychuk et al., 2021] have significantly accelerated data sampling
and overall efficiency of simulated RL, where policies are learned in simulators and then
lifted to testing environments. This advancement has inspired research towards more
data-driven approaches, enabling improved learning efficiency by utilizing the hardware
capabilities better [Gallici et al., 2024, Li et al., 2023].

Interestingly, the development of more capable decision-making algorithms has also
spurred advancements in hardware. For example, deep reinforcement learning algorithms
have been employed to optimize data center cooling systems, leading to significant energy
savings. Additionally, reinforcement learning has been applied to chip design optimization
[Mirhoseini et al., 2021], including the development of TPUs themselves. Researchers used
reinforcement learning to automate the placement of components on a chip, achieving
results comparable to or better than those of human experts in a fraction of the time.

These developments highlight a synergistic relationship between hardware and algo-
rithms, where advancements in one domain drive progress in the other. As automated
decision-making methods become more sophisticated, they demand greater computational
power, which motivates the development of specialized hardware. Conversely, new hard-
ware capabilities enable the exploration of new algorithms, pushing the boundaries of
what is possible in automated decision-making. Together, these advancements have signif-
icantly enhanced the decision-making capabilities of machines, enabling them to tackle
increasingly complex tasks with greater efficiency and effectiveness.

6.1.7 The dependence on reliable and cheap data

Despite the remarkable successes of automated decision-making systems, their successes
largely occur in settings where reliable data is cheap and abundant—typically in the digital
world with access to fast, accurate simulators. In well-defined domains like board games,
systems such as AlphaZero can simulate millions of games against themselves without
incurring real-world costs. Even complex video games can often be simulated faster than
real time, with computation being the main constraint [Mnih et al., 2015, Wurman et al.,
2022]. Similar success has been seen in tasks like discovering faster sorting [Fawzi et al.,
2022] and matrix multiplication [Mankowitz et al., 2023] algorithms.

Another key factor in these successes is the alignment between training and testing
environments. In such domains, data is often sourced directly from the testing environment,
reducing the challenges associated with mismatches between training and deployment.
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6.1.8 Challenges

However, even within the digital world, not all tasks allow for cheap and reliable data
collection. For example, in e-commerce platforms aiming to maximize profit through
personalized recommendations or pricing strategies, there are costs associated with each
data point. Implementing reinforcement learning directly in the live system can lead to
suboptimal user experiences or revenue loss during the learning phase.

In contrast to the digital world, obtaining reliable data for real-world tasks is often sig-
nificantly more costly due to several factors. First, the real world operates much slower than
the digital world, and exploration typically involves risks, safety concerns, and additional
expenses. For example, robotics tasks that can be learned in simulated environments like
Mujoco [Todorov et al., 2012] within hours may require weeks or months in the real world,
along with the costs and risks of damaged robots. While small-scale, controlled tasks—such
as robotic manipulation in laboratory settings—can sometimes be learned directly in the
testing environment, these exceptions highlight the broader challenges that make direct
learning in real-world settings impractical and unscalable for most applications.

6.1.9 Using a model/simulator

A more practical approach for real-world tasks is to build a model of the task and then use
it for planning or learning to construct a decision-making system before deployment in
the real world. This paradigm has been successful in various instances [Bellemare et al.,
2020, Degrave et al., 2022, OpenAI et al., 2019a, Richard Evans and Jim Gao, 2024, Tan et al.,
2018, Tobin et al., 2017].

However, this approach also presents challenges, particularly in constructing accurate
simulators that can run efficiently. Real-world tasks are inherently complex and often
involve numerous interacting subsystems, making it difficult to build precise models,
especially when the underlying dynamics are not fully understood or are subject to change.
Even when a model can be built, it may be computationally intensive to simulate, hindering
the speed of learning and planning.

6.1.10 The challenge of model accuracy

Most models or simulators are either hand-crafted by domain experts or learned from
data—both of which can introduce inaccuracies. While model fidelity is often domain-
specific, many decision-making algorithms are designed to account for model errors and
remain effective despite them.

A common technique is to introduce pessimism during policy learning: prioritizing
decisions in regions where the model is more certain, thereby reducing overfitting to
inaccurate predictions. This idea is central in offline reinforcement learning [Levine et al.,
2020], where policies are trained on fixed datasets. Pessimism has proven crucial for good
performance in this setting [Buckman et al., 2020, Jin et al., 2021, Kidambi et al., 2020,
Kumar et al., 2020, Yu et al., 2020].

Alternatively, robust optimization [Ben-Tal et al., 2009, Bertsimas et al., 2011] and
robust reinforcement learning [Nilim and Ghaoui, 2005, Pinto et al., 2017, Wiesemann et al.,
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2013] address uncertainty by optimizing worst-case performance over a set of possible
models. While these methods can be overly conservative, they avoid relying on precise
uncertainty estimates.

A related strategy is domain randomization [Peng et al., 2018, Tobin et al., 2017], where
agents are trained on diverse simulated environments with randomized parameters to
encourage generalization to the real world despite simulator imperfections.

6.1.11 The challenge of model complexity

Beyond model fidelity, computational efficiency is a major concern in automated decision-
making systems. For example, in chip design [Mirhoseini et al., 2021], much of the training
time is spent evaluating designs with slow, industry-standard simulators. Similarly, neural
architecture search requires training thousands of models, making data collection costly
and time-intensive [Pham et al., 2018, Zoph and Le, 2016].

Improving the sample efficiency of algorithms helps, but a more fundamental solution
is to accelerate simulations themselves. One approach is to leverage GPUs or specialized
hardware for parallelized simulation [Bradbury et al., 2018, Freeman et al., 2021]. However,
this often demands low-level access to simulators, which is infeasible with black-box
systems. Even with GPU acceleration, complex simulations involving many interacting
components can still be prohibitively slow.

In such cases, surrogatemodels offer an effective alternative. Widely used in engineering
[Alizadeh et al., 2020, Kudela and Matousek, 2022, Razavi et al., 2012, Viana et al., 2021],
these models approximate expensive simulators with reduced complexity—often using
neural networks. When guided by domain knowledge, surrogate models can focus only on
task-relevant aspects, improving efficiency without sacrificing accuracy.

This selective modeling is often overlooked but crucial: while everything in a complex
system may interact, not all details are necessary for effective decision-making. By identi-
fying the components that matter most, we can construct models that are both tractable
and effective.

Abstraction is key to this process. It provides a principled way to construct minimal
models that retain essential task dynamics while ignoring irrelevant details. Our work
(Chapters 3–4) builds on this idea, using influence-based abstraction to combine exact local
models with learned approximations of external influences. This results in fast, reliable
surrogate models particularly well-suited for structured, networked environments.
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6.1.12 Summary

Automated decision-making systems have evolved from relying heavily on human expertise
to systems capable of discovering strategies that outperform human decision-makers. This
shift has been propelled by advancements in hardware and algorithms, which have a
symbiotic relationship wherein each drives progress in the other.

However, recent successes in automated decision-making have predominantly occurred
in domains where reliable data can be obtained at low cost, such as in the digital realm. A
key question for the future is how to extend these successes to economically and practically
challenging real-world tasks, where we may not fully understand the system and may not
be able to model it accurately and efficiently.

6.1.13 Future

In the near term, human knowledge remains crucial in deciding what aspects of a system to
model and what to ignore and in building partial or complete models of the task. However,
to scale up decision-making systems and enhance their applicability in the long run, we
need to rely more on data-driven approaches that can learn directly from data without the
necessity of human-defined models.

This shift is particularly important for tasks that are not well understood and for further
removing humans from the loop, leading tomore powerful decision-making systems capable
of tackling tasks previously inaccessible due to complexity or lack of understanding. This
progression aligns with the historical trajectory from expert systems—heavily reliant on
human input—to more autonomous systems grounded in planning and learning, which
inherently aim to minimize human involvement in the decision-making process.

This raises the question: How dowe build reliable models directly from data? We believe
this requires methods that can learn from large volumes of data, potentially encompassing
multiple modalities. Recent advancements in large language models (LLMs) [OpenAI,
2024, Vaswani et al., 2017] and multimodal models have provided a glimpse of what a
general-purpose model might look like. Models such as GPT-4 have demonstrated the
ability to absorb vast amounts of information and perform a wide range of tasks, suggesting
a pathway toward more generalized decision-making systems.

While a general-purpose model may enable planning policies for a wide range of tasks,
one practical challenge is the high inference cost associated with these models. A promising
research direction is to develop sparse or factored models that can focus computation on
only the relevant parts of the environment for a specific task—for instance, making a cup
of coffee. This approach avoids unnecessary feedforward passes through the entire neural
network, thereby reducing computational overhead. Inspiration for such an approach may
be drawn from the human brain.

Many topics are not covered in this "big picture". For example, the alignment problem,
which refers to the challenge of ensuring that the learned policy behaves as intended when
deployed in the real world. Other topics include fairness, interpretability, and the societal
impact of automated decision-making systems. While we have mainly focused on the
technical aspects of decision-making, these broader issues are equally important and can
be the bottleneck for the deployment of decision-making systems in practice.
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6.2 Contributions and Insights

Chapter 3 introduces an approach to constructing efficient surrogate models for factored
POMDPs with many interacting subsystems. We propose the influence-augmented local
simulator (IALS), a hybrid model that combines an exact local simulator with a learned
influence model. The local simulator captures the agent’s immediate dynamics relevant
to rewards and observations, while the influence model—parameterized by neural net-
works—approximates the effect of external subsystems. This hybrid design enables accurate
simulation of critical task components while abstracting away less important details.

What we learned is that approximation must be applied selectively. Not all approximations
are equally tolerable—some matter more for decision quality. When constrained by data,
representation, or compute, the trade-off between precision and efficiency should be made
deliberately. This can be guided either by domain knowledge—such as task structure, as in
influence-based abstraction—or by domain-agnostic principles, such as value equivalence,
which emphasizes preserving task-relevant behavior without requiring structural assumptions.

Chapter 4 builds on this with a general paradigm for learning and using abstract
simulators during planning. Instead of relying on a fixed offline-trained surrogate, we
propose learning the model online and dynamically choosing between the abstract and
full simulator based on estimated accuracy. Though applied here to IALS, the paradigm is
broadly applicable to cases where planning must be done under computational constraints
and imperfect simulators.

This introduces a meta-reasoning challenge: deciding when to trust the approximate
simulator. Since solving this problem optimally is intractable—and often more expensive
than solving the original decision problem itself—we rely on heuristics: estimating divergence
between simulators and using a bandit algorithm to arbitrate. While imperfect, this approach
performs well in practice. It mirrors how humans switch between fast and slow reasoning
systems: the meta-decision is heuristic, quick, and good enough—not necessarily optimal.

Chapter 5 analyzes the MuZero algorithm, a model-based reinforcement learning
method that has achieved strong empirical performance. We investigate whether MuZero’s
success stems from its learned model and how this model contributes to planning. Our
results show that MuZero’s model often lacks the accuracy needed for general-purpose
planning, especially under distribution shift. Yet planning with MuZero remains effective,
primarily due to the use of a learned policy prior that focuses the search on regions where
the model is more reliable.

What we learned is that in end-to-end systems, it is difficult—and often misleading—to
assume the function of individual components. Although MuZero’s model appears central,
its planning effectiveness depends largely on how it is constrained by the policy prior. This
shows that the model’s value lies in its interaction with other components, not its standalone
fidelity. Simplified views—like treating MuZero as AlphaZero plus a learned model—miss this
nuance. Understanding model-based methods may require reframing them through the lenses
of representation learning, exploration, and architectural inductive biases.
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6.3 Limitations and Future Work

Dependence on a factored simulator A key limitation of our work on influence-
augmented local simulators is the assumption of access to a factored simulator. This
enables us to 1) identify the local state variables, 2) construct the local simulator, and 3)
collect data to train the influence model.

In practice, constructing such a simulator can be difficult, as it requires prior knowledge
of the task’s structure and dynamics. Below, we examine to what extent this assumption
might be relaxed.

Constructing the local simulator and training the influence model can, in some cases,
be done from interaction data collected in the real environment. If the agent only interacts
with a small and well-understood part of the environment, the local simulator may also be
constructed manually by a domain expert.

In contrast, identifying the local state variables—the core of the factorization—is sub-
stantially harder. Without this step, it is not even possible to define what the local and
influence models should capture. In many structured systems, this decomposition is avail-
able or can be provided by experts. Where this is not the case, the structure must be learned
from data—posing challenges in causal discovery or unsupervised factorization.

In summary, while our reliance on a fully factored simulator can be partially relaxed,
some knowledge of the task structure remains essential—either provided explicitly or
learned through structure discovery methods.

Generalizing our approach of self-improving simulators Chapter 4 introduces a
general paradigm for learning and using abstract simulators during planning. While our
work applies this to influence-based abstraction, the underlying idea—adapting simulator
usage based on online accuracy estimates—is broadly applicable.

Generalizing this paradigm to other forms of abstraction is a promising direction. The
key promise is to preserve decision quality throughout learning by dynamically deciding
when to trust the abstract simulator. A central challenge here is estimating simulator
accuracy in context, using as few samples as possible from the expensive base simulator.

What model to learn in MBRL In model-based reinforcement learning, the choice
of training loss determines the level and kind of abstraction the model captures [Li et al.,
2006]. Value-equivalent models [Schrittwieser et al., 2020] have shown strong performance
in high-data regimes, while reconstruction- and temporal-consistency-based models [Ye
et al., 2021] tend to perform better in low-data settings.

A deeper understanding—both theoretical and empirical—of how different losses influ-
ence abstraction quality would be valuable. In particular, it remains an open question how
these trade-offs depend on the complexity of the task, the model capacity, the available
data, and the intended model usage (e.g., planning vs. policy learning). Clarifying these
relationships could help guide the design of learning objectives in future model-based
reinforcement learning methods.
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